REAL  is   non  empty   non  trivial   non  finite   set 
 
 NAT  is   non  empty   epsilon-transitive   epsilon-connected   ordinal   Element of  bool REAL
 
 bool REAL is    set 
 
 COMPLEX  is   non  empty   non  trivial   non  finite   set 
 
 RAT  is   non  empty   non  trivial   non  finite   set 
 
 INT  is   non  empty   non  trivial   non  finite   set 
 
[:COMPLEX,COMPLEX:] is    set 
 
 bool [:COMPLEX,COMPLEX:] is    set 
 
[:[:COMPLEX,COMPLEX:],COMPLEX:] is    set 
 
 bool [:[:COMPLEX,COMPLEX:],COMPLEX:] is    set 
 
[:REAL,REAL:] is    set 
 
 bool [:REAL,REAL:] is    set 
 
[:[:REAL,REAL:],REAL:] is    set 
 
 bool [:[:REAL,REAL:],REAL:] is    set 
 
[:RAT,RAT:] is    set 
 
 bool [:RAT,RAT:] is    set 
 
[:[:RAT,RAT:],RAT:] is    set 
 
 bool [:[:RAT,RAT:],RAT:] is    set 
 
[:INT,INT:] is    set 
 
 bool [:INT,INT:] is    set 
 
[:[:INT,INT:],INT:] is    set 
 
 bool [:[:INT,INT:],INT:] is    set 
 
[:NAT,NAT:] is    set 
 
[:[:NAT,NAT:],NAT:] is    set 
 
 bool [:[:NAT,NAT:],NAT:] is    set 
 
 omega  is   non  empty   epsilon-transitive   epsilon-connected   ordinal   set 
 
 bool omega is    set 
 
 bool NAT is    set 
 
K118(NAT) is  V27()  set 
 
[:NAT,REAL:] is    set 
 
 bool [:NAT,REAL:] is    set 
 
 {}  is   Function-like   functional   empty   epsilon-transitive   epsilon-connected   ordinal   T-Sequence-like   c=-linear   natural  V36()  real   ext-real   finite  V47()  set 
 
1 is   non  empty   epsilon-transitive   epsilon-connected   ordinal   natural  V36()  real   ext-real   positive   Element of  NAT 
 
 0  is   Function-like   functional   empty   epsilon-transitive   epsilon-connected   ordinal   T-Sequence-like   c=-linear   natural  V36()  real   ext-real   finite  V47()  Element of  NAT 
 
 addreal  is   Relation-like  [:REAL,REAL:] -defined   REAL  -valued   Function-like  V14([:REAL,REAL:]) V18([:REAL,REAL:], REAL )  commutative   associative   having_a_unity   Element of  bool [:[:REAL,REAL:],REAL:]
 
2 is   non  empty   epsilon-transitive   epsilon-connected   ordinal   natural  V36()  real   ext-real   positive   Element of  NAT 
 
p1 is  V36()  real   ext-real   Element of  REAL 
 
p1 / 2 is  V36()  real   ext-real   Element of  REAL 
 
X is  V36()  real   ext-real   Element of  REAL 
 
S is  V36()  real   ext-real   Element of  REAL 
 
X - S is  V36()  real   ext-real   Element of  REAL 
 
 abs (X - S) is  V36()  real   ext-real   Element of  REAL 
 
H is  V36()  real   ext-real   Element of  REAL 
 
S - H is  V36()  real   ext-real   Element of  REAL 
 
 abs (S - H) is  V36()  real   ext-real   Element of  REAL 
 
X - H is  V36()  real   ext-real   Element of  REAL 
 
 abs (X - H) is  V36()  real   ext-real   Element of  REAL 
 
(X - S) + (S - H) is  V36()  real   ext-real   Element of  REAL 
 
 abs ((X - S) + (S - H)) is  V36()  real   ext-real   Element of  REAL 
 
(abs (X - S)) + (abs (S - H)) is  V36()  real   ext-real   Element of  REAL 
 
(p1 / 2) + (p1 / 2) is  V36()  real   ext-real   Element of  REAL 
 
X is  V36()  real   ext-real   set 
 
X "  is  V36()  real   ext-real   Element of  REAL 
 
S is   epsilon-transitive   epsilon-connected   ordinal   natural  V36()  real   ext-real   Element of  NAT 
 
S + 1 is   epsilon-transitive   epsilon-connected   ordinal   natural  V36()  real   ext-real   Element of  NAT 
 
1 / (S + 1) is  V36()  real   ext-real   Element of  REAL 
 
(X ") + 0 is  V36()  real   ext-real   Element of  REAL 
 
1 / (X ") is  V36()  real   ext-real   Element of  REAL 
 
X is  V36()  real   ext-real   set 
 
S is   epsilon-transitive   epsilon-connected   ordinal   natural  V36()  real   ext-real   Element of  NAT 
 
X "  is  V36()  real   ext-real   Element of  REAL 
 
H is   epsilon-transitive   epsilon-connected   ordinal   natural  V36()  real   ext-real   Element of  NAT 
 
H + S is   epsilon-transitive   epsilon-connected   ordinal   natural  V36()  real   ext-real   Element of  NAT 
 
p1 is   epsilon-transitive   epsilon-connected   ordinal   natural  V36()  real   ext-real   Element of  NAT 
 
p1 + 1 is   epsilon-transitive   epsilon-connected   ordinal   natural  V36()  real   ext-real   Element of  NAT 
 
1 / (p1 + 1) is  V36()  real   ext-real   Element of  REAL 
 
(X ") + 0 is  V36()  real   ext-real   Element of  REAL 
 
1 / (X ") is  V36()  real   ext-real   Element of  REAL 
 
X is   non  empty   right_complementable  V106() V107() V108() V109() V110() V111() V112()  RealUnitarySpace-like   UNITSTR 
 
 the carrier of X is   non  empty   set 
 
 bool  the carrier of X is    set 
 
[: the carrier of X,REAL:] is    set 
 
 bool [: the carrier of X,REAL:] is    set 
 
S is    Element of  bool  the carrier of X
 
H is   Relation-like   the carrier of X -defined   REAL  -valued   Function-like   non  empty  V14( the carrier of X) V18( the carrier of X, REAL )  Element of  bool [: the carrier of X,REAL:]
 
p1 is  V36()  real   ext-real   Element of  REAL 
 
p2 is  V36()  real   ext-real   Element of  REAL 
 
p2 / 2 is  V36()  real   ext-real   Element of  REAL 
 
e is   finite   Element of  bool  the carrier of X
 
Y02 is   finite   Element of  bool  the carrier of X
 
 setopfunc (Y02, the carrier of X,REAL,H,addreal) is  V36()  real   ext-real   Element of  REAL 
 
 abs (setopfunc (Y02, the carrier of X,REAL,H,addreal)) is  V36()  real   ext-real   Element of  REAL 
 
e \/ Y02 is   finite   Element of  bool  the carrier of X
 
 dom H is    set 
 
 setopfunc ((e \/ Y02), the carrier of X,REAL,H,addreal) is  V36()  real   ext-real   Element of  REAL 
 
 setopfunc (e, the carrier of X,REAL,H,addreal) is  V36()  real   ext-real   Element of  REAL 
 
addreal . ((setopfunc (e, the carrier of X,REAL,H,addreal)),(setopfunc (Y02, the carrier of X,REAL,H,addreal))) is  V36()  real   ext-real   Element of  REAL 
 
(setopfunc (e, the carrier of X,REAL,H,addreal)) + (setopfunc (Y02, the carrier of X,REAL,H,addreal)) is  V36()  real   ext-real   Element of  REAL 
 
(setopfunc ((e \/ Y02), the carrier of X,REAL,H,addreal)) - (setopfunc (e, the carrier of X,REAL,H,addreal)) is  V36()  real   ext-real   Element of  REAL 
 
p1 - (setopfunc ((e \/ Y02), the carrier of X,REAL,H,addreal)) is  V36()  real   ext-real   Element of  REAL 
 
 abs (p1 - (setopfunc ((e \/ Y02), the carrier of X,REAL,H,addreal))) is  V36()  real   ext-real   Element of  REAL 
 
