REAL is non empty non trivial non finite non empty-membered complex-membered ext-real-membered real-membered V92() non bounded_below non bounded_above V120() set
NAT is non empty epsilon-transitive epsilon-connected ordinal complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered V92() left_end bounded_below Element of bool REAL
bool REAL is non empty non empty-membered set
bool NAT is non empty non empty-membered set
COMPLEX is non empty non trivial non finite non empty-membered complex-membered V92() set
omega is non empty epsilon-transitive epsilon-connected ordinal complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered V92() left_end bounded_below set
bool omega is non empty non empty-membered set
K158(NAT) is V35() set
[:NAT,REAL:] is Relation-like V76() V77() V78() set
bool [:NAT,REAL:] is set
RAT is non empty non trivial non finite non empty-membered complex-membered ext-real-membered real-membered rational-membered V92() set
INT is non empty non trivial non finite non empty-membered complex-membered ext-real-membered real-membered rational-membered integer-membered V92() set
[:COMPLEX,COMPLEX:] is Relation-like V76() set
bool [:COMPLEX,COMPLEX:] is set
[:[:COMPLEX,COMPLEX:],COMPLEX:] is Relation-like V76() set
bool [:[:COMPLEX,COMPLEX:],COMPLEX:] is set
[:REAL,REAL:] is Relation-like V76() V77() V78() set
bool [:REAL,REAL:] is set
[:[:REAL,REAL:],REAL:] is Relation-like V76() V77() V78() set
bool [:[:REAL,REAL:],REAL:] is set
[:RAT,RAT:] is Relation-like RAT -valued V76() V77() V78() set
bool [:RAT,RAT:] is set
[:[:RAT,RAT:],RAT:] is Relation-like RAT -valued V76() V77() V78() set
bool [:[:RAT,RAT:],RAT:] is set
[:INT,INT:] is Relation-like RAT -valued INT -valued V76() V77() V78() set
bool [:INT,INT:] is set
[:[:INT,INT:],INT:] is Relation-like RAT -valued INT -valued V76() V77() V78() set
bool [:[:INT,INT:],INT:] is set
[:NAT,NAT:] is Relation-like RAT -valued INT -valued V76() V77() V78() V79() set
[:[:NAT,NAT:],NAT:] is Relation-like RAT -valued INT -valued V76() V77() V78() V79() set
bool [:[:NAT,NAT:],NAT:] is set
K325() is set
1 is non empty epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real positive non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered left_end bounded_below Element of NAT
{} is empty epsilon-transitive epsilon-connected ordinal T-Sequence-like c=-linear natural V11() real integer Relation-like non-empty empty-yielding NAT -defined RAT -valued Function-like one-to-one constant functional finite finite-yielding V40() FinSequence-like FinSubsequence-like FinSequence-membered ext-real non positive non negative V76() V77() V78() V79() complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered V92() bounded_below bounded_above real-bounded V120() set
the empty epsilon-transitive epsilon-connected ordinal T-Sequence-like c=-linear natural V11() real integer Relation-like non-empty empty-yielding NAT -defined RAT -valued Function-like one-to-one constant functional finite finite-yielding V40() FinSequence-like FinSubsequence-like FinSequence-membered ext-real non positive non negative V76() V77() V78() V79() complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered V92() bounded_below bounded_above real-bounded V120() set is empty epsilon-transitive epsilon-connected ordinal T-Sequence-like c=-linear natural V11() real integer Relation-like non-empty empty-yielding NAT -defined RAT -valued Function-like one-to-one constant functional finite finite-yielding V40() FinSequence-like FinSubsequence-like FinSequence-membered ext-real non positive non negative V76() V77() V78() V79() complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered V92() bounded_below bounded_above real-bounded V120() set
{{},1} is non empty finite complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered left_end right_end bounded_below bounded_above real-bounded set
K520() is set
bool K520() is set
K521() is Element of bool K520()
2 is non empty epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real positive non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered left_end bounded_below Element of NAT
3 is non empty epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real positive non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered left_end bounded_below Element of NAT
0 is empty epsilon-transitive epsilon-connected ordinal T-Sequence-like c=-linear natural V11() real integer Relation-like non-empty empty-yielding NAT -defined RAT -valued Function-like one-to-one constant functional finite finite-yielding V40() FinSequence-like FinSubsequence-like FinSequence-membered V47() ext-real non positive non negative V76() V77() V78() V79() complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered V92() bounded_below bounded_above real-bounded V120() Element of NAT
Fib 0 is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
Fib 1 is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
4 is non empty epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real positive non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered left_end bounded_below Element of NAT
sqrt 4 is V11() real ext-real Element of REAL
Seg 1 is non empty finite 1 -element complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered left_end right_end bounded_below bounded_above real-bounded Element of bool NAT
{ b1 where b1 is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT : ( 1 <= b1 & b1 <= 1 ) } is set
{1} is non empty finite with_non-empty_elements non empty-membered complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered left_end right_end bounded_below bounded_above real-bounded set
Seg 2 is non empty finite 2 -element complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered left_end right_end bounded_below bounded_above real-bounded Element of bool NAT
{ b1 where b1 is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT : ( 1 <= b1 & b1 <= 2 ) } is set
{1,2} is non empty finite with_non-empty_elements non empty-membered complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered left_end right_end bounded_below bounded_above real-bounded set
Seg 3 is non empty finite 3 -element complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered left_end right_end bounded_below bounded_above real-bounded Element of bool NAT
{ b1 where b1 is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT : ( 1 <= b1 & b1 <= 3 ) } is set
K602(1,2,3) is finite with_non-empty_elements complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below bounded_above real-bounded set
Seg 4 is non empty finite 4 -element complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered left_end right_end bounded_below bounded_above real-bounded Element of bool NAT
{ b1 where b1 is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT : ( 1 <= b1 & b1 <= 4 ) } is set
K603(1,2,3,4) is finite with_non-empty_elements set
tau is V11() real ext-real set
5 is non empty epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real positive non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered left_end bounded_below Element of NAT
sqrt 5 is V11() real ext-real Element of REAL
1 + (sqrt 5) is V11() real ext-real set
K65((1 + (sqrt 5)),2) is V11() real ext-real Element of COMPLEX
tau_bar is V11() real ext-real set
1 - (sqrt 5) is V11() real ext-real set
K65((1 - (sqrt 5)),2) is V11() real ext-real Element of COMPLEX
n is non empty epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real positive non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered left_end bounded_below Element of NAT
n -' 1 is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
(n -' 1) + 2 is non empty epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real positive non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered left_end bounded_below Element of NAT
n + 1 is non empty epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real positive non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered left_end bounded_below Element of NAT
n + 2 is non empty epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real positive non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered left_end bounded_below Element of NAT
(n + 2) -' 1 is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
(n + 2) - 1 is V11() real integer ext-real set
- 1 is V11() real integer ext-real non positive set
n is non empty V11() real integer ext-real non even set
(- 1) to_power n is V11() real ext-real set
1 to_power n is V11() real ext-real set
- (1 to_power n) is V11() real ext-real set
n is V11() real integer ext-real even set
(- 1) to_power n is V11() real ext-real set
1 to_power n is V11() real ext-real set
n is non empty V11() real ext-real set
(- 1) * n is V11() real ext-real set
n is V11() real integer ext-real set
((- 1) * n) to_power n is V11() real ext-real set
(- 1) to_power n is V11() real ext-real set
n to_power n is V11() real ext-real set
((- 1) to_power n) * (n to_power n) is V11() real ext-real set
- n is V11() real ext-real set
(- n) to_power n is V11() real ext-real set
- (n to_power n) is V11() real ext-real set
(- 1) * (n to_power n) is V11() real ext-real set
- n is V11() real ext-real set
(- n) to_power n is V11() real ext-real set
1 * (n to_power n) is V11() real ext-real set
n is epsilon-transitive epsilon-connected ordinal natural V11() real integer ext-real non negative set
n is epsilon-transitive epsilon-connected ordinal natural V11() real integer ext-real non negative set
n + n is epsilon-transitive epsilon-connected ordinal natural V11() real integer ext-real non negative set
C is V11() real ext-real set
C to_power (n + n) is V11() real ext-real set
C to_power n is V11() real ext-real set
C to_power n is V11() real ext-real set
(C to_power n) * (C to_power n) is V11() real ext-real set
C |^ (n + n) is V11() real ext-real set
C |^ n is V11() real ext-real set
C |^ n is V11() real ext-real set
(C |^ n) * (C |^ n) is V11() real ext-real set
(C to_power n) * (C |^ n) is V11() real ext-real set
n is epsilon-transitive epsilon-connected ordinal natural V11() real integer ext-real non negative set
n is non empty V11() real ext-real set
C is non empty V11() real integer ext-real non even set
n to_power C is V11() real ext-real set
(n to_power C) to_power n is V11() real ext-real set
C * n is V11() real integer ext-real set
n to_power (C * n) is V11() real ext-real set
n #Z (C * n) is V11() real ext-real set
n #Z C is V11() real ext-real set
(n #Z C) #Z n is V11() real ext-real set
(n to_power C) #Z n is V11() real ext-real set
n is epsilon-transitive epsilon-connected ordinal natural V11() real integer ext-real non negative set
- n is V11() real integer ext-real non positive set
(- 1) to_power (- n) is V11() real ext-real set
((- 1) to_power (- n)) ^2 is V11() real ext-real set
((- 1) to_power (- n)) * ((- 1) to_power (- n)) is V11() real ext-real set
(- 1) #Z (- n) is V11() real ext-real set
((- 1) #Z (- n)) ^2 is V11() real ext-real set
((- 1) #Z (- n)) * ((- 1) #Z (- n)) is V11() real ext-real set
(- 1) #Z n is V11() real ext-real set
1 / ((- 1) #Z n) is V11() real ext-real set
(1 / ((- 1) #Z n)) ^2 is V11() real ext-real set
(1 / ((- 1) #Z n)) * (1 / ((- 1) #Z n)) is V11() real ext-real set
(1 / ((- 1) #Z n)) to_power 2 is V11() real ext-real set
(1 / ((- 1) #Z n)) |^ 2 is V11() real ext-real set
((- 1) #Z n) |^ 2 is V11() real ext-real set
1 / (((- 1) #Z n) |^ 2) is V11() real ext-real set
((- 1) #Z n) #Z 2 is V11() real ext-real set
1 / (((- 1) #Z n) #Z 2) is V11() real ext-real set
n * 2 is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered even bounded_below Element of NAT
(- 1) #Z (n * 2) is V11() real ext-real set
1 / ((- 1) #Z (n * 2)) is V11() real ext-real set
2 * n is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered even bounded_below Element of NAT
(- 1) |^ (2 * n) is V11() real ext-real set
1 / ((- 1) |^ (2 * n)) is V11() real ext-real set
1 |^ (2 * n) is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
1 / (1 |^ (2 * n)) is V11() real ext-real non negative set
1 |^ 2 is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
(1 |^ 2) |^ n is epsilon-transitive epsilon-connected ordinal natural V11() real integer ext-real non negative Element of REAL
1 / ((1 |^ 2) |^ n) is V11() real ext-real non negative set
1 |^ n is epsilon-transitive epsilon-connected ordinal natural V11() real integer ext-real non negative Element of REAL
1 / (1 |^ n) is V11() real ext-real non negative set
1 / 1 is V11() real ext-real non negative set
n is epsilon-transitive epsilon-connected ordinal natural V11() real integer ext-real non negative set
- n is V11() real integer ext-real non positive set
n is epsilon-transitive epsilon-connected ordinal natural V11() real integer ext-real non negative set
- n is V11() real integer ext-real non positive set
(- n) - n is V11() real integer ext-real non positive set
r is non empty V11() real ext-real set
r to_power (- n) is V11() real ext-real set
r to_power (- n) is V11() real ext-real set
(r to_power (- n)) * (r to_power (- n)) is V11() real ext-real set
r to_power ((- n) - n) is V11() real ext-real set
r #Z (- n) is V11() real ext-real set
(r #Z (- n)) * (r to_power (- n)) is V11() real ext-real set
r #Z (- n) is V11() real ext-real set
(r #Z (- n)) * (r #Z (- n)) is V11() real ext-real set
(- n) + (- n) is V11() real integer ext-real non positive set
r #Z ((- n) + (- n)) is V11() real ext-real set
n is epsilon-transitive epsilon-connected ordinal natural V11() real integer ext-real non negative set
2 * n is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered even bounded_below Element of NAT
- (2 * n) is V11() real integer ext-real non positive set
(- 1) to_power (- (2 * n)) is V11() real ext-real set
(- 1) * (2 * n) is V11() real integer ext-real non positive even set
(- 1) #Z ((- 1) * (2 * n)) is V11() real ext-real set
(- 1) #Z (- 1) is V11() real ext-real set
((- 1) #Z (- 1)) #Z (2 * n) is V11() real ext-real set
(- 1) #Z 1 is V11() real ext-real set
1 / ((- 1) #Z 1) is V11() real ext-real set
(1 / ((- 1) #Z 1)) #Z (2 * n) is V11() real ext-real set
1 / (- 1) is V11() real ext-real non positive set
(1 / (- 1)) #Z (2 * n) is V11() real ext-real set
(- 1) |^ (2 * n) is V11() real ext-real set
1 |^ (2 * n) is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
1 |^ 2 is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
(1 |^ 2) |^ n is epsilon-transitive epsilon-connected ordinal natural V11() real integer ext-real non negative Element of REAL
1 |^ n is epsilon-transitive epsilon-connected ordinal natural V11() real integer ext-real non negative Element of REAL
n is epsilon-transitive epsilon-connected ordinal natural V11() real integer ext-real non negative set
- n is V11() real integer ext-real non positive set
n is non empty V11() real ext-real set
n to_power n is V11() real ext-real set
n to_power (- n) is V11() real ext-real set
(n to_power n) * (n to_power (- n)) is V11() real ext-real set
n #Z n is V11() real ext-real set
(n #Z n) * (n to_power (- n)) is V11() real ext-real set
n #Z (- n) is V11() real ext-real set
(n #Z n) * (n #Z (- n)) is V11() real ext-real set
n + (- n) is V11() real integer ext-real set
n #Z (n + (- n)) is V11() real ext-real set
n is non empty V11() real integer ext-real non even set
- n is V11() real integer ext-real set
2 * (- 1) is V11() real integer ext-real non positive even set
(2 * (- 1)) + 1 is non empty V11() real integer ext-real non even set
n is non empty V11() real integer ext-real non even set
n * n is non empty V11() real integer ext-real non even set
n is V11() real integer ext-real even set
- n is V11() real integer ext-real set
n is V11() real integer ext-real set
n * n is V11() real integer ext-real even set
n is epsilon-transitive epsilon-connected ordinal natural V11() real integer ext-real non negative set
- n is V11() real integer ext-real non positive set
(- 1) to_power (- n) is V11() real ext-real set
(- 1) to_power n is V11() real ext-real set
n is non empty V11() real integer ext-real non even set
- n is non empty V11() real integer ext-real non even set
(- 1) to_power (- n) is V11() real ext-real set
(- 1) to_power n is V11() real ext-real set
n is V11() real integer ext-real even set
- n is V11() real integer ext-real even set
(- 1) to_power (- n) is V11() real ext-real set
(- 1) to_power n is V11() real ext-real set
n is epsilon-transitive epsilon-connected ordinal natural V11() real integer ext-real non negative set
n is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
C is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
C is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
C * C is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
r is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
n * r is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
(C * C) + (n * r) is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
{1} is non empty finite with_non-empty_elements non empty-membered complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered left_end right_end bounded_below bounded_above real-bounded Element of bool NAT
n is non empty finite with_non-empty_elements non empty-membered complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered left_end right_end bounded_below bounded_above real-bounded Element of bool NAT
bool [:NAT,NAT:] is set
n is Relation-like NAT -defined NAT -valued Function-like V29( NAT , NAT ) V76() V77() V78() V79() Element of bool [:NAT,NAT:]
n is finite with_non-empty_elements complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below bounded_above real-bounded set
n | n is Relation-like n -defined NAT -defined NAT -valued RAT -valued Function-like finite V76() V77() V78() V79() set
C is non empty finite with_non-empty_elements non empty-membered complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered left_end right_end bounded_below bounded_above real-bounded set
max C is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative set
dom (n | n) is finite set
C is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
Seg C is finite C -element complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below bounded_above real-bounded Element of bool NAT
{ b1 where b1 is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT : ( 1 <= b1 & b1 <= C ) } is set
r is set
k is epsilon-transitive epsilon-connected ordinal natural V11() real integer ext-real non negative set
RR is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
n is Relation-like NAT -defined Function-like FinSubsequence-like set
Seq n is Relation-like NAT -defined Function-like finite FinSequence-like FinSubsequence-like set
dom n is set
Sgm (dom n) is Relation-like NAT -defined NAT -valued Function-like finite FinSequence-like FinSubsequence-like V76() V77() V78() V79() FinSequence of NAT
(Sgm (dom n)) (#) n is Relation-like NAT -defined Function-like finite set
rng (Seq n) is finite set
rng n is set
n is Relation-like NAT -defined NAT -valued Function-like V29( NAT , NAT ) V76() V77() V78() V79() Element of bool [:NAT,NAT:]
n is finite with_non-empty_elements complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below bounded_above real-bounded set
n | n is Relation-like n -defined NAT -defined NAT -valued RAT -valued Function-like finite FinSubsequence-like V76() V77() V78() V79() set
Seq (n | n) is Relation-like NAT -defined Function-like finite FinSequence-like FinSubsequence-like set
dom (n | n) is finite set
Sgm (dom (n | n)) is Relation-like NAT -defined NAT -valued Function-like finite FinSequence-like FinSubsequence-like V76() V77() V78() V79() FinSequence of NAT
(Sgm (dom (n | n))) (#) (n | n) is Relation-like NAT -defined NAT -valued RAT -valued Function-like finite V76() V77() V78() V79() set
rng (Seq (n | n)) is finite set
n is epsilon-transitive epsilon-connected ordinal natural V11() real integer ext-real non negative set
n is epsilon-transitive epsilon-connected ordinal natural V11() real integer ext-real non negative set
C is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
C + n is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
n + C is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
n + C is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
(n + C) - n is V11() real integer ext-real set
n - n is V11() real integer ext-real set
n is epsilon-transitive epsilon-connected ordinal natural V11() real integer ext-real non negative set
n is epsilon-transitive epsilon-connected ordinal natural V11() real integer ext-real non negative set
C is set
[n,C] is set
{n,C} is non empty finite set
{n} is non empty finite complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered left_end right_end bounded_below bounded_above real-bounded set
{{n,C},{n}} is non empty finite V40() with_non-empty_elements non empty-membered set
C is set
[n,C] is set
{n,C} is non empty finite set
{n} is non empty finite complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered left_end right_end bounded_below bounded_above real-bounded set
{{n,C},{n}} is non empty finite V40() with_non-empty_elements non empty-membered set
{[n,C],[n,C]} is non empty Relation-like finite set
0 + 1 is non empty epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real positive non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered left_end bounded_below Element of NAT
k is set
{n,n} is non empty finite complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered left_end right_end bounded_below bounded_above real-bounded set
Seg n is finite n -element complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below bounded_above real-bounded Element of bool NAT
{ b1 where b1 is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT : ( 1 <= b1 & b1 <= n ) } is set
r is Relation-like Function-like set
dom r is set
n is epsilon-transitive epsilon-connected ordinal natural V11() real integer ext-real non negative set
n is epsilon-transitive epsilon-connected ordinal natural V11() real integer ext-real non negative set
C is set
[n,C] is set
{n,C} is non empty finite set
{n} is non empty finite complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered left_end right_end bounded_below bounded_above real-bounded set
{{n,C},{n}} is non empty finite V40() with_non-empty_elements non empty-membered set
C is set
[n,C] is set
{n,C} is non empty finite set
{n} is non empty finite complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered left_end right_end bounded_below bounded_above real-bounded set
{{n,C},{n}} is non empty finite V40() with_non-empty_elements non empty-membered set
{[n,C],[n,C]} is non empty Relation-like finite set
<*C,C*> is non empty Relation-like NAT -defined Function-like finite 2 -element FinSequence-like FinSubsequence-like set
<*C*> is non empty Relation-like NAT -defined Function-like finite 1 -element FinSequence-like FinSubsequence-like set
[1,C] is set
{1,C} is non empty finite set
{{1,C},{1}} is non empty finite V40() with_non-empty_elements non empty-membered set
{[1,C]} is non empty Relation-like Function-like finite set
<*C*> is non empty Relation-like NAT -defined Function-like finite 1 -element FinSequence-like FinSubsequence-like set
[1,C] is set
{1,C} is non empty finite set
{{1,C},{1}} is non empty finite V40() with_non-empty_elements non empty-membered set
{[1,C]} is non empty Relation-like Function-like finite set
<*C*> ^ <*C*> is non empty Relation-like NAT -defined Function-like finite 1 + 1 -element FinSequence-like FinSubsequence-like set
1 + 1 is non empty epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real positive non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered left_end bounded_below Element of NAT
r is Relation-like NAT -defined Function-like FinSubsequence-like set
Seq r is Relation-like NAT -defined Function-like finite FinSequence-like FinSubsequence-like set
dom r is set
Sgm (dom r) is Relation-like NAT -defined NAT -valued Function-like finite FinSequence-like FinSubsequence-like V76() V77() V78() V79() FinSequence of NAT
(Sgm (dom r)) (#) r is Relation-like NAT -defined Function-like finite set
(n,n) --> (C,C) is finite set
{n,n} is non empty finite complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered left_end right_end bounded_below bounded_above real-bounded set
0 + 1 is non empty epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real positive non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered left_end bounded_below Element of NAT
k is epsilon-transitive epsilon-connected ordinal natural V11() real integer ext-real non negative set
Seg k is finite k -element complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below bounded_above real-bounded Element of bool NAT
{ b1 where b1 is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT : ( 1 <= b1 & b1 <= k ) } is set
<*n,n*> is non empty Relation-like NAT -defined Function-like finite 2 -element FinSequence-like FinSubsequence-like set
<*n*> is non empty Relation-like NAT -defined Function-like finite 1 -element FinSequence-like FinSubsequence-like set
[1,n] is set
{1,n} is non empty finite complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered left_end right_end bounded_below bounded_above real-bounded set
{{1,n},{1}} is non empty finite V40() with_non-empty_elements non empty-membered set
{[1,n]} is non empty Relation-like Function-like finite set
<*n*> is non empty Relation-like NAT -defined Function-like finite 1 -element FinSequence-like FinSubsequence-like set
[1,n] is set
{1,n} is non empty finite complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered left_end right_end bounded_below bounded_above real-bounded set
{{1,n},{1}} is non empty finite V40() with_non-empty_elements non empty-membered set
{[1,n]} is non empty Relation-like Function-like finite set
<*n*> ^ <*n*> is non empty Relation-like NAT -defined Function-like finite 1 + 1 -element FinSequence-like FinSubsequence-like set
<*n,n*> (#) r is Relation-like NAT -defined Function-like finite set
r . n is set
r . n is set
<*(r . n),(r . n)*> is non empty Relation-like NAT -defined Function-like finite 2 -element FinSequence-like FinSubsequence-like set
<*(r . n)*> is non empty Relation-like NAT -defined Function-like finite 1 -element FinSequence-like FinSubsequence-like set
[1,(r . n)] is set
{1,(r . n)} is non empty finite set
{{1,(r . n)},{1}} is non empty finite V40() with_non-empty_elements non empty-membered set
{[1,(r . n)]} is non empty Relation-like Function-like finite set
<*(r . n)*> is non empty Relation-like NAT -defined Function-like finite 1 -element FinSequence-like FinSubsequence-like set
[1,(r . n)] is set
{1,(r . n)} is non empty finite set
{{1,(r . n)},{1}} is non empty finite V40() with_non-empty_elements non empty-membered set
{[1,(r . n)]} is non empty Relation-like Function-like finite set
<*(r . n)*> ^ <*(r . n)*> is non empty Relation-like NAT -defined Function-like finite 1 + 1 -element FinSequence-like FinSubsequence-like set
<*C,(r . n)*> is non empty Relation-like NAT -defined Function-like finite 2 -element FinSequence-like FinSubsequence-like set
<*C*> ^ <*(r . n)*> is non empty Relation-like NAT -defined Function-like finite 1 + 1 -element FinSequence-like FinSubsequence-like set
n is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
Seg n is finite n -element complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below bounded_above real-bounded Element of bool NAT
{ b1 where b1 is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT : ( 1 <= b1 & b1 <= n ) } is set
n is with_non-empty_elements set
bool n is set
n is Element of bool n
n is with_non-empty_elements set
n is set
n /\ n is set
bool n is set
C is with_non-empty_elements Element of bool n
n /\ n is with_non-empty_elements set
n is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
n is set
[n,n] is set
{n,n} is non empty finite set
{n} is non empty finite complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered left_end right_end bounded_below bounded_above real-bounded set
{{n,n},{n}} is non empty finite V40() with_non-empty_elements non empty-membered set
{[n,n]} is non empty Relation-like Function-like finite set
C is Relation-like Function-like set
dom C is set
{n} is non empty finite complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered left_end right_end bounded_below bounded_above real-bounded Element of bool NAT
Seg n is finite n -element with_non-empty_elements complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below bounded_above real-bounded Element of bool NAT
{ b1 where b1 is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT : ( 1 <= b1 & b1 <= n ) } is set
C is set
n is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
1 + n is non empty epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real positive non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered left_end bounded_below Element of NAT
n is set
[1,n] is set
{1,n} is non empty finite set
{{1,n},{1}} is non empty finite V40() with_non-empty_elements non empty-membered set
{[1,n]} is non empty Relation-like Function-like finite set
[(1 + n),n] is set
{(1 + n),n} is non empty finite set
{(1 + n)} is non empty finite with_non-empty_elements non empty-membered complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered left_end right_end bounded_below bounded_above real-bounded set
{{(1 + n),n},{(1 + n)}} is non empty finite V40() with_non-empty_elements non empty-membered set
{[(1 + n),n]} is non empty Relation-like Function-like finite set
C is Relation-like NAT -defined Function-like FinSubsequence-like set
n Shift C is Relation-like NAT -defined Function-like FinSubsequence-like set
card C is cardinal set
card (n Shift C) is cardinal set
dom C is set
{1} is non empty finite with_non-empty_elements non empty-membered complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered left_end right_end bounded_below bounded_above real-bounded Element of bool NAT
dom (n Shift C) is set
{(1 + n)} is non empty finite with_non-empty_elements non empty-membered complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered left_end right_end bounded_below bounded_above real-bounded Element of bool NAT
r is set
{ (n + b1) where b1 is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT : b1 in dom C } is set
k is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
n + k is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
r is set
(n Shift C) . (1 + n) is set
C . 1 is set
r is set
{r} is non empty finite set
n is Relation-like NAT -defined Function-like FinSubsequence-like set
dom n is set
n is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
Seg n is finite n -element with_non-empty_elements complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below bounded_above real-bounded Element of bool NAT
{ b1 where b1 is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT : ( 1 <= b1 & b1 <= n ) } is set
C is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
Seg C is finite C -element with_non-empty_elements complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below bounded_above real-bounded Element of bool NAT
{ b1 where b1 is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT : ( 1 <= b1 & b1 <= C ) } is set
id (Seg C) is Relation-like Seg C -defined Seg C -valued RAT -valued INT -valued Function-like one-to-one V76() V77() V78() V79() set
C is Relation-like Function-like set
C +* n is Relation-like Function-like set
dom (C +* n) is set
dom C is set
(dom C) \/ (dom n) is set
(Seg C) \/ (dom n) is set
k is Relation-like NAT -defined Function-like finite FinSequence-like FinSubsequence-like set
n is Relation-like NAT -defined Function-like FinSubsequence-like set
dom n is set
n is epsilon-transitive epsilon-connected ordinal natural V11() real integer ext-real non negative set
Seg n is finite n -element complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below bounded_above real-bounded Element of bool NAT
{ b1 where b1 is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT : ( 1 <= b1 & b1 <= n ) } is set
id (Seg n) is Relation-like Seg n -defined Seg n -valued RAT -valued INT -valued Function-like one-to-one V76() V77() V78() V79() set
C is Relation-like Function-like set
C +* n is Relation-like Function-like set
dom (C +* n) is set
dom C is set
(dom C) \/ (dom n) is set
(Seg n) \/ (dom n) is set
r is Relation-like NAT -defined Function-like finite FinSequence-like FinSubsequence-like set
n is non empty epsilon-transitive epsilon-connected ordinal natural V11() real integer ext-real positive non negative set
n is non empty epsilon-transitive epsilon-connected ordinal natural V11() real integer ext-real positive non negative set
n + 1 is non empty epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real positive non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered left_end bounded_below Element of NAT
(n + 1) + 1 is non empty epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real positive non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered left_end bounded_below Element of NAT
n + 2 is non empty epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real positive non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered left_end bounded_below Element of NAT
(n + 1) + 1 is non empty epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real positive non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered left_end bounded_below Element of NAT
1 + 1 is non empty epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real positive non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered left_end bounded_below Element of NAT
n is non empty epsilon-transitive epsilon-connected ordinal natural V11() real integer ext-real positive non negative set
n + 1 is non empty epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real positive non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered left_end bounded_below Element of NAT
n + 2 is non empty epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real positive non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered left_end bounded_below Element of NAT
(n + 1) + 1 is non empty epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real positive non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered left_end bounded_below Element of NAT
(n + 1) + 2 is non empty epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real positive non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered left_end bounded_below Element of NAT
0 + 1 is non empty epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real positive non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered left_end bounded_below Element of NAT
(n + 1) + 1 is non empty epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real positive non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered left_end bounded_below Element of NAT
n is non empty non trivial epsilon-transitive epsilon-connected ordinal natural V11() real integer ext-real positive non negative non empty-membered set
n - 1 is V11() real integer ext-real set
1 - 1 is V11() real integer ext-real set
1 + 1 is non empty epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real positive non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered left_end bounded_below Element of NAT
1 + 2 is non empty epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real positive non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered left_end bounded_below Element of NAT
n -' 1 is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
(n -' 1) + 1 is non empty epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real positive non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered left_end bounded_below Element of NAT
Fib 2 is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
0 + 1 is non empty epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real positive non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered left_end bounded_below Element of NAT
(0 + 1) + 1 is non empty epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real positive non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered left_end bounded_below Element of NAT
Fib ((0 + 1) + 1) is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
Fib 3 is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
1 + 1 is non empty epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real positive non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered left_end bounded_below Element of NAT
(1 + 1) + 1 is non empty epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real positive non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered left_end bounded_below Element of NAT
Fib ((1 + 1) + 1) is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
Fib 4 is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
2 + 1 is non empty epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real positive non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered left_end bounded_below Element of NAT
(2 + 1) + 1 is non empty epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real positive non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered left_end bounded_below Element of NAT
Fib ((2 + 1) + 1) is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
n is epsilon-transitive epsilon-connected ordinal natural V11() real integer ext-real non negative set
n + 2 is non empty epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real positive non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered left_end bounded_below Element of NAT
Fib (n + 2) is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
Fib n is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
n + 1 is non empty epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real positive non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered left_end bounded_below Element of NAT
Fib (n + 1) is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
(Fib n) + (Fib (n + 1)) is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
n is epsilon-transitive epsilon-connected ordinal natural V11() real integer ext-real non negative set
n + 2 is non empty epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real positive non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered left_end bounded_below Element of NAT
Fib (n + 2) is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
Fib n is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
n + 1 is non empty epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real positive non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered left_end bounded_below Element of NAT
Fib (n + 1) is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
(Fib n) + (Fib (n + 1)) is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
(n + 1) + 2 is non empty epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real positive non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered left_end bounded_below Element of NAT
Fib ((n + 1) + 2) is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
(n + 1) + 1 is non empty epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real positive non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered left_end bounded_below Element of NAT
Fib ((n + 1) + 1) is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
(Fib (n + 1)) + (Fib ((n + 1) + 1)) is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
(n + 2) + 2 is non empty epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real positive non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered left_end bounded_below Element of NAT
Fib ((n + 2) + 2) is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
(n + 2) + 1 is non empty epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real positive non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered left_end bounded_below Element of NAT
Fib ((n + 2) + 1) is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
(Fib (n + 2)) + (Fib ((n + 2) + 1)) is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
(n + 2) + 2 is non empty epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real positive non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered left_end bounded_below Element of NAT
Fib ((n + 2) + 2) is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
(n + 2) + 1 is non empty epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real positive non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered left_end bounded_below Element of NAT
((n + 2) + 1) + 1 is non empty epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real positive non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered left_end bounded_below Element of NAT
Fib (((n + 2) + 1) + 1) is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
Fib ((n + 2) + 1) is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
(Fib (n + 2)) + (Fib ((n + 2) + 1)) is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
