REAL  is   non  empty  V34() V130() V131() V132() V136()  non  bounded_below   non  bounded_above   interval   set 
 
 NAT  is   non  empty   epsilon-transitive   epsilon-connected   ordinal  V130() V131() V132() V133() V134() V135() V136()  left_end   bounded_below   Element of K6(REAL)
 
K6(REAL) is   non  empty   set 
 
 COMPLEX  is   non  empty  V34() V130() V136()  set 
 
 omega  is   non  empty   epsilon-transitive   epsilon-connected   ordinal  V130() V131() V132() V133() V134() V135() V136()  left_end   bounded_below   set 
 
K6(omega) is   non  empty   set 
 
K6(NAT) is   non  empty   set 
 
 RAT  is   non  empty  V34() V130() V131() V132() V133() V136()  set 
 
 INT  is   non  empty  V34() V130() V131() V132() V133() V134() V136()  set 
 
K7(COMPLEX,COMPLEX) is   non  empty  V120()  set 
 
K6(K7(COMPLEX,COMPLEX)) is   non  empty   set 
 
K7(K7(COMPLEX,COMPLEX),COMPLEX) is   non  empty  V120()  set 
 
K6(K7(K7(COMPLEX,COMPLEX),COMPLEX)) is   non  empty   set 
 
K7(REAL,REAL) is   non  empty  V120() V121() V122()  set 
 
K6(K7(REAL,REAL)) is   non  empty   set 
 
K7(K7(REAL,REAL),REAL) is   non  empty  V120() V121() V122()  set 
 
K6(K7(K7(REAL,REAL),REAL)) is   non  empty   set 
 
K7(RAT,RAT) is   non  empty  V25( RAT ) V120() V121() V122()  set 
 
K6(K7(RAT,RAT)) is   non  empty   set 
 
K7(K7(RAT,RAT),RAT) is   non  empty  V25( RAT ) V120() V121() V122()  set 
 
K6(K7(K7(RAT,RAT),RAT)) is   non  empty   set 
 
K7(INT,INT) is   non  empty  V25( RAT ) V25( INT ) V120() V121() V122()  set 
 
K6(K7(INT,INT)) is   non  empty   set 
 
K7(K7(INT,INT),INT) is   non  empty  V25( RAT ) V25( INT ) V120() V121() V122()  set 
 
K6(K7(K7(INT,INT),INT)) is   non  empty   set 
 
K7(NAT,NAT) is   non  empty  V25( RAT ) V25( INT ) V120() V121() V122() V123()  set 
 
K7(K7(NAT,NAT),NAT) is   non  empty  V25( RAT ) V25( INT ) V120() V121() V122() V123()  set 
 
K6(K7(K7(NAT,NAT),NAT)) is   non  empty   set 
 
K302() is    set 
 
1 is   non  empty   epsilon-transitive   epsilon-connected   ordinal   natural  V11()  real   integer   ext-real   positive   non  negative  V49() V130() V131() V132() V133() V134() V135()  left_end   bounded_below   Element of  NAT 
 
K7(1,1) is   non  empty  V25( RAT ) V25( INT ) V120() V121() V122() V123()  set 
 
K6(K7(1,1)) is   non  empty   set 
 
K7(K7(1,1),1) is   non  empty  V25( RAT ) V25( INT ) V120() V121() V122() V123()  set 
 
K6(K7(K7(1,1),1)) is   non  empty   set 
 
K7(K7(1,1),REAL) is   non  empty  V120() V121() V122()  set 
 
K6(K7(K7(1,1),REAL)) is   non  empty   set 
 
2 is   non  empty   epsilon-transitive   epsilon-connected   ordinal   natural  V11()  real   integer   ext-real   positive   non  negative  V49() V130() V131() V132() V133() V134() V135()  left_end   bounded_below   Element of  NAT 
 
K7(2,2) is   non  empty  V25( RAT ) V25( INT ) V120() V121() V122() V123()  set 
 
K7(K7(2,2),REAL) is   non  empty  V120() V121() V122()  set 
 
K6(K7(K7(2,2),REAL)) is   non  empty   set 
 
 TOP-REAL 2 is   non  empty   TopSpace-like   T_2  V153() V178() V179() V180() V181() V182() V183() V184()  strict   add-continuous   Mult-continuous   RLTopStruct 
 
 the carrier of (TOP-REAL 2) is   non  empty  V29()  set 
 
K7( the carrier of (TOP-REAL 2),REAL) is   non  empty  V120() V121() V122()  set 
 
K6(K7( the carrier of (TOP-REAL 2),REAL)) is   non  empty   set 
 
K6( the carrier of (TOP-REAL 2)) is   non  empty   set 
 
K646() is    TopStruct 
 
 the carrier of K646() is    set 
 
 RealSpace  is   strict   MetrStruct 
 
K651() is   TopSpace-like   T_2   TopStruct 
 
 the carrier of K651() is    set 
 
K292( the carrier of (TOP-REAL 2)) is   M9( the carrier of (TOP-REAL 2))
 
K6(K6( the carrier of (TOP-REAL 2))) is   non  empty   set 
 
K7(COMPLEX,REAL) is   non  empty  V120() V121() V122()  set 
 
K6(K7(COMPLEX,REAL)) is   non  empty   set 
 
 {}  is    set 
 
 the   empty   epsilon-transitive   epsilon-connected   ordinal   T-Sequence-like   c=-linear   natural  V11()  real   integer   ext-real   non  positive   non  negative  V130() V131() V132() V133() V134() V135() V136()  bounded_below   interval   set  is   empty   epsilon-transitive   epsilon-connected   ordinal   T-Sequence-like   c=-linear   natural  V11()  real   integer   ext-real   non  positive   non  negative  V130() V131() V132() V133() V134() V135() V136()  bounded_below   interval   set 
 
 0  is   epsilon-transitive   epsilon-connected   ordinal   natural  V11()  real   integer   ext-real   non  negative  V49() V130() V131() V132() V133() V134() V135()  bounded_below   Element of  NAT 
 
3 is   non  empty   epsilon-transitive   epsilon-connected   ordinal   natural  V11()  real   integer   ext-real   positive   non  negative  V49() V130() V131() V132() V133() V134() V135()  left_end   bounded_below   Element of  NAT 
 
4 is   non  empty   epsilon-transitive   epsilon-connected   ordinal   natural  V11()  real   integer   ext-real   positive   non  negative  V49() V130() V131() V132() V133() V134() V135()  left_end   bounded_below   Element of  NAT 
 
 proj2  is  V21() V24( the carrier of (TOP-REAL 2)) V25( REAL ) V26() V46( the carrier of (TOP-REAL 2), REAL ) V120() V121() V122() V195( TOP-REAL 2)  Element of K6(K7( the carrier of (TOP-REAL 2),REAL))
 
 proj1  is  V21() V24( the carrier of (TOP-REAL 2)) V25( REAL ) V26() V46( the carrier of (TOP-REAL 2), REAL ) V120() V121() V122() V195( TOP-REAL 2)  Element of K6(K7( the carrier of (TOP-REAL 2),REAL))
 
K7(NAT,K6(REAL)) is   non  empty   set 
 
K6(K7(NAT,K6(REAL))) is   non  empty   set 
 
 Euclid 2 is   non  empty   strict   Reflexive   discerning   symmetric   triangle   MetrStruct 
 
 the carrier of (Euclid 2) is   non  empty   set 
 
n is   epsilon-transitive   epsilon-connected   ordinal   natural  V11()  real   integer   ext-real   non  negative  V49() V130() V131() V132() V133() V134() V135()  bounded_below   Element of  NAT 
 
C is   epsilon-transitive   epsilon-connected   ordinal   natural  V11()  real   integer   ext-real   non  negative  V49() V130() V131() V132() V133() V134() V135()  bounded_below   Element of  NAT 
 
e is   epsilon-transitive   epsilon-connected   ordinal   natural  V11()  real   integer   ext-real   non  negative  V49() V130() V131() V132() V133() V134() V135()  bounded_below   Element of  NAT 
 
p is   non  empty   proper   closed   connected   bounded   being_simple_closed_curve   compact  V233() V234()  Element of K6( the carrier of (TOP-REAL 2))
 
 Gauge (p,n) is  V21() V23() V24( NAT ) V25(K292( the carrier of (TOP-REAL 2))) V26()  FinSequence-like   tabular  V257() V258() V259() V260()  FinSequence of K292( the carrier of (TOP-REAL 2))
 
 width (Gauge (p,n)) is   epsilon-transitive   epsilon-connected   ordinal   natural  V11()  real   integer   ext-real   non  negative  V49() V130() V131() V132() V133() V134() V135()  bounded_below   Element of  NAT 
 
 Center (Gauge (p,n)) is   epsilon-transitive   epsilon-connected   ordinal   natural  V11()  real   integer   ext-real   non  negative  V49() V130() V131() V132() V133() V134() V135()  bounded_below   Element of  NAT 
 
(Gauge (p,n)) * ((Center (Gauge (p,n))),C) is  V41(2)  FinSequence-like  V122()  Element of  the carrier of (TOP-REAL 2)
 
(Gauge (p,n)) * ((Center (Gauge (p,n))),e) is  V41(2)  FinSequence-like  V122()  Element of  the carrier of (TOP-REAL 2)
 
 LSeg (((Gauge (p,n)) * ((Center (Gauge (p,n))),C)),((Gauge (p,n)) * ((Center (Gauge (p,n))),e))) is   non  empty   proper   proper   closed   closed  V91( TOP-REAL 2)  connected   bounded   bounded   compact   compact   convex   Element of K6( the carrier of (TOP-REAL 2))
 
 Cage (p,n) is   non  empty  V21() V24( NAT ) V25( the carrier of (TOP-REAL 2)) V26() V28()  FinSequence-like  V199( the carrier of (TOP-REAL 2))  special   unfolded   s.c.c.   standard  V236()  FinSequence of  the carrier of (TOP-REAL 2)
 
 L~ (Cage (p,n)) is   non  empty   proper   closed  V91( TOP-REAL 2)  connected   bounded   being_simple_closed_curve   compact  V233() V234()  Element of K6( the carrier of (TOP-REAL 2))
 
 Upper_Arc (L~ (Cage (p,n))) is   non  empty   proper   closed   bounded   compact   Element of K6( the carrier of (TOP-REAL 2))
 
(LSeg (((Gauge (p,n)) * ((Center (Gauge (p,n))),C)),((Gauge (p,n)) * ((Center (Gauge (p,n))),e)))) /\ (Upper_Arc (L~ (Cage (p,n)))) is   proper   closed   bounded   compact   Element of K6( the carrier of (TOP-REAL 2))
 
{((Gauge (p,n)) * ((Center (Gauge (p,n))),C))} is    set 
 
 Lower_Arc (L~ (Cage (p,n))) is   non  empty   proper   closed   bounded   compact   Element of K6( the carrier of (TOP-REAL 2))
 
(LSeg (((Gauge (p,n)) * ((Center (Gauge (p,n))),C)),((Gauge (p,n)) * ((Center (Gauge (p,n))),e)))) /\ (Lower_Arc (L~ (Cage (p,n)))) is   proper   closed   bounded   compact   Element of K6( the carrier of (TOP-REAL 2))
 
{((Gauge (p,n)) * ((Center (Gauge (p,n))),e))} is    set 
 
 RightComp (Cage (p,n)) is    Element of K6( the carrier of (TOP-REAL 2))
 
 Cl (RightComp (Cage (p,n))) is   proper   closed   bounded   compact   Element of K6( the carrier of (TOP-REAL 2))
 
 X-SpanStart (p,n) is   epsilon-transitive   epsilon-connected   ordinal   natural  V11()  real   integer   ext-real   non  negative  V49() V130() V131() V132() V133() V134() V135()  bounded_below   Element of  NAT 
 
n -' 1 is   epsilon-transitive   epsilon-connected   ordinal   natural  V11()  real   integer   ext-real   non  negative  V49() V130() V131() V132() V133() V134() V135()  bounded_below   Element of  NAT 
 
2 |^ (n -' 1) is   epsilon-transitive   epsilon-connected   ordinal   natural  V11()  real   integer   ext-real   non  negative  V49() V130() V131() V132() V133() V134() V135()  bounded_below   Element of  NAT 
 
(2 |^ (n -' 1)) + 2 is   non  empty   epsilon-transitive   epsilon-connected   ordinal   natural  V11()  real   integer   ext-real   positive   non  negative  V49() V130() V131() V132() V133() V134() V135()  left_end   bounded_below   Element of  NAT 
 
 len (Gauge (p,n)) is   epsilon-transitive   epsilon-connected   ordinal   natural  V11()  real   integer   ext-real   non  negative  V49() V130() V131() V132() V133() V134() V135()  bounded_below   Element of  NAT 
 
[(Center (Gauge (p,n))),C] is    set 
 
{(Center (Gauge (p,n))),C} is  V130() V131() V132() V133() V134() V135()  bounded_below   set 
 
{(Center (Gauge (p,n)))} is  V130() V131() V132() V133() V134() V135()  bounded_below   set 
 
{{(Center (Gauge (p,n))),C},{(Center (Gauge (p,n)))}} is    set 
 
 Indices (Gauge (p,n)) is    set 
 
 Upper_Seq (p,n) is  V21() V24( NAT ) V25( the carrier of (TOP-REAL 2)) V26()  FinSequence-like   FinSequence of  the carrier of (TOP-REAL 2)
 
 L~ (Upper_Seq (p,n)) is  V91( TOP-REAL 2)  Element of K6( the carrier of (TOP-REAL 2))
 
[(Center (Gauge (p,n))),e] is    set 
 
{(Center (Gauge (p,n))),e} is  V130() V131() V132() V133() V134() V135()  bounded_below   set 
 
{{(Center (Gauge (p,n))),e},{(Center (Gauge (p,n)))}} is    set 
 
 Lower_Seq (p,n) is  V21() V24( NAT ) V25( the carrier of (TOP-REAL 2)) V26()  FinSequence-like   FinSequence of  the carrier of (TOP-REAL 2)
 
 L~ (Lower_Seq (p,n)) is  V91( TOP-REAL 2)  Element of K6( the carrier of (TOP-REAL 2))
 
{((Gauge (p,n)) * ((Center (Gauge (p,n))),C)),((Gauge (p,n)) * ((Center (Gauge (p,n))),e))} is    set 
 
(LSeg (((Gauge (p,n)) * ((Center (Gauge (p,n))),C)),((Gauge (p,n)) * ((Center (Gauge (p,n))),e)))) \ {((Gauge (p,n)) * ((Center (Gauge (p,n))),C)),((Gauge (p,n)) * ((Center (Gauge (p,n))),e))} is    Element of K6( the carrier of (TOP-REAL 2))
 
(LSeg (((Gauge (p,n)) * ((Center (Gauge (p,n))),C)),((Gauge (p,n)) * ((Center (Gauge (p,n))),e)))) /\ (L~ (Cage (p,n))) is   proper   closed   bounded   compact   Element of K6( the carrier of (TOP-REAL 2))
 
(Upper_Arc (L~ (Cage (p,n)))) \/ (Lower_Arc (L~ (Cage (p,n)))) is    Element of K6( the carrier of (TOP-REAL 2))
 
(LSeg (((Gauge (p,n)) * ((Center (Gauge (p,n))),C)),((Gauge (p,n)) * ((Center (Gauge (p,n))),e)))) /\ ((Upper_Arc (L~ (Cage (p,n)))) \/ (Lower_Arc (L~ (Cage (p,n))))) is    Element of K6( the carrier of (TOP-REAL 2))
 
((LSeg (((Gauge (p,n)) * ((Center (Gauge (p,n))),C)),((Gauge (p,n)) * ((Center (Gauge (p,n))),e)))) /\ (Upper_Arc (L~ (Cage (p,n))))) \/ ((LSeg (((Gauge (p,n)) * ((Center (Gauge (p,n))),C)),((Gauge (p,n)) * ((Center (Gauge (p,n))),e)))) /\ (Lower_Arc (L~ (Cage (p,n))))) is    Element of K6( the carrier of (TOP-REAL 2))
 
(L~ (Cage (p,n))) `  is    Element of K6( the carrier of (TOP-REAL 2))
 
 the carrier of (TOP-REAL 2) \ (L~ (Cage (p,n))) is    set 
 
 LSeg (((Gauge (p,n)) * ((Center (Gauge (p,n))),e)),((Gauge (p,n)) * ((Center (Gauge (p,n))),C))) is   non  empty   proper   proper   closed   closed  V91( TOP-REAL 2)  connected   bounded   bounded   compact   compact   convex   Element of K6( the carrier of (TOP-REAL 2))
 
 Upper_Arc p is   non  empty   proper   closed   bounded   compact   Element of K6( the carrier of (TOP-REAL 2))
 
{((Gauge (p,n)) * ((Center (Gauge (p,n))),C))} \/ {((Gauge (p,n)) * ((Center (Gauge (p,n))),e))} is    set 
 
n is   non  empty   proper   closed   connected   bounded   being_simple_closed_curve   compact  V233() V234()  Element of K6( the carrier of (TOP-REAL 2))
 
 W-bound n is  V11()  real   ext-real   Element of  REAL 
 
(TOP-REAL 2) | n is   strict   T_2   compact   SubSpace of  TOP-REAL 2
 
proj1 | n is  V21() V24( the carrier of ((TOP-REAL 2) | n)) V25( REAL ) V26() V46( the carrier of ((TOP-REAL 2) | n), REAL ) V120() V121() V122() V195((TOP-REAL 2) | n)  Element of K6(K7( the carrier of ((TOP-REAL 2) | n),REAL))
 
 the carrier of ((TOP-REAL 2) | n) is    set 
 
K7( the carrier of ((TOP-REAL 2) | n),REAL) is  V120() V121() V122()  set 
 
K6(K7( the carrier of ((TOP-REAL 2) | n),REAL)) is   non  empty   set 
 
 lower_bound (proj1 | n) is  V11()  real   ext-real   Element of  REAL 
 
(proj1 | n) .:  the carrier of ((TOP-REAL 2) | n) is  V130() V131() V132()  Element of K6(REAL)
 
 lower_bound ((proj1 | n) .:  the carrier of ((TOP-REAL 2) | n)) is  V11()  real   ext-real   Element of  REAL 
 
 E-bound n is  V11()  real   ext-real   Element of  REAL 
 
 upper_bound (proj1 | n) is  V11()  real   ext-real   Element of  REAL 
 
 upper_bound ((proj1 | n) .:  the carrier of ((TOP-REAL 2) | n)) is  V11()  real   ext-real   Element of  REAL 
 
(W-bound n) + (E-bound n) is  V11()  real   ext-real   Element of  REAL 
 
((W-bound n) + (E-bound n)) / 2 is  V11()  real   ext-real   Element of  REAL 
 
 Gauge (n,1) is  V21() V23() V24( NAT ) V25(K292( the carrier of (TOP-REAL 2))) V26()  FinSequence-like   tabular  V257() V258() V259() V260()  FinSequence of K292( the carrier of (TOP-REAL 2))
 
 X-SpanStart (n,1) is   epsilon-transitive   epsilon-connected   ordinal   natural  V11()  real   integer   ext-real   non  negative  V49() V130() V131() V132() V133() V134() V135()  bounded_below   Element of  NAT 
 
1 -' 1 is   epsilon-transitive   epsilon-connected   ordinal   natural  V11()  real   integer   ext-real   non  negative  V49() V130() V131() V132() V133() V134() V135()  bounded_below   Element of  NAT 
 
2 |^ (1 -' 1) is   epsilon-transitive   epsilon-connected   ordinal   natural  V11()  real   integer   ext-real   non  negative  V49() V130() V131() V132() V133() V134() V135()  bounded_below   Element of  NAT 
 
(2 |^ (1 -' 1)) + 2 is   non  empty   epsilon-transitive   epsilon-connected   ordinal   natural  V11()  real   integer   ext-real   positive   non  negative  V49() V130() V131() V132() V133() V134() V135()  left_end   bounded_below   Element of  NAT 
 
 len (Gauge (n,1)) is   epsilon-transitive   epsilon-connected   ordinal   natural  V11()  real   integer   ext-real   non  negative  V49() V130() V131() V132() V133() V134() V135()  bounded_below   Element of  NAT 
 
(Gauge (n,1)) * ((X-SpanStart (n,1)),(len (Gauge (n,1)))) is  V41(2)  FinSequence-like  V122()  Element of  the carrier of (TOP-REAL 2)
 
(Gauge (n,1)) * ((X-SpanStart (n,1)),1) is  V41(2)  FinSequence-like  V122()  Element of  the carrier of (TOP-REAL 2)
 
 width (Gauge (n,1)) is   epsilon-transitive   epsilon-connected   ordinal   natural  V11()  real   integer   ext-real   non  negative  V49() V130() V131() V132() V133() V134() V135()  bounded_below   Element of  NAT 
 
