begin
begin
begin
theorem 
 for 
i, 
k being    
Element of  
NAT   for 
C being   non  
empty   being_simple_closed_curve   compact   non  
horizontal   non  
vertical  Subset of 
(TOP-REAL 2)  for 
p being   
Point of 
(TOP-REAL 2)  st 
p `1  = ((W-bound C) + (E-bound C)) / 2 & 
i >  0  & 1 
<= k & 
k <=  width (Gauge (C,i)) & 
(Gauge (C,i)) * (
(Center (Gauge (C,i))),
k) 
in  Upper_Arc (L~ (Cage (C,i))) & 
p `2  =  upper_bound (proj2 .: ((LSeg (((Gauge (C,1)) * ((Center (Gauge (C,1))),1)),((Gauge (C,i)) * ((Center (Gauge (C,i))),k)))) /\ (Lower_Arc (L~ (Cage (C,i)))))) holds 
 ex 
j being    
Element of  
NAT  st 
( 1 
<= j & 
j <=  width (Gauge (C,i)) & 
p = (Gauge (C,i)) * (
(Center (Gauge (C,i))),
j) )