REAL is non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() set
NAT is non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below Element of K6(REAL)
K6(REAL) is set
COMPLEX is non empty non trivial non finite V99() V105() set
RAT is non empty non trivial non finite V99() V100() V101() V102() V105() set
INT is non empty non trivial non finite V99() V100() V101() V102() V103() V105() set
K7(COMPLEX,COMPLEX) is V89() set
K6(K7(COMPLEX,COMPLEX)) is set
K7(K7(COMPLEX,COMPLEX),COMPLEX) is V89() set
K6(K7(K7(COMPLEX,COMPLEX),COMPLEX)) is set
K7(REAL,REAL) is V89() V90() V91() set
K6(K7(REAL,REAL)) is set
K7(K7(REAL,REAL),REAL) is V89() V90() V91() set
K6(K7(K7(REAL,REAL),REAL)) is set
K7(RAT,RAT) is RAT -valued V89() V90() V91() set
K6(K7(RAT,RAT)) is set
K7(K7(RAT,RAT),RAT) is RAT -valued V89() V90() V91() set
K6(K7(K7(RAT,RAT),RAT)) is set
K7(INT,INT) is RAT -valued INT -valued V89() V90() V91() set
K6(K7(INT,INT)) is set
K7(K7(INT,INT),INT) is RAT -valued INT -valued V89() V90() V91() set
K6(K7(K7(INT,INT),INT)) is set
K7(NAT,NAT) is RAT -valued INT -valued V89() V90() V91() V92() set
K7(K7(NAT,NAT),NAT) is RAT -valued INT -valued V89() V90() V91() V92() set
K6(K7(K7(NAT,NAT),NAT)) is set
omega is non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below set
K6(omega) is set
K6(NAT) is set
K276() is set
1 is non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below Element of NAT
K7(1,1) is RAT -valued INT -valued V89() V90() V91() V92() set
K6(K7(1,1)) is set
K7(K7(1,1),1) is RAT -valued INT -valued V89() V90() V91() V92() set
K6(K7(K7(1,1),1)) is set
K7(K7(1,1),REAL) is V89() V90() V91() set
K6(K7(K7(1,1),REAL)) is set
2 is non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below Element of NAT
K7(2,2) is RAT -valued INT -valued V89() V90() V91() V92() set
K7(K7(2,2),REAL) is V89() V90() V91() set
K6(K7(K7(2,2),REAL)) is set
TOP-REAL 2 is non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict RLTopStruct
the carrier of (TOP-REAL 2) is non empty set
K266( the carrier of (TOP-REAL 2)) is non empty functional FinSequence-membered M8( the carrier of (TOP-REAL 2))
K7( the carrier of (TOP-REAL 2),REAL) is V89() V90() V91() set
K6(K7( the carrier of (TOP-REAL 2),REAL)) is set
K6( the carrier of (TOP-REAL 2)) is set
K7(COMPLEX,REAL) is V89() V90() V91() set
K6(K7(COMPLEX,REAL)) is set
{} is set
the empty epsilon-transitive epsilon-connected ordinal T-Sequence-like c=-linear natural V11() real Function-like functional finite V39() FinSequence-membered ext-real V99() V100() V101() V102() V103() V104() V105() bounded_below bounded_above real-bounded V204() set is empty epsilon-transitive epsilon-connected ordinal T-Sequence-like c=-linear natural V11() real Function-like functional finite V39() FinSequence-membered ext-real V99() V100() V101() V102() V103() V104() V105() bounded_below bounded_above real-bounded V204() set
3 is non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below Element of NAT
0 is epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real V99() V100() V101() V102() V103() V104() bounded_below Element of NAT
4 is non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below Element of NAT
proj1 is Relation-like the carrier of (TOP-REAL 2) -defined REAL -valued Function-like V29( the carrier of (TOP-REAL 2), REAL ) V89() V90() V91() Element of K6(K7( the carrier of (TOP-REAL 2),REAL))
proj2 is Relation-like the carrier of (TOP-REAL 2) -defined REAL -valued Function-like V29( the carrier of (TOP-REAL 2), REAL ) V89() V90() V91() Element of K6(K7( the carrier of (TOP-REAL 2),REAL))
h is epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real V99() V100() V101() V102() V103() V104() bounded_below Element of NAT
TOP-REAL h is non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict RLTopStruct
