Loading [MathJax]/extensions/tex2jax.js
:: Some Properties of Extended Real Numbers Operations: absolute value, min and max
:: by Noboru Endou , Katsumi Wasaki and Yasunari Shidama
::
:: Received September 15, 2000
:: Copyright (c) 2000-2012 Association of Mizar Users
begin
begin
theorem
Th1
:
:: EXTREAL2:1
for
x
being
R_eal
for
a
being
Real
st
x
=
a
holds
|.
x
.|
=
abs
a
proof
end;
theorem
:: EXTREAL2:2
for
x
being
R_eal
holds
(
|.
x
.|
=
x
or
|.
x
.|
=
-
x
)
by
EXTREAL1:def 1
;
theorem
:: EXTREAL2:3
for
x
being
R_eal
holds
0
<=
|.
x
.|
;
theorem
Th4
:
:: EXTREAL2:4
for
x
being
R_eal
st
x
<>
0
holds
0
<
|.
x
.|
proof
end;
theorem
:: EXTREAL2:5
for
x
being
R_eal
holds
(
x
=
0
iff
|.
x
.|
=
0
)
by
Th4
,
EXTREAL1:def 1
;
theorem
:: EXTREAL2:6
for
x
being
R_eal
st
|.
x
.|
=
-
x
&
x
<>
0
holds
x
<
0
;
theorem
Th7
:
:: EXTREAL2:7
for
x
being
R_eal
st
x
<=
0
holds
|.
x
.|
=
-
x
proof
end;
theorem
:: EXTREAL2:8
for
x
,
y
being
R_eal
holds
|.
(
x
*
y
)
.|
=
|.
x
.|
*
|.
y
.|
proof
end;
theorem
Th9
:
:: EXTREAL2:9
for
x
being
R_eal
holds
(
-
|.
x
.|
<=
x
&
x
<=
|.
x
.|
)
proof
end;
theorem
Th10
:
:: EXTREAL2:10
for
x
,
y
being
R_eal
st
|.
x
.|
<
y
holds
(
-
y
<
x
&
x
<
y
)
proof
end;
theorem
Th11
:
:: EXTREAL2:11
for
y
,
x
being
R_eal
st
-
y
<
x
&
x
<
y
holds
(
0
<
y
&
|.
x
.|
<
y
)
proof
end;
theorem
Th12
:
:: EXTREAL2:12
for
y
,
x
being
R_eal
holds
( (
-
y
<=
x
&
x
<=
y
) iff
|.
x
.|
<=
y
)
proof
end;
theorem
Th13
:
:: EXTREAL2:13
for
x
,
y
being
R_eal
holds
|.
(
x
+
y
)
.|
<=
|.
x
.|
+
|.
y
.|
proof
end;
theorem
Th14
:
:: EXTREAL2:14
for
x
being
R_eal
st
-infty
<
x
&
x
<
+infty
&
x
<>
0
holds
|.
x
.|
*
|.
(
1.
/
x
)
.|
=
1.
proof
end;
theorem
:: EXTREAL2:15
for
x
being
R_eal
st (
x
=
+infty
or
x
=
-infty
) holds
|.
x
.|
*
|.
(
1.
/
x
)
.|
=
0
proof
end;
theorem
:: EXTREAL2:16
for
x
being
R_eal
st
x
<>
0
holds
|.
(
1.
/
x
)
.|
=
1.
/
|.
x
.|
proof
end;
theorem
:: EXTREAL2:17
for
x
,
y
being
R_eal
st ( ( not
x
=
-infty
& not
x
=
+infty
) or ( not
y
=
-infty
& not
y
=
+infty
) ) &
y
<>
0
holds
|.
(
x
/
y
)
.|
=
|.
x
.|
/
|.
y
.|
proof
end;
theorem
Th18
:
:: EXTREAL2:18
for
x
being
R_eal
holds
|.
x
.|
=
|.
(
-
x
)
.|
proof
end;
theorem
Th19
:
:: EXTREAL2:19
(
|.
+infty
.|
=
+infty
&
|.
-infty
.|
=
+infty
)
proof
end;
theorem
Th20
:
:: EXTREAL2:20
for
x
,
y
being
R_eal
st (
x
is
Real
or
y
is
Real
) holds
|.
x
.|
-
|.
y
.|
<=
|.
(
x
-
y
)
.|
proof
end;
theorem
:: EXTREAL2:21
for
x
,
y
being
R_eal
holds
|.
(
x
-
y
)
.|
<=
|.
x
.|
+
|.
y
.|
proof
end;
theorem
:: EXTREAL2:22
canceled;
theorem
:: EXTREAL2:23
for
x
,
z
,
y
,
w
being
R_eal
st
|.
x
.|
<=
z
&
|.
y
.|
<=
w
holds
|.
(
x
+
y
)
.|
<=
z
+
w
proof
end;
theorem
:: EXTREAL2:24
for
x
,
y
being
R_eal
st (
x
is
Real
or
y
is
Real
) holds
|.
(
|.
x
.|
-
|.
y
.|
)
.|
<=
|.
(
x
-
y
)
.|
proof
end;
theorem
:: EXTREAL2:25
for
x
,
y
being
R_eal
st
0
<=
x
*
y
holds
|.
(
x
+
y
)
.|
=
|.
x
.|
+
|.
y
.|
proof
end;
begin
theorem
:: EXTREAL2:26
for
x
,
y
being
R_eal
st
x
<>
+infty
&
y
<>
+infty
& not (
x
=
+infty
&
y
=
+infty
) & not (
x
=
-infty
&
y
=
-infty
) holds
min
(
x
,
y
)
=
(
(
x
+
y
)
-
|.
(
x
-
y
)
.|
)
/
(
R_EAL
2
)
proof
end;
theorem
:: EXTREAL2:27
for
x
,
y
being
R_eal
st
x
<>
-infty
&
y
<>
-infty
& not (
x
=
+infty
&
y
=
+infty
) & not (
x
=
-infty
&
y
=
-infty
) holds
max
(
x
,
y
)
=
(
(
x
+
y
)
+
|.
(
x
-
y
)
.|
)
/
(
R_EAL
2
)
proof
end;
definition
let
x
,
y
be
R_eal
;
:: original:
max
redefine
func
max
(
x
,
y
)
->
R_eal
;
coherence
max
(
x
,
y
) is
R_eal
by
XXREAL_0:def 1
;
:: original:
min
redefine
func
min
(
x
,
y
)
->
R_eal
;
coherence
min
(
x
,
y
) is
R_eal
by
XXREAL_0:def 1
;
end;
theorem
:: EXTREAL2:28
for
x
,
y
being
R_eal
holds
(
min
(
x
,
y
)
)
+
(
max
(
x
,
y
)
)
=
x
+
y
proof
end;
begin
:: missing, 2007.07.20, A.T.
theorem
Th29
:
:: EXTREAL2:29
for
x
being
R_eal
holds
( not
|.
x
.|
=
+infty
or
x
=
+infty
or
x
=
-infty
)
proof
end;
theorem
:: EXTREAL2:30
for
x
being
R_eal
holds
(
|.
x
.|
<
+infty
iff
x
in
REAL
)
proof
end;