0 + 2 is non empty epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real positive non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered left_end bounded_below Element of NAT
Fib (0 + 2) is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
0 + 1 is non empty epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real positive non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered left_end bounded_below Element of NAT
(0 + 1) + 1 is non empty epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real positive non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered left_end bounded_below Element of NAT
Fib ((0 + 1) + 1) is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
(Fib 0) + (Fib 1) is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
0 + 2 is non empty epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real positive non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered left_end bounded_below Element of NAT
Fib (0 + 2) is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
0 + 1 is non empty epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real positive non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered left_end bounded_below Element of NAT
Fib (0 + 1) is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
(Fib 0) + (Fib (0 + 1)) is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
1 + 2 is non empty epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real positive non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered left_end bounded_below Element of NAT
Fib (1 + 2) is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
1 + 1 is non empty epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real positive non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered left_end bounded_below Element of NAT
Fib (1 + 1) is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
(Fib 1) + (Fib (1 + 1)) is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
n is epsilon-transitive epsilon-connected ordinal natural V11() real integer ext-real non negative set
n + 3 is non empty epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real positive non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered left_end bounded_below Element of NAT
Fib (n + 3) is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
n + 2 is non empty epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real positive non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered left_end bounded_below Element of NAT
Fib (n + 2) is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
n + 1 is non empty epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real positive non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered left_end bounded_below Element of NAT
Fib (n + 1) is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
(Fib (n + 2)) + (Fib (n + 1)) is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
(n + 1) + 2 is non empty epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real positive non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered left_end bounded_below Element of NAT
Fib ((n + 1) + 2) is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
(n + 1) + 1 is non empty epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real positive non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered left_end bounded_below Element of NAT
Fib ((n + 1) + 1) is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
(Fib ((n + 1) + 1)) + (Fib (n + 1)) is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
n is epsilon-transitive epsilon-connected ordinal natural V11() real integer ext-real non negative set
n + 4 is non empty epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real positive non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered left_end bounded_below Element of NAT
Fib (n + 4) is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
n + 2 is non empty epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real positive non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered left_end bounded_below Element of NAT
Fib (n + 2) is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
n + 3 is non empty epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real positive non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered left_end bounded_below Element of NAT
Fib (n + 3) is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
(Fib (n + 2)) + (Fib (n + 3)) is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
(n + 2) + 1 is non empty epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real positive non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered left_end bounded_below Element of NAT
((n + 2) + 1) + 1 is non empty epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real positive non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered left_end bounded_below Element of NAT
Fib (((n + 2) + 1) + 1) is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
Fib ((n + 2) + 1) is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
(Fib (n + 2)) + (Fib ((n + 2) + 1)) is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
n is epsilon-transitive epsilon-connected ordinal natural V11() real integer ext-real non negative set
n + 5 is non empty epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real positive non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered left_end bounded_below Element of NAT
Fib (n + 5) is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
n + 3 is non empty epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real positive non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered left_end bounded_below Element of NAT
Fib (n + 3) is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
n + 4 is non empty epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real positive non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered left_end bounded_below Element of NAT
Fib (n + 4) is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
(Fib (n + 3)) + (Fib (n + 4)) is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
(n + 3) + 1 is non empty epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real positive non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered left_end bounded_below Element of NAT
((n + 3) + 1) + 1 is non empty epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real positive non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered left_end bounded_below Element of NAT
Fib (((n + 3) + 1) + 1) is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
Fib ((n + 3) + 1) is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
(Fib (n + 3)) + (Fib ((n + 3) + 1)) is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
n is epsilon-transitive epsilon-connected ordinal natural V11() real integer ext-real non negative set
n + 2 is non empty epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real positive non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered left_end bounded_below Element of NAT
2 * (n + 2) is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered even bounded_below Element of NAT
(2 * (n + 2)) + 1 is non empty epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real positive non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered non even left_end bounded_below Element of NAT
Fib ((2 * (n + 2)) + 1) is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
2 * n is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered even bounded_below Element of NAT
(2 * n) + 3 is non empty epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real positive non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered left_end bounded_below Element of NAT
Fib ((2 * n) + 3) is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
(2 * n) + 4 is non empty epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real positive non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered left_end bounded_below Element of NAT
Fib ((2 * n) + 4) is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
(Fib ((2 * n) + 3)) + (Fib ((2 * n) + 4)) is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
(2 * n) + 2 is non empty epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real positive non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered even left_end bounded_below Element of NAT
((2 * n) + 2) + 1 is non empty epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real positive non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered non even left_end bounded_below Element of NAT
Fib (((2 * n) + 2) + 1) is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
(((2 * n) + 2) + 1) + 1 is non empty epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real positive non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered even left_end bounded_below Element of NAT
Fib ((((2 * n) + 2) + 1) + 1) is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
(Fib (((2 * n) + 2) + 1)) + (Fib ((((2 * n) + 2) + 1) + 1)) is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
n is epsilon-transitive epsilon-connected ordinal natural V11() real integer ext-real non negative set
n + 2 is non empty epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real positive non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered left_end bounded_below Element of NAT
Fib (n + 2) is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
n + 3 is non empty epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real positive non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered left_end bounded_below Element of NAT
Fib (n + 3) is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
n + 1 is non empty epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real positive non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered left_end bounded_below Element of NAT
Fib (n + 1) is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
(Fib (n + 3)) - (Fib (n + 1)) is V11() real integer ext-real set
(n + 1) + 1 is non empty epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real positive non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered left_end bounded_below Element of NAT
((n + 1) + 1) + 1 is non empty epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real positive non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered left_end bounded_below Element of NAT
Fib (((n + 1) + 1) + 1) is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
(Fib (n + 1)) + (Fib (n + 2)) is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
n is epsilon-transitive epsilon-connected ordinal natural V11() real integer ext-real non negative set
n + 1 is non empty epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real positive non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered left_end bounded_below Element of NAT
Fib (n + 1) is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
n + 2 is non empty epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real positive non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered left_end bounded_below Element of NAT
Fib (n + 2) is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
Fib n is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
(Fib (n + 2)) - (Fib n) is V11() real integer ext-real set
(n + 1) + 1 is non empty epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real positive non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered left_end bounded_below Element of NAT
Fib ((n + 1) + 1) is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
(Fib ((n + 1) + 1)) - (Fib n) is V11() real integer ext-real set
(Fib n) + (Fib (n + 1)) is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
((Fib n) + (Fib (n + 1))) - (Fib n) is V11() real integer ext-real set
n is epsilon-transitive epsilon-connected ordinal natural V11() real integer ext-real non negative set
Fib n is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
n + 2 is non empty epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real positive non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered left_end bounded_below Element of NAT
Fib (n + 2) is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
n + 1 is non empty epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real positive non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered left_end bounded_below Element of NAT
Fib (n + 1) is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
(Fib (n + 2)) - (Fib (n + 1)) is V11() real integer ext-real set
(Fib n) + (Fib (n + 1)) is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
((Fib n) + (Fib (n + 1))) - (Fib (n + 1)) is V11() real integer ext-real set
n is epsilon-transitive epsilon-connected ordinal natural V11() real integer ext-real non negative set
Fib n is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
n + 2 is non empty epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real positive non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered left_end bounded_below Element of NAT
Fib (n + 2) is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
(Fib n) * (Fib (n + 2)) is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
n + 1 is non empty epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real positive non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered left_end bounded_below Element of NAT
Fib (n + 1) is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
(Fib (n + 1)) ^2 is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
(Fib (n + 1)) * (Fib (n + 1)) is epsilon-transitive epsilon-connected ordinal natural V11() real integer ext-real non negative set
((Fib n) * (Fib (n + 2))) - ((Fib (n + 1)) ^2) is V11() real integer ext-real set
(- 1) |^ (n + 1) is V11() real ext-real set
n is epsilon-transitive epsilon-connected ordinal natural V11() real integer ext-real non negative set
Fib n is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
n + 2 is non empty epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real positive non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered left_end bounded_below Element of NAT
Fib (n + 2) is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
(Fib n) * (Fib (n + 2)) is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
n + 1 is non empty epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real positive non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered left_end bounded_below Element of NAT
Fib (n + 1) is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
(Fib (n + 1)) ^2 is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
(Fib (n + 1)) * (Fib (n + 1)) is epsilon-transitive epsilon-connected ordinal natural V11() real integer ext-real non negative set
((Fib n) * (Fib (n + 2))) - ((Fib (n + 1)) ^2) is V11() real integer ext-real set
(- 1) |^ (n + 1) is V11() real ext-real set
(n + 1) + 2 is non empty epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real positive non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered left_end bounded_below Element of NAT
Fib ((n + 1) + 2) is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
(Fib (n + 1)) * (Fib ((n + 1) + 2)) is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
(n + 1) + 1 is non empty epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real positive non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered left_end bounded_below Element of NAT
Fib ((n + 1) + 1) is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
(Fib ((n + 1) + 1)) ^2 is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
(Fib ((n + 1) + 1)) * (Fib ((n + 1) + 1)) is epsilon-transitive epsilon-connected ordinal natural V11() real integer ext-real non negative set
((Fib (n + 1)) * (Fib ((n + 1) + 2))) - ((Fib ((n + 1) + 1)) ^2) is V11() real integer ext-real set
(- 1) |^ ((n + 1) + 1) is V11() real ext-real set
(Fib (n + 2)) - (Fib (n + 1)) is V11() real integer ext-real set
(Fib (n + 1)) + (Fib n) is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
((Fib (n + 1)) + (Fib n)) - (Fib (n + 1)) is V11() real integer ext-real set
n + 3 is non empty epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real positive non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered left_end bounded_below Element of NAT
Fib (n + 3) is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
(Fib (n + 3)) - (Fib (n + 1)) is V11() real integer ext-real set
(Fib (n + 2)) + (Fib (n + 1)) is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
((Fib (n + 2)) + (Fib (n + 1))) - (Fib (n + 1)) is V11() real integer ext-real set
(n + 1) + 1 is non empty epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real positive non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered left_end bounded_below Element of NAT
(- 1) |^ ((n + 1) + 1) is V11() real ext-real set
(- 1) * (((Fib n) * (Fib (n + 2))) - ((Fib (n + 1)) ^2)) is V11() real integer ext-real set
(n + 1) + 2 is non empty epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real positive non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered left_end bounded_below Element of NAT
Fib ((n + 1) + 2) is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
(Fib (n + 1)) * (Fib ((n + 1) + 2)) is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
Fib ((n + 1) + 1) is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
(Fib ((n + 1) + 1)) ^2 is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
(Fib ((n + 1) + 1)) * (Fib ((n + 1) + 1)) is epsilon-transitive epsilon-connected ordinal natural V11() real integer ext-real non negative set
((Fib (n + 1)) * (Fib ((n + 1) + 2))) - ((Fib ((n + 1) + 1)) ^2) is V11() real integer ext-real set
0 + 2 is non empty epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real positive non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered left_end bounded_below Element of NAT
Fib (0 + 2) is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
(Fib 0) * (Fib (0 + 2)) is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
0 + 1 is non empty epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real positive non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered left_end bounded_below Element of NAT
Fib (0 + 1) is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
(Fib (0 + 1)) ^2 is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
(Fib (0 + 1)) * (Fib (0 + 1)) is epsilon-transitive epsilon-connected ordinal natural V11() real integer ext-real non negative set
((Fib 0) * (Fib (0 + 2))) - ((Fib (0 + 1)) ^2) is V11() real integer ext-real set
(- 1) |^ (0 + 1) is V11() real ext-real set
n is non empty epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real positive non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered left_end bounded_below Element of NAT
n -' 1 is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
Fib (n -' 1) is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
n + 1 is non empty epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real positive non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered left_end bounded_below Element of NAT
Fib (n + 1) is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
(Fib (n -' 1)) * (Fib (n + 1)) is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
Fib n is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
(Fib n) ^2 is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
(Fib n) * (Fib n) is epsilon-transitive epsilon-connected ordinal natural V11() real integer ext-real non negative set
((Fib (n -' 1)) * (Fib (n + 1))) - ((Fib n) ^2) is V11() real integer ext-real set
(- 1) |^ n is V11() real ext-real set
(n -' 1) + 1 is non empty epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real positive non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered left_end bounded_below Element of NAT
(n -' 1) + 2 is non empty epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real positive non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered left_end bounded_below Element of NAT
Fib ((n -' 1) + 2) is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
(Fib (n -' 1)) * (Fib ((n -' 1) + 2)) is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
Fib ((n -' 1) + 1) is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
(Fib ((n -' 1) + 1)) ^2 is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
(Fib ((n -' 1) + 1)) * (Fib ((n -' 1) + 1)) is epsilon-transitive epsilon-connected ordinal natural V11() real integer ext-real non negative set
((Fib (n -' 1)) * (Fib ((n -' 1) + 2))) - ((Fib ((n -' 1) + 1)) ^2) is V11() real integer ext-real set
(- 1) |^ ((n -' 1) + 1) is V11() real ext-real set
- tau is V11() real ext-real set
(- tau) to_power (- 1) is V11() real ext-real set
(- 1) - (sqrt 5) is V11() real ext-real set
((- 1) - (sqrt 5)) / 2 is V11() real ext-real set
(((- 1) - (sqrt 5)) / 2) #Z (- 1) is V11() real ext-real set
(((- 1) - (sqrt 5)) / 2) #Z 1 is V11() real ext-real set
1 / ((((- 1) - (sqrt 5)) / 2) #Z 1) is V11() real ext-real set
1 / (((- 1) - (sqrt 5)) / 2) is V11() real ext-real set
- (1 + (sqrt 5)) is V11() real ext-real set
2 / (- (1 + (sqrt 5))) is V11() real ext-real set
2 / (1 + (sqrt 5)) is V11() real ext-real set
- (2 / (1 + (sqrt 5))) is V11() real ext-real set
- 2 is V11() real integer ext-real non positive set
(- 2) / (1 + (sqrt 5)) is V11() real ext-real set
(- 2) * (1 - (sqrt 5)) is V11() real ext-real set
(1 + (sqrt 5)) * (1 - (sqrt 5)) is V11() real ext-real set
((- 2) * (1 - (sqrt 5))) / ((1 + (sqrt 5)) * (1 - (sqrt 5))) is V11() real ext-real set
1 ^2 is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
1 * 1 is epsilon-transitive epsilon-connected ordinal natural V11() real integer ext-real non negative set
(sqrt 5) ^2 is V11() real ext-real Element of REAL
(sqrt 5) * (sqrt 5) is V11() real ext-real set
(1 ^2) - ((sqrt 5) ^2) is V11() real ext-real set
((- 2) * (1 - (sqrt 5))) / ((1 ^2) - ((sqrt 5) ^2)) is V11() real ext-real set
1 - 5 is V11() real integer ext-real set
((- 2) * (1 - (sqrt 5))) / (1 - 5) is V11() real ext-real set
n is epsilon-transitive epsilon-connected ordinal natural V11() real integer ext-real non negative set
(- 1) * n is V11() real integer ext-real non positive set
(- tau) to_power ((- 1) * n) is V11() real ext-real set
((- tau) to_power (- 1)) to_power n is V11() real ext-real set
(- tau) #Z ((- 1) * n) is V11() real ext-real set
(- tau) #Z (- 1) is V11() real ext-real set
((- tau) #Z (- 1)) #Z n is V11() real ext-real set
(- tau) #Z 1 is V11() real ext-real set
1 / ((- tau) #Z 1) is V11() real ext-real set
(1 / ((- tau) #Z 1)) #Z n is V11() real ext-real set
1 / (- tau) is V11() real ext-real set
(1 / (- tau)) #Z n is V11() real ext-real set
(1 / (- tau)) to_power n is V11() real ext-real set
(1 / (- tau)) to_power 1 is V11() real ext-real set
((1 / (- tau)) to_power 1) to_power n is V11() real ext-real set
(1 / (- tau)) #Z 1 is V11() real ext-real set
((1 / (- tau)) #Z 1) to_power n is V11() real ext-real set
(1 / ((- tau) #Z 1)) to_power n is V11() real ext-real set
((- tau) #Z (- 1)) to_power n is V11() real ext-real set
1 / tau is V11() real ext-real set
- (1 / tau) is V11() real ext-real set
2 / (1 + (sqrt 5)) is V11() real ext-real set
1 * (2 / (1 + (sqrt 5))) is V11() real ext-real set
- (1 * (2 / (1 + (sqrt 5)))) is V11() real ext-real set
2 * (1 - (sqrt 5)) is V11() real ext-real set
(1 + (sqrt 5)) * (1 - (sqrt 5)) is V11() real ext-real set
(2 * (1 - (sqrt 5))) / ((1 + (sqrt 5)) * (1 - (sqrt 5))) is V11() real ext-real set
1 * ((2 * (1 - (sqrt 5))) / ((1 + (sqrt 5)) * (1 - (sqrt 5)))) is V11() real ext-real set
- (1 * ((2 * (1 - (sqrt 5))) / ((1 + (sqrt 5)) * (1 - (sqrt 5))))) is V11() real ext-real set
(sqrt 5) ^2 is V11() real ext-real Element of REAL
(sqrt 5) * (sqrt 5) is V11() real ext-real set
1 - ((sqrt 5) ^2) is V11() real ext-real set
(2 * (1 - (sqrt 5))) / (1 - ((sqrt 5) ^2)) is V11() real ext-real set
1 * ((2 * (1 - (sqrt 5))) / (1 - ((sqrt 5) ^2))) is V11() real ext-real set
- (1 * ((2 * (1 - (sqrt 5))) / (1 - ((sqrt 5) ^2)))) is V11() real ext-real set
1 - 5 is V11() real integer ext-real set
(2 * (1 - (sqrt 5))) / (1 - 5) is V11() real ext-real set
1 * ((2 * (1 - (sqrt 5))) / (1 - 5)) is V11() real ext-real set
- (1 * ((2 * (1 - (sqrt 5))) / (1 - 5))) is V11() real ext-real set
(1 - (sqrt 5)) / 2 is V11() real ext-real set
n is epsilon-transitive epsilon-connected ordinal natural V11() real integer ext-real non negative set
tau to_power n is V11() real ext-real set
(tau to_power n) ^2 is V11() real ext-real set
(tau to_power n) * (tau to_power n) is V11() real ext-real set
(- 1) to_power n is V11() real ext-real set
2 * ((- 1) to_power n) is V11() real ext-real set
((tau to_power n) ^2) - (2 * ((- 1) to_power n)) is V11() real ext-real set
- n is V11() real integer ext-real non positive set
tau to_power (- n) is V11() real ext-real set
(tau to_power (- n)) ^2 is V11() real ext-real set
(tau to_power (- n)) * (tau to_power (- n)) is V11() real ext-real set
(((tau to_power n) ^2) - (2 * ((- 1) to_power n))) + ((tau to_power (- n)) ^2) is V11() real ext-real set
tau_bar to_power n is V11() real ext-real set
(tau to_power n) - (tau_bar to_power n) is V11() real ext-real set
((tau to_power n) - (tau_bar to_power n)) ^2 is V11() real ext-real set
((tau to_power n) - (tau_bar to_power n)) * ((tau to_power n) - (tau_bar to_power n)) is V11() real ext-real set
(- 1) / tau is V11() real ext-real set
- 0 is empty epsilon-transitive epsilon-connected ordinal T-Sequence-like c=-linear natural V11() real integer Relation-like non-empty empty-yielding NAT -defined RAT -valued Function-like one-to-one constant functional finite finite-yielding V40() FinSequence-like FinSubsequence-like FinSequence-membered ext-real non positive non negative V76() V77() V78() V79() complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered V92() bounded_below bounded_above real-bounded V120() set
2 * (tau to_power n) is V11() real ext-real set
(- (1 / tau)) to_power n is V11() real ext-real set
(2 * (tau to_power n)) * ((- (1 / tau)) to_power n) is V11() real ext-real set
((tau to_power n) ^2) - ((2 * (tau to_power n)) * ((- (1 / tau)) to_power n)) is V11() real ext-real set
((- (1 / tau)) to_power n) ^2 is V11() real ext-real set
((- (1 / tau)) to_power n) * ((- (1 / tau)) to_power n) is V11() real ext-real set
(((tau to_power n) ^2) - ((2 * (tau to_power n)) * ((- (1 / tau)) to_power n))) + (((- (1 / tau)) to_power n) ^2) is V11() real ext-real set
(- 1) * (1 / tau) is V11() real ext-real set
((- 1) * (1 / tau)) #Z n is V11() real ext-real set
(2 * (tau to_power n)) * (((- 1) * (1 / tau)) #Z n) is V11() real ext-real set
((tau to_power n) ^2) - ((2 * (tau to_power n)) * (((- 1) * (1 / tau)) #Z n)) is V11() real ext-real set
(((tau to_power n) ^2) - ((2 * (tau to_power n)) * (((- 1) * (1 / tau)) #Z n))) + (((- (1 / tau)) to_power n) ^2) is V11() real ext-real set
(- 1) #Z n is V11() real ext-real set
(1 / tau) #Z n is V11() real ext-real set
((- 1) #Z n) * ((1 / tau) #Z n) is V11() real ext-real set
(2 * (tau to_power n)) * (((- 1) #Z n) * ((1 / tau) #Z n)) is V11() real ext-real set
((tau to_power n) ^2) - ((2 * (tau to_power n)) * (((- 1) #Z n) * ((1 / tau) #Z n))) is V11() real ext-real set
(((tau to_power n) ^2) - ((2 * (tau to_power n)) * (((- 1) #Z n) * ((1 / tau) #Z n)))) + (((- (1 / tau)) to_power n) ^2) is V11() real ext-real set
(1 / tau) |^ n is V11() real ext-real set
((1 / tau) |^ n) * ((- 1) #Z n) is V11() real ext-real set
(2 * (tau to_power n)) * (((1 / tau) |^ n) * ((- 1) #Z n)) is V11() real ext-real set
((tau to_power n) ^2) - ((2 * (tau to_power n)) * (((1 / tau) |^ n) * ((- 1) #Z n))) is V11() real ext-real set
(((tau to_power n) ^2) - ((2 * (tau to_power n)) * (((1 / tau) |^ n) * ((- 1) #Z n)))) + (((- (1 / tau)) to_power n) ^2) is V11() real ext-real set
tau |^ n is V11() real ext-real set
2 * (tau |^ n) is V11() real ext-real set
(2 * (tau |^ n)) * (((1 / tau) |^ n) * ((- 1) #Z n)) is V11() real ext-real set
((tau to_power n) ^2) - ((2 * (tau |^ n)) * (((1 / tau) |^ n) * ((- 1) #Z n))) is V11() real ext-real set
(((tau to_power n) ^2) - ((2 * (tau |^ n)) * (((1 / tau) |^ n) * ((- 1) #Z n)))) + (((- (1 / tau)) to_power n) ^2) is V11() real ext-real set
(tau |^ n) * ((1 / tau) |^ n) is V11() real ext-real set
2 * ((tau |^ n) * ((1 / tau) |^ n)) is V11() real ext-real set
(2 * ((tau |^ n) * ((1 / tau) |^ n))) * ((- 1) #Z n) is V11() real ext-real set
((tau to_power n) ^2) - ((2 * ((tau |^ n) * ((1 / tau) |^ n))) * ((- 1) #Z n)) is V11() real ext-real set
(((tau to_power n) ^2) - ((2 * ((tau |^ n) * ((1 / tau) |^ n))) * ((- 1) #Z n))) + (((- (1 / tau)) to_power n) ^2) is V11() real ext-real set
tau * (1 / tau) is V11() real ext-real set
(tau * (1 / tau)) |^ n is V11() real ext-real set
2 * ((tau * (1 / tau)) |^ n) is V11() real ext-real set
(2 * ((tau * (1 / tau)) |^ n)) * ((- 1) #Z n) is V11() real ext-real set
((tau to_power n) ^2) - ((2 * ((tau * (1 / tau)) |^ n)) * ((- 1) #Z n)) is V11() real ext-real set
(((tau to_power n) ^2) - ((2 * ((tau * (1 / tau)) |^ n)) * ((- 1) #Z n))) + (((- (1 / tau)) to_power n) ^2) is V11() real ext-real set
1 |^ n is epsilon-transitive epsilon-connected ordinal natural V11() real integer ext-real non negative Element of REAL
2 * (1 |^ n) is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered even bounded_below Element of NAT
(2 * (1 |^ n)) * ((- 1) #Z n) is V11() real ext-real set
((tau to_power n) ^2) - ((2 * (1 |^ n)) * ((- 1) #Z n)) is V11() real ext-real set
(((tau to_power n) ^2) - ((2 * (1 |^ n)) * ((- 1) #Z n))) + (((- (1 / tau)) to_power n) ^2) is V11() real ext-real set
2 * 1 is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered even bounded_below Element of NAT
(2 * 1) * ((- 1) #Z n) is V11() real ext-real set
((tau to_power n) ^2) - ((2 * 1) * ((- 1) #Z n)) is V11() real ext-real set
(((tau to_power n) ^2) - ((2 * 1) * ((- 1) #Z n))) + (((- (1 / tau)) to_power n) ^2) is V11() real ext-real set
(((tau to_power n) ^2) - (2 * ((- 1) to_power n))) + (((- (1 / tau)) to_power n) ^2) is V11() real ext-real set
(- (1 / tau)) #Z n is V11() real ext-real set
((- (1 / tau)) #Z n) ^2 is V11() real ext-real set
((- (1 / tau)) #Z n) * ((- (1 / tau)) #Z n) is V11() real ext-real set
(((tau to_power n) ^2) - (2 * ((- 1) to_power n))) + (((- (1 / tau)) #Z n) ^2) is V11() real ext-real set
(- (1 / tau)) * (- (1 / tau)) is V11() real ext-real set
((- (1 / tau)) * (- (1 / tau))) #Z n is V11() real ext-real set
(((tau to_power n) ^2) - (2 * ((- 1) to_power n))) + (((- (1 / tau)) * (- (1 / tau))) #Z n) is V11() real ext-real set
(- (1 / tau)) ^2 is V11() real ext-real set
((- (1 / tau)) ^2) |^ n is V11() real ext-real set
(((tau to_power n) ^2) - (2 * ((- 1) to_power n))) + (((- (1 / tau)) ^2) |^ n) is V11() real ext-real set
(1 / tau) ^2 is V11() real ext-real set
(1 / tau) * (1 / tau) is V11() real ext-real set
((1 / tau) ^2) to_power n is V11() real ext-real set
(((tau to_power n) ^2) - (2 * ((- 1) to_power n))) + (((1 / tau) ^2) to_power n) is V11() real ext-real set
(1 / tau) to_power n is V11() real ext-real set
((1 / tau) to_power n) ^2 is V11() real ext-real set
((1 / tau) to_power n) * ((1 / tau) to_power n) is V11() real ext-real set
(((tau to_power n) ^2) - (2 * ((- 1) to_power n))) + (((1 / tau) to_power n) ^2) is V11() real ext-real set
1 / (sqrt 5) is V11() real ext-real set
r is non empty epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real positive non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered left_end bounded_below Element of NAT
C is non empty epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real positive non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered left_end bounded_below Element of NAT
Fib C is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
(Fib C) ^2 is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
(Fib C) * (Fib C) is epsilon-transitive epsilon-connected ordinal natural V11() real integer ext-real non negative set
C + r is non empty epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real positive non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered left_end bounded_below Element of NAT
Fib (C + r) is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
C -' r is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
Fib (C -' r) is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
(Fib (C + r)) * (Fib (C -' r)) is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
((Fib C) ^2) - ((Fib (C + r)) * (Fib (C -' r))) is V11() real integer ext-real set
(- 1) |^ (C -' r) is V11() real ext-real set
Fib r is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
(Fib r) ^2 is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
(Fib r) * (Fib r) is epsilon-transitive epsilon-connected ordinal natural V11() real integer ext-real non negative set
((- 1) |^ (C -' r)) * ((Fib r) ^2) is V11() real ext-real set
(C + r) + (C -' r) is non empty epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real positive non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered left_end bounded_below Element of NAT
r + C is non empty epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real positive non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered left_end bounded_below Element of NAT
C - r is V11() real integer ext-real set
(r + C) + (C - r) is V11() real integer ext-real set
(r + C) + C is non empty epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real positive non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered left_end bounded_below Element of NAT
((r + C) + C) - r is V11() real integer ext-real set
2 * C is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered even bounded_below Element of NAT
r + (2 * C) is non empty epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real positive non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered left_end bounded_below Element of NAT
(r + (2 * C)) -' r is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
r -' r is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
(r -' r) + (2 * C) is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
0 + (2 * C) is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
(C + r) - (C -' r) is V11() real integer ext-real set
(C + r) - (C - r) is V11() real integer ext-real set
2 * r is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered even bounded_below Element of NAT
C is non empty V11() real ext-real set
- (C -' r) is V11() real integer ext-real non positive set
C to_power (- (C -' r)) is V11() real ext-real set
- (C + r) is V11() real integer ext-real non positive set
C to_power (- (C + r)) is V11() real ext-real set
- C is V11() real integer ext-real non positive set
C to_power (- C) is V11() real ext-real set
C to_power (C -' r) is V11() real ext-real set
C to_power (C + r) is V11() real ext-real set
C to_power C is V11() real ext-real set
- C is V11() real ext-real set
2 * (- 1) is V11() real integer ext-real non positive even set
(2 * (- 1)) + 1 is non empty V11() real integer ext-real non even set
tau_bar to_power C is V11() real ext-real set
(C to_power C) - (tau_bar to_power C) is V11() real ext-real set
((C to_power C) - (tau_bar to_power C)) / (sqrt 5) is V11() real ext-real set
(((C to_power C) - (tau_bar to_power C)) / (sqrt 5)) ^2 is V11() real ext-real set
(((C to_power C) - (tau_bar to_power C)) / (sqrt 5)) * (((C to_power C) - (tau_bar to_power C)) / (sqrt 5)) is V11() real ext-real set
((((C to_power C) - (tau_bar to_power C)) / (sqrt 5)) ^2) - ((Fib (C + r)) * (Fib (C -' r))) is V11() real ext-real set
tau_bar to_power (C + r) is V11() real ext-real set
(C to_power (C + r)) - (tau_bar to_power (C + r)) is V11() real ext-real set
((C to_power (C + r)) - (tau_bar to_power (C + r))) / (sqrt 5) is V11() real ext-real set
(((C to_power (C + r)) - (tau_bar to_power (C + r))) / (sqrt 5)) * (Fib (C -' r)) is V11() real ext-real set
((((C to_power C) - (tau_bar to_power C)) / (sqrt 5)) ^2) - ((((C to_power (C + r)) - (tau_bar to_power (C + r))) / (sqrt 5)) * (Fib (C -' r))) is V11() real ext-real set
tau_bar to_power (C -' r) is V11() real ext-real set
(C to_power (C -' r)) - (tau_bar to_power (C -' r)) is V11() real ext-real set
((C to_power (C -' r)) - (tau_bar to_power (C -' r))) / (sqrt 5) is V11() real ext-real set
(((C to_power (C + r)) - (tau_bar to_power (C + r))) / (sqrt 5)) * (((C to_power (C -' r)) - (tau_bar to_power (C -' r))) / (sqrt 5)) is V11() real ext-real set
((((C to_power C) - (tau_bar to_power C)) / (sqrt 5)) ^2) - ((((C to_power (C + r)) - (tau_bar to_power (C + r))) / (sqrt 5)) * (((C to_power (C -' r)) - (tau_bar to_power (C -' r))) / (sqrt 5))) is V11() real ext-real set
((C to_power C) - (tau_bar to_power C)) * (1 / (sqrt 5)) is V11() real ext-real set
(((C to_power C) - (tau_bar to_power C)) * (1 / (sqrt 5))) ^2 is V11() real ext-real set
(((C to_power C) - (tau_bar to_power C)) * (1 / (sqrt 5))) * (((C to_power C) - (tau_bar to_power C)) * (1 / (sqrt 5))) is V11() real ext-real set
((((C to_power C) - (tau_bar to_power C)) * (1 / (sqrt 5))) ^2) - ((((C to_power (C + r)) - (tau_bar to_power (C + r))) / (sqrt 5)) * (((C to_power (C -' r)) - (tau_bar to_power (C -' r))) / (sqrt 5))) is V11() real ext-real set
((C to_power (C + r)) - (tau_bar to_power (C + r))) * (1 / (sqrt 5)) is V11() real ext-real set
(((C to_power (C + r)) - (tau_bar to_power (C + r))) * (1 / (sqrt 5))) * (((C to_power (C -' r)) - (tau_bar to_power (C -' r))) / (sqrt 5)) is V11() real ext-real set
((((C to_power C) - (tau_bar to_power C)) * (1 / (sqrt 5))) ^2) - ((((C to_power (C + r)) - (tau_bar to_power (C + r))) * (1 / (sqrt 5))) * (((C to_power (C -' r)) - (tau_bar to_power (C -' r))) / (sqrt 5))) is V11() real ext-real set
((C to_power (C -' r)) - (tau_bar to_power (C -' r))) * (1 / (sqrt 5)) is V11() real ext-real set
(((C to_power (C + r)) - (tau_bar to_power (C + r))) * (1 / (sqrt 5))) * (((C to_power (C -' r)) - (tau_bar to_power (C -' r))) * (1 / (sqrt 5))) is V11() real ext-real set
((((C to_power C) - (tau_bar to_power C)) * (1 / (sqrt 5))) ^2) - ((((C to_power (C + r)) - (tau_bar to_power (C + r))) * (1 / (sqrt 5))) * (((C to_power (C -' r)) - (tau_bar to_power (C -' r))) * (1 / (sqrt 5)))) is V11() real ext-real set
(1 / (sqrt 5)) ^2 is V11() real ext-real set
(1 / (sqrt 5)) * (1 / (sqrt 5)) is V11() real ext-real set
(C to_power C) ^2 is V11() real ext-real set
(C to_power C) * (C to_power C) is V11() real ext-real set
2 * (C to_power C) is V11() real ext-real set
(- C) to_power (- 1) is V11() real ext-real set
((- C) to_power (- 1)) to_power C is V11() real ext-real set
(2 * (C to_power C)) * (((- C) to_power (- 1)) to_power C) is V11() real ext-real set
((C to_power C) ^2) - ((2 * (C to_power C)) * (((- C) to_power (- 1)) to_power C)) is V11() real ext-real set
(((- C) to_power (- 1)) to_power C) ^2 is V11() real ext-real set
(((- C) to_power (- 1)) to_power C) * (((- C) to_power (- 1)) to_power C) is V11() real ext-real set
(((C to_power C) ^2) - ((2 * (C to_power C)) * (((- C) to_power (- 1)) to_power C))) + ((((- C) to_power (- 1)) to_power C) ^2) is V11() real ext-real set
((- C) to_power (- 1)) to_power (C + r) is V11() real ext-real set
(C to_power (C + r)) - (((- C) to_power (- 1)) to_power (C + r)) is V11() real ext-real set
((- C) to_power (- 1)) to_power (C -' r) is V11() real ext-real set
(C to_power (C -' r)) - (((- C) to_power (- 1)) to_power (C -' r)) is V11() real ext-real set
((C to_power (C + r)) - (((- C) to_power (- 1)) to_power (C + r))) * ((C to_power (C -' r)) - (((- C) to_power (- 1)) to_power (C -' r))) is V11() real ext-real set
((((C to_power C) ^2) - ((2 * (C to_power C)) * (((- C) to_power (- 1)) to_power C))) + ((((- C) to_power (- 1)) to_power C) ^2)) - (((C to_power (C + r)) - (((- C) to_power (- 1)) to_power (C + r))) * ((C to_power (C -' r)) - (((- C) to_power (- 1)) to_power (C -' r)))) is V11() real ext-real set
((1 / (sqrt 5)) ^2) * (((((C to_power C) ^2) - ((2 * (C to_power C)) * (((- C) to_power (- 1)) to_power C))) + ((((- C) to_power (- 1)) to_power C) ^2)) - (((C to_power (C + r)) - (((- C) to_power (- 1)) to_power (C + r))) * ((C to_power (C -' r)) - (((- C) to_power (- 1)) to_power (C -' r))))) is V11() real ext-real set
(- 1) * C is V11() real integer ext-real non positive set
(- C) to_power ((- 1) * C) is V11() real ext-real set
(2 * (C to_power C)) * ((- C) to_power ((- 1) * C)) is V11() real ext-real set
((C to_power C) ^2) - ((2 * (C to_power C)) * ((- C) to_power ((- 1) * C))) is V11() real ext-real set
(((C to_power C) ^2) - ((2 * (C to_power C)) * ((- C) to_power ((- 1) * C)))) + ((((- C) to_power (- 1)) to_power C) ^2) is V11() real ext-real set
((((C to_power C) ^2) - ((2 * (C to_power C)) * ((- C) to_power ((- 1) * C)))) + ((((- C) to_power (- 1)) to_power C) ^2)) - (((C to_power (C + r)) - (((- C) to_power (- 1)) to_power (C + r))) * ((C to_power (C -' r)) - (((- C) to_power (- 1)) to_power (C -' r)))) is V11() real ext-real set
((1 / (sqrt 5)) ^2) * (((((C to_power C) ^2) - ((2 * (C to_power C)) * ((- C) to_power ((- 1) * C)))) + ((((- C) to_power (- 1)) to_power C) ^2)) - (((C to_power (C + r)) - (((- C) to_power (- 1)) to_power (C + r))) * ((C to_power (C -' r)) - (((- C) to_power (- 1)) to_power (C -' r))))) is V11() real ext-real set