 Center (Gauge (n,1)) is   epsilon-transitive   epsilon-connected   ordinal   natural  V11()  real   integer   ext-real   non  negative  V49() V130() V131() V132() V133() V134() V135()  bounded_below   Element of  NAT 
 
(len (Gauge (n,1))) div 2 is   epsilon-transitive   epsilon-connected   ordinal   natural  V11()  real   integer   ext-real   non  negative  V49() V130() V131() V132() V133() V134() V135()  bounded_below   Element of  NAT 
 
((len (Gauge (n,1))) div 2) + 1 is   non  empty   epsilon-transitive   epsilon-connected   ordinal   natural  V11()  real   integer   ext-real   positive   non  negative  V49() V130() V131() V132() V133() V134() V135()  left_end   bounded_below   Element of  NAT 
 
((Gauge (n,1)) * ((X-SpanStart (n,1)),1)) `1  is  V11()  real   ext-real   Element of  REAL 
 
 Vertical_Line (((W-bound n) + (E-bound n)) / 2) is    Element of K6( the carrier of (TOP-REAL 2))
 
(len (Gauge (n,1))) div 2 is  V11()  real   integer   ext-real   set 
 
((Gauge (n,1)) * ((X-SpanStart (n,1)),(len (Gauge (n,1))))) `2  is  V11()  real   ext-real   Element of  REAL 
 
((Gauge (n,1)) * ((X-SpanStart (n,1)),1)) `2  is  V11()  real   ext-real   Element of  REAL 
 
proj2 . ((Gauge (n,1)) * ((X-SpanStart (n,1)),(len (Gauge (n,1))))) is  V11()  real   ext-real   Element of  REAL 
 
proj2 . ((Gauge (n,1)) * ((X-SpanStart (n,1)),1)) is  V11()  real   ext-real   Element of  REAL 
 
 LSeg (((Gauge (n,1)) * ((X-SpanStart (n,1)),(len (Gauge (n,1))))),((Gauge (n,1)) * ((X-SpanStart (n,1)),1))) is   non  empty   proper   proper   closed   closed  V91( TOP-REAL 2)  connected   bounded   bounded   compact   compact   convex   Element of K6( the carrier of (TOP-REAL 2))
 
 Upper_Arc n is   non  empty   proper   closed   bounded   compact   Element of K6( the carrier of (TOP-REAL 2))
 
(LSeg (((Gauge (n,1)) * ((X-SpanStart (n,1)),(len (Gauge (n,1))))),((Gauge (n,1)) * ((X-SpanStart (n,1)),1)))) /\ (Upper_Arc n) is   proper   closed   bounded   compact   Element of K6( the carrier of (TOP-REAL 2))
 
 Lower_Arc n is   non  empty   proper   closed   bounded   compact   Element of K6( the carrier of (TOP-REAL 2))
 
(LSeg (((Gauge (n,1)) * ((X-SpanStart (n,1)),(len (Gauge (n,1))))),((Gauge (n,1)) * ((X-SpanStart (n,1)),1)))) /\ (Lower_Arc n) is   proper   closed   bounded   compact   Element of K6( the carrier of (TOP-REAL 2))
 
 LSeg (((Gauge (n,1)) * ((X-SpanStart (n,1)),1)),((Gauge (n,1)) * ((X-SpanStart (n,1)),(len (Gauge (n,1)))))) is   non  empty   proper   proper   closed   closed  V91( TOP-REAL 2)  connected   bounded   bounded   compact   compact   convex   Element of K6( the carrier of (TOP-REAL 2))
 
K7(NAT,REAL) is   non  empty  V120() V121() V122()  set 
 
K6(K7(NAT,REAL)) is   non  empty   set 
 
C9 is  V21() V24( NAT ) V25( REAL ) V26() V46( NAT , REAL ) V120() V121() V122()  Element of K6(K7(NAT,REAL))
 
proj2 .: ((LSeg (((Gauge (n,1)) * ((X-SpanStart (n,1)),(len (Gauge (n,1))))),((Gauge (n,1)) * ((X-SpanStart (n,1)),1)))) /\ (Upper_Arc n)) is  V130() V131() V132()  Element of K6(REAL)
 
proj2 .: ((LSeg (((Gauge (n,1)) * ((X-SpanStart (n,1)),(len (Gauge (n,1))))),((Gauge (n,1)) * ((X-SpanStart (n,1)),1)))) /\ (Lower_Arc n)) is  V130() V131() V132()  Element of K6(REAL)
 
K7(NAT, the carrier of (TOP-REAL 2)) is   non  empty   set 
 
K6(K7(NAT, the carrier of (TOP-REAL 2))) is   non  empty   set 
 
r3 is  V21() V24( NAT ) V25( the carrier of (TOP-REAL 2)) V26() V46( NAT , the carrier of (TOP-REAL 2))  Element of K6(K7(NAT, the carrier of (TOP-REAL 2)))
 
((Gauge (n,1)) * ((X-SpanStart (n,1)),(len (Gauge (n,1))))) `1  is  V11()  real   ext-real   Element of  REAL 
 
D9 is   compact  V130() V131() V132()  Element of K6(REAL)
 
x3 is   compact  V130() V131() V132()  Element of K6(REAL)
 
Fs is    set 
 
F is  V11()  real   ext-real   Element of  REAL 
 
S is  V41(2)  FinSequence-like  V122()  Element of  the carrier of (TOP-REAL 2)
 
proj2 . S is  V11()  real   ext-real   Element of  REAL 
 
r is  V41(2)  FinSequence-like  V122()  Element of  the carrier of (TOP-REAL 2)
 
proj2 . r is  V11()  real   ext-real   Element of  REAL 
 
S `2  is  V11()  real   ext-real   Element of  REAL 
 
r `2  is  V11()  real   ext-real   Element of  REAL 
 
S `1  is  V11()  real   ext-real   Element of  REAL 
 
r `1  is  V11()  real   ext-real   Element of  REAL 
 
(Upper_Arc n) /\ (Lower_Arc n) is   proper   closed   bounded   compact   Element of K6( the carrier of (TOP-REAL 2))
 
 W-min n is  V41(2)  FinSequence-like  V122()  Element of  the carrier of (TOP-REAL 2)
 
 W-most n is   non  empty   proper   closed   bounded   compact   Element of K6( the carrier of (TOP-REAL 2))
 
 SW-corner n is  V41(2)  FinSequence-like  V122()  Element of  the carrier of (TOP-REAL 2)
 
 S-bound n is  V11()  real   ext-real   Element of  REAL 
 
proj2 | n is  V21() V24( the carrier of ((TOP-REAL 2) | n)) V25( REAL ) V26() V46( the carrier of ((TOP-REAL 2) | n), REAL ) V120() V121() V122() V195((TOP-REAL 2) | n)  Element of K6(K7( the carrier of ((TOP-REAL 2) | n),REAL))
 
 lower_bound (proj2 | n) is  V11()  real   ext-real   Element of  REAL 
 
(proj2 | n) .:  the carrier of ((TOP-REAL 2) | n) is  V130() V131() V132()  Element of K6(REAL)
 
 lower_bound ((proj2 | n) .:  the carrier of ((TOP-REAL 2) | n)) is  V11()  real   ext-real   Element of  REAL 
 
|[(W-bound n),(S-bound n)]| is  V41(2)  FinSequence-like  V122()  Element of  the carrier of (TOP-REAL 2)
 
 NW-corner n is  V41(2)  FinSequence-like  V122()  Element of  the carrier of (TOP-REAL 2)
 
 N-bound n is  V11()  real   ext-real   Element of  REAL 
 
 upper_bound (proj2 | n) is  V11()  real   ext-real   Element of  REAL 
 
 upper_bound ((proj2 | n) .:  the carrier of ((TOP-REAL 2) | n)) is  V11()  real   ext-real   Element of  REAL 
 
|[(W-bound n),(N-bound n)]| is  V41(2)  FinSequence-like  V122()  Element of  the carrier of (TOP-REAL 2)
 
 LSeg ((SW-corner n),(NW-corner n)) is   non  empty   proper   proper   closed   closed  V91( TOP-REAL 2)  connected   bounded   bounded   compact   compact  V234()  convex   Element of K6( the carrier of (TOP-REAL 2))
 
(LSeg ((SW-corner n),(NW-corner n))) /\ n is   proper   closed   bounded   compact   Element of K6( the carrier of (TOP-REAL 2))
 
(TOP-REAL 2) | (W-most n) is   strict   T_2   compact   SubSpace of  TOP-REAL 2
 
proj2 | (W-most n) is  V21() V24( the carrier of ((TOP-REAL 2) | (W-most n))) V25( REAL ) V26() V46( the carrier of ((TOP-REAL 2) | (W-most n)), REAL ) V120() V121() V122() V195((TOP-REAL 2) | (W-most n))  Element of K6(K7( the carrier of ((TOP-REAL 2) | (W-most n)),REAL))
 
 the carrier of ((TOP-REAL 2) | (W-most n)) is    set 
 
K7( the carrier of ((TOP-REAL 2) | (W-most n)),REAL) is  V120() V121() V122()  set 
 
K6(K7( the carrier of ((TOP-REAL 2) | (W-most n)),REAL)) is   non  empty   set 
 
 lower_bound (proj2 | (W-most n)) is  V11()  real   ext-real   Element of  REAL 
 
(proj2 | (W-most n)) .:  the carrier of ((TOP-REAL 2) | (W-most n)) is  V130() V131() V132()  Element of K6(REAL)
 
 lower_bound ((proj2 | (W-most n)) .:  the carrier of ((TOP-REAL 2) | (W-most n))) is  V11()  real   ext-real   Element of  REAL 
 
|[(W-bound n),(lower_bound (proj2 | (W-most n)))]| is  V41(2)  FinSequence-like  V122()  Element of  the carrier of (TOP-REAL 2)
 
 E-max n is  V41(2)  FinSequence-like  V122()  Element of  the carrier of (TOP-REAL 2)
 
 E-most n is   non  empty   proper   closed   bounded   compact   Element of K6( the carrier of (TOP-REAL 2))
 
 SE-corner n is  V41(2)  FinSequence-like  V122()  Element of  the carrier of (TOP-REAL 2)
 
|[(E-bound n),(S-bound n)]| is  V41(2)  FinSequence-like  V122()  Element of  the carrier of (TOP-REAL 2)
 
 NE-corner n is  V41(2)  FinSequence-like  V122()  Element of  the carrier of (TOP-REAL 2)
 
|[(E-bound n),(N-bound n)]| is  V41(2)  FinSequence-like  V122()  Element of  the carrier of (TOP-REAL 2)
 
 LSeg ((SE-corner n),(NE-corner n)) is   non  empty   proper   proper   closed   closed  V91( TOP-REAL 2)  connected   bounded   bounded   compact   compact  V234()  convex   Element of K6( the carrier of (TOP-REAL 2))
 
(LSeg ((SE-corner n),(NE-corner n))) /\ n is   proper   closed   bounded   compact   Element of K6( the carrier of (TOP-REAL 2))
 
(TOP-REAL 2) | (E-most n) is   strict   T_2   compact   SubSpace of  TOP-REAL 2
 
proj2 | (E-most n) is  V21() V24( the carrier of ((TOP-REAL 2) | (E-most n))) V25( REAL ) V26() V46( the carrier of ((TOP-REAL 2) | (E-most n)), REAL ) V120() V121() V122() V195((TOP-REAL 2) | (E-most n))  Element of K6(K7( the carrier of ((TOP-REAL 2) | (E-most n)),REAL))
 
 the carrier of ((TOP-REAL 2) | (E-most n)) is    set 
 
K7( the carrier of ((TOP-REAL 2) | (E-most n)),REAL) is  V120() V121() V122()  set 
 
K6(K7( the carrier of ((TOP-REAL 2) | (E-most n)),REAL)) is   non  empty   set 
 
 upper_bound (proj2 | (E-most n)) is  V11()  real   ext-real   Element of  REAL 
 
(proj2 | (E-most n)) .:  the carrier of ((TOP-REAL 2) | (E-most n)) is  V130() V131() V132()  Element of K6(REAL)
 
 upper_bound ((proj2 | (E-most n)) .:  the carrier of ((TOP-REAL 2) | (E-most n))) is  V11()  real   ext-real   Element of  REAL 
 
|[(E-bound n),(upper_bound (proj2 | (E-most n)))]| is  V41(2)  FinSequence-like  V122()  Element of  the carrier of (TOP-REAL 2)
 
{(W-min n),(E-max n)} is    set 
 
(W-min n) `1  is  V11()  real   ext-real   Element of  REAL 
 
(E-max n) `1  is  V11()  real   ext-real   Element of  REAL 
 
Fs is  V21() V24( NAT ) V25( REAL ) V26() V46( NAT , REAL ) V120() V121() V122()  Element of K6(K7(NAT,REAL))
 
F is  V21() V24( NAT ) V25( the carrier of (TOP-REAL 2)) V26() V46( NAT , the carrier of (TOP-REAL 2))  Element of K6(K7(NAT, the carrier of (TOP-REAL 2)))
 
 bool REAL is   non  empty   Element of K6(K6(REAL))
 
K6(K6(REAL)) is   non  empty   set 
 
K7(NAT,(bool REAL)) is   non  empty   set 
 
K6(K7(NAT,(bool REAL))) is   non  empty   set 
 
S is  V21() V24( NAT ) V25( bool REAL) V26() V46( NAT , bool REAL)  Element of K6(K7(NAT,(bool REAL)))
 
r is   epsilon-transitive   epsilon-connected   ordinal   natural  V11()  real   integer   ext-real   non  negative  V49() V130() V131() V132() V133() V134() V135()  bounded_below   Element of  NAT 
 
r3 . r is  V41(2)  FinSequence-like  V122()  Element of  the carrier of (TOP-REAL 2)
 
r + 1 is   non  empty   epsilon-transitive   epsilon-connected   ordinal   natural  V11()  real   integer   ext-real   positive   non  negative  V49() V130() V131() V132() V133() V134() V135()  left_end   bounded_below   Element of  NAT 
 
 Cage (n,(r + 1)) is   non  empty  V21() V24( NAT ) V25( the carrier of (TOP-REAL 2)) V26() V28()  FinSequence-like  V199( the carrier of (TOP-REAL 2))  special   unfolded   s.c.c.   standard  V236()  FinSequence of  the carrier of (TOP-REAL 2)
 
 L~ (Cage (n,(r + 1))) is   non  empty   proper   closed  V91( TOP-REAL 2)  connected   bounded   being_simple_closed_curve   compact  V233() V234()  Element of K6( the carrier of (TOP-REAL 2))
 
 Upper_Arc (L~ (Cage (n,(r + 1)))) is   non  empty   proper   closed   bounded   compact   Element of K6( the carrier of (TOP-REAL 2))
 
(LSeg (((Gauge (n,1)) * ((X-SpanStart (n,1)),1)),((Gauge (n,1)) * ((X-SpanStart (n,1)),(len (Gauge (n,1))))))) /\ (Upper_Arc (L~ (Cage (n,(r + 1))))) is   proper   closed   bounded   compact   Element of K6( the carrier of (TOP-REAL 2))
 
p is   proper   closed   bounded   compact   Element of K6( the carrier of (TOP-REAL 2))
 
proj2 .: p is  V130() V131() V132()  Element of K6(REAL)
 
 dom proj2 is    Element of K6( the carrier of (TOP-REAL 2))
 
(dom proj2) /\ p is    Element of K6( the carrier of (TOP-REAL 2))
 
 X-SpanStart (n,(r + 1)) is   epsilon-transitive   epsilon-connected   ordinal   natural  V11()  real   integer   ext-real   non  negative  V49() V130() V131() V132() V133() V134() V135()  bounded_below   Element of  NAT 
 
(r + 1) -' 1 is   epsilon-transitive   epsilon-connected   ordinal   natural  V11()  real   integer   ext-real   non  negative  V49() V130() V131() V132() V133() V134() V135()  bounded_below   Element of  NAT 
 
2 |^ ((r + 1) -' 1) is   epsilon-transitive   epsilon-connected   ordinal   natural  V11()  real   integer   ext-real   non  negative  V49() V130() V131() V132() V133() V134() V135()  bounded_below   Element of  NAT 
 
(2 |^ ((r + 1) -' 1)) + 2 is   non  empty   epsilon-transitive   epsilon-connected   ordinal   natural  V11()  real   integer   ext-real   positive   non  negative  V49() V130() V131() V132() V133() V134() V135()  left_end   bounded_below   Element of  NAT 
 
 Gauge (n,(r + 1)) is  V21() V23() V24( NAT ) V25(K292( the carrier of (TOP-REAL 2))) V26()  FinSequence-like   tabular  V257() V258() V259() V260()  FinSequence of K292( the carrier of (TOP-REAL 2))
 
 Center (Gauge (n,(r + 1))) is   epsilon-transitive   epsilon-connected   ordinal   natural  V11()  real   integer   ext-real   non  negative  V49() V130() V131() V132() V133() V134() V135()  bounded_below   Element of  NAT 
 
(Gauge (n,(r + 1))) * ((X-SpanStart (n,(r + 1))),1) is  V41(2)  FinSequence-like  V122()  Element of  the carrier of (TOP-REAL 2)
 
 len (Gauge (n,(r + 1))) is   epsilon-transitive   epsilon-connected   ordinal   natural  V11()  real   integer   ext-real   non  negative  V49() V130() V131() V132() V133() V134() V135()  bounded_below   Element of  NAT 
 
(Gauge (n,(r + 1))) * ((X-SpanStart (n,(r + 1))),(len (Gauge (n,(r + 1))))) is  V41(2)  FinSequence-like  V122()  Element of  the carrier of (TOP-REAL 2)
 
 LSeg (((Gauge (n,(r + 1))) * ((X-SpanStart (n,(r + 1))),1)),((Gauge (n,(r + 1))) * ((X-SpanStart (n,(r + 1))),(len (Gauge (n,(r + 1))))))) is   non  empty   proper   proper   closed   closed  V91( TOP-REAL 2)  connected   bounded   bounded   compact   compact   convex   Element of K6( the carrier of (TOP-REAL 2))
 
n is   compact  V130() V131() V132()  Element of K6(REAL)
 
C9 . r is  V11()  real   ext-real   Element of  REAL 
 
 lower_bound n is  V11()  real   ext-real   Element of  REAL 
 
i is  V41(2)  FinSequence-like  V122()  Element of  the carrier of (TOP-REAL 2)
 
proj2 . i is  V11()  real   ext-real   Element of  REAL 
 
|[(((W-bound n) + (E-bound n)) / 2),(C9 . r)]| is  V41(2)  FinSequence-like  V122()  Element of  the carrier of (TOP-REAL 2)
 
(r3 . r) `2  is  V11()  real   ext-real   Element of  REAL 
 
i `2  is  V11()  real   ext-real   Element of  REAL 
 
(r3 . r) `1  is  V11()  real   ext-real   Element of  REAL 
 
i `1  is  V11()  real   ext-real   Element of  REAL 
 
r is   epsilon-transitive   epsilon-connected   ordinal   natural  V11()  real   integer   ext-real   non  negative  V49() V130() V131() V132() V133() V134() V135()  bounded_below   Element of  NAT 
 
F . r is  V41(2)  FinSequence-like  V122()  Element of  the carrier of (TOP-REAL 2)
 
r + 1 is   non  empty   epsilon-transitive   epsilon-connected   ordinal   natural  V11()  real   integer   ext-real   positive   non  negative  V49() V130() V131() V132() V133() V134() V135()  left_end   bounded_below   Element of  NAT 
 
 Cage (n,(r + 1)) is   non  empty  V21() V24( NAT ) V25( the carrier of (TOP-REAL 2)) V26() V28()  FinSequence-like  V199( the carrier of (TOP-REAL 2))  special   unfolded   s.c.c.   standard  V236()  FinSequence of  the carrier of (TOP-REAL 2)
 
 L~ (Cage (n,(r + 1))) is   non  empty   proper   closed  V91( TOP-REAL 2)  connected   bounded   being_simple_closed_curve   compact  V233() V234()  Element of K6( the carrier of (TOP-REAL 2))
 
 Lower_Arc (L~ (Cage (n,(r + 1)))) is   non  empty   proper   closed   bounded   compact   Element of K6( the carrier of (TOP-REAL 2))
 
 X-SpanStart (n,(r + 1)) is   epsilon-transitive   epsilon-connected   ordinal   natural  V11()  real   integer   ext-real   non  negative  V49() V130() V131() V132() V133() V134() V135()  bounded_below   Element of  NAT 
 