the carrier of (TOP-REAL h) is non empty set
i1 is Relation-like NAT -defined the carrier of (TOP-REAL h) -valued Function-like finite FinSequence-like FinSubsequence-like FinSequence of the carrier of (TOP-REAL h)
len i1 is epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real V99() V100() V101() V102() V103() V104() bounded_below Element of NAT
i1 /. (len i1) is V42(h) FinSequence-like V91() Element of the carrier of (TOP-REAL h)
(len i1) -' 1 is epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real non negative V99() V100() V101() V102() V103() V104() bounded_below Element of NAT
LSeg (i1,((len i1) -' 1)) is Element of K6( the carrier of (TOP-REAL h))
K6( the carrier of (TOP-REAL h)) is set
2 - 1 is V11() real ext-real Element of REAL
(len i1) - 1 is V11() real ext-real Element of REAL
((len i1) -' 1) + 1 is epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() bounded_below Element of NAT
h is epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real V99() V100() V101() V102() V103() V104() bounded_below Element of NAT
h -' 1 is epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real non negative V99() V100() V101() V102() V103() V104() bounded_below Element of NAT
h mod (h -' 1) is epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real V99() V100() V101() V102() V103() V104() bounded_below Element of NAT
h - 1 is V11() real ext-real Element of REAL
3 -' 1 is epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real non negative V99() V100() V101() V102() V103() V104() bounded_below Element of NAT
2 + 1 is epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real V99() V100() V101() V102() V103() V104() bounded_below Element of NAT
(2 + 1) -' 1 is epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real non negative V99() V100() V101() V102() V103() V104() bounded_below Element of NAT
(h - 1) + h is V11() real ext-real Element of REAL
1 + h is epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real V99() V100() V101() V102() V103() V104() bounded_below Element of NAT
((h - 1) + h) - 1 is V11() real ext-real Element of REAL
(1 + h) - 1 is V11() real ext-real Element of REAL
(h - 1) + (h - 1) is V11() real ext-real Element of REAL
h - (h - 1) is V11() real ext-real Element of REAL
h is V42(2) FinSequence-like V91() Element of the carrier of (TOP-REAL 2)
i1 is non empty non trivial Relation-like NAT -defined the carrier of (TOP-REAL 2) -valued Function-like non constant finite FinSequence-like FinSubsequence-like V186( the carrier of (TOP-REAL 2)) special unfolded s.c.c. standard FinSequence of the carrier of (TOP-REAL 2)
rng i1 is non trivial finite set
len i1 is epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real V99() V100() V101() V102() V103() V104() bounded_below Element of NAT
dom i1 is non trivial finite V99() V100() V101() V102() V103() V104() bounded_below bounded_above real-bounded Element of K6(NAT)
i2 is set
i1 . i2 is set
ii is epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real V99() V100() V101() V102() V103() V104() bounded_below Element of NAT
S_Drop (ii,i1) is epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real V99() V100() V101() V102() V103() V104() bounded_below Element of NAT
(S_Drop (ii,i1)) + 1 is epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real V99() V100() V101() V102() V103() V104() bounded_below Element of NAT
i1 . (S_Drop (ii,i1)) is set
(len i1) -' 1 is epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real non negative V99() V100() V101() V102() V103() V104() bounded_below Element of NAT
((len i1) -' 1) + 1 is epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() bounded_below Element of NAT