(- C) to_power (- C) is V11() real ext-real set
(2 * (C to_power C)) * ((- C) to_power (- C)) is V11() real ext-real set
((C to_power C) ^2) - ((2 * (C to_power C)) * ((- C) to_power (- C))) is V11() real ext-real set
((- C) to_power ((- 1) * C)) ^2 is V11() real ext-real set
((- C) to_power ((- 1) * C)) * ((- C) to_power ((- 1) * C)) is V11() real ext-real set
(((C to_power C) ^2) - ((2 * (C to_power C)) * ((- C) to_power (- C)))) + (((- C) to_power ((- 1) * C)) ^2) is V11() real ext-real set
((((C to_power C) ^2) - ((2 * (C to_power C)) * ((- C) to_power (- C)))) + (((- C) to_power ((- 1) * C)) ^2)) - (((C to_power (C + r)) - (((- C) to_power (- 1)) to_power (C + r))) * ((C to_power (C -' r)) - (((- C) to_power (- 1)) to_power (C -' r)))) is V11() real ext-real set
((1 / (sqrt 5)) ^2) * (((((C to_power C) ^2) - ((2 * (C to_power C)) * ((- C) to_power (- C)))) + (((- C) to_power ((- 1) * C)) ^2)) - (((C to_power (C + r)) - (((- C) to_power (- 1)) to_power (C + r))) * ((C to_power (C -' r)) - (((- C) to_power (- 1)) to_power (C -' r))))) is V11() real ext-real set
((- C) to_power (- C)) ^2 is V11() real ext-real set
((- C) to_power (- C)) * ((- C) to_power (- C)) is V11() real ext-real set
(((C to_power C) ^2) - ((2 * (C to_power C)) * ((- C) to_power (- C)))) + (((- C) to_power (- C)) ^2) is V11() real ext-real set
(- 1) * (C + r) is V11() real integer ext-real non positive set
(- C) to_power ((- 1) * (C + r)) is V11() real ext-real set
(C to_power (C + r)) - ((- C) to_power ((- 1) * (C + r))) is V11() real ext-real set
((C to_power (C + r)) - ((- C) to_power ((- 1) * (C + r)))) * ((C to_power (C -' r)) - (((- C) to_power (- 1)) to_power (C -' r))) is V11() real ext-real set
((((C to_power C) ^2) - ((2 * (C to_power C)) * ((- C) to_power (- C)))) + (((- C) to_power (- C)) ^2)) - (((C to_power (C + r)) - ((- C) to_power ((- 1) * (C + r)))) * ((C to_power (C -' r)) - (((- C) to_power (- 1)) to_power (C -' r)))) is V11() real ext-real set
((1 / (sqrt 5)) ^2) * (((((C to_power C) ^2) - ((2 * (C to_power C)) * ((- C) to_power (- C)))) + (((- C) to_power (- C)) ^2)) - (((C to_power (C + r)) - ((- C) to_power ((- 1) * (C + r)))) * ((C to_power (C -' r)) - (((- C) to_power (- 1)) to_power (C -' r))))) is V11() real ext-real set
(- C) to_power (- (C + r)) is V11() real ext-real set
(C to_power (C + r)) - ((- C) to_power (- (C + r))) is V11() real ext-real set
(- 1) * (C -' r) is V11() real integer ext-real non positive set
(- C) to_power ((- 1) * (C -' r)) is V11() real ext-real set
(C to_power (C -' r)) - ((- C) to_power ((- 1) * (C -' r))) is V11() real ext-real set
((C to_power (C + r)) - ((- C) to_power (- (C + r)))) * ((C to_power (C -' r)) - ((- C) to_power ((- 1) * (C -' r)))) is V11() real ext-real set
((((C to_power C) ^2) - ((2 * (C to_power C)) * ((- C) to_power (- C)))) + (((- C) to_power (- C)) ^2)) - (((C to_power (C + r)) - ((- C) to_power (- (C + r)))) * ((C to_power (C -' r)) - ((- C) to_power ((- 1) * (C -' r))))) is V11() real ext-real set
((1 / (sqrt 5)) ^2) * (((((C to_power C) ^2) - ((2 * (C to_power C)) * ((- C) to_power (- C)))) + (((- C) to_power (- C)) ^2)) - (((C to_power (C + r)) - ((- C) to_power (- (C + r)))) * ((C to_power (C -' r)) - ((- C) to_power ((- 1) * (C -' r)))))) is V11() real ext-real set
(- 1) * C is V11() real ext-real set
((- 1) * C) to_power (- C) is V11() real ext-real set
(2 * (C to_power C)) * (((- 1) * C) to_power (- C)) is V11() real ext-real set
((C to_power C) ^2) - ((2 * (C to_power C)) * (((- 1) * C) to_power (- C))) is V11() real ext-real set
(((- 1) * C) to_power (- C)) ^2 is V11() real ext-real set
(((- 1) * C) to_power (- C)) * (((- 1) * C) to_power (- C)) is V11() real ext-real set
(((C to_power C) ^2) - ((2 * (C to_power C)) * (((- 1) * C) to_power (- C)))) + ((((- 1) * C) to_power (- C)) ^2) is V11() real ext-real set
(C to_power (C + r)) * (C to_power (C -' r)) is V11() real ext-real set
((((C to_power C) ^2) - ((2 * (C to_power C)) * (((- 1) * C) to_power (- C)))) + ((((- 1) * C) to_power (- C)) ^2)) - ((C to_power (C + r)) * (C to_power (C -' r))) is V11() real ext-real set
((- 1) * C) to_power (- (C -' r)) is V11() real ext-real set
(C to_power (C + r)) * (((- 1) * C) to_power (- (C -' r))) is V11() real ext-real set
(((((C to_power C) ^2) - ((2 * (C to_power C)) * (((- 1) * C) to_power (- C)))) + ((((- 1) * C) to_power (- C)) ^2)) - ((C to_power (C + r)) * (C to_power (C -' r)))) + ((C to_power (C + r)) * (((- 1) * C) to_power (- (C -' r)))) is V11() real ext-real set
((- 1) * C) to_power (- (C + r)) is V11() real ext-real set
(((- 1) * C) to_power (- (C + r))) * (C to_power (C -' r)) is V11() real ext-real set
((((((C to_power C) ^2) - ((2 * (C to_power C)) * (((- 1) * C) to_power (- C)))) + ((((- 1) * C) to_power (- C)) ^2)) - ((C to_power (C + r)) * (C to_power (C -' r)))) + ((C to_power (C + r)) * (((- 1) * C) to_power (- (C -' r))))) + ((((- 1) * C) to_power (- (C + r))) * (C to_power (C -' r))) is V11() real ext-real set
(((- 1) * C) to_power (- (C + r))) * (((- 1) * C) to_power (- (C -' r))) is V11() real ext-real set
(((((((C to_power C) ^2) - ((2 * (C to_power C)) * (((- 1) * C) to_power (- C)))) + ((((- 1) * C) to_power (- C)) ^2)) - ((C to_power (C + r)) * (C to_power (C -' r)))) + ((C to_power (C + r)) * (((- 1) * C) to_power (- (C -' r))))) + ((((- 1) * C) to_power (- (C + r))) * (C to_power (C -' r)))) - ((((- 1) * C) to_power (- (C + r))) * (((- 1) * C) to_power (- (C -' r)))) is V11() real ext-real set
((1 / (sqrt 5)) ^2) * ((((((((C to_power C) ^2) - ((2 * (C to_power C)) * (((- 1) * C) to_power (- C)))) + ((((- 1) * C) to_power (- C)) ^2)) - ((C to_power (C + r)) * (C to_power (C -' r)))) + ((C to_power (C + r)) * (((- 1) * C) to_power (- (C -' r))))) + ((((- 1) * C) to_power (- (C + r))) * (C to_power (C -' r)))) - ((((- 1) * C) to_power (- (C + r))) * (((- 1) * C) to_power (- (C -' r))))) is V11() real ext-real set
(- 1) to_power (- (C -' r)) is V11() real ext-real set
((- 1) to_power (- (C -' r))) * (C to_power (- (C -' r))) is V11() real ext-real set
(((- 1) * C) to_power (- (C + r))) * (((- 1) to_power (- (C -' r))) * (C to_power (- (C -' r)))) is V11() real ext-real set
(((((((C to_power C) ^2) - ((2 * (C to_power C)) * (((- 1) * C) to_power (- C)))) + ((((- 1) * C) to_power (- C)) ^2)) - ((C to_power (C + r)) * (C to_power (C -' r)))) + ((C to_power (C + r)) * (((- 1) * C) to_power (- (C -' r))))) + ((((- 1) * C) to_power (- (C + r))) * (C to_power (C -' r)))) - ((((- 1) * C) to_power (- (C + r))) * (((- 1) to_power (- (C -' r))) * (C to_power (- (C -' r))))) is V11() real ext-real set
((1 / (sqrt 5)) ^2) * ((((((((C to_power C) ^2) - ((2 * (C to_power C)) * (((- 1) * C) to_power (- C)))) + ((((- 1) * C) to_power (- C)) ^2)) - ((C to_power (C + r)) * (C to_power (C -' r)))) + ((C to_power (C + r)) * (((- 1) * C) to_power (- (C -' r))))) + ((((- 1) * C) to_power (- (C + r))) * (C to_power (C -' r)))) - ((((- 1) * C) to_power (- (C + r))) * (((- 1) to_power (- (C -' r))) * (C to_power (- (C -' r)))))) is V11() real ext-real set
(- 1) to_power (- C) is V11() real ext-real set
((- 1) to_power (- C)) * (C to_power (- C)) is V11() real ext-real set
(2 * (C to_power C)) * (((- 1) to_power (- C)) * (C to_power (- C))) is V11() real ext-real set
((C to_power C) ^2) - ((2 * (C to_power C)) * (((- 1) to_power (- C)) * (C to_power (- C)))) is V11() real ext-real set
(((C to_power C) ^2) - ((2 * (C to_power C)) * (((- 1) to_power (- C)) * (C to_power (- C))))) + ((((- 1) * C) to_power (- C)) ^2) is V11() real ext-real set
((((C to_power C) ^2) - ((2 * (C to_power C)) * (((- 1) to_power (- C)) * (C to_power (- C))))) + ((((- 1) * C) to_power (- C)) ^2)) - ((C to_power (C + r)) * (C to_power (C -' r))) is V11() real ext-real set
(((((C to_power C) ^2) - ((2 * (C to_power C)) * (((- 1) to_power (- C)) * (C to_power (- C))))) + ((((- 1) * C) to_power (- C)) ^2)) - ((C to_power (C + r)) * (C to_power (C -' r)))) + ((C to_power (C + r)) * (((- 1) * C) to_power (- (C -' r)))) is V11() real ext-real set
((((((C to_power C) ^2) - ((2 * (C to_power C)) * (((- 1) to_power (- C)) * (C to_power (- C))))) + ((((- 1) * C) to_power (- C)) ^2)) - ((C to_power (C + r)) * (C to_power (C -' r)))) + ((C to_power (C + r)) * (((- 1) * C) to_power (- (C -' r))))) + ((((- 1) * C) to_power (- (C + r))) * (C to_power (C -' r))) is V11() real ext-real set
(((((((C to_power C) ^2) - ((2 * (C to_power C)) * (((- 1) to_power (- C)) * (C to_power (- C))))) + ((((- 1) * C) to_power (- C)) ^2)) - ((C to_power (C + r)) * (C to_power (C -' r)))) + ((C to_power (C + r)) * (((- 1) * C) to_power (- (C -' r))))) + ((((- 1) * C) to_power (- (C + r))) * (C to_power (C -' r)))) - ((((- 1) * C) to_power (- (C + r))) * (((- 1) to_power (- (C -' r))) * (C to_power (- (C -' r))))) is V11() real ext-real set
((1 / (sqrt 5)) ^2) * ((((((((C to_power C) ^2) - ((2 * (C to_power C)) * (((- 1) to_power (- C)) * (C to_power (- C))))) + ((((- 1) * C) to_power (- C)) ^2)) - ((C to_power (C + r)) * (C to_power (C -' r)))) + ((C to_power (C + r)) * (((- 1) * C) to_power (- (C -' r))))) + ((((- 1) * C) to_power (- (C + r))) * (C to_power (C -' r)))) - ((((- 1) * C) to_power (- (C + r))) * (((- 1) to_power (- (C -' r))) * (C to_power (- (C -' r)))))) is V11() real ext-real set
(((- 1) to_power (- C)) * (C to_power (- C))) ^2 is V11() real ext-real set
(((- 1) to_power (- C)) * (C to_power (- C))) * (((- 1) to_power (- C)) * (C to_power (- C))) is V11() real ext-real set
(((C to_power C) ^2) - ((2 * (C to_power C)) * (((- 1) to_power (- C)) * (C to_power (- C))))) + ((((- 1) to_power (- C)) * (C to_power (- C))) ^2) is V11() real ext-real set
((((C to_power C) ^2) - ((2 * (C to_power C)) * (((- 1) to_power (- C)) * (C to_power (- C))))) + ((((- 1) to_power (- C)) * (C to_power (- C))) ^2)) - ((C to_power (C + r)) * (C to_power (C -' r))) is V11() real ext-real set
(((((C to_power C) ^2) - ((2 * (C to_power C)) * (((- 1) to_power (- C)) * (C to_power (- C))))) + ((((- 1) to_power (- C)) * (C to_power (- C))) ^2)) - ((C to_power (C + r)) * (C to_power (C -' r)))) + ((C to_power (C + r)) * (((- 1) * C) to_power (- (C -' r)))) is V11() real ext-real set
((((((C to_power C) ^2) - ((2 * (C to_power C)) * (((- 1) to_power (- C)) * (C to_power (- C))))) + ((((- 1) to_power (- C)) * (C to_power (- C))) ^2)) - ((C to_power (C + r)) * (C to_power (C -' r)))) + ((C to_power (C + r)) * (((- 1) * C) to_power (- (C -' r))))) + ((((- 1) * C) to_power (- (C + r))) * (C to_power (C -' r))) is V11() real ext-real set
(((((((C to_power C) ^2) - ((2 * (C to_power C)) * (((- 1) to_power (- C)) * (C to_power (- C))))) + ((((- 1) to_power (- C)) * (C to_power (- C))) ^2)) - ((C to_power (C + r)) * (C to_power (C -' r)))) + ((C to_power (C + r)) * (((- 1) * C) to_power (- (C -' r))))) + ((((- 1) * C) to_power (- (C + r))) * (C to_power (C -' r)))) - ((((- 1) * C) to_power (- (C + r))) * (((- 1) to_power (- (C -' r))) * (C to_power (- (C -' r))))) is V11() real ext-real set
((1 / (sqrt 5)) ^2) * ((((((((C to_power C) ^2) - ((2 * (C to_power C)) * (((- 1) to_power (- C)) * (C to_power (- C))))) + ((((- 1) to_power (- C)) * (C to_power (- C))) ^2)) - ((C to_power (C + r)) * (C to_power (C -' r)))) + ((C to_power (C + r)) * (((- 1) * C) to_power (- (C -' r))))) + ((((- 1) * C) to_power (- (C + r))) * (C to_power (C -' r)))) - ((((- 1) * C) to_power (- (C + r))) * (((- 1) to_power (- (C -' r))) * (C to_power (- (C -' r)))))) is V11() real ext-real set
(C to_power (C + r)) * (((- 1) to_power (- (C -' r))) * (C to_power (- (C -' r)))) is V11() real ext-real set
(((((C to_power C) ^2) - ((2 * (C to_power C)) * (((- 1) to_power (- C)) * (C to_power (- C))))) + ((((- 1) to_power (- C)) * (C to_power (- C))) ^2)) - ((C to_power (C + r)) * (C to_power (C -' r)))) + ((C to_power (C + r)) * (((- 1) to_power (- (C -' r))) * (C to_power (- (C -' r))))) is V11() real ext-real set
((((((C to_power C) ^2) - ((2 * (C to_power C)) * (((- 1) to_power (- C)) * (C to_power (- C))))) + ((((- 1) to_power (- C)) * (C to_power (- C))) ^2)) - ((C to_power (C + r)) * (C to_power (C -' r)))) + ((C to_power (C + r)) * (((- 1) to_power (- (C -' r))) * (C to_power (- (C -' r)))))) + ((((- 1) * C) to_power (- (C + r))) * (C to_power (C -' r))) is V11() real ext-real set
(((((((C to_power C) ^2) - ((2 * (C to_power C)) * (((- 1) to_power (- C)) * (C to_power (- C))))) + ((((- 1) to_power (- C)) * (C to_power (- C))) ^2)) - ((C to_power (C + r)) * (C to_power (C -' r)))) + ((C to_power (C + r)) * (((- 1) to_power (- (C -' r))) * (C to_power (- (C -' r)))))) + ((((- 1) * C) to_power (- (C + r))) * (C to_power (C -' r)))) - ((((- 1) * C) to_power (- (C + r))) * (((- 1) to_power (- (C -' r))) * (C to_power (- (C -' r))))) is V11() real ext-real set
((1 / (sqrt 5)) ^2) * ((((((((C to_power C) ^2) - ((2 * (C to_power C)) * (((- 1) to_power (- C)) * (C to_power (- C))))) + ((((- 1) to_power (- C)) * (C to_power (- C))) ^2)) - ((C to_power (C + r)) * (C to_power (C -' r)))) + ((C to_power (C + r)) * (((- 1) to_power (- (C -' r))) * (C to_power (- (C -' r)))))) + ((((- 1) * C) to_power (- (C + r))) * (C to_power (C -' r)))) - ((((- 1) * C) to_power (- (C + r))) * (((- 1) to_power (- (C -' r))) * (C to_power (- (C -' r)))))) is V11() real ext-real set
(- 1) to_power (- (C + r)) is V11() real ext-real set
((- 1) to_power (- (C + r))) * (C to_power (- (C + r))) is V11() real ext-real set
(((- 1) to_power (- (C + r))) * (C to_power (- (C + r)))) * (C to_power (C -' r)) is V11() real ext-real set
((((((C to_power C) ^2) - ((2 * (C to_power C)) * (((- 1) to_power (- C)) * (C to_power (- C))))) + ((((- 1) to_power (- C)) * (C to_power (- C))) ^2)) - ((C to_power (C + r)) * (C to_power (C -' r)))) + ((C to_power (C + r)) * (((- 1) to_power (- (C -' r))) * (C to_power (- (C -' r)))))) + ((((- 1) to_power (- (C + r))) * (C to_power (- (C + r)))) * (C to_power (C -' r))) is V11() real ext-real set
(((((((C to_power C) ^2) - ((2 * (C to_power C)) * (((- 1) to_power (- C)) * (C to_power (- C))))) + ((((- 1) to_power (- C)) * (C to_power (- C))) ^2)) - ((C to_power (C + r)) * (C to_power (C -' r)))) + ((C to_power (C + r)) * (((- 1) to_power (- (C -' r))) * (C to_power (- (C -' r)))))) + ((((- 1) to_power (- (C + r))) * (C to_power (- (C + r)))) * (C to_power (C -' r)))) - ((((- 1) * C) to_power (- (C + r))) * (((- 1) to_power (- (C -' r))) * (C to_power (- (C -' r))))) is V11() real ext-real set
((1 / (sqrt 5)) ^2) * ((((((((C to_power C) ^2) - ((2 * (C to_power C)) * (((- 1) to_power (- C)) * (C to_power (- C))))) + ((((- 1) to_power (- C)) * (C to_power (- C))) ^2)) - ((C to_power (C + r)) * (C to_power (C -' r)))) + ((C to_power (C + r)) * (((- 1) to_power (- (C -' r))) * (C to_power (- (C -' r)))))) + ((((- 1) to_power (- (C + r))) * (C to_power (- (C + r)))) * (C to_power (C -' r)))) - ((((- 1) * C) to_power (- (C + r))) * (((- 1) to_power (- (C -' r))) * (C to_power (- (C -' r)))))) is V11() real ext-real set
(((- 1) to_power (- (C + r))) * (C to_power (- (C + r)))) * (((- 1) to_power (- (C -' r))) * (C to_power (- (C -' r)))) is V11() real ext-real set
(((((((C to_power C) ^2) - ((2 * (C to_power C)) * (((- 1) to_power (- C)) * (C to_power (- C))))) + ((((- 1) to_power (- C)) * (C to_power (- C))) ^2)) - ((C to_power (C + r)) * (C to_power (C -' r)))) + ((C to_power (C + r)) * (((- 1) to_power (- (C -' r))) * (C to_power (- (C -' r)))))) + ((((- 1) to_power (- (C + r))) * (C to_power (- (C + r)))) * (C to_power (C -' r)))) - ((((- 1) to_power (- (C + r))) * (C to_power (- (C + r)))) * (((- 1) to_power (- (C -' r))) * (C to_power (- (C -' r))))) is V11() real ext-real set
((1 / (sqrt 5)) ^2) * ((((((((C to_power C) ^2) - ((2 * (C to_power C)) * (((- 1) to_power (- C)) * (C to_power (- C))))) + ((((- 1) to_power (- C)) * (C to_power (- C))) ^2)) - ((C to_power (C + r)) * (C to_power (C -' r)))) + ((C to_power (C + r)) * (((- 1) to_power (- (C -' r))) * (C to_power (- (C -' r)))))) + ((((- 1) to_power (- (C + r))) * (C to_power (- (C + r)))) * (C to_power (C -' r)))) - ((((- 1) to_power (- (C + r))) * (C to_power (- (C + r)))) * (((- 1) to_power (- (C -' r))) * (C to_power (- (C -' r)))))) is V11() real ext-real set
(C to_power C) * (C to_power (- C)) is V11() real ext-real set
2 * ((C to_power C) * (C to_power (- C))) is V11() real ext-real set
(2 * ((C to_power C) * (C to_power (- C)))) * ((- 1) to_power (- C)) is V11() real ext-real set
((C to_power C) ^2) - ((2 * ((C to_power C) * (C to_power (- C)))) * ((- 1) to_power (- C))) is V11() real ext-real set
((- 1) to_power (- C)) ^2 is V11() real ext-real set
((- 1) to_power (- C)) * ((- 1) to_power (- C)) is V11() real ext-real set
(C to_power (- C)) ^2 is V11() real ext-real set
(C to_power (- C)) * (C to_power (- C)) is V11() real ext-real set
(((- 1) to_power (- C)) ^2) * ((C to_power (- C)) ^2) is V11() real ext-real set
(((C to_power C) ^2) - ((2 * ((C to_power C) * (C to_power (- C)))) * ((- 1) to_power (- C)))) + ((((- 1) to_power (- C)) ^2) * ((C to_power (- C)) ^2)) is V11() real ext-real set
((((C to_power C) ^2) - ((2 * ((C to_power C) * (C to_power (- C)))) * ((- 1) to_power (- C)))) + ((((- 1) to_power (- C)) ^2) * ((C to_power (- C)) ^2))) - ((C to_power (C + r)) * (C to_power (C -' r))) is V11() real ext-real set
(C to_power (C + r)) * ((- 1) to_power (- (C -' r))) is V11() real ext-real set
((C to_power (C + r)) * ((- 1) to_power (- (C -' r)))) * (C to_power (- (C -' r))) is V11() real ext-real set
(((((C to_power C) ^2) - ((2 * ((C to_power C) * (C to_power (- C)))) * ((- 1) to_power (- C)))) + ((((- 1) to_power (- C)) ^2) * ((C to_power (- C)) ^2))) - ((C to_power (C + r)) * (C to_power (C -' r)))) + (((C to_power (C + r)) * ((- 1) to_power (- (C -' r)))) * (C to_power (- (C -' r)))) is V11() real ext-real set
((((((C to_power C) ^2) - ((2 * ((C to_power C) * (C to_power (- C)))) * ((- 1) to_power (- C)))) + ((((- 1) to_power (- C)) ^2) * ((C to_power (- C)) ^2))) - ((C to_power (C + r)) * (C to_power (C -' r)))) + (((C to_power (C + r)) * ((- 1) to_power (- (C -' r)))) * (C to_power (- (C -' r))))) + ((((- 1) to_power (- (C + r))) * (C to_power (- (C + r)))) * (C to_power (C -' r))) is V11() real ext-real set
(((- 1) to_power (- (C + r))) * (C to_power (- (C + r)))) * ((- 1) to_power (- (C -' r))) is V11() real ext-real set
((((- 1) to_power (- (C + r))) * (C to_power (- (C + r)))) * ((- 1) to_power (- (C -' r)))) * (C to_power (- (C -' r))) is V11() real ext-real set
(((((((C to_power C) ^2) - ((2 * ((C to_power C) * (C to_power (- C)))) * ((- 1) to_power (- C)))) + ((((- 1) to_power (- C)) ^2) * ((C to_power (- C)) ^2))) - ((C to_power (C + r)) * (C to_power (C -' r)))) + (((C to_power (C + r)) * ((- 1) to_power (- (C -' r)))) * (C to_power (- (C -' r))))) + ((((- 1) to_power (- (C + r))) * (C to_power (- (C + r)))) * (C to_power (C -' r)))) - (((((- 1) to_power (- (C + r))) * (C to_power (- (C + r)))) * ((- 1) to_power (- (C -' r)))) * (C to_power (- (C -' r)))) is V11() real ext-real set
((1 / (sqrt 5)) ^2) * ((((((((C to_power C) ^2) - ((2 * ((C to_power C) * (C to_power (- C)))) * ((- 1) to_power (- C)))) + ((((- 1) to_power (- C)) ^2) * ((C to_power (- C)) ^2))) - ((C to_power (C + r)) * (C to_power (C -' r)))) + (((C to_power (C + r)) * ((- 1) to_power (- (C -' r)))) * (C to_power (- (C -' r))))) + ((((- 1) to_power (- (C + r))) * (C to_power (- (C + r)))) * (C to_power (C -' r)))) - (((((- 1) to_power (- (C + r))) * (C to_power (- (C + r)))) * ((- 1) to_power (- (C -' r)))) * (C to_power (- (C -' r))))) is V11() real ext-real set
2 * 1 is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered even bounded_below Element of NAT
(2 * 1) * ((- 1) to_power (- C)) is V11() real ext-real set
((C to_power C) ^2) - ((2 * 1) * ((- 1) to_power (- C))) is V11() real ext-real set
(((C to_power C) ^2) - ((2 * 1) * ((- 1) to_power (- C)))) + ((((- 1) to_power (- C)) ^2) * ((C to_power (- C)) ^2)) is V11() real ext-real set
((((C to_power C) ^2) - ((2 * 1) * ((- 1) to_power (- C)))) + ((((- 1) to_power (- C)) ^2) * ((C to_power (- C)) ^2))) - ((C to_power (C + r)) * (C to_power (C -' r))) is V11() real ext-real set
(((((C to_power C) ^2) - ((2 * 1) * ((- 1) to_power (- C)))) + ((((- 1) to_power (- C)) ^2) * ((C to_power (- C)) ^2))) - ((C to_power (C + r)) * (C to_power (C -' r)))) + (((C to_power (C + r)) * ((- 1) to_power (- (C -' r)))) * (C to_power (- (C -' r)))) is V11() real ext-real set
((((((C to_power C) ^2) - ((2 * 1) * ((- 1) to_power (- C)))) + ((((- 1) to_power (- C)) ^2) * ((C to_power (- C)) ^2))) - ((C to_power (C + r)) * (C to_power (C -' r)))) + (((C to_power (C + r)) * ((- 1) to_power (- (C -' r)))) * (C to_power (- (C -' r))))) + ((((- 1) to_power (- (C + r))) * (C to_power (- (C + r)))) * (C to_power (C -' r))) is V11() real ext-real set
(((((((C to_power C) ^2) - ((2 * 1) * ((- 1) to_power (- C)))) + ((((- 1) to_power (- C)) ^2) * ((C to_power (- C)) ^2))) - ((C to_power (C + r)) * (C to_power (C -' r)))) + (((C to_power (C + r)) * ((- 1) to_power (- (C -' r)))) * (C to_power (- (C -' r))))) + ((((- 1) to_power (- (C + r))) * (C to_power (- (C + r)))) * (C to_power (C -' r)))) - (((((- 1) to_power (- (C + r))) * (C to_power (- (C + r)))) * ((- 1) to_power (- (C -' r)))) * (C to_power (- (C -' r)))) is V11() real ext-real set
((1 / (sqrt 5)) ^2) * ((((((((C to_power C) ^2) - ((2 * 1) * ((- 1) to_power (- C)))) + ((((- 1) to_power (- C)) ^2) * ((C to_power (- C)) ^2))) - ((C to_power (C + r)) * (C to_power (C -' r)))) + (((C to_power (C + r)) * ((- 1) to_power (- (C -' r)))) * (C to_power (- (C -' r))))) + ((((- 1) to_power (- (C + r))) * (C to_power (- (C + r)))) * (C to_power (C -' r)))) - (((((- 1) to_power (- (C + r))) * (C to_power (- (C + r)))) * ((- 1) to_power (- (C -' r)))) * (C to_power (- (C -' r))))) is V11() real ext-real set
2 * ((- 1) to_power (- C)) is V11() real ext-real set
((C to_power C) ^2) - (2 * ((- 1) to_power (- C))) is V11() real ext-real set
1 * ((C to_power (- C)) ^2) is V11() real ext-real set
(((C to_power C) ^2) - (2 * ((- 1) to_power (- C)))) + (1 * ((C to_power (- C)) ^2)) is V11() real ext-real set
((((C to_power C) ^2) - (2 * ((- 1) to_power (- C)))) + (1 * ((C to_power (- C)) ^2))) - ((C to_power (C + r)) * (C to_power (C -' r))) is V11() real ext-real set
(C to_power (C + r)) * (C to_power (- (C -' r))) is V11() real ext-real set
((C to_power (C + r)) * (C to_power (- (C -' r)))) * ((- 1) to_power (- (C -' r))) is V11() real ext-real set
(((((C to_power C) ^2) - (2 * ((- 1) to_power (- C)))) + (1 * ((C to_power (- C)) ^2))) - ((C to_power (C + r)) * (C to_power (C -' r)))) + (((C to_power (C + r)) * (C to_power (- (C -' r)))) * ((- 1) to_power (- (C -' r)))) is V11() real ext-real set
((((((C to_power C) ^2) - (2 * ((- 1) to_power (- C)))) + (1 * ((C to_power (- C)) ^2))) - ((C to_power (C + r)) * (C to_power (C -' r)))) + (((C to_power (C + r)) * (C to_power (- (C -' r)))) * ((- 1) to_power (- (C -' r))))) + ((((- 1) to_power (- (C + r))) * (C to_power (- (C + r)))) * (C to_power (C -' r))) is V11() real ext-real set
((- 1) to_power (- (C + r))) * ((- 1) to_power (- (C -' r))) is V11() real ext-real set
(((- 1) to_power (- (C + r))) * ((- 1) to_power (- (C -' r)))) * (C to_power (- (C + r))) is V11() real ext-real set
((((- 1) to_power (- (C + r))) * ((- 1) to_power (- (C -' r)))) * (C to_power (- (C + r)))) * (C to_power (- (C -' r))) is V11() real ext-real set
(((((((C to_power C) ^2) - (2 * ((- 1) to_power (- C)))) + (1 * ((C to_power (- C)) ^2))) - ((C to_power (C + r)) * (C to_power (C -' r)))) + (((C to_power (C + r)) * (C to_power (- (C -' r)))) * ((- 1) to_power (- (C -' r))))) + ((((- 1) to_power (- (C + r))) * (C to_power (- (C + r)))) * (C to_power (C -' r)))) - (((((- 1) to_power (- (C + r))) * ((- 1) to_power (- (C -' r)))) * (C to_power (- (C + r)))) * (C to_power (- (C -' r)))) is V11() real ext-real set
((1 / (sqrt 5)) ^2) * ((((((((C to_power C) ^2) - (2 * ((- 1) to_power (- C)))) + (1 * ((C to_power (- C)) ^2))) - ((C to_power (C + r)) * (C to_power (C -' r)))) + (((C to_power (C + r)) * (C to_power (- (C -' r)))) * ((- 1) to_power (- (C -' r))))) + ((((- 1) to_power (- (C + r))) * (C to_power (- (C + r)))) * (C to_power (C -' r)))) - (((((- 1) to_power (- (C + r))) * ((- 1) to_power (- (C -' r)))) * (C to_power (- (C + r)))) * (C to_power (- (C -' r))))) is V11() real ext-real set
(((C to_power C) ^2) - (2 * ((- 1) to_power (- C)))) + ((C to_power (- C)) ^2) is V11() real ext-real set
((((C to_power C) ^2) - (2 * ((- 1) to_power (- C)))) + ((C to_power (- C)) ^2)) - ((C to_power (C + r)) * (C to_power (C -' r))) is V11() real ext-real set
1 / (C to_power (C -' r)) is V11() real ext-real set
(C to_power (C + r)) * (1 / (C to_power (C -' r))) is V11() real ext-real set
((C to_power (C + r)) * (1 / (C to_power (C -' r)))) * ((- 1) to_power (- (C -' r))) is V11() real ext-real set
(((((C to_power C) ^2) - (2 * ((- 1) to_power (- C)))) + ((C to_power (- C)) ^2)) - ((C to_power (C + r)) * (C to_power (C -' r)))) + (((C to_power (C + r)) * (1 / (C to_power (C -' r)))) * ((- 1) to_power (- (C -' r)))) is V11() real ext-real set
((((((C to_power C) ^2) - (2 * ((- 1) to_power (- C)))) + ((C to_power (- C)) ^2)) - ((C to_power (C + r)) * (C to_power (C -' r)))) + (((C to_power (C + r)) * (1 / (C to_power (C -' r)))) * ((- 1) to_power (- (C -' r))))) + ((((- 1) to_power (- (C + r))) * (C to_power (- (C + r)))) * (C to_power (C -' r))) is V11() real ext-real set
(((((((C to_power C) ^2) - (2 * ((- 1) to_power (- C)))) + ((C to_power (- C)) ^2)) - ((C to_power (C + r)) * (C to_power (C -' r)))) + (((C to_power (C + r)) * (1 / (C to_power (C -' r)))) * ((- 1) to_power (- (C -' r))))) + ((((- 1) to_power (- (C + r))) * (C to_power (- (C + r)))) * (C to_power (C -' r)))) - (((((- 1) to_power (- (C + r))) * ((- 1) to_power (- (C -' r)))) * (C to_power (- (C + r)))) * (C to_power (- (C -' r)))) is V11() real ext-real set
((1 / (sqrt 5)) ^2) * ((((((((C to_power C) ^2) - (2 * ((- 1) to_power (- C)))) + ((C to_power (- C)) ^2)) - ((C to_power (C + r)) * (C to_power (C -' r)))) + (((C to_power (C + r)) * (1 / (C to_power (C -' r)))) * ((- 1) to_power (- (C -' r))))) + ((((- 1) to_power (- (C + r))) * (C to_power (- (C + r)))) * (C to_power (C -' r)))) - (((((- 1) to_power (- (C + r))) * ((- 1) to_power (- (C -' r)))) * (C to_power (- (C + r)))) * (C to_power (- (C -' r))))) is V11() real ext-real set
(C to_power (C + r)) / (C to_power (C -' r)) is V11() real ext-real set
((C to_power (C + r)) / (C to_power (C -' r))) * ((- 1) to_power (- (C -' r))) is V11() real ext-real set
(((((C to_power C) ^2) - (2 * ((- 1) to_power (- C)))) + ((C to_power (- C)) ^2)) - ((C to_power (C + r)) * (C to_power (C -' r)))) + (((C to_power (C + r)) / (C to_power (C -' r))) * ((- 1) to_power (- (C -' r)))) is V11() real ext-real set
((((((C to_power C) ^2) - (2 * ((- 1) to_power (- C)))) + ((C to_power (- C)) ^2)) - ((C to_power (C + r)) * (C to_power (C -' r)))) + (((C to_power (C + r)) / (C to_power (C -' r))) * ((- 1) to_power (- (C -' r))))) + ((((- 1) to_power (- (C + r))) * (C to_power (- (C + r)))) * (C to_power (C -' r))) is V11() real ext-real set
(((((((C to_power C) ^2) - (2 * ((- 1) to_power (- C)))) + ((C to_power (- C)) ^2)) - ((C to_power (C + r)) * (C to_power (C -' r)))) + (((C to_power (C + r)) / (C to_power (C -' r))) * ((- 1) to_power (- (C -' r))))) + ((((- 1) to_power (- (C + r))) * (C to_power (- (C + r)))) * (C to_power (C -' r)))) - (((((- 1) to_power (- (C + r))) * ((- 1) to_power (- (C -' r)))) * (C to_power (- (C + r)))) * (C to_power (- (C -' r)))) is V11() real ext-real set
((1 / (sqrt 5)) ^2) * ((((((((C to_power C) ^2) - (2 * ((- 1) to_power (- C)))) + ((C to_power (- C)) ^2)) - ((C to_power (C + r)) * (C to_power (C -' r)))) + (((C to_power (C + r)) / (C to_power (C -' r))) * ((- 1) to_power (- (C -' r))))) + ((((- 1) to_power (- (C + r))) * (C to_power (- (C + r)))) * (C to_power (C -' r)))) - (((((- 1) to_power (- (C + r))) * ((- 1) to_power (- (C -' r)))) * (C to_power (- (C + r)))) * (C to_power (- (C -' r))))) is V11() real ext-real set
C to_power ((C + r) - (C -' r)) is V11() real ext-real set
(C to_power ((C + r) - (C -' r))) * ((- 1) to_power (- (C -' r))) is V11() real ext-real set
(((((C to_power C) ^2) - (2 * ((- 1) to_power (- C)))) + ((C to_power (- C)) ^2)) - ((C to_power (C + r)) * (C to_power (C -' r)))) + ((C to_power ((C + r) - (C -' r))) * ((- 1) to_power (- (C -' r)))) is V11() real ext-real set
((((((C to_power C) ^2) - (2 * ((- 1) to_power (- C)))) + ((C to_power (- C)) ^2)) - ((C to_power (C + r)) * (C to_power (C -' r)))) + ((C to_power ((C + r) - (C -' r))) * ((- 1) to_power (- (C -' r))))) + ((((- 1) to_power (- (C + r))) * (C to_power (- (C + r)))) * (C to_power (C -' r))) is V11() real ext-real set
(((((((C to_power C) ^2) - (2 * ((- 1) to_power (- C)))) + ((C to_power (- C)) ^2)) - ((C to_power (C + r)) * (C to_power (C -' r)))) + ((C to_power ((C + r) - (C -' r))) * ((- 1) to_power (- (C -' r))))) + ((((- 1) to_power (- (C + r))) * (C to_power (- (C + r)))) * (C to_power (C -' r)))) - (((((- 1) to_power (- (C + r))) * ((- 1) to_power (- (C -' r)))) * (C to_power (- (C + r)))) * (C to_power (- (C -' r)))) is V11() real ext-real set
((1 / (sqrt 5)) ^2) * ((((((((C to_power C) ^2) - (2 * ((- 1) to_power (- C)))) + ((C to_power (- C)) ^2)) - ((C to_power (C + r)) * (C to_power (C -' r)))) + ((C to_power ((C + r) - (C -' r))) * ((- 1) to_power (- (C -' r))))) + ((((- 1) to_power (- (C + r))) * (C to_power (- (C + r)))) * (C to_power (C -' r)))) - (((((- 1) to_power (- (C + r))) * ((- 1) to_power (- (C -' r)))) * (C to_power (- (C + r)))) * (C to_power (- (C -' r))))) is V11() real ext-real set
C to_power ((C + r) + (C -' r)) is V11() real ext-real set
((((C to_power C) ^2) - (2 * ((- 1) to_power (- C)))) + ((C to_power (- C)) ^2)) - (C to_power ((C + r) + (C -' r))) is V11() real ext-real set
(((((C to_power C) ^2) - (2 * ((- 1) to_power (- C)))) + ((C to_power (- C)) ^2)) - (C to_power ((C + r) + (C -' r)))) + ((C to_power ((C + r) - (C -' r))) * ((- 1) to_power (- (C -' r)))) is V11() real ext-real set
(C to_power (C -' r)) * (C to_power (- (C + r))) is V11() real ext-real set
((- 1) to_power (- (C + r))) * ((C to_power (C -' r)) * (C to_power (- (C + r)))) is V11() real ext-real set
((((((C to_power C) ^2) - (2 * ((- 1) to_power (- C)))) + ((C to_power (- C)) ^2)) - (C to_power ((C + r) + (C -' r)))) + ((C to_power ((C + r) - (C -' r))) * ((- 1) to_power (- (C -' r))))) + (((- 1) to_power (- (C + r))) * ((C to_power (C -' r)) * (C to_power (- (C + r))))) is V11() real ext-real set
(C to_power (- (C + r))) * (C to_power (- (C -' r))) is V11() real ext-real set
(((- 1) to_power (- (C + r))) * ((- 1) to_power (- (C -' r)))) * ((C to_power (- (C + r))) * (C to_power (- (C -' r)))) is V11() real ext-real set
(((((((C to_power C) ^2) - (2 * ((- 1) to_power (- C)))) + ((C to_power (- C)) ^2)) - (C to_power ((C + r) + (C -' r)))) + ((C to_power ((C + r) - (C -' r))) * ((- 1) to_power (- (C -' r))))) + (((- 1) to_power (- (C + r))) * ((C to_power (C -' r)) * (C to_power (- (C + r)))))) - ((((- 1) to_power (- (C + r))) * ((- 1) to_power (- (C -' r)))) * ((C to_power (- (C + r))) * (C to_power (- (C -' r))))) is V11() real ext-real set
((1 / (sqrt 5)) ^2) * ((((((((C to_power C) ^2) - (2 * ((- 1) to_power (- C)))) + ((C to_power (- C)) ^2)) - (C to_power ((C + r) + (C -' r)))) + ((C to_power ((C + r) - (C -' r))) * ((- 1) to_power (- (C -' r))))) + (((- 1) to_power (- (C + r))) * ((C to_power (C -' r)) * (C to_power (- (C + r)))))) - ((((- 1) to_power (- (C + r))) * ((- 1) to_power (- (C -' r)))) * ((C to_power (- (C + r))) * (C to_power (- (C -' r)))))) is V11() real ext-real set
1 / (C to_power (C + r)) is V11() real ext-real set
(C to_power (C -' r)) * (1 / (C to_power (C + r))) is V11() real ext-real set
((- 1) to_power (- (C + r))) * ((C to_power (C -' r)) * (1 / (C to_power (C + r)))) is V11() real ext-real set
((((((C to_power C) ^2) - (2 * ((- 1) to_power (- C)))) + ((C to_power (- C)) ^2)) - (C to_power ((C + r) + (C -' r)))) + ((C to_power ((C + r) - (C -' r))) * ((- 1) to_power (- (C -' r))))) + (((- 1) to_power (- (C + r))) * ((C to_power (C -' r)) * (1 / (C to_power (C + r))))) is V11() real ext-real set
(((((((C to_power C) ^2) - (2 * ((- 1) to_power (- C)))) + ((C to_power (- C)) ^2)) - (C to_power ((C + r) + (C -' r)))) + ((C to_power ((C + r) - (C -' r))) * ((- 1) to_power (- (C -' r))))) + (((- 1) to_power (- (C + r))) * ((C to_power (C -' r)) * (1 / (C to_power (C + r)))))) - ((((- 1) to_power (- (C + r))) * ((- 1) to_power (- (C -' r)))) * ((C to_power (- (C + r))) * (C to_power (- (C -' r))))) is V11() real ext-real set
((1 / (sqrt 5)) ^2) * ((((((((C to_power C) ^2) - (2 * ((- 1) to_power (- C)))) + ((C to_power (- C)) ^2)) - (C to_power ((C + r) + (C -' r)))) + ((C to_power ((C + r) - (C -' r))) * ((- 1) to_power (- (C -' r))))) + (((- 1) to_power (- (C + r))) * ((C to_power (C -' r)) * (1 / (C to_power (C + r)))))) - ((((- 1) to_power (- (C + r))) * ((- 1) to_power (- (C -' r)))) * ((C to_power (- (C + r))) * (C to_power (- (C -' r)))))) is V11() real ext-real set
(C to_power (C -' r)) / (C to_power (C + r)) is V11() real ext-real set
((- 1) to_power (- (C + r))) * ((C to_power (C -' r)) / (C to_power (C + r))) is V11() real ext-real set
((((((C to_power C) ^2) - (2 * ((- 1) to_power (- C)))) + ((C to_power (- C)) ^2)) - (C to_power ((C + r) + (C -' r)))) + ((C to_power ((C + r) - (C -' r))) * ((- 1) to_power (- (C -' r))))) + (((- 1) to_power (- (C + r))) * ((C to_power (C -' r)) / (C to_power (C + r)))) is V11() real ext-real set
(((((((C to_power C) ^2) - (2 * ((- 1) to_power (- C)))) + ((C to_power (- C)) ^2)) - (C to_power ((C + r) + (C -' r)))) + ((C to_power ((C + r) - (C -' r))) * ((- 1) to_power (- (C -' r))))) + (((- 1) to_power (- (C + r))) * ((C to_power (C -' r)) / (C to_power (C + r))))) - ((((- 1) to_power (- (C + r))) * ((- 1) to_power (- (C -' r)))) * ((C to_power (- (C + r))) * (C to_power (- (C -' r))))) is V11() real ext-real set
((1 / (sqrt 5)) ^2) * ((((((((C to_power C) ^2) - (2 * ((- 1) to_power (- C)))) + ((C to_power (- C)) ^2)) - (C to_power ((C + r) + (C -' r)))) + ((C to_power ((C + r) - (C -' r))) * ((- 1) to_power (- (C -' r))))) + (((- 1) to_power (- (C + r))) * ((C to_power (C -' r)) / (C to_power (C + r))))) - ((((- 1) to_power (- (C + r))) * ((- 1) to_power (- (C -' r)))) * ((C to_power (- (C + r))) * (C to_power (- (C -' r)))))) is V11() real ext-real set
(C -' r) - (C + r) is V11() real integer ext-real set
C to_power ((C -' r) - (C + r)) is V11() real ext-real set
((- 1) to_power (- (C + r))) * (C to_power ((C -' r) - (C + r))) is V11() real ext-real set
((((((C to_power C) ^2) - (2 * ((- 1) to_power (- C)))) + ((C to_power (- C)) ^2)) - (C to_power ((C + r) + (C -' r)))) + ((C to_power ((C + r) - (C -' r))) * ((- 1) to_power (- (C -' r))))) + (((- 1) to_power (- (C + r))) * (C to_power ((C -' r) - (C + r)))) is V11() real ext-real set
(((((((C to_power C) ^2) - (2 * ((- 1) to_power (- C)))) + ((C to_power (- C)) ^2)) - (C to_power ((C + r) + (C -' r)))) + ((C to_power ((C + r) - (C -' r))) * ((- 1) to_power (- (C -' r))))) + (((- 1) to_power (- (C + r))) * (C to_power ((C -' r) - (C + r))))) - ((((- 1) to_power (- (C + r))) * ((- 1) to_power (- (C -' r)))) * ((C to_power (- (C + r))) * (C to_power (- (C -' r))))) is V11() real ext-real set
((1 / (sqrt 5)) ^2) * ((((((((C to_power C) ^2) - (2 * ((- 1) to_power (- C)))) + ((C to_power (- C)) ^2)) - (C to_power ((C + r) + (C -' r)))) + ((C to_power ((C + r) - (C -' r))) * ((- 1) to_power (- (C -' r))))) + (((- 1) to_power (- (C + r))) * (C to_power ((C -' r) - (C + r))))) - ((((- 1) to_power (- (C + r))) * ((- 1) to_power (- (C -' r)))) * ((C to_power (- (C + r))) * (C to_power (- (C -' r)))))) is V11() real ext-real set
(- (C + r)) - (C -' r) is V11() real integer ext-real non positive set
(- 1) to_power ((- (C + r)) - (C -' r)) is V11() real ext-real set
((- 1) to_power ((- (C + r)) - (C -' r))) * ((C to_power (- (C + r))) * (C to_power (- (C -' r)))) is V11() real ext-real set
(((((((C to_power C) ^2) - (2 * ((- 1) to_power (- C)))) + ((C to_power (- C)) ^2)) - (C to_power ((C + r) + (C -' r)))) + ((C to_power ((C + r) - (C -' r))) * ((- 1) to_power (- (C -' r))))) + (((- 1) to_power (- (C + r))) * (C to_power ((C -' r) - (C + r))))) - (((- 1) to_power ((- (C + r)) - (C -' r))) * ((C to_power (- (C + r))) * (C to_power (- (C -' r))))) is V11() real ext-real set
((1 / (sqrt 5)) ^2) * ((((((((C to_power C) ^2) - (2 * ((- 1) to_power (- C)))) + ((C to_power (- C)) ^2)) - (C to_power ((C + r) + (C -' r)))) + ((C to_power ((C + r) - (C -' r))) * ((- 1) to_power (- (C -' r))))) + (((- 1) to_power (- (C + r))) * (C to_power ((C -' r) - (C + r))))) - (((- 1) to_power ((- (C + r)) - (C -' r))) * ((C to_power (- (C + r))) * (C to_power (- (C -' r)))))) is V11() real ext-real set
C to_power (2 * C) is V11() real ext-real set
((((C to_power C) ^2) - (2 * ((- 1) to_power (- C)))) + ((C to_power (- C)) ^2)) - (C to_power (2 * C)) is V11() real ext-real set
C to_power (2 * r) is V11() real ext-real set
(C to_power (2 * r)) * ((- 1) to_power (- (C -' r))) is V11() real ext-real set
(((((C to_power C) ^2) - (2 * ((- 1) to_power (- C)))) + ((C to_power (- C)) ^2)) - (C to_power (2 * C))) + ((C to_power (2 * r)) * ((- 1) to_power (- (C -' r)))) is V11() real ext-real set
- (2 * r) is V11() real integer ext-real non positive even set
C to_power (- (2 * r)) is V11() real ext-real set
((- 1) to_power (- (C + r))) * (C to_power (- (2 * r))) is V11() real ext-real set
((((((C to_power C) ^2) - (2 * ((- 1) to_power (- C)))) + ((C to_power (- C)) ^2)) - (C to_power (2 * C))) + ((C to_power (2 * r)) * ((- 1) to_power (- (C -' r))))) + (((- 1) to_power (- (C + r))) * (C to_power (- (2 * r)))) is V11() real ext-real set
- (2 * C) is V11() real integer ext-real non positive even set
(- 1) to_power (- (2 * C)) is V11() real ext-real set
C to_power (- (2 * C)) is V11() real ext-real set
((- 1) to_power (- (2 * C))) * (C to_power (- (2 * C))) is V11() real ext-real set
(((((((C to_power C) ^2) - (2 * ((- 1) to_power (- C)))) + ((C to_power (- C)) ^2)) - (C to_power (2 * C))) + ((C to_power (2 * r)) * ((- 1) to_power (- (C -' r))))) + (((- 1) to_power (- (C + r))) * (C to_power (- (2 * r))))) - (((- 1) to_power (- (2 * C))) * (C to_power (- (2 * C)))) is V11() real ext-real set
((1 / (sqrt 5)) ^2) * ((((((((C to_power C) ^2) - (2 * ((- 1) to_power (- C)))) + ((C to_power (- C)) ^2)) - (C to_power (2 * C))) + ((C to_power (2 * r)) * ((- 1) to_power (- (C -' r))))) + (((- 1) to_power (- (C + r))) * (C to_power (- (2 * r))))) - (((- 1) to_power (- (2 * C))) * (C to_power (- (2 * C))))) is V11() real ext-real set
1 * (C to_power (- (2 * C))) is V11() real ext-real set
(((((((C to_power C) ^2) - (2 * ((- 1) to_power (- C)))) + ((C to_power (- C)) ^2)) - (C to_power (2 * C))) + ((C to_power (2 * r)) * ((- 1) to_power (- (C -' r))))) + (((- 1) to_power (- (C + r))) * (C to_power (- (2 * r))))) - (1 * (C to_power (- (2 * C)))) is V11() real ext-real set
((1 / (sqrt 5)) ^2) * ((((((((C to_power C) ^2) - (2 * ((- 1) to_power (- C)))) + ((C to_power (- C)) ^2)) - (C to_power (2 * C))) + ((C to_power (2 * r)) * ((- 1) to_power (- (C -' r))))) + (((- 1) to_power (- (C + r))) * (C to_power (- (2 * r))))) - (1 * (C to_power (- (2 * C))))) is V11() real ext-real set
(C to_power C) to_power 2 is V11() real ext-real set
((C to_power C) to_power 2) - (2 * ((- 1) to_power (- C))) is V11() real ext-real set
(((C to_power C) to_power 2) - (2 * ((- 1) to_power (- C)))) + ((C to_power (- C)) ^2) is V11() real ext-real set
((((C to_power C) to_power 2) - (2 * ((- 1) to_power (- C)))) + ((C to_power (- C)) ^2)) - (C to_power (2 * C)) is V11() real ext-real set
(((((C to_power C) to_power 2) - (2 * ((- 1) to_power (- C)))) + ((C to_power (- C)) ^2)) - (C to_power (2 * C))) + ((C to_power (2 * r)) * ((- 1) to_power (- (C -' r)))) is V11() real ext-real set
((((((C to_power C) to_power 2) - (2 * ((- 1) to_power (- C)))) + ((C to_power (- C)) ^2)) - (C to_power (2 * C))) + ((C to_power (2 * r)) * ((- 1) to_power (- (C -' r))))) + (((- 1) to_power (- (C + r))) * (C to_power (- (2 * r)))) is V11() real ext-real set
(((((((C to_power C) to_power 2) - (2 * ((- 1) to_power (- C)))) + ((C to_power (- C)) ^2)) - (C to_power (2 * C))) + ((C to_power (2 * r)) * ((- 1) to_power (- (C -' r))))) + (((- 1) to_power (- (C + r))) * (C to_power (- (2 * r))))) - (1 * (C to_power (- (2 * C)))) is V11() real ext-real set
((1 / (sqrt 5)) ^2) * ((((((((C to_power C) to_power 2) - (2 * ((- 1) to_power (- C)))) + ((C to_power (- C)) ^2)) - (C to_power (2 * C))) + ((C to_power (2 * r)) * ((- 1) to_power (- (C -' r))))) + (((- 1) to_power (- (C + r))) * (C to_power (- (2 * r))))) - (1 * (C to_power (- (2 * C))))) is V11() real ext-real set
(C to_power (2 * C)) - (2 * ((- 1) to_power (- C))) is V11() real ext-real set
((C to_power (2 * C)) - (2 * ((- 1) to_power (- C)))) + ((C to_power (- C)) ^2) is V11() real ext-real set
