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Abstract
In 1995, McKay and Radziszowski proved that the Ramsey number R(4,5) is equal to 25. Their
proof relies on a combination of high-level arguments and computational steps. The authors have
performed the computational parts of the proof with different implementations in order to reduce
the possibility of an error in their programs. In this work, we prove this theorem in the interactive
theorem prover HOL4 limiting the uncertainty to the small HOL4 kernel. Instead of verifying their
algorithms directly, we rely on the HOL4 interface to MiniSat SAT to prove gluing lemmas. To
reduce the number of such lemmas and thus make the computational part of the proof feasible, we
implement a generalization algorithm. We verify that its output covers all the possible cases by
implementing a custom SAT-solver extended with a graph isomorphism checker.
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1 Introduction

Formalizations are useful to verify that there are no bugs in some software and also that there
are no errors in a mathematical proof. Researchers write their formalizations in an interactive
theorem prover also called a proof assistant. An interactive theorem prover transforms
high-level proof steps, written by its user in the language of the interactive theorem prover,
into low-level proof steps at the level of logical rules and axioms. These low-level steps are
then verified by the kernel of the proof assistant. Formalizations are thus doubly appropriate
when a proof combines advanced human-written arguments and computer-generated lemmas.
This is the case for the four-color theorem [3] which was proved by Appel and Haken in 1976
and the Kepler conjecture [13] which was proved by Hales and Ferguson in 1998.

In those two cases, a human argument is used to reduce a potentially infinite number
of cases to a finite number. Then, a computer algorithm is used to generate a proof for
each of these cases. The generated proofs are too numerous to be verified manually and so
the generating code, which is in those cases quite complicated, had to be trusted. To avoid
trusting that the generating code fits together with the human argument, a formalization
of the four-color theorem [11] was completed in the Coq proof assistant [4] by Gonthier in
2005 and a formalization of the Kepler conjecture [12] was completed in the HOL Light proof
assistant [14] by a team led by Hales in 2014.

The case of R(4, 5) ≤ 25 is different. Since it is a finite problem, one could prove it by
considering a finite number of cases. Since there are 25×24

2 = 300 edges in a graph with 25
vertices, a naive proof would consist of checking the presence of a 4-clique or a 5-independent
set in all graphs of size 25 which would amount to 2300 ≈ 1090 graphs. Another approach
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would be to encode the clique constraints into a SAT solver. This reduces the search space
dramatically but so far no proof of R(4, 5) ≤ 25 relying only on calls to SAT solvers has been
found.

The proof of McKay and Radziszowski [18] first uses a high-level argument and then relies
on a pre-processing algorithm to reduce the number of cases to a manageable number. Each of
those cases requires proving that a pair of graph cannot occur together in an R(4, 5, 25)-graph.
These kinds of problems are called gluing problems. Our formalization of R(4, 5) = 25 in the
HOL4 theorem prover [19] will mostly follow the initial splitting argument. We construct a
slightly different pre-processing algorithm that uses gray edges instead of removing vertices.
We also make use of the HOL4 interface [20] to the SAT solver MiniSat [9], instead of re-using
the custom-built solver of McKay and Radziszowski, to prove that the gluing problems are
unsatisfiable. This greatly simplifies our proof as we do not need to trace the proof steps of
their optimized solver and we do not have to replay those proof steps in HOL4. Additional
differences between our formal proof and the original proof are discussed in Section 8.

We now explain in more detail the different components of our formal proof. To conclude
that R(4, 5) = 25, we prove that R(4, 5) ≤ 25 and that R(4, 5) > 24. The statement
R(4, 5) > 24 can simply be proved by exhibiting an R(4, 5, 24)-graph. The existence of such
graph has been known since 1965 thanks to a construction by Kalbfleisch [16]. The formal
proof of the existence of an R(4, 5, 24)-graph is given in Section 6.2. The other parts of
this paper describe how to formally prove the more challenging statement R(4, 5) ≤ 25. In
Section 2, we first give three important definitions. In particular, we define the Ramsey
number R(4, 5) which is necessary to state the final theorem. In Section 3, we prove that in
an R(4, 5, 25)-graph there exists a vertex of degree d ∈ {8, 10, 12} and that the neighbors of
that vertex form an R(3, 5, d)-graph and the antineighbors form an R(4, 4, 24 − d)-graph as
illustrated in Figure 1. This vertex is referred to in other parts of the proofs as the splitting
vertex. In Section 4, we enumerate all possible R(3, 5, d)-graphs and R(4, 4, 24 − d)-graphs
modulo isomorphism. We then regroup similar graphs together in what we call generalizations.
In Section 5, we prove that there is no way to glue an R(3, 5, d)-generalization and an
R(4, 4, 24 − d)-generalization while respecting the clique constraints. This is achieved by
encoding the gluing into SAT and calling the HOL4 interface to MiniSat. In Section 5.2,
we improve the construction of generalizations by preferring ones resulting in easier gluing
problems. This selection is guided by a simplicity heuristic, which estimates how hard the
resulting SAT solving problems would be, as described in Section 5.1. In Section 6.1, we
connect the different parts of the proofs proving that formulas stated at different logical
levels (propositional, first-order and higher-order) imply each other in the desired way.

▶ Remark. Not every algorithm needs to have its computation steps verified in a formal
manner. Sometimes, it is enough to verify that the mathematical object produced by the
algorithm satisfies the desired properties. For example, we did not verify every step of the
nauty algorithm [17] which we rely on to normalize graphs in Section 4. Indeed, it is sufficient
to save the witness permutations used during graph normalization to show that two graphs
are isomorphic.

2 Preliminaries

Throughout our proof, we rely on the following definitions.