ii mod ((len i1) -' 1) is epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real V99() V100() V101() V102() V103() V104() bounded_below Element of NAT
i1 . 1 is set
i1 /. 1 is V42(2) FinSequence-like V91() Element of the carrier of (TOP-REAL 2)
i1 /. (len i1) is V42(2) FinSequence-like V91() Element of the carrier of (TOP-REAL 2)
i1 . (len i1) is set
h is V11() real ext-real Element of REAL
i1 is Relation-like NAT -defined REAL -valued Function-like finite FinSequence-like FinSubsequence-like V89() V90() V91() FinSequence of REAL
rng i1 is finite V99() V100() V101() bounded_below bounded_above real-bounded set
Incr i1 is Relation-like NAT -defined REAL -valued Function-like one-to-one finite FinSequence-like FinSubsequence-like V89() V90() V91() V93() V95() FinSequence of REAL
(Incr i1) . 1 is V11() real ext-real set
len (Incr i1) is epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real V99() V100() V101() V102() V103() V104() bounded_below Element of NAT
(Incr i1) . (len (Incr i1)) is V11() real ext-real set
rng (Incr i1) is finite V99() V100() V101() bounded_below bounded_above real-bounded set
dom (Incr i1) is finite V99() V100() V101() V102() V103() V104() bounded_below bounded_above real-bounded Element of K6(NAT)
i2 is set
(Incr i1) . i2 is V11() real ext-real set
Seg (len (Incr i1)) is finite V42( len (Incr i1)) V99() V100() V101() V102() V103() V104() bounded_below bounded_above real-bounded Element of K6(NAT)
ii is epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real V99() V100() V101() V102() V103() V104() bounded_below Element of NAT
h is non empty non trivial Relation-like NAT -defined the carrier of (TOP-REAL 2) -valued Function-like non constant finite FinSequence-like FinSubsequence-like V186( the carrier of (TOP-REAL 2)) special unfolded s.c.c. standard FinSequence of the carrier of (TOP-REAL 2)
len h is epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real V99() V100() V101() V102() V103() V104() bounded_below Element of NAT
GoB h is Relation-like non empty-yielding NAT -defined K266( the carrier of (TOP-REAL 2)) -valued Function-like finite FinSequence-like FinSubsequence-like tabular X_equal-in-line Y_equal-in-column Y_increasing-in-line X_increasing-in-column FinSequence of K266( the carrier of (TOP-REAL 2))
width (GoB h) is epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real V99() V100() V101() V102() V103() V104() bounded_below Element of NAT
len (GoB h) is epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real V99() V100() V101() V102() V103() V104() bounded_below Element of NAT
i1 is epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real V99() V100() V101() V102() V103() V104() bounded_below Element of NAT
h /. i1 is V42(2) FinSequence-like V91() Element of the carrier of (TOP-REAL 2)
(h /. i1) `1 is V11() real ext-real Element of REAL
i2 is epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real V99() V100() V101() V102() V103() V104() bounded_below Element of NAT
(GoB h) * (1,i2) is V42(2) FinSequence-like V91() Element of the carrier of (TOP-REAL 2)
((GoB h) * (1,i2)) `1 is V11() real ext-real Element of REAL
(GoB h) * ((len (GoB h)),i2) is V42(2) FinSequence-like V91() Element of the carrier of (TOP-REAL 2)
((GoB h) * ((len (GoB h)),i2)) `1 is V11() real ext-real Element of REAL
X_axis h is non empty Relation-like NAT -defined REAL -valued Function-like finite FinSequence-like FinSubsequence-like V89() V90() V91() FinSequence of REAL
Incr (X_axis h) is non empty Relation-like NAT -defined REAL -valued Function-like one-to-one finite FinSequence-like FinSubsequence-like V89() V90() V91() V93() V95() FinSequence of REAL
Y_axis h is non empty Relation-like NAT -defined REAL -valued Function-like finite FinSequence-like FinSubsequence-like V89() V90() V91() FinSequence of REAL