(r + 1) -' 1 is   epsilon-transitive   epsilon-connected   ordinal   natural  V11()  real   integer   ext-real   non  negative  V49() V130() V131() V132() V133() V134() V135()  bounded_below   Element of  NAT 
 
2 |^ ((r + 1) -' 1) is   epsilon-transitive   epsilon-connected   ordinal   natural  V11()  real   integer   ext-real   non  negative  V49() V130() V131() V132() V133() V134() V135()  bounded_below   Element of  NAT 
 
(2 |^ ((r + 1) -' 1)) + 2 is   non  empty   epsilon-transitive   epsilon-connected   ordinal   natural  V11()  real   integer   ext-real   positive   non  negative  V49() V130() V131() V132() V133() V134() V135()  left_end   bounded_below   Element of  NAT 
 
 Gauge (n,(r + 1)) is  V21() V23() V24( NAT ) V25(K292( the carrier of (TOP-REAL 2))) V26()  FinSequence-like   tabular  V257() V258() V259() V260()  FinSequence of K292( the carrier of (TOP-REAL 2))
 
 Center (Gauge (n,(r + 1))) is   epsilon-transitive   epsilon-connected   ordinal   natural  V11()  real   integer   ext-real   non  negative  V49() V130() V131() V132() V133() V134() V135()  bounded_below   Element of  NAT 
 
r3 . r is  V41(2)  FinSequence-like  V122()  Element of  the carrier of (TOP-REAL 2)
 
 LSeg (((Gauge (n,1)) * ((X-SpanStart (n,1)),1)),(r3 . r)) is   non  empty   proper   proper   closed   closed  V91( TOP-REAL 2)  connected   bounded   bounded   compact   compact   convex   Element of K6( the carrier of (TOP-REAL 2))
 
(LSeg (((Gauge (n,1)) * ((X-SpanStart (n,1)),1)),(r3 . r))) /\ (Lower_Arc (L~ (Cage (n,(r + 1))))) is   proper   closed   bounded   compact   Element of K6( the carrier of (TOP-REAL 2))
 
p is   proper   closed   bounded   compact   Element of K6( the carrier of (TOP-REAL 2))
 
proj2 .: p is  V130() V131() V132()  Element of K6(REAL)
 
 Upper_Arc (L~ (Cage (n,(r + 1)))) is   non  empty   proper   closed   bounded   compact   Element of K6( the carrier of (TOP-REAL 2))
 
 dom proj2 is    Element of K6( the carrier of (TOP-REAL 2))
 
(dom proj2) /\ p is    Element of K6( the carrier of (TOP-REAL 2))
 
C9 . r is  V11()  real   ext-real   Element of  REAL 
 
|[(((W-bound n) + (E-bound n)) / 2),(C9 . r)]| is  V41(2)  FinSequence-like  V122()  Element of  the carrier of (TOP-REAL 2)
 
(r3 . r) `1  is  V11()  real   ext-real   Element of  REAL 
 
 LSeg ((r3 . r),((Gauge (n,1)) * ((X-SpanStart (n,1)),1))) is   non  empty   proper   proper   closed   closed  V91( TOP-REAL 2)  connected   bounded   bounded   compact   compact   convex   Element of K6( the carrier of (TOP-REAL 2))
 
(r3 . r) `2  is  V11()  real   ext-real   Element of  REAL 
 
(LSeg (((Gauge (n,1)) * ((X-SpanStart (n,1)),1)),((Gauge (n,1)) * ((X-SpanStart (n,1)),(len (Gauge (n,1))))))) /\ (Upper_Arc (L~ (Cage (n,(r + 1))))) is   proper   closed   bounded   compact   Element of K6( the carrier of (TOP-REAL 2))
 
proj2 .: ((LSeg (((Gauge (n,1)) * ((X-SpanStart (n,1)),1)),((Gauge (n,1)) * ((X-SpanStart (n,1)),(len (Gauge (n,1))))))) /\ (Upper_Arc (L~ (Cage (n,(r + 1)))))) is  V130() V131() V132()  Element of K6(REAL)
 
 lower_bound (proj2 .: ((LSeg (((Gauge (n,1)) * ((X-SpanStart (n,1)),1)),((Gauge (n,1)) * ((X-SpanStart (n,1)),(len (Gauge (n,1))))))) /\ (Upper_Arc (L~ (Cage (n,(r + 1))))))) is  V11()  real   ext-real   Element of  REAL 
 
 width (Gauge (n,(r + 1))) is   epsilon-transitive   epsilon-connected   ordinal   natural  V11()  real   integer   ext-real   non  negative  V49() V130() V131() V132() V133() V134() V135()  bounded_below   Element of  NAT 
 
i is   epsilon-transitive   epsilon-connected   ordinal   natural  V11()  real   integer   ext-real   non  negative  V49() V130() V131() V132() V133() V134() V135()  bounded_below   Element of  NAT 
 
(Gauge (n,(r + 1))) * ((X-SpanStart (n,(r + 1))),i) is  V41(2)  FinSequence-like  V122()  Element of  the carrier of (TOP-REAL 2)
 
n is   compact  V130() V131() V132()  Element of K6(REAL)
 
Fs . r is  V11()  real   ext-real   Element of  REAL 
 
 upper_bound n is  V11()  real   ext-real   Element of  REAL 
 
i is  V41(2)  FinSequence-like  V122()  Element of  the carrier of (TOP-REAL 2)
 
proj2 . i is  V11()  real   ext-real   Element of  REAL 
 
|[(((W-bound n) + (E-bound n)) / 2),(Fs . r)]| is  V41(2)  FinSequence-like  V122()  Element of  the carrier of (TOP-REAL 2)
 
(F . r) `2  is  V11()  real   ext-real   Element of  REAL 
 
i `2  is  V11()  real   ext-real   Element of  REAL 
 
(F . r) `1  is  V11()  real   ext-real   Element of  REAL 
 
i `1  is  V11()  real   ext-real   Element of  REAL 
 
r is   epsilon-transitive   epsilon-connected   ordinal   natural  V11()  real   integer   ext-real   non  negative  V49() V130() V131() V132() V133() V134() V135()  bounded_below   Element of  NAT 
 
S . r is  V130() V131() V132()  Element of  bool REAL
 
r + 1 is   non  empty   epsilon-transitive   epsilon-connected   ordinal   natural  V11()  real   integer   ext-real   positive   non  negative  V49() V130() V131() V132() V133() V134() V135()  left_end   bounded_below   Element of  NAT 
 
 Cage (n,(r + 1)) is   non  empty  V21() V24( NAT ) V25( the carrier of (TOP-REAL 2)) V26() V28()  FinSequence-like  V199( the carrier of (TOP-REAL 2))  special   unfolded   s.c.c.   standard  V236()  FinSequence of  the carrier of (TOP-REAL 2)
 
 L~ (Cage (n,(r + 1))) is   non  empty   proper   closed  V91( TOP-REAL 2)  connected   bounded   being_simple_closed_curve   compact  V233() V234()  Element of K6( the carrier of (TOP-REAL 2))
 
 Upper_Arc (L~ (Cage (n,(r + 1)))) is   non  empty   proper   closed   bounded   compact   Element of K6( the carrier of (TOP-REAL 2))
 
(LSeg (((Gauge (n,1)) * ((X-SpanStart (n,1)),(len (Gauge (n,1))))),((Gauge (n,1)) * ((X-SpanStart (n,1)),1)))) /\ (Upper_Arc (L~ (Cage (n,(r + 1))))) is   proper   closed   bounded   compact   Element of K6( the carrier of (TOP-REAL 2))
 
r is   proper   closed   bounded   compact   Element of K6( the carrier of (TOP-REAL 2))
 
proj2 .: r is  V130() V131() V132()  Element of K6(REAL)
 
 X-SpanStart (n,(r + 1)) is   epsilon-transitive   epsilon-connected   ordinal   natural  V11()  real   integer   ext-real   non  negative  V49() V130() V131() V132() V133() V134() V135()  bounded_below   Element of  NAT 
 
(r + 1) -' 1 is   epsilon-transitive   epsilon-connected   ordinal   natural  V11()  real   integer   ext-real   non  negative  V49() V130() V131() V132() V133() V134() V135()  bounded_below   Element of  NAT 
 
2 |^ ((r + 1) -' 1) is   epsilon-transitive   epsilon-connected   ordinal   natural  V11()  real   integer   ext-real   non  negative  V49() V130() V131() V132() V133() V134() V135()  bounded_below   Element of  NAT 
 
(2 |^ ((r + 1) -' 1)) + 2 is   non  empty   epsilon-transitive   epsilon-connected   ordinal   natural  V11()  real   integer   ext-real   positive   non  negative  V49() V130() V131() V132() V133() V134() V135()  left_end   bounded_below   Element of  NAT 
 
 Gauge (n,(r + 1)) is  V21() V23() V24( NAT ) V25(K292( the carrier of (TOP-REAL 2))) V26()  FinSequence-like   tabular  V257() V258() V259() V260()  FinSequence of K292( the carrier of (TOP-REAL 2))
 
 Center (Gauge (n,(r + 1))) is   epsilon-transitive   epsilon-connected   ordinal   natural  V11()  real   integer   ext-real   non  negative  V49() V130() V131() V132() V133() V134() V135()  bounded_below   Element of  NAT 
 
 dom proj2 is    Element of K6( the carrier of (TOP-REAL 2))
 
(dom proj2) /\ r is    Element of K6( the carrier of (TOP-REAL 2))
 
(Gauge (n,(r + 1))) * ((Center (Gauge (n,(r + 1)))),1) is  V41(2)  FinSequence-like  V122()  Element of  the carrier of (TOP-REAL 2)
 
 len (Gauge (n,(r + 1))) is   epsilon-transitive   epsilon-connected   ordinal   natural  V11()  real   integer   ext-real   non  negative  V49() V130() V131() V132() V133() V134() V135()  bounded_below   Element of  NAT 
 
(Gauge (n,(r + 1))) * ((Center (Gauge (n,(r + 1)))),(len (Gauge (n,(r + 1))))) is  V41(2)  FinSequence-like  V122()  Element of  the carrier of (TOP-REAL 2)
 
 LSeg (((Gauge (n,(r + 1))) * ((Center (Gauge (n,(r + 1)))),1)),((Gauge (n,(r + 1))) * ((Center (Gauge (n,(r + 1)))),(len (Gauge (n,(r + 1))))))) is   non  empty   proper   proper   closed   closed  V91( TOP-REAL 2)  connected   bounded   bounded   compact   compact   convex   Element of K6( the carrier of (TOP-REAL 2))
 
p is   compact  V130() V131() V132()  Element of K6(REAL)
 
C9 . r is  V11()  real   ext-real   Element of  REAL 
 
 lower_bound p is  V11()  real   ext-real   Element of  REAL 
 
n is  V41(2)  FinSequence-like  V122()  Element of  the carrier of (TOP-REAL 2)
 
proj2 . n is  V11()  real   ext-real   Element of  REAL 
 
r3 . r is  V41(2)  FinSequence-like  V122()  Element of  the carrier of (TOP-REAL 2)
 
 LSeg (((Gauge (n,1)) * ((X-SpanStart (n,1)),1)),(r3 . r)) is   non  empty   proper   proper   closed   closed  V91( TOP-REAL 2)  connected   bounded   bounded   compact   compact   convex   Element of K6( the carrier of (TOP-REAL 2))
 
 Lower_Arc (L~ (Cage (n,(r + 1)))) is   non  empty   proper   closed   bounded   compact   Element of K6( the carrier of (TOP-REAL 2))
 
(LSeg (((Gauge (n,1)) * ((X-SpanStart (n,1)),1)),(r3 . r))) /\ (Lower_Arc (L~ (Cage (n,(r + 1))))) is   proper   closed   bounded   compact   Element of K6( the carrier of (TOP-REAL 2))
 
i is   proper   closed   bounded   compact   Element of K6( the carrier of (TOP-REAL 2))
 
proj2 .: i is  V130() V131() V132()  Element of K6(REAL)
 
(dom proj2) /\ i is    Element of K6( the carrier of (TOP-REAL 2))
 
|[(((W-bound n) + (E-bound n)) / 2),(C9 . r)]| is  V41(2)  FinSequence-like  V122()  Element of  the carrier of (TOP-REAL 2)
 
(r3 . r) `1  is  V11()  real   ext-real   Element of  REAL 
 
F . r is  V41(2)  FinSequence-like  V122()  Element of  the carrier of (TOP-REAL 2)
 
Fs . r is  V11()  real   ext-real   Element of  REAL 
 
|[(((W-bound n) + (E-bound n)) / 2),(Fs . r)]| is  V41(2)  FinSequence-like  V122()  Element of  the carrier of (TOP-REAL 2)
 
(F . r) `1  is  V11()  real   ext-real   Element of  REAL 
 
(F . r) `2  is  V11()  real   ext-real   Element of  REAL 
 
proj2 .: ((LSeg (((Gauge (n,1)) * ((X-SpanStart (n,1)),1)),(r3 . r))) /\ (Lower_Arc (L~ (Cage (n,(r + 1)))))) is  V130() V131() V132()  Element of K6(REAL)
 
 upper_bound (proj2 .: ((LSeg (((Gauge (n,1)) * ((X-SpanStart (n,1)),1)),(r3 . r))) /\ (Lower_Arc (L~ (Cage (n,(r + 1))))))) is  V11()  real   ext-real   Element of  REAL 
 
(r3 . r) `2  is  V11()  real   ext-real   Element of  REAL 
 
(LSeg (((Gauge (n,1)) * ((X-SpanStart (n,1)),1)),((Gauge (n,1)) * ((X-SpanStart (n,1)),(len (Gauge (n,1))))))) /\ (Upper_Arc (L~ (Cage (n,(r + 1))))) is   proper   closed   bounded   compact   Element of K6( the carrier of (TOP-REAL 2))
 
proj2 .: ((LSeg (((Gauge (n,1)) * ((X-SpanStart (n,1)),1)),((Gauge (n,1)) * ((X-SpanStart (n,1)),(len (Gauge (n,1))))))) /\ (Upper_Arc (L~ (Cage (n,(r + 1)))))) is  V130() V131() V132()  Element of K6(REAL)
 
 lower_bound (proj2 .: ((LSeg (((Gauge (n,1)) * ((X-SpanStart (n,1)),1)),((Gauge (n,1)) * ((X-SpanStart (n,1)),(len (Gauge (n,1))))))) /\ (Upper_Arc (L~ (Cage (n,(r + 1))))))) is  V11()  real   ext-real   Element of  REAL 
 
 width (Gauge (n,(r + 1))) is   epsilon-transitive   epsilon-connected   ordinal   natural  V11()  real   integer   ext-real   non  negative  V49() V130() V131() V132() V133() V134() V135()  bounded_below   Element of  NAT 
 
c22 is   epsilon-transitive   epsilon-connected   ordinal   natural  V11()  real   integer   ext-real   non  negative  V49() V130() V131() V132() V133() V134() V135()  bounded_below   Element of  NAT 
 
(Gauge (n,(r + 1))) * ((X-SpanStart (n,(r + 1))),c22) is  V41(2)  FinSequence-like  V122()  Element of  the carrier of (TOP-REAL 2)
 
CC is   epsilon-transitive   epsilon-connected   ordinal   natural  V11()  real   integer   ext-real   non  negative  V49() V130() V131() V132() V133() V134() V135()  bounded_below   Element of  NAT 
 
(Gauge (n,(r + 1))) * ((Center (Gauge (n,(r + 1)))),CC) is  V41(2)  FinSequence-like  V122()  Element of  the carrier of (TOP-REAL 2)
 
W is   epsilon-transitive   epsilon-connected   ordinal   natural  V11()  real   integer   ext-real   non  negative  V49() V130() V131() V132() V133() V134() V135()  bounded_below   Element of  NAT 
 
(Gauge (n,(r + 1))) * ((X-SpanStart (n,(r + 1))),W) is  V41(2)  FinSequence-like  V122()  Element of  the carrier of (TOP-REAL 2)
 
j is   compact  V130() V131() V132()  Element of K6(REAL)
 
n `2  is  V11()  real   ext-real   Element of  REAL 
 
W is  V11()  real   ext-real   set 
 
E0 is    set 
 
proj2 . E0 is  V11()  real   ext-real   Element of  REAL 
 
DD is  V41(2)  FinSequence-like  V122()  Element of  the carrier of (TOP-REAL 2)
 
DD `2  is  V11()  real   ext-real   Element of  REAL 
 
 upper_bound j is  V11()  real   ext-real   Element of  REAL 
 
n `1  is  V11()  real   ext-real   Element of  REAL 
 
W is  V41(2)  FinSequence-like  V122()  Element of  the carrier of (TOP-REAL 2)
 
proj2 . W is  V11()  real   ext-real   Element of  REAL 
 
W `2  is  V11()  real   ext-real   Element of  REAL 
 
 LSeg ((r3 . r),((Gauge (n,1)) * ((X-SpanStart (n,1)),1))) is   non  empty   proper   proper   closed   closed  V91( TOP-REAL 2)  connected   bounded   bounded   compact   compact   convex   Element of K6( the carrier of (TOP-REAL 2))
 
W `1  is  V11()  real   ext-real   Element of  REAL 
 
 LSeg ((r3 . r),(F . r)) is   non  empty   proper   proper   closed   closed  V91( TOP-REAL 2)  connected   bounded   bounded   compact   compact   convex   Element of K6( the carrier of (TOP-REAL 2))
 
(LSeg ((r3 . r),(F . r))) /\ (Upper_Arc (L~ (Cage (n,(r + 1))))) is   proper   closed   bounded   compact   Element of K6( the carrier of (TOP-REAL 2))
 
E0 is    set 
 
DD is   proper   closed   bounded   compact   Element of K6( the carrier of (TOP-REAL 2))
 
proj2 .: DD is  V130() V131() V132()  Element of K6(REAL)
 
dd is  V41(2)  FinSequence-like  V122()  Element of  the carrier of (TOP-REAL 2)
 
proj2 . dd is  V11()  real   ext-real   Element of  REAL 
 
D is   compact  V130() V131() V132()  Element of K6(REAL)
 
dd `2  is  V11()  real   ext-real   Element of  REAL 
 
 lower_bound D is  V11()  real   ext-real   Element of  REAL 
 
dd `1  is  V11()  real   ext-real   Element of  REAL 
 
(Gauge (n,(r + 1))) * ((Center (Gauge (n,(r + 1)))),c22) is  V41(2)  FinSequence-like  V122()  Element of  the carrier of (TOP-REAL 2)
 
 LSeg (((Gauge (n,(r + 1))) * ((Center (Gauge (n,(r + 1)))),CC)),((Gauge (n,(r + 1))) * ((Center (Gauge (n,(r + 1)))),c22))) is   non  empty   proper   proper   closed   closed  V91( TOP-REAL 2)  connected   bounded   bounded   compact   compact   convex   Element of K6( the carrier of (TOP-REAL 2))
 
(LSeg (((Gauge (n,(r + 1))) * ((Center (Gauge (n,(r + 1)))),CC)),((Gauge (n,(r + 1))) * ((Center (Gauge (n,(r + 1)))),c22)))) /\ (Upper_Arc (L~ (Cage (n,(r + 1))))) is   proper   closed   bounded   compact   Element of K6( the carrier of (TOP-REAL 2))
 
{((Gauge (n,(r + 1))) * ((Center (Gauge (n,(r + 1)))),c22))} is    set 
 
E0 is    set 
 
E0 is    set 
 
(LSeg ((r3 . r),(F . r))) /\ (Lower_Arc (L~ (Cage (n,(r + 1))))) is   proper   closed   bounded   compact   Element of K6( the carrier of (TOP-REAL 2))
 
E0 is    set 
 
DD is   proper   closed   bounded   compact   Element of K6( the carrier of (TOP-REAL 2))
 
proj2 .: DD is  V130() V131() V132()  Element of K6(REAL)
 
dd is  V41(2)  FinSequence-like  V122()  Element of  the carrier of (TOP-REAL 2)
 
proj2 . dd is  V11()  real   ext-real   Element of  REAL 
 
D is   compact  V130() V131() V132()  Element of K6(REAL)
 
dd `2  is  V11()  real   ext-real   Element of  REAL 
 
 upper_bound D is  V11()  real   ext-real   Element of  REAL 
 
dd `1  is  V11()  real   ext-real   Element of  REAL 
 
proj2 .: (LSeg ((r3 . r),(F . r))) is  V130() V131() V132()  Element of K6(REAL)
 
