begin
theorem
for
X,
Y being
set st ( for
x being
set holds
(
x in X iff
x in Y ) ) holds
X = Y ;
::
deftheorem defines
{ TARSKI:def 2 :
for y, z, b3 being set holds
( b3 = {y,z} iff for x being set holds
( x in b3 iff ( x = y or x = z ) ) );
theorem
for
x,
X being
set st
x in X holds
ex
Y being
set st
(
Y in X & ( for
x being
set holds
( not
x in X or not
x in Y ) ) ) ;
scheme
Fraenkel{
F1()
-> set ,
P1[
set ,
set ] } :
ex
X being
set st
for
x being
set holds
(
x in X iff ex
y being
set st
(
y in F1() &
P1[
y,
x] ) )
provided
for
x,
y,
z being
set st
P1[
x,
y] &
P1[
x,
z] holds
y = z
theorem
for
N being
set ex
M being
set st
(
N in M & ( for
X,
Y being
set st
X in M &
Y c= X holds
Y in M ) & ( for
X being
set st
X in M holds
ex
Z being
set st
(
Z in M & ( for
Y being
set st
Y c= X holds
Y in Z ) ) ) & ( for
X being
set holds
( not
X c= M or
X,
M are_equipotent or
X in M ) ) ) ;
:: Ueber unerreichbare Kardinalzahlen,
:: Fundamenta Mathematicae, vol. 30 (1938), pp. 68--69
:: Axiom A. (Axiom der unerreichbaren Mengen). Zu jeder Menge N gibt es
:: eine Menge M mit folgenden Eigenschaften:
:: A1. N in M;
:: A2. ist X in M und Y c= X, so ist Y in M;
:: A3. ist X in M und ist Z die Menge, die alle Mengen Y c= X und keine
:: andere Dinge als Element enthaelt, so,ist z in M;
:: A4. ist X c= M und sind dabei die Menge X und M nicht gleichmaechtig,
:: so ist X in M.
:: Alfred Tarski
:: On Well-ordered Subsets of any Set,
:: Fundamenta Mathematicae, vol. 32 (1939), pp. 176--183
:: A. For every set N there exists a system M of sets which satisfies
:: the following conditions:
:: (i) N in M
:: (ii) if X in M and Y c= X, then Y in M
:: (iii) if X in M and Z is the system of all subsets of X, then Z in M
:: (iv) if X c= M and X and M do not have the same potency, then X in M.