(setopfunc ((e \/ Y02), the carrier of X,REAL,H,addreal)) - p1 is  V36()  real   ext-real   Element of  REAL 
 
 abs ((setopfunc ((e \/ Y02), the carrier of X,REAL,H,addreal)) - p1) is  V36()  real   ext-real   Element of  REAL 
 
p1 - (setopfunc (e, the carrier of X,REAL,H,addreal)) is  V36()  real   ext-real   Element of  REAL 
 
 abs (p1 - (setopfunc (e, the carrier of X,REAL,H,addreal))) is  V36()  real   ext-real   Element of  REAL 
 
p2 is  V36()  real   ext-real   Element of  REAL 
 
p1 is    set 
 
p2 is   epsilon-transitive   epsilon-connected   ordinal   natural  V36()  real   ext-real   Element of  NAT 
 
p2 + 1 is   epsilon-transitive   epsilon-connected   ordinal   natural  V36()  real   ext-real   Element of  NAT 
 
1 / (p2 + 1) is  V36()  real   ext-real   Element of  REAL 
 
0 / (p2 + 1) is  V36()  real   ext-real   Element of  REAL 
 
e is  V36()  real   ext-real   Element of  REAL 
 
Y02 is   finite   Element of  bool  the carrier of X
 
 bool S is    set 
 
Y01 is  V36()  real   ext-real   Element of  REAL 
 
Y1 is   finite   Element of  bool  the carrier of X
 
Y01 + 1 is  V36()  real   ext-real   Element of  REAL 
 
1 / (Y01 + 1) is  V36()  real   ext-real   Element of  REAL 
 
 setopfunc (Y1, the carrier of X,REAL,H,addreal) is  V36()  real   ext-real   Element of  REAL 
 
 abs (setopfunc (Y1, the carrier of X,REAL,H,addreal)) is  V36()  real   ext-real   Element of  REAL 
 
p1 is    set 
 
[:NAT,(bool S):] is    set 
 
 bool [:NAT,(bool S):] is    set 
 
p1 is   Relation-like   NAT  -defined   bool S -valued   Function-like  V18( NAT , bool S)  Element of  bool [:NAT,(bool S):]
 
p1 is   Relation-like   NAT  -defined   bool S -valued   Function-like  V18( NAT , bool S)  Element of  bool [:NAT,(bool S):]
 
p1 . 0 is    Element of  bool S
 
p2 is   Relation-like   Function-like   set 
 
 dom p2 is    set 
 
p2 . 0 is    set 
 
p2 is   Relation-like   Function-like   set 
 
 dom p2 is    set 
 
p2 . 0 is    set 
 
e is   epsilon-transitive   epsilon-connected   ordinal   natural  V36()  real   ext-real   Element of  NAT 
 
p2 . e is    set 
 
e + 1 is   epsilon-transitive   epsilon-connected   ordinal   natural  V36()  real   ext-real   Element of  NAT 
 
1 / (e + 1) is  V36()  real   ext-real   Element of  REAL 
 
p2 . (e + 1) is    set 
 
(e + 1) + 1 is   epsilon-transitive   epsilon-connected   ordinal   natural  V36()  real   ext-real   Element of  NAT 
 
1 / ((e + 1) + 1) is  V36()  real   ext-real   Element of  REAL 
 
Y02 is   finite   Element of  bool  the carrier of X
 
 setopfunc (Y02, the carrier of X,REAL,H,addreal) is  V36()  real   ext-real   Element of  REAL 
 
 abs (setopfunc (Y02, the carrier of X,REAL,H,addreal)) is  V36()  real   ext-real   Element of  REAL 
 
p1 . (e + 1) is    Element of  bool S
 
(p1 . (e + 1)) \/ (p2 . e) is    set 
 
Y02 is   epsilon-transitive   epsilon-connected   ordinal   natural  V36()  real   ext-real   Element of  NAT 
 
p2 . Y02 is    set 
 
Y02 + 1 is   epsilon-transitive   epsilon-connected   ordinal   natural  V36()  real   ext-real   Element of  NAT 
 
p2 . (Y02 + 1) is    set 
 
p1 . (Y02 + 1) is    Element of  bool S
 
(p1 . (Y02 + 1)) \/ (p2 . Y02) is    set 
 
p1 . (e + 1) is    Element of  bool S
 
(p1 . (e + 1)) \/ (p2 . e) is    set 
 
Y02 is   finite   Element of  bool  the carrier of X
 
 setopfunc (Y02, the carrier of X,REAL,H,addreal) is  V36()  real   ext-real   Element of  REAL 
 
 abs (setopfunc (Y02, the carrier of X,REAL,H,addreal)) is  V36()  real   ext-real   Element of  REAL 
 
Y01 is   epsilon-transitive   epsilon-connected   ordinal   natural  V36()  real   ext-real   Element of  NAT 
 
p2 . Y01 is    set 
 
e is   epsilon-transitive   epsilon-connected   ordinal   natural  V36()  real   ext-real   Element of  NAT 
 
p2 . e is    set 
 
Y02 is   epsilon-transitive   epsilon-connected   ordinal   natural  V36()  real   ext-real   Element of  NAT 
 
p2 . Y02 is    set 
 
Y02 + 1 is   epsilon-transitive   epsilon-connected   ordinal   natural  V36()  real   ext-real   Element of  NAT 
 
p2 . (Y02 + 1) is    set 
 
p1 . (Y02 + 1) is    Element of  bool S
 
(p1 . (Y02 + 1)) \/ (p2 . Y02) is    set 
 
0 + 1 is   epsilon-transitive   epsilon-connected   ordinal   natural  V36()  real   ext-real   Element of  NAT 
 
1 / (0 + 1) is  V36()  real   ext-real   Element of  REAL 
 
e is   finite   Element of  bool  the carrier of X
 
 setopfunc (e, the carrier of X,REAL,H,addreal) is  V36()  real   ext-real   Element of  REAL 
 
 abs (setopfunc (e, the carrier of X,REAL,H,addreal)) is  V36()  real   ext-real   Element of  REAL 
 
Y02 is   epsilon-transitive   epsilon-connected   ordinal   natural  V36()  real   ext-real   Element of  NAT 
 
p2 . Y02 is    set 
 
 rng p2 is    set 
 
e is    set 
 
Y02 is    set 
 
p2 . Y02 is    set 
 
Y01 is   epsilon-transitive   epsilon-connected   ordinal   natural  V36()  real   ext-real   Element of  NAT 
 
p2 . Y01 is    set 
 
p1 is   Relation-like   NAT  -defined   bool S -valued   Function-like  V18( NAT , bool S)  Element of  bool [:NAT,(bool S):]
 
p1 is   Relation-like   NAT  -defined   bool S -valued   Function-like  V18( NAT , bool S)  Element of  bool [:NAT,(bool S):]
 
p2 is    set 
 
p1 . p2 is    set 
 
e is   epsilon-transitive   epsilon-connected   ordinal   natural  V36()  real   ext-real   Element of  NAT 
 
p1 . e is    Element of  bool S
 
Y02 is   finite   Element of  bool  the carrier of X
 
 setopfunc (Y02, the carrier of X,REAL,H,addreal) is  V36()  real   ext-real   Element of  REAL 
 
Y01 is    set 
 
Y1 is   finite   Element of  bool  the carrier of X
 
 setopfunc (Y1, the carrier of X,REAL,H,addreal) is  V36()  real   ext-real   Element of  REAL 
 
p2 is   Relation-like   NAT  -defined   REAL  -valued   Function-like   non  empty  V14( NAT ) V18( NAT , REAL )  Element of  bool [:NAT,REAL:]
 
p2 is   Relation-like   NAT  -defined   REAL  -valued   Function-like   non  empty  V14( NAT ) V18( NAT , REAL )  Element of  bool [:NAT,REAL:]
 