Incr (Y_axis h) is non empty Relation-like NAT -defined REAL -valued Function-like one-to-one finite FinSequence-like FinSubsequence-like V89() V90() V91() V93() V95() FinSequence of REAL
GoB ((Incr (X_axis h)),(Incr (Y_axis h))) is Relation-like non empty-yielding NAT -defined K266( the carrier of (TOP-REAL 2)) -valued Function-like finite FinSequence-like FinSubsequence-like tabular X_equal-in-line Y_equal-in-column Y_increasing-in-line X_increasing-in-column FinSequence of K266( the carrier of (TOP-REAL 2))
width (GoB ((Incr (X_axis h)),(Incr (Y_axis h)))) is epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real V99() V100() V101() V102() V103() V104() bounded_below Element of NAT
len (X_axis h) is epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real V99() V100() V101() V102() V103() V104() bounded_below Element of NAT
dom (X_axis h) is finite V99() V100() V101() V102() V103() V104() bounded_below bounded_above real-bounded Element of K6(NAT)
(X_axis h) . i1 is V11() real ext-real set
rng (X_axis h) is finite V99() V100() V101() bounded_below bounded_above real-bounded set
len (GoB ((Incr (X_axis h)),(Incr (Y_axis h)))) is epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real V99() V100() V101() V102() V103() V104() bounded_below Element of NAT
[1,i2] is set
{1,i2} is finite V99() V100() V101() V102() V103() V104() bounded_below bounded_above real-bounded set
{1} is finite V99() V100() V101() V102() V103() V104() bounded_below bounded_above real-bounded set
{{1,i2},{1}} is finite V39() set
Indices (GoB ((Incr (X_axis h)),(Incr (Y_axis h)))) is set
[(len (GoB h)),i2] is set
{(len (GoB h)),i2} is finite V99() V100() V101() V102() V103() V104() bounded_below bounded_above real-bounded set
{(len (GoB h))} is finite V99() V100() V101() V102() V103() V104() bounded_below bounded_above real-bounded set
{{(len (GoB h)),i2},{(len (GoB h))}} is finite V39() set
(GoB ((Incr (X_axis h)),(Incr (Y_axis h)))) * ((len (GoB h)),i2) is V42(2) FinSequence-like V91() Element of the carrier of (TOP-REAL 2)
(Incr (X_axis h)) . (len (GoB h)) is V11() real ext-real set
(Incr (Y_axis h)) . i2 is V11() real ext-real set
|[((Incr (X_axis h)) . (len (GoB h))),((Incr (Y_axis h)) . i2)]| is non empty Relation-like NAT -defined Function-like finite V42(2) FinSequence-like FinSubsequence-like V89() V90() V91() Element of the carrier of (TOP-REAL 2)
(GoB ((Incr (X_axis h)),(Incr (Y_axis h)))) * (1,i2) is V42(2) FinSequence-like V91() Element of the carrier of (TOP-REAL 2)
(Incr (X_axis h)) . 1 is V11() real ext-real set
|[((Incr (X_axis h)) . 1),((Incr (Y_axis h)) . i2)]| is non empty Relation-like NAT -defined Function-like finite V42(2) FinSequence-like FinSubsequence-like V89() V90() V91() Element of the carrier of (TOP-REAL 2)
len (Incr (X_axis h)) is epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real V99() V100() V101() V102() V103() V104() bounded_below Element of NAT
h is non empty non trivial Relation-like NAT -defined the carrier of (TOP-REAL 2) -valued Function-like non constant finite FinSequence-like FinSubsequence-like V186( the carrier of (TOP-REAL 2)) special unfolded s.c.c. standard FinSequence of the carrier of (TOP-REAL 2)
len h is epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real V99() V100() V101() V102() V103() V104() bounded_below Element of NAT
GoB h is Relation-like non empty-yielding NAT -defined K266( the carrier of (TOP-REAL 2)) -valued Function-like finite FinSequence-like FinSubsequence-like tabular X_equal-in-line Y_equal-in-column Y_increasing-in-line X_increasing-in-column FinSequence of K266( the carrier of (TOP-REAL 2))
len (GoB h) is epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real V99() V100() V101() V102() V103() V104() bounded_below Element of NAT