▶ Definition 1. (neighbors, antineighbors)
Given a graph (V, E):
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R(3, 5, d) R(4, 4, 24 − d)

R(4, 5, 25)

Figure 1 Neighbors (blue-neighbors) and antineighbors (red-neighbors) of a vertex of degree d in
an R(4, 5, 25)-graph.

the set of neighbors (blue-neighbors) of a vertex x ∈ V is {y ∈ V | y ̸= x ∧ (x, y) ∈ E},
the set of antineighbors (red-neighbors) of a vertex x ∈ V is {y ∈ V | y ≠ x ∧ (x, y) ̸∈ E}.

▶ Definition 2. (Ramsey property)
The Ramsey property R(n, m, k) holds for a graph (V, E) if:

V has size k,
(V, E) does not contain a clique (blue-clique) of size n,
(V, E) does not contain an independent set (anticlique, red-clique) of size m.

We also use R(n, m, k) to refer to the set of graphs with property R(n, m, k).
A graph for which the property R(n, m, k) holds is called a R(n, m, k)-graph.

▶ Definition 3. (Ramsey number)
The Ramsey number R(n, m) is the least k ∈ N such that R(n, m, k) is empty.

In our formalization, a set of vertices V will be represented by a subset of nonnegative
integers. Moreover, we often use an equivalent formulation of graphs when discussing
algorithms on graphs. In the equivalent formulation, all graphs are complete graphs but
their edges are colored either blue or red. The correspondence between the two formulations
is straightforward. There is a blue edge in the second formulation if and only if there is an
edge in the first.

3 Degree Constraints

As an intermediate concept, we define Ro(r, s, n) to hold if R(r, s, n) is empty. It is easy to
see R(r, s) ≤ n iff Ro(r, s, n). In our formalization, we are primarily interested in proving
Ro(r, s, n) for values of r, s and n. In this section our focus is on reducing the goal of proving
Ro(4, 5, 25) to ruling out vertices of degrees 8, 10 or 12. All the lemmas presented in this
section are formalized in the file basicRamsey of our repository [10]. These lemmas are
reformulations of basic results in graph theory [5].

Given a graph (V, E)1 and a vertex v ∈ V , we write N (V,E)(v) for the set of neighbors of
v and A(V,E)(v) for the set of antineighbors of v. We will almost always omit the superscript
and write N (v) and A(v). The degree of v is defined to be the cardinality of N (v). Likewise,
the antidegree of v is the cardinality of A(v).

Several relevant smaller Ramsey numbers are well-known: R(2, s) = s, R(3, 3) = 6,
R(3, 4) = 9, R(3, 5) = 14 and R(4, 4) = 18. In our formalization we prove the Ro variant,

1 We always implicitly assume the set V is finite.
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only proving the known values are upper bounds. We begin by sketching a description of
these results as well as some of the preliminary results used to obtain them.

By considering complements of graphs we know that Ro(r, s, n) implies Ro(s, r, n). If
(V, E) ∈ R(r+1, s, n) and v ∈ V is a vertex of degree d, then (N (v), E) ∈ R(r, s, d). Likewise,
if (V, E) ∈ R(r, s + 1, n) and v ∈ V is a vertex with antidegree d, then (A(v), E) ∈ R(r, s, d).

Every graph in R(2, s, m) has no edges (since an edge would be a 2-clique). Thus every
graph in R(2, s, m) is an independent set of size m. This is impossible if s ≤ m, and so we
conclude Ro(2, m, m). Likewise, Ro(m, 2, m).

We next prove a well-known result that provides upper bounds for values of R(r, s).

▶ Lemma 4. If Ro(r + 1, s, m + 1) and Ro(r, s + 1, n + 1), then Ro(r + 1, s + 1, m + n + 2).

Proof. Assume we have a graph (V, E) in R(r + 1, s + 1, m + n + 2). We choose a vertex
v ∈ V with degree d and antidegree d′. We know (N (v), E) ∈ R(r, s + 1, d) and (A(v), E) ∈
R(r + 1, s, d′). We obtain a contradiction using d + d′ = m + n + 1, d < m + 1 (since
Ro(r + 1, s, m + 1)) and d′ < n + 1 (since Ro(r, s + 1, n + 1)). ◀

Applying the previous results, we immediately obtain Ro(3, 3, 6). We also obtain
Ro(3, 4, 10), but need the stronger result Ro(3, 4, 9).

There is an easy informal argument for why R(3, 4, 9) is empty. Assume (V, E) is a graph
in R(3, 4, 9). The results above ensure every vertex v ∈ V must have degree d < 4 (since
Ro(2, 4, 4)) and antidegree d′ < 6 (since Ro(3, 3, 6)). Since d + d′ = 8, we must have d = 3
and d′ = 5. We now consider the sum of the degrees of each vertex. Since the relation is
symmetric, the sum must be even, as each edge is counted as part of the degree of each of
the vertices of the edge. However, the sum is also 9 · 3 = 27, which is odd. Hence no such
graph exists. Below we describe our formalization of general results allowing us to prove
Ro(3, 4, 9). The results will also allow us to later prove every graph in R(4, 5, 25) must have
a vertex with even degree.

▶ Lemma 5. Let (V, E) be a graph in which every vertex has odd degree. For each U ⊆ V ,
U has odd cardinality if and only if Σu∈U |N (u)| is odd.

Proof. The proof follows by an induction over the finite set U . ◀

Applying Lemma 5 with U = V , we obtain that if V has odd cardinality and every vertex has
odd degree, then Σv∈V |N (v)| is odd. In particular for a hypothetical graph (V, E) ∈ R(3, 4, 9),
Σv∈V |N (v)| is odd since 9 and 3 are odd.

On the other hand we can prove Σv∈V |N (v)| is always even, though this requires two
inductions on finite sets. We first prove that if we extend a graph with a new vertex, the
neighbors of the new vertex in the larger graph contribute twice to the sum.