(LSeg (((Gauge (n,(r + 1))) * ((Center (Gauge (n,(r + 1)))),CC)),((Gauge (n,(r + 1))) * ((Center (Gauge (n,(r + 1)))),c22)))) /\ (Lower_Arc (L~ (Cage (n,(r + 1))))) is   proper   closed   bounded   compact   Element of K6( the carrier of (TOP-REAL 2))
 
{((Gauge (n,(r + 1))) * ((Center (Gauge (n,(r + 1)))),CC))} is    set 
 
E0 is    set 
 
E0 is    set 
 
proj2 .: (LSeg (((Gauge (n,1)) * ((X-SpanStart (n,1)),1)),((Gauge (n,1)) * ((X-SpanStart (n,1)),(len (Gauge (n,1))))))) is  V130() V131() V132()  Element of K6(REAL)
 
[.(proj2 . ((Gauge (n,1)) * ((X-SpanStart (n,1)),1))),(proj2 . ((Gauge (n,1)) * ((X-SpanStart (n,1)),(len (Gauge (n,1)))))).] is   compact  V130() V131() V132()  interval   Element of K6(REAL)
 
D9 \/ x3 is  V130() V131() V132()  Element of K6(REAL)
 
r is  V11()  real   ext-real   set 
 
r is  V11()  real   ext-real   Element of  REAL 
 
|[(((W-bound n) + (E-bound n)) / 2),r]| is  V41(2)  FinSequence-like  V122()  Element of  the carrier of (TOP-REAL 2)
 
|[(((W-bound n) + (E-bound n)) / 2),r]| `1  is  V11()  real   ext-real   Element of  REAL 
 
 BDD-Family n is   non  empty   Element of K6(K6( the carrier of (TOP-REAL 2)))
 
n is    set 
 
 {  (Cl (BDD (L~ (Cage (n,b1))))) where b1 is   epsilon-transitive   epsilon-connected   ordinal   natural  V11()  real   integer   ext-real   non  negative  V49() V130() V131() V132() V133() V134() V135()  bounded_below   Element of  NAT  : verum  }   is    set 
 
i is   epsilon-transitive   epsilon-connected   ordinal   natural  V11()  real   integer   ext-real   non  negative  V49() V130() V131() V132() V133() V134() V135()  bounded_below   Element of  NAT 
 
 Cage (n,i) is   non  empty  V21() V24( NAT ) V25( the carrier of (TOP-REAL 2)) V26() V28()  FinSequence-like  V199( the carrier of (TOP-REAL 2))  special   unfolded   s.c.c.   standard  V236()  FinSequence of  the carrier of (TOP-REAL 2)
 
 L~ (Cage (n,i)) is   non  empty   proper   closed  V91( TOP-REAL 2)  connected   bounded   being_simple_closed_curve   compact  V233() V234()  Element of K6( the carrier of (TOP-REAL 2))
 
 BDD (L~ (Cage (n,i))) is   non  empty   open   Element of K6( the carrier of (TOP-REAL 2))
 
 Cl (BDD (L~ (Cage (n,i)))) is    Element of K6( the carrier of (TOP-REAL 2))
 
j is   epsilon-transitive   epsilon-connected   ordinal   natural  V11()  real   integer   ext-real   non  negative  V49() V130() V131() V132() V133() V134() V135()  bounded_below   Element of  NAT 
 
S . j is  V130() V131() V132()  Element of  bool REAL
 
F . j is  V41(2)  FinSequence-like  V122()  Element of  the carrier of (TOP-REAL 2)
 
proj2 . (F . j) is  V11()  real   ext-real   Element of  REAL 
 
(F . j) `2  is  V11()  real   ext-real   Element of  REAL 
 
r3 . j is  V41(2)  FinSequence-like  V122()  Element of  the carrier of (TOP-REAL 2)
 
 LSeg (((Gauge (n,1)) * ((X-SpanStart (n,1)),1)),(r3 . j)) is   non  empty   proper   proper   closed   closed  V91( TOP-REAL 2)  connected   bounded   bounded   compact   compact   convex   Element of K6( the carrier of (TOP-REAL 2))
 
j + 1 is   non  empty   epsilon-transitive   epsilon-connected   ordinal   natural  V11()  real   integer   ext-real   positive   non  negative  V49() V130() V131() V132() V133() V134() V135()  left_end   bounded_below   Element of  NAT 
 
 Cage (n,(j + 1)) is   non  empty  V21() V24( NAT ) V25( the carrier of (TOP-REAL 2)) V26() V28()  FinSequence-like  V199( the carrier of (TOP-REAL 2))  special   unfolded   s.c.c.   standard  V236()  FinSequence of  the carrier of (TOP-REAL 2)
 
 L~ (Cage (n,(j + 1))) is   non  empty   proper   closed  V91( TOP-REAL 2)  connected   bounded   being_simple_closed_curve   compact  V233() V234()  Element of K6( the carrier of (TOP-REAL 2))
 
 Lower_Arc (L~ (Cage (n,(j + 1)))) is   non  empty   proper   closed   bounded   compact   Element of K6( the carrier of (TOP-REAL 2))
 
(LSeg (((Gauge (n,1)) * ((X-SpanStart (n,1)),1)),(r3 . j))) /\ (Lower_Arc (L~ (Cage (n,(j + 1))))) is   proper   closed   bounded   compact   Element of K6( the carrier of (TOP-REAL 2))
 
CC is   proper   closed   bounded   compact   Element of K6( the carrier of (TOP-REAL 2))
 
proj2 .: CC is  V130() V131() V132()  Element of K6(REAL)
 
 Gauge (n,(j + 1)) is  V21() V23() V24( NAT ) V25(K292( the carrier of (TOP-REAL 2))) V26()  FinSequence-like   tabular  V257() V258() V259() V260()  FinSequence of K292( the carrier of (TOP-REAL 2))
 
 Center (Gauge (n,(j + 1))) is   epsilon-transitive   epsilon-connected   ordinal   natural  V11()  real   integer   ext-real   non  negative  V49() V130() V131() V132() V133() V134() V135()  bounded_below   Element of  NAT 
 
 len (Gauge (n,(j + 1))) is   epsilon-transitive   epsilon-connected   ordinal   natural  V11()  real   integer   ext-real   non  negative  V49() V130() V131() V132() V133() V134() V135()  bounded_below   Element of  NAT 
 
c22 is   proper   closed   bounded   compact   Element of K6( the carrier of (TOP-REAL 2))
 
proj2 .: c22 is  V130() V131() V132()  Element of K6(REAL)
 
 dom proj2 is    Element of K6( the carrier of (TOP-REAL 2))
 
(dom proj2) /\ CC is    Element of K6( the carrier of (TOP-REAL 2))
 
 RightComp (Cage (n,(j + 1))) is    Element of K6( the carrier of (TOP-REAL 2))
 
 Cage (n,j) is   non  empty  V21() V24( NAT ) V25( the carrier of (TOP-REAL 2)) V26() V28()  FinSequence-like  V199( the carrier of (TOP-REAL 2))  special   unfolded   s.c.c.   standard  V236()  FinSequence of  the carrier of (TOP-REAL 2)
 
 RightComp (Cage (n,j)) is    Element of K6( the carrier of (TOP-REAL 2))
 
 RightComp (Cage (n,i)) is    Element of K6( the carrier of (TOP-REAL 2))
 
 Cl (RightComp (Cage (n,(j + 1)))) is   proper   closed   bounded   compact   Element of K6( the carrier of (TOP-REAL 2))
 
 Cl (RightComp (Cage (n,i))) is   proper   closed   bounded   compact   Element of K6( the carrier of (TOP-REAL 2))
 
 Upper_Arc (L~ (Cage (n,(j + 1)))) is   non  empty   proper   closed   bounded   compact   Element of K6( the carrier of (TOP-REAL 2))
 
1 + 0 is   non  empty   epsilon-transitive   epsilon-connected   ordinal   natural  V11()  real   integer   ext-real   positive   non  negative  V49() V130() V131() V132() V133() V134() V135()  left_end   bounded_below   Element of  NAT 
 
 X-SpanStart (n,(j + 1)) is   epsilon-transitive   epsilon-connected   ordinal   natural  V11()  real   integer   ext-real   non  negative  V49() V130() V131() V132() V133() V134() V135()  bounded_below   Element of  NAT 
 
(j + 1) -' 1 is   epsilon-transitive   epsilon-connected   ordinal   natural  V11()  real   integer   ext-real   non  negative  V49() V130() V131() V132() V133() V134() V135()  bounded_below   Element of  NAT 
 
2 |^ ((j + 1) -' 1) is   epsilon-transitive   epsilon-connected   ordinal   natural  V11()  real   integer   ext-real   non  negative  V49() V130() V131() V132() V133() V134() V135()  bounded_below   Element of  NAT 
 
(2 |^ ((j + 1) -' 1)) + 2 is   non  empty   epsilon-transitive   epsilon-connected   ordinal   natural  V11()  real   integer   ext-real   positive   non  negative  V49() V130() V131() V132() V133() V134() V135()  left_end   bounded_below   Element of  NAT 
 
proj2 . (r3 . j) is  V11()  real   ext-real   Element of  REAL 
 
(r3 . j) `2  is  V11()  real   ext-real   Element of  REAL 
 
DD is   proper   closed   bounded   compact   Element of K6( the carrier of (TOP-REAL 2))
 
proj2 .: DD is  V130() V131() V132()  Element of K6(REAL)
 
Fs . j is  V11()  real   ext-real   Element of  REAL 
 
D is   compact  V130() V131() V132()  Element of K6(REAL)
 
 upper_bound D is  V11()  real   ext-real   Element of  REAL 
 
(dom proj2) /\ DD is    Element of K6( the carrier of (TOP-REAL 2))
 
C9 . j is  V11()  real   ext-real   Element of  REAL 
 
|[(((W-bound n) + (E-bound n)) / 2),(C9 . j)]| is  V41(2)  FinSequence-like  V122()  Element of  the carrier of (TOP-REAL 2)
 
(r3 . j) `1  is  V11()  real   ext-real   Element of  REAL 
 
(LSeg (((Gauge (n,1)) * ((X-SpanStart (n,1)),1)),((Gauge (n,1)) * ((X-SpanStart (n,1)),(len (Gauge (n,1))))))) /\ (Upper_Arc (L~ (Cage (n,(j + 1))))) is   proper   closed   bounded   compact   Element of K6( the carrier of (TOP-REAL 2))
 
proj2 .: ((LSeg (((Gauge (n,1)) * ((X-SpanStart (n,1)),1)),((Gauge (n,1)) * ((X-SpanStart (n,1)),(len (Gauge (n,1))))))) /\ (Upper_Arc (L~ (Cage (n,(j + 1)))))) is  V130() V131() V132()  Element of K6(REAL)
 
 lower_bound (proj2 .: ((LSeg (((Gauge (n,1)) * ((X-SpanStart (n,1)),1)),((Gauge (n,1)) * ((X-SpanStart (n,1)),(len (Gauge (n,1))))))) /\ (Upper_Arc (L~ (Cage (n,(j + 1))))))) is  V11()  real   ext-real   Element of  REAL 
 
 width (Gauge (n,(j + 1))) is   epsilon-transitive   epsilon-connected   ordinal   natural  V11()  real   integer   ext-real   non  negative  V49() V130() V131() V132() V133() V134() V135()  bounded_below   Element of  NAT 
 
dd is   epsilon-transitive   epsilon-connected   ordinal   natural  V11()  real   integer   ext-real   non  negative  V49() V130() V131() V132() V133() V134() V135()  bounded_below   Element of  NAT 
 
(Gauge (n,(j + 1))) * ((X-SpanStart (n,(j + 1))),dd) is  V41(2)  FinSequence-like  V122()  Element of  the carrier of (TOP-REAL 2)
 
dd is  V41(2)  FinSequence-like  V122()  Element of  the carrier of (TOP-REAL 2)
 
proj2 . dd is  V11()  real   ext-real   Element of  REAL 
 
 LSeg ((r3 . j),((Gauge (n,1)) * ((X-SpanStart (n,1)),1))) is   non  empty   proper   proper   closed   closed  V91( TOP-REAL 2)  connected   bounded   bounded   compact   compact   convex   Element of K6( the carrier of (TOP-REAL 2))
 
DD is   proper   closed   bounded   compact   Element of K6( the carrier of (TOP-REAL 2))
 
proj2 .: DD is  V130() V131() V132()  Element of K6(REAL)
 
(dom proj2) /\ DD is    Element of K6( the carrier of (TOP-REAL 2))
 
(Gauge (n,(j + 1))) * ((Center (Gauge (n,(j + 1)))),1) is  V41(2)  FinSequence-like  V122()  Element of  the carrier of (TOP-REAL 2)
 
(Gauge (n,(j + 1))) * ((Center (Gauge (n,(j + 1)))),(len (Gauge (n,(j + 1))))) is  V41(2)  FinSequence-like  V122()  Element of  the carrier of (TOP-REAL 2)
 
 LSeg (((Gauge (n,(j + 1))) * ((Center (Gauge (n,(j + 1)))),1)),((Gauge (n,(j + 1))) * ((Center (Gauge (n,(j + 1)))),(len (Gauge (n,(j + 1))))))) is   non  empty   proper   proper   closed   closed  V91( TOP-REAL 2)  connected   bounded   bounded   compact   compact   convex   Element of K6( the carrier of (TOP-REAL 2))
 
D is   compact  V130() V131() V132()  Element of K6(REAL)
 
|[(((W-bound n) + (E-bound n)) / 2),(Fs . j)]| is  V41(2)  FinSequence-like  V122()  Element of  the carrier of (TOP-REAL 2)
 
(F . j) `1  is  V11()  real   ext-real   Element of  REAL 
 
dd `2  is  V11()  real   ext-real   Element of  REAL 
 
dd `1  is  V11()  real   ext-real   Element of  REAL 
 
 lower_bound D is  V11()  real   ext-real   Element of  REAL 
 
dd is  V41(2)  FinSequence-like  V122()  Element of  the carrier of (TOP-REAL 2)
 
proj2 . dd is  V11()  real   ext-real   Element of  REAL 
 
dd `2  is  V11()  real   ext-real   Element of  REAL 
 
 LSeg ((r3 . j),(F . j)) is   non  empty   proper   proper   closed   closed  V91( TOP-REAL 2)  connected   bounded   bounded   compact   compact   convex   Element of K6( the carrier of (TOP-REAL 2))
 
proj2 .: (LSeg ((r3 . j),(F . j))) is  V130() V131() V132()  Element of K6(REAL)
 
[.(proj2 . (F . j)),(proj2 . (r3 . j)).] is   compact  V130() V131() V132()  interval   Element of K6(REAL)
 
(LSeg ((r3 . j),(F . j))) /\ (Lower_Arc (L~ (Cage (n,(j + 1))))) is   proper   closed   bounded   compact   Element of K6( the carrier of (TOP-REAL 2))
 
j is    set 
 
E0 is   compact  V130() V131() V132()  Element of K6(REAL)
 
 upper_bound E0 is  V11()  real   ext-real   Element of  REAL 
 
k is  V41(2)  FinSequence-like  V122()  Element of  the carrier of (TOP-REAL 2)
 
k `2  is  V11()  real   ext-real   Element of  REAL 
 
proj2 . k is  V11()  real   ext-real   Element of  REAL 
 
k `1  is  V11()  real   ext-real   Element of  REAL 
 
{(F . j)} is    set 
 
W is   compact  V130() V131() V132()  Element of K6(REAL)
 
j is  V11()  real   ext-real   set 
 
k is    set 
 
proj2 . k is  V11()  real   ext-real   Element of  REAL 
 
x is  V41(2)  FinSequence-like  V122()  Element of  the carrier of (TOP-REAL 2)
 
x `2  is  V11()  real   ext-real   Element of  REAL 
 
 upper_bound W is  V11()  real   ext-real   Element of  REAL 
 
dd `1  is  V11()  real   ext-real   Element of  REAL 
 
(LSeg ((r3 . j),(F . j))) /\ (Upper_Arc (L~ (Cage (n,(j + 1))))) is   proper   closed   bounded   compact   Element of K6( the carrier of (TOP-REAL 2))
 
j is    set 
 
k is  V41(2)  FinSequence-like  V122()  Element of  the carrier of (TOP-REAL 2)
 
k `2  is  V11()  real   ext-real   Element of  REAL 
 
proj2 . k is  V11()  real   ext-real   Element of  REAL 
 
k `1  is  V11()  real   ext-real   Element of  REAL 
 
{(r3 . j)} is    set 
 
j is   epsilon-transitive   epsilon-connected   ordinal   natural  V11()  real   integer   ext-real   non  negative  V49() V130() V131() V132() V133() V134() V135()  bounded_below   Element of  NAT 
 
(Gauge (n,(j + 1))) * ((X-SpanStart (n,(j + 1))),j) is  V41(2)  FinSequence-like  V122()  Element of  the carrier of (TOP-REAL 2)
 
proj2 .: ((LSeg (((Gauge (n,1)) * ((X-SpanStart (n,1)),1)),(r3 . j))) /\ (Lower_Arc (L~ (Cage (n,(j + 1)))))) is  V130() V131() V132()  Element of K6(REAL)
 
 upper_bound (proj2 .: ((LSeg (((Gauge (n,1)) * ((X-SpanStart (n,1)),1)),(r3 . j))) /\ (Lower_Arc (L~ (Cage (n,(j + 1))))))) is  V11()  real   ext-real   Element of  REAL 
 
k is   epsilon-transitive   epsilon-connected   ordinal   natural  V11()  real   integer   ext-real   non  negative  V49() V130() V131() V132() V133() V134() V135()  bounded_below   Element of  NAT 
 
(Gauge (n,(j + 1))) * ((X-SpanStart (n,(j + 1))),k) is  V41(2)  FinSequence-like  V122()  Element of  the carrier of (TOP-REAL 2)
 
 meet (BDD-Family n) is    Element of K6( the carrier of (TOP-REAL 2))
 
(Lower_Arc n) \/ (Upper_Arc n) is    Element of K6( the carrier of (TOP-REAL 2))
 
((Lower_Arc n) \/ (Upper_Arc n)) /\ (LSeg (((Gauge (n,1)) * ((X-SpanStart (n,1)),(len (Gauge (n,1))))),((Gauge (n,1)) * ((X-SpanStart (n,1)),1)))) is    Element of K6( the carrier of (TOP-REAL 2))
 
((LSeg (((Gauge (n,1)) * ((X-SpanStart (n,1)),(len (Gauge (n,1))))),((Gauge (n,1)) * ((X-SpanStart (n,1)),1)))) /\ (Upper_Arc n)) \/ ((LSeg (((Gauge (n,1)) * ((X-SpanStart (n,1)),(len (Gauge (n,1))))),((Gauge (n,1)) * ((X-SpanStart (n,1)),1)))) /\ (Lower_Arc n)) is    Element of K6( the carrier of (TOP-REAL 2))
 
proj2 . |[(((W-bound n) + (E-bound n)) / 2),r]| is  V11()  real   ext-real   Element of  REAL 
 
proj2 .: (((LSeg (((Gauge (n,1)) * ((X-SpanStart (n,1)),(len (Gauge (n,1))))),((Gauge (n,1)) * ((X-SpanStart (n,1)),1)))) /\ (Upper_Arc n)) \/ ((LSeg (((Gauge (n,1)) * ((X-SpanStart (n,1)),(len (Gauge (n,1))))),((Gauge (n,1)) * ((X-SpanStart (n,1)),1)))) /\ (Lower_Arc n))) is  V130() V131() V132()  Element of K6(REAL)
 
 BDD n is   non  empty   open   Element of K6( the carrier of (TOP-REAL 2))
 
n \/ (BDD n) is    Element of K6( the carrier of (TOP-REAL 2))
 
i is   epsilon-transitive   epsilon-connected   ordinal   natural  V11()  real   integer   ext-real   non  negative  V49() V130() V131() V132() V133() V134() V135()  bounded_below   Element of  NAT 
 
n is   epsilon-transitive   epsilon-connected   ordinal   natural  V11()  real   integer   ext-real   non  negative  V49() V130() V131() V132() V133() V134() V135()  bounded_below   Element of  NAT 
 
 Gauge (n,n) is  V21() V23() V24( NAT ) V25(K292( the carrier of (TOP-REAL 2))) V26()  FinSequence-like   tabular  V257() V258() V259() V260()  FinSequence of K292( the carrier of (TOP-REAL 2))
 
 len (Gauge (n,n)) is   epsilon-transitive   epsilon-connected   ordinal   natural  V11()  real   integer   ext-real   non  negative  V49() V130() V131() V132() V133() V134() V135()  bounded_below   Element of  NAT 
 
j is   epsilon-transitive   epsilon-connected   ordinal   natural  V11()  real   integer   ext-real   non  negative  V49() V130() V131() V132() V133() V134() V135()  bounded_below   Element of  NAT 
 
 width (Gauge (n,n)) is   epsilon-transitive   epsilon-connected   ordinal   natural  V11()  real   integer   ext-real   non  negative  V49() V130() V131() V132() V133() V134() V135()  bounded_below   Element of  NAT 
 