Y02 is  V36()  real   ext-real   set 
 
Y02 / 2 is  V36()  real   ext-real   Element of  REAL 
 
0 / 2 is  V36()  real   ext-real   Element of  REAL 
 
Y01 is   epsilon-transitive   epsilon-connected   ordinal   natural  V36()  real   ext-real   Element of  NAT 
 
Y01 + 1 is   epsilon-transitive   epsilon-connected   ordinal   natural  V36()  real   ext-real   Element of  NAT 
 
1 / (Y01 + 1) is  V36()  real   ext-real   Element of  REAL 
 
Y1 is   epsilon-transitive   epsilon-connected   ordinal   natural  V36()  real   ext-real   Element of  NAT 
 
Y011 is   epsilon-transitive   epsilon-connected   ordinal   natural  V36()  real   ext-real   Element of  NAT 
 
p2 . Y1 is  V36()  real   ext-real   Element of  REAL 
 
p2 . Y011 is  V36()  real   ext-real   Element of  REAL 
 
(p2 . Y1) - (p2 . Y011) is  V36()  real   ext-real   Element of  REAL 
 
 abs ((p2 . Y1) - (p2 . Y011)) is  V36()  real   ext-real   Element of  REAL 
 
p1 . Y011 is    Element of  bool S
 
r is   finite   Element of  bool  the carrier of X
 
 setopfunc (r, the carrier of X,REAL,H,addreal) is  V36()  real   ext-real   Element of  REAL 
 
p1 . Y01 is    Element of  bool S
 
p2 . Y01 is  V36()  real   ext-real   Element of  REAL 
 
G is   finite   Element of  bool  the carrier of X
 
 setopfunc (G, the carrier of X,REAL,H,addreal) is  V36()  real   ext-real   Element of  REAL 
 
p1 . Y1 is    Element of  bool S
 
Y1 is   finite   Element of  bool  the carrier of X
 
 setopfunc (Y1, the carrier of X,REAL,H,addreal) is  V36()  real   ext-real   Element of  REAL 
 
r \ G is   finite   Element of  bool  the carrier of X
 
Y2 is   finite   Element of  bool  the carrier of X
 
G \/ Y2 is   finite   Element of  bool  the carrier of X
 
G \/ r is   finite   Element of  bool  the carrier of X
 
Y2 is   finite   Element of  bool  the carrier of X
 
G \/ Y2 is   finite   Element of  bool  the carrier of X
 
Y2 is   finite   Element of  bool  the carrier of X
 
G \/ Y2 is   finite   Element of  bool  the carrier of X
 
 setopfunc (Y2, the carrier of X,REAL,H,addreal) is  V36()  real   ext-real   Element of  REAL 
 
 abs (setopfunc (Y2, the carrier of X,REAL,H,addreal)) is  V36()  real   ext-real   Element of  REAL 
 
 dom H is    set 
 
addreal . ((setopfunc (G, the carrier of X,REAL,H,addreal)),(setopfunc (Y2, the carrier of X,REAL,H,addreal))) is  V36()  real   ext-real   Element of  REAL 
 
(setopfunc (G, the carrier of X,REAL,H,addreal)) + (setopfunc (Y2, the carrier of X,REAL,H,addreal)) is  V36()  real   ext-real   Element of  REAL 
 
 - (setopfunc (Y2, the carrier of X,REAL,H,addreal)) is  V36()  real   ext-real   Element of  REAL 
 
 abs (- (setopfunc (Y2, the carrier of X,REAL,H,addreal))) is  V36()  real   ext-real   Element of  REAL 
 
Y1 \ G is   finite   Element of  bool  the carrier of X
 
Y2 is   finite   Element of  bool  the carrier of X
 
G \/ Y2 is   finite   Element of  bool  the carrier of X
 
G \/ Y1 is   finite   Element of  bool  the carrier of X
 
Y2 is   finite   Element of  bool  the carrier of X
 
G \/ Y2 is   finite   Element of  bool  the carrier of X
 
Y2 is   finite   Element of  bool  the carrier of X
 
G \/ Y2 is   finite   Element of  bool  the carrier of X
 
 dom H is    set 
 
 setopfunc (Y2, the carrier of X,REAL,H,addreal) is  V36()  real   ext-real   Element of  REAL 
 
addreal . ((setopfunc (G, the carrier of X,REAL,H,addreal)),(setopfunc (Y2, the carrier of X,REAL,H,addreal))) is  V36()  real   ext-real   Element of  REAL 
 
(setopfunc (G, the carrier of X,REAL,H,addreal)) + (setopfunc (Y2, the carrier of X,REAL,H,addreal)) is  V36()  real   ext-real   Element of  REAL 
 
 abs (setopfunc (Y2, the carrier of X,REAL,H,addreal)) is  V36()  real   ext-real   Element of  REAL 
 
(Y02 / 2) + (Y02 / 2) is  V36()  real   ext-real   Element of  REAL 
 
(abs ((p2 . Y1) - (p2 . Y011))) + 0 is  V36()  real   ext-real   Element of  REAL 
 
r \ G is   finite   Element of  bool  the carrier of X
 
Y2 is   finite   Element of  bool  the carrier of X
 
G \/ Y2 is   finite   Element of  bool  the carrier of X
 
G \/ r is   finite   Element of  bool  the carrier of X
 
Y2 is   finite   Element of  bool  the carrier of X
 
G \/ Y2 is   finite   Element of  bool  the carrier of X
 
Y2 is   finite   Element of  bool  the carrier of X
 
G \/ Y2 is   finite   Element of  bool  the carrier of X
 
 dom H is    set 
 
 setopfunc (Y2, the carrier of X,REAL,H,addreal) is  V36()  real   ext-real   Element of  REAL 
 
addreal . ((setopfunc (G, the carrier of X,REAL,H,addreal)),(setopfunc (Y2, the carrier of X,REAL,H,addreal))) is  V36()  real   ext-real   Element of  REAL 
 
(setopfunc (G, the carrier of X,REAL,H,addreal)) + (setopfunc (Y2, the carrier of X,REAL,H,addreal)) is  V36()  real   ext-real   Element of  REAL 
 
Y1 \ G is   finite   Element of  bool  the carrier of X
 
Y01 is   finite   Element of  bool  the carrier of X
 
G \/ Y01 is   finite   Element of  bool  the carrier of X
 
G \/ Y1 is   finite   Element of  bool  the carrier of X
 
Y01 is   finite   Element of  bool  the carrier of X
 
G \/ Y01 is   finite   Element of  bool  the carrier of X
 
Y01 is   finite   Element of  bool  the carrier of X
 
G \/ Y01 is   finite   Element of  bool  the carrier of X
 
 setopfunc (Y01, the carrier of X,REAL,H,addreal) is  V36()  real   ext-real   Element of  REAL 
 
addreal . ((setopfunc (G, the carrier of X,REAL,H,addreal)),(setopfunc (Y01, the carrier of X,REAL,H,addreal))) is  V36()  real   ext-real   Element of  REAL 
 
(setopfunc (G, the carrier of X,REAL,H,addreal)) + (setopfunc (Y01, the carrier of X,REAL,H,addreal)) is  V36()  real   ext-real   Element of  REAL 
 
(setopfunc (Y01, the carrier of X,REAL,H,addreal)) - (setopfunc (Y2, the carrier of X,REAL,H,addreal)) is  V36()  real   ext-real   Element of  REAL 
 
 abs (setopfunc (Y01, the carrier of X,REAL,H,addreal)) is  V36()  real   ext-real   Element of  REAL 
 
 abs (setopfunc (Y2, the carrier of X,REAL,H,addreal)) is  V36()  real   ext-real   Element of  REAL 
 
(abs (setopfunc (Y01, the carrier of X,REAL,H,addreal))) + (abs (setopfunc (Y2, the carrier of X,REAL,H,addreal))) is  V36()  real   ext-real   Element of  REAL 
 