▶ Lemma 6. Let V be a finite set, u /∈ V and E be a symmetric relation (on V ∪ {u}).2 For
every finite set U , if N (V ∪{u},E)(u) = U , then

Σw∈V ∪{u}|N (V ∪{u},E)(w)| = Σv∈V |N (V,E)(v)| + 2|U |.

Proof. This is proved by induction on the finite set U . ◀

We can now prove the sum is even by induction on the finite set of vertices V .

2 In the formalization, E is assumed to be symmetric on the relevant type, ignoring V ∪ {u}.
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▶ Lemma 7. For every finite set V and symmetric relation E, Σv∈V |N (V,E)(v)| is even.

With Lemmas 5 and 7 we can conclude Ro(3, 4, 9) since the sum of the degrees of the
vertices in a hypothetical graph (V, E) ∈ R(3, 4, 9) would be both odd and even.

Using Lemma 4 we now immediately obtain Ro(3, 5, 14) and Ro(4, 4, 18), giving us all
the upper bounds for small Ramsey numbers we will need.

We now turn to the consideration of Ro(4, 5, 25). For the next steps in the proof, we assume
for the sake of contradiction that there exists graph (V, E) ∈ R(4, 5, 25). Let v ∈ V with
degree d and antidegree d′ be given. Since (N (v), E) ∈ R(3, 5, d) and (A(v), E) ∈ R(4, 4, d′)
we know d < 14 and d′ < 18. Since d + d′ = 24, we must have d > 6. This provides our basic
upper and lower bounds on degrees of vertices in (V, E).

These same degree bounds are, of course, given in [18]. The argument in [18] considers
graphs in R(3, 5, d) and corresponding graphs in R(4, 4, 24 − d) that could hypothetically
correspond to N (v) and A(v) for a vertex v ∈ V . In [18], the case with d = 11 is ruled out since
if every vertex had degree 11, the sum of degrees would be odd, giving a contradiction. That
is, we can be assured of the existence of a vertex v ∈ V with degree d ∈ {7, 8, 9, 10, 12, 13}. In
our proof, we apply Lemmas 5 and 7 more generally to conclude that there must be a vertex
v ∈ V of even degree. Thus, we can be assured there is a v ∈ V with degree d ∈ {8, 10, 12}.

4 Enumeration of Graphs and Construction of Covers

Assuming that there exists graph (V, E) ∈ R(4, 5, 25), there must exist a vertex v ∈ V of
degree d ∈ {8, 10, 12} as proven in Section 3. Thus, if we prove that for all d ∈ {8, 10, 12}
and for all pair of graphs G ∈ R(3, 5, d) and H ∈ R(4, 4, 24 − d), there is no way to color
edges connecting G and H without creating a 4-blue or a 5-red clique, then we would have
proved that Ro(4, 5, 25) (i.e. R(4, 5) ≤ 25).

Here is a simple approach. First, enumerate all the graphs in R(3, 5, d) and in R(4, 4, 24−
d), and then prove the absence of gluing between each pair of graphs (see Section 5). This
is however not efficient enough given our computational means. In Table 3, we estimated
that this approach would take more than 16,000 CPU days. To save time in both algorithms,
we regroup graphs that are similar to each other, differing only by a few edges, in what we
call generalizations. This way, our proofs will avoid repeating the same proving arguments
in similar situations. This idea reduces, with the help of a simplicity heuristic, the total
computation time to less than 950 CPU days as shown in Table 3.

From a set of graphs G, we will construct a set of generalizations G∗ (this is a set of set
of graphs) with the following properties. Every graph in G is a member of a generalization in
G∗ (we are not missing any case) and every graph in a generalization G∗ ∈ G∗ is in G (we
are not covering extra cases).

▶ Definition 8. (cover,exact cover)
A set of generalizations G∗ is a cover of a set of graphs G if G ⊆

⋃
G∗∈G∗ G∗.

A set of generalizations G∗ is an exact cover of a set of graphs G if G =
⋃

G∗∈G∗ G∗.

In a cover the generalizations do not need to be disjoint. Furthermore, our proof does not
fundamentally require the constructed covers to be exact and better covers may be obtained
by dropping this requirement. Yet, having exact covers simplify our presentation of the
gluing algorithm as it enable us to ignore all clique constraints containing the splitting vertex
(see Section 5).
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4.1 Algorithm for Constructing an Exact Cover
In the following, we describe our base algorithm for constructing an exact cover for a set of
graphs G. Our algorithm differs from the one given in [18] where they decide on which vertex
to remove from a graph. This is equivalent in our algorithm to ignoring the color of all edges
connecting to that vertex. In contrast, our approach is more targeted and can decide whether
to ignore the color of an edge individually. Creating such alternative approach was crucial
for us. Indeed, following the original vertex removal method resulted in the creation of SAT
problems, which were difficult to reconstruct in HOL4 due to memory issues, negating most
of the advantage gained by regrouping graphs.

This will be achieved by incrementally growing a set of generalizations G∗
partial . We refer

to the set of graphs G ∈ G that are not currently covered by G∗
partial as Guncovered . Initially,

G∗
partial is empty and thus Guncovered is equal to G.

At each iteration of our algorithm, we randomly pick a graph G from Guncovered construct-
ing a singleton generalization G∗

0 = {G}. Then, we color one of the edges of G gray. This
represents a generalization G∗

1 that contains the two graphs obtained by coloring the gray
edge red or blue. Note that one of this graph is G and thus G ∈ G∗

1 and G∗
0 ⊆ G∗

1. In general,
the process starts from a generalization G∗

n represented as a graph with n gray edges. By
definition, the generalization G∗

n is defined to be the set of all graphs that can be obtained
by coloring its n gray edges red or blue in its representation. Then, the algorithm selects
randomly one edge to gray among edges respecting the following conditions: the produced
generalization G∗

n+1 must only contain graphs that are in G and (G∗
n+1 \ Gn) ∩ Guncovered

must contain at least ⌈2n−3⌉ graphs. The first condition makes the cover exact and the
second condition prevents large overlaps between generalizations. The coefficient ⌈2n−3⌉ was
experimentally determined and essentially ensures that at least 1

8 of the covered graphs by
the newly created generalization are not covered by previous generalizations.