(((C to_power (2 * C)) - (2 * ((- 1) to_power (- C)))) + ((C to_power (- C)) ^2)) - (C to_power (2 * C)) is V11() real ext-real set
((((C to_power (2 * C)) - (2 * ((- 1) to_power (- C)))) + ((C to_power (- C)) ^2)) - (C to_power (2 * C))) + ((C to_power (2 * r)) * ((- 1) to_power (- (C -' r)))) is V11() real ext-real set
(((((C to_power (2 * C)) - (2 * ((- 1) to_power (- C)))) + ((C to_power (- C)) ^2)) - (C to_power (2 * C))) + ((C to_power (2 * r)) * ((- 1) to_power (- (C -' r))))) + (((- 1) to_power (- (C + r))) * (C to_power (- (2 * r)))) is V11() real ext-real set
((((((C to_power (2 * C)) - (2 * ((- 1) to_power (- C)))) + ((C to_power (- C)) ^2)) - (C to_power (2 * C))) + ((C to_power (2 * r)) * ((- 1) to_power (- (C -' r))))) + (((- 1) to_power (- (C + r))) * (C to_power (- (2 * r))))) - (C to_power (- (2 * C))) is V11() real ext-real set
((1 / (sqrt 5)) ^2) * (((((((C to_power (2 * C)) - (2 * ((- 1) to_power (- C)))) + ((C to_power (- C)) ^2)) - (C to_power (2 * C))) + ((C to_power (2 * r)) * ((- 1) to_power (- (C -' r))))) + (((- 1) to_power (- (C + r))) * (C to_power (- (2 * r))))) - (C to_power (- (2 * C)))) is V11() real ext-real set
(- 1) to_power C is V11() real ext-real set
2 * ((- 1) to_power C) is V11() real ext-real set
(C to_power (2 * C)) - (2 * ((- 1) to_power C)) is V11() real ext-real set
((C to_power (2 * C)) - (2 * ((- 1) to_power C))) + ((C to_power (- C)) ^2) is V11() real ext-real set
(((C to_power (2 * C)) - (2 * ((- 1) to_power C))) + ((C to_power (- C)) ^2)) - (C to_power (2 * C)) is V11() real ext-real set
((((C to_power (2 * C)) - (2 * ((- 1) to_power C))) + ((C to_power (- C)) ^2)) - (C to_power (2 * C))) + ((C to_power (2 * r)) * ((- 1) to_power (- (C -' r)))) is V11() real ext-real set
(((((C to_power (2 * C)) - (2 * ((- 1) to_power C))) + ((C to_power (- C)) ^2)) - (C to_power (2 * C))) + ((C to_power (2 * r)) * ((- 1) to_power (- (C -' r))))) + (((- 1) to_power (- (C + r))) * (C to_power (- (2 * r)))) is V11() real ext-real set
((((((C to_power (2 * C)) - (2 * ((- 1) to_power C))) + ((C to_power (- C)) ^2)) - (C to_power (2 * C))) + ((C to_power (2 * r)) * ((- 1) to_power (- (C -' r))))) + (((- 1) to_power (- (C + r))) * (C to_power (- (2 * r))))) - (C to_power (- (2 * C))) is V11() real ext-real set
((1 / (sqrt 5)) ^2) * (((((((C to_power (2 * C)) - (2 * ((- 1) to_power C))) + ((C to_power (- C)) ^2)) - (C to_power (2 * C))) + ((C to_power (2 * r)) * ((- 1) to_power (- (C -' r))))) + (((- 1) to_power (- (C + r))) * (C to_power (- (2 * r))))) - (C to_power (- (2 * C)))) is V11() real ext-real set
(C to_power (2 * C)) - (C to_power (2 * C)) is V11() real ext-real set
((C to_power (2 * C)) - (C to_power (2 * C))) - (2 * ((- 1) to_power C)) is V11() real ext-real set
(((C to_power (2 * C)) - (C to_power (2 * C))) - (2 * ((- 1) to_power C))) + ((C to_power (- C)) ^2) is V11() real ext-real set
(- 1) to_power (C -' r) is V11() real ext-real set
(C to_power (2 * r)) * ((- 1) to_power (C -' r)) is V11() real ext-real set
((((C to_power (2 * C)) - (C to_power (2 * C))) - (2 * ((- 1) to_power C))) + ((C to_power (- C)) ^2)) + ((C to_power (2 * r)) * ((- 1) to_power (C -' r))) is V11() real ext-real set
(((((C to_power (2 * C)) - (C to_power (2 * C))) - (2 * ((- 1) to_power C))) + ((C to_power (- C)) ^2)) + ((C to_power (2 * r)) * ((- 1) to_power (C -' r)))) + (((- 1) to_power (- (C + r))) * (C to_power (- (2 * r)))) is V11() real ext-real set
((((((C to_power (2 * C)) - (C to_power (2 * C))) - (2 * ((- 1) to_power C))) + ((C to_power (- C)) ^2)) + ((C to_power (2 * r)) * ((- 1) to_power (C -' r)))) + (((- 1) to_power (- (C + r))) * (C to_power (- (2 * r))))) - (C to_power (- (2 * C))) is V11() real ext-real set
((1 / (sqrt 5)) ^2) * (((((((C to_power (2 * C)) - (C to_power (2 * C))) - (2 * ((- 1) to_power C))) + ((C to_power (- C)) ^2)) + ((C to_power (2 * r)) * ((- 1) to_power (C -' r)))) + (((- 1) to_power (- (C + r))) * (C to_power (- (2 * r))))) - (C to_power (- (2 * C)))) is V11() real ext-real set
- (2 * ((- 1) to_power C)) is V11() real ext-real set
(- (2 * ((- 1) to_power C))) + ((C to_power (- C)) ^2) is V11() real ext-real set
((- (2 * ((- 1) to_power C))) + ((C to_power (- C)) ^2)) + ((C to_power (2 * r)) * ((- 1) to_power (C -' r))) is V11() real ext-real set
(- 1) to_power (C + r) is V11() real ext-real set
((- 1) to_power (C + r)) * (C to_power (- (2 * r))) is V11() real ext-real set
(((- (2 * ((- 1) to_power C))) + ((C to_power (- C)) ^2)) + ((C to_power (2 * r)) * ((- 1) to_power (C -' r)))) + (((- 1) to_power (C + r)) * (C to_power (- (2 * r)))) is V11() real ext-real set
2 * (- C) is V11() real integer ext-real non positive even set
C to_power (2 * (- C)) is V11() real ext-real set
((((- (2 * ((- 1) to_power C))) + ((C to_power (- C)) ^2)) + ((C to_power (2 * r)) * ((- 1) to_power (C -' r)))) + (((- 1) to_power (C + r)) * (C to_power (- (2 * r))))) - (C to_power (2 * (- C))) is V11() real ext-real set
((1 / (sqrt 5)) ^2) * (((((- (2 * ((- 1) to_power C))) + ((C to_power (- C)) ^2)) + ((C to_power (2 * r)) * ((- 1) to_power (C -' r)))) + (((- 1) to_power (C + r)) * (C to_power (- (2 * r))))) - (C to_power (2 * (- C)))) is V11() real ext-real set
(C to_power (- C)) to_power 2 is V11() real ext-real set
((((- (2 * ((- 1) to_power C))) + ((C to_power (- C)) ^2)) + ((C to_power (2 * r)) * ((- 1) to_power (C -' r)))) + (((- 1) to_power (C + r)) * (C to_power (- (2 * r))))) - ((C to_power (- C)) to_power 2) is V11() real ext-real set
((1 / (sqrt 5)) ^2) * (((((- (2 * ((- 1) to_power C))) + ((C to_power (- C)) ^2)) + ((C to_power (2 * r)) * ((- 1) to_power (C -' r)))) + (((- 1) to_power (C + r)) * (C to_power (- (2 * r))))) - ((C to_power (- C)) to_power 2)) is V11() real ext-real set
(- (2 * ((- 1) to_power C))) + ((C to_power (2 * r)) * ((- 1) to_power (C -' r))) is V11() real ext-real set
((- (2 * ((- 1) to_power C))) + ((C to_power (2 * r)) * ((- 1) to_power (C -' r)))) + (((- 1) to_power (C + r)) * (C to_power (- (2 * r)))) is V11() real ext-real set
(((- (2 * ((- 1) to_power C))) + ((C to_power (2 * r)) * ((- 1) to_power (C -' r)))) + (((- 1) to_power (C + r)) * (C to_power (- (2 * r))))) + ((C to_power (- C)) ^2) is V11() real ext-real set
((((- (2 * ((- 1) to_power C))) + ((C to_power (2 * r)) * ((- 1) to_power (C -' r)))) + (((- 1) to_power (C + r)) * (C to_power (- (2 * r))))) + ((C to_power (- C)) ^2)) - ((C to_power (- C)) ^2) is V11() real ext-real set
((1 / (sqrt 5)) ^2) * (((((- (2 * ((- 1) to_power C))) + ((C to_power (2 * r)) * ((- 1) to_power (C -' r)))) + (((- 1) to_power (C + r)) * (C to_power (- (2 * r))))) + ((C to_power (- C)) ^2)) - ((C to_power (- C)) ^2)) is V11() real ext-real set
(C -' r) + r is non empty epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real positive non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered left_end bounded_below Element of NAT
(- 1) to_power ((C -' r) + r) is V11() real ext-real set
2 * ((- 1) to_power ((C -' r) + r)) is V11() real ext-real set
- (2 * ((- 1) to_power ((C -' r) + r))) is V11() real ext-real set
((- 1) to_power (C -' r)) * (C to_power (2 * r)) is V11() real ext-real set
(- (2 * ((- 1) to_power ((C -' r) + r)))) + (((- 1) to_power (C -' r)) * (C to_power (2 * r))) is V11() real ext-real set
(2 * r) + (C -' r) is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
(- 1) to_power ((2 * r) + (C -' r)) is V11() real ext-real set
((- 1) to_power ((2 * r) + (C -' r))) * (C to_power (- (2 * r))) is V11() real ext-real set
((- (2 * ((- 1) to_power ((C -' r) + r)))) + (((- 1) to_power (C -' r)) * (C to_power (2 * r)))) + (((- 1) to_power ((2 * r) + (C -' r))) * (C to_power (- (2 * r)))) is V11() real ext-real set
((1 / (sqrt 5)) ^2) * (((- (2 * ((- 1) to_power ((C -' r) + r)))) + (((- 1) to_power (C -' r)) * (C to_power (2 * r)))) + (((- 1) to_power ((2 * r) + (C -' r))) * (C to_power (- (2 * r))))) is V11() real ext-real set
(- 1) to_power r is V11() real ext-real set
((- 1) to_power r) * ((- 1) to_power (C -' r)) is V11() real ext-real set
2 * (((- 1) to_power r) * ((- 1) to_power (C -' r))) is V11() real ext-real set
- (2 * (((- 1) to_power r) * ((- 1) to_power (C -' r)))) is V11() real ext-real set
(- (2 * (((- 1) to_power r) * ((- 1) to_power (C -' r))))) + (((- 1) to_power (C -' r)) * (C to_power (2 * r))) is V11() real ext-real set
((- (2 * (((- 1) to_power r) * ((- 1) to_power (C -' r))))) + (((- 1) to_power (C -' r)) * (C to_power (2 * r)))) + (((- 1) to_power ((2 * r) + (C -' r))) * (C to_power (- (2 * r)))) is V11() real ext-real set
((1 / (sqrt 5)) ^2) * (((- (2 * (((- 1) to_power r) * ((- 1) to_power (C -' r))))) + (((- 1) to_power (C -' r)) * (C to_power (2 * r)))) + (((- 1) to_power ((2 * r) + (C -' r))) * (C to_power (- (2 * r))))) is V11() real ext-real set
(- 1) to_power (2 * r) is V11() real ext-real set
((- 1) to_power (2 * r)) * ((- 1) to_power (C -' r)) is V11() real ext-real set
(((- 1) to_power (2 * r)) * ((- 1) to_power (C -' r))) * (C to_power (- (2 * r))) is V11() real ext-real set
((- (2 * (((- 1) to_power r) * ((- 1) to_power (C -' r))))) + (((- 1) to_power (C -' r)) * (C to_power (2 * r)))) + ((((- 1) to_power (2 * r)) * ((- 1) to_power (C -' r))) * (C to_power (- (2 * r)))) is V11() real ext-real set
((1 / (sqrt 5)) ^2) * (((- (2 * (((- 1) to_power r) * ((- 1) to_power (C -' r))))) + (((- 1) to_power (C -' r)) * (C to_power (2 * r)))) + ((((- 1) to_power (2 * r)) * ((- 1) to_power (C -' r))) * (C to_power (- (2 * r))))) is V11() real ext-real set
2 * ((- 1) to_power r) is V11() real ext-real set
- (2 * ((- 1) to_power r)) is V11() real ext-real set
(- (2 * ((- 1) to_power r))) + (C to_power (2 * r)) is V11() real ext-real set
(C to_power (- (2 * r))) * ((- 1) to_power (2 * r)) is V11() real ext-real set
((- (2 * ((- 1) to_power r))) + (C to_power (2 * r))) + ((C to_power (- (2 * r))) * ((- 1) to_power (2 * r))) is V11() real ext-real set
((1 / (sqrt 5)) ^2) * (((- (2 * ((- 1) to_power r))) + (C to_power (2 * r))) + ((C to_power (- (2 * r))) * ((- 1) to_power (2 * r)))) is V11() real ext-real set
(((1 / (sqrt 5)) ^2) * (((- (2 * ((- 1) to_power r))) + (C to_power (2 * r))) + ((C to_power (- (2 * r))) * ((- 1) to_power (2 * r))))) * ((- 1) to_power (C -' r)) is V11() real ext-real set
(C to_power (- (2 * r))) * 1 is V11() real ext-real set
((- (2 * ((- 1) to_power r))) + (C to_power (2 * r))) + ((C to_power (- (2 * r))) * 1) is V11() real ext-real set
((1 / (sqrt 5)) ^2) * (((- (2 * ((- 1) to_power r))) + (C to_power (2 * r))) + ((C to_power (- (2 * r))) * 1)) is V11() real ext-real set
(((1 / (sqrt 5)) ^2) * (((- (2 * ((- 1) to_power r))) + (C to_power (2 * r))) + ((C to_power (- (2 * r))) * 1))) * ((- 1) to_power (C -' r)) is V11() real ext-real set
(C to_power (2 * r)) - (2 * ((- 1) to_power r)) is V11() real ext-real set
- r is V11() real integer ext-real non positive set
2 * (- r) is V11() real integer ext-real non positive even set
C to_power (2 * (- r)) is V11() real ext-real set
((C to_power (2 * r)) - (2 * ((- 1) to_power r))) + (C to_power (2 * (- r))) is V11() real ext-real set
((1 / (sqrt 5)) ^2) * (((C to_power (2 * r)) - (2 * ((- 1) to_power r))) + (C to_power (2 * (- r)))) is V11() real ext-real set
(((1 / (sqrt 5)) ^2) * (((C to_power (2 * r)) - (2 * ((- 1) to_power r))) + (C to_power (2 * (- r))))) * ((- 1) to_power (C -' r)) is V11() real ext-real set
C to_power r is V11() real ext-real set
(C to_power r) to_power 2 is V11() real ext-real set
((C to_power r) to_power 2) - (2 * ((- 1) to_power r)) is V11() real ext-real set
(- r) * 2 is V11() real integer ext-real non positive even set
C to_power ((- r) * 2) is V11() real ext-real set
(((C to_power r) to_power 2) - (2 * ((- 1) to_power r))) + (C to_power ((- r) * 2)) is V11() real ext-real set
((1 / (sqrt 5)) ^2) * ((((C to_power r) to_power 2) - (2 * ((- 1) to_power r))) + (C to_power ((- r) * 2))) is V11() real ext-real set
(((1 / (sqrt 5)) ^2) * ((((C to_power r) to_power 2) - (2 * ((- 1) to_power r))) + (C to_power ((- r) * 2)))) * ((- 1) to_power (C -' r)) is V11() real ext-real set
(C to_power r) ^2 is V11() real ext-real set
(C to_power r) * (C to_power r) is V11() real ext-real set
((C to_power r) ^2) - (2 * ((- 1) to_power r)) is V11() real ext-real set
(((C to_power r) ^2) - (2 * ((- 1) to_power r))) + (C to_power ((- r) * 2)) is V11() real ext-real set
((1 / (sqrt 5)) ^2) * ((((C to_power r) ^2) - (2 * ((- 1) to_power r))) + (C to_power ((- r) * 2))) is V11() real ext-real set
(((1 / (sqrt 5)) ^2) * ((((C to_power r) ^2) - (2 * ((- 1) to_power r))) + (C to_power ((- r) * 2)))) * ((- 1) to_power (C -' r)) is V11() real ext-real set
C to_power (- r) is V11() real ext-real set
(C to_power (- r)) to_power 2 is V11() real ext-real set
(((C to_power r) ^2) - (2 * ((- 1) to_power r))) + ((C to_power (- r)) to_power 2) is V11() real ext-real set
((1 / (sqrt 5)) ^2) * ((((C to_power r) ^2) - (2 * ((- 1) to_power r))) + ((C to_power (- r)) to_power 2)) is V11() real ext-real set
((- 1) to_power (C -' r)) * (((1 / (sqrt 5)) ^2) * ((((C to_power r) ^2) - (2 * ((- 1) to_power r))) + ((C to_power (- r)) to_power 2))) is V11() real ext-real set
(C to_power (- r)) ^2 is V11() real ext-real set
(C to_power (- r)) * (C to_power (- r)) is V11() real ext-real set
(((C to_power r) ^2) - (2 * ((- 1) to_power r))) + ((C to_power (- r)) ^2) is V11() real ext-real set
((1 / (sqrt 5)) ^2) * ((((C to_power r) ^2) - (2 * ((- 1) to_power r))) + ((C to_power (- r)) ^2)) is V11() real ext-real set
((- 1) to_power (C -' r)) * (((1 / (sqrt 5)) ^2) * ((((C to_power r) ^2) - (2 * ((- 1) to_power r))) + ((C to_power (- r)) ^2))) is V11() real ext-real set
tau to_power r is V11() real ext-real set
tau_bar to_power r is V11() real ext-real set
(tau to_power r) - (tau_bar to_power r) is V11() real ext-real set
((tau to_power r) - (tau_bar to_power r)) ^2 is V11() real ext-real set
((tau to_power r) - (tau_bar to_power r)) * ((tau to_power r) - (tau_bar to_power r)) is V11() real ext-real set
((1 / (sqrt 5)) ^2) * (((tau to_power r) - (tau_bar to_power r)) ^2) is V11() real ext-real set
((- 1) to_power (C -' r)) * (((1 / (sqrt 5)) ^2) * (((tau to_power r) - (tau_bar to_power r)) ^2)) is V11() real ext-real set
((tau to_power r) - (tau_bar to_power r)) * (1 / (sqrt 5)) is V11() real ext-real set
(((tau to_power r) - (tau_bar to_power r)) * (1 / (sqrt 5))) ^2 is V11() real ext-real set
(((tau to_power r) - (tau_bar to_power r)) * (1 / (sqrt 5))) * (((tau to_power r) - (tau_bar to_power r)) * (1 / (sqrt 5))) is V11() real ext-real set
((- 1) to_power (C -' r)) * ((((tau to_power r) - (tau_bar to_power r)) * (1 / (sqrt 5))) ^2) is V11() real ext-real set
((tau to_power r) - (tau_bar to_power r)) / (sqrt 5) is V11() real ext-real set
(((tau to_power r) - (tau_bar to_power r)) / (sqrt 5)) ^2 is V11() real ext-real set
(((tau to_power r) - (tau_bar to_power r)) / (sqrt 5)) * (((tau to_power r) - (tau_bar to_power r)) / (sqrt 5)) is V11() real ext-real set
((- 1) to_power (C -' r)) * ((((tau to_power r) - (tau_bar to_power r)) / (sqrt 5)) ^2) is V11() real ext-real set
(C to_power r) - (tau_bar to_power r) is V11() real ext-real set
((C to_power r) - (tau_bar to_power r)) / (sqrt 5) is V11() real ext-real set
(((C to_power r) - (tau_bar to_power r)) / (sqrt 5)) ^2 is V11() real ext-real set
(((C to_power r) - (tau_bar to_power r)) / (sqrt 5)) * (((C to_power r) - (tau_bar to_power r)) / (sqrt 5)) is V11() real ext-real set
((- 1) |^ (C -' r)) * ((((C to_power r) - (tau_bar to_power r)) / (sqrt 5)) ^2) is V11() real ext-real set
n is epsilon-transitive epsilon-connected ordinal natural V11() real integer ext-real non negative set
Fib n is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
(Fib n) ^2 is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
(Fib n) * (Fib n) is epsilon-transitive epsilon-connected ordinal natural V11() real integer ext-real non negative set
n + 1 is non empty epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real positive non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered left_end bounded_below Element of NAT
Fib (n + 1) is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
(Fib (n + 1)) ^2 is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
(Fib (n + 1)) * (Fib (n + 1)) is epsilon-transitive epsilon-connected ordinal natural V11() real integer ext-real non negative set
((Fib n) ^2) + ((Fib (n + 1)) ^2) is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
2 * n is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered even bounded_below Element of NAT
(2 * n) + 1 is non empty epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real positive non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered non even left_end bounded_below Element of NAT
Fib ((2 * n) + 1) is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
(Fib 0) ^2 is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
(Fib 0) * (Fib 0) is epsilon-transitive epsilon-connected ordinal natural V11() real integer ext-real non negative set
0 + 1 is non empty epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real positive non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered left_end bounded_below Element of NAT
Fib (0 + 1) is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
(Fib (0 + 1)) ^2 is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
(Fib (0 + 1)) * (Fib (0 + 1)) is epsilon-transitive epsilon-connected ordinal natural V11() real integer ext-real non negative set
((Fib 0) ^2) + ((Fib (0 + 1)) ^2) is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
2 * 0 is empty epsilon-transitive epsilon-connected ordinal T-Sequence-like c=-linear natural V11() real integer Relation-like non-empty empty-yielding NAT -defined RAT -valued Function-like one-to-one constant functional finite finite-yielding V40() FinSequence-like FinSubsequence-like FinSequence-membered V47() ext-real non positive non negative V76() V77() V78() V79() complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered V92() even bounded_below bounded_above real-bounded V120() Element of NAT
(2 * 0) + 1 is non empty epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real positive non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered non even left_end bounded_below Element of NAT
Fib ((2 * 0) + 1) is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
n is epsilon-transitive epsilon-connected ordinal natural V11() real integer ext-real non negative set
Fib n is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
(Fib n) ^2 is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
(Fib n) * (Fib n) is epsilon-transitive epsilon-connected ordinal natural V11() real integer ext-real non negative set
n + 1 is non empty epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real positive non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered left_end bounded_below Element of NAT
Fib (n + 1) is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
(Fib (n + 1)) ^2 is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
(Fib (n + 1)) * (Fib (n + 1)) is epsilon-transitive epsilon-connected ordinal natural V11() real integer ext-real non negative set
((Fib n) ^2) + ((Fib (n + 1)) ^2) is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
2 * n is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered even bounded_below Element of NAT
(2 * n) + 1 is non empty epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real positive non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered non even left_end bounded_below Element of NAT
Fib ((2 * n) + 1) is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
(n + 1) + 1 is non empty epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real positive non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered left_end bounded_below Element of NAT
Fib ((n + 1) + 1) is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
(Fib ((n + 1) + 1)) ^2 is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
(Fib ((n + 1) + 1)) * (Fib ((n + 1) + 1)) is epsilon-transitive epsilon-connected ordinal natural V11() real integer ext-real non negative set
((Fib (n + 1)) ^2) + ((Fib ((n + 1) + 1)) ^2) is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
2 * (n + 1) is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered even bounded_below Element of NAT
(2 * (n + 1)) + 1 is non empty epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real positive non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered non even left_end bounded_below Element of NAT
Fib ((2 * (n + 1)) + 1) is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
n + 2 is non empty epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real positive non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered left_end bounded_below Element of NAT
Fib (n + 2) is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
(Fib (n + 2)) ^2 is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
(Fib (n + 2)) * (Fib (n + 2)) is epsilon-transitive epsilon-connected ordinal natural V11() real integer ext-real non negative set
(n + 2) + 1 is non empty epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real positive non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered left_end bounded_below Element of NAT
Fib ((n + 2) + 1) is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
(Fib ((n + 2) + 1)) ^2 is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
(Fib ((n + 2) + 1)) * (Fib ((n + 2) + 1)) is epsilon-transitive epsilon-connected ordinal natural V11() real integer ext-real non negative set
((Fib (n + 2)) ^2) + ((Fib ((n + 2) + 1)) ^2) is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
2 * (n + 2) is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered even bounded_below Element of NAT
(2 * (n + 2)) + 1 is non empty epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real positive non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered non even left_end bounded_below Element of NAT
Fib ((2 * (n + 2)) + 1) is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
(2 * n) + 3 is non empty epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real positive non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered left_end bounded_below Element of NAT
Fib ((2 * n) + 3) is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
(2 * n) + 4 is non empty epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real positive non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered left_end bounded_below Element of NAT
Fib ((2 * n) + 4) is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
(Fib ((2 * n) + 3)) + (Fib ((2 * n) + 4)) is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
(2 * n) + 2 is non empty epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real positive non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered even left_end bounded_below Element of NAT
Fib ((2 * n) + 2) is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
(Fib ((2 * n) + 3)) + (Fib ((2 * n) + 2)) is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
(Fib ((2 * n) + 3)) + ((Fib ((2 * n) + 3)) + (Fib ((2 * n) + 2))) is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
(Fib ((2 * n) + 3)) + (Fib ((2 * n) + 3)) is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
((Fib ((2 * n) + 3)) + (Fib ((2 * n) + 3))) + (Fib ((2 * n) + 2)) is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
2 * (Fib ((2 * n) + 3)) is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered even bounded_below Element of NAT
(Fib ((2 * n) + 3)) - (Fib ((2 * n) + 1)) is V11() real integer ext-real set
(2 * (Fib ((2 * n) + 3))) + ((Fib ((2 * n) + 3)) - (Fib ((2 * n) + 1))) is V11() real integer ext-real set
2 * ((Fib (n + 1)) ^2) is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered even bounded_below Element of NAT
2 * ((Fib (n + 2)) ^2) is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered even bounded_below Element of NAT
(2 * ((Fib (n + 1)) ^2)) + (2 * ((Fib (n + 2)) ^2)) is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered even bounded_below Element of NAT
(Fib (n + 2)) - (Fib n) is V11() real integer ext-real set
(Fib (n + 2)) + (Fib n) is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
((Fib (n + 2)) - (Fib n)) * ((Fib (n + 2)) + (Fib n)) is V11() real integer ext-real set
((2 * ((Fib (n + 1)) ^2)) + (2 * ((Fib (n + 2)) ^2))) + (((Fib (n + 2)) - (Fib n)) * ((Fib (n + 2)) + (Fib n))) is V11() real integer ext-real set
(Fib (n + 1)) * ((Fib (n + 2)) + (Fib n)) is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
((2 * ((Fib (n + 1)) ^2)) + (2 * ((Fib (n + 2)) ^2))) + ((Fib (n + 1)) * ((Fib (n + 2)) + (Fib n))) is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
(Fib (n + 1)) + (Fib n) is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
(Fib (n + 1)) + ((Fib (n + 1)) + (Fib n)) is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
(Fib (n + 1)) * ((Fib (n + 1)) + ((Fib (n + 1)) + (Fib n))) is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
(Fib (n + 2)) + (Fib (n + 1)) is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
(Fib (n + 2)) + ((Fib (n + 2)) + (Fib (n + 1))) is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
(Fib (n + 2)) * ((Fib (n + 2)) + ((Fib (n + 2)) + (Fib (n + 1)))) is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
((Fib (n + 1)) * ((Fib (n + 1)) + ((Fib (n + 1)) + (Fib n)))) + ((Fib (n + 2)) * ((Fib (n + 2)) + ((Fib (n + 2)) + (Fib (n + 1))))) is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
(Fib (n + 1)) + (Fib (n + 2)) is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
(Fib (n + 1)) * ((Fib (n + 1)) + (Fib (n + 2))) is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
((Fib (n + 1)) * ((Fib (n + 1)) + (Fib (n + 2)))) + ((Fib (n + 2)) * ((Fib (n + 2)) + ((Fib (n + 2)) + (Fib (n + 1))))) is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
(Fib (n + 1)) * ((Fib (n + 2)) + (Fib (n + 1))) is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
n + 3 is non empty epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real positive non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered left_end bounded_below Element of NAT
Fib (n + 3) is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
(Fib (n + 2)) + (Fib (n + 3)) is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
(Fib (n + 2)) * ((Fib (n + 2)) + (Fib (n + 3))) is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
((Fib (n + 1)) * ((Fib (n + 2)) + (Fib (n + 1)))) + ((Fib (n + 2)) * ((Fib (n + 2)) + (Fib (n + 3)))) is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
(Fib (n + 1)) * (Fib (n + 3)) is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
(Fib (n + 2)) * (Fib (n + 2)) is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
(Fib (n + 2)) * (Fib (n + 3)) is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
((Fib (n + 2)) * (Fib (n + 2))) + ((Fib (n + 2)) * (Fib (n + 3))) is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
((Fib (n + 1)) * (Fib (n + 3))) + (((Fib (n + 2)) * (Fib (n + 2))) + ((Fib (n + 2)) * (Fib (n + 3)))) is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
(Fib (n + 3)) * ((Fib (n + 1)) + (Fib (n + 2))) is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
((Fib (n + 3)) * ((Fib (n + 1)) + (Fib (n + 2)))) + ((Fib (n + 2)) ^2) is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
(Fib (n + 3)) ^2 is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
(Fib (n + 3)) * (Fib (n + 3)) is epsilon-transitive epsilon-connected ordinal natural V11() real integer ext-real non negative set
((Fib (n + 3)) ^2) + ((Fib (n + 2)) ^2) is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
(Fib 1) ^2 is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
(Fib 1) * (Fib 1) is epsilon-transitive epsilon-connected ordinal natural V11() real integer ext-real non negative set
1 + 1 is non empty epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real positive non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered left_end bounded_below Element of NAT
Fib (1 + 1) is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
(Fib (1 + 1)) ^2 is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
(Fib (1 + 1)) * (Fib (1 + 1)) is epsilon-transitive epsilon-connected ordinal natural V11() real integer ext-real non negative set
((Fib 1) ^2) + ((Fib (1 + 1)) ^2) is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
2 * 1 is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered even bounded_below Element of NAT
(2 * 1) + 1 is non empty epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real positive non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered non even left_end bounded_below Element of NAT
Fib ((2 * 1) + 1) is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
n is epsilon-transitive epsilon-connected ordinal natural V11() real integer ext-real non negative set
n + 1 is non empty epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real positive non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered left_end bounded_below Element of NAT
Fib (n + 1) is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
Fib n is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
(Fib 1) * (Fib (n + 1)) is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
1 -' 1 is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
Fib (1 -' 1) is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
(Fib (1 -' 1)) * (Fib n) is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
((Fib 1) * (Fib (n + 1))) + ((Fib (1 -' 1)) * (Fib n)) is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
1 * (Fib (n + 1)) is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
0 * (Fib n) is empty epsilon-transitive epsilon-connected ordinal T-Sequence-like c=-linear natural V11() real integer Relation-like non-empty empty-yielding NAT -defined RAT -valued Function-like one-to-one constant functional finite finite-yielding V40() FinSequence-like FinSubsequence-like FinSequence-membered V47() ext-real non positive non negative V76() V77() V78() V79() complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered V92() bounded_below bounded_above real-bounded V120() Element of NAT
(1 * (Fib (n + 1))) + (0 * (Fib n)) is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
n + 1 is non empty epsilon-transitive epsilon-connected ordinal natural V11() real integer ext-real positive non negative set
Fib (n + 1) is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
n is non empty epsilon-transitive epsilon-connected ordinal natural V11() real integer ext-real positive non negative set
n + n is non empty epsilon-transitive epsilon-connected ordinal natural V11() real integer ext-real positive non negative set
Fib (n + n) is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
Fib n is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
(Fib n) * (Fib (n + 1)) is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
n -' 1 is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
Fib (n -' 1) is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
(Fib (n -' 1)) * (Fib n) is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
((Fib n) * (Fib (n + 1))) + ((Fib (n -' 1)) * (Fib n)) is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
n + 1 is non empty epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real positive non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered left_end bounded_below Element of NAT
n + (n + 1) is non empty epsilon-transitive epsilon-connected ordinal natural V11() real integer ext-real positive non negative set
Fib (n + (n + 1)) is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
Fib (n + 1) is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
(Fib (n + 1)) * (Fib (n + 1)) is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
(n + 1) -' 1 is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
Fib ((n + 1) -' 1) is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
(Fib ((n + 1) -' 1)) * (Fib n) is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
((Fib (n + 1)) * (Fib (n + 1))) + ((Fib ((n + 1) -' 1)) * (Fib n)) is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
n + 2 is non empty epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real positive non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered left_end bounded_below Element of NAT
n + (n + 2) is non empty epsilon-transitive epsilon-connected ordinal natural V11() real integer ext-real positive non negative set
Fib (n + (n + 2)) is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
Fib (n + 2) is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
(Fib (n + 2)) * (Fib (n + 1)) is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
(n + 2) -' 1 is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
Fib ((n + 2) -' 1) is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
(Fib ((n + 2) -' 1)) * (Fib n) is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
((Fib (n + 2)) * (Fib (n + 1))) + ((Fib ((n + 2) -' 1)) * (Fib n)) is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
(Fib (n + 1)) * (Fib (n + 2)) is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
n + (n + 2) is non empty epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real positive non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered left_end bounded_below Element of NAT
Fib (n + (n + 2)) is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
(n + n) + 2 is non empty epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real positive non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered left_end bounded_below Element of NAT
Fib ((n + n) + 2) is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
(n + n) + 1 is non empty epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real positive non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered left_end bounded_below Element of NAT
Fib ((n + n) + 1) is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
(Fib (n + n)) + (Fib ((n + n) + 1)) is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
n + (1 -' 1) is non empty epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real positive non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered left_end bounded_below Element of NAT
Fib (n + (1 -' 1)) is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
(Fib (n + (1 -' 1))) * (Fib n) is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
((Fib (n + 1)) * (Fib (n + 1))) + ((Fib (n + (1 -' 1))) * (Fib n)) is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
(((Fib n) * (Fib (n + 1))) + ((Fib (n -' 1)) * (Fib n))) + (((Fib (n + 1)) * (Fib (n + 1))) + ((Fib (n + (1 -' 1))) * (Fib n))) is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
n + 0 is non empty epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real positive non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered left_end bounded_below Element of NAT
Fib (n + 0) is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
(Fib (n + 0)) * (Fib n) is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
((Fib (n + 1)) * (Fib (n + 1))) + ((Fib (n + 0)) * (Fib n)) is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
(((Fib n) * (Fib (n + 1))) + ((Fib (n -' 1)) * (Fib n))) + (((Fib (n + 1)) * (Fib (n + 1))) + ((Fib (n + 0)) * (Fib n))) is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
(Fib n) + (Fib (n + 1)) is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
(Fib (n + 1)) * ((Fib n) + (Fib (n + 1))) is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
(Fib (n -' 1)) + (Fib n) is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
(Fib n) * ((Fib (n -' 1)) + (Fib n)) is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
((Fib (n + 1)) * ((Fib n) + (Fib (n + 1)))) + ((Fib n) * ((Fib (n -' 1)) + (Fib n))) is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
((Fib (n + 1)) * (Fib (n + 2))) + ((Fib n) * ((Fib (n -' 1)) + (Fib n))) is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
(n -' 1) + 1 is non empty epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real positive non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered left_end bounded_below Element of NAT
Fib ((n -' 1) + 1) is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
(Fib (n -' 1)) + (Fib ((n -' 1) + 1)) is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
(Fib n) * ((Fib (n -' 1)) + (Fib ((n -' 1) + 1))) is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
((Fib (n + 1)) * (Fib (n + 2))) + ((Fib n) * ((Fib (n -' 1)) + (Fib ((n -' 1) + 1)))) is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
(n -' 1) + 2 is non empty epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real positive non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered left_end bounded_below Element of NAT
Fib ((n -' 1) + 2) is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
(Fib n) * (Fib ((n -' 1) + 2)) is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
((Fib (n + 2)) * (Fib (n + 1))) + ((Fib n) * (Fib ((n -' 1) + 2))) is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
2 -' 1 is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
2 - 1 is V11() real integer ext-real set
n + 2 is non empty epsilon-transitive epsilon-connected ordinal natural V11() real integer ext-real positive non negative set
Fib (n + 2) is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
(Fib 2) * (Fib (n + 1)) is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
Fib (2 -' 1) is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
(Fib (2 -' 1)) * (Fib n) is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
((Fib 2) * (Fib (n + 1))) + ((Fib (2 -' 1)) * (Fib n)) is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
n is non empty epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real positive non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered left_end bounded_below Element of NAT
n + n is non empty epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real positive non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered left_end bounded_below Element of NAT
Fib (n + n) is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
Fib n is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
(Fib n) * (Fib (n + 1)) is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
n -' 1 is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
Fib (n -' 1) is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
(Fib (n -' 1)) * (Fib n) is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
((Fib n) * (Fib (n + 1))) + ((Fib (n -' 1)) * (Fib n)) is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
n is epsilon-transitive epsilon-connected ordinal natural V11() real integer ext-real non negative set
n is non empty epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real positive non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered left_end bounded_below Element of NAT
Fib n is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
n * n is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
Fib (n * n) is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
C is epsilon-transitive epsilon-connected ordinal natural V11() real integer ext-real non negative set
n * C is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
Fib (n * C) is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
C + 1 is non empty epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real positive non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered left_end bounded_below Element of NAT
n * (C + 1) is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
Fib (n * (C + 1)) is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
(n * C) + n is non empty epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real positive non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered left_end bounded_below Element of NAT
Fib ((n * C) + n) is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
(n * C) + 1 is non empty epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real positive non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered left_end bounded_below Element of NAT
Fib ((n * C) + 1) is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
(Fib n) * (Fib ((n * C) + 1)) is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
n -' 1 is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
Fib (n -' 1) is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
(Fib (n * C)) * (Fib (n -' 1)) is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
((Fib n) * (Fib ((n * C) + 1))) + ((Fib (n * C)) * (Fib (n -' 1))) is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
n * 0 is empty epsilon-transitive epsilon-connected ordinal T-Sequence-like c=-linear natural V11() real integer Relation-like non-empty empty-yielding NAT -defined RAT -valued Function-like one-to-one constant functional finite finite-yielding V40() FinSequence-like FinSubsequence-like FinSequence-membered V47() ext-real non positive non negative V76() V77() V78() V79() complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered V92() bounded_below bounded_above real-bounded V120() Element of NAT