(Gauge (n,n)) * (i,j) is  V41(2)  FinSequence-like  V122()  Element of  the carrier of (TOP-REAL 2)
 
((Gauge (n,n)) * (i,j)) `1  is  V11()  real   ext-real   Element of  REAL 
 
 cell ((Gauge (n,n)),i,j) is    Element of K6( the carrier of (TOP-REAL 2))
 
 X-SpanStart (n,n) is   epsilon-transitive   epsilon-connected   ordinal   natural  V11()  real   integer   ext-real   non  negative  V49() V130() V131() V132() V133() V134() V135()  bounded_below   Element of  NAT 
 
n -' 1 is   epsilon-transitive   epsilon-connected   ordinal   natural  V11()  real   integer   ext-real   non  negative  V49() V130() V131() V132() V133() V134() V135()  bounded_below   Element of  NAT 
 
2 |^ (n -' 1) is   epsilon-transitive   epsilon-connected   ordinal   natural  V11()  real   integer   ext-real   non  negative  V49() V130() V131() V132() V133() V134() V135()  bounded_below   Element of  NAT 
 
(2 |^ (n -' 1)) + 2 is   non  empty   epsilon-transitive   epsilon-connected   ordinal   natural  V11()  real   integer   ext-real   positive   non  negative  V49() V130() V131() V132() V133() V134() V135()  left_end   bounded_below   Element of  NAT 
 
(X-SpanStart (n,n)) -' 1 is   epsilon-transitive   epsilon-connected   ordinal   natural  V11()  real   integer   ext-real   non  negative  V49() V130() V131() V132() V133() V134() V135()  bounded_below   Element of  NAT 
 
 cell ((Gauge (n,n)),((X-SpanStart (n,n)) -' 1),j) is    Element of K6( the carrier of (TOP-REAL 2))
 
 Center (Gauge (n,n)) is   epsilon-transitive   epsilon-connected   ordinal   natural  V11()  real   integer   ext-real   non  negative  V49() V130() V131() V132() V133() V134() V135()  bounded_below   Element of  NAT 
 
(Gauge (n,n)) * ((X-SpanStart (n,n)),j) is  V41(2)  FinSequence-like  V122()  Element of  the carrier of (TOP-REAL 2)
 
((Gauge (n,n)) * ((X-SpanStart (n,n)),j)) `1  is  V11()  real   ext-real   Element of  REAL 
 
n is   non  empty   proper   closed   connected   bounded   being_simple_closed_curve   compact  V233() V234()  Element of K6( the carrier of (TOP-REAL 2))
 
 {  b1 where b1 is   epsilon-transitive   epsilon-connected   ordinal   natural  V11()  real   integer   ext-real   non  negative  V49() V130() V131() V132() V133() V134() V135()  bounded_below   Element of  NAT  : S1[b1]  }   is    set 
 
e is   epsilon-transitive   epsilon-connected   ordinal   natural  V11()  real   integer   ext-real   non  negative  V49() V130() V131() V132() V133() V134() V135()  bounded_below   Element of  NAT 
 
p is   non  empty  V130() V131() V132() V133() V134() V135()  left_end   bounded_below   Element of K6(NAT)
 
 min p is   epsilon-transitive   epsilon-connected   ordinal   natural  V11()  real   integer   ext-real   non  negative  V49() V130() V131() V132() V133() V134() V135()  bounded_below   Element of  NAT 
 
B is   epsilon-transitive   epsilon-connected   ordinal   natural  V11()  real   integer   ext-real   non  negative  V49() V130() V131() V132() V133() V134() V135()  bounded_below   Element of  NAT 
 
B is   epsilon-transitive   epsilon-connected   ordinal   natural  V11()  real   integer   ext-real   non  negative  V49() V130() V131() V132() V133() V134() V135()  bounded_below   Element of  NAT 
 
C is   epsilon-transitive   epsilon-connected   ordinal   natural  V11()  real   integer   ext-real   non  negative  V49() V130() V131() V132() V133() V134() V135()  bounded_below   Element of  NAT 
 
e is   epsilon-transitive   epsilon-connected   ordinal   natural  V11()  real   integer   ext-real   non  negative  V49() V130() V131() V132() V133() V134() V135()  bounded_below   Element of  NAT 
 
n is   non  empty   proper   closed   connected   bounded   being_simple_closed_curve   compact  V233() V234()  Element of K6( the carrier of (TOP-REAL 2))
 
(n) is   epsilon-transitive   epsilon-connected   ordinal   natural  V11()  real   integer   ext-real   non  negative  V49() V130() V131() V132() V133() V134() V135()  bounded_below   Element of  NAT 
 
n is   non  empty   proper   closed   connected   bounded   being_simple_closed_curve   compact  V233() V234()  Element of K6( the carrier of (TOP-REAL 2))
 
(n) is   epsilon-transitive   epsilon-connected   ordinal   natural  V11()  real   integer   ext-real   non  negative  V49() V130() V131() V132() V133() V134() V135()  bounded_below   Element of  NAT 
 
 Gauge (n,(n)) is  V21() V23() V24( NAT ) V25(K292( the carrier of (TOP-REAL 2))) V26()  FinSequence-like   tabular  V257() V258() V259() V260()  FinSequence of K292( the carrier of (TOP-REAL 2))
 
 width (Gauge (n,(n))) is   epsilon-transitive   epsilon-connected   ordinal   natural  V11()  real   integer   ext-real   non  negative  V49() V130() V131() V132() V133() V134() V135()  bounded_below   Element of  NAT 
 
 X-SpanStart (n,(n)) is   epsilon-transitive   epsilon-connected   ordinal   natural  V11()  real   integer   ext-real   non  negative  V49() V130() V131() V132() V133() V134() V135()  bounded_below   Element of  NAT 
 
(n) -' 1 is   epsilon-transitive   epsilon-connected   ordinal   natural  V11()  real   integer   ext-real   non  negative  V49() V130() V131() V132() V133() V134() V135()  bounded_below   Element of  NAT 
 
2 |^ ((n) -' 1) is   epsilon-transitive   epsilon-connected   ordinal   natural  V11()  real   integer   ext-real   non  negative  V49() V130() V131() V132() V133() V134() V135()  bounded_below   Element of  NAT 
 
(2 |^ ((n) -' 1)) + 2 is   non  empty   epsilon-transitive   epsilon-connected   ordinal   natural  V11()  real   integer   ext-real   positive   non  negative  V49() V130() V131() V132() V133() V134() V135()  left_end   bounded_below   Element of  NAT 
 
(X-SpanStart (n,(n))) -' 1 is   epsilon-transitive   epsilon-connected   ordinal   natural  V11()  real   integer   ext-real   non  negative  V49() V130() V131() V132() V133() V134() V135()  bounded_below   Element of  NAT 
 
 BDD n is   non  empty   open   Element of K6( the carrier of (TOP-REAL 2))
 
 {  b1 where b1 is   epsilon-transitive   epsilon-connected   ordinal   natural  V11()  real   integer   ext-real   non  negative  V49() V130() V131() V132() V133() V134() V135()  bounded_below   Element of  NAT  : S1[b1]  }   is    set 
 
p is   epsilon-transitive   epsilon-connected   ordinal   natural  V11()  real   integer   ext-real   non  negative  V49() V130() V131() V132() V133() V134() V135()  bounded_below   Element of  NAT 
 
 cell ((Gauge (n,(n))),((X-SpanStart (n,(n))) -' 1),p) is    Element of K6( the carrier of (TOP-REAL 2))
 
B is   non  empty  V130() V131() V132() V133() V134() V135()  left_end   bounded_below   Element of K6(NAT)
 
 min B is   epsilon-transitive   epsilon-connected   ordinal   natural  V11()  real   integer   ext-real   non  negative  V49() V130() V131() V132() V133() V134() V135()  bounded_below   Element of  NAT 
 
 cell ((Gauge (n,(n))),((X-SpanStart (n,(n))) -' 1),(min B)) is    Element of K6( the carrier of (TOP-REAL 2))
 
B is   epsilon-transitive   epsilon-connected   ordinal   natural  V11()  real   integer   ext-real   non  negative  V49() V130() V131() V132() V133() V134() V135()  bounded_below   Element of  NAT 
 
 cell ((Gauge (n,(n))),((X-SpanStart (n,(n))) -' 1),B) is    Element of K6( the carrier of (TOP-REAL 2))
 
B is   epsilon-transitive   epsilon-connected   ordinal   natural  V11()  real   integer   ext-real   non  negative  V49() V130() V131() V132() V133() V134() V135()  bounded_below   Element of  NAT 
 
 cell ((Gauge (n,(n))),((X-SpanStart (n,(n))) -' 1),B) is    Element of K6( the carrier of (TOP-REAL 2))
 
C is   epsilon-transitive   epsilon-connected   ordinal   natural  V11()  real   integer   ext-real   non  negative  V49() V130() V131() V132() V133() V134() V135()  bounded_below   Element of  NAT 
 
 cell ((Gauge (n,(n))),((X-SpanStart (n,(n))) -' 1),C) is    Element of K6( the carrier of (TOP-REAL 2))
 
e is   epsilon-transitive   epsilon-connected   ordinal   natural  V11()  real   integer   ext-real   non  negative  V49() V130() V131() V132() V133() V134() V135()  bounded_below   Element of  NAT 
 
 cell ((Gauge (n,(n))),((X-SpanStart (n,(n))) -' 1),e) is    Element of K6( the carrier of (TOP-REAL 2))
 
n is   non  empty   proper   closed   connected   bounded   being_simple_closed_curve   compact  V233() V234()  Element of K6( the carrier of (TOP-REAL 2))
 
(n) is   epsilon-transitive   epsilon-connected   ordinal   natural  V11()  real   integer   ext-real   non  negative  V49() V130() V131() V132() V133() V134() V135()  bounded_below   Element of  NAT 
 
(n) is   epsilon-transitive   epsilon-connected   ordinal   natural  V11()  real   integer   ext-real   non  negative  V49() V130() V131() V132() V133() V134() V135()  bounded_below   Element of  NAT 
 
 X-SpanStart (n,(n)) is   epsilon-transitive   epsilon-connected   ordinal   natural  V11()  real   integer   ext-real   non  negative  V49() V130() V131() V132() V133() V134() V135()  bounded_below   Element of  NAT 
 
(n) -' 1 is   epsilon-transitive   epsilon-connected   ordinal   natural  V11()  real   integer   ext-real   non  negative  V49() V130() V131() V132() V133() V134() V135()  bounded_below   Element of  NAT 
 
2 |^ ((n) -' 1) is   epsilon-transitive   epsilon-connected   ordinal   natural  V11()  real   integer   ext-real   non  negative  V49() V130() V131() V132() V133() V134() V135()  bounded_below   Element of  NAT 
 
(2 |^ ((n) -' 1)) + 2 is   non  empty   epsilon-transitive   epsilon-connected   ordinal   natural  V11()  real   integer   ext-real   positive   non  negative  V49() V130() V131() V132() V133() V134() V135()  left_end   bounded_below   Element of  NAT 
 
(X-SpanStart (n,(n))) -' 1 is   epsilon-transitive   epsilon-connected   ordinal   natural  V11()  real   integer   ext-real   non  negative  V49() V130() V131() V132() V133() V134() V135()  bounded_below   Element of  NAT 
 
 Gauge (n,(n)) is  V21() V23() V24( NAT ) V25(K292( the carrier of (TOP-REAL 2))) V26()  FinSequence-like   tabular  V257() V258() V259() V260()  FinSequence of K292( the carrier of (TOP-REAL 2))
 
 len (Gauge (n,(n))) is   epsilon-transitive   epsilon-connected   ordinal   natural  V11()  real   integer   ext-real   non  negative  V49() V130() V131() V132() V133() V134() V135()  bounded_below   Element of  NAT 
 
 cell ((Gauge (n,(n))),((X-SpanStart (n,(n))) -' 1),0) is    Element of K6( the carrier of (TOP-REAL 2))
 
 UBD n is   non  empty   open   connected   Element of K6( the carrier of (TOP-REAL 2))
 
 width (Gauge (n,(n))) is   epsilon-transitive   epsilon-connected   ordinal   natural  V11()  real   integer   ext-real   non  negative  V49() V130() V131() V132() V133() V134() V135()  bounded_below   Element of  NAT 
 
 BDD n is   non  empty   open   Element of K6( the carrier of (TOP-REAL 2))
 
 cell ((Gauge (n,(n))),((X-SpanStart (n,(n))) -' 1),1) is    Element of K6( the carrier of (TOP-REAL 2))
 
 BDD n is   non  empty   open   Element of K6( the carrier of (TOP-REAL 2))
 
n `  is    Element of K6( the carrier of (TOP-REAL 2))
 
 the carrier of (TOP-REAL 2) \ n is    set 
 
 UBD n is   non  empty   open   connected   Element of K6( the carrier of (TOP-REAL 2))
 
 width (Gauge (n,(n))) is   epsilon-transitive   epsilon-connected   ordinal   natural  V11()  real   integer   ext-real   non  negative  V49() V130() V131() V132() V133() V134() V135()  bounded_below   Element of  NAT 
 
0 + 1 is   non  empty   epsilon-transitive   epsilon-connected   ordinal   natural  V11()  real   integer   ext-real   positive   non  negative  V49() V130() V131() V132() V133() V134() V135()  left_end   bounded_below   Element of  NAT 
 
 cell ((Gauge (n,(n))),((X-SpanStart (n,(n))) -' 1),0) is    Element of K6( the carrier of (TOP-REAL 2))
 
 cell ((Gauge (n,(n))),((X-SpanStart (n,(n))) -' 1),(0 + 1)) is    Element of K6( the carrier of (TOP-REAL 2))
 
(cell ((Gauge (n,(n))),((X-SpanStart (n,(n))) -' 1),0)) /\ (cell ((Gauge (n,(n))),((X-SpanStart (n,(n))) -' 1),(0 + 1))) is    Element of K6( the carrier of (TOP-REAL 2))
 
(Gauge (n,(n))) * (((X-SpanStart (n,(n))) -' 1),(0 + 1)) is  V41(2)  FinSequence-like  V122()  Element of  the carrier of (TOP-REAL 2)
 
((X-SpanStart (n,(n))) -' 1) + 1 is   non  empty   epsilon-transitive   epsilon-connected   ordinal   natural  V11()  real   integer   ext-real   positive   non  negative  V49() V130() V131() V132() V133() V134() V135()  left_end   bounded_below   Element of  NAT 
 
(Gauge (n,(n))) * ((((X-SpanStart (n,(n))) -' 1) + 1),(0 + 1)) is  V41(2)  FinSequence-like  V122()  Element of  the carrier of (TOP-REAL 2)
 
 LSeg (((Gauge (n,(n))) * (((X-SpanStart (n,(n))) -' 1),(0 + 1))),((Gauge (n,(n))) * ((((X-SpanStart (n,(n))) -' 1) + 1),(0 + 1)))) is   non  empty   proper   proper   closed   closed  V91( TOP-REAL 2)  connected   bounded   bounded   compact   compact   convex   Element of K6( the carrier of (TOP-REAL 2))
 
n is   non  empty   proper   closed   connected   bounded   being_simple_closed_curve   compact  V233() V234()  Element of K6( the carrier of (TOP-REAL 2))
 
(n) is   epsilon-transitive   epsilon-connected   ordinal   natural  V11()  real   integer   ext-real   non  negative  V49() V130() V131() V132() V133() V134() V135()  bounded_below   Element of  NAT 
 
 Gauge (n,(n)) is  V21() V23() V24( NAT ) V25(K292( the carrier of (TOP-REAL 2))) V26()  FinSequence-like   tabular  V257() V258() V259() V260()  FinSequence of K292( the carrier of (TOP-REAL 2))
 
 width (Gauge (n,(n))) is   epsilon-transitive   epsilon-connected   ordinal   natural  V11()  real   integer   ext-real   non  negative  V49() V130() V131() V132() V133() V134() V135()  bounded_below   Element of  NAT 
 
(n) is   epsilon-transitive   epsilon-connected   ordinal   natural  V11()  real   integer   ext-real   non  negative  V49() V130() V131() V132() V133() V134() V135()  bounded_below   Element of  NAT 
 
(n) + 1 is   non  empty   epsilon-transitive   epsilon-connected   ordinal   natural  V11()  real   integer   ext-real   positive   non  negative  V49() V130() V131() V132() V133() V134() V135()  left_end   bounded_below   Element of  NAT 
 
 X-SpanStart (n,(n)) is   epsilon-transitive   epsilon-connected   ordinal   natural  V11()  real   integer   ext-real   non  negative  V49() V130() V131() V132() V133() V134() V135()  bounded_below   Element of  NAT 
 
(n) -' 1 is   epsilon-transitive   epsilon-connected   ordinal   natural  V11()  real   integer   ext-real   non  negative  V49() V130() V131() V132() V133() V134() V135()  bounded_below   Element of  NAT 
 
2 |^ ((n) -' 1) is   epsilon-transitive   epsilon-connected   ordinal   natural  V11()  real   integer   ext-real   non  negative  V49() V130() V131() V132() V133() V134() V135()  bounded_below   Element of  NAT 
 
(2 |^ ((n) -' 1)) + 2 is   non  empty   epsilon-transitive   epsilon-connected   ordinal   natural  V11()  real   integer   ext-real   positive   non  negative  V49() V130() V131() V132() V133() V134() V135()  left_end   bounded_below   Element of  NAT 
 
(X-SpanStart (n,(n))) -' 1 is   epsilon-transitive   epsilon-connected   ordinal   natural  V11()  real   integer   ext-real   non  negative  V49() V130() V131() V132() V133() V134() V135()  bounded_below   Element of  NAT 
 
 len (Gauge (n,(n))) is   epsilon-transitive   epsilon-connected   ordinal   natural  V11()  real   integer   ext-real   non  negative  V49() V130() V131() V132() V133() V134() V135()  bounded_below   Element of  NAT 
 
(width (Gauge (n,(n)))) -' 1 is   epsilon-transitive   epsilon-connected   ordinal   natural  V11()  real   integer   ext-real   non  negative  V49() V130() V131() V132() V133() V134() V135()  bounded_below   Element of  NAT 
 
 cell ((Gauge (n,(n))),((X-SpanStart (n,(n))) -' 1),((width (Gauge (n,(n)))) -' 1)) is    Element of K6( the carrier of (TOP-REAL 2))
 
 BDD n is   non  empty   open   Element of K6( the carrier of (TOP-REAL 2))
 
n `  is    Element of K6( the carrier of (TOP-REAL 2))
 
 the carrier of (TOP-REAL 2) \ n is    set 
 
 cell ((Gauge (n,(n))),((X-SpanStart (n,(n))) -' 1),(width (Gauge (n,(n))))) is    Element of K6( the carrier of (TOP-REAL 2))
 
 UBD n is   non  empty   open   connected   Element of K6( the carrier of (TOP-REAL 2))
 
(width (Gauge (n,(n)))) - 1 is  V11()  real   integer   ext-real   Element of  REAL 
 
((width (Gauge (n,(n)))) -' 1) + 1 is   non  empty   epsilon-transitive   epsilon-connected   ordinal   natural  V11()  real   integer   ext-real   positive   non  negative  V49() V130() V131() V132() V133() V134() V135()  left_end   bounded_below   Element of  NAT 
 
(cell ((Gauge (n,(n))),((X-SpanStart (n,(n))) -' 1),(width (Gauge (n,(n)))))) /\ (cell ((Gauge (n,(n))),((X-SpanStart (n,(n))) -' 1),((width (Gauge (n,(n)))) -' 1))) is    Element of K6( the carrier of (TOP-REAL 2))
 
(Gauge (n,(n))) * (((X-SpanStart (n,(n))) -' 1),(width (Gauge (n,(n))))) is  V41(2)  FinSequence-like  V122()  Element of  the carrier of (TOP-REAL 2)
 
((X-SpanStart (n,(n))) -' 1) + 1 is   non  empty   epsilon-transitive   epsilon-connected   ordinal   natural  V11()  real   integer   ext-real   positive   non  negative  V49() V130() V131() V132() V133() V134() V135()  left_end   bounded_below   Element of  NAT 
 
(Gauge (n,(n))) * ((((X-SpanStart (n,(n))) -' 1) + 1),(width (Gauge (n,(n))))) is  V41(2)  FinSequence-like  V122()  Element of  the carrier of (TOP-REAL 2)
 