This process is repeated graying one more edge per generalization step, as illustrated in
Figure 2. It stops when the number of gray edges exceeds a user-given limit or when there
are no more edges respecting the conditions.

When the generalization algorithm stops, it creates a maximal generalization G∗
max which

is added to the set of generalizations G∗
partial and the instantiations of G∗

max are removed
from the set Guncovered We keep adding new generalizations to G∗

partial by the same procedure
until the set Guncovered is empty and therefore G∗

partial is an exact cover of G.
We can reduce the size of the final cover G∗ by sampling multiple graphs in Guncovered

at each iteration of the algorithm. In our implementation, we sample 1000 graphs when
G = R(4, 4, k) and all graphs when G = R(3, 5, k). This produces one maximal generalization
for each of those graphs. We then select among them a generalization G∗ that contains a
maximum number of uncovered graphs. That is to say one for which |G∗ ∩ Guncovered | is
maximum. We call this strategy for selecting generalization the greedy cover strategy. Our
final strategy for constructing covers, described in Section 5.2, is a blend of the greedy cover
strategy and a strategy that minimizes the difficulty of resulting problems with respect to a
simplicity heuristic given in Section 5.1.

The nauty algorithm [17] is called to normalize graphs in G and in each generalization G∗.
By normalizing all graphs, we can check that two graphs are isomorphic by simply checking
if their normalizations are equal.

Computing the lists of R(3, 5, k)-graphs and R(4, 4, k)-graphs up-to-isomorphism can be
done efficiently by simply repeatedly extending graphs in R(3, 5, k) (resp. R(4, 4, k)) by one
vertex while respecting the clique constraints to produce R(3, 5, k + 1) (resp. R(4, 4, k + 1)).
Such lists have been repeatedly compiled as mentioned in [18] and therefore we will not
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k R(3, 5, k) R∗(3, 5, k) R(4, 4, k) R∗(4, 4, k)

1 1 1
2 2 2
3 3 4
4 7 9 1
5 13 3 24 3
6 32 3 84 6
7 71 5 362 11
8 179 27 2079 47
9 290 11 14701 271

10 313 43 103706 1669
11 105 12 546356 7919
12 12 12 1449166 26845
13 1 1 1184231 13078
14 130816 11752
15 640 67
16 2 2
17 1 1

Table 1 Number of R(3, 5, k)-graphs and R(4, 4, k)-graphs up-to-isomorphism together with the
number of generalizations in the respective covers. All the covers were initially constructed with a
maximum of 10 gray edges. We later updated the cover for the bold cases using an edge selection
algorithm and an improved selection algorithm for generalizations (see Section 5.2).

discuss in more detail how to construct them. From those lists, we construct corresponding
covers R∗(3, 5, k) and R∗(4, 4, k). The size of those constructed covers for the sets of graphs
R(3, 5, k) with 5 ≤ k ≤ 13 and the sets of graphs R(4, 4, k) with 4 ≤ k ≤ 17 is presented in
Table 1.

4.2 Proof that R(3, 5, k) is Covered by R∗(3, 5, k)
In this section, we only present the proof for the covers R∗(3, 5, k) since the proof for the
covers R∗(4, 4, k) follows by an analogous argument. Given the result presented in Section 3,
it is enough to consider the cases of a splitting vertex with degree d ∈ {8, 10, 12}. Therefore,
it would be enough to prove that R∗(3, 5, d) covers the set of graphs with property R(3, 5, d).
However, to do so, we found it easier to prove the stronger result:

∀ 5 ≤ k ≤ 13. G has property R(3, 5, k) ⇒ ∃G∗ ∈ R∗(3, 5, k). G ∈ G∗

We prove the result by a finite induction over the number of vertices k.
The base case k = 5 consists of searching for all the possible graphs with property R(3, 5, 5)
and show that they appear modulo isomorphism in one of the generalizations in R∗(3, 5, 5).
The inductive case is similar. The main difference is that we start the search from a
generalization G∗ instead of the empty generalization. We prove that for all generalizations
G∗ in R∗(3, 5, k), any extension of G∗ by one vertex that respects the property R∗(3, 5, k + 1)
is isomorphic to an element of R∗(3, 5, k + 1). This is achieved by exploring all possible
colorings (in blue or in red) of edges that are either gray or contain the new vertex. This
extension process is depicted in Figure 3.
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Iteration 0: Guncovered = G = { , , }, G∗
partial = ∅

Randomly chosen generalization G∗
0 = { }

G∗
0Generalizations G∗

1 G∗
2

Graphs

stops

Iteration 1: Guncovered = ∅, G∗ = G∗
partial = {G∗

2} = { }

Figure 2 Construction of an exact cover G∗ of a set of graphs G. The process of graying edges
stops as it would otherwise produce a gray triangle including a blue triangle. The construction of
an exact cover terminates in this case after one iteration. The dotted arrows indicate which graph
belongs to which generalization.