Fib (n * 0) is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
n is epsilon-transitive epsilon-connected ordinal natural V11() real integer ext-real non negative set
Fib n is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
n is non empty epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real positive non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered left_end bounded_below Element of NAT
Fib n is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
C is epsilon-transitive epsilon-connected ordinal natural V11() real integer ext-real non negative set
n * C is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
n is epsilon-transitive epsilon-connected ordinal natural V11() real integer ext-real non negative set
Fib n is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
n + 1 is non empty epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real positive non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered left_end bounded_below Element of NAT
Fib (n + 1) is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
0 + 1 is non empty epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real positive non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered left_end bounded_below Element of NAT
Fib (0 + 1) is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
n is epsilon-transitive epsilon-connected ordinal natural V11() real integer ext-real non negative set
Fib n is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
n + 1 is non empty epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real positive non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered left_end bounded_below Element of NAT
Fib (n + 1) is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
(n + 1) + 1 is non empty epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real positive non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered left_end bounded_below Element of NAT
Fib ((n + 1) + 1) is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
n + 2 is non empty epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real positive non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered left_end bounded_below Element of NAT
Fib (n + 2) is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
(n + 2) + 1 is non empty epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real positive non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered left_end bounded_below Element of NAT
Fib ((n + 2) + 1) is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
(Fib n) + (Fib (n + 1)) is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
(Fib (n + 1)) + (Fib (n + 2)) is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
n + 3 is non empty epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real positive non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered left_end bounded_below Element of NAT
Fib (n + 3) is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
1 + 1 is non empty epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real positive non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered left_end bounded_below Element of NAT
Fib (1 + 1) is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
n is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
n + 1 is non empty epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real positive non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered left_end bounded_below Element of NAT
Fib (n + 1) is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
Fib n is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
3 + 1 is non empty epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real positive non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered left_end bounded_below Element of NAT
Fib (3 + 1) is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
n is non empty non trivial epsilon-transitive epsilon-connected ordinal natural V11() real integer ext-real positive non negative non empty-membered set
n + 1 is non empty epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real positive non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered left_end bounded_below Element of NAT
Fib (n + 1) is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
Fib n is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
(n + 1) + 1 is non empty epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real positive non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered left_end bounded_below Element of NAT
Fib ((n + 1) + 1) is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
n + 2 is non empty epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real positive non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered left_end bounded_below Element of NAT
(n + 2) + 1 is non empty epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real positive non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered left_end bounded_below Element of NAT
Fib ((n + 2) + 1) is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
Fib (n + 2) is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
(Fib (n + 1)) + (Fib (n + 2)) is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
(Fib n) + (Fib (n + 1)) is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
n + 3 is non empty epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real positive non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered left_end bounded_below Element of NAT
Fib (n + 3) is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
2 + 1 is non empty epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real positive non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered left_end bounded_below Element of NAT
Fib (2 + 1) is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
n is epsilon-transitive epsilon-connected ordinal natural V11() real integer ext-real non negative set
Fib n is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
n is epsilon-transitive epsilon-connected ordinal natural V11() real integer ext-real non negative set
Fib n is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
C is epsilon-transitive epsilon-connected ordinal natural V11() real integer ext-real non negative set
n + C is epsilon-transitive epsilon-connected ordinal natural V11() real integer ext-real non negative set
C is epsilon-transitive epsilon-connected ordinal natural V11() real integer ext-real non negative set
C + 1 is non empty epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real positive non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered left_end bounded_below Element of NAT
r is epsilon-transitive epsilon-connected ordinal natural V11() real integer ext-real non negative set
Fib r is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
r + (C + 1) is non empty epsilon-transitive epsilon-connected ordinal natural V11() real integer ext-real positive non negative set
Fib (r + (C + 1)) is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
r + (C + 1) is non empty epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real positive non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered left_end bounded_below Element of NAT
r + C is epsilon-transitive epsilon-connected ordinal natural V11() real integer ext-real non negative set
(r + C) + 1 is non empty epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real positive non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered left_end bounded_below Element of NAT
Fib (r + C) is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
Fib (r + (C + 1)) is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
C is epsilon-transitive epsilon-connected ordinal natural V11() real integer ext-real non negative set
r is epsilon-transitive epsilon-connected ordinal natural V11() real integer ext-real non negative set
Fib r is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
r + C is epsilon-transitive epsilon-connected ordinal natural V11() real integer ext-real non negative set
Fib (r + C) is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
k is epsilon-transitive epsilon-connected ordinal natural V11() real integer ext-real non negative set
Fib k is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
k + 0 is epsilon-transitive epsilon-connected ordinal natural V11() real integer ext-real non negative set
Fib (k + 0) is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
n is epsilon-transitive epsilon-connected ordinal natural V11() real integer ext-real non negative set
Fib n is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
n is epsilon-transitive epsilon-connected ordinal natural V11() real integer ext-real non negative set
Fib n is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
C is epsilon-transitive epsilon-connected ordinal natural V11() real integer ext-real non negative set
n + C is epsilon-transitive epsilon-connected ordinal natural V11() real integer ext-real non negative set
k is non empty epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real positive non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered left_end bounded_below Element of NAT
RR is non empty epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real positive non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered left_end bounded_below Element of NAT
k + RR is non empty epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real positive non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered left_end bounded_below Element of NAT
Fib (k + RR) is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
Fib k is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
p1 is non empty epsilon-transitive epsilon-connected ordinal natural V11() real integer ext-real positive non negative set
k + p1 is non empty epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real positive non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered left_end bounded_below Element of NAT
Fib (k + p1) is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
p1 + 1 is non empty epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real positive non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered left_end bounded_below Element of NAT
k + (p1 + 1) is non empty epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real positive non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered left_end bounded_below Element of NAT
Fib (k + (p1 + 1)) is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
0 + 1 is non empty epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real positive non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered left_end bounded_below Element of NAT
(k + p1) + 1 is non empty epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real positive non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered left_end bounded_below Element of NAT
Fib ((k + p1) + 1) is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
k + 1 is non empty epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real positive non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered left_end bounded_below Element of NAT
Fib (k + 1) is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
C is non empty epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real positive non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered left_end bounded_below Element of NAT
r is non empty epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real positive non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered left_end bounded_below Element of NAT
C + r is non empty epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real positive non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered left_end bounded_below Element of NAT
Fib (C + r) is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
Fib C is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
n is epsilon-transitive epsilon-connected ordinal natural V11() real integer ext-real non negative set
Fib n is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
n is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
n is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
Fib n is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
Fib n is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
1 + 1 is non empty epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real positive non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered left_end bounded_below Element of NAT
n is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
n is epsilon-transitive epsilon-connected ordinal natural V11() real integer ext-real non negative set
n is epsilon-transitive epsilon-connected ordinal natural V11() real integer ext-real non negative set
C is epsilon-transitive epsilon-connected ordinal natural V11() real integer ext-real non negative set
n * C is epsilon-transitive epsilon-connected ordinal natural V11() real integer ext-real non negative set
n is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
Fib n is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
n is non empty epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real positive non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered left_end bounded_below Element of NAT
Fib n is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
n is Relation-like NAT -defined NAT -valued Function-like V29( NAT , NAT ) V76() V77() V78() V79() Element of bool [:NAT,NAT:]
n is Relation-like NAT -defined NAT -valued Function-like V29( NAT , NAT ) V76() V77() V78() V79() Element of bool [:NAT,NAT:]
n is Relation-like NAT -defined NAT -valued Function-like V29( NAT , NAT ) V76() V77() V78() V79() Element of bool [:NAT,NAT:]
() is Relation-like NAT -defined NAT -valued Function-like V29( NAT , NAT ) V76() V77() V78() V79() Element of bool [:NAT,NAT:]
{ (2 * b1) where b1 is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT : verum } is set
{ H1(b1) where b1 is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT : S1[b1] } is set
{ ((2 * b1) + 1) where b1 is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT : verum } is set
{ H1(b1) where b1 is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT : S1[b1] } is set
() is complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of bool NAT
() is complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of bool NAT
n is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
2 * n is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered even bounded_below Element of NAT
(2 * n) + 1 is non empty epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real positive non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered non even left_end bounded_below Element of NAT
n is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
2 * n is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered even bounded_below Element of NAT
n is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
2 * n is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered even bounded_below Element of NAT
(2 * n) + 1 is non empty epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real positive non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered non even left_end bounded_below Element of NAT
n is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
2 * n is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered even bounded_below Element of NAT
(2 * n) + 1 is non empty epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real positive non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered non even left_end bounded_below Element of NAT
n is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
Seg n is finite n -element with_non-empty_elements complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below bounded_above real-bounded Element of bool NAT
{ b1 where b1 is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT : ( 1 <= b1 & b1 <= n ) } is set
() /\ (Seg n) is finite with_non-empty_elements complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below bounded_above real-bounded set
((),(() /\ (Seg n))) is Relation-like NAT -defined REAL -valued Function-like finite FinSequence-like FinSubsequence-like V76() V77() V78() FinSequence of NAT
() | (() /\ (Seg n)) is Relation-like () /\ (Seg n) -defined NAT -defined NAT -valued RAT -valued Function-like finite FinSubsequence-like V76() V77() V78() V79() set
Seq (() | (() /\ (Seg n))) is Relation-like NAT -defined Function-like finite FinSequence-like FinSubsequence-like set
dom (() | (() /\ (Seg n))) is finite set
Sgm (dom (() | (() /\ (Seg n)))) is Relation-like NAT -defined NAT -valued Function-like finite FinSequence-like FinSubsequence-like V76() V77() V78() V79() FinSequence of NAT
(Sgm (dom (() | (() /\ (Seg n))))) (#) (() | (() /\ (Seg n))) is Relation-like NAT -defined NAT -valued RAT -valued Function-like finite V76() V77() V78() V79() set
() /\ (Seg n) is finite with_non-empty_elements complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below bounded_above real-bounded set
((),(() /\ (Seg n))) is Relation-like NAT -defined REAL -valued Function-like finite FinSequence-like FinSubsequence-like V76() V77() V78() FinSequence of NAT
() | (() /\ (Seg n)) is Relation-like () /\ (Seg n) -defined NAT -defined NAT -valued RAT -valued Function-like finite FinSubsequence-like V76() V77() V78() V79() set
Seq (() | (() /\ (Seg n))) is Relation-like NAT -defined Function-like finite FinSequence-like FinSubsequence-like set
dom (() | (() /\ (Seg n))) is finite set
Sgm (dom (() | (() /\ (Seg n)))) is Relation-like NAT -defined NAT -valued Function-like finite FinSequence-like FinSubsequence-like V76() V77() V78() V79() FinSequence of NAT
(Sgm (dom (() | (() /\ (Seg n))))) (#) (() | (() /\ (Seg n))) is Relation-like NAT -defined NAT -valued RAT -valued Function-like finite V76() V77() V78() V79() set
(0) is Relation-like NAT -defined REAL -valued Function-like finite FinSequence-like FinSubsequence-like V76() V77() V78() FinSequence of NAT
Seg 0 is empty epsilon-transitive epsilon-connected ordinal T-Sequence-like c=-linear natural V11() real integer Relation-like non-empty empty-yielding NAT -defined RAT -valued Function-like one-to-one constant functional finite finite-yielding V40() 0 -element FinSequence-like FinSubsequence-like FinSequence-membered ext-real non positive non negative with_non-empty_elements V76() V77() V78() V79() complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered V92() bounded_below bounded_above real-bounded V120() Element of bool NAT
{ b1 where b1 is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT : ( 1 <= b1 & b1 <= 0 ) } is set
() /\ (Seg 0) is Relation-like finite with_non-empty_elements complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below bounded_above real-bounded set
((),(() /\ (Seg 0))) is Relation-like NAT -defined REAL -valued Function-like finite FinSequence-like FinSubsequence-like V76() V77() V78() FinSequence of NAT
() | (() /\ (Seg 0)) is Relation-like () /\ (Seg 0) -defined NAT -defined NAT -valued RAT -valued Function-like finite FinSubsequence-like V76() V77() V78() V79() set
Seq (() | (() /\ (Seg 0))) is Relation-like NAT -defined Function-like finite FinSequence-like FinSubsequence-like set
dom (() | (() /\ (Seg 0))) is finite set
Sgm (dom (() | (() /\ (Seg 0)))) is Relation-like NAT -defined NAT -valued Function-like finite FinSequence-like FinSubsequence-like V76() V77() V78() V79() FinSequence of NAT
(Sgm (dom (() | (() /\ (Seg 0))))) (#) (() | (() /\ (Seg 0))) is Relation-like NAT -defined NAT -valued RAT -valued Function-like finite V76() V77() V78() V79() set
{2} is non empty finite with_non-empty_elements non empty-membered complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered left_end right_end bounded_below bounded_above real-bounded Element of bool NAT
() | {2} is Relation-like {2} -defined NAT -defined NAT -valued RAT -valued Function-like finite FinSubsequence-like V76() V77() V78() V79() set
Seq (() | {2}) is Relation-like NAT -defined Function-like finite FinSequence-like FinSubsequence-like set
dom (() | {2}) is finite set
Sgm (dom (() | {2})) is Relation-like NAT -defined NAT -valued Function-like finite FinSequence-like FinSubsequence-like V76() V77() V78() V79() FinSequence of NAT
(Sgm (dom (() | {2}))) (#) (() | {2}) is Relation-like NAT -defined NAT -valued RAT -valued Function-like finite V76() V77() V78() V79() set
<*1*> is non empty Relation-like NAT -defined NAT -valued Function-like finite 1 -element FinSequence-like FinSubsequence-like V76() V77() V78() V79() FinSequence of NAT
[1,1] is set
{1,1} is non empty finite with_non-empty_elements non empty-membered complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered left_end right_end bounded_below bounded_above real-bounded set
{{1,1},{1}} is non empty finite V40() with_non-empty_elements non empty-membered set
{[1,1]} is non empty Relation-like Function-like finite set
() . 2 is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
[2,(() . 2)] is Element of [:NAT,NAT:]
{2,(() . 2)} is non empty finite complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered left_end right_end bounded_below bounded_above real-bounded set
{2} is non empty finite with_non-empty_elements non empty-membered complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered left_end right_end bounded_below bounded_above real-bounded set
{{2,(() . 2)},{2}} is non empty finite V40() with_non-empty_elements non empty-membered set
{[2,(() . 2)]} is non empty Relation-like Function-like finite set
n is Relation-like Function-like set
dom n is set
n is set
dom () is set
n is Relation-like NAT -defined Function-like FinSubsequence-like set
Seq n is Relation-like NAT -defined Function-like finite FinSequence-like FinSubsequence-like set
dom n is set
Sgm (dom n) is Relation-like NAT -defined NAT -valued Function-like finite FinSequence-like FinSubsequence-like V76() V77() V78() V79() FinSequence of NAT
(Sgm (dom n)) (#) n is Relation-like NAT -defined Function-like finite set
<*(() . 2)*> is non empty Relation-like NAT -defined NAT -valued Function-like finite 1 -element FinSequence-like FinSubsequence-like V76() V77() V78() V79() FinSequence of NAT
[1,(() . 2)] is set
{1,(() . 2)} is non empty finite complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered left_end right_end bounded_below bounded_above real-bounded set
{{1,(() . 2)},{1}} is non empty finite V40() with_non-empty_elements non empty-membered set
{[1,(() . 2)]} is non empty Relation-like Function-like finite set
(2) is Relation-like NAT -defined REAL -valued Function-like finite FinSequence-like FinSubsequence-like V76() V77() V78() FinSequence of NAT
() /\ (Seg 2) is finite with_non-empty_elements complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below bounded_above real-bounded set
((),(() /\ (Seg 2))) is Relation-like NAT -defined REAL -valued Function-like finite FinSequence-like FinSubsequence-like V76() V77() V78() FinSequence of NAT
() | (() /\ (Seg 2)) is Relation-like () /\ (Seg 2) -defined NAT -defined NAT -valued RAT -valued Function-like finite FinSubsequence-like V76() V77() V78() V79() set
Seq (() | (() /\ (Seg 2))) is Relation-like NAT -defined Function-like finite FinSequence-like FinSubsequence-like set
dom (() | (() /\ (Seg 2))) is finite set
Sgm (dom (() | (() /\ (Seg 2)))) is Relation-like NAT -defined NAT -valued Function-like finite FinSequence-like FinSubsequence-like V76() V77() V78() V79() FinSequence of NAT
(Sgm (dom (() | (() /\ (Seg 2))))) (#) (() | (() /\ (Seg 2))) is Relation-like NAT -defined NAT -valued RAT -valued Function-like finite V76() V77() V78() V79() set
n is set
{1,2} is non empty finite with_non-empty_elements non empty-membered complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered left_end right_end bounded_below bounded_above real-bounded Element of bool NAT
() /\ {1,2} is finite with_non-empty_elements complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below bounded_above real-bounded set
2 * 0 is empty epsilon-transitive epsilon-connected ordinal T-Sequence-like c=-linear natural V11() real integer Relation-like non-empty empty-yielding NAT -defined RAT -valued Function-like one-to-one constant functional finite finite-yielding V40() FinSequence-like FinSubsequence-like FinSequence-membered V47() ext-real non positive non negative V76() V77() V78() V79() complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered V92() even bounded_below bounded_above real-bounded V120() Element of NAT
(2 * 0) + 1 is non empty epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real positive non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered non even left_end bounded_below Element of NAT
2 * 1 is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered even bounded_below Element of NAT
2 * 0 is empty epsilon-transitive epsilon-connected ordinal T-Sequence-like c=-linear natural V11() real integer Relation-like non-empty empty-yielding NAT -defined RAT -valued Function-like one-to-one constant functional finite finite-yielding V40() FinSequence-like FinSubsequence-like FinSequence-membered V47() ext-real non positive non negative V76() V77() V78() V79() complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered V92() even bounded_below bounded_above real-bounded V120() Element of NAT
(2 * 0) + 1 is non empty epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real positive non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered non even left_end bounded_below Element of NAT
2 * 1 is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered even bounded_below Element of NAT
() . 2 is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
[2,(() . 2)] is Element of [:NAT,NAT:]
{2,(() . 2)} is non empty finite complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered left_end right_end bounded_below bounded_above real-bounded set
{2} is non empty finite with_non-empty_elements non empty-membered complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered left_end right_end bounded_below bounded_above real-bounded set
{{2,(() . 2)},{2}} is non empty finite V40() with_non-empty_elements non empty-membered set
{[2,(() . 2)]} is non empty Relation-like Function-like finite set
dom () is set
C is set
2 * 1 is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered even bounded_below Element of NAT
n is Relation-like NAT -defined Function-like FinSubsequence-like set
Seq n is Relation-like NAT -defined Function-like finite FinSequence-like FinSubsequence-like set
dom n is set
Sgm (dom n) is Relation-like NAT -defined NAT -valued Function-like finite FinSequence-like FinSubsequence-like V76() V77() V78() V79() FinSequence of NAT
(Sgm (dom n)) (#) n is Relation-like NAT -defined Function-like finite set
<*(() . 2)*> is non empty Relation-like NAT -defined NAT -valued Function-like finite 1 -element FinSequence-like FinSubsequence-like V76() V77() V78() V79() FinSequence of NAT
[1,(() . 2)] is set
{1,(() . 2)} is non empty finite complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered left_end right_end bounded_below bounded_above real-bounded set
{{1,(() . 2)},{1}} is non empty finite V40() with_non-empty_elements non empty-membered set
{[1,(() . 2)]} is non empty Relation-like Function-like finite set
(4) is Relation-like NAT -defined REAL -valued Function-like finite FinSequence-like FinSubsequence-like V76() V77() V78() FinSequence of NAT
() /\ (Seg 4) is finite with_non-empty_elements complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below bounded_above real-bounded set
((),(() /\ (Seg 4))) is Relation-like NAT -defined REAL -valued Function-like finite FinSequence-like FinSubsequence-like V76() V77() V78() FinSequence of NAT
() | (() /\ (Seg 4)) is Relation-like () /\ (Seg 4) -defined NAT -defined NAT -valued RAT -valued Function-like finite FinSubsequence-like V76() V77() V78() V79() set
Seq (() | (() /\ (Seg 4))) is Relation-like NAT -defined Function-like finite FinSequence-like FinSubsequence-like set
dom (() | (() /\ (Seg 4))) is finite set
Sgm (dom (() | (() /\ (Seg 4)))) is Relation-like NAT -defined NAT -valued Function-like finite FinSequence-like FinSubsequence-like V76() V77() V78() V79() FinSequence of NAT
(Sgm (dom (() | (() /\ (Seg 4))))) (#) (() | (() /\ (Seg 4))) is Relation-like NAT -defined NAT -valued RAT -valued Function-like finite V76() V77() V78() V79() set
<*1,3*> is non empty Relation-like NAT -defined Function-like finite 2 -element FinSequence-like FinSubsequence-like set
<*1*> is non empty Relation-like NAT -defined Function-like finite 1 -element FinSequence-like FinSubsequence-like set
<*3*> is non empty Relation-like NAT -defined Function-like finite 1 -element FinSequence-like FinSubsequence-like set
[1,3] is set
{1,3} is non empty finite with_non-empty_elements non empty-membered complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered left_end right_end bounded_below bounded_above real-bounded set
{{1,3},{1}} is non empty finite V40() with_non-empty_elements non empty-membered set
{[1,3]} is non empty Relation-like Function-like finite set
<*1*> ^ <*3*> is non empty Relation-like NAT -defined Function-like finite 1 + 1 -element FinSequence-like FinSubsequence-like set
1 + 1 is non empty epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real positive non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered left_end bounded_below Element of NAT
n is set
{1,2,3,4} is finite with_non-empty_elements complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below bounded_above real-bounded Element of bool NAT
() /\ {1,2,3,4} is finite with_non-empty_elements complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below bounded_above real-bounded set
2 * 0 is empty epsilon-transitive epsilon-connected ordinal T-Sequence-like c=-linear natural V11() real integer Relation-like non-empty empty-yielding NAT -defined RAT -valued Function-like one-to-one constant functional finite finite-yielding V40() FinSequence-like FinSubsequence-like FinSequence-membered V47() ext-real non positive non negative V76() V77() V78() V79() complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered V92() even bounded_below bounded_above real-bounded V120() Element of NAT
(2 * 0) + 1 is non empty epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real positive non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered non even left_end bounded_below Element of NAT
{2,4} is non empty finite with_non-empty_elements non empty-membered complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered left_end right_end bounded_below bounded_above real-bounded Element of bool NAT
2 * 1 is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered even bounded_below Element of NAT
{2,4} is non empty finite with_non-empty_elements non empty-membered complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered left_end right_end bounded_below bounded_above real-bounded Element of bool NAT
2 * 1 is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered even bounded_below Element of NAT
(2 * 1) + 1 is non empty epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real positive non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered non even left_end bounded_below Element of NAT
{2,4} is non empty finite with_non-empty_elements non empty-membered complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered left_end right_end bounded_below bounded_above real-bounded Element of bool NAT
2 * 2 is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered even bounded_below Element of NAT
{2,4} is non empty finite with_non-empty_elements non empty-membered complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered left_end right_end bounded_below bounded_above real-bounded Element of bool NAT
2 * 0 is empty epsilon-transitive epsilon-connected ordinal T-Sequence-like c=-linear natural V11() real integer Relation-like non-empty empty-yielding NAT -defined RAT -valued Function-like one-to-one constant functional finite finite-yielding V40() FinSequence-like FinSubsequence-like FinSequence-membered V47() ext-real non positive non negative V76() V77() V78() V79() complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered V92() even bounded_below bounded_above real-bounded V120() Element of NAT
(2 * 0) + 1 is non empty epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real positive non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered non even left_end bounded_below Element of NAT
2 * 1 is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered even bounded_below Element of NAT
(2 * 1) + 1 is non empty epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real positive non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered non even left_end bounded_below Element of NAT
2 * 2 is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered even bounded_below Element of NAT
{2,4} is non empty finite with_non-empty_elements non empty-membered complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered left_end right_end bounded_below bounded_above real-bounded Element of bool NAT
{2,4} is non empty finite with_non-empty_elements non empty-membered complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered left_end right_end bounded_below bounded_above real-bounded Element of bool NAT
() . 2 is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
[2,(() . 2)] is Element of [:NAT,NAT:]
{2,(() . 2)} is non empty finite complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered left_end right_end bounded_below bounded_above real-bounded set
{2} is non empty finite with_non-empty_elements non empty-membered complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered left_end right_end bounded_below bounded_above real-bounded set
{{2,(() . 2)},{2}} is non empty finite V40() with_non-empty_elements non empty-membered set
() . 4 is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
[4,(() . 4)] is Element of [:NAT,NAT:]
{4,(() . 4)} is non empty finite complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered left_end right_end bounded_below bounded_above real-bounded set
{4} is non empty finite with_non-empty_elements non empty-membered complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered left_end right_end bounded_below bounded_above real-bounded set
{{4,(() . 4)},{4}} is non empty finite V40() with_non-empty_elements non empty-membered set
{[2,(() . 2)],[4,(() . 4)]} is non empty Relation-like finite set
dom () is set
{4} is non empty finite with_non-empty_elements non empty-membered complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered left_end right_end bounded_below bounded_above real-bounded Element of bool NAT
{2} \/ {4} is non empty finite with_non-empty_elements non empty-membered complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered left_end right_end bounded_below bounded_above real-bounded set
() | ({2} \/ {4}) is Relation-like {2} \/ {4} -defined NAT -defined NAT -valued RAT -valued Function-like finite FinSubsequence-like V76() V77() V78() V79() set
() | {4} is Relation-like {4} -defined NAT -defined NAT -valued RAT -valued Function-like finite FinSubsequence-like V76() V77() V78() V79() set
(() | {2}) \/ (() | {4}) is Relation-like NAT -defined NAT -valued RAT -valued finite V76() V77() V78() V79() set
{[2,(() . 2)]} is non empty Relation-like Function-like finite set
{[2,(() . 2)]} \/ (() | {4}) is non empty Relation-like finite set
{[4,(() . 4)]} is non empty Relation-like Function-like finite set
{[2,(() . 2)]} \/ {[4,(() . 4)]} is non empty Relation-like finite set
n is Relation-like NAT -defined Function-like FinSubsequence-like set
C is set
2 * 1 is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered even bounded_below Element of NAT
2 * 2 is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered even bounded_below Element of NAT
Seq n is Relation-like NAT -defined Function-like finite FinSequence-like FinSubsequence-like set
dom n is set
Sgm (dom n) is Relation-like NAT -defined NAT -valued Function-like finite FinSequence-like FinSubsequence-like V76() V77() V78() V79() FinSequence of NAT
(Sgm (dom n)) (#) n is Relation-like NAT -defined Function-like finite set
<*(() . 2),(() . 4)*> is non empty Relation-like NAT -defined Function-like finite 2 -element FinSequence-like FinSubsequence-like set
<*(() . 2)*> is non empty Relation-like NAT -defined Function-like finite 1 -element FinSequence-like FinSubsequence-like set
[1,(() . 2)] is set
{1,(() . 2)} is non empty finite complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered left_end right_end bounded_below bounded_above real-bounded set
{{1,(() . 2)},{1}} is non empty finite V40() with_non-empty_elements non empty-membered set
{[1,(() . 2)]} is non empty Relation-like Function-like finite set
<*(() . 4)*> is non empty Relation-like NAT -defined Function-like finite 1 -element FinSequence-like FinSubsequence-like set
[1,(() . 4)] is set
{1,(() . 4)} is non empty finite complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered left_end right_end bounded_below bounded_above real-bounded set
{{1,(() . 4)},{1}} is non empty finite V40() with_non-empty_elements non empty-membered set
{[1,(() . 4)]} is non empty Relation-like Function-like finite set
<*(() . 2)*> ^ <*(() . 4)*> is non empty Relation-like NAT -defined Function-like finite 1 + 1 -element FinSequence-like FinSubsequence-like set
<*(Fib 2),(() . 4)*> is non empty Relation-like NAT -defined Function-like finite 2 -element FinSequence-like FinSubsequence-like set
<*(Fib 2)*> is non empty Relation-like NAT -defined Function-like finite 1 -element FinSequence-like FinSubsequence-like set
[1,(Fib 2)] is set
{1,(Fib 2)} is non empty finite complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered left_end right_end bounded_below bounded_above real-bounded set
{{1,(Fib 2)},{1}} is non empty finite V40() with_non-empty_elements non empty-membered set
{[1,(Fib 2)]} is non empty Relation-like Function-like finite set
<*(Fib 2)*> ^ <*(() . 4)*> is non empty Relation-like NAT -defined Function-like finite 1 + 1 -element FinSequence-like FinSubsequence-like set
n is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
2 * n is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered even bounded_below Element of NAT
(2 * n) + 2 is non empty epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real positive non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered even left_end bounded_below Element of NAT
Seg ((2 * n) + 2) is non empty finite (2 * n) + 2 -element with_non-empty_elements non empty-membered complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered left_end right_end bounded_below bounded_above real-bounded Element of bool NAT
{ b1 where b1 is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT : ( 1 <= b1 & b1 <= (2 * n) + 2 ) } is set
() /\ (Seg ((2 * n) + 2)) is finite with_non-empty_elements complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below bounded_above real-bounded set
(2 * n) + 4 is non empty epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real positive non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered left_end bounded_below Element of NAT
{((2 * n) + 4)} is non empty finite with_non-empty_elements non empty-membered complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered left_end right_end bounded_below bounded_above real-bounded Element of bool NAT
(() /\ (Seg ((2 * n) + 2))) \/ {((2 * n) + 4)} is non empty finite with_non-empty_elements non empty-membered complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered left_end right_end bounded_below bounded_above real-bounded set
Seg ((2 * n) + 4) is non empty finite (2 * n) + 4 -element with_non-empty_elements non empty-membered complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered left_end right_end bounded_below bounded_above real-bounded Element of bool NAT
{ b1 where b1 is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT : ( 1 <= b1 & b1 <= (2 * n) + 4 ) } is set
() /\ (Seg ((2 * n) + 4)) is finite with_non-empty_elements complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below bounded_above real-bounded set
n + 2 is non empty epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real positive non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered left_end bounded_below Element of NAT
2 * (n + 2) is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered even bounded_below Element of NAT
(2 * n) + 3 is non empty epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real positive non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered left_end bounded_below Element of NAT
n + 1 is non empty epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real positive non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered left_end bounded_below Element of NAT
2 * (n + 1) is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered even bounded_below Element of NAT