 LSeg (((Gauge (n,(n))) * (((X-SpanStart (n,(n))) -' 1),(width (Gauge (n,(n)))))),((Gauge (n,(n))) * ((((X-SpanStart (n,(n))) -' 1) + 1),(width (Gauge (n,(n))))))) is   non  empty   proper   proper   closed   closed  V91( TOP-REAL 2)  connected   bounded   bounded   compact   compact   convex   Element of K6( the carrier of (TOP-REAL 2))
 
n is   non  empty   proper   closed   connected   bounded   being_simple_closed_curve   compact  V233() V234()  Element of K6( the carrier of (TOP-REAL 2))
 
C is   epsilon-transitive   epsilon-connected   ordinal   natural  V11()  real   integer   ext-real   non  negative  V49() V130() V131() V132() V133() V134() V135()  bounded_below   Element of  NAT 
 
(n) is   epsilon-transitive   epsilon-connected   ordinal   natural  V11()  real   integer   ext-real   non  negative  V49() V130() V131() V132() V133() V134() V135()  bounded_below   Element of  NAT 
 
 X-SpanStart (n,C) is   epsilon-transitive   epsilon-connected   ordinal   natural  V11()  real   integer   ext-real   non  negative  V49() V130() V131() V132() V133() V134() V135()  bounded_below   Element of  NAT 
 
C -' 1 is   epsilon-transitive   epsilon-connected   ordinal   natural  V11()  real   integer   ext-real   non  negative  V49() V130() V131() V132() V133() V134() V135()  bounded_below   Element of  NAT 
 
2 |^ (C -' 1) is   epsilon-transitive   epsilon-connected   ordinal   natural  V11()  real   integer   ext-real   non  negative  V49() V130() V131() V132() V133() V134() V135()  bounded_below   Element of  NAT 
 
(2 |^ (C -' 1)) + 2 is   non  empty   epsilon-transitive   epsilon-connected   ordinal   natural  V11()  real   integer   ext-real   positive   non  negative  V49() V130() V131() V132() V133() V134() V135()  left_end   bounded_below   Element of  NAT 
 
 Gauge (n,C) is  V21() V23() V24( NAT ) V25(K292( the carrier of (TOP-REAL 2))) V26()  FinSequence-like   tabular  V257() V258() V259() V260()  FinSequence of K292( the carrier of (TOP-REAL 2))
 
 width (Gauge (n,C)) is   epsilon-transitive   epsilon-connected   ordinal   natural  V11()  real   integer   ext-real   non  negative  V49() V130() V131() V132() V133() V134() V135()  bounded_below   Element of  NAT 
 
C -' (n) is   epsilon-transitive   epsilon-connected   ordinal   natural  V11()  real   integer   ext-real   non  negative  V49() V130() V131() V132() V133() V134() V135()  bounded_below   Element of  NAT 
 
2 |^ (C -' (n)) is   epsilon-transitive   epsilon-connected   ordinal   natural  V11()  real   integer   ext-real   non  negative  V49() V130() V131() V132() V133() V134() V135()  bounded_below   Element of  NAT 
 
(n) is   epsilon-transitive   epsilon-connected   ordinal   natural  V11()  real   integer   ext-real   non  negative  V49() V130() V131() V132() V133() V134() V135()  bounded_below   Element of  NAT 
 
(n) -' 2 is   epsilon-transitive   epsilon-connected   ordinal   natural  V11()  real   integer   ext-real   non  negative  V49() V130() V131() V132() V133() V134() V135()  bounded_below   Element of  NAT 
 
(2 |^ (C -' (n))) * ((n) -' 2) is   epsilon-transitive   epsilon-connected   ordinal   natural  V11()  real   integer   ext-real   non  negative  V49() V130() V131() V132() V133() V134() V135()  bounded_below   Element of  NAT 
 
((2 |^ (C -' (n))) * ((n) -' 2)) + 2 is   non  empty   epsilon-transitive   epsilon-connected   ordinal   natural  V11()  real   integer   ext-real   positive   non  negative  V49() V130() V131() V132() V133() V134() V135()  left_end   bounded_below   Element of  NAT 
 
(X-SpanStart (n,C)) -' 1 is   epsilon-transitive   epsilon-connected   ordinal   natural  V11()  real   integer   ext-real   non  negative  V49() V130() V131() V132() V133() V134() V135()  bounded_below   Element of  NAT 
 
 BDD n is   non  empty   open   Element of K6( the carrier of (TOP-REAL 2))
 
 {  b1 where b1 is   epsilon-transitive   epsilon-connected   ordinal   natural  V11()  real   integer   ext-real   non  negative  V49() V130() V131() V132() V133() V134() V135()  bounded_below   Element of  NAT  : S1[b1]  }   is    set 
 
 Gauge (n,(n)) is  V21() V23() V24( NAT ) V25(K292( the carrier of (TOP-REAL 2))) V26()  FinSequence-like   tabular  V257() V258() V259() V260()  FinSequence of K292( the carrier of (TOP-REAL 2))
 
 width (Gauge (n,(n))) is   epsilon-transitive   epsilon-connected   ordinal   natural  V11()  real   integer   ext-real   non  negative  V49() V130() V131() V132() V133() V134() V135()  bounded_below   Element of  NAT 
 
(n) + 1 is   non  empty   epsilon-transitive   epsilon-connected   ordinal   natural  V11()  real   integer   ext-real   positive   non  negative  V49() V130() V131() V132() V133() V134() V135()  left_end   bounded_below   Element of  NAT 
 
2 |^ (n) is   epsilon-transitive   epsilon-connected   ordinal   natural  V11()  real   integer   ext-real   non  negative  V49() V130() V131() V132() V133() V134() V135()  bounded_below   Element of  NAT 
 
2 + 1 is   non  empty   epsilon-transitive   epsilon-connected   ordinal   natural  V11()  real   integer   ext-real   positive   non  negative  V49() V130() V131() V132() V133() V134() V135()  left_end   bounded_below   Element of  NAT 
 
(2 |^ (n)) + (2 + 1) is   non  empty   epsilon-transitive   epsilon-connected   ordinal   natural  V11()  real   integer   ext-real   positive   non  negative  V49() V130() V131() V132() V133() V134() V135()  left_end   bounded_below   Element of  NAT 
 
(2 |^ (n)) + 2 is   non  empty   epsilon-transitive   epsilon-connected   ordinal   natural  V11()  real   integer   ext-real   positive   non  negative  V49() V130() V131() V132() V133() V134() V135()  left_end   bounded_below   Element of  NAT 
 
((2 |^ (n)) + 2) + 1 is   non  empty   epsilon-transitive   epsilon-connected   ordinal   natural  V11()  real   integer   ext-real   positive   non  negative  V49() V130() V131() V132() V133() V134() V135()  left_end   bounded_below   Element of  NAT 
 
1 + 1 is   non  empty   epsilon-transitive   epsilon-connected   ordinal   natural  V11()  real   integer   ext-real   positive   non  negative  V49() V130() V131() V132() V133() V134() V135()  left_end   bounded_below   Element of  NAT 
 
(2 |^ (C -' (n))) * (2 |^ (n)) is   epsilon-transitive   epsilon-connected   ordinal   natural  V11()  real   integer   ext-real   non  negative  V49() V130() V131() V132() V133() V134() V135()  bounded_below   Element of  NAT 
 
(C -' (n)) + (n) is   epsilon-transitive   epsilon-connected   ordinal   natural  V11()  real   integer   ext-real   non  negative  V49() V130() V131() V132() V133() V134() V135()  bounded_below   Element of  NAT 
 
2 |^ ((C -' (n)) + (n)) is   epsilon-transitive   epsilon-connected   ordinal   natural  V11()  real   integer   ext-real   non  negative  V49() V130() V131() V132() V133() V134() V135()  bounded_below   Element of  NAT 
 
2 |^ C is   epsilon-transitive   epsilon-connected   ordinal   natural  V11()  real   integer   ext-real   non  negative  V49() V130() V131() V132() V133() V134() V135()  bounded_below   Element of  NAT 
 
(n) -' 1 is   epsilon-transitive   epsilon-connected   ordinal   natural  V11()  real   integer   ext-real   non  negative  V49() V130() V131() V132() V133() V134() V135()  bounded_below   Element of  NAT 
 
2 |^ ((n) -' 1) is   epsilon-transitive   epsilon-connected   ordinal   natural  V11()  real   integer   ext-real   non  negative  V49() V130() V131() V132() V133() V134() V135()  bounded_below   Element of  NAT 
 
(2 |^ ((n) -' 1)) + 2 is   non  empty   epsilon-transitive   epsilon-connected   ordinal   natural  V11()  real   integer   ext-real   positive   non  negative  V49() V130() V131() V132() V133() V134() V135()  left_end   bounded_below   Element of  NAT 
 
 len (Gauge (n,(n))) is   epsilon-transitive   epsilon-connected   ordinal   natural  V11()  real   integer   ext-real   non  negative  V49() V130() V131() V132() V133() V134() V135()  bounded_below   Element of  NAT 
 
 X-SpanStart (n,(n)) is   epsilon-transitive   epsilon-connected   ordinal   natural  V11()  real   integer   ext-real   non  negative  V49() V130() V131() V132() V133() V134() V135()  bounded_below   Element of  NAT 
 
r2 is   epsilon-transitive   epsilon-connected   ordinal   natural  V11()  real   integer   ext-real   non  negative  V49() V130() V131() V132() V133() V134() V135()  bounded_below   Element of  NAT 
 
(X-SpanStart (n,(n))) -' 1 is   epsilon-transitive   epsilon-connected   ordinal   natural  V11()  real   integer   ext-real   non  negative  V49() V130() V131() V132() V133() V134() V135()  bounded_below   Element of  NAT 
 
 cell ((Gauge (n,(n))),((X-SpanStart (n,(n))) -' 1),(n)) is    Element of K6( the carrier of (TOP-REAL 2))
 
(n) - 2 is  V11()  real   integer   ext-real   Element of  REAL 
 
(2 |^ (C -' (n))) * ((n) - 2) is  V11()  real   integer   ext-real   Element of  REAL 
 
((2 |^ (C -' (n))) * ((n) - 2)) + 2 is  V11()  real   integer   ext-real   Element of  REAL 
 
(C -' (n)) + ((n) -' 1) is   epsilon-transitive   epsilon-connected   ordinal   natural  V11()  real   integer   ext-real   non  negative  V49() V130() V131() V132() V133() V134() V135()  bounded_below   Element of  NAT 
 
(n) - 1 is  V11()  real   integer   ext-real   Element of  REAL 
 
(C -' (n)) + ((n) - 1) is  V11()  real   integer   ext-real   Element of  REAL 
 
((C -' (n)) + (n)) - 1 is  V11()  real   integer   ext-real   Element of  REAL 
 
C - 1 is  V11()  real   integer   ext-real   Element of  REAL 
 
(X-SpanStart (n,(n))) - 2 is  V11()  real   integer   ext-real   Element of  REAL 
 
(2 |^ (C -' (n))) * ((X-SpanStart (n,(n))) - 2) is  V11()  real   integer   ext-real   Element of  REAL 
 
((2 |^ (C -' (n))) * ((X-SpanStart (n,(n))) - 2)) + 2 is  V11()  real   integer   ext-real   Element of  REAL 
 
 cell ((Gauge (n,C)),((X-SpanStart (n,C)) -' 1),r2) is    Element of K6( the carrier of (TOP-REAL 2))
 
(2 |^ C) + 1 is   non  empty   epsilon-transitive   epsilon-connected   ordinal   natural  V11()  real   integer   ext-real   positive   non  negative  V49() V130() V131() V132() V133() V134() V135()  left_end   bounded_below   Element of  NAT 
 
((2 |^ C) + 1) + 2 is   non  empty   epsilon-transitive   epsilon-connected   ordinal   natural  V11()  real   integer   ext-real   positive   non  negative  V49() V130() V131() V132() V133() V134() V135()  left_end   bounded_below   Element of  NAT 
 
1 + 2 is   non  empty   epsilon-transitive   epsilon-connected   ordinal   natural  V11()  real   integer   ext-real   positive   non  negative  V49() V130() V131() V132() V133() V134() V135()  left_end   bounded_below   Element of  NAT 
 
(2 |^ C) + (1 + 2) is   non  empty   epsilon-transitive   epsilon-connected   ordinal   natural  V11()  real   integer   ext-real   positive   non  negative  V49() V130() V131() V132() V133() V134() V135()  left_end   bounded_below   Element of  NAT 
 
 len (Gauge (n,C)) is   epsilon-transitive   epsilon-connected   ordinal   natural  V11()  real   integer   ext-real   non  negative  V49() V130() V131() V132() V133() V134() V135()  bounded_below   Element of  NAT 
 
r2 is   non  empty  V130() V131() V132() V133() V134() V135()  left_end   bounded_below   Element of K6(NAT)
 
 min r2 is   epsilon-transitive   epsilon-connected   ordinal   natural  V11()  real   integer   ext-real   non  negative  V49() V130() V131() V132() V133() V134() V135()  bounded_below   Element of  NAT 
 
x2 is   epsilon-transitive   epsilon-connected   ordinal   natural  V11()  real   integer   ext-real   non  negative  V49() V130() V131() V132() V133() V134() V135()  bounded_below   Element of  NAT 
 
 cell ((Gauge (n,C)),((X-SpanStart (n,C)) -' 1),x2) is    Element of K6( the carrier of (TOP-REAL 2))
 
C9 is   epsilon-transitive   epsilon-connected   ordinal   natural  V11()  real   integer   ext-real   non  negative  V49() V130() V131() V132() V133() V134() V135()  bounded_below   Element of  NAT 
 
x2 is   epsilon-transitive   epsilon-connected   ordinal   natural  V11()  real   integer   ext-real   non  negative  V49() V130() V131() V132() V133() V134() V135()  bounded_below   Element of  NAT 
 
p is   epsilon-transitive   epsilon-connected   ordinal   natural  V11()  real   integer   ext-real   non  negative  V49() V130() V131() V132() V133() V134() V135()  bounded_below   Element of  NAT 
 
B is   epsilon-transitive   epsilon-connected   ordinal   natural  V11()  real   integer   ext-real   non  negative  V49() V130() V131() V132() V133() V134() V135()  bounded_below   Element of  NAT 
 
n is   epsilon-transitive   epsilon-connected   ordinal   natural  V11()  real   integer   ext-real   non  negative  V49() V130() V131() V132() V133() V134() V135()  bounded_below   Element of  NAT 
 
C is   non  empty   proper   closed   connected   bounded   being_simple_closed_curve   compact  V233() V234()  Element of K6( the carrier of (TOP-REAL 2))
 
 X-SpanStart (C,n) is   epsilon-transitive   epsilon-connected   ordinal   natural  V11()  real   integer   ext-real   non  negative  V49() V130() V131() V132() V133() V134() V135()  bounded_below   Element of  NAT 
 
n -' 1 is   epsilon-transitive   epsilon-connected   ordinal   natural  V11()  real   integer   ext-real   non  negative  V49() V130() V131() V132() V133() V134() V135()  bounded_below   Element of  NAT 
 
2 |^ (n -' 1) is   epsilon-transitive   epsilon-connected   ordinal   natural  V11()  real   integer   ext-real   non  negative  V49() V130() V131() V132() V133() V134() V135()  bounded_below   Element of  NAT 
 
(2 |^ (n -' 1)) + 2 is   non  empty   epsilon-transitive   epsilon-connected   ordinal   natural  V11()  real   integer   ext-real   positive   non  negative  V49() V130() V131() V132() V133() V134() V135()  left_end   bounded_below   Element of  NAT 
 
(C) is   epsilon-transitive   epsilon-connected   ordinal   natural  V11()  real   integer   ext-real   non  negative  V49() V130() V131() V132() V133() V134() V135()  bounded_below   Element of  NAT 
 
n -' (C) is   epsilon-transitive   epsilon-connected   ordinal   natural  V11()  real   integer   ext-real   non  negative  V49() V130() V131() V132() V133() V134() V135()  bounded_below   Element of  NAT 
 
2 |^ (n -' (C)) is   epsilon-transitive   epsilon-connected   ordinal   natural  V11()  real   integer   ext-real   non  negative  V49() V130() V131() V132() V133() V134() V135()  bounded_below   Element of  NAT 
 
 X-SpanStart (C,(C)) is   epsilon-transitive   epsilon-connected   ordinal   natural  V11()  real   integer   ext-real   non  negative  V49() V130() V131() V132() V133() V134() V135()  bounded_below   Element of  NAT 
 
(C) -' 1 is   epsilon-transitive   epsilon-connected   ordinal   natural  V11()  real   integer   ext-real   non  negative  V49() V130() V131() V132() V133() V134() V135()  bounded_below   Element of  NAT 
 
2 |^ ((C) -' 1) is   epsilon-transitive   epsilon-connected   ordinal   natural  V11()  real   integer   ext-real   non  negative  V49() V130() V131() V132() V133() V134() V135()  bounded_below   Element of  NAT 
 
(2 |^ ((C) -' 1)) + 2 is   non  empty   epsilon-transitive   epsilon-connected   ordinal   natural  V11()  real   integer   ext-real   positive   non  negative  V49() V130() V131() V132() V133() V134() V135()  left_end   bounded_below   Element of  NAT 
 
(X-SpanStart (C,(C))) - 2 is  V11()  real   integer   ext-real   Element of  REAL 
 
(2 |^ (n -' (C))) * ((X-SpanStart (C,(C))) - 2) is  V11()  real   integer   ext-real   Element of  REAL 
 
((2 |^ (n -' (C))) * ((X-SpanStart (C,(C))) - 2)) + 2 is  V11()  real   integer   ext-real   Element of  REAL 
 
(n -' (C)) + ((C) -' 1) is   epsilon-transitive   epsilon-connected   ordinal   natural  V11()  real   integer   ext-real   non  negative  V49() V130() V131() V132() V133() V134() V135()  bounded_below   Element of  NAT 
 
(C) - 1 is  V11()  real   integer   ext-real   Element of  REAL 
 
(n -' (C)) + ((C) - 1) is  V11()  real   integer   ext-real   Element of  REAL 
 
(n -' (C)) + (C) is   epsilon-transitive   epsilon-connected   ordinal   natural  V11()  real   integer   ext-real   non  negative  V49() V130() V131() V132() V133() V134() V135()  bounded_below   Element of  NAT 
 
((n -' (C)) + (C)) - 1 is  V11()  real   integer   ext-real   Element of  REAL 
 
n - 1 is  V11()  real   integer   ext-real   Element of  REAL 
 
n is   epsilon-transitive   epsilon-connected   ordinal   natural  V11()  real   integer   ext-real   non  negative  V49() V130() V131() V132() V133() V134() V135()  bounded_below   Element of  NAT 
 
C is   non  empty   proper   closed   connected   bounded   being_simple_closed_curve   compact  V233() V234()  Element of K6( the carrier of (TOP-REAL 2))
 
(C,n) is   epsilon-transitive   epsilon-connected   ordinal   natural  V11()  real   integer   ext-real   non  negative  V49() V130() V131() V132() V133() V134() V135()  bounded_below   Element of  NAT 
 
(C) is   epsilon-transitive   epsilon-connected   ordinal   natural  V11()  real   integer   ext-real   non  negative  V49() V130() V131() V132() V133() V134() V135()  bounded_below   Element of  NAT 
 
n -' (C) is   epsilon-transitive   epsilon-connected   ordinal   natural  V11()  real   integer   ext-real   non  negative  V49() V130() V131() V132() V133() V134() V135()  bounded_below   Element of  NAT 
 
2 |^ (n -' (C)) is   epsilon-transitive   epsilon-connected   ordinal   natural  V11()  real   integer   ext-real   non  negative  V49() V130() V131() V132() V133() V134() V135()  bounded_below   Element of  NAT 
 
(C) is   epsilon-transitive   epsilon-connected   ordinal   natural  V11()  real   integer   ext-real   non  negative  V49() V130() V131() V132() V133() V134() V135()  bounded_below   Element of  NAT 
 
(C) -' 2 is   epsilon-transitive   epsilon-connected   ordinal   natural  V11()  real   integer   ext-real   non  negative  V49() V130() V131() V132() V133() V134() V135()  bounded_below   Element of  NAT 
 
(2 |^ (n -' (C))) * ((C) -' 2) is   epsilon-transitive   epsilon-connected   ordinal   natural  V11()  real   integer   ext-real   non  negative  V49() V130() V131() V132() V133() V134() V135()  bounded_below   Element of  NAT 
 
((2 |^ (n -' (C))) * ((C) -' 2)) + 2 is   non  empty   epsilon-transitive   epsilon-connected   ordinal   natural  V11()  real   integer   ext-real   positive   non  negative  V49() V130() V131() V132() V133() V134() V135()  left_end   bounded_below   Element of  NAT 
 