Figure 3 Extension of an R∗(3, 5, 9)-generalization depicted as an adjacency matrix. The first 9
rows and columns represent the vertices x0 to x8 of the R∗(3, 5, 9)-generalization. Gray edges are
represented by dotted gray circles. Edges containing the extension vertex x9 (last row and column)
are represented by black circles.
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The formalization and efficiency of the previous arguments rely on our custom-made
solver for labeled graphs. Our solver mostly works like a DPLL SAT solver [8]. The principal
difference is that it represents clauses as essentially first-order formulas. We show how we
represent the property R∗(3, 5, k +1) in first-order. Given a graph G of size k +1, represented
by a binary relation E over a set of vertices V = [|0, k|] = {0, 1, . . . , k}, our first-order
representation of the statement “G has property R∗(3, 5, k + 1)” is given by the two formulas:

∀x0x1x2
distinct

< k+1. ¬Ex0x1 ∨ ¬Ex0x2 ∨ ¬Ex1x2

∀x0x1x2x3x4
distinct

< k+1. Ex0x1 ∨ Ex0x2 ∨ Ex0x3 ∨ Ex0x4 ∨ Ex1x2∨

Ex1x3 ∨ Ex1x4 ∨ Ex2x3 ∨ Ex2x4 ∨ Ex3x4

where distinct means that we add inequalities between each of pair of quantified variables.
For example, ∀x0x1x2

distinct
< k + 1. P [x1, x2, x3] stands for:

∀x0x1x2. (x0 <k+1 ∧ x1 <k+1 ∧ x2 <k+1 ∧ x0 ̸=x1 ∧ x0 ̸=x2 ∧ x1 ̸=x2) ⇒ P [x1, x2, x3]

Our solver is designed to work exclusively on graphs where edges are represented by
first-order literals and the coloring of an edge (i, j) to blue (resp. red) corresponds to assuming
the literal Exixj in the branch (resp. the negation of the literal ¬Exixj). A gray edge just
indicates that no color for that edge is currently assumed. The prover starts by assuming
all literals corresponding to colored edges in a generalization G∗ with k vertices. It then
explores all possible colorings of the gray edges and then all the possible coloring of the edges
containing a new vertex xk. At the leaf, this produces a graph of size k + 1 represented by
all the literals assumed in the branch.

By representing vertices by variables x0, . . . , xk instead of the concrete value 0, . . . , k, it
is easier to prove that the graphs in the leaves are indeed isomorphic to one of the elements
of one of the generalizations G′ ∈ R∗(3, 5, k + 1). To prove that every generalization in
R∗(3, 5, k) extends to graphs belonging to a generalization in R∗(3, 5, k + 1), we will prove
that there is no way to extend a generalization in R∗(3, 5, k) if we forbid the creation of
any graph that is a member of a generalization in R∗(3, 5, k + 1). Given a generalization
G′ ∈ R∗(3, 5, k + 1) with a set of blue edges Blue and a set of red edges Red, we use the
following formula to forbid the creation of an element of G′:

∀x0 . . . xi . . . xj . . . xk
distinct

< k + 1. ((
∧

(i,j)∈Blue

Exixj) ∧ (
∧

(i,j)∈Red

¬Exixj)) ⇒ ⊥

Note that this implies that all permutations of graphs that are members of this generalization
are forbidden. The first reason is that the formula does not assume any constraints on the
gray edges of G′ therefore forbids all members of G′. The second reason is one can permute
the indices of variables by a simple instantiation of the variables with a permutation being
given by the nauty algorithm to make the labeled graph on the branch match with one of the
labeled generalizations.

5 Gluing

In the previous section, we constructed covers for R(3, 5, d)-graphs and R(4, 4, 24−d)-graphs.
The next step of our proof is to prove that given a generalization G∗ in R∗(3, 5, d) and a
generalization in H∗ in R∗(3, 5, 24 − d), there is no way to extend color gray edges and
transverse edges to form an R(4, 5, 24)-graph (see Figure 4) and thus an R(4, 5, 25)-graph
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by adding the splitting vertex. In the rest of this section, we can ignore clique constraints
that include the splitting vertex as they are already satisfied. This is a consequence of
the fact that our covers are exact covers. All our gluing problems are formulated at the
propositional level and contain the following clauses representing the property R(4, 5, 24).
Let us number the vertices of an R∗(3, 5, d)-generalization G∗ from 0 to d − 1, and the
vertices of a R∗(4, 4, 24 − d)-generalization graph H∗ from d to 23.

For each subset S ⊂ [|0, 23|] of size 4, we create the clause
∨

a,b∈S∧a<b

¬Ea,b .

For each subset T ⊂ [|0, 23|] of size 5, we create the clause
∨

a,b∈T ∧a<b

Ea,b .

In all these propositional clauses, Ea,b is a propositional variable that is true if there is
a blue edge between a and b and that is false if there is a red edge between a and b. One
can note that any clauses containing only vertices from G∗ or only vertices from H∗ can be
omitted as G∗ and H∗ provably avoid any blue 4-clique or any red 5-clique. This removal
occurs naturally as a consequence of performing unit propagation. In each gluing problem
(G∗,H∗), we add unit clauses for each colored edge (red or blue) of G∗ and H∗. If an edge
(a, b) with a < b is blue then we add the unit clause Ea,b, if it is red then we add the unit
clause ¬Ea,b. If an edge is gray we do not add a unit clause. Together, with the clique clauses
this forms our SAT problem that is sent to the verified MiniSat interface. In practice, we had
to perform unit propagation to reduce the number of clauses before sending a problem to
the interface. This is due to some limitations in the interface as this does not happen when
we call the SAT solver directly.

