begin
begin
definition
let x,
y be
ext-real number ;
existence
( ( x is real & y is real implies ex b1 being ext-real number ex a, b being complex number st
( x = a & y = b & b1 = a + b ) ) & ( ( ( x = +infty & y <> -infty ) or ( y = +infty & x <> -infty ) ) implies ex b1 being ext-real number st b1 = +infty ) & ( ( ( x = -infty & y <> +infty ) or ( y = -infty & x <> +infty ) ) implies ex b1 being ext-real number st b1 = -infty ) & ( ( x is real & y is real ) or ( x = +infty & y <> -infty ) or ( y = +infty & x <> -infty ) or ( x = -infty & y <> +infty ) or ( y = -infty & x <> +infty ) or ex b1 being ext-real number st b1 = 0 ) )
uniqueness
for b1, b2 being ext-real number holds
( ( x is real & y is real & ex a, b being complex number st
( x = a & y = b & b1 = a + b ) & ex a, b being complex number st
( x = a & y = b & b2 = a + b ) implies b1 = b2 ) & ( ( ( x = +infty & y <> -infty ) or ( y = +infty & x <> -infty ) ) & b1 = +infty & b2 = +infty implies b1 = b2 ) & ( ( ( x = -infty & y <> +infty ) or ( y = -infty & x <> +infty ) ) & b1 = -infty & b2 = -infty implies b1 = b2 ) & ( ( x is real & y is real ) or ( x = +infty & y <> -infty ) or ( y = +infty & x <> -infty ) or ( x = -infty & y <> +infty ) or ( y = -infty & x <> +infty ) or not b1 = 0 or not b2 = 0 or b1 = b2 ) )
;
consistency
for b1 being ext-real number holds
( ( x is real & y is real & ( ( x = +infty & y <> -infty ) or ( y = +infty & x <> -infty ) ) implies ( ex a, b being complex number st
( x = a & y = b & b1 = a + b ) iff b1 = +infty ) ) & ( x is real & y is real & ( ( x = -infty & y <> +infty ) or ( y = -infty & x <> +infty ) ) implies ( ex a, b being complex number st
( x = a & y = b & b1 = a + b ) iff b1 = -infty ) ) & ( ( ( x = +infty & y <> -infty ) or ( y = +infty & x <> -infty ) ) & ( ( x = -infty & y <> +infty ) or ( y = -infty & x <> +infty ) ) implies ( b1 = +infty iff b1 = -infty ) ) )
;
commutativity
for b1, x, y being ext-real number st ( x is real & y is real implies ex a, b being complex number st
( x = a & y = b & b1 = a + b ) ) & ( ( ( x = +infty & y <> -infty ) or ( y = +infty & x <> -infty ) ) implies b1 = +infty ) & ( ( ( x = -infty & y <> +infty ) or ( y = -infty & x <> +infty ) ) implies b1 = -infty ) & ( ( x is real & y is real ) or ( x = +infty & y <> -infty ) or ( y = +infty & x <> -infty ) or ( x = -infty & y <> +infty ) or ( y = -infty & x <> +infty ) or b1 = 0 ) holds
( ( y is real & x is real implies ex a, b being complex number st
( y = a & x = b & b1 = a + b ) ) & ( ( ( y = +infty & x <> -infty ) or ( x = +infty & y <> -infty ) ) implies b1 = +infty ) & ( ( ( y = -infty & x <> +infty ) or ( x = -infty & y <> +infty ) ) implies b1 = -infty ) & ( ( y is real & x is real ) or ( y = +infty & x <> -infty ) or ( x = +infty & y <> -infty ) or ( y = -infty & x <> +infty ) or ( x = -infty & y <> +infty ) or b1 = 0 ) )
;
end;
Lm1:
+infty + +infty = +infty
by Def2;
Lm2:
-infty + -infty = -infty
by Def2;
Lm3:
for x being ext-real number holds
( - x in REAL iff x in REAL )
Lm4: - (+infty + -infty) =
+infty - +infty
by Def3
.=
(- -infty) - +infty
by Def3
;
Lm5:
- +infty = -infty
by Def3;
Lm6:
for x being ext-real number st x in REAL holds
- (x + +infty) = (- +infty) + (- x)
Lm7:
for x being ext-real number st x in REAL holds
- (x + -infty) = (- -infty) + (- x)
Lm8:
for x, y being ext-real number holds
( not x + y = +infty or x = +infty or y = +infty )
Lm9:
for x, y being ext-real number holds
( not x + y = -infty or x = -infty or y = -infty )
Lm10:
- +infty = -infty
by Def3;
Lm11:
for x being ext-real number st x in REAL holds
- (x + -infty) = (- -infty) + (- x)
begin
Lm12:
for x, y, z being ext-real number st x <= y holds
x + z <= y + z
Lm13:
for x, y being ext-real number st x >= 0 & y > 0 holds
x + y > 0
Lm14:
for x, y being ext-real number st x <= 0 & y < 0 holds
x + y < 0
Lm15:
for x, y being ext-real number st x <= y holds
- y <= - x
begin
definition
let x,
y be
ext-real number ;
existence
( ( x is real & y is real implies ex b1 being ext-real number ex a, b being complex number st
( x = a & y = b & b1 = a * b ) ) & ( ( not x is real or not y is real ) & ( ( x is positive & y is positive ) or ( x is negative & y is negative ) ) implies ex b1 being ext-real number st b1 = +infty ) & ( ( not x is real or not y is real ) & ( ( x is positive & y is negative ) or ( x is negative & y is positive ) ) implies ex b1 being ext-real number st b1 = -infty ) & ( ( not x is real or not y is real ) & ( ( x is real & y is real ) or ( not ( x is positive & y is positive ) & not ( x is negative & y is negative ) ) ) & ( ( x is real & y is real ) or ( not ( x is positive & y is negative ) & not ( x is negative & y is positive ) ) ) implies ex b1 being ext-real number st b1 = 0 ) )