 X-SpanStart (C,(C)) is   epsilon-transitive   epsilon-connected   ordinal   natural  V11()  real   integer   ext-real   non  negative  V49() V130() V131() V132() V133() V134() V135()  bounded_below   Element of  NAT 
 
(C) -' 1 is   epsilon-transitive   epsilon-connected   ordinal   natural  V11()  real   integer   ext-real   non  negative  V49() V130() V131() V132() V133() V134() V135()  bounded_below   Element of  NAT 
 
2 |^ ((C) -' 1) is   epsilon-transitive   epsilon-connected   ordinal   natural  V11()  real   integer   ext-real   non  negative  V49() V130() V131() V132() V133() V134() V135()  bounded_below   Element of  NAT 
 
(2 |^ ((C) -' 1)) + 2 is   non  empty   epsilon-transitive   epsilon-connected   ordinal   natural  V11()  real   integer   ext-real   positive   non  negative  V49() V130() V131() V132() V133() V134() V135()  left_end   bounded_below   Element of  NAT 
 
 X-SpanStart (C,n) is   epsilon-transitive   epsilon-connected   ordinal   natural  V11()  real   integer   ext-real   non  negative  V49() V130() V131() V132() V133() V134() V135()  bounded_below   Element of  NAT 
 
n -' 1 is   epsilon-transitive   epsilon-connected   ordinal   natural  V11()  real   integer   ext-real   non  negative  V49() V130() V131() V132() V133() V134() V135()  bounded_below   Element of  NAT 
 
2 |^ (n -' 1) is   epsilon-transitive   epsilon-connected   ordinal   natural  V11()  real   integer   ext-real   non  negative  V49() V130() V131() V132() V133() V134() V135()  bounded_below   Element of  NAT 
 
(2 |^ (n -' 1)) + 2 is   non  empty   epsilon-transitive   epsilon-connected   ordinal   natural  V11()  real   integer   ext-real   positive   non  negative  V49() V130() V131() V132() V133() V134() V135()  left_end   bounded_below   Element of  NAT 
 
1 + 1 is   non  empty   epsilon-transitive   epsilon-connected   ordinal   natural  V11()  real   integer   ext-real   positive   non  negative  V49() V130() V131() V132() V133() V134() V135()  left_end   bounded_below   Element of  NAT 
 
(C) - 2 is  V11()  real   integer   ext-real   Element of  REAL 
 
 Gauge (C,(C)) is  V21() V23() V24( NAT ) V25(K292( the carrier of (TOP-REAL 2))) V26()  FinSequence-like   tabular  V257() V258() V259() V260()  FinSequence of K292( the carrier of (TOP-REAL 2))
 
 width (Gauge (C,(C))) is   epsilon-transitive   epsilon-connected   ordinal   natural  V11()  real   integer   ext-real   non  negative  V49() V130() V131() V132() V133() V134() V135()  bounded_below   Element of  NAT 
 
(C) + 1 is   non  empty   epsilon-transitive   epsilon-connected   ordinal   natural  V11()  real   integer   ext-real   positive   non  negative  V49() V130() V131() V132() V133() V134() V135()  left_end   bounded_below   Element of  NAT 
 
2 |^ (C) is   epsilon-transitive   epsilon-connected   ordinal   natural  V11()  real   integer   ext-real   non  negative  V49() V130() V131() V132() V133() V134() V135()  bounded_below   Element of  NAT 
 
 len (Gauge (C,(C))) is   epsilon-transitive   epsilon-connected   ordinal   natural  V11()  real   integer   ext-real   non  negative  V49() V130() V131() V132() V133() V134() V135()  bounded_below   Element of  NAT 
 
(2 |^ (C)) + 3 is   non  empty   epsilon-transitive   epsilon-connected   ordinal   natural  V11()  real   integer   ext-real   positive   non  negative  V49() V130() V131() V132() V133() V134() V135()  left_end   bounded_below   Element of  NAT 
 
2 + 1 is   non  empty   epsilon-transitive   epsilon-connected   ordinal   natural  V11()  real   integer   ext-real   positive   non  negative  V49() V130() V131() V132() V133() V134() V135()  left_end   bounded_below   Element of  NAT 
 
(X-SpanStart (C,(C))) - 2 is  V11()  real   integer   ext-real   Element of  REAL 
 
(2 |^ (n -' (C))) * ((X-SpanStart (C,(C))) - 2) is  V11()  real   integer   ext-real   Element of  REAL 
 
((2 |^ (n -' (C))) * ((X-SpanStart (C,(C))) - 2)) + 2 is  V11()  real   integer   ext-real   Element of  REAL 
 
B is   epsilon-transitive   epsilon-connected   ordinal   natural  V11()  real   integer   ext-real   non  negative  V49() V130() V131() V132() V133() V134() V135()  bounded_below   Element of  NAT 
 
(X-SpanStart (C,(C))) -' 1 is   epsilon-transitive   epsilon-connected   ordinal   natural  V11()  real   integer   ext-real   non  negative  V49() V130() V131() V132() V133() V134() V135()  bounded_below   Element of  NAT 
 
 cell ((Gauge (C,(C))),((X-SpanStart (C,(C))) -' 1),(C)) is    Element of K6( the carrier of (TOP-REAL 2))
 
 BDD C is   non  empty   open   Element of K6( the carrier of (TOP-REAL 2))
 
 Gauge (C,n) is  V21() V23() V24( NAT ) V25(K292( the carrier of (TOP-REAL 2))) V26()  FinSequence-like   tabular  V257() V258() V259() V260()  FinSequence of K292( the carrier of (TOP-REAL 2))
 
(X-SpanStart (C,n)) -' 1 is   epsilon-transitive   epsilon-connected   ordinal   natural  V11()  real   integer   ext-real   non  negative  V49() V130() V131() V132() V133() V134() V135()  bounded_below   Element of  NAT 
 
 cell ((Gauge (C,n)),((X-SpanStart (C,n)) -' 1),B) is    Element of K6( the carrier of (TOP-REAL 2))
 
 width (Gauge (C,n)) is   epsilon-transitive   epsilon-connected   ordinal   natural  V11()  real   integer   ext-real   non  negative  V49() V130() V131() V132() V133() V134() V135()  bounded_below   Element of  NAT 
 
n is   epsilon-transitive   epsilon-connected   ordinal   natural  V11()  real   integer   ext-real   non  negative  V49() V130() V131() V132() V133() V134() V135()  bounded_below   Element of  NAT 
 
C is   non  empty   proper   closed   connected   bounded   being_simple_closed_curve   compact  V233() V234()  Element of K6( the carrier of (TOP-REAL 2))
 
 Gauge (C,n) is  V21() V23() V24( NAT ) V25(K292( the carrier of (TOP-REAL 2))) V26()  FinSequence-like   tabular  V257() V258() V259() V260()  FinSequence of K292( the carrier of (TOP-REAL 2))
 
 X-SpanStart (C,n) is   epsilon-transitive   epsilon-connected   ordinal   natural  V11()  real   integer   ext-real   non  negative  V49() V130() V131() V132() V133() V134() V135()  bounded_below   Element of  NAT 
 
n -' 1 is   epsilon-transitive   epsilon-connected   ordinal   natural  V11()  real   integer   ext-real   non  negative  V49() V130() V131() V132() V133() V134() V135()  bounded_below   Element of  NAT 
 
2 |^ (n -' 1) is   epsilon-transitive   epsilon-connected   ordinal   natural  V11()  real   integer   ext-real   non  negative  V49() V130() V131() V132() V133() V134() V135()  bounded_below   Element of  NAT 
 
(2 |^ (n -' 1)) + 2 is   non  empty   epsilon-transitive   epsilon-connected   ordinal   natural  V11()  real   integer   ext-real   positive   non  negative  V49() V130() V131() V132() V133() V134() V135()  left_end   bounded_below   Element of  NAT 
 
(X-SpanStart (C,n)) -' 1 is   epsilon-transitive   epsilon-connected   ordinal   natural  V11()  real   integer   ext-real   non  negative  V49() V130() V131() V132() V133() V134() V135()  bounded_below   Element of  NAT 
 
(C,n) is   epsilon-transitive   epsilon-connected   ordinal   natural  V11()  real   integer   ext-real   non  negative  V49() V130() V131() V132() V133() V134() V135()  bounded_below   Element of  NAT 
 
 cell ((Gauge (C,n)),((X-SpanStart (C,n)) -' 1),(C,n)) is    Element of K6( the carrier of (TOP-REAL 2))
 
 BDD C is   non  empty   open   Element of K6( the carrier of (TOP-REAL 2))
 
(C) is   epsilon-transitive   epsilon-connected   ordinal   natural  V11()  real   integer   ext-real   non  negative  V49() V130() V131() V132() V133() V134() V135()  bounded_below   Element of  NAT 
 
n -' (C) is   epsilon-transitive   epsilon-connected   ordinal   natural  V11()  real   integer   ext-real   non  negative  V49() V130() V131() V132() V133() V134() V135()  bounded_below   Element of  NAT 
 
2 |^ (n -' (C)) is   epsilon-transitive   epsilon-connected   ordinal   natural  V11()  real   integer   ext-real   non  negative  V49() V130() V131() V132() V133() V134() V135()  bounded_below   Element of  NAT 
 
(C) is   epsilon-transitive   epsilon-connected   ordinal   natural  V11()  real   integer   ext-real   non  negative  V49() V130() V131() V132() V133() V134() V135()  bounded_below   Element of  NAT 
 
(C) -' 2 is   epsilon-transitive   epsilon-connected   ordinal   natural  V11()  real   integer   ext-real   non  negative  V49() V130() V131() V132() V133() V134() V135()  bounded_below   Element of  NAT 
 
(2 |^ (n -' (C))) * ((C) -' 2) is   epsilon-transitive   epsilon-connected   ordinal   natural  V11()  real   integer   ext-real   non  negative  V49() V130() V131() V132() V133() V134() V135()  bounded_below   Element of  NAT 
 
((2 |^ (n -' (C))) * ((C) -' 2)) + 2 is   non  empty   epsilon-transitive   epsilon-connected   ordinal   natural  V11()  real   integer   ext-real   positive   non  negative  V49() V130() V131() V132() V133() V134() V135()  left_end   bounded_below   Element of  NAT 
 
n is   epsilon-transitive   epsilon-connected   ordinal   natural  V11()  real   integer   ext-real   non  negative  V49() V130() V131() V132() V133() V134() V135()  bounded_below   Element of  NAT 
 
C is   non  empty   proper   closed   connected   bounded   being_simple_closed_curve   compact  V233() V234()  Element of K6( the carrier of (TOP-REAL 2))
 
(C,n) is   epsilon-transitive   epsilon-connected   ordinal   natural  V11()  real   integer   ext-real   non  negative  V49() V130() V131() V132() V133() V134() V135()  bounded_below   Element of  NAT 
 
 Gauge (C,n) is  V21() V23() V24( NAT ) V25(K292( the carrier of (TOP-REAL 2))) V26()  FinSequence-like   tabular  V257() V258() V259() V260()  FinSequence of K292( the carrier of (TOP-REAL 2))
 
 width (Gauge (C,n)) is   epsilon-transitive   epsilon-connected   ordinal   natural  V11()  real   integer   ext-real   non  negative  V49() V130() V131() V132() V133() V134() V135()  bounded_below   Element of  NAT 
 
 X-SpanStart (C,n) is   epsilon-transitive   epsilon-connected   ordinal   natural  V11()  real   integer   ext-real   non  negative  V49() V130() V131() V132() V133() V134() V135()  bounded_below   Element of  NAT 
 
n -' 1 is   epsilon-transitive   epsilon-connected   ordinal   natural  V11()  real   integer   ext-real   non  negative  V49() V130() V131() V132() V133() V134() V135()  bounded_below   Element of  NAT 
 
2 |^ (n -' 1) is   epsilon-transitive   epsilon-connected   ordinal   natural  V11()  real   integer   ext-real   non  negative  V49() V130() V131() V132() V133() V134() V135()  bounded_below   Element of  NAT 
 
(2 |^ (n -' 1)) + 2 is   non  empty   epsilon-transitive   epsilon-connected   ordinal   natural  V11()  real   integer   ext-real   positive   non  negative  V49() V130() V131() V132() V133() V134() V135()  left_end   bounded_below   Element of  NAT 
 
(X-SpanStart (C,n)) -' 1 is   epsilon-transitive   epsilon-connected   ordinal   natural  V11()  real   integer   ext-real   non  negative  V49() V130() V131() V132() V133() V134() V135()  bounded_below   Element of  NAT 
 
 len (Gauge (C,n)) is   epsilon-transitive   epsilon-connected   ordinal   natural  V11()  real   integer   ext-real   non  negative  V49() V130() V131() V132() V133() V134() V135()  bounded_below   Element of  NAT 
 
 cell ((Gauge (C,n)),((X-SpanStart (C,n)) -' 1),0) is    Element of K6( the carrier of (TOP-REAL 2))
 
 UBD C is   non  empty   open   connected   Element of K6( the carrier of (TOP-REAL 2))
 
 BDD C is   non  empty   open   Element of K6( the carrier of (TOP-REAL 2))
 
 cell ((Gauge (C,n)),((X-SpanStart (C,n)) -' 1),1) is    Element of K6( the carrier of (TOP-REAL 2))
 
 BDD C is   non  empty   open   Element of K6( the carrier of (TOP-REAL 2))
 
C `  is    Element of K6( the carrier of (TOP-REAL 2))
 
 the carrier of (TOP-REAL 2) \ C is    set 
 
 UBD C is   non  empty   open   connected   Element of K6( the carrier of (TOP-REAL 2))
 
0 + 1 is   non  empty   epsilon-transitive   epsilon-connected   ordinal   natural  V11()  real   integer   ext-real   positive   non  negative  V49() V130() V131() V132() V133() V134() V135()  left_end   bounded_below   Element of  NAT 
 
 cell ((Gauge (C,n)),((X-SpanStart (C,n)) -' 1),0) is    Element of K6( the carrier of (TOP-REAL 2))
 
 cell ((Gauge (C,n)),((X-SpanStart (C,n)) -' 1),(0 + 1)) is    Element of K6( the carrier of (TOP-REAL 2))
 
(cell ((Gauge (C,n)),((X-SpanStart (C,n)) -' 1),0)) /\ (cell ((Gauge (C,n)),((X-SpanStart (C,n)) -' 1),(0 + 1))) is    Element of K6( the carrier of (TOP-REAL 2))
 
(Gauge (C,n)) * (((X-SpanStart (C,n)) -' 1),(0 + 1)) is  V41(2)  FinSequence-like  V122()  Element of  the carrier of (TOP-REAL 2)
 
((X-SpanStart (C,n)) -' 1) + 1 is   non  empty   epsilon-transitive   epsilon-connected   ordinal   natural  V11()  real   integer   ext-real   positive   non  negative  V49() V130() V131() V132() V133() V134() V135()  left_end   bounded_below   Element of  NAT 
 
(Gauge (C,n)) * ((((X-SpanStart (C,n)) -' 1) + 1),(0 + 1)) is  V41(2)  FinSequence-like  V122()  Element of  the carrier of (TOP-REAL 2)
 
 LSeg (((Gauge (C,n)) * (((X-SpanStart (C,n)) -' 1),(0 + 1))),((Gauge (C,n)) * ((((X-SpanStart (C,n)) -' 1) + 1),(0 + 1)))) is   non  empty   proper   proper   closed   closed  V91( TOP-REAL 2)  connected   bounded   bounded   compact   compact   convex   Element of K6( the carrier of (TOP-REAL 2))
 
n is   epsilon-transitive   epsilon-connected   ordinal   natural  V11()  real   integer   ext-real   non  negative  V49() V130() V131() V132() V133() V134() V135()  bounded_below   Element of  NAT 
 
C is   non  empty   proper   closed   connected   bounded   being_simple_closed_curve   compact  V233() V234()  Element of K6( the carrier of (TOP-REAL 2))
 
 X-SpanStart (C,n) is   epsilon-transitive   epsilon-connected   ordinal   natural  V11()  real   integer   ext-real   non  negative  V49() V130() V131() V132() V133() V134() V135()  bounded_below   Element of  NAT 
 
n -' 1 is   epsilon-transitive   epsilon-connected   ordinal   natural  V11()  real   integer   ext-real   non  negative  V49() V130() V131() V132() V133() V134() V135()  bounded_below   Element of  NAT 
 
2 |^ (n -' 1) is   epsilon-transitive   epsilon-connected   ordinal   natural  V11()  real   integer   ext-real   non  negative  V49() V130() V131() V132() V133() V134() V135()  bounded_below   Element of  NAT 
 
(2 |^ (n -' 1)) + 2 is   non  empty   epsilon-transitive   epsilon-connected   ordinal   natural  V11()  real   integer   ext-real   positive   non  negative  V49() V130() V131() V132() V133() V134() V135()  left_end   bounded_below   Element of  NAT 
 
(C,n) is   epsilon-transitive   epsilon-connected   ordinal   natural  V11()  real   integer   ext-real   non  negative  V49() V130() V131() V132() V133() V134() V135()  bounded_below   Element of  NAT 
 
[(X-SpanStart (C,n)),(C,n)] is    set 
 
{(X-SpanStart (C,n)),(C,n)} is  V130() V131() V132() V133() V134() V135()  bounded_below   set 
 
{(X-SpanStart (C,n))} is  V130() V131() V132() V133() V134() V135()  bounded_below   set 
 
{{(X-SpanStart (C,n)),(C,n)},{(X-SpanStart (C,n))}} is    set 
 
 Gauge (C,n) is  V21() V23() V24( NAT ) V25(K292( the carrier of (TOP-REAL 2))) V26()  FinSequence-like   tabular  V257() V258() V259() V260()  FinSequence of K292( the carrier of (TOP-REAL 2))
 
 Indices (Gauge (C,n)) is    set 
 
 len (Gauge (C,n)) is   epsilon-transitive   epsilon-connected   ordinal   natural  V11()  real   integer   ext-real   non  negative  V49() V130() V131() V132() V133() V134() V135()  bounded_below   Element of  NAT 
 
1 + 1 is   non  empty   epsilon-transitive   epsilon-connected   ordinal   natural  V11()  real   integer   ext-real   positive   non  negative  V49() V130() V131() V132() V133() V134() V135()  left_end   bounded_below   Element of  NAT 
 
 width (Gauge (C,n)) is   epsilon-transitive   epsilon-connected   ordinal   natural  V11()  real   integer   ext-real   non  negative  V49() V130() V131() V132() V133() V134() V135()  bounded_below   Element of  NAT 
 
n is   epsilon-transitive   epsilon-connected   ordinal   natural  V11()  real   integer   ext-real   non  negative  V49() V130() V131() V132() V133() V134() V135()  bounded_below   Element of  NAT 
 
C is   non  empty   proper   closed   connected   bounded   being_simple_closed_curve   compact  V233() V234()  Element of K6( the carrier of (TOP-REAL 2))
 
 X-SpanStart (C,n) is   epsilon-transitive   epsilon-connected   ordinal   natural  V11()  real   integer   ext-real   non  negative  V49() V130() V131() V132() V133() V134() V135()  bounded_below   Element of  NAT 
 
n -' 1 is   epsilon-transitive   epsilon-connected   ordinal   natural  V11()  real   integer   ext-real   non  negative  V49() V130() V131() V132() V133() V134() V135()  bounded_below   Element of  NAT 
 
2 |^ (n -' 1) is   epsilon-transitive   epsilon-connected   ordinal   natural  V11()  real   integer   ext-real   non  negative  V49() V130() V131() V132() V133() V134() V135()  bounded_below   Element of  NAT 
 
(2 |^ (n -' 1)) + 2 is   non  empty   epsilon-transitive   epsilon-connected   ordinal   natural  V11()  real   integer   ext-real   positive   non  negative  V49() V130() V131() V132() V133() V134() V135()  left_end   bounded_below   Element of  NAT 
 
(X-SpanStart (C,n)) -' 1 is   epsilon-transitive   epsilon-connected   ordinal   natural  V11()  real   integer   ext-real   non  negative  V49() V130() V131() V132() V133() V134() V135()  bounded_below   Element of  NAT 
 
(C,n) is   epsilon-transitive   epsilon-connected   ordinal   natural  V11()  real   integer   ext-real   non  negative  V49() V130() V131() V132() V133() V134() V135()  bounded_below   Element of  NAT 
 
[((X-SpanStart (C,n)) -' 1),(C,n)] is    set 
 
{((X-SpanStart (C,n)) -' 1),(C,n)} is  V130() V131() V132() V133() V134() V135()  bounded_below   set 
 