(2 * (n + 1)) + 1 is non empty epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real positive non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered non even left_end bounded_below Element of NAT
{((2 * n) + 3)} is non empty finite with_non-empty_elements non empty-membered complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered left_end right_end bounded_below bounded_above real-bounded Element of bool NAT
((2 * n) + 3) + 1 is non empty epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real positive non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered left_end bounded_below Element of NAT
Seg (((2 * n) + 3) + 1) is non empty finite ((2 * n) + 3) + 1 -element with_non-empty_elements non empty-membered complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered left_end right_end bounded_below bounded_above real-bounded Element of bool NAT
{ b1 where b1 is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT : ( 1 <= b1 & b1 <= ((2 * n) + 3) + 1 ) } is set
() /\ (Seg (((2 * n) + 3) + 1)) is finite with_non-empty_elements complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below bounded_above real-bounded set
Seg ((2 * n) + 3) is non empty finite (2 * n) + 3 -element with_non-empty_elements non empty-membered complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered left_end right_end bounded_below bounded_above real-bounded Element of bool NAT
{ b1 where b1 is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT : ( 1 <= b1 & b1 <= (2 * n) + 3 ) } is set
(Seg ((2 * n) + 3)) \/ {((2 * n) + 4)} is non empty finite with_non-empty_elements non empty-membered complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered left_end right_end bounded_below bounded_above real-bounded set
() /\ ((Seg ((2 * n) + 3)) \/ {((2 * n) + 4)}) is finite with_non-empty_elements complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below bounded_above real-bounded set
() /\ (Seg ((2 * n) + 3)) is finite with_non-empty_elements complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below bounded_above real-bounded set
() /\ {((2 * n) + 4)} is finite with_non-empty_elements complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below bounded_above real-bounded set
(() /\ (Seg ((2 * n) + 3))) \/ (() /\ {((2 * n) + 4)}) is finite with_non-empty_elements complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below bounded_above real-bounded set
((2 * n) + 2) + 1 is non empty epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real positive non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered non even left_end bounded_below Element of NAT
Seg (((2 * n) + 2) + 1) is non empty finite ((2 * n) + 2) + 1 -element with_non-empty_elements non empty-membered complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered left_end right_end bounded_below bounded_above real-bounded Element of bool NAT
{ b1 where b1 is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT : ( 1 <= b1 & b1 <= ((2 * n) + 2) + 1 ) } is set
() /\ (Seg (((2 * n) + 2) + 1)) is finite with_non-empty_elements complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below bounded_above real-bounded set
(() /\ (Seg (((2 * n) + 2) + 1))) \/ {((2 * n) + 4)} is non empty finite with_non-empty_elements non empty-membered complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered left_end right_end bounded_below bounded_above real-bounded set
(Seg ((2 * n) + 2)) \/ {((2 * n) + 3)} is non empty finite with_non-empty_elements non empty-membered complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered left_end right_end bounded_below bounded_above real-bounded set
() /\ ((Seg ((2 * n) + 2)) \/ {((2 * n) + 3)}) is finite with_non-empty_elements complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below bounded_above real-bounded set
(() /\ ((Seg ((2 * n) + 2)) \/ {((2 * n) + 3)})) \/ {((2 * n) + 4)} is non empty finite with_non-empty_elements non empty-membered complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered left_end right_end bounded_below bounded_above real-bounded set
() /\ {((2 * n) + 3)} is finite with_non-empty_elements complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below bounded_above real-bounded set
(() /\ (Seg ((2 * n) + 2))) \/ (() /\ {((2 * n) + 3)}) is finite with_non-empty_elements complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below bounded_above real-bounded set
((() /\ (Seg ((2 * n) + 2))) \/ (() /\ {((2 * n) + 3)})) \/ {((2 * n) + 4)} is non empty finite with_non-empty_elements non empty-membered complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered left_end right_end bounded_below bounded_above real-bounded set
(() /\ (Seg ((2 * n) + 2))) \/ {} is finite complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below bounded_above real-bounded set
((() /\ (Seg ((2 * n) + 2))) \/ {}) \/ {((2 * n) + 4)} is non empty finite complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered left_end right_end bounded_below bounded_above real-bounded set
n is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
2 * n is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered even bounded_below Element of NAT
(2 * n) + 2 is non empty epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real positive non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered even left_end bounded_below Element of NAT
Seg ((2 * n) + 2) is non empty finite (2 * n) + 2 -element with_non-empty_elements non empty-membered complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered left_end right_end bounded_below bounded_above real-bounded Element of bool NAT
{ b1 where b1 is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT : ( 1 <= b1 & b1 <= (2 * n) + 2 ) } is set
() /\ (Seg ((2 * n) + 2)) is finite with_non-empty_elements complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below bounded_above real-bounded set
() | (() /\ (Seg ((2 * n) + 2))) is Relation-like () /\ (Seg ((2 * n) + 2)) -defined NAT -defined NAT -valued RAT -valued Function-like finite FinSubsequence-like V76() V77() V78() V79() set
(2 * n) + 4 is non empty epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real positive non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered left_end bounded_below Element of NAT
() . ((2 * n) + 4) is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
[((2 * n) + 4),(() . ((2 * n) + 4))] is Element of [:NAT,NAT:]
{((2 * n) + 4),(() . ((2 * n) + 4))} is non empty finite complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered left_end right_end bounded_below bounded_above real-bounded set
{((2 * n) + 4)} is non empty finite with_non-empty_elements non empty-membered complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered left_end right_end bounded_below bounded_above real-bounded set
{{((2 * n) + 4),(() . ((2 * n) + 4))},{((2 * n) + 4)}} is non empty finite V40() with_non-empty_elements non empty-membered set
{[((2 * n) + 4),(() . ((2 * n) + 4))]} is non empty Relation-like Function-like finite set
(() | (() /\ (Seg ((2 * n) + 2)))) \/ {[((2 * n) + 4),(() . ((2 * n) + 4))]} is non empty Relation-like finite set
Seg ((2 * n) + 4) is non empty finite (2 * n) + 4 -element with_non-empty_elements non empty-membered complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered left_end right_end bounded_below bounded_above real-bounded Element of bool NAT
{ b1 where b1 is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT : ( 1 <= b1 & b1 <= (2 * n) + 4 ) } is set
() /\ (Seg ((2 * n) + 4)) is finite with_non-empty_elements complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below bounded_above real-bounded set
() | (() /\ (Seg ((2 * n) + 4))) is Relation-like () /\ (Seg ((2 * n) + 4)) -defined NAT -defined NAT -valued RAT -valued Function-like finite FinSubsequence-like V76() V77() V78() V79() set
dom () is set
{((2 * n) + 4)} is non empty finite with_non-empty_elements non empty-membered complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered left_end right_end bounded_below bounded_above real-bounded Element of bool NAT
(() /\ (Seg ((2 * n) + 2))) \/ {((2 * n) + 4)} is non empty finite with_non-empty_elements non empty-membered complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered left_end right_end bounded_below bounded_above real-bounded set
() | ((() /\ (Seg ((2 * n) + 2))) \/ {((2 * n) + 4)}) is Relation-like (() /\ (Seg ((2 * n) + 2))) \/ {((2 * n) + 4)} -defined NAT -defined NAT -valued RAT -valued Function-like finite FinSubsequence-like V76() V77() V78() V79() set
() | {((2 * n) + 4)} is Relation-like {((2 * n) + 4)} -defined NAT -defined NAT -valued RAT -valued Function-like finite FinSubsequence-like V76() V77() V78() V79() set
(() | (() /\ (Seg ((2 * n) + 2)))) \/ (() | {((2 * n) + 4)}) is Relation-like NAT -defined NAT -valued RAT -valued finite V76() V77() V78() V79() set
n is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
2 * n is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered even bounded_below Element of NAT
(2 * n) + 2 is non empty epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real positive non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered even left_end bounded_below Element of NAT
(((2 * n) + 2)) is Relation-like NAT -defined REAL -valued Function-like finite FinSequence-like FinSubsequence-like V76() V77() V78() FinSequence of NAT
Seg ((2 * n) + 2) is non empty finite (2 * n) + 2 -element with_non-empty_elements non empty-membered complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered left_end right_end bounded_below bounded_above real-bounded Element of bool NAT
{ b1 where b1 is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT : ( 1 <= b1 & b1 <= (2 * n) + 2 ) } is set
() /\ (Seg ((2 * n) + 2)) is finite with_non-empty_elements complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below bounded_above real-bounded set
((),(() /\ (Seg ((2 * n) + 2)))) is Relation-like NAT -defined REAL -valued Function-like finite FinSequence-like FinSubsequence-like V76() V77() V78() FinSequence of NAT
() | (() /\ (Seg ((2 * n) + 2))) is Relation-like () /\ (Seg ((2 * n) + 2)) -defined NAT -defined NAT -valued RAT -valued Function-like finite FinSubsequence-like V76() V77() V78() V79() set
Seq (() | (() /\ (Seg ((2 * n) + 2)))) is Relation-like NAT -defined Function-like finite FinSequence-like FinSubsequence-like set
dom (() | (() /\ (Seg ((2 * n) + 2)))) is finite set
Sgm (dom (() | (() /\ (Seg ((2 * n) + 2))))) is Relation-like NAT -defined NAT -valued Function-like finite FinSequence-like FinSubsequence-like V76() V77() V78() V79() FinSequence of NAT
(Sgm (dom (() | (() /\ (Seg ((2 * n) + 2)))))) (#) (() | (() /\ (Seg ((2 * n) + 2)))) is Relation-like NAT -defined NAT -valued RAT -valued Function-like finite V76() V77() V78() V79() set
((2 * n)) is Relation-like NAT -defined REAL -valued Function-like finite FinSequence-like FinSubsequence-like V76() V77() V78() FinSequence of NAT
Seg (2 * n) is finite 2 * n -element with_non-empty_elements complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below bounded_above real-bounded Element of bool NAT
{ b1 where b1 is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT : ( 1 <= b1 & b1 <= 2 * n ) } is set
() /\ (Seg (2 * n)) is finite with_non-empty_elements complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below bounded_above real-bounded set
((),(() /\ (Seg (2 * n)))) is Relation-like NAT -defined REAL -valued Function-like finite FinSequence-like FinSubsequence-like V76() V77() V78() FinSequence of NAT
() | (() /\ (Seg (2 * n))) is Relation-like () /\ (Seg (2 * n)) -defined NAT -defined NAT -valued RAT -valued Function-like finite FinSubsequence-like V76() V77() V78() V79() set
Seq (() | (() /\ (Seg (2 * n)))) is Relation-like NAT -defined Function-like finite FinSequence-like FinSubsequence-like set
dom (() | (() /\ (Seg (2 * n)))) is finite set
Sgm (dom (() | (() /\ (Seg (2 * n))))) is Relation-like NAT -defined NAT -valued Function-like finite FinSequence-like FinSubsequence-like V76() V77() V78() V79() FinSequence of NAT
(Sgm (dom (() | (() /\ (Seg (2 * n)))))) (#) (() | (() /\ (Seg (2 * n)))) is Relation-like NAT -defined NAT -valued RAT -valued Function-like finite V76() V77() V78() V79() set
Fib ((2 * n) + 2) is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
<*(Fib ((2 * n) + 2))*> is non empty Relation-like NAT -defined NAT -valued Function-like finite 1 -element FinSequence-like FinSubsequence-like V76() V77() V78() V79() FinSequence of NAT
[1,(Fib ((2 * n) + 2))] is set
{1,(Fib ((2 * n) + 2))} is non empty finite complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered left_end right_end bounded_below bounded_above real-bounded set
{{1,(Fib ((2 * n) + 2))},{1}} is non empty finite V40() with_non-empty_elements non empty-membered set
{[1,(Fib ((2 * n) + 2))]} is non empty Relation-like Function-like finite set
((2 * n)) ^ <*(Fib ((2 * n) + 2))*> is non empty Relation-like NAT -defined NAT -valued Function-like finite FinSequence-like FinSubsequence-like V76() V77() V78() V79() FinSequence of NAT
n is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
2 * n is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered even bounded_below Element of NAT
(2 * n) + 2 is non empty epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real positive non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered even left_end bounded_below Element of NAT
(((2 * n) + 2)) is Relation-like NAT -defined REAL -valued Function-like finite FinSequence-like FinSubsequence-like V76() V77() V78() FinSequence of NAT
Seg ((2 * n) + 2) is non empty finite (2 * n) + 2 -element with_non-empty_elements non empty-membered complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered left_end right_end bounded_below bounded_above real-bounded Element of bool NAT
{ b1 where b1 is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT : ( 1 <= b1 & b1 <= (2 * n) + 2 ) } is set
() /\ (Seg ((2 * n) + 2)) is finite with_non-empty_elements complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below bounded_above real-bounded set
((),(() /\ (Seg ((2 * n) + 2)))) is Relation-like NAT -defined REAL -valued Function-like finite FinSequence-like FinSubsequence-like V76() V77() V78() FinSequence of NAT
() | (() /\ (Seg ((2 * n) + 2))) is Relation-like () /\ (Seg ((2 * n) + 2)) -defined NAT -defined NAT -valued RAT -valued Function-like finite FinSubsequence-like V76() V77() V78() V79() set
Seq (() | (() /\ (Seg ((2 * n) + 2)))) is Relation-like NAT -defined Function-like finite FinSequence-like FinSubsequence-like set
dom (() | (() /\ (Seg ((2 * n) + 2)))) is finite set
Sgm (dom (() | (() /\ (Seg ((2 * n) + 2))))) is Relation-like NAT -defined NAT -valued Function-like finite FinSequence-like FinSubsequence-like V76() V77() V78() V79() FinSequence of NAT
(Sgm (dom (() | (() /\ (Seg ((2 * n) + 2)))))) (#) (() | (() /\ (Seg ((2 * n) + 2)))) is Relation-like NAT -defined NAT -valued RAT -valued Function-like finite V76() V77() V78() V79() set
((2 * n)) is Relation-like NAT -defined REAL -valued Function-like finite FinSequence-like FinSubsequence-like V76() V77() V78() FinSequence of NAT
Seg (2 * n) is finite 2 * n -element with_non-empty_elements complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below bounded_above real-bounded Element of bool NAT
{ b1 where b1 is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT : ( 1 <= b1 & b1 <= 2 * n ) } is set
() /\ (Seg (2 * n)) is finite with_non-empty_elements complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below bounded_above real-bounded set
((),(() /\ (Seg (2 * n)))) is Relation-like NAT -defined REAL -valued Function-like finite FinSequence-like FinSubsequence-like V76() V77() V78() FinSequence of NAT
() | (() /\ (Seg (2 * n))) is Relation-like () /\ (Seg (2 * n)) -defined NAT -defined NAT -valued RAT -valued Function-like finite FinSubsequence-like V76() V77() V78() V79() set
Seq (() | (() /\ (Seg (2 * n)))) is Relation-like NAT -defined Function-like finite FinSequence-like FinSubsequence-like set
dom (() | (() /\ (Seg (2 * n)))) is finite set
Sgm (dom (() | (() /\ (Seg (2 * n))))) is Relation-like NAT -defined NAT -valued Function-like finite FinSequence-like FinSubsequence-like V76() V77() V78() V79() FinSequence of NAT
(Sgm (dom (() | (() /\ (Seg (2 * n)))))) (#) (() | (() /\ (Seg (2 * n)))) is Relation-like NAT -defined NAT -valued RAT -valued Function-like finite V76() V77() V78() V79() set
Fib ((2 * n) + 2) is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
<*(Fib ((2 * n) + 2))*> is non empty Relation-like NAT -defined NAT -valued Function-like finite 1 -element FinSequence-like FinSubsequence-like V76() V77() V78() V79() FinSequence of NAT
[1,(Fib ((2 * n) + 2))] is set
{1,(Fib ((2 * n) + 2))} is non empty finite complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered left_end right_end bounded_below bounded_above real-bounded set
{{1,(Fib ((2 * n) + 2))},{1}} is non empty finite V40() with_non-empty_elements non empty-membered set
{[1,(Fib ((2 * n) + 2))]} is non empty Relation-like Function-like finite set
((2 * n)) ^ <*(Fib ((2 * n) + 2))*> is non empty Relation-like NAT -defined NAT -valued Function-like finite FinSequence-like FinSubsequence-like V76() V77() V78() V79() FinSequence of NAT
n + 1 is non empty epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real positive non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered left_end bounded_below Element of NAT
2 * (n + 1) is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered even bounded_below Element of NAT
(2 * (n + 1)) + 2 is non empty epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real positive non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered even left_end bounded_below Element of NAT
(((2 * (n + 1)) + 2)) is Relation-like NAT -defined REAL -valued Function-like finite FinSequence-like FinSubsequence-like V76() V77() V78() FinSequence of NAT
Seg ((2 * (n + 1)) + 2) is non empty finite (2 * (n + 1)) + 2 -element with_non-empty_elements non empty-membered complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered left_end right_end bounded_below bounded_above real-bounded Element of bool NAT
{ b1 where b1 is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT : ( 1 <= b1 & b1 <= (2 * (n + 1)) + 2 ) } is set
() /\ (Seg ((2 * (n + 1)) + 2)) is finite with_non-empty_elements complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below bounded_above real-bounded set
((),(() /\ (Seg ((2 * (n + 1)) + 2)))) is Relation-like NAT -defined REAL -valued Function-like finite FinSequence-like FinSubsequence-like V76() V77() V78() FinSequence of NAT
() | (() /\ (Seg ((2 * (n + 1)) + 2))) is Relation-like () /\ (Seg ((2 * (n + 1)) + 2)) -defined NAT -defined NAT -valued RAT -valued Function-like finite FinSubsequence-like V76() V77() V78() V79() set
Seq (() | (() /\ (Seg ((2 * (n + 1)) + 2)))) is Relation-like NAT -defined Function-like finite FinSequence-like FinSubsequence-like set
dom (() | (() /\ (Seg ((2 * (n + 1)) + 2)))) is finite set
Sgm (dom (() | (() /\ (Seg ((2 * (n + 1)) + 2))))) is Relation-like NAT -defined NAT -valued Function-like finite FinSequence-like FinSubsequence-like V76() V77() V78() V79() FinSequence of NAT
(Sgm (dom (() | (() /\ (Seg ((2 * (n + 1)) + 2)))))) (#) (() | (() /\ (Seg ((2 * (n + 1)) + 2)))) is Relation-like NAT -defined NAT -valued RAT -valued Function-like finite V76() V77() V78() V79() set
((2 * (n + 1))) is Relation-like NAT -defined REAL -valued Function-like finite FinSequence-like FinSubsequence-like V76() V77() V78() FinSequence of NAT
Seg (2 * (n + 1)) is finite 2 * (n + 1) -element with_non-empty_elements complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below bounded_above real-bounded Element of bool NAT
{ b1 where b1 is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT : ( 1 <= b1 & b1 <= 2 * (n + 1) ) } is set
() /\ (Seg (2 * (n + 1))) is finite with_non-empty_elements complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below bounded_above real-bounded set
((),(() /\ (Seg (2 * (n + 1))))) is Relation-like NAT -defined REAL -valued Function-like finite FinSequence-like FinSubsequence-like V76() V77() V78() FinSequence of NAT
() | (() /\ (Seg (2 * (n + 1)))) is Relation-like () /\ (Seg (2 * (n + 1))) -defined NAT -defined NAT -valued RAT -valued Function-like finite FinSubsequence-like V76() V77() V78() V79() set
Seq (() | (() /\ (Seg (2 * (n + 1))))) is Relation-like NAT -defined Function-like finite FinSequence-like FinSubsequence-like set
dom (() | (() /\ (Seg (2 * (n + 1))))) is finite set
Sgm (dom (() | (() /\ (Seg (2 * (n + 1)))))) is Relation-like NAT -defined NAT -valued Function-like finite FinSequence-like FinSubsequence-like V76() V77() V78() V79() FinSequence of NAT
(Sgm (dom (() | (() /\ (Seg (2 * (n + 1))))))) (#) (() | (() /\ (Seg (2 * (n + 1))))) is Relation-like NAT -defined NAT -valued RAT -valued Function-like finite V76() V77() V78() V79() set
Fib ((2 * (n + 1)) + 2) is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
<*(Fib ((2 * (n + 1)) + 2))*> is non empty Relation-like NAT -defined NAT -valued Function-like finite 1 -element FinSequence-like FinSubsequence-like V76() V77() V78() V79() FinSequence of NAT
[1,(Fib ((2 * (n + 1)) + 2))] is set
{1,(Fib ((2 * (n + 1)) + 2))} is non empty finite complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered left_end right_end bounded_below bounded_above real-bounded set
{{1,(Fib ((2 * (n + 1)) + 2))},{1}} is non empty finite V40() with_non-empty_elements non empty-membered set
{[1,(Fib ((2 * (n + 1)) + 2))]} is non empty Relation-like Function-like finite set
((2 * (n + 1))) ^ <*(Fib ((2 * (n + 1)) + 2))*> is non empty Relation-like NAT -defined NAT -valued Function-like finite FinSequence-like FinSubsequence-like V76() V77() V78() V79() FinSequence of NAT
(2 * n) + 4 is non empty epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real positive non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered left_end bounded_below Element of NAT
() . ((2 * n) + 4) is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
[1,(() . ((2 * n) + 4))] is Element of [:NAT,NAT:]
{1,(() . ((2 * n) + 4))} is non empty finite complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered left_end right_end bounded_below bounded_above real-bounded set
{{1,(() . ((2 * n) + 4))},{1}} is non empty finite V40() with_non-empty_elements non empty-membered set
{[1,(() . ((2 * n) + 4))]} is non empty Relation-like Function-like finite set
C is Relation-like NAT -defined Function-like FinSubsequence-like set
(2 * n) + 3 is non empty epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real positive non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered left_end bounded_below Element of NAT
((2 * n) + 3) Shift C is Relation-like NAT -defined Function-like FinSubsequence-like set
k is Relation-like NAT -defined Function-like FinSubsequence-like set
dom k is set
Seg ((2 * n) + 3) is non empty finite (2 * n) + 3 -element with_non-empty_elements non empty-membered complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered left_end right_end bounded_below bounded_above real-bounded Element of bool NAT
{ b1 where b1 is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT : ( 1 <= b1 & b1 <= (2 * n) + 3 ) } is set
p1 is Relation-like NAT -defined Function-like finite FinSequence-like FinSubsequence-like set
dom p1 is finite complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below bounded_above real-bounded Element of bool NAT
1 + ((2 * n) + 3) is non empty epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real positive non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered left_end bounded_below Element of NAT
[((2 * n) + 4),(() . ((2 * n) + 4))] is Element of [:NAT,NAT:]
{((2 * n) + 4),(() . ((2 * n) + 4))} is non empty finite complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered left_end right_end bounded_below bounded_above real-bounded set
{((2 * n) + 4)} is non empty finite with_non-empty_elements non empty-membered complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered left_end right_end bounded_below bounded_above real-bounded set
{{((2 * n) + 4),(() . ((2 * n) + 4))},{((2 * n) + 4)}} is non empty finite V40() with_non-empty_elements non empty-membered set
{[((2 * n) + 4),(() . ((2 * n) + 4))]} is non empty Relation-like Function-like finite set
len p1 is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
k \/ (((2 * n) + 3) Shift C) is Relation-like NAT -defined set
Seq k is Relation-like NAT -defined Function-like finite FinSequence-like FinSubsequence-like set
Sgm (dom k) is Relation-like NAT -defined NAT -valued Function-like finite FinSequence-like FinSubsequence-like V76() V77() V78() V79() FinSequence of NAT
(Sgm (dom k)) (#) k is Relation-like NAT -defined Function-like finite set
Seq C is Relation-like NAT -defined Function-like finite FinSequence-like FinSubsequence-like set
dom C is set
Sgm (dom C) is Relation-like NAT -defined NAT -valued Function-like finite FinSequence-like FinSubsequence-like V76() V77() V78() V79() FinSequence of NAT
(Sgm (dom C)) (#) C is Relation-like NAT -defined Function-like finite set
(Seq k) ^ (Seq C) is Relation-like NAT -defined Function-like finite FinSequence-like FinSubsequence-like set
RSR is Relation-like NAT -defined Function-like finite FinSequence-like FinSubsequence-like set
RSR is Relation-like NAT -defined Function-like FinSubsequence-like set
Seq RSR is Relation-like NAT -defined Function-like finite FinSequence-like FinSubsequence-like set
dom RSR is set
Sgm (dom RSR) is Relation-like NAT -defined NAT -valued Function-like finite FinSequence-like FinSubsequence-like V76() V77() V78() V79() FinSequence of NAT
(Sgm (dom RSR)) (#) RSR is Relation-like NAT -defined Function-like finite set
<*(() . ((2 * n) + 4))*> is non empty Relation-like NAT -defined NAT -valued Function-like finite 1 -element FinSequence-like FinSubsequence-like V76() V77() V78() V79() FinSequence of NAT
[1,(() . ((2 * n) + 4))] is set
{[1,(() . ((2 * n) + 4))]} is non empty Relation-like Function-like finite set
(Seq (() | (() /\ (Seg ((2 * n) + 2))))) ^ <*(() . ((2 * n) + 4))*> is non empty Relation-like NAT -defined Function-like finite FinSequence-like FinSubsequence-like set
2 * 0 is empty epsilon-transitive epsilon-connected ordinal T-Sequence-like c=-linear natural V11() real integer Relation-like non-empty empty-yielding NAT -defined RAT -valued Function-like one-to-one constant functional finite finite-yielding V40() FinSequence-like FinSubsequence-like FinSequence-membered V47() ext-real non positive non negative V76() V77() V78() V79() complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered V92() even bounded_below bounded_above real-bounded V120() Element of NAT
(2 * 0) + 2 is non empty epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real positive non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered even left_end bounded_below Element of NAT
(((2 * 0) + 2)) is Relation-like NAT -defined REAL -valued Function-like finite FinSequence-like FinSubsequence-like V76() V77() V78() FinSequence of NAT
Seg ((2 * 0) + 2) is non empty finite (2 * 0) + 2 -element with_non-empty_elements non empty-membered complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered left_end right_end bounded_below bounded_above real-bounded Element of bool NAT
{ b1 where b1 is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT : ( 1 <= b1 & b1 <= (2 * 0) + 2 ) } is set
() /\ (Seg ((2 * 0) + 2)) is finite with_non-empty_elements complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below bounded_above real-bounded set
((),(() /\ (Seg ((2 * 0) + 2)))) is Relation-like NAT -defined REAL -valued Function-like finite FinSequence-like FinSubsequence-like V76() V77() V78() FinSequence of NAT
() | (() /\ (Seg ((2 * 0) + 2))) is Relation-like () /\ (Seg ((2 * 0) + 2)) -defined NAT -defined NAT -valued RAT -valued Function-like finite FinSubsequence-like V76() V77() V78() V79() set
Seq (() | (() /\ (Seg ((2 * 0) + 2)))) is Relation-like NAT -defined Function-like finite FinSequence-like FinSubsequence-like set
dom (() | (() /\ (Seg ((2 * 0) + 2)))) is finite set
Sgm (dom (() | (() /\ (Seg ((2 * 0) + 2))))) is Relation-like NAT -defined NAT -valued Function-like finite FinSequence-like FinSubsequence-like V76() V77() V78() V79() FinSequence of NAT
(Sgm (dom (() | (() /\ (Seg ((2 * 0) + 2)))))) (#) (() | (() /\ (Seg ((2 * 0) + 2)))) is Relation-like NAT -defined NAT -valued RAT -valued Function-like finite V76() V77() V78() V79() set
((2 * 0)) is Relation-like NAT -defined REAL -valued Function-like finite FinSequence-like FinSubsequence-like V76() V77() V78() FinSequence of NAT
Seg (2 * 0) is empty epsilon-transitive epsilon-connected ordinal T-Sequence-like c=-linear natural V11() real integer Relation-like non-empty empty-yielding NAT -defined RAT -valued Function-like one-to-one constant functional finite finite-yielding V40() 2 * 0 -element FinSequence-like FinSubsequence-like FinSequence-membered ext-real non positive non negative with_non-empty_elements V76() V77() V78() V79() complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered V92() bounded_below bounded_above real-bounded V120() Element of bool NAT
{ b1 where b1 is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT : ( 1 <= b1 & b1 <= 2 * 0 ) } is set
() /\ (Seg (2 * 0)) is Relation-like finite with_non-empty_elements complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below bounded_above real-bounded set
((),(() /\ (Seg (2 * 0)))) is Relation-like NAT -defined REAL -valued Function-like finite FinSequence-like FinSubsequence-like V76() V77() V78() FinSequence of NAT
() | (() /\ (Seg (2 * 0))) is Relation-like () /\ (Seg (2 * 0)) -defined NAT -defined NAT -valued RAT -valued Function-like finite FinSubsequence-like V76() V77() V78() V79() set
Seq (() | (() /\ (Seg (2 * 0)))) is Relation-like NAT -defined Function-like finite FinSequence-like FinSubsequence-like set
dom (() | (() /\ (Seg (2 * 0)))) is finite set
Sgm (dom (() | (() /\ (Seg (2 * 0))))) is Relation-like NAT -defined NAT -valued Function-like finite FinSequence-like FinSubsequence-like V76() V77() V78() V79() FinSequence of NAT
(Sgm (dom (() | (() /\ (Seg (2 * 0)))))) (#) (() | (() /\ (Seg (2 * 0)))) is Relation-like NAT -defined NAT -valued RAT -valued Function-like finite V76() V77() V78() V79() set
Fib ((2 * 0) + 2) is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
<*(Fib ((2 * 0) + 2))*> is non empty Relation-like NAT -defined NAT -valued Function-like finite 1 -element FinSequence-like FinSubsequence-like V76() V77() V78() V79() FinSequence of NAT
[1,(Fib ((2 * 0) + 2))] is set
{1,(Fib ((2 * 0) + 2))} is non empty finite complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered left_end right_end bounded_below bounded_above real-bounded set
{{1,(Fib ((2 * 0) + 2))},{1}} is non empty finite V40() with_non-empty_elements non empty-membered set
{[1,(Fib ((2 * 0) + 2))]} is non empty Relation-like Function-like finite set
((2 * 0)) ^ <*(Fib ((2 * 0) + 2))*> is non empty Relation-like NAT -defined NAT -valued Function-like finite FinSequence-like FinSubsequence-like V76() V77() V78() V79() FinSequence of NAT
(1) is Relation-like NAT -defined REAL -valued Function-like finite FinSequence-like FinSubsequence-like V76() V77() V78() FinSequence of NAT
() /\ (Seg 1) is finite with_non-empty_elements complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below bounded_above real-bounded set
((),(() /\ (Seg 1))) is Relation-like NAT -defined REAL -valued Function-like finite FinSequence-like FinSubsequence-like V76() V77() V78() FinSequence of NAT
() | (() /\ (Seg 1)) is Relation-like () /\ (Seg 1) -defined NAT -defined NAT -valued RAT -valued Function-like finite FinSubsequence-like V76() V77() V78() V79() set
Seq (() | (() /\ (Seg 1))) is Relation-like NAT -defined Function-like finite FinSequence-like FinSubsequence-like set
dom (() | (() /\ (Seg 1))) is finite set
Sgm (dom (() | (() /\ (Seg 1)))) is Relation-like NAT -defined NAT -valued Function-like finite FinSequence-like FinSubsequence-like V76() V77() V78() V79() FinSequence of NAT
(Sgm (dom (() | (() /\ (Seg 1))))) (#) (() | (() /\ (Seg 1))) is Relation-like NAT -defined NAT -valued RAT -valued Function-like finite V76() V77() V78() V79() set
n is set
{1} is non empty finite with_non-empty_elements non empty-membered complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered left_end right_end bounded_below bounded_above real-bounded Element of bool NAT
2 * 0 is empty epsilon-transitive epsilon-connected ordinal T-Sequence-like c=-linear natural V11() real integer Relation-like non-empty empty-yielding NAT -defined RAT -valued Function-like one-to-one constant functional finite finite-yielding V40() FinSequence-like FinSubsequence-like FinSequence-membered V47() ext-real non positive non negative V76() V77() V78() V79() complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered V92() even bounded_below bounded_above real-bounded V120() Element of NAT
(2 * 0) + 1 is non empty epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real positive non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered non even left_end bounded_below Element of NAT
() /\ {1} is finite with_non-empty_elements complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below bounded_above real-bounded set
dom () is set
n is set
() . 1 is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
<*(() . 1)*> is non empty Relation-like NAT -defined NAT -valued Function-like finite 1 -element FinSequence-like FinSubsequence-like V76() V77() V78() V79() FinSequence of NAT
[1,(() . 1)] is set
{1,(() . 1)} is non empty finite complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered left_end right_end bounded_below bounded_above real-bounded set
{{1,(() . 1)},{1}} is non empty finite V40() with_non-empty_elements non empty-membered set
{[1,(() . 1)]} is non empty Relation-like Function-like finite set
(3) is Relation-like NAT -defined REAL -valued Function-like finite FinSequence-like FinSubsequence-like V76() V77() V78() FinSequence of NAT
() /\ (Seg 3) is finite with_non-empty_elements complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below bounded_above real-bounded set
((),(() /\ (Seg 3))) is Relation-like NAT -defined REAL -valued Function-like finite FinSequence-like FinSubsequence-like V76() V77() V78() FinSequence of NAT
() | (() /\ (Seg 3)) is Relation-like () /\ (Seg 3) -defined NAT -defined NAT -valued RAT -valued Function-like finite FinSubsequence-like V76() V77() V78() V79() set
Seq (() | (() /\ (Seg 3))) is Relation-like NAT -defined Function-like finite FinSequence-like FinSubsequence-like set
dom (() | (() /\ (Seg 3))) is finite set
Sgm (dom (() | (() /\ (Seg 3)))) is Relation-like NAT -defined NAT -valued Function-like finite FinSequence-like FinSubsequence-like V76() V77() V78() V79() FinSequence of NAT
(Sgm (dom (() | (() /\ (Seg 3))))) (#) (() | (() /\ (Seg 3))) is Relation-like NAT -defined NAT -valued RAT -valued Function-like finite V76() V77() V78() V79() set
<*1,2*> is non empty Relation-like NAT -defined Function-like finite 2 -element FinSequence-like FinSubsequence-like set
<*2*> is non empty Relation-like NAT -defined Function-like finite 1 -element FinSequence-like FinSubsequence-like set
[1,2] is set
{{1,2},{1}} is non empty finite V40() with_non-empty_elements non empty-membered set
{[1,2]} is non empty Relation-like Function-like finite set
<*1*> ^ <*2*> is non empty Relation-like NAT -defined Function-like finite 1 + 1 -element FinSequence-like FinSubsequence-like set
n is set
{1,2,3} is finite with_non-empty_elements complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below bounded_above real-bounded Element of bool NAT
() /\ {1,2,3} is finite with_non-empty_elements complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below bounded_above real-bounded set
2 * 0 is empty epsilon-transitive epsilon-connected ordinal T-Sequence-like c=-linear natural V11() real integer Relation-like non-empty empty-yielding NAT -defined RAT -valued Function-like one-to-one constant functional finite finite-yielding V40() FinSequence-like FinSubsequence-like FinSequence-membered V47() ext-real non positive non negative V76() V77() V78() V79() complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered V92() even bounded_below bounded_above real-bounded V120() Element of NAT
(2 * 0) + 1 is non empty epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real positive non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered non even left_end bounded_below Element of NAT
{1,3} is non empty finite with_non-empty_elements non empty-membered complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered left_end right_end bounded_below bounded_above real-bounded Element of bool NAT
2 * 1 is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered even bounded_below Element of NAT
{1,3} is non empty finite with_non-empty_elements non empty-membered complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered left_end right_end bounded_below bounded_above real-bounded Element of bool NAT
2 * 1 is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered even bounded_below Element of NAT
(2 * 1) + 1 is non empty epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real positive non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered non even left_end bounded_below Element of NAT
{1,3} is non empty finite with_non-empty_elements non empty-membered complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered left_end right_end bounded_below bounded_above real-bounded Element of bool NAT
2 * 0 is empty epsilon-transitive epsilon-connected ordinal T-Sequence-like c=-linear natural V11() real integer Relation-like non-empty empty-yielding NAT -defined RAT -valued Function-like one-to-one constant functional finite finite-yielding V40() FinSequence-like FinSubsequence-like FinSequence-membered V47() ext-real non positive non negative V76() V77() V78() V79() complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered V92() even bounded_below bounded_above real-bounded V120() Element of NAT
(2 * 0) + 1 is non empty epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real positive non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered non even left_end bounded_below Element of NAT
2 * 1 is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered even bounded_below Element of NAT
(2 * 1) + 1 is non empty epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real positive non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered non even left_end bounded_below Element of NAT
{1,3} is non empty finite with_non-empty_elements non empty-membered complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered left_end right_end bounded_below bounded_above real-bounded Element of bool NAT
{1,3} is non empty finite with_non-empty_elements non empty-membered complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered left_end right_end bounded_below bounded_above real-bounded Element of bool NAT
() . 1 is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
[1,(() . 1)] is Element of [:NAT,NAT:]
{1,(() . 1)} is non empty finite complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered left_end right_end bounded_below bounded_above real-bounded set
{{1,(() . 1)},{1}} is non empty finite V40() with_non-empty_elements non empty-membered set
() . 3 is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
[3,(() . 3)] is Element of [:NAT,NAT:]
{3,(() . 3)} is non empty finite complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered left_end right_end bounded_below bounded_above real-bounded set
{3} is non empty finite with_non-empty_elements non empty-membered complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered left_end right_end bounded_below bounded_above real-bounded set
{{3,(() . 3)},{3}} is non empty finite V40() with_non-empty_elements non empty-membered set
{[1,(() . 1)],[3,(() . 3)]} is non empty Relation-like finite set
dom () is set
{1} is non empty finite with_non-empty_elements non empty-membered complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered left_end right_end bounded_below bounded_above real-bounded Element of bool NAT
{3} is non empty finite with_non-empty_elements non empty-membered complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered left_end right_end bounded_below bounded_above real-bounded Element of bool NAT
{1} \/ {3} is non empty finite with_non-empty_elements non empty-membered complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered left_end right_end bounded_below bounded_above real-bounded set
() | ({1} \/ {3}) is Relation-like {1} \/ {3} -defined NAT -defined NAT -valued RAT -valued Function-like finite FinSubsequence-like V76() V77() V78() V79() set
() | {1} is Relation-like {1} -defined NAT -defined NAT -valued RAT -valued Function-like finite FinSubsequence-like V76() V77() V78() V79() set