(Y02 / 2) + (Y02 / 2) is  V36()  real   ext-real   Element of  REAL 
 
Y02 is  V36()  real   ext-real   set 
 
Y01 is   epsilon-transitive   epsilon-connected   ordinal   natural  V36()  real   ext-real   Element of  NAT 
 
p2 . Y01 is  V36()  real   ext-real   Element of  REAL 
 
Y1 is   epsilon-transitive   epsilon-connected   ordinal   natural  V36()  real   ext-real   Element of  NAT 
 
p2 . Y1 is  V36()  real   ext-real   Element of  REAL 
 
(p2 . Y1) - (p2 . Y01) is  V36()  real   ext-real   Element of  REAL 
 
 abs ((p2 . Y1) - (p2 . Y01)) is  V36()  real   ext-real   Element of  REAL 
 
Y02 is  V36()  real   ext-real   set 
 
Y01 is  V36()  real   ext-real   Element of  REAL 
 
Y1 is  V36()  real   ext-real   Element of  REAL 
 
Y1 / 2 is  V36()  real   ext-real   Element of  REAL 
 
0 / 2 is  V36()  real   ext-real   Element of  REAL 
 
Y011 is   epsilon-transitive   epsilon-connected   ordinal   natural  V36()  real   ext-real   Element of  NAT 
 
r is   epsilon-transitive   epsilon-connected   ordinal   natural  V36()  real   ext-real   Element of  NAT 
 
r + 1 is   epsilon-transitive   epsilon-connected   ordinal   natural  V36()  real   ext-real   Element of  NAT 
 
1 / (r + 1) is  V36()  real   ext-real   Element of  REAL 
 
p1 . r is    Element of  bool S
 
p2 . r is  V36()  real   ext-real   Element of  REAL 
 
G is   finite   Element of  bool  the carrier of X
 
 setopfunc (G, the carrier of X,REAL,H,addreal) is  V36()  real   ext-real   Element of  REAL 
 
(setopfunc (G, the carrier of X,REAL,H,addreal)) - Y01 is  V36()  real   ext-real   Element of  REAL 
 
 abs ((setopfunc (G, the carrier of X,REAL,H,addreal)) - Y01) is  V36()  real   ext-real   Element of  REAL 
 
Y1 is   finite   Element of  bool  the carrier of X
 
 setopfunc (Y1, the carrier of X,REAL,H,addreal) is  V36()  real   ext-real   Element of  REAL 
 
Y01 - (setopfunc (Y1, the carrier of X,REAL,H,addreal)) is  V36()  real   ext-real   Element of  REAL 
 
 abs (Y01 - (setopfunc (Y1, the carrier of X,REAL,H,addreal))) is  V36()  real   ext-real   Element of  REAL 
 
(Y1 / 2) + (Y1 / 2) is  V36()  real   ext-real   Element of  REAL 
 
Y02 - (setopfunc (Y1, the carrier of X,REAL,H,addreal)) is  V36()  real   ext-real   Element of  REAL 
 
 abs (Y02 - (setopfunc (Y1, the carrier of X,REAL,H,addreal))) is  V36()  real   ext-real   Element of  REAL 
 
(abs (Y02 - (setopfunc (Y1, the carrier of X,REAL,H,addreal)))) + 0 is  V36()  real   ext-real   Element of  REAL 
 
Y1 \ G is   finite   Element of  bool  the carrier of X
 
Y2 is   finite   Element of  bool  the carrier of X
 
G \/ Y2 is   finite   Element of  bool  the carrier of X
 
G \/ Y1 is   finite   Element of  bool  the carrier of X
 
Y2 is   finite   Element of  bool  the carrier of X
 
G \/ Y2 is   finite   Element of  bool  the carrier of X
 
Y2 is   finite   Element of  bool  the carrier of X
 
G \/ Y2 is   finite   Element of  bool  the carrier of X
 
 dom H is    set 
 
 setopfunc (Y1, the carrier of X,REAL,H,addreal) is  V36()  real   ext-real   Element of  REAL 
 
(setopfunc (Y1, the carrier of X,REAL,H,addreal)) - Y01 is  V36()  real   ext-real   Element of  REAL 
 
 setopfunc (Y2, the carrier of X,REAL,H,addreal) is  V36()  real   ext-real   Element of  REAL 
 
addreal . ((setopfunc (G, the carrier of X,REAL,H,addreal)),(setopfunc (Y2, the carrier of X,REAL,H,addreal))) is  V36()  real   ext-real   Element of  REAL 
 
(addreal . ((setopfunc (G, the carrier of X,REAL,H,addreal)),(setopfunc (Y2, the carrier of X,REAL,H,addreal)))) - Y01 is  V36()  real   ext-real   Element of  REAL 
 
(setopfunc (G, the carrier of X,REAL,H,addreal)) + (setopfunc (Y2, the carrier of X,REAL,H,addreal)) is  V36()  real   ext-real   Element of  REAL 
 
((setopfunc (G, the carrier of X,REAL,H,addreal)) + (setopfunc (Y2, the carrier of X,REAL,H,addreal))) - Y01 is  V36()  real   ext-real   Element of  REAL 
 
((setopfunc (G, the carrier of X,REAL,H,addreal)) - Y01) + (setopfunc (Y2, the carrier of X,REAL,H,addreal)) is  V36()  real   ext-real   Element of  REAL 
 
 abs ((setopfunc (Y1, the carrier of X,REAL,H,addreal)) - Y01) is  V36()  real   ext-real   Element of  REAL 
 
 abs (setopfunc (Y2, the carrier of X,REAL,H,addreal)) is  V36()  real   ext-real   Element of  REAL 
 
(abs ((setopfunc (G, the carrier of X,REAL,H,addreal)) - Y01)) + (abs (setopfunc (Y2, the carrier of X,REAL,H,addreal))) is  V36()  real   ext-real   Element of  REAL 
 
Y02 - (setopfunc (Y1, the carrier of X,REAL,H,addreal)) is  V36()  real   ext-real   Element of  REAL 
 
 abs (Y02 - (setopfunc (Y1, the carrier of X,REAL,H,addreal))) is  V36()  real   ext-real   Element of  REAL 
 
(Y1 / 2) + (Y1 / 2) is  V36()  real   ext-real   Element of  REAL 
 
Y01 - (setopfunc (Y1, the carrier of X,REAL,H,addreal)) is  V36()  real   ext-real   Element of  REAL 
 
 abs (Y01 - (setopfunc (Y1, the carrier of X,REAL,H,addreal))) is  V36()  real   ext-real   Element of  REAL 
 
 setopfunc (Y1, the carrier of X,REAL,H,addreal) is  V36()  real   ext-real   Element of  REAL 
 
Y01 - (setopfunc (Y1, the carrier of X,REAL,H,addreal)) is  V36()  real   ext-real   Element of  REAL 
 
 abs (Y01 - (setopfunc (Y1, the carrier of X,REAL,H,addreal))) is  V36()  real   ext-real   Element of  REAL 
 
 setopfunc (Y1, the carrier of X,REAL,H,addreal) is  V36()  real   ext-real   Element of  REAL 
 
Y01 - (setopfunc (Y1, the carrier of X,REAL,H,addreal)) is  V36()  real   ext-real   Element of  REAL 
 
 abs (Y01 - (setopfunc (Y1, the carrier of X,REAL,H,addreal))) is  V36()  real   ext-real   Element of  REAL 
 
Y1 is  V36()  real   ext-real   Element of  REAL 
 
p1 is  V36()  real   ext-real   Element of  REAL 
 
X is   non  empty   right_complementable  V106() V107() V108() V109() V110() V111() V112()  RealUnitarySpace-like   UNITSTR 
 
 the carrier of X is   non  empty   set 
 
 the addF of X is   Relation-like  [: the carrier of X, the carrier of X:] -defined   the carrier of X -valued   Function-like  V14([: the carrier of X, the carrier of X:]) V18([: the carrier of X, the carrier of X:], the carrier of X)  Element of  bool [:[: the carrier of X, the carrier of X:], the carrier of X:]
 