5.1 Simplicity Heuristic
In this section, we design a heuristic that will be used to construct covers resulting in easier

problems for the SAT solver. Let bk represent the number of blue k-cliques in G∗. Let rk

represent the number of red k-cliques in G∗. Let b′
k represent the number of blue k-cliques

in H∗. Let r′
k represent the number of red k-cliques in H∗. We use the following formula to

estimate the difficulty of a gluing problem (G∗, H∗):

simplicity(G∗, H∗) = 1
23 b1b′

3 + 1
24 b2b′

2 + 1
26 r2r′

3 + 1
26 r3r′

2 + 1
24 r4r′

1

Our formula is originally designed to estimate the simplicity of a problem of gluing an
R(3, 5, d)-graph G with an R(4, 4, 24 − d)-graph H. There, 5 different types of configurations
that may create a blue 4-clique or a 5 red-clique as illustrated in Figure 5. In the resulting
SAT solving problem after unit propagation, a clause mentioning only the transverse edges is
associated with each configuration. The above heuristic can be derived from a more general
heuristic for a SAT problem P :

simplicity(P ) =
∑
c∈P

1
2|c|

where |c| is the number of literals in a clause c. This heuristic operates under the simplistic
assumption that each clause covers separate cases, allowing it to estimate the extent of
search space coverage by summing up the contribution of each clause. Experimentally, we
found that this heuristic is only effective to compare problems with the same number of
variables. Consequently, we ignore clauses containing gray edges from all gluing problems



T. Gauthier, Chad E. Brown XX:11

Figure 4 The adjacency matrix of a graph of size 24 where a partial coloring is given by a
generalization G∗ with 4 gray edges (dotted gray circles) with vertices numbered from 0 to 9 and a
generalization H∗ with 4 gray edges with vertices numbered from 10 to 23. The goal of the SAT
solvers is to prove that there is no way to assign a color (blue or red) to the gray edges and the
transverse edges (black circles) without creating a blue 4-clique or a red 5-clique.

when computing their simplicity, as we will use this heuristic to compare generalizations
with varying numbers of gray edges. Another advantage of ignoring clauses containing gray
edges is that the heuristic will prefer problems that can delay splitting on the color of gray
edges as much as possible, which favors proof sharing.

We now test how good the simplicity score is at predicting the run time of MiniSat via
the HOL4 interface on 200 gluing problems between R(3, 5, 10)-graphs and R(4, 4, 14)-graphs
in Figure 6. The results reveal that our simplicity score is a good predictor in this setting.

Finally, during the construction of a cover for G we are not aware of the corresponding
cover for H. The covers would have to be built simultaneously making the algorithm more
complicated. To avoid those complications, we devise a measure to predict if a generalization
will create difficult problems on its own without depending on the possible counterparts. To
this end, we chose to estimate the simplicity of a generalization G∗ by how difficult it is
glue it with an average counterpart graph H̄. Let b̄′

k represent the average number of blue
k-cliques per graph in H and r̄′

k represent the average number of red k-cliques per graph in
H, the simplicity of G∗ is:

simplicity(G∗) = 1
23 b1b̄′

3 + 1
24 b2b̄′

2 + 1
26 r2r̄′

3 + 1
26 r3r̄′

2 + 1
24 r4r̄′

1
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Figure 5 The five possible types of configurations. In each configuration, a colored clique in an
R(3, 5, d)-graph is displayed on the left and a colored clique in an R(4, 4, 24 − d)-graph is displayed
on the right. Transverse edges are shown as dotted black edges. Transverse edges must not all be
blue in blue configurations and they must not all be red in red configurations.
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Figure 6 Relation between the simplicity score of a problem and the time required by the HOL4
interface to MiniSat to prove that it is unsatisfiable. Each problem consists of an R(3, 5, 10)-graph
and an R(4, 4, 14)-graph. Each dot represents one problem among a random sample of 200 gluing
problems.

Similarly, let b̄k represent the average number of blue k-cliques per graph in G and r̄k

represent the average number of red k-cliques per graph in G, the simplicity of H∗ is:

simplicity(H∗) = 1
23 b̄1b′

3 + 1
24 b̄2b′

2 + 1
26 r̄2r′

3 + 1
26 r̄3r′

2 + 1
24 r̄4r′

1

5.2 Creation of Better Covers by Parameter Search
We now improve the exact cover algorithm by relying on our simplicity heuristic in two
places. The first one is during the selection of edges. Previously, the edges were selected
at random as long as the produced generalization satisfied some conditions. Now, we will
select, among the possible edges allowed by the conditions, the one that produces the
generalization with the highest simplicity score. We call this strategy fastest in Table 2. The
second place where the simplicity score will influence the algorithm is during the selection of
generalizations. Previously, we selected maximal generalizations G∗ with highest coverage
value ncover(G∗) = |G∗ ∩ Guncover |. This strategy was called the greedy cover strategy. Now,
we will also prefer generalizations with higher simplicity scores. Since we want to optimize
for both objectives at the same time, we will select the graph G∗ with the highest combined
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score simplicity(G∗)c × ncover(G∗) where c is a real number parameter influencing how much
one heuristic is preferred over the other. In Table 2, we call this selection strategy mixed-c.

Although the simplicity score is important to reduce the difficulty of the problems, the
most important parameter in reducing the total computation time is the number of maximum
allowed gray edges in each generalization. In Table 2, we optimize those parameters for the
three relevant cases d = 8, 10, 12 for the gluing. Each experiment consists of a line in Table 2.
There, we compute new covers with different parameters. To figure out the best parameters,
we estimate the run time of an average problem by sampling 200 random problems from
a pair of covers. We then multiply this estimate by the number of problems this pair of
covers would create to get an estimated total run time for this pair of covers. In the end, we
decided not to go with the best parameters according to the estimated times given in Table 2.
The reason is that by increasing the number of gray edges, the total number of problems
is reduced but the difficulty of each problem is increased. This makes the problems harder
and they would have taken more memory than we had available. That is why we chose to
compromise and instead use the fastest parameter settings, shown in bold in Table 2, that
would not use more memory than available on our machines. Table 3 gives a comparison
of the total run time for our final problems with the total runtime that we would get by
simply gluing pairs of graphs instead of generalizations. For degree d = 10, the number of
gluing problems is reduced by a factor of 81.0 and the estimated total time by a factor 14.6.
For degree d = 12, the number of gluing problems is reduced by a factor of 53.9 and the
estimated total time by a factor of 20.6.