() | {3} is Relation-like {3} -defined NAT -defined NAT -valued RAT -valued Function-like finite FinSubsequence-like V76() V77() V78() V79() set
(() | {1}) \/ (() | {3}) is Relation-like NAT -defined NAT -valued RAT -valued finite V76() V77() V78() V79() set
{[1,(() . 1)]} is non empty Relation-like Function-like finite set
{[1,(() . 1)]} \/ (() | {3}) is non empty Relation-like finite set
{[3,(() . 3)]} is non empty Relation-like Function-like finite set
{[1,(() . 1)]} \/ {[3,(() . 3)]} is non empty Relation-like finite set
n is Relation-like NAT -defined Function-like FinSubsequence-like set
C is set
2 * 0 is empty epsilon-transitive epsilon-connected ordinal T-Sequence-like c=-linear natural V11() real integer Relation-like non-empty empty-yielding NAT -defined RAT -valued Function-like one-to-one constant functional finite finite-yielding V40() FinSequence-like FinSubsequence-like FinSequence-membered V47() ext-real non positive non negative V76() V77() V78() V79() complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered V92() even bounded_below bounded_above real-bounded V120() Element of NAT
(2 * 0) + 1 is non empty epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real positive non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered non even left_end bounded_below Element of NAT
2 * 1 is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered even bounded_below Element of NAT
(2 * 1) + 1 is non empty epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real positive non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered non even left_end bounded_below Element of NAT
Seq (() | ({1} \/ {3})) is Relation-like NAT -defined Function-like finite FinSequence-like FinSubsequence-like set
dom (() | ({1} \/ {3})) is finite set
Sgm (dom (() | ({1} \/ {3}))) is Relation-like NAT -defined NAT -valued Function-like finite FinSequence-like FinSubsequence-like V76() V77() V78() V79() FinSequence of NAT
(Sgm (dom (() | ({1} \/ {3})))) (#) (() | ({1} \/ {3})) is Relation-like NAT -defined NAT -valued RAT -valued Function-like finite V76() V77() V78() V79() set
<*(() . 1),(() . 3)*> is non empty Relation-like NAT -defined Function-like finite 2 -element FinSequence-like FinSubsequence-like set
<*(() . 1)*> is non empty Relation-like NAT -defined Function-like finite 1 -element FinSequence-like FinSubsequence-like set
[1,(() . 1)] is set
{[1,(() . 1)]} is non empty Relation-like Function-like finite set
<*(() . 3)*> is non empty Relation-like NAT -defined Function-like finite 1 -element FinSequence-like FinSubsequence-like set
[1,(() . 3)] is set
{1,(() . 3)} is non empty finite complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered left_end right_end bounded_below bounded_above real-bounded set
{{1,(() . 3)},{1}} is non empty finite V40() with_non-empty_elements non empty-membered set
{[1,(() . 3)]} is non empty Relation-like Function-like finite set
<*(() . 1)*> ^ <*(() . 3)*> is non empty Relation-like NAT -defined Function-like finite 1 + 1 -element FinSequence-like FinSubsequence-like set
<*(Fib 1),(() . 3)*> is non empty Relation-like NAT -defined Function-like finite 2 -element FinSequence-like FinSubsequence-like set
<*(Fib 1)*> is non empty Relation-like NAT -defined Function-like finite 1 -element FinSequence-like FinSubsequence-like set
[1,(Fib 1)] is set
{1,(Fib 1)} is non empty finite complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered left_end right_end bounded_below bounded_above real-bounded set
{{1,(Fib 1)},{1}} is non empty finite V40() with_non-empty_elements non empty-membered set
{[1,(Fib 1)]} is non empty Relation-like Function-like finite set
<*(Fib 1)*> ^ <*(() . 3)*> is non empty Relation-like NAT -defined Function-like finite 1 + 1 -element FinSequence-like FinSubsequence-like set
n is epsilon-transitive epsilon-connected ordinal natural V11() real integer ext-real non negative set
2 * n is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered even bounded_below Element of NAT
(2 * n) + 3 is non empty epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real positive non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered left_end bounded_below Element of NAT
Seg ((2 * n) + 3) is non empty finite (2 * n) + 3 -element with_non-empty_elements non empty-membered complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered left_end right_end bounded_below bounded_above real-bounded Element of bool NAT
{ b1 where b1 is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT : ( 1 <= b1 & b1 <= (2 * n) + 3 ) } is set
() /\ (Seg ((2 * n) + 3)) is finite with_non-empty_elements complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below bounded_above real-bounded set
(2 * n) + 5 is non empty epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real positive non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered left_end bounded_below Element of NAT
{((2 * n) + 5)} is non empty finite with_non-empty_elements non empty-membered complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered left_end right_end bounded_below bounded_above real-bounded Element of bool NAT
(() /\ (Seg ((2 * n) + 3))) \/ {((2 * n) + 5)} is non empty finite with_non-empty_elements non empty-membered complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered left_end right_end bounded_below bounded_above real-bounded set
Seg ((2 * n) + 5) is non empty finite (2 * n) + 5 -element with_non-empty_elements non empty-membered complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered left_end right_end bounded_below bounded_above real-bounded Element of bool NAT
{ b1 where b1 is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT : ( 1 <= b1 & b1 <= (2 * n) + 5 ) } is set
() /\ (Seg ((2 * n) + 5)) is finite with_non-empty_elements complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below bounded_above real-bounded set
n + 2 is non empty epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real positive non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered left_end bounded_below Element of NAT
2 * (n + 2) is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered even bounded_below Element of NAT
(2 * (n + 2)) + 1 is non empty epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real positive non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered non even left_end bounded_below Element of NAT
(2 * n) + 4 is non empty epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real positive non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered left_end bounded_below Element of NAT
n + 1 is non empty epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real positive non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered left_end bounded_below Element of NAT
(n + 1) + 1 is non empty epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real positive non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered left_end bounded_below Element of NAT
2 * ((n + 1) + 1) is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered even bounded_below Element of NAT
{((2 * n) + 4)} is non empty finite with_non-empty_elements non empty-membered complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered left_end right_end bounded_below bounded_above real-bounded Element of bool NAT
((2 * n) + 4) + 1 is non empty epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real positive non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered left_end bounded_below Element of NAT
Seg (((2 * n) + 4) + 1) is non empty finite ((2 * n) + 4) + 1 -element with_non-empty_elements non empty-membered complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered left_end right_end bounded_below bounded_above real-bounded Element of bool NAT
{ b1 where b1 is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT : ( 1 <= b1 & b1 <= ((2 * n) + 4) + 1 ) } is set
() /\ (Seg (((2 * n) + 4) + 1)) is finite with_non-empty_elements complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below bounded_above real-bounded set
Seg ((2 * n) + 4) is non empty finite (2 * n) + 4 -element with_non-empty_elements non empty-membered complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered left_end right_end bounded_below bounded_above real-bounded Element of bool NAT
{ b1 where b1 is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT : ( 1 <= b1 & b1 <= (2 * n) + 4 ) } is set
(Seg ((2 * n) + 4)) \/ {((2 * n) + 5)} is non empty finite with_non-empty_elements non empty-membered complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered left_end right_end bounded_below bounded_above real-bounded set
() /\ ((Seg ((2 * n) + 4)) \/ {((2 * n) + 5)}) is finite with_non-empty_elements complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below bounded_above real-bounded set
((2 * n) + 3) + 1 is non empty epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real positive non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered left_end bounded_below Element of NAT
Seg (((2 * n) + 3) + 1) is non empty finite ((2 * n) + 3) + 1 -element with_non-empty_elements non empty-membered complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered left_end right_end bounded_below bounded_above real-bounded Element of bool NAT
{ b1 where b1 is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT : ( 1 <= b1 & b1 <= ((2 * n) + 3) + 1 ) } is set
() /\ (Seg (((2 * n) + 3) + 1)) is finite with_non-empty_elements complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below bounded_above real-bounded set
() /\ {((2 * n) + 5)} is finite with_non-empty_elements complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below bounded_above real-bounded set
(() /\ (Seg (((2 * n) + 3) + 1))) \/ (() /\ {((2 * n) + 5)}) is finite with_non-empty_elements complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below bounded_above real-bounded set
(Seg ((2 * n) + 3)) \/ {((2 * n) + 4)} is non empty finite with_non-empty_elements non empty-membered complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered left_end right_end bounded_below bounded_above real-bounded set
() /\ ((Seg ((2 * n) + 3)) \/ {((2 * n) + 4)}) is finite with_non-empty_elements complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below bounded_above real-bounded set
(() /\ ((Seg ((2 * n) + 3)) \/ {((2 * n) + 4)})) \/ (() /\ {((2 * n) + 5)}) is finite with_non-empty_elements complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below bounded_above real-bounded set
() /\ {((2 * n) + 4)} is finite with_non-empty_elements complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below bounded_above real-bounded set
(() /\ (Seg ((2 * n) + 3))) \/ (() /\ {((2 * n) + 4)}) is finite with_non-empty_elements complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below bounded_above real-bounded set
((() /\ (Seg ((2 * n) + 3))) \/ (() /\ {((2 * n) + 4)})) \/ (() /\ {((2 * n) + 5)}) is finite with_non-empty_elements complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below bounded_above real-bounded set
(() /\ (Seg ((2 * n) + 3))) \/ {} is finite complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below bounded_above real-bounded set
((() /\ (Seg ((2 * n) + 3))) \/ {}) \/ (() /\ {((2 * n) + 5)}) is finite complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below bounded_above real-bounded set
n is epsilon-transitive epsilon-connected ordinal natural V11() real integer ext-real non negative set
2 * n is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered even bounded_below Element of NAT
(2 * n) + 3 is non empty epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real positive non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered left_end bounded_below Element of NAT
Seg ((2 * n) + 3) is non empty finite (2 * n) + 3 -element with_non-empty_elements non empty-membered complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered left_end right_end bounded_below bounded_above real-bounded Element of bool NAT
{ b1 where b1 is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT : ( 1 <= b1 & b1 <= (2 * n) + 3 ) } is set
() /\ (Seg ((2 * n) + 3)) is finite with_non-empty_elements complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below bounded_above real-bounded set
() | (() /\ (Seg ((2 * n) + 3))) is Relation-like () /\ (Seg ((2 * n) + 3)) -defined NAT -defined NAT -valued RAT -valued Function-like finite FinSubsequence-like V76() V77() V78() V79() set
(2 * n) + 5 is non empty epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real positive non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered left_end bounded_below Element of NAT
() . ((2 * n) + 5) is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
[((2 * n) + 5),(() . ((2 * n) + 5))] is Element of [:NAT,NAT:]
{((2 * n) + 5),(() . ((2 * n) + 5))} is non empty finite complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered left_end right_end bounded_below bounded_above real-bounded set
{((2 * n) + 5)} is non empty finite with_non-empty_elements non empty-membered complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered left_end right_end bounded_below bounded_above real-bounded set
{{((2 * n) + 5),(() . ((2 * n) + 5))},{((2 * n) + 5)}} is non empty finite V40() with_non-empty_elements non empty-membered set
{[((2 * n) + 5),(() . ((2 * n) + 5))]} is non empty Relation-like Function-like finite set
(() | (() /\ (Seg ((2 * n) + 3)))) \/ {[((2 * n) + 5),(() . ((2 * n) + 5))]} is non empty Relation-like finite set
Seg ((2 * n) + 5) is non empty finite (2 * n) + 5 -element with_non-empty_elements non empty-membered complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered left_end right_end bounded_below bounded_above real-bounded Element of bool NAT
{ b1 where b1 is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT : ( 1 <= b1 & b1 <= (2 * n) + 5 ) } is set
() /\ (Seg ((2 * n) + 5)) is finite with_non-empty_elements complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below bounded_above real-bounded set
() | (() /\ (Seg ((2 * n) + 5))) is Relation-like () /\ (Seg ((2 * n) + 5)) -defined NAT -defined NAT -valued RAT -valued Function-like finite FinSubsequence-like V76() V77() V78() V79() set
dom () is set
{((2 * n) + 5)} is non empty finite with_non-empty_elements non empty-membered complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered left_end right_end bounded_below bounded_above real-bounded Element of bool NAT
(() /\ (Seg ((2 * n) + 3))) \/ {((2 * n) + 5)} is non empty finite with_non-empty_elements non empty-membered complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered left_end right_end bounded_below bounded_above real-bounded set
() | ((() /\ (Seg ((2 * n) + 3))) \/ {((2 * n) + 5)}) is Relation-like (() /\ (Seg ((2 * n) + 3))) \/ {((2 * n) + 5)} -defined NAT -defined NAT -valued RAT -valued Function-like finite FinSubsequence-like V76() V77() V78() V79() set
() | {((2 * n) + 5)} is Relation-like {((2 * n) + 5)} -defined NAT -defined NAT -valued RAT -valued Function-like finite FinSubsequence-like V76() V77() V78() V79() set
(() | (() /\ (Seg ((2 * n) + 3)))) \/ (() | {((2 * n) + 5)}) is Relation-like NAT -defined NAT -valued RAT -valued finite V76() V77() V78() V79() set
n is epsilon-transitive epsilon-connected ordinal natural V11() real integer ext-real non negative set
2 * n is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered even bounded_below Element of NAT
(2 * n) + 3 is non empty epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real positive non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered left_end bounded_below Element of NAT
(((2 * n) + 3)) is Relation-like NAT -defined REAL -valued Function-like finite FinSequence-like FinSubsequence-like V76() V77() V78() FinSequence of NAT
Seg ((2 * n) + 3) is non empty finite (2 * n) + 3 -element with_non-empty_elements non empty-membered complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered left_end right_end bounded_below bounded_above real-bounded Element of bool NAT
{ b1 where b1 is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT : ( 1 <= b1 & b1 <= (2 * n) + 3 ) } is set
() /\ (Seg ((2 * n) + 3)) is finite with_non-empty_elements complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below bounded_above real-bounded set
((),(() /\ (Seg ((2 * n) + 3)))) is Relation-like NAT -defined REAL -valued Function-like finite FinSequence-like FinSubsequence-like V76() V77() V78() FinSequence of NAT
() | (() /\ (Seg ((2 * n) + 3))) is Relation-like () /\ (Seg ((2 * n) + 3)) -defined NAT -defined NAT -valued RAT -valued Function-like finite FinSubsequence-like V76() V77() V78() V79() set
Seq (() | (() /\ (Seg ((2 * n) + 3)))) is Relation-like NAT -defined Function-like finite FinSequence-like FinSubsequence-like set
dom (() | (() /\ (Seg ((2 * n) + 3)))) is finite set
Sgm (dom (() | (() /\ (Seg ((2 * n) + 3))))) is Relation-like NAT -defined NAT -valued Function-like finite FinSequence-like FinSubsequence-like V76() V77() V78() V79() FinSequence of NAT
(Sgm (dom (() | (() /\ (Seg ((2 * n) + 3)))))) (#) (() | (() /\ (Seg ((2 * n) + 3)))) is Relation-like NAT -defined NAT -valued RAT -valued Function-like finite V76() V77() V78() V79() set
(2 * n) + 1 is non empty epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real positive non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered non even left_end bounded_below Element of NAT
(((2 * n) + 1)) is Relation-like NAT -defined REAL -valued Function-like finite FinSequence-like FinSubsequence-like V76() V77() V78() FinSequence of NAT
Seg ((2 * n) + 1) is non empty finite (2 * n) + 1 -element with_non-empty_elements non empty-membered complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered left_end right_end bounded_below bounded_above real-bounded Element of bool NAT
{ b1 where b1 is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT : ( 1 <= b1 & b1 <= (2 * n) + 1 ) } is set
() /\ (Seg ((2 * n) + 1)) is finite with_non-empty_elements complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below bounded_above real-bounded set
((),(() /\ (Seg ((2 * n) + 1)))) is Relation-like NAT -defined REAL -valued Function-like finite FinSequence-like FinSubsequence-like V76() V77() V78() FinSequence of NAT
() | (() /\ (Seg ((2 * n) + 1))) is Relation-like () /\ (Seg ((2 * n) + 1)) -defined NAT -defined NAT -valued RAT -valued Function-like finite FinSubsequence-like V76() V77() V78() V79() set
Seq (() | (() /\ (Seg ((2 * n) + 1)))) is Relation-like NAT -defined Function-like finite FinSequence-like FinSubsequence-like set
dom (() | (() /\ (Seg ((2 * n) + 1)))) is finite set
Sgm (dom (() | (() /\ (Seg ((2 * n) + 1))))) is Relation-like NAT -defined NAT -valued Function-like finite FinSequence-like FinSubsequence-like V76() V77() V78() V79() FinSequence of NAT
(Sgm (dom (() | (() /\ (Seg ((2 * n) + 1)))))) (#) (() | (() /\ (Seg ((2 * n) + 1)))) is Relation-like NAT -defined NAT -valued RAT -valued Function-like finite V76() V77() V78() V79() set
Fib ((2 * n) + 3) is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
<*(Fib ((2 * n) + 3))*> is non empty Relation-like NAT -defined NAT -valued Function-like finite 1 -element FinSequence-like FinSubsequence-like V76() V77() V78() V79() FinSequence of NAT
[1,(Fib ((2 * n) + 3))] is set
{1,(Fib ((2 * n) + 3))} is non empty finite complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered left_end right_end bounded_below bounded_above real-bounded set
{{1,(Fib ((2 * n) + 3))},{1}} is non empty finite V40() with_non-empty_elements non empty-membered set
{[1,(Fib ((2 * n) + 3))]} is non empty Relation-like Function-like finite set
(((2 * n) + 1)) ^ <*(Fib ((2 * n) + 3))*> is non empty Relation-like NAT -defined NAT -valued Function-like finite FinSequence-like FinSubsequence-like V76() V77() V78() V79() FinSequence of NAT
n is epsilon-transitive epsilon-connected ordinal natural V11() real integer ext-real non negative set
2 * n is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered even bounded_below Element of NAT
(2 * n) + 3 is non empty epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real positive non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered left_end bounded_below Element of NAT
(((2 * n) + 3)) is Relation-like NAT -defined REAL -valued Function-like finite FinSequence-like FinSubsequence-like V76() V77() V78() FinSequence of NAT
Seg ((2 * n) + 3) is non empty finite (2 * n) + 3 -element with_non-empty_elements non empty-membered complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered left_end right_end bounded_below bounded_above real-bounded Element of bool NAT
{ b1 where b1 is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT : ( 1 <= b1 & b1 <= (2 * n) + 3 ) } is set
() /\ (Seg ((2 * n) + 3)) is finite with_non-empty_elements complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below bounded_above real-bounded set
((),(() /\ (Seg ((2 * n) + 3)))) is Relation-like NAT -defined REAL -valued Function-like finite FinSequence-like FinSubsequence-like V76() V77() V78() FinSequence of NAT
() | (() /\ (Seg ((2 * n) + 3))) is Relation-like () /\ (Seg ((2 * n) + 3)) -defined NAT -defined NAT -valued RAT -valued Function-like finite FinSubsequence-like V76() V77() V78() V79() set
Seq (() | (() /\ (Seg ((2 * n) + 3)))) is Relation-like NAT -defined Function-like finite FinSequence-like FinSubsequence-like set
dom (() | (() /\ (Seg ((2 * n) + 3)))) is finite set
Sgm (dom (() | (() /\ (Seg ((2 * n) + 3))))) is Relation-like NAT -defined NAT -valued Function-like finite FinSequence-like FinSubsequence-like V76() V77() V78() V79() FinSequence of NAT
(Sgm (dom (() | (() /\ (Seg ((2 * n) + 3)))))) (#) (() | (() /\ (Seg ((2 * n) + 3)))) is Relation-like NAT -defined NAT -valued RAT -valued Function-like finite V76() V77() V78() V79() set
(2 * n) + 1 is non empty epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real positive non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered non even left_end bounded_below Element of NAT
(((2 * n) + 1)) is Relation-like NAT -defined REAL -valued Function-like finite FinSequence-like FinSubsequence-like V76() V77() V78() FinSequence of NAT
Seg ((2 * n) + 1) is non empty finite (2 * n) + 1 -element with_non-empty_elements non empty-membered complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered left_end right_end bounded_below bounded_above real-bounded Element of bool NAT
{ b1 where b1 is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT : ( 1 <= b1 & b1 <= (2 * n) + 1 ) } is set
() /\ (Seg ((2 * n) + 1)) is finite with_non-empty_elements complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below bounded_above real-bounded set
((),(() /\ (Seg ((2 * n) + 1)))) is Relation-like NAT -defined REAL -valued Function-like finite FinSequence-like FinSubsequence-like V76() V77() V78() FinSequence of NAT
() | (() /\ (Seg ((2 * n) + 1))) is Relation-like () /\ (Seg ((2 * n) + 1)) -defined NAT -defined NAT -valued RAT -valued Function-like finite FinSubsequence-like V76() V77() V78() V79() set
Seq (() | (() /\ (Seg ((2 * n) + 1)))) is Relation-like NAT -defined Function-like finite FinSequence-like FinSubsequence-like set
dom (() | (() /\ (Seg ((2 * n) + 1)))) is finite set
Sgm (dom (() | (() /\ (Seg ((2 * n) + 1))))) is Relation-like NAT -defined NAT -valued Function-like finite FinSequence-like FinSubsequence-like V76() V77() V78() V79() FinSequence of NAT
(Sgm (dom (() | (() /\ (Seg ((2 * n) + 1)))))) (#) (() | (() /\ (Seg ((2 * n) + 1)))) is Relation-like NAT -defined NAT -valued RAT -valued Function-like finite V76() V77() V78() V79() set
Fib ((2 * n) + 3) is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
<*(Fib ((2 * n) + 3))*> is non empty Relation-like NAT -defined NAT -valued Function-like finite 1 -element FinSequence-like FinSubsequence-like V76() V77() V78() V79() FinSequence of NAT
[1,(Fib ((2 * n) + 3))] is set
{1,(Fib ((2 * n) + 3))} is non empty finite complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered left_end right_end bounded_below bounded_above real-bounded set
{{1,(Fib ((2 * n) + 3))},{1}} is non empty finite V40() with_non-empty_elements non empty-membered set
{[1,(Fib ((2 * n) + 3))]} is non empty Relation-like Function-like finite set
(((2 * n) + 1)) ^ <*(Fib ((2 * n) + 3))*> is non empty Relation-like NAT -defined NAT -valued Function-like finite FinSequence-like FinSubsequence-like V76() V77() V78() V79() FinSequence of NAT
n + 1 is non empty epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real positive non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered left_end bounded_below Element of NAT
2 * (n + 1) is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered even bounded_below Element of NAT
(2 * (n + 1)) + 3 is non empty epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real positive non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered left_end bounded_below Element of NAT
(((2 * (n + 1)) + 3)) is Relation-like NAT -defined REAL -valued Function-like finite FinSequence-like FinSubsequence-like V76() V77() V78() FinSequence of NAT
Seg ((2 * (n + 1)) + 3) is non empty finite (2 * (n + 1)) + 3 -element with_non-empty_elements non empty-membered complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered left_end right_end bounded_below bounded_above real-bounded Element of bool NAT
{ b1 where b1 is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT : ( 1 <= b1 & b1 <= (2 * (n + 1)) + 3 ) } is set
() /\ (Seg ((2 * (n + 1)) + 3)) is finite with_non-empty_elements complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below bounded_above real-bounded set
((),(() /\ (Seg ((2 * (n + 1)) + 3)))) is Relation-like NAT -defined REAL -valued Function-like finite FinSequence-like FinSubsequence-like V76() V77() V78() FinSequence of NAT
() | (() /\ (Seg ((2 * (n + 1)) + 3))) is Relation-like () /\ (Seg ((2 * (n + 1)) + 3)) -defined NAT -defined NAT -valued RAT -valued Function-like finite FinSubsequence-like V76() V77() V78() V79() set
Seq (() | (() /\ (Seg ((2 * (n + 1)) + 3)))) is Relation-like NAT -defined Function-like finite FinSequence-like FinSubsequence-like set
dom (() | (() /\ (Seg ((2 * (n + 1)) + 3)))) is finite set
Sgm (dom (() | (() /\ (Seg ((2 * (n + 1)) + 3))))) is Relation-like NAT -defined NAT -valued Function-like finite FinSequence-like FinSubsequence-like V76() V77() V78() V79() FinSequence of NAT
(Sgm (dom (() | (() /\ (Seg ((2 * (n + 1)) + 3)))))) (#) (() | (() /\ (Seg ((2 * (n + 1)) + 3)))) is Relation-like NAT -defined NAT -valued RAT -valued Function-like finite V76() V77() V78() V79() set
(2 * (n + 1)) + 1 is non empty epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real positive non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered non even left_end bounded_below Element of NAT
(((2 * (n + 1)) + 1)) is Relation-like NAT -defined REAL -valued Function-like finite FinSequence-like FinSubsequence-like V76() V77() V78() FinSequence of NAT
Seg ((2 * (n + 1)) + 1) is non empty finite (2 * (n + 1)) + 1 -element with_non-empty_elements non empty-membered complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered left_end right_end bounded_below bounded_above real-bounded Element of bool NAT
{ b1 where b1 is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT : ( 1 <= b1 & b1 <= (2 * (n + 1)) + 1 ) } is set
() /\ (Seg ((2 * (n + 1)) + 1)) is finite with_non-empty_elements complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below bounded_above real-bounded set
((),(() /\ (Seg ((2 * (n + 1)) + 1)))) is Relation-like NAT -defined REAL -valued Function-like finite FinSequence-like FinSubsequence-like V76() V77() V78() FinSequence of NAT
() | (() /\ (Seg ((2 * (n + 1)) + 1))) is Relation-like () /\ (Seg ((2 * (n + 1)) + 1)) -defined NAT -defined NAT -valued RAT -valued Function-like finite FinSubsequence-like V76() V77() V78() V79() set
Seq (() | (() /\ (Seg ((2 * (n + 1)) + 1)))) is Relation-like NAT -defined Function-like finite FinSequence-like FinSubsequence-like set
dom (() | (() /\ (Seg ((2 * (n + 1)) + 1)))) is finite set
Sgm (dom (() | (() /\ (Seg ((2 * (n + 1)) + 1))))) is Relation-like NAT -defined NAT -valued Function-like finite FinSequence-like FinSubsequence-like V76() V77() V78() V79() FinSequence of NAT
(Sgm (dom (() | (() /\ (Seg ((2 * (n + 1)) + 1)))))) (#) (() | (() /\ (Seg ((2 * (n + 1)) + 1)))) is Relation-like NAT -defined NAT -valued RAT -valued Function-like finite V76() V77() V78() V79() set
Fib ((2 * (n + 1)) + 3) is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
<*(Fib ((2 * (n + 1)) + 3))*> is non empty Relation-like NAT -defined NAT -valued Function-like finite 1 -element FinSequence-like FinSubsequence-like V76() V77() V78() V79() FinSequence of NAT
[1,(Fib ((2 * (n + 1)) + 3))] is set
{1,(Fib ((2 * (n + 1)) + 3))} is non empty finite complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered left_end right_end bounded_below bounded_above real-bounded set
{{1,(Fib ((2 * (n + 1)) + 3))},{1}} is non empty finite V40() with_non-empty_elements non empty-membered set
{[1,(Fib ((2 * (n + 1)) + 3))]} is non empty Relation-like Function-like finite set
(((2 * (n + 1)) + 1)) ^ <*(Fib ((2 * (n + 1)) + 3))*> is non empty Relation-like NAT -defined NAT -valued Function-like finite FinSequence-like FinSubsequence-like V76() V77() V78() V79() FinSequence of NAT
(2 * n) + 5 is non empty epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real positive non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered left_end bounded_below Element of NAT
() . ((2 * n) + 5) is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
[1,(() . ((2 * n) + 5))] is Element of [:NAT,NAT:]
{1,(() . ((2 * n) + 5))} is non empty finite complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered left_end right_end bounded_below bounded_above real-bounded set
{{1,(() . ((2 * n) + 5))},{1}} is non empty finite V40() with_non-empty_elements non empty-membered set
{[1,(() . ((2 * n) + 5))]} is non empty Relation-like Function-like finite set
C is Relation-like NAT -defined Function-like FinSubsequence-like set
(2 * n) + 4 is non empty epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real positive non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered left_end bounded_below Element of NAT
((2 * n) + 4) Shift C is Relation-like NAT -defined Function-like FinSubsequence-like set
k is Relation-like NAT -defined Function-like FinSubsequence-like set
dom k is set
Seg ((2 * n) + 4) is non empty finite (2 * n) + 4 -element with_non-empty_elements non empty-membered complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered left_end right_end bounded_below bounded_above real-bounded Element of bool NAT
{ b1 where b1 is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT : ( 1 <= b1 & b1 <= (2 * n) + 4 ) } is set
p1 is Relation-like NAT -defined Function-like finite FinSequence-like FinSubsequence-like set
dom p1 is finite complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below bounded_above real-bounded Element of bool NAT
1 + ((2 * n) + 4) is non empty epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real positive non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered left_end bounded_below Element of NAT
[((2 * n) + 5),(() . ((2 * n) + 5))] is Element of [:NAT,NAT:]
{((2 * n) + 5),(() . ((2 * n) + 5))} is non empty finite complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered left_end right_end bounded_below bounded_above real-bounded set
{((2 * n) + 5)} is non empty finite with_non-empty_elements non empty-membered complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered left_end right_end bounded_below bounded_above real-bounded set
{{((2 * n) + 5),(() . ((2 * n) + 5))},{((2 * n) + 5)}} is non empty finite V40() with_non-empty_elements non empty-membered set
{[((2 * n) + 5),(() . ((2 * n) + 5))]} is non empty Relation-like Function-like finite set
len p1 is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
k \/ (((2 * n) + 4) Shift C) is Relation-like NAT -defined set
Seq k is Relation-like NAT -defined Function-like finite FinSequence-like FinSubsequence-like set
Sgm (dom k) is Relation-like NAT -defined NAT -valued Function-like finite FinSequence-like FinSubsequence-like V76() V77() V78() V79() FinSequence of NAT
(Sgm (dom k)) (#) k is Relation-like NAT -defined Function-like finite set
Seq C is Relation-like NAT -defined Function-like finite FinSequence-like FinSubsequence-like set
dom C is set
Sgm (dom C) is Relation-like NAT -defined NAT -valued Function-like finite FinSequence-like FinSubsequence-like V76() V77() V78() V79() FinSequence of NAT
(Sgm (dom C)) (#) C is Relation-like NAT -defined Function-like finite set
(Seq k) ^ (Seq C) is Relation-like NAT -defined Function-like finite FinSequence-like FinSubsequence-like set
RSR is Relation-like NAT -defined Function-like finite FinSequence-like FinSubsequence-like set
RSR is Relation-like NAT -defined Function-like FinSubsequence-like set
Seq RSR is Relation-like NAT -defined Function-like finite FinSequence-like FinSubsequence-like set
dom RSR is set
Sgm (dom RSR) is Relation-like NAT -defined NAT -valued Function-like finite FinSequence-like FinSubsequence-like V76() V77() V78() V79() FinSequence of NAT
(Sgm (dom RSR)) (#) RSR is Relation-like NAT -defined Function-like finite set
<*(() . ((2 * n) + 5))*> is non empty Relation-like NAT -defined NAT -valued Function-like finite 1 -element FinSequence-like FinSubsequence-like V76() V77() V78() V79() FinSequence of NAT
[1,(() . ((2 * n) + 5))] is set
{[1,(() . ((2 * n) + 5))]} is non empty Relation-like Function-like finite set
(Seq (() | (() /\ (Seg ((2 * n) + 3))))) ^ <*(() . ((2 * n) + 5))*> is non empty Relation-like NAT -defined Function-like finite FinSequence-like FinSubsequence-like set
2 * 0 is empty epsilon-transitive epsilon-connected ordinal T-Sequence-like c=-linear natural V11() real integer Relation-like non-empty empty-yielding NAT -defined RAT -valued Function-like one-to-one constant functional finite finite-yielding V40() FinSequence-like FinSubsequence-like FinSequence-membered V47() ext-real non positive non negative V76() V77() V78() V79() complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered V92() even bounded_below bounded_above real-bounded V120() Element of NAT
(2 * 0) + 3 is non empty epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real positive non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered left_end bounded_below Element of NAT
(((2 * 0) + 3)) is Relation-like NAT -defined REAL -valued Function-like finite FinSequence-like FinSubsequence-like V76() V77() V78() FinSequence of NAT
Seg ((2 * 0) + 3) is non empty finite (2 * 0) + 3 -element with_non-empty_elements non empty-membered complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered left_end right_end bounded_below bounded_above real-bounded Element of bool NAT
{ b1 where b1 is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT : ( 1 <= b1 & b1 <= (2 * 0) + 3 ) } is set
() /\ (Seg ((2 * 0) + 3)) is finite with_non-empty_elements complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below bounded_above real-bounded set
((),(() /\ (Seg ((2 * 0) + 3)))) is Relation-like NAT -defined REAL -valued Function-like finite FinSequence-like FinSubsequence-like V76() V77() V78() FinSequence of NAT
() | (() /\ (Seg ((2 * 0) + 3))) is Relation-like () /\ (Seg ((2 * 0) + 3)) -defined NAT -defined NAT -valued RAT -valued Function-like finite FinSubsequence-like V76() V77() V78() V79() set
Seq (() | (() /\ (Seg ((2 * 0) + 3)))) is Relation-like NAT -defined Function-like finite FinSequence-like FinSubsequence-like set
dom (() | (() /\ (Seg ((2 * 0) + 3)))) is finite set
Sgm (dom (() | (() /\ (Seg ((2 * 0) + 3))))) is Relation-like NAT -defined NAT -valued Function-like finite FinSequence-like FinSubsequence-like V76() V77() V78() V79() FinSequence of NAT
(Sgm (dom (() | (() /\ (Seg ((2 * 0) + 3)))))) (#) (() | (() /\ (Seg ((2 * 0) + 3)))) is Relation-like NAT -defined NAT -valued RAT -valued Function-like finite V76() V77() V78() V79() set
(2 * 0) + 1 is non empty epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real positive non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered non even left_end bounded_below Element of NAT
(((2 * 0) + 1)) is Relation-like NAT -defined REAL -valued Function-like finite FinSequence-like FinSubsequence-like V76() V77() V78() FinSequence of NAT
Seg ((2 * 0) + 1) is non empty finite (2 * 0) + 1 -element with_non-empty_elements non empty-membered complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered left_end right_end bounded_below bounded_above real-bounded Element of bool NAT
{ b1 where b1 is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT : ( 1 <= b1 & b1 <= (2 * 0) + 1 ) } is set
() /\ (Seg ((2 * 0) + 1)) is finite with_non-empty_elements complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below bounded_above real-bounded set
((),(() /\ (Seg ((2 * 0) + 1)))) is Relation-like NAT -defined REAL -valued Function-like finite FinSequence-like FinSubsequence-like V76() V77() V78() FinSequence of NAT
() | (() /\ (Seg ((2 * 0) + 1))) is Relation-like () /\ (Seg ((2 * 0) + 1)) -defined NAT -defined NAT -valued RAT -valued Function-like finite FinSubsequence-like V76() V77() V78() V79() set
Seq (() | (() /\ (Seg ((2 * 0) + 1)))) is Relation-like NAT -defined Function-like finite FinSequence-like FinSubsequence-like set
dom (() | (() /\ (Seg ((2 * 0) + 1)))) is finite set
Sgm (dom (() | (() /\ (Seg ((2 * 0) + 1))))) is Relation-like NAT -defined NAT -valued Function-like finite FinSequence-like FinSubsequence-like V76() V77() V78() V79() FinSequence of NAT
(Sgm (dom (() | (() /\ (Seg ((2 * 0) + 1)))))) (#) (() | (() /\ (Seg ((2 * 0) + 1)))) is Relation-like NAT -defined NAT -valued RAT -valued Function-like finite V76() V77() V78() V79() set
Fib ((2 * 0) + 3) is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
<*(Fib ((2 * 0) + 3))*> is non empty Relation-like NAT -defined NAT -valued Function-like finite 1 -element FinSequence-like FinSubsequence-like V76() V77() V78() V79() FinSequence of NAT
[1,(Fib ((2 * 0) + 3))] is set
{1,(Fib ((2 * 0) + 3))} is non empty finite complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered left_end right_end bounded_below bounded_above real-bounded set
{{1,(Fib ((2 * 0) + 3))},{1}} is non empty finite V40() with_non-empty_elements non empty-membered set
{[1,(Fib ((2 * 0) + 3))]} is non empty Relation-like Function-like finite set
(((2 * 0) + 1)) ^ <*(Fib ((2 * 0) + 3))*> is non empty Relation-like NAT -defined NAT -valued Function-like finite FinSequence-like FinSubsequence-like V76() V77() V78() V79() FinSequence of NAT
n is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
2 * n is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered even bounded_below Element of NAT
(2 * n) + 2 is non empty epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real positive non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered even left_end bounded_below Element of NAT
(((2 * n) + 2)) is Relation-like NAT -defined REAL -valued Function-like finite FinSequence-like FinSubsequence-like V76() V77() V78() FinSequence of NAT
Seg ((2 * n) + 2) is non empty finite (2 * n) + 2 -element with_non-empty_elements non empty-membered complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered left_end right_end bounded_below bounded_above real-bounded Element of bool NAT
{ b1 where b1 is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT : ( 1 <= b1 & b1 <= (2 * n) + 2 ) } is set
() /\ (Seg ((2 * n) + 2)) is finite with_non-empty_elements complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below bounded_above real-bounded set
((),(() /\ (Seg ((2 * n) + 2)))) is Relation-like NAT -defined REAL -valued Function-like finite FinSequence-like FinSubsequence-like V76() V77() V78() FinSequence of NAT
() | (() /\ (Seg ((2 * n) + 2))) is Relation-like () /\ (Seg ((2 * n) + 2)) -defined NAT -defined NAT -valued RAT -valued Function-like finite FinSubsequence-like V76() V77() V78() V79() set
Seq (() | (() /\ (Seg ((2 * n) + 2)))) is Relation-like NAT -defined Function-like finite FinSequence-like FinSubsequence-like set
dom (() | (() /\ (Seg ((2 * n) + 2)))) is finite set
Sgm (dom (() | (() /\ (Seg ((2 * n) + 2))))) is Relation-like NAT -defined NAT -valued Function-like finite FinSequence-like FinSubsequence-like V76() V77() V78() V79() FinSequence of NAT
(Sgm (dom (() | (() /\ (Seg ((2 * n) + 2)))))) (#) (() | (() /\ (Seg ((2 * n) + 2)))) is Relation-like NAT -defined NAT -valued RAT -valued Function-like finite V76() V77() V78() V79() set
Sum (((2 * n) + 2)) is V11() real ext-real Element of REAL
(2 * n) + 3 is non empty epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real positive non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered left_end bounded_below Element of NAT