[: the carrier of X, the carrier of X:] is    set 
 
[:[: the carrier of X, the carrier of X:], the carrier of X:] is    set 
 
 bool [:[: the carrier of X, the carrier of X:], the carrier of X:] is    set 
 
 bool [: the carrier of X, the carrier of X:] is    set 
 
[: the carrier of X,REAL:] is    set 
 
 bool [: the carrier of X,REAL:] is    set 
 
S is   finite   OrthogonalFamily of X
 
H is   Relation-like   the carrier of X -defined   the carrier of X -valued   Function-like   non  empty  V14( the carrier of X) V18( the carrier of X, the carrier of X)  Element of  bool [: the carrier of X, the carrier of X:]
 
 dom H is    set 
 
 setopfunc (S, the carrier of X, the carrier of X,H, the addF of X) is    Element of  the carrier of X
 
(setopfunc (S, the carrier of X, the carrier of X,H, the addF of X)) .|. (setopfunc (S, the carrier of X, the carrier of X,H, the addF of X)) is  V36()  real   ext-real   Element of  REAL 
 
p1 is   Relation-like   NAT  -defined   the carrier of X -valued   Function-like   FinSequence-like   FinSequence of  the carrier of X
 
 rng p1 is    set 
 
 Func_Seq (H,p1) is   Relation-like   NAT  -defined   the carrier of X -valued   Function-like   FinSequence-like   FinSequence of  the carrier of X
 
 the addF of X "**" (Func_Seq (H,p1)) is    Element of  the carrier of X
 
p2 is   Relation-like   the carrier of X -defined   REAL  -valued   Function-like   non  empty  V14( the carrier of X) V18( the carrier of X, REAL )  Element of  bool [: the carrier of X,REAL:]
 
 dom p2 is    set 
 
 setopfunc (S, the carrier of X,REAL,p2,addreal) is  V36()  real   ext-real   Element of  REAL 
 
 Func_Seq (p2,p1) is   Relation-like   NAT  -defined   REAL  -valued   Function-like   FinSequence-like   FinSequence of  REAL 
 
addreal "**" (Func_Seq (p2,p1)) is  V36()  real   ext-real   Element of  REAL 
 
 the scalar of X is   Relation-like  [: the carrier of X, the carrier of X:] -defined   REAL  -valued   Function-like  V14([: the carrier of X, the carrier of X:]) V18([: the carrier of X, the carrier of X:], REAL )  Element of  bool [:[: the carrier of X, the carrier of X:],REAL:]
 
[:[: the carrier of X, the carrier of X:],REAL:] is    set 
 
 bool [:[: the carrier of X, the carrier of X:],REAL:] is    set 
 
e is    Element of  the carrier of X
 
H . e is    Element of  the carrier of X
 
Y02 is    Element of  the carrier of X
 
H . Y02 is    Element of  the carrier of X
 
[(H . e),(H . Y02)] is    set 
 
{(H . e),(H . Y02)} is   non  empty   finite   set 
 
{(H . e)} is   non  empty   finite   set 
 
{{(H . e),(H . Y02)},{(H . e)}} is   non  empty   finite  V47()  set 
 
 the scalar of X . [(H . e),(H . Y02)] is    set 
 
e .|. Y02 is  V36()  real   ext-real   Element of  REAL 
 
e is    Element of  the carrier of X
 
p2 . e is  V36()  real   ext-real   Element of  REAL 
 
H . e is    Element of  the carrier of X
 
[(H . e),(H . e)] is    set 
 
{(H . e),(H . e)} is   non  empty   finite   set 
 
{(H . e)} is   non  empty   finite   set 
 
{{(H . e),(H . e)},{(H . e)}} is   non  empty   finite  V47()  set 
 
 the scalar of X . [(H . e),(H . e)] is    set 
 
e .|. e is  V36()  real   ext-real   Element of  REAL 
 
[( the addF of X "**" (Func_Seq (H,p1))),( the addF of X "**" (Func_Seq (H,p1)))] is    set 
 
{( the addF of X "**" (Func_Seq (H,p1))),( the addF of X "**" (Func_Seq (H,p1)))} is   non  empty   finite   set 
 
{( the addF of X "**" (Func_Seq (H,p1)))} is   non  empty   finite   set 
 
{{( the addF of X "**" (Func_Seq (H,p1))),( the addF of X "**" (Func_Seq (H,p1)))},{( the addF of X "**" (Func_Seq (H,p1)))}} is   non  empty   finite  V47()  set 
 
 the scalar of X . [( the addF of X "**" (Func_Seq (H,p1))),( the addF of X "**" (Func_Seq (H,p1)))] is    set 
 
X is   non  empty   right_complementable  V106() V107() V108() V109() V110() V111() V112()  RealUnitarySpace-like   UNITSTR 
 
 the carrier of X is   non  empty   set 
 
 the addF of X is   Relation-like  [: the carrier of X, the carrier of X:] -defined   the carrier of X -valued   Function-like  V14([: the carrier of X, the carrier of X:]) V18([: the carrier of X, the carrier of X:], the carrier of X)  Element of  bool [:[: the carrier of X, the carrier of X:], the carrier of X:]
 
[: the carrier of X, the carrier of X:] is    set 
 
[:[: the carrier of X, the carrier of X:], the carrier of X:] is    set 
 
 bool [:[: the carrier of X, the carrier of X:], the carrier of X:] is    set 
 
[: the carrier of X,REAL:] is    set 
 
 bool [: the carrier of X,REAL:] is    set 
 
 bool [: the carrier of X, the carrier of X:] is    set 
 
 id  the carrier of X is   Relation-like   the carrier of X -defined   the carrier of X -valued   Function-like   one-to-one   non  empty  V14( the carrier of X) V18( the carrier of X, the carrier of X)  Element of  bool [: the carrier of X, the carrier of X:]
 
H is   finite   OrthogonalFamily of X
 
 setsum H is    Element of  the carrier of X
 
(setsum H) .|. (setsum H) is  V36()  real   ext-real   Element of  REAL 
 
p1 is   Relation-like   the carrier of X -defined   REAL  -valued   Function-like   non  empty  V14( the carrier of X) V18( the carrier of X, REAL )  Element of  bool [: the carrier of X,REAL:]
 
 dom p1 is    set 
 
 setopfunc (H, the carrier of X,REAL,p1,addreal) is  V36()  real   ext-real   Element of  REAL 
 
S is   Relation-like   the carrier of X -defined   the carrier of X -valued   Function-like   non  empty  V14( the carrier of X) V18( the carrier of X, the carrier of X)  Element of  bool [: the carrier of X, the carrier of X:]
 
p2 is    Element of  the carrier of X
 
S . p2 is    Element of  the carrier of X
 
 dom S is    set 
 
p2 is    set 
 
S . p2 is    set 
 
 setopfunc (H, the carrier of X, the carrier of X,S, the addF of X) is    Element of  the carrier of X
 
X is   non  empty   right_complementable  V106() V107() V108() V109() V110() V111() V112()  RealUnitarySpace-like   UNITSTR 
 
 the carrier of X is   non  empty   set 
 
 bool  the carrier of X is    set 
 
S is    OrthogonalFamily of X
 
 bool S is    set 
 
H is    Element of  bool  the carrier of X
 
p1 is    Element of  the carrier of X
 
p2 is    Element of  the carrier of X
 
p1 .|. p2 is  V36()  real   ext-real   Element of  REAL 
 
X is   non  empty   right_complementable  V106() V107() V108() V109() V110() V111() V112()  RealUnitarySpace-like   UNITSTR 
 
 the carrier of X is   non  empty   set 
 
 bool  the carrier of X is    set 
 
S is    OrthonormalFamily of X
 
 bool S is    set 
 
H is    Element of  bool  the carrier of X
 
p1 is    Element of  the carrier of X
 
p1 .|. p1 is  V36()  real   ext-real   Element of  REAL 
 
X is   non  empty   right_complementable  V106() V107() V108() V109() V110() V111() V112()  RealUnitarySpace-like  V125()  UNITSTR 
 
 the carrier of X is   non  empty   set 
 
 the addF of X is   Relation-like  [: the carrier of X, the carrier of X:] -defined   the carrier of X -valued   Function-like  V14([: the carrier of X, the carrier of X:]) V18([: the carrier of X, the carrier of X:], the carrier of X)  Element of  bool [:[: the carrier of X, the carrier of X:], the carrier of X:]
 