width (GoB h) is epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real V99() V100() V101() V102() V103() V104() bounded_below Element of NAT
i1 is epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real V99() V100() V101() V102() V103() V104() bounded_below Element of NAT
h /. i1 is V42(2) FinSequence-like V91() Element of the carrier of (TOP-REAL 2)
(h /. i1) `2 is V11() real ext-real Element of REAL
i2 is epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real V99() V100() V101() V102() V103() V104() bounded_below Element of NAT
(GoB h) * (i2,1) is V42(2) FinSequence-like V91() Element of the carrier of (TOP-REAL 2)
((GoB h) * (i2,1)) `2 is V11() real ext-real Element of REAL
(GoB h) * (i2,(width (GoB h))) is V42(2) FinSequence-like V91() Element of the carrier of (TOP-REAL 2)
((GoB h) * (i2,(width (GoB h)))) `2 is V11() real ext-real Element of REAL
X_axis h is non empty Relation-like NAT -defined REAL -valued Function-like finite FinSequence-like FinSubsequence-like V89() V90() V91() FinSequence of REAL
Incr (X_axis h) is non empty Relation-like NAT -defined REAL -valued Function-like one-to-one finite FinSequence-like FinSubsequence-like V89() V90() V91() V93() V95() FinSequence of REAL
Y_axis h is non empty Relation-like NAT -defined REAL -valued Function-like finite FinSequence-like FinSubsequence-like V89() V90() V91() FinSequence of REAL
Incr (Y_axis h) is non empty Relation-like NAT -defined REAL -valued Function-like one-to-one finite FinSequence-like FinSubsequence-like V89() V90() V91() V93() V95() FinSequence of REAL
GoB ((Incr (X_axis h)),(Incr (Y_axis h))) is Relation-like non empty-yielding NAT -defined K266( the carrier of (TOP-REAL 2)) -valued Function-like finite FinSequence-like FinSubsequence-like tabular X_equal-in-line Y_equal-in-column Y_increasing-in-line X_increasing-in-column FinSequence of K266( the carrier of (TOP-REAL 2))
width (GoB ((Incr (X_axis h)),(Incr (Y_axis h)))) is epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real V99() V100() V101() V102() V103() V104() bounded_below Element of NAT
len (Y_axis h) is epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real V99() V100() V101() V102() V103() V104() bounded_below Element of NAT
dom (Y_axis h) is finite V99() V100() V101() V102() V103() V104() bounded_below bounded_above real-bounded Element of K6(NAT)
(Y_axis h) . i1 is V11() real ext-real set
rng (Y_axis h) is finite V99() V100() V101() bounded_below bounded_above real-bounded set
[i2,(width (GoB h))] is set
{i2,(width (GoB h))} is finite V99() V100() V101() V102() V103() V104() bounded_below bounded_above real-bounded set
{i2} is finite V99() V100() V101() V102() V103() V104() bounded_below bounded_above real-bounded set
{{i2,(width (GoB h))},{i2}} is finite V39() set
Indices (GoB ((Incr (X_axis h)),(Incr (Y_axis h)))) is set
(GoB ((Incr (X_axis h)),(Incr (Y_axis h)))) * (i2,(width (GoB h))) is V42(2) FinSequence-like V91() Element of the carrier of (TOP-REAL 2)
(Incr (X_axis h)) . i2 is V11() real ext-real set
(Incr (Y_axis h)) . (width (GoB h)) is V11() real ext-real set
|[((Incr (X_axis h)) . i2),((Incr (Y_axis h)) . (width (GoB h)))]| is non empty Relation-like NAT -defined Function-like finite V42(2) FinSequence-like FinSubsequence-like V89() V90() V91() Element of the carrier of (TOP-REAL 2)
len (GoB ((Incr (X_axis h)),(Incr (Y_axis h)))) is epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real V99() V100() V101() V102() V103() V104() bounded_below Element of NAT
[i2,1] is set
{i2,1} is finite V99() V100() V101() V102() V103() V104() bounded_below bounded_above real-bounded set
{{i2,1},{i2}} is finite V39() set
(GoB ((Incr (X_axis h)),(Incr (Y_axis h)))) * (i2,1) is V42(2) FinSequence-like V91() Element of the carrier of (TOP-REAL 2)