Fib ((2 * n) + 3) is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
(Fib ((2 * n) + 3)) - 1 is V11() real integer ext-real set
n is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
2 * n is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered even bounded_below Element of NAT
(2 * n) + 2 is non empty epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real positive non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered even left_end bounded_below Element of NAT
(((2 * n) + 2)) is Relation-like NAT -defined REAL -valued Function-like finite FinSequence-like FinSubsequence-like V76() V77() V78() FinSequence of NAT
Seg ((2 * n) + 2) is non empty finite (2 * n) + 2 -element with_non-empty_elements non empty-membered complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered left_end right_end bounded_below bounded_above real-bounded Element of bool NAT
{ b1 where b1 is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT : ( 1 <= b1 & b1 <= (2 * n) + 2 ) } is set
() /\ (Seg ((2 * n) + 2)) is finite with_non-empty_elements complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below bounded_above real-bounded set
((),(() /\ (Seg ((2 * n) + 2)))) is Relation-like NAT -defined REAL -valued Function-like finite FinSequence-like FinSubsequence-like V76() V77() V78() FinSequence of NAT
() | (() /\ (Seg ((2 * n) + 2))) is Relation-like () /\ (Seg ((2 * n) + 2)) -defined NAT -defined NAT -valued RAT -valued Function-like finite FinSubsequence-like V76() V77() V78() V79() set
Seq (() | (() /\ (Seg ((2 * n) + 2)))) is Relation-like NAT -defined Function-like finite FinSequence-like FinSubsequence-like set
dom (() | (() /\ (Seg ((2 * n) + 2)))) is finite set
Sgm (dom (() | (() /\ (Seg ((2 * n) + 2))))) is Relation-like NAT -defined NAT -valued Function-like finite FinSequence-like FinSubsequence-like V76() V77() V78() V79() FinSequence of NAT
(Sgm (dom (() | (() /\ (Seg ((2 * n) + 2)))))) (#) (() | (() /\ (Seg ((2 * n) + 2)))) is Relation-like NAT -defined NAT -valued RAT -valued Function-like finite V76() V77() V78() V79() set
Sum (((2 * n) + 2)) is V11() real ext-real Element of REAL
(2 * n) + 3 is non empty epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real positive non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered left_end bounded_below Element of NAT
Fib ((2 * n) + 3) is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
(Fib ((2 * n) + 3)) - 1 is V11() real integer ext-real set
n + 1 is non empty epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real positive non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered left_end bounded_below Element of NAT
2 * (n + 1) is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered even bounded_below Element of NAT
(2 * (n + 1)) + 2 is non empty epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real positive non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered even left_end bounded_below Element of NAT
(((2 * (n + 1)) + 2)) is Relation-like NAT -defined REAL -valued Function-like finite FinSequence-like FinSubsequence-like V76() V77() V78() FinSequence of NAT
Seg ((2 * (n + 1)) + 2) is non empty finite (2 * (n + 1)) + 2 -element with_non-empty_elements non empty-membered complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered left_end right_end bounded_below bounded_above real-bounded Element of bool NAT
{ b1 where b1 is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT : ( 1 <= b1 & b1 <= (2 * (n + 1)) + 2 ) } is set
() /\ (Seg ((2 * (n + 1)) + 2)) is finite with_non-empty_elements complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below bounded_above real-bounded set
((),(() /\ (Seg ((2 * (n + 1)) + 2)))) is Relation-like NAT -defined REAL -valued Function-like finite FinSequence-like FinSubsequence-like V76() V77() V78() FinSequence of NAT
() | (() /\ (Seg ((2 * (n + 1)) + 2))) is Relation-like () /\ (Seg ((2 * (n + 1)) + 2)) -defined NAT -defined NAT -valued RAT -valued Function-like finite FinSubsequence-like V76() V77() V78() V79() set
Seq (() | (() /\ (Seg ((2 * (n + 1)) + 2)))) is Relation-like NAT -defined Function-like finite FinSequence-like FinSubsequence-like set
dom (() | (() /\ (Seg ((2 * (n + 1)) + 2)))) is finite set
Sgm (dom (() | (() /\ (Seg ((2 * (n + 1)) + 2))))) is Relation-like NAT -defined NAT -valued Function-like finite FinSequence-like FinSubsequence-like V76() V77() V78() V79() FinSequence of NAT
(Sgm (dom (() | (() /\ (Seg ((2 * (n + 1)) + 2)))))) (#) (() | (() /\ (Seg ((2 * (n + 1)) + 2)))) is Relation-like NAT -defined NAT -valued RAT -valued Function-like finite V76() V77() V78() V79() set
Sum (((2 * (n + 1)) + 2)) is V11() real ext-real Element of REAL
(2 * (n + 1)) + 3 is non empty epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real positive non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered left_end bounded_below Element of NAT
Fib ((2 * (n + 1)) + 3) is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
(Fib ((2 * (n + 1)) + 3)) - 1 is V11() real integer ext-real set
((2 * (n + 1))) is Relation-like NAT -defined REAL -valued Function-like finite FinSequence-like FinSubsequence-like V76() V77() V78() FinSequence of NAT
Seg (2 * (n + 1)) is finite 2 * (n + 1) -element with_non-empty_elements complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below bounded_above real-bounded Element of bool NAT
{ b1 where b1 is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT : ( 1 <= b1 & b1 <= 2 * (n + 1) ) } is set
() /\ (Seg (2 * (n + 1))) is finite with_non-empty_elements complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below bounded_above real-bounded set
((),(() /\ (Seg (2 * (n + 1))))) is Relation-like NAT -defined REAL -valued Function-like finite FinSequence-like FinSubsequence-like V76() V77() V78() FinSequence of NAT
() | (() /\ (Seg (2 * (n + 1)))) is Relation-like () /\ (Seg (2 * (n + 1))) -defined NAT -defined NAT -valued RAT -valued Function-like finite FinSubsequence-like V76() V77() V78() V79() set
Seq (() | (() /\ (Seg (2 * (n + 1))))) is Relation-like NAT -defined Function-like finite FinSequence-like FinSubsequence-like set
dom (() | (() /\ (Seg (2 * (n + 1))))) is finite set
Sgm (dom (() | (() /\ (Seg (2 * (n + 1)))))) is Relation-like NAT -defined NAT -valued Function-like finite FinSequence-like FinSubsequence-like V76() V77() V78() V79() FinSequence of NAT
(Sgm (dom (() | (() /\ (Seg (2 * (n + 1))))))) (#) (() | (() /\ (Seg (2 * (n + 1))))) is Relation-like NAT -defined NAT -valued RAT -valued Function-like finite V76() V77() V78() V79() set
Fib ((2 * (n + 1)) + 2) is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
<*(Fib ((2 * (n + 1)) + 2))*> is non empty Relation-like NAT -defined NAT -valued Function-like finite 1 -element FinSequence-like FinSubsequence-like V76() V77() V78() V79() FinSequence of NAT
[1,(Fib ((2 * (n + 1)) + 2))] is set
{1,(Fib ((2 * (n + 1)) + 2))} is non empty finite complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered left_end right_end bounded_below bounded_above real-bounded set
{{1,(Fib ((2 * (n + 1)) + 2))},{1}} is non empty finite V40() with_non-empty_elements non empty-membered set
{[1,(Fib ((2 * (n + 1)) + 2))]} is non empty Relation-like Function-like finite set
((2 * (n + 1))) ^ <*(Fib ((2 * (n + 1)) + 2))*> is non empty Relation-like NAT -defined NAT -valued Function-like finite FinSequence-like FinSubsequence-like V76() V77() V78() V79() FinSequence of NAT
Sum (((2 * (n + 1))) ^ <*(Fib ((2 * (n + 1)) + 2))*>) is V11() set
C is Relation-like NAT -defined REAL -valued Function-like finite FinSequence-like FinSubsequence-like V76() V77() V78() FinSequence of REAL
Sum C is V11() real ext-real Element of REAL
(Sum C) + (Fib ((2 * (n + 1)) + 2)) is V11() real ext-real set
(2 * n) + 4 is non empty epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real positive non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered left_end bounded_below Element of NAT
Fib ((2 * n) + 4) is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
(Fib ((2 * n) + 3)) + (Fib ((2 * n) + 4)) is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
((Fib ((2 * n) + 3)) + (Fib ((2 * n) + 4))) - 1 is V11() real integer ext-real set
(2 * n) + 5 is non empty epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real positive non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered left_end bounded_below Element of NAT
Fib ((2 * n) + 5) is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
(Fib ((2 * n) + 5)) - 1 is V11() real integer ext-real set
2 * 0 is empty epsilon-transitive epsilon-connected ordinal T-Sequence-like c=-linear natural V11() real integer Relation-like non-empty empty-yielding NAT -defined RAT -valued Function-like one-to-one constant functional finite finite-yielding V40() FinSequence-like FinSubsequence-like FinSequence-membered V47() ext-real non positive non negative V76() V77() V78() V79() complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered V92() even bounded_below bounded_above real-bounded V120() Element of NAT
(2 * 0) + 2 is non empty epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real positive non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered even left_end bounded_below Element of NAT
(((2 * 0) + 2)) is Relation-like NAT -defined REAL -valued Function-like finite FinSequence-like FinSubsequence-like V76() V77() V78() FinSequence of NAT
Seg ((2 * 0) + 2) is non empty finite (2 * 0) + 2 -element with_non-empty_elements non empty-membered complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered left_end right_end bounded_below bounded_above real-bounded Element of bool NAT
{ b1 where b1 is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT : ( 1 <= b1 & b1 <= (2 * 0) + 2 ) } is set
() /\ (Seg ((2 * 0) + 2)) is finite with_non-empty_elements complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below bounded_above real-bounded set
((),(() /\ (Seg ((2 * 0) + 2)))) is Relation-like NAT -defined REAL -valued Function-like finite FinSequence-like FinSubsequence-like V76() V77() V78() FinSequence of NAT
() | (() /\ (Seg ((2 * 0) + 2))) is Relation-like () /\ (Seg ((2 * 0) + 2)) -defined NAT -defined NAT -valued RAT -valued Function-like finite FinSubsequence-like V76() V77() V78() V79() set
Seq (() | (() /\ (Seg ((2 * 0) + 2)))) is Relation-like NAT -defined Function-like finite FinSequence-like FinSubsequence-like set
dom (() | (() /\ (Seg ((2 * 0) + 2)))) is finite set
Sgm (dom (() | (() /\ (Seg ((2 * 0) + 2))))) is Relation-like NAT -defined NAT -valued Function-like finite FinSequence-like FinSubsequence-like V76() V77() V78() V79() FinSequence of NAT
(Sgm (dom (() | (() /\ (Seg ((2 * 0) + 2)))))) (#) (() | (() /\ (Seg ((2 * 0) + 2)))) is Relation-like NAT -defined NAT -valued RAT -valued Function-like finite V76() V77() V78() V79() set
Sum (((2 * 0) + 2)) is V11() real ext-real Element of REAL
(2 * 0) + 3 is non empty epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real positive non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered left_end bounded_below Element of NAT
Fib ((2 * 0) + 3) is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
(Fib ((2 * 0) + 3)) - 1 is V11() real integer ext-real set
n is epsilon-transitive epsilon-connected ordinal natural V11() real integer ext-real non negative set
2 * n is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered even bounded_below Element of NAT
(2 * n) + 1 is non empty epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real positive non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered non even left_end bounded_below Element of NAT
(((2 * n) + 1)) is Relation-like NAT -defined REAL -valued Function-like finite FinSequence-like FinSubsequence-like V76() V77() V78() FinSequence of NAT
Seg ((2 * n) + 1) is non empty finite (2 * n) + 1 -element with_non-empty_elements non empty-membered complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered left_end right_end bounded_below bounded_above real-bounded Element of bool NAT
{ b1 where b1 is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT : ( 1 <= b1 & b1 <= (2 * n) + 1 ) } is set
() /\ (Seg ((2 * n) + 1)) is finite with_non-empty_elements complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below bounded_above real-bounded set
((),(() /\ (Seg ((2 * n) + 1)))) is Relation-like NAT -defined REAL -valued Function-like finite FinSequence-like FinSubsequence-like V76() V77() V78() FinSequence of NAT
() | (() /\ (Seg ((2 * n) + 1))) is Relation-like () /\ (Seg ((2 * n) + 1)) -defined NAT -defined NAT -valued RAT -valued Function-like finite FinSubsequence-like V76() V77() V78() V79() set
Seq (() | (() /\ (Seg ((2 * n) + 1)))) is Relation-like NAT -defined Function-like finite FinSequence-like FinSubsequence-like set
dom (() | (() /\ (Seg ((2 * n) + 1)))) is finite set
Sgm (dom (() | (() /\ (Seg ((2 * n) + 1))))) is Relation-like NAT -defined NAT -valued Function-like finite FinSequence-like FinSubsequence-like V76() V77() V78() V79() FinSequence of NAT
(Sgm (dom (() | (() /\ (Seg ((2 * n) + 1)))))) (#) (() | (() /\ (Seg ((2 * n) + 1)))) is Relation-like NAT -defined NAT -valued RAT -valued Function-like finite V76() V77() V78() V79() set
Sum (((2 * n) + 1)) is V11() real ext-real Element of REAL
(2 * n) + 2 is non empty epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real positive non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered even left_end bounded_below Element of NAT
Fib ((2 * n) + 2) is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
n is epsilon-transitive epsilon-connected ordinal natural V11() real integer ext-real non negative set
2 * n is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered even bounded_below Element of NAT
(2 * n) + 1 is non empty epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real positive non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered non even left_end bounded_below Element of NAT
(((2 * n) + 1)) is Relation-like NAT -defined REAL -valued Function-like finite FinSequence-like FinSubsequence-like V76() V77() V78() FinSequence of NAT
Seg ((2 * n) + 1) is non empty finite (2 * n) + 1 -element with_non-empty_elements non empty-membered complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered left_end right_end bounded_below bounded_above real-bounded Element of bool NAT
{ b1 where b1 is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT : ( 1 <= b1 & b1 <= (2 * n) + 1 ) } is set
() /\ (Seg ((2 * n) + 1)) is finite with_non-empty_elements complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below bounded_above real-bounded set
((),(() /\ (Seg ((2 * n) + 1)))) is Relation-like NAT -defined REAL -valued Function-like finite FinSequence-like FinSubsequence-like V76() V77() V78() FinSequence of NAT
() | (() /\ (Seg ((2 * n) + 1))) is Relation-like () /\ (Seg ((2 * n) + 1)) -defined NAT -defined NAT -valued RAT -valued Function-like finite FinSubsequence-like V76() V77() V78() V79() set
Seq (() | (() /\ (Seg ((2 * n) + 1)))) is Relation-like NAT -defined Function-like finite FinSequence-like FinSubsequence-like set
dom (() | (() /\ (Seg ((2 * n) + 1)))) is finite set
Sgm (dom (() | (() /\ (Seg ((2 * n) + 1))))) is Relation-like NAT -defined NAT -valued Function-like finite FinSequence-like FinSubsequence-like V76() V77() V78() V79() FinSequence of NAT
(Sgm (dom (() | (() /\ (Seg ((2 * n) + 1)))))) (#) (() | (() /\ (Seg ((2 * n) + 1)))) is Relation-like NAT -defined NAT -valued RAT -valued Function-like finite V76() V77() V78() V79() set
Sum (((2 * n) + 1)) is V11() real ext-real Element of REAL
(2 * n) + 2 is non empty epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real positive non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered even left_end bounded_below Element of NAT
Fib ((2 * n) + 2) is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
n + 1 is non empty epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real positive non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered left_end bounded_below Element of NAT
2 * (n + 1) is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered even bounded_below Element of NAT
(2 * (n + 1)) + 1 is non empty epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real positive non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered non even left_end bounded_below Element of NAT
(((2 * (n + 1)) + 1)) is Relation-like NAT -defined REAL -valued Function-like finite FinSequence-like FinSubsequence-like V76() V77() V78() FinSequence of NAT
Seg ((2 * (n + 1)) + 1) is non empty finite (2 * (n + 1)) + 1 -element with_non-empty_elements non empty-membered complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered left_end right_end bounded_below bounded_above real-bounded Element of bool NAT
{ b1 where b1 is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT : ( 1 <= b1 & b1 <= (2 * (n + 1)) + 1 ) } is set
() /\ (Seg ((2 * (n + 1)) + 1)) is finite with_non-empty_elements complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below bounded_above real-bounded set
((),(() /\ (Seg ((2 * (n + 1)) + 1)))) is Relation-like NAT -defined REAL -valued Function-like finite FinSequence-like FinSubsequence-like V76() V77() V78() FinSequence of NAT
() | (() /\ (Seg ((2 * (n + 1)) + 1))) is Relation-like () /\ (Seg ((2 * (n + 1)) + 1)) -defined NAT -defined NAT -valued RAT -valued Function-like finite FinSubsequence-like V76() V77() V78() V79() set
Seq (() | (() /\ (Seg ((2 * (n + 1)) + 1)))) is Relation-like NAT -defined Function-like finite FinSequence-like FinSubsequence-like set
dom (() | (() /\ (Seg ((2 * (n + 1)) + 1)))) is finite set
Sgm (dom (() | (() /\ (Seg ((2 * (n + 1)) + 1))))) is Relation-like NAT -defined NAT -valued Function-like finite FinSequence-like FinSubsequence-like V76() V77() V78() V79() FinSequence of NAT
(Sgm (dom (() | (() /\ (Seg ((2 * (n + 1)) + 1)))))) (#) (() | (() /\ (Seg ((2 * (n + 1)) + 1)))) is Relation-like NAT -defined NAT -valued RAT -valued Function-like finite V76() V77() V78() V79() set
Sum (((2 * (n + 1)) + 1)) is V11() real ext-real Element of REAL
(2 * (n + 1)) + 2 is non empty epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real positive non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered even left_end bounded_below Element of NAT
Fib ((2 * (n + 1)) + 2) is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
(2 * n) + 3 is non empty epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real positive non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered left_end bounded_below Element of NAT
Fib ((2 * n) + 3) is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
<*(Fib ((2 * n) + 3))*> is non empty Relation-like NAT -defined NAT -valued Function-like finite 1 -element FinSequence-like FinSubsequence-like V76() V77() V78() V79() FinSequence of NAT
[1,(Fib ((2 * n) + 3))] is set
{1,(Fib ((2 * n) + 3))} is non empty finite complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered left_end right_end bounded_below bounded_above real-bounded set
{{1,(Fib ((2 * n) + 3))},{1}} is non empty finite V40() with_non-empty_elements non empty-membered set
{[1,(Fib ((2 * n) + 3))]} is non empty Relation-like Function-like finite set
(((2 * n) + 1)) ^ <*(Fib ((2 * n) + 3))*> is non empty Relation-like NAT -defined NAT -valued Function-like finite FinSequence-like FinSubsequence-like V76() V77() V78() V79() FinSequence of NAT
Sum ((((2 * n) + 1)) ^ <*(Fib ((2 * n) + 3))*>) is V11() set
C is Relation-like NAT -defined REAL -valued Function-like finite FinSequence-like FinSubsequence-like V76() V77() V78() FinSequence of REAL
Sum C is V11() real ext-real Element of REAL
(Sum C) + (Fib ((2 * n) + 3)) is V11() real ext-real set
(2 * n) + 4 is non empty epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real positive non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered left_end bounded_below Element of NAT
Fib ((2 * n) + 4) is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
2 * 0 is empty epsilon-transitive epsilon-connected ordinal T-Sequence-like c=-linear natural V11() real integer Relation-like non-empty empty-yielding NAT -defined RAT -valued Function-like one-to-one constant functional finite finite-yielding V40() FinSequence-like FinSubsequence-like FinSequence-membered V47() ext-real non positive non negative V76() V77() V78() V79() complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered V92() even bounded_below bounded_above real-bounded V120() Element of NAT
(2 * 0) + 1 is non empty epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real positive non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered non even left_end bounded_below Element of NAT
(((2 * 0) + 1)) is Relation-like NAT -defined REAL -valued Function-like finite FinSequence-like FinSubsequence-like V76() V77() V78() FinSequence of NAT
Seg ((2 * 0) + 1) is non empty finite (2 * 0) + 1 -element with_non-empty_elements non empty-membered complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered left_end right_end bounded_below bounded_above real-bounded Element of bool NAT
{ b1 where b1 is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT : ( 1 <= b1 & b1 <= (2 * 0) + 1 ) } is set
() /\ (Seg ((2 * 0) + 1)) is finite with_non-empty_elements complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below bounded_above real-bounded set
((),(() /\ (Seg ((2 * 0) + 1)))) is Relation-like NAT -defined REAL -valued Function-like finite FinSequence-like FinSubsequence-like V76() V77() V78() FinSequence of NAT
() | (() /\ (Seg ((2 * 0) + 1))) is Relation-like () /\ (Seg ((2 * 0) + 1)) -defined NAT -defined NAT -valued RAT -valued Function-like finite FinSubsequence-like V76() V77() V78() V79() set
Seq (() | (() /\ (Seg ((2 * 0) + 1)))) is Relation-like NAT -defined Function-like finite FinSequence-like FinSubsequence-like set
dom (() | (() /\ (Seg ((2 * 0) + 1)))) is finite set
Sgm (dom (() | (() /\ (Seg ((2 * 0) + 1))))) is Relation-like NAT -defined NAT -valued Function-like finite FinSequence-like FinSubsequence-like V76() V77() V78() V79() FinSequence of NAT
(Sgm (dom (() | (() /\ (Seg ((2 * 0) + 1)))))) (#) (() | (() /\ (Seg ((2 * 0) + 1)))) is Relation-like NAT -defined NAT -valued RAT -valued Function-like finite V76() V77() V78() V79() set
Sum (((2 * 0) + 1)) is V11() real ext-real Element of REAL
(2 * 0) + 2 is non empty epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real positive non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered even left_end bounded_below Element of NAT
Fib ((2 * 0) + 2) is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
n is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
Fib n is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
n + 1 is non empty epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real positive non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered left_end bounded_below Element of NAT
Fib (n + 1) is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
(Fib n) gcd (Fib (n + 1)) is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
n gcd (n + 1) is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
Fib (n gcd (n + 1)) is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
n is non empty epsilon-transitive epsilon-connected ordinal natural V11() real integer ext-real positive non negative set
Fib n is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
n -' 1 is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
Fib (n -' 1) is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
n is epsilon-transitive epsilon-connected ordinal natural V11() real integer ext-real non negative set
(n -' 1) + 1 is non empty epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real positive non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered left_end bounded_below Element of NAT
(Fib (n -' 1)) gcd (Fib n) is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
n is epsilon-transitive epsilon-connected ordinal natural V11() real integer ext-real non negative set
n is non empty epsilon-transitive epsilon-connected ordinal natural V11() real integer ext-real positive non negative set
Fib n is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
{ b1 where b1 is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT : S1[b1] } is set
C is complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of bool NAT
C is epsilon-transitive epsilon-connected ordinal natural V11() real integer ext-real non negative set
Fib C is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
C is epsilon-transitive epsilon-connected ordinal natural V11() real integer ext-real non negative set
Fib C is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
C is non empty complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered left_end bounded_below Element of bool NAT
min C is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative set
n -' (min C) is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
k is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
Fib k is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
(min C) -' 1 is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
Fib ((min C) -' 1) is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
k is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
Fib k is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
k is epsilon-transitive epsilon-connected ordinal natural V11() real integer ext-real non negative set
k + 1 is non empty epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real positive non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered left_end bounded_below Element of NAT
(min C) * (k + 1) is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
n -' ((min C) * (k + 1)) is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
Fib (n -' ((min C) * (k + 1))) is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
k + 2 is non empty epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real positive non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered left_end bounded_below Element of NAT
n / (k + 2) is V11() real ext-real non negative set
(k + 1) + 1 is non empty epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real positive non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered left_end bounded_below Element of NAT
(min C) * ((k + 1) + 1) is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
n -' ((min C) * ((k + 1) + 1)) is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
Fib (n -' ((min C) * ((k + 1) + 1))) is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
(k + 1) + 2 is non empty epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real positive non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered left_end bounded_below Element of NAT
n / ((k + 1) + 2) is V11() real ext-real non negative set
Fib (min C) is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
(k + 2) * (min C) is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
n -' ((k + 2) * (min C)) is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
(n -' ((k + 2) * (min C))) + 1 is non empty epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real positive non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered left_end bounded_below Element of NAT
Fib ((n -' ((k + 2) * (min C))) + 1) is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
(Fib (min C)) * (Fib ((n -' ((k + 2) * (min C))) + 1)) is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
RR is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
Fib RR is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
(min C) * (k + 2) is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
n - ((min C) * (k + 2)) is V11() real integer ext-real set
RR is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
Fib RR is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
RR is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
Fib RR is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
RR is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
Fib RR is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
- 0 is empty epsilon-transitive epsilon-connected ordinal T-Sequence-like c=-linear natural V11() real integer Relation-like non-empty empty-yielding NAT -defined RAT -valued Function-like one-to-one constant functional finite finite-yielding V40() FinSequence-like FinSubsequence-like FinSequence-membered ext-real non positive non negative V76() V77() V78() V79() complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered V92() bounded_below bounded_above real-bounded V120() set
- (min C) is V11() real integer ext-real non positive set
RR is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
Fib RR is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
0 * (k + 2) is empty epsilon-transitive epsilon-connected ordinal T-Sequence-like c=-linear natural V11() real integer Relation-like non-empty empty-yielding NAT -defined RAT -valued Function-like one-to-one constant functional finite finite-yielding V40() FinSequence-like FinSubsequence-like FinSequence-membered V47() ext-real non positive non negative V76() V77() V78() V79() complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered V92() bounded_below bounded_above real-bounded V120() Element of NAT
(- (min C)) * (k + 2) is V11() real integer ext-real non positive set
0 + n is non empty epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real positive non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered left_end bounded_below Element of NAT
- ((min C) * (k + 2)) is V11() real integer ext-real non positive set
(- ((min C) * (k + 2))) + n is V11() real integer ext-real set
(n / (k + 2)) * (k + 2) is V11() real ext-real non negative set
((min C) * (k + 2)) - ((min C) * (k + 2)) is V11() real integer ext-real set
(min C) + ((min C) * (k + 1)) is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
RR is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
Fib RR is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
(k + 1) * (min C) is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
n - ((k + 1) * (min C)) is V11() real integer ext-real set
((k + 1) * (min C)) - ((k + 1) * (min C)) is V11() real integer ext-real set
(n - ((k + 1) * (min C))) - (min C) is V11() real integer ext-real set
n -' ((k + 1) * (min C)) is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
(n -' ((k + 1) * (min C))) - (min C) is V11() real integer ext-real set
(n -' ((k + 1) * (min C))) -' (min C) is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
((min C) + ((min C) * (k + 1))) - ((min C) * (k + 1)) is V11() real integer ext-real set
n - ((min C) * (k + 1)) is V11() real integer ext-real set
Fib (n -' ((k + 1) * (min C))) is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
(n -' ((k + 2) * (min C))) + (min C) is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
Fib ((n -' ((k + 2) * (min C))) + (min C)) is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
Fib (n -' ((k + 2) * (min C))) is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
(Fib ((min C) -' 1)) * (Fib (n -' ((k + 2) * (min C)))) is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
((Fib (min C)) * (Fib ((n -' ((k + 2) * (min C))) + 1))) + ((Fib ((min C) -' 1)) * (Fib (n -' ((k + 2) * (min C))))) is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
RR is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
Fib RR is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
(min C) + ((k + 2) * (min C)) is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
1 + k is non empty epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real positive non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered left_end bounded_below Element of NAT
(1 + k) + 2 is non empty epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real positive non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered left_end bounded_below Element of NAT
(min C) * ((1 + k) + 2) is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
1 / ((1 + k) + 2) is V11() real ext-real non negative set
((min C) * ((1 + k) + 2)) * (1 / ((1 + k) + 2)) is V11() real ext-real non negative set
n * (1 / ((1 + k) + 2)) is V11() real ext-real non negative set
((min C) * ((1 + k) + 2)) / ((1 + k) + 2) is V11() real ext-real non negative set
n / ((1 + k) + 2) is V11() real ext-real non negative set
n - (min C) is V11() real integer ext-real set
(min C) - (min C) is V11() real integer ext-real set
k is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
Fib k is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
Fib (min C) is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
(n -' (min C)) + 1 is non empty epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real positive non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered left_end bounded_below Element of NAT
Fib ((n -' (min C)) + 1) is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
(Fib (min C)) * (Fib ((n -' (min C)) + 1)) is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
k is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
Fib k is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
(n -' (min C)) + (min C) is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
Fib ((n -' (min C)) + (min C)) is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
Fib (n -' (min C)) is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
(Fib ((min C) -' 1)) * (Fib (n -' (min C))) is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
((Fib (min C)) * (Fib ((n -' (min C)) + 1))) + ((Fib ((min C) -' 1)) * (Fib (n -' (min C)))) is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
k is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
Fib k is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
k is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
Fib k is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
(min C) + (min C) is epsilon-transitive epsilon-connected ordinal natural V11() real integer ext-real non negative set
k is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
Fib k is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
2 * (min C) is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered even bounded_below Element of NAT
(2 * (min C)) / 2 is V11() real ext-real non negative set
n / 2 is V11() real ext-real non negative set
0 + 1 is non empty epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real positive non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered left_end bounded_below Element of NAT
(min C) * (0 + 1) is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
n -' ((min C) * (0 + 1)) is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
Fib (n -' ((min C) * (0 + 1))) is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
0 + 2 is non empty epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real positive non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered left_end bounded_below Element of NAT
n / (0 + 2) is V11() real ext-real non negative set
n + 2 is non empty epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real positive non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered left_end bounded_below Element of NAT
n / (n + 2) is V11() real ext-real non negative set
1 + 0 is non empty epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real positive non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered left_end bounded_below Element of NAT
k is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
Fib k is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
n is non empty epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real positive non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered left_end bounded_below Element of NAT
Fib n is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
n + 3 is non empty epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real positive non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered left_end bounded_below Element of NAT
Fib (n + 3) is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
(Fib n) * (Fib (n + 3)) is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
n + 1 is non empty epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real positive non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered left_end bounded_below Element of NAT
Fib (n + 1) is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
2 * (Fib (n + 1)) is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered even bounded_below Element of NAT
n + 2 is non empty epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real positive non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered left_end bounded_below Element of NAT
Fib (n + 2) is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
(2 * (Fib (n + 1))) * (Fib (n + 2)) is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered even bounded_below Element of NAT
(Fib (n + 1)) ^2 is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
(Fib (n + 1)) * (Fib (n + 1)) is epsilon-transitive epsilon-connected ordinal natural V11() real integer ext-real non negative set
(Fib (n + 2)) ^2 is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
(Fib (n + 2)) * (Fib (n + 2)) is epsilon-transitive epsilon-connected ordinal natural V11() real integer ext-real non negative set
((Fib (n + 1)) ^2) + ((Fib (n + 2)) ^2) is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
{((Fib n) * (Fib (n + 3))),((2 * (Fib (n + 1))) * (Fib (n + 2))),(((Fib (n + 1)) ^2) + ((Fib (n + 2)) ^2))} is finite complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below bounded_above real-bounded Element of bool NAT
((Fib n) * (Fib (n + 3))) ^2 is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
((Fib n) * (Fib (n + 3))) * ((Fib n) * (Fib (n + 3))) is epsilon-transitive epsilon-connected ordinal natural V11() real integer ext-real non negative set
((2 * (Fib (n + 1))) * (Fib (n + 2))) ^2 is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
((2 * (Fib (n + 1))) * (Fib (n + 2))) * ((2 * (Fib (n + 1))) * (Fib (n + 2))) is epsilon-transitive epsilon-connected ordinal natural V11() real integer ext-real non negative even set
(((Fib n) * (Fib (n + 3))) ^2) + (((2 * (Fib (n + 1))) * (Fib (n + 2))) ^2) is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
(Fib n) ^2 is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
(Fib n) * (Fib n) is epsilon-transitive epsilon-connected ordinal natural V11() real integer ext-real non negative set
(Fib (n + 3)) ^2 is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
(Fib (n + 3)) * (Fib (n + 3)) is epsilon-transitive epsilon-connected ordinal natural V11() real integer ext-real non negative set
((Fib n) ^2) * ((Fib (n + 3)) ^2) is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
2 * 2 is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered even bounded_below Element of NAT
(2 * 2) * ((Fib (n + 1)) ^2) is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered even bounded_below Element of NAT
((2 * 2) * ((Fib (n + 1)) ^2)) * ((Fib (n + 2)) ^2) is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered even bounded_below Element of NAT
(((Fib n) ^2) * ((Fib (n + 3)) ^2)) + (((2 * 2) * ((Fib (n + 1)) ^2)) * ((Fib (n + 2)) ^2)) is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
(Fib (n + 2)) + (Fib (n + 1)) is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
((Fib (n + 2)) + (Fib (n + 1))) ^2 is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
((Fib (n + 2)) + (Fib (n + 1))) * ((Fib (n + 2)) + (Fib (n + 1))) is epsilon-transitive epsilon-connected ordinal natural V11() real integer ext-real non negative set
((Fib n) ^2) * (((Fib (n + 2)) + (Fib (n + 1))) ^2) is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
4 * ((Fib (n + 1)) ^2) is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
(4 * ((Fib (n + 1)) ^2)) * ((Fib (n + 2)) ^2) is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
(((Fib n) ^2) * (((Fib (n + 2)) + (Fib (n + 1))) ^2)) + ((4 * ((Fib (n + 1)) ^2)) * ((Fib (n + 2)) ^2)) is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
(Fib (n + 2)) - (Fib (n + 1)) is V11() real integer ext-real set
((Fib (n + 2)) - (Fib (n + 1))) ^2 is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
((Fib (n + 2)) - (Fib (n + 1))) * ((Fib (n + 2)) - (Fib (n + 1))) is V11() real integer ext-real set
(((Fib (n + 2)) - (Fib (n + 1))) ^2) * (((Fib (n + 2)) + (Fib (n + 1))) ^2) is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
((((Fib (n + 2)) - (Fib (n + 1))) ^2) * (((Fib (n + 2)) + (Fib (n + 1))) ^2)) + ((4 * ((Fib (n + 1)) ^2)) * ((Fib (n + 2)) ^2)) is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
(((Fib (n + 1)) ^2) + ((Fib (n + 2)) ^2)) ^2 is epsilon-transitive epsilon-connected ordinal natural V11() real integer V47() ext-real non negative complex-membered ext-real-membered real-membered rational-membered integer-membered natural-membered bounded_below Element of NAT
(((Fib (n + 1)) ^2) + ((Fib (n + 2)) ^2)) * (((Fib (n + 1)) ^2) + ((Fib (n + 2)) ^2)) is epsilon-transitive epsilon-connected ordinal natural V11() real integer ext-real non negative set