[: the carrier of X, the carrier of X:] is    set 
 
[:[: the carrier of X, the carrier of X:], the carrier of X:] is    set 
 
 bool [:[: the carrier of X, the carrier of X:], the carrier of X:] is    set 
 
[: the carrier of X,REAL:] is    set 
 
 bool [: the carrier of X,REAL:] is    set 
 
S is    OrthonormalFamily of X
 
H is   Relation-like   the carrier of X -defined   REAL  -valued   Function-like   non  empty  V14( the carrier of X) V18( the carrier of X, REAL )  Element of  bool [: the carrier of X,REAL:]
 
 dom H is    set 
 
p1 is  V36()  real   ext-real   Element of  REAL 
 
 sqrt p1 is  V36()  real   ext-real   Element of  REAL 
 
e is  V36()  real   ext-real   Element of  REAL 
 
(sqrt p1) ^2  is  V36()  real   ext-real   Element of  REAL 
 
K143((sqrt p1),(sqrt p1)) is  V36()  real   ext-real   set 
 
e ^2  is  V36()  real   ext-real   Element of  REAL 
 
K143(e,e) is  V36()  real   ext-real   set 
 
e * e is  V36()  real   ext-real   Element of  REAL 
 
 bool  the carrier of X is    set 
 
Y02 is   finite   Element of  bool  the carrier of X
 
Y01 is   finite   Element of  bool  the carrier of X
 
Y1 is   finite   Element of  bool  the carrier of X
 
Y011 is    Element of  the carrier of X
 
H . Y011 is  V36()  real   ext-real   Element of  REAL 
 
Y011 .|. Y011 is  V36()  real   ext-real   Element of  REAL 
 
 setsum Y1 is    Element of  the carrier of X
 
(setsum Y1) .|. (setsum Y1) is  V36()  real   ext-real   Element of  REAL 
 
 setopfunc (Y1, the carrier of X,REAL,H,addreal) is  V36()  real   ext-real   Element of  REAL 
 
||.(setsum Y1).|| is  V36()  real   ext-real   Element of  REAL 
 
||.(setsum Y1).|| ^2  is  V36()  real   ext-real   Element of  REAL 
 
K143(||.(setsum Y1).||,||.(setsum Y1).||) is  V36()  real   ext-real   set 
 
 sqrt ((setsum Y1) .|. (setsum Y1)) is  V36()  real   ext-real   Element of  REAL 
 
 abs (setopfunc (Y1, the carrier of X,REAL,H,addreal)) is  V36()  real   ext-real   Element of  REAL 
 
p1 is  V36()  real   ext-real   Element of  REAL 
 
p1 * p1 is  V36()  real   ext-real   Element of  REAL 
 
e is   finite   Element of  bool  the carrier of X
 
Y02 is   finite   Element of  bool  the carrier of X
 
 setopfunc (Y02, the carrier of X,REAL,H,addreal) is  V36()  real   ext-real   Element of  REAL 
 
 abs (setopfunc (Y02, the carrier of X,REAL,H,addreal)) is  V36()  real   ext-real   Element of  REAL 
 
(abs (setopfunc (Y02, the carrier of X,REAL,H,addreal))) - (abs (setopfunc (Y02, the carrier of X,REAL,H,addreal))) is  V36()  real   ext-real   Element of  REAL 
 
(setopfunc (Y02, the carrier of X,REAL,H,addreal)) - (p1 * p1) is  V36()  real   ext-real   Element of  REAL 
 
Y1 is    Element of  the carrier of X
 
H . Y1 is  V36()  real   ext-real   Element of  REAL 
 
Y1 .|. Y1 is  V36()  real   ext-real   Element of  REAL 
 
 setsum Y02 is    Element of  the carrier of X
 
(setsum Y02) .|. (setsum Y02) is  V36()  real   ext-real   Element of  REAL 
 
||.(setsum Y02).|| is  V36()  real   ext-real   Element of  REAL 
 
 sqrt ((setsum Y02) .|. (setsum Y02)) is  V36()  real   ext-real   Element of  REAL 
 
||.(setsum Y02).|| ^2  is  V36()  real   ext-real   Element of  REAL 
 
K143(||.(setsum Y02).||,||.(setsum Y02).||) is  V36()  real   ext-real   set 
 
p1 ^2  is  V36()  real   ext-real   Element of  REAL 
 
K143(p1,p1) is  V36()  real   ext-real   set 
 
 sqrt (p1 ^2) is  V36()  real   ext-real   Element of  REAL 
 
 sqrt (||.(setsum Y02).|| ^2) is  V36()  real   ext-real   Element of  REAL 
 
X is   non  empty   right_complementable  V106() V107() V108() V109() V110() V111() V112()  RealUnitarySpace-like   UNITSTR 
 
 the carrier of X is   non  empty   set 
 
 bool  the carrier of X is    set 
 
S is    Element of  bool  the carrier of X
 
 sum S is    Element of  the carrier of X
 
(sum S) .|. (sum S) is  V36()  real   ext-real   Element of  REAL 
 
H is   finite   Element of  bool  the carrier of X
 
p1 is  V36()  real   ext-real   Element of  REAL 
 
||.(sum S).|| is  V36()  real   ext-real   Element of  REAL 
 
2 * ||.(sum S).|| is  V36()  real   ext-real   Element of  REAL 
 
(2 * ||.(sum S).||) + 1 is  V36()  real   ext-real   Element of  REAL 
 
p1 / ((2 * ||.(sum S).||) + 1) is  V36()  real   ext-real   Element of  REAL 
 
0 + 0 is   epsilon-transitive   epsilon-connected   ordinal   natural  V36()  real   ext-real   Element of  NAT 
 
e is   finite   Element of  bool  the carrier of X
 
e \/ H is   finite   Element of  bool  the carrier of X
 
Y01 is   finite   Element of  bool  the carrier of X
 
 setsum Y01 is    Element of  the carrier of X
 
(setsum Y01) .|. (setsum Y01) is  V36()  real   ext-real   Element of  REAL 
 
((sum S) .|. (sum S)) - ((setsum Y01) .|. (setsum Y01)) is  V36()  real   ext-real   Element of  REAL 
 
 abs (((sum S) .|. (sum S)) - ((setsum Y01) .|. (setsum Y01))) is  V36()  real   ext-real   Element of  REAL 
 
(sum S) - (setsum Y01) is    Element of  the carrier of X
 
 - (setsum Y01) is    Element of  the carrier of X
 
(sum S) + (- (setsum Y01)) is    Element of  the carrier of X
 
(p1 / ((2 * ||.(sum S).||) + 1)) * ((2 * ||.(sum S).||) + 1) is  V36()  real   ext-real   Element of  REAL 
 
||.((sum S) - (setsum Y01)).|| is  V36()  real   ext-real   Element of  REAL 
 
||.((sum S) - (setsum Y01)).|| * ((2 * ||.(sum S).||) + 1) is  V36()  real   ext-real   Element of  REAL 
 
||.(setsum Y01).|| is  V36()  real   ext-real   Element of  REAL 
 
||.(- (setsum Y01)).|| is  V36()  real   ext-real   Element of  REAL 
 
 0. X is  V62(X)  Element of  the carrier of X
 
(0. X) - (setsum Y01) is    Element of  the carrier of X
 
(0. X) + (- (setsum Y01)) is    Element of  the carrier of X
 
||.((0. X) - (setsum Y01)).|| is  V36()  real   ext-real   Element of  REAL 
 
 - (sum S) is    Element of  the carrier of X
 
(- (sum S)) + (sum S) is    Element of  the carrier of X
 
((- (sum S)) + (sum S)) - (setsum Y01) is    Element of  the carrier of X
 
((- (sum S)) + (sum S)) + (- (setsum Y01)) is    Element of  the carrier of X
 
||.(((- (sum S)) + (sum S)) - (setsum Y01)).|| is  V36()  real   ext-real   Element of  REAL 
 