uniqueness
for b1, b2 being ext-real number holds
( ( x is real & y is real & ex a, b being complex number st
( x = a & y = b & b1 = a * b ) & ex a, b being complex number st
( x = a & y = b & b2 = a * b ) implies b1 = b2 ) & ( ( not x is real or not y is real ) & ( ( x is positive & y is positive ) or ( x is negative & y is negative ) ) & b1 = +infty & b2 = +infty implies b1 = b2 ) & ( ( not x is real or not y is real ) & ( ( x is positive & y is negative ) or ( x is negative & y is positive ) ) & b1 = -infty & b2 = -infty implies b1 = b2 ) & ( ( not x is real or not y is real ) & ( ( x is real & y is real ) or ( not ( x is positive & y is positive ) & not ( x is negative & y is negative ) ) ) & ( ( x is real & y is real ) or ( not ( x is positive & y is negative ) & not ( x is negative & y is positive ) ) ) & b1 = 0 & b2 = 0 implies b1 = b2 ) )
;
consistency
for b1 being ext-real number holds
( ( x is real & y is real & ( not x is real or not y is real ) & ( ( x is positive & y is positive ) or ( x is negative & y is negative ) ) implies ( ex a, b being complex number st
( x = a & y = b & b1 = a * b ) iff b1 = +infty ) ) & ( x is real & y is real & ( not x is real or not y is real ) & ( ( x is positive & y is negative ) or ( x is negative & y is positive ) ) implies ( ex a, b being complex number st
( x = a & y = b & b1 = a * b ) iff b1 = -infty ) ) & ( ( not x is real or not y is real ) & ( ( x is positive & y is positive ) or ( x is negative & y is negative ) ) & ( not x is real or not y is real ) & ( ( x is positive & y is negative ) or ( x is negative & y is positive ) ) implies ( b1 = +infty iff b1 = -infty ) ) )
;
commutativity
for b1, x, y being ext-real number st ( x is real & y is real implies ex a, b being complex number st
( x = a & y = b & b1 = a * b ) ) & ( ( not x is real or not y is real ) & ( ( x is positive & y is positive ) or ( x is negative & y is negative ) ) implies b1 = +infty ) & ( ( not x is real or not y is real ) & ( ( x is positive & y is negative ) or ( x is negative & y is positive ) ) implies b1 = -infty ) & ( ( not x is real or not y is real ) & ( ( x is real & y is real ) or ( not ( x is positive & y is positive ) & not ( x is negative & y is negative ) ) ) & ( ( x is real & y is real ) or ( not ( x is positive & y is negative ) & not ( x is negative & y is positive ) ) ) implies b1 = 0 ) holds
( ( y is real & x is real implies ex a, b being complex number st
( y = a & x = b & b1 = a * b ) ) & ( ( not y is real or not x is real ) & ( ( y is positive & x is positive ) or ( y is negative & x is negative ) ) implies b1 = +infty ) & ( ( not y is real or not x is real ) & ( ( y is positive & x is negative ) or ( y is negative & x is positive ) ) implies b1 = -infty ) & ( ( not y is real or not x is real ) & ( ( y is real & x is real ) or ( not ( y is positive & x is positive ) & not ( y is negative & x is negative ) ) ) & ( ( y is real & x is real ) or ( not ( y is positive & x is negative ) & not ( y is negative & x is positive ) ) ) implies b1 = 0 ) )
;
end;
Lm16:
for x being ext-real number holds x * 0 = 0
Lm17:
for x, y being ext-real number st not x is real & x * y = 0 holds
y = 0
Lm18:
for x, y, z being ext-real number st x = 0 holds
x * (y * z) = (x * y) * z
Lm19:
for y, x, z being ext-real number st y = 0 holds
x * (y * z) = (x * y) * z
Lm20:
for y, x, z being ext-real number st not y is real holds
x * (y * z) = (x * y) * z
Lm21:
for x, y, z being ext-real number st not x is real holds
x * (y * z) = (x * y) * z
Lm22:
for x, y being ext-real number holds
( not x * y in REAL or ( x in REAL & y in REAL ) or x * y = 0 )
begin
Lm23:
for x, y being ext-real number holds x * (y + y) = (x * y) + (x * y)
Lm24:
for x, z being ext-real number holds x * (0 + z) = (x * 0) + (x * z)
Lm25:
for y, z being ext-real number holds 0 * (y + z) = (0 * y) + (0 * z)
;
Lm26:
for x, y, z being ext-real number st x is real & y is real holds
x * (y + z) = (x * y) + (x * z)
Lm27:
for x, y, z being ext-real number st x is real & not y is real holds
x * (y + z) = (x * y) + (x * z)