6 Combining the Different Parts of the Proof

Our proof is expressed using three different formal representations of mathematical statements.
In Section 3, we express our statements in a higher-order form allowing us to make counting
arguments. In Section 4.2, we rely on an almost first-order representation to implement a
custom theorem prover for graphs and in particular to prove isomorphism between graphs.
In Section 5, the problems are stated at the propositional level. Here, we first describe how
we connect the different representations and as a consequence prove that R(4, 5) ≤ 25. Then,
we give the proof of the existence of an R(4, 5, 24)-graph and show that R(4, 5) > 24.

6.1 Connecting Representations
We will start by translating propositional gluing lemmas to first-order formulas. The SAT
problems do not explicitly mention on which vertices the graphs are lying on since they are
only constraining SAT variables that represent edges. Surprisingly, one can instantiate the
SAT variables Ei,j by the atom E xi xj in the gluing problem. As a consequence, gluing
problems for all permutations of edges are proved at once. We can also freely add the
following additional constraints. All variables xi must be distinct and variables with indices
less than the degree d must have a value less than d and other variables must have a value
greater or equal to d. This ensures that our generalizations G∗ and H∗ have distinct sets of
vertices. We then prove that for each R∗(3, 5, d)-generalization a single theorem stating that
this particular generalization can not be glued to any of the corresponding generalizations in
R∗(4, 4, 24 − d) by regrouping gluing theorems. This step constructs 27 theorems for degree
d = 8, 43 theorems for degree d = 10, and 12 theorems for degree d = 12. These numbers
correspond to the number of R∗(3, 5, d)-generalizations presented in Table 1. Together,
these 27 theorems (respectively 43 and 12) can be used to prove a theorem stating that the
splitting edge, represented by the vertex number 24, cannot have degree 8 (respectively 10



XX:14 A Formal Proof of R(4,5)=25

Gluing 3,5 4,4 Edge sel. Gen. sel. CPU-days (estimation)

3,5,8-4,4,16 0 0 none none 0.055
4 0 fastest mixed-0.5 0.018

3,5,10-4,4,14 0 0 none none 8373
3 4 fastest mixed-1.0 725
4 3 fastest mixed-1.0 689
4 4 random greedy cover 734
4 4 fastest mixed-10.0 625
4 4 fastest mixed-2.0 595
4 4 fastest mixed-1.0 658
4 4 fastest mixed-0.5 572
4 4 fastest mixed-0.1 706
5 4 fastest mixed-1.0 547
4 5 fastest mixed-1.0 586
5 5 fastest mixed-0.5 396

3,5,12-4,4,12 0 0 none none 7702
2 6 fastest mixed-0.5 641
3 6 fastest mixed-0.5 782
4 6 fastest mixed-0.5 784
0 8 fastest mixed-0.5 374
1 8 fastest mixed-0.5 353
2 8 fastest mixed-0.5 538
3 8 fastest mixed-0.5 360
4 8 fastest mixed-0.5 419

Table 2 Tested parameters for creating exact covers. The columns titled 3,5 and 4,4 show the
maximum number of gray edges allowed during the construction of the cover.

and 12). The higher-order version of these three final theorems do not state on which set of
vertices the neighbors and antineighbors should lie although it requires them to form sets of
nonnegative integers of size d and 24 − d respectively. To prove the more general higher-order
formulations, we rely on the fact that there is a bijection from [|0, d − 1|] to sets of vertices of
size d and a bijection from sets [|d, 24|] to sets of vertices of size 24 − d. These three theorems
together are enough to prove that R(4, 5) ≤ 25 according to the proof given in Section 3.

6.2 Existence of an R(4, 5, 24)-graph

To prove the existence of an R(4, 5, 24)-graph, we pick a graph from the full list of R(4, 5, 24)-
graphs compiled in 2016 and available at [2]. This was necessary step to prove that R(5, 5) ≤
48 as described in [1]. For our purpose, we only need one arbitrary witness graph G0 from
that list. Let B be the set of blue edges in G0, we represent the graph G0 as the relation:

E0 =def λij.
∨

(a,b)∈B∧a<b

(i = a ∧ j = b) ∨ (j = a ∧ i = b)
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Graphs Generalizations

d 3,5,d 4,4,24-d problems days 3,5,d 4,4,24-d problems days

8 179 2 358 0.055 27 2 54 0.018
10 313 130816 40945408 8373 43 11752 505336 572
12 12 1449166 17389992 7702 12 26845 322140 374

Table 3 Reduction of the number of SAT solver calls and faster estimated times in days

We prove on the first-order level that this graph does not contain any blue 4-cliques or any
red 5-cliques which can be stated as:

⊢ ∀x0x1x2x3
distinct

< 24. ¬E0x0x1 ∨ ¬E0x0x2 ∨ ¬E0x0x3 ∨ ¬E0x1x2 ∨ ¬E0x1x3 ∨ ¬E0x2x3

⊢ ∀x0x1x2x3x4
distinct

< 24. E0x0x1 ∨ E0x0x2 ∨ E0x0x3 ∨ E0x0x4 ∨ E0x1x2∨

E0x1x3 ∨ E0x1x4 ∨ E0x2x3 ∨ E0x2x4 ∨ E0x3x4

This was achieved by repeatedly applying the following lemma to eliminate the quantified
variables ⊢ (

∧
x<24

P (x)) ⇒ (∀x < 24.P (x)). To speed up the process, we stop applying the

lemma as soon as we were able to prove the goal on the branch either because we find a
red edge in blue clique (or a blue edge in a red clique) or because we have selected the
same vertex twice in the clique. With these optimizations, the existence of a graph can
be verified in less than 15 minutes on a single CPU. The connection with the higher-order
formulation can be obtained by proving that the set [|0, 23|] has cardinality 24. And thus we
get R(4, 5) > 24 which together with R(4, 5) ≤ 25 gives:

⊢ R(4, 5) = 25

7 Reproducibility

We provide instructions on how to reproduce the proof in the README.md of our repository [10].
The computational resources necessary to run our proof are the following. The final

gluing step was run on 4 different machines allowing us to finish the gluing phase in less than
9 days. This is slightly longer than what we expected according to the estimated times. Two
machines were used for the d = 10 case and the other 2 were used for the d = 12 case. Three
of them have 512 GB of RAM and one of them has 1024 GB of RAM. All of those machines
have 64 hyper-threaded CPU cores for a total of 128 available CPUs. However, we only used
40 cores per machine as our main limitation was memory. In all those machines, the same
copy of HOL4 was used to get compatible timestamps in the produced gluing theories. The
other phases were much faster and required less memory but were still run on the machine
with more memory.