(- (sum S)) + ((sum S) - (setsum Y01)) is    Element of  the carrier of X
 
||.((- (sum S)) + ((sum S) - (setsum Y01))).|| is  V36()  real   ext-real   Element of  REAL 
 
||.(- (sum S)).|| is  V36()  real   ext-real   Element of  REAL 
 
||.(- (sum S)).|| + ||.((sum S) - (setsum Y01)).|| is  V36()  real   ext-real   Element of  REAL 
 
||.(sum S).|| + ||.((sum S) - (setsum Y01)).|| is  V36()  real   ext-real   Element of  REAL 
 
1 + (||.(sum S).|| + ||.((sum S) - (setsum Y01)).||) is  V36()  real   ext-real   Element of  REAL 
 
||.((sum S) - (setsum Y01)).|| + ||.(setsum Y01).|| is  V36()  real   ext-real   Element of  REAL 
 
1 + ||.(sum S).|| is  V36()  real   ext-real   Element of  REAL 
 
(1 + ||.(sum S).||) + ||.((sum S) - (setsum Y01)).|| is  V36()  real   ext-real   Element of  REAL 
 
((1 + ||.(sum S).||) + ||.((sum S) - (setsum Y01)).||) - ||.((sum S) - (setsum Y01)).|| is  V36()  real   ext-real   Element of  REAL 
 
||.(setsum Y01).|| + ||.((sum S) - (setsum Y01)).|| is  V36()  real   ext-real   Element of  REAL 
 
(||.(setsum Y01).|| + ||.((sum S) - (setsum Y01)).||) - ||.((sum S) - (setsum Y01)).|| is  V36()  real   ext-real   Element of  REAL 
 
(1 + ||.(sum S).||) + ||.(sum S).|| is  V36()  real   ext-real   Element of  REAL 
 
||.(sum S).|| + ||.(setsum Y01).|| is  V36()  real   ext-real   Element of  REAL 
 
||.((sum S) - (setsum Y01)).|| * (||.(sum S).|| + ||.(setsum Y01).||) is  V36()  real   ext-real   Element of  REAL 
 
((p1 / ((2 * ||.(sum S).||) + 1)) * ((2 * ||.(sum S).||) + 1)) + (||.((sum S) - (setsum Y01)).|| * ((2 * ||.(sum S).||) + 1)) is  V36()  real   ext-real   Element of  REAL 
 
(||.((sum S) - (setsum Y01)).|| * (||.(sum S).|| + ||.(setsum Y01).||)) + (||.((sum S) - (setsum Y01)).|| * ((2 * ||.(sum S).||) + 1)) is  V36()  real   ext-real   Element of  REAL 
 
(((p1 / ((2 * ||.(sum S).||) + 1)) * ((2 * ||.(sum S).||) + 1)) + (||.((sum S) - (setsum Y01)).|| * ((2 * ||.(sum S).||) + 1))) - (||.((sum S) - (setsum Y01)).|| * ((2 * ||.(sum S).||) + 1)) is  V36()  real   ext-real   Element of  REAL 
 
((||.((sum S) - (setsum Y01)).|| * (||.(sum S).|| + ||.(setsum Y01).||)) + (||.((sum S) - (setsum Y01)).|| * ((2 * ||.(sum S).||) + 1))) - (||.((sum S) - (setsum Y01)).|| * ((2 * ||.(sum S).||) + 1)) is  V36()  real   ext-real   Element of  REAL 
 
(sum S) .|. (setsum Y01) is  V36()  real   ext-real   Element of  REAL 
 
((sum S) .|. (sum S)) - ((sum S) .|. (setsum Y01)) is  V36()  real   ext-real   Element of  REAL 
 
((sum S) .|. (setsum Y01)) - ((setsum Y01) .|. (setsum Y01)) is  V36()  real   ext-real   Element of  REAL 
 
(((sum S) .|. (sum S)) - ((sum S) .|. (setsum Y01))) + (((sum S) .|. (setsum Y01)) - ((setsum Y01) .|. (setsum Y01))) is  V36()  real   ext-real   Element of  REAL 
 
 abs ((((sum S) .|. (sum S)) - ((sum S) .|. (setsum Y01))) + (((sum S) .|. (setsum Y01)) - ((setsum Y01) .|. (setsum Y01)))) is  V36()  real   ext-real   Element of  REAL 
 
(sum S) .|. ((sum S) - (setsum Y01)) is  V36()  real   ext-real   Element of  REAL 
 
((sum S) .|. ((sum S) - (setsum Y01))) + (((sum S) .|. (setsum Y01)) - ((setsum Y01) .|. (setsum Y01))) is  V36()  real   ext-real   Element of  REAL 
 
 abs (((sum S) .|. ((sum S) - (setsum Y01))) + (((sum S) .|. (setsum Y01)) - ((setsum Y01) .|. (setsum Y01)))) is  V36()  real   ext-real   Element of  REAL 
 
((sum S) - (setsum Y01)) .|. (setsum Y01) is  V36()  real   ext-real   Element of  REAL 
 
((sum S) .|. ((sum S) - (setsum Y01))) + (((sum S) - (setsum Y01)) .|. (setsum Y01)) is  V36()  real   ext-real   Element of  REAL 
 
 abs (((sum S) .|. ((sum S) - (setsum Y01))) + (((sum S) - (setsum Y01)) .|. (setsum Y01))) is  V36()  real   ext-real   Element of  REAL 
 
 abs ((sum S) .|. ((sum S) - (setsum Y01))) is  V36()  real   ext-real   Element of  REAL 
 
 abs (((sum S) - (setsum Y01)) .|. (setsum Y01)) is  V36()  real   ext-real   Element of  REAL 
 
(abs ((sum S) .|. ((sum S) - (setsum Y01)))) + (abs (((sum S) - (setsum Y01)) .|. (setsum Y01))) is  V36()  real   ext-real   Element of  REAL 
 
||.(sum S).|| * ||.((sum S) - (setsum Y01)).|| is  V36()  real   ext-real   Element of  REAL 
 
(abs (((sum S) .|. (sum S)) - ((setsum Y01) .|. (setsum Y01)))) + (abs ((sum S) .|. ((sum S) - (setsum Y01)))) is  V36()  real   ext-real   Element of  REAL 
 
((abs ((sum S) .|. ((sum S) - (setsum Y01)))) + (abs (((sum S) - (setsum Y01)) .|. (setsum Y01)))) + (||.(sum S).|| * ||.((sum S) - (setsum Y01)).||) is  V36()  real   ext-real   Element of  REAL 
 
(abs (((sum S) - (setsum Y01)) .|. (setsum Y01))) + (||.(sum S).|| * ||.((sum S) - (setsum Y01)).||) is  V36()  real   ext-real   Element of  REAL 
 
((abs (((sum S) - (setsum Y01)) .|. (setsum Y01))) + (||.(sum S).|| * ||.((sum S) - (setsum Y01)).||)) + (abs ((sum S) .|. ((sum S) - (setsum Y01)))) is  V36()  real   ext-real   Element of  REAL 
 
||.((sum S) - (setsum Y01)).|| * ||.(setsum Y01).|| is  V36()  real   ext-real   Element of  REAL 
 
(abs (((sum S) .|. (sum S)) - ((setsum Y01) .|. (setsum Y01)))) + (abs (((sum S) - (setsum Y01)) .|. (setsum Y01))) is  V36()  real   ext-real   Element of  REAL 
 