{((X-SpanStart (C,n)) -' 1)} is  V130() V131() V132() V133() V134() V135()  bounded_below   set 
 
{{((X-SpanStart (C,n)) -' 1),(C,n)},{((X-SpanStart (C,n)) -' 1)}} is    set 
 
 Gauge (C,n) is  V21() V23() V24( NAT ) V25(K292( the carrier of (TOP-REAL 2))) V26()  FinSequence-like   tabular  V257() V258() V259() V260()  FinSequence of K292( the carrier of (TOP-REAL 2))
 
 Indices (Gauge (C,n)) is    set 
 
 len (Gauge (C,n)) is   epsilon-transitive   epsilon-connected   ordinal   natural  V11()  real   integer   ext-real   non  negative  V49() V130() V131() V132() V133() V134() V135()  bounded_below   Element of  NAT 
 
 width (Gauge (C,n)) is   epsilon-transitive   epsilon-connected   ordinal   natural  V11()  real   integer   ext-real   non  negative  V49() V130() V131() V132() V133() V134() V135()  bounded_below   Element of  NAT 
 
n is   epsilon-transitive   epsilon-connected   ordinal   natural  V11()  real   integer   ext-real   non  negative  V49() V130() V131() V132() V133() V134() V135()  bounded_below   Element of  NAT 
 
C is   non  empty   proper   closed   connected   bounded   being_simple_closed_curve   compact  V233() V234()  Element of K6( the carrier of (TOP-REAL 2))
 
 Gauge (C,n) is  V21() V23() V24( NAT ) V25(K292( the carrier of (TOP-REAL 2))) V26()  FinSequence-like   tabular  V257() V258() V259() V260()  FinSequence of K292( the carrier of (TOP-REAL 2))
 
 X-SpanStart (C,n) is   epsilon-transitive   epsilon-connected   ordinal   natural  V11()  real   integer   ext-real   non  negative  V49() V130() V131() V132() V133() V134() V135()  bounded_below   Element of  NAT 
 
n -' 1 is   epsilon-transitive   epsilon-connected   ordinal   natural  V11()  real   integer   ext-real   non  negative  V49() V130() V131() V132() V133() V134() V135()  bounded_below   Element of  NAT 
 
2 |^ (n -' 1) is   epsilon-transitive   epsilon-connected   ordinal   natural  V11()  real   integer   ext-real   non  negative  V49() V130() V131() V132() V133() V134() V135()  bounded_below   Element of  NAT 
 
(2 |^ (n -' 1)) + 2 is   non  empty   epsilon-transitive   epsilon-connected   ordinal   natural  V11()  real   integer   ext-real   positive   non  negative  V49() V130() V131() V132() V133() V134() V135()  left_end   bounded_below   Element of  NAT 
 
(X-SpanStart (C,n)) -' 1 is   epsilon-transitive   epsilon-connected   ordinal   natural  V11()  real   integer   ext-real   non  negative  V49() V130() V131() V132() V133() V134() V135()  bounded_below   Element of  NAT 
 
(C,n) is   epsilon-transitive   epsilon-connected   ordinal   natural  V11()  real   integer   ext-real   non  negative  V49() V130() V131() V132() V133() V134() V135()  bounded_below   Element of  NAT 
 
(C,n) -' 1 is   epsilon-transitive   epsilon-connected   ordinal   natural  V11()  real   integer   ext-real   non  negative  V49() V130() V131() V132() V133() V134() V135()  bounded_below   Element of  NAT 
 
 cell ((Gauge (C,n)),((X-SpanStart (C,n)) -' 1),((C,n) -' 1)) is    Element of K6( the carrier of (TOP-REAL 2))
 
(C,n) - 1 is  V11()  real   integer   ext-real   Element of  REAL 
 
(C) is   epsilon-transitive   epsilon-connected   ordinal   natural  V11()  real   integer   ext-real   non  negative  V49() V130() V131() V132() V133() V134() V135()  bounded_below   Element of  NAT 
 
n -' (C) is   epsilon-transitive   epsilon-connected   ordinal   natural  V11()  real   integer   ext-real   non  negative  V49() V130() V131() V132() V133() V134() V135()  bounded_below   Element of  NAT 
 
2 |^ (n -' (C)) is   epsilon-transitive   epsilon-connected   ordinal   natural  V11()  real   integer   ext-real   non  negative  V49() V130() V131() V132() V133() V134() V135()  bounded_below   Element of  NAT 
 
(C) is   epsilon-transitive   epsilon-connected   ordinal   natural  V11()  real   integer   ext-real   non  negative  V49() V130() V131() V132() V133() V134() V135()  bounded_below   Element of  NAT 
 
(C) -' 2 is   epsilon-transitive   epsilon-connected   ordinal   natural  V11()  real   integer   ext-real   non  negative  V49() V130() V131() V132() V133() V134() V135()  bounded_below   Element of  NAT 
 
(2 |^ (n -' (C))) * ((C) -' 2) is   epsilon-transitive   epsilon-connected   ordinal   natural  V11()  real   integer   ext-real   non  negative  V49() V130() V131() V132() V133() V134() V135()  bounded_below   Element of  NAT 
 
((2 |^ (n -' (C))) * ((C) -' 2)) + 2 is   non  empty   epsilon-transitive   epsilon-connected   ordinal   natural  V11()  real   integer   ext-real   positive   non  negative  V49() V130() V131() V132() V133() V134() V135()  left_end   bounded_below   Element of  NAT 
 
 BDD C is   non  empty   open   Element of K6( the carrier of (TOP-REAL 2))
 
p is   epsilon-transitive   epsilon-connected   ordinal   natural  V11()  real   integer   ext-real   non  negative  V49() V130() V131() V132() V133() V134() V135()  bounded_below   Element of  NAT 
 
 cell ((Gauge (C,n)),((X-SpanStart (C,n)) -' 1),p) is    Element of K6( the carrier of (TOP-REAL 2))
 
p + 1 is   non  empty   epsilon-transitive   epsilon-connected   ordinal   natural  V11()  real   integer   ext-real   positive   non  negative  V49() V130() V131() V132() V133() V134() V135()  left_end   bounded_below   Element of  NAT 
 
C `  is    Element of K6( the carrier of (TOP-REAL 2))
 
 the carrier of (TOP-REAL 2) \ C is    set 
 
 width (Gauge (C,n)) is   epsilon-transitive   epsilon-connected   ordinal   natural  V11()  real   integer   ext-real   non  negative  V49() V130() V131() V132() V133() V134() V135()  bounded_below   Element of  NAT 
 
 {  b1 where b1 is    Element of K6( the carrier of (TOP-REAL 2)) : b1 is_inside_component_of C  }   is    set 
 
 len (Gauge (C,n)) is   epsilon-transitive   epsilon-connected   ordinal   natural  V11()  real   integer   ext-real   non  negative  V49() V130() V131() V132() V133() V134() V135()  bounded_below   Element of  NAT 
 
 union  {  b1 where b1 is    Element of K6( the carrier of (TOP-REAL 2)) : b1 is_inside_component_of C  }   is    set 
 
1 + 1 is   non  empty   epsilon-transitive   epsilon-connected   ordinal   natural  V11()  real   integer   ext-real   positive   non  negative  V49() V130() V131() V132() V133() V134() V135()  left_end   bounded_below   Element of  NAT 
 
(X-SpanStart (C,n)) - 1 is  V11()  real   integer   ext-real   Element of  REAL 
 
 cell ((Gauge (C,n)),((X-SpanStart (C,n)) -' 1),(p + 1)) is    Element of K6( the carrier of (TOP-REAL 2))
 
(cell ((Gauge (C,n)),((X-SpanStart (C,n)) -' 1),p)) /\ (cell ((Gauge (C,n)),((X-SpanStart (C,n)) -' 1),(p + 1))) is    Element of K6( the carrier of (TOP-REAL 2))
 
(Gauge (C,n)) * (((X-SpanStart (C,n)) -' 1),(p + 1)) is  V41(2)  FinSequence-like  V122()  Element of  the carrier of (TOP-REAL 2)
 
((X-SpanStart (C,n)) -' 1) + 1 is   non  empty   epsilon-transitive   epsilon-connected   ordinal   natural  V11()  real   integer   ext-real   positive   non  negative  V49() V130() V131() V132() V133() V134() V135()  left_end   bounded_below   Element of  NAT 
 
(Gauge (C,n)) * ((((X-SpanStart (C,n)) -' 1) + 1),(p + 1)) is  V41(2)  FinSequence-like  V122()  Element of  the carrier of (TOP-REAL 2)
 
 LSeg (((Gauge (C,n)) * (((X-SpanStart (C,n)) -' 1),(p + 1))),((Gauge (C,n)) * ((((X-SpanStart (C,n)) -' 1) + 1),(p + 1)))) is   non  empty   proper   proper   closed   closed  V91( TOP-REAL 2)  connected   bounded   bounded   compact   compact   convex   Element of K6( the carrier of (TOP-REAL 2))
 
B is    set 
 
r2 is    Element of K6( the carrier of (TOP-REAL 2))
 
p + 1 is   non  empty   epsilon-transitive   epsilon-connected   ordinal   natural  V11()  real   integer   ext-real   positive   non  negative  V49() V130() V131() V132() V133() V134() V135()  left_end   bounded_below   Element of  NAT 
 
 width (Gauge (C,n)) is   epsilon-transitive   epsilon-connected   ordinal   natural  V11()  real   integer   ext-real   non  negative  V49() V130() V131() V132() V133() V134() V135()  bounded_below   Element of  NAT 
 
n is   epsilon-transitive   epsilon-connected   ordinal   natural  V11()  real   integer   ext-real   non  negative  V49() V130() V131() V132() V133() V134() V135()  bounded_below   Element of  NAT 
 
C is   non  empty   proper   closed   connected   bounded   being_simple_closed_curve   compact  V233() V234()  Element of K6( the carrier of (TOP-REAL 2))
 
 Gauge (C,n) is  V21() V23() V24( NAT ) V25(K292( the carrier of (TOP-REAL 2))) V26()  FinSequence-like   tabular  V257() V258() V259() V260()  FinSequence of K292( the carrier of (TOP-REAL 2))
 
 X-SpanStart (C,n) is   epsilon-transitive   epsilon-connected   ordinal   natural  V11()  real   integer   ext-real   non  negative  V49() V130() V131() V132() V133() V134() V135()  bounded_below   Element of  NAT 
 
n -' 1 is   epsilon-transitive   epsilon-connected   ordinal   natural  V11()  real   integer   ext-real   non  negative  V49() V130() V131() V132() V133() V134() V135()  bounded_below   Element of  NAT 
 
2 |^ (n -' 1) is   epsilon-transitive   epsilon-connected   ordinal   natural  V11()  real   integer   ext-real   non  negative  V49() V130() V131() V132() V133() V134() V135()  bounded_below   Element of  NAT 
 
(2 |^ (n -' 1)) + 2 is   non  empty   epsilon-transitive   epsilon-connected   ordinal   natural  V11()  real   integer   ext-real   positive   non  negative  V49() V130() V131() V132() V133() V134() V135()  left_end   bounded_below   Element of  NAT 
 
(X-SpanStart (C,n)) -' 1 is   epsilon-transitive   epsilon-connected   ordinal   natural  V11()  real   integer   ext-real   non  negative  V49() V130() V131() V132() V133() V134() V135()  bounded_below   Element of  NAT 
 
(C,n) is   epsilon-transitive   epsilon-connected   ordinal   natural  V11()  real   integer   ext-real   non  negative  V49() V130() V131() V132() V133() V134() V135()  bounded_below   Element of  NAT 
 
 cell ((Gauge (C,n)),((X-SpanStart (C,n)) -' 1),(C,n)) is    Element of K6( the carrier of (TOP-REAL 2))
 
 BDD C is   non  empty   open   Element of K6( the carrier of (TOP-REAL 2))
 
n is   non  empty   proper   closed   connected   bounded   being_simple_closed_curve   compact  V233() V234()  Element of K6( the carrier of (TOP-REAL 2))
 
 UBD n is   non  empty   open   connected   Element of K6( the carrier of (TOP-REAL 2))
 
C is   non  empty   proper   closed   connected   bounded   being_simple_closed_curve   compact  V233() V234()  Element of K6( the carrier of (TOP-REAL 2))
 
 UBD C is   non  empty   open   connected   Element of K6( the carrier of (TOP-REAL 2))
 
K6( the carrier of (Euclid 2)) is   non  empty   set 
 
e is   bounded   Element of K6( the carrier of (Euclid 2))
 
p is  V11()  real   ext-real   Element of  REAL 
 
B is    Element of  the carrier of (Euclid 2)
 
 Ball (B,p) is   bounded   Element of K6( the carrier of (Euclid 2))
 
B is   bounded   Element of K6( the carrier of (Euclid 2))
 
r2 is  V11()  real   ext-real   Element of  REAL 
 
x2 is    Element of  the carrier of (Euclid 2)
 
 Ball (x2,r2) is   bounded   Element of K6( the carrier of (Euclid 2))
 
(Ball (B,p)) `  is    Element of K6( the carrier of (Euclid 2))
 
 the carrier of (Euclid 2) \ (Ball (B,p)) is    set 
 
(Ball (x2,r2)) `  is    Element of K6( the carrier of (Euclid 2))
 
 the carrier of (Euclid 2) \ (Ball (x2,r2)) is    set 
 
(Ball (B,p)) \/ (Ball (x2,r2)) is    Element of K6( the carrier of (Euclid 2))
 
x3 is    Element of  the carrier of (Euclid 2)
 
r3 is  V11()  real   ext-real   Element of  REAL 
 
 Ball (x3,r3) is   bounded   Element of K6( the carrier of (Euclid 2))
 
D9 is   connected   Element of K6( the carrier of (TOP-REAL 2))
 
C9 is   connected   Element of K6( the carrier of (TOP-REAL 2))
 
(Ball (x3,r3)) `  is    Element of K6( the carrier of (Euclid 2))
 
 the carrier of (Euclid 2) \ (Ball (x3,r3)) is    set 
 
((Ball (B,p)) \/ (Ball (x2,r2))) `  is    Element of K6( the carrier of (Euclid 2))
 
 the carrier of (Euclid 2) \ ((Ball (B,p)) \/ (Ball (x2,r2))) is    set 
 
((Ball (B,p)) `) /\ ((Ball (x2,r2)) `) is    Element of K6( the carrier of (Euclid 2))
 
B `  is    Element of K6( the carrier of (Euclid 2))
 
 the carrier of (Euclid 2) \ B is    set 
 
e `  is    Element of K6( the carrier of (Euclid 2))
 
 the carrier of (Euclid 2) \ e is    set 
 
 {} (Euclid 2) is   empty   proper   epsilon-transitive   epsilon-connected   ordinal   T-Sequence-like   c=-linear   natural  V11()  real   integer   ext-real   non  positive   non  negative   bounded  V130() V131() V132() V133() V134() V135() V136()  bounded_below   interval   Element of K6( the carrier of (Euclid 2))
 
n is   non  empty   proper   closed   connected   bounded   being_simple_closed_curve   compact  V233() V234()  Element of K6( the carrier of (TOP-REAL 2))
 
 UBD n is   non  empty   open   connected   Element of K6( the carrier of (TOP-REAL 2))
 
 BDD n is   non  empty   open   Element of K6( the carrier of (TOP-REAL 2))
 
C is  V41(2)  FinSequence-like  V122()  Element of  the carrier of (TOP-REAL 2)
 
 dist (C,n) is  V11()  real   ext-real   Element of  REAL 
 
e is  V41(2)  FinSequence-like  V122()  Element of  the carrier of (TOP-REAL 2)
 
 dist (C,e) is  V11()  real   ext-real   non  negative   Element of  REAL 
 
n `  is    Element of K6( the carrier of (TOP-REAL 2))
 
 the carrier of (TOP-REAL 2) \ n is    set 
 
 LSeg (e,C) is   non  empty   proper   proper   closed   closed  V91( TOP-REAL 2)  connected   bounded   bounded   compact   compact   convex   Element of K6( the carrier of (TOP-REAL 2))
 
p is    set 
 
B is  V41(2)  FinSequence-like  V122()  Element of  the carrier of (TOP-REAL 2)
 
 dist (C,B) is  V11()  real   ext-real   non  negative   Element of  REAL 
 
 {  b1 where b1 is    Element of K6( the carrier of (TOP-REAL 2)) : b1 is_inside_component_of n  }   is    set 
 
 union  {  b1 where b1 is    Element of K6( the carrier of (TOP-REAL 2)) : b1 is_inside_component_of n  }   is    set 
 
p is    set 
 
B is    Element of K6( the carrier of (TOP-REAL 2))
 
n is   non  empty   proper   closed   connected   bounded   being_simple_closed_curve   compact  V233() V234()  Element of K6( the carrier of (TOP-REAL 2))
 
 BDD n is   non  empty   open   Element of K6( the carrier of (TOP-REAL 2))
 
C is  V41(2)  FinSequence-like  V122()  Element of  the carrier of (TOP-REAL 2)
 
 dist (C,n) is  V11()  real   ext-real   Element of  REAL 
 
 dist (C,(BDD n)) is  V11()  real   ext-real   Element of  REAL 
 
n `  is    Element of K6( the carrier of (TOP-REAL 2))
 
 the carrier of (TOP-REAL 2) \ n is    set 
 
 UBD n is   non  empty   open   connected   Element of K6( the carrier of (TOP-REAL 2))
 
(BDD n) \/ (UBD n) is    Element of K6( the carrier of (TOP-REAL 2))
 
e is  V41(2)  FinSequence-like  V122()  Element of  the carrier of (TOP-REAL 2)
 
 dist (C,e) is  V11()  real   ext-real   non  negative   Element of  REAL 
 
n is   non  empty   proper   closed   connected   bounded   being_simple_closed_curve   compact  V233() V234()  Element of K6( the carrier of (TOP-REAL 2))
 
 BDD n is   non  empty   open   Element of K6( the carrier of (TOP-REAL 2))
 
C is   non  empty   proper   closed   connected   bounded   being_simple_closed_curve   compact  V233() V234()  Element of K6( the carrier of (TOP-REAL 2))
 
 BDD C is   non  empty   open   Element of K6( the carrier of (TOP-REAL 2))
 
 UBD n is   non  empty   open   connected   Element of K6( the carrier of (TOP-REAL 2))
 
 UBD C is   non  empty   open   connected   Element of K6( the carrier of (TOP-REAL 2))
 
e is    set 
 
p is  V41(2)  FinSequence-like  V122()  Element of  the carrier of (TOP-REAL 2)
 
 dist (p,n) is  V11()  real   ext-real   Element of  REAL 
 
 dist (p,(BDD n)) is  V11()  real   ext-real   Element of  REAL 
 
 dist (p,(BDD C)) is  V11()  real   ext-real   Element of  REAL 
 
 dist (p,C) is  V11()  real   ext-real   Element of  REAL 
 
n is   non  empty   proper   closed   connected   bounded   being_simple_closed_curve   compact  V233() V234()  Element of K6( the carrier of (TOP-REAL 2))
 
 UBD n is   non  empty   open   connected   Element of K6( the carrier of (TOP-REAL 2))
 
C is   non  empty   proper   closed   connected   bounded   being_simple_closed_curve   compact  V233() V234()  Element of K6( the carrier of (TOP-REAL 2))
 
 BDD C is   non  empty   open   Element of K6( the carrier of (TOP-REAL 2))
 
 BDD n is   non  empty   open   Element of K6( the carrier of (TOP-REAL 2))
 
n is   epsilon-transitive   epsilon-connected   ordinal   natural  V11()  real   integer   ext-real   non  negative  V49() V130() V131() V132() V133() V134() V135()  bounded_below   Element of  NAT 
 
C is   non  empty   proper   closed   connected   bounded   being_simple_closed_curve   compact  V233() V234()  Element of K6( the carrier of (TOP-REAL 2))
 
 Cage (C,n) is   non  empty  V21() V24( NAT ) V25( the carrier of (TOP-REAL 2)) V26() V28()  FinSequence-like  V199( the carrier of (TOP-REAL 2))  special   unfolded   s.c.c.   standard  V236()  FinSequence of  the carrier of (TOP-REAL 2)
 
 L~ (Cage (C,n)) is   non  empty   proper   closed  V91( TOP-REAL 2)  connected   bounded   being_simple_closed_curve   compact  V233() V234()  Element of K6( the carrier of (TOP-REAL 2))
 
 UBD C is   non  empty   open   connected   Element of K6( the carrier of (TOP-REAL 2))
 
 BDD (L~ (Cage (C,n))) is   non  empty   open   Element of K6( the carrier of (TOP-REAL 2))