Potential issues one could encounter when trying to reproduce the proof are the following.
As expected, all the technical problems come during or after the expensive gluing phase.
The first issue we discovered is that the communication files between HOL4 and MiniSat are
stored in the temporary directory of the system. Since the proof file produced by MiniSat
can be up to 2GB and our temporary directory sits in a partition of only 32GB, we ran
out of memory in that partition because we were running 40 processes in parallel. So, we
changed the temporary directory used by the HOL4 interface to MiniSat by modifying the file
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dimacsTools.sml. We changed he temporary directory used by MiniSat using the TMPDIR
bash variable. The second issue is that the reconstruction of a SAT proof in HOL4 can
require a lot of memory (in the order of 20GB per problem) and time (about 3 times longer
than the SAT solver call). We found out that creating theories with one theorem per theory
diminished memory consumption. To guarantee that the memory consumption did not
exceed a threshold, we also ran the scripts using buildheap instead of Holmake as the latter
does not provide a way to limit the memory consumption per core. Finally, we were not
able to load all the gluing theories together into HOL4 in a reasonable time. Indeed, we
observed a slowdown of time taken to load one theory as more and more theories were added
making it impossible for us to load more than 200,000 theories. Thus, we used the following
workaround instead. We loaded the theorems produced by the 43 theorems for degree d = 10
and the 12 theorems for degree d = 12, mentioned in Section 6.1, without specifying in which
theory they were proved. This was achieved by creating an alternative theory loader where
we omitted the call to the function link_parents. To ensure the safety of this procedure,
we externally check that constructing the complete theory graph for our proof without any
broken dependencies is possible in the directory theorygraph . There, we make sure that
the time stamps are coherent and that there are no cycles. In the complete theory graph,
the final theory r45_equals_24 has 828857 ancestor theories.

8 Related Works

Our formalization is based on the work of McKay and Radziszowski [18]. Their proof already
contains the three steps performed in our formalization, namely: the degree constraints for a
splitting, the creation of covers, and the proof of the absence of satisfiable gluing problems.
We explain here how our proof differs in each of those steps. In the first step, their proof
mentions that it is not possible for all vertices to have degree 11. We realized during the
formalization that this argument can be applied to prove that it is not possible for all vertices
to have odd degrees. This allows us to save time during the formalization compared to their
original proof by additionally ignoring the cases of a splitting vertex of degree d ∈ {7, 9, 13}.
In the second step, their proof removes vertices from graphs to create generalizations which
would correspond to graying all edges connected to the removed vertices in our formalization.
We tried this approach but the large number of grayed edges made the problems very difficult
for the SAT solvers. Moreover, our tests gave an estimated time to completion much larger
than with our more parsimonious approach to graying edges. In the final step, they rely on
a custom provers for gluing generalizations and spend a large part of the paper describing
how they optimize its different components. In contrast, we perform the gluing step with an
existing SAT solver. Furthermore, they state that they prefer sparser (redder) generalizations
when constructing a cover of R(3, 5, 10)-graphs and denser (bluer) generalizations when
constructing a cover of R(4, 4, 12)-graphs. Our approach instead relies on a more involved
heuristic. We try to estimate the simplicity of a generalization G∗ by understanding which
type of clauses would appear in a gluing problem where one of the generalization is G∗.

Proving mathematical theorems in combinatorics with the help of SAT solvers is not a
new phenomenon. For instance in [6], the authors prove using SAT solvers that the 3-color
Ramsey number R(4,3,3) is equal to 30. This proof contains consideration about the degrees
of vertices, a symmetry-breaking component to avoid considering isomorphic graphs and an
abstraction component relying on degree matrices to represent sets of graphs. Ultimately, the
approach relies on encoding each of these steps into SAT clauses and calling a SAT solver. A
more famous example is the proof of the Pythagorean Triple theorem [15]. In that paper, the
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authors rely on a cube-and-conquer, look-ahead methods and symmetry-breaking arguments.
The DRAT proof produced by their custom SAT solver was verified using an independent
DRAT proof checker [21]. In a later work, the proof of the Pythagorean Triple theorem
has been fully formalized in Coq [7]. There, they verified symmetry-breaking arguments
and an encoding of the problem into SAT. For the computational part of the proof, they
relied on OCaml code proven correct in Coq. This last step was necessary because of memory
limitations but is generally considered slightly less safe than running the computation directly
in Coq. In contrast, we were able to run the entire proof of R(4, 5) = 25, which is larger in
size (approximately a petabyte of DRAT proof files versus 200 terabytes), through the HOL4
kernel.

9 Conclusion

We have created the first formalization of the theorem R(4, 5) = 25. This verification was
performed within the HOL4 theorem prover. During this process, we have realized that we
can generalize the argument given for degree d = 11 to eliminate all odd degree cases. We
have designed a verified algorithm for regrouping similar graphs, creating generalizations
and ultimately speeding up our subsequent proofs. Finally, we have created and tested a
heuristic for predicting the relative run-time of a SAT solver on gluing problems. This helped
us choose generalizations that create easier gluing problems.

In the future, we would like to investigate if a proof of R(4, 5) = 25 is intrinsically
computational or if there exist additional high-level arguments that could eliminate the need
for a large computation.
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