((abs (((sum S) - (setsum Y01)) .|. (setsum Y01))) + (||.(sum S).|| * ||.((sum S) - (setsum Y01)).||)) + (||.((sum S) - (setsum Y01)).|| * ||.(setsum Y01).||) is  V36()  real   ext-real   Element of  REAL 
 
(||.(sum S).|| * ||.((sum S) - (setsum Y01)).||) + (||.((sum S) - (setsum Y01)).|| * ||.(setsum Y01).||) is  V36()  real   ext-real   Element of  REAL 
 
((||.(sum S).|| * ||.((sum S) - (setsum Y01)).||) + (||.((sum S) - (setsum Y01)).|| * ||.(setsum Y01).||)) + (abs (((sum S) - (setsum Y01)) .|. (setsum Y01))) is  V36()  real   ext-real   Element of  REAL 
 
||.((sum S) - (setsum Y01)).|| * ||.(sum S).|| is  V36()  real   ext-real   Element of  REAL 
 
(||.((sum S) - (setsum Y01)).|| * ||.(sum S).||) + (||.((sum S) - (setsum Y01)).|| * ||.(setsum Y01).||) is  V36()  real   ext-real   Element of  REAL 
 
p1 + (||.((sum S) - (setsum Y01)).|| * (||.(sum S).|| + ||.(setsum Y01).||)) is  V36()  real   ext-real   Element of  REAL 
 
(abs (((sum S) .|. (sum S)) - ((setsum Y01) .|. (setsum Y01)))) + (||.((sum S) - (setsum Y01)).|| * (||.(sum S).|| + ||.(setsum Y01).||)) is  V36()  real   ext-real   Element of  REAL 
 
(p1 + (||.((sum S) - (setsum Y01)).|| * (||.(sum S).|| + ||.(setsum Y01).||))) - (||.((sum S) - (setsum Y01)).|| * (||.(sum S).|| + ||.(setsum Y01).||)) is  V36()  real   ext-real   Element of  REAL 
 
((abs (((sum S) .|. (sum S)) - ((setsum Y01) .|. (setsum Y01)))) + (||.((sum S) - (setsum Y01)).|| * (||.(sum S).|| + ||.(setsum Y01).||))) - (||.((sum S) - (setsum Y01)).|| * (||.(sum S).|| + ||.(setsum Y01).||)) is  V36()  real   ext-real   Element of  REAL 
 
X is  V36()  real   ext-real   set 
 
S is  V36()  real   ext-real   set 
 
X - S is  V36()  real   ext-real   Element of  REAL 
 
 abs (X - S) is  V36()  real   ext-real   Element of  REAL 
 
X is   non  empty   right_complementable  V106() V107() V108() V109() V110() V111() V112()  RealUnitarySpace-like  V125()  UNITSTR 
 
 the carrier of X is   non  empty   set 
 
 the addF of X is   Relation-like  [: the carrier of X, the carrier of X:] -defined   the carrier of X -valued   Function-like  V14([: the carrier of X, the carrier of X:]) V18([: the carrier of X, the carrier of X:], the carrier of X)  Element of  bool [:[: the carrier of X, the carrier of X:], the carrier of X:]
 
[: the carrier of X, the carrier of X:] is    set 
 
[:[: the carrier of X, the carrier of X:], the carrier of X:] is    set 
 
 bool [:[: the carrier of X, the carrier of X:], the carrier of X:] is    set 
 
[: the carrier of X,REAL:] is    set 
 
 bool [: the carrier of X,REAL:] is    set 
 
S is    OrthonormalFamily of X
 
 sum S is    Element of  the carrier of X
 
(sum S) .|. (sum S) is  V36()  real   ext-real   Element of  REAL 
 
H is   Relation-like   the carrier of X -defined   REAL  -valued   Function-like   non  empty  V14( the carrier of X) V18( the carrier of X, REAL )  Element of  bool [: the carrier of X,REAL:]
 
 dom H is    set 
 
 sum_byfunc (S,H) is  V36()  real   ext-real   Element of  REAL 
 
 bool  the carrier of X is    set 
 
p1 is   finite   Element of  bool  the carrier of X
 
 setsum p1 is    Element of  the carrier of X
 
(setsum p1) .|. (setsum p1) is  V36()  real   ext-real   Element of  REAL 
 
 setopfunc (p1, the carrier of X,REAL,H,addreal) is  V36()  real   ext-real   Element of  REAL 
 
p2 is    Element of  the carrier of X
 
H . p2 is  V36()  real   ext-real   Element of  REAL 
 
p2 .|. p2 is  V36()  real   ext-real   Element of  REAL 
 
((sum S) .|. (sum S)) - (sum_byfunc (S,H)) is  V36()  real   ext-real   Element of  REAL 
 
 abs (((sum S) .|. (sum S)) - (sum_byfunc (S,H))) is  V36()  real   ext-real   Element of  REAL 
 
e is  V36()  real   ext-real   Element of  REAL 
 
e / 2 is  V36()  real   ext-real   Element of  REAL 
 
0 / 2 is  V36()  real   ext-real   Element of  REAL 
 
Y02 is   finite   Element of  bool  the carrier of X
 
Y01 is   finite   Element of  bool  the carrier of X
 
Y01 \/ Y02 is   finite   Element of  bool  the carrier of X
 
 setopfunc ((Y01 \/ Y02), the carrier of X,REAL,H,addreal) is  V36()  real   ext-real   Element of  REAL 
 
Y011 is   non  empty   set 
 
Y011 \/ Y02 is   non  empty   set 
 
 setsum (Y01 \/ Y02) is    Element of  the carrier of X
 
(setsum (Y01 \/ Y02)) .|. (setsum (Y01 \/ Y02)) is  V36()  real   ext-real   Element of  REAL 
 
((sum S) .|. (sum S)) - (setopfunc ((Y01 \/ Y02), the carrier of X,REAL,H,addreal)) is  V36()  real   ext-real   Element of  REAL 
 
 abs (((sum S) .|. (sum S)) - (setopfunc ((Y01 \/ Y02), the carrier of X,REAL,H,addreal))) is  V36()  real   ext-real   Element of  REAL 
 
(e / 2) + (e / 2) is  V36()  real   ext-real   Element of  REAL 
 
(sum_byfunc (S,H)) - (setopfunc ((Y01 \/ Y02), the carrier of X,REAL,H,addreal)) is  V36()  real   ext-real   Element of  REAL 
 
 abs ((sum_byfunc (S,H)) - (setopfunc ((Y01 \/ Y02), the carrier of X,REAL,H,addreal))) is  V36()  real   ext-real   Element of  REAL 
 
(abs (((sum S) .|. (sum S)) - (setopfunc ((Y01 \/ Y02), the carrier of X,REAL,H,addreal)))) + (abs ((sum_byfunc (S,H)) - (setopfunc ((Y01 \/ Y02), the carrier of X,REAL,H,addreal)))) is  V36()  real   ext-real   Element of  REAL 
 
(setopfunc ((Y01 \/ Y02), the carrier of X,REAL,H,addreal)) - (sum_byfunc (S,H)) is  V36()  real   ext-real   Element of  REAL 
 
 abs ((setopfunc ((Y01 \/ Y02), the carrier of X,REAL,H,addreal)) - (sum_byfunc (S,H))) is  V36()  real   ext-real   Element of  REAL 
 
(abs (((sum S) .|. (sum S)) - (setopfunc ((Y01 \/ Y02), the carrier of X,REAL,H,addreal)))) + (abs ((setopfunc ((Y01 \/ Y02), the carrier of X,REAL,H,addreal)) - (sum_byfunc (S,H)))) is  V36()  real   ext-real   Element of  REAL 
 
(((sum S) .|. (sum S)) - (setopfunc ((Y01 \/ Y02), the carrier of X,REAL,H,addreal))) + ((setopfunc ((Y01 \/ Y02), the carrier of X,REAL,H,addreal)) - (sum_byfunc (S,H))) is  V36()  real   ext-real   Element of  REAL