(Incr (Y_axis h)) . 1 is V11() real ext-real set
|[((Incr (X_axis h)) . i2),((Incr (Y_axis h)) . 1)]| is non empty Relation-like NAT -defined Function-like finite V42(2) FinSequence-like FinSubsequence-like V89() V90() V91() Element of the carrier of (TOP-REAL 2)
len (Incr (Y_axis h)) is epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real V99() V100() V101() V102() V103() V104() bounded_below Element of NAT
h is non empty Relation-like NAT -defined the carrier of (TOP-REAL 2) -valued Function-like finite FinSequence-like FinSubsequence-like FinSequence of the carrier of (TOP-REAL 2)
GoB h is Relation-like non empty-yielding NAT -defined K266( the carrier of (TOP-REAL 2)) -valued Function-like finite FinSequence-like FinSubsequence-like tabular X_equal-in-line Y_equal-in-column Y_increasing-in-line X_increasing-in-column FinSequence of K266( the carrier of (TOP-REAL 2))
len (GoB h) is epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real V99() V100() V101() V102() V103() V104() bounded_below Element of NAT
dom h is finite V99() V100() V101() V102() V103() V104() bounded_below bounded_above real-bounded Element of K6(NAT)
Indices (GoB h) is set
i1 is epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real V99() V100() V101() V102() V103() V104() bounded_below Element of NAT
dom (GoB h) is finite V99() V100() V101() V102() V103() V104() bounded_below bounded_above real-bounded Element of K6(NAT)
X_axis h is non empty Relation-like NAT -defined REAL -valued Function-like finite FinSequence-like FinSubsequence-like V89() V90() V91() FinSequence of REAL
Incr (X_axis h) is non empty Relation-like NAT -defined REAL -valued Function-like one-to-one finite FinSequence-like FinSubsequence-like V89() V90() V91() V93() V95() FinSequence of REAL
Y_axis h is non empty Relation-like NAT -defined REAL -valued Function-like finite FinSequence-like FinSubsequence-like V89() V90() V91() FinSequence of REAL
Incr (Y_axis h) is non empty Relation-like NAT -defined REAL -valued Function-like one-to-one finite FinSequence-like FinSubsequence-like V89() V90() V91() V93() V95() FinSequence of REAL
GoB ((Incr (X_axis h)),(Incr (Y_axis h))) is Relation-like non empty-yielding NAT -defined K266( the carrier of (TOP-REAL 2)) -valued Function-like finite FinSequence-like FinSubsequence-like tabular X_equal-in-line Y_equal-in-column Y_increasing-in-line X_increasing-in-column FinSequence of K266( the carrier of (TOP-REAL 2))
len (Incr (X_axis h)) is epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real V99() V100() V101() V102() V103() V104() bounded_below Element of NAT
dom (Incr (X_axis h)) is finite V99() V100() V101() V102() V103() V104() bounded_below bounded_above real-bounded Element of K6(NAT)
(Incr (X_axis h)) . i1 is V11() real ext-real set
rng (Incr (X_axis h)) is finite V99() V100() V101() bounded_below bounded_above real-bounded set
rng (X_axis h) is finite V99() V100() V101() bounded_below bounded_above real-bounded set
dom (X_axis h) is finite V99() V100() V101() V102() V103() V104() bounded_below bounded_above real-bounded Element of K6(NAT)
i2 is epsilon-transitive epsilon-connected ordinal natural V11() real ext-real set
(X_axis h) . i2 is V11() real ext-real set
len (X_axis h) is epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real V99() V100() V101() V102() V103() V104() bounded_below Element of NAT
len h is epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real V99() V100() V101() V102() V103() V104() bounded_below Element of NAT
len (Y_axis h) is epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real V99() V100() V101() V102() V103() V104() bounded_below Element of NAT
dom (Y_axis h) is finite V99() V100() V101() V102() V103() V104() bounded_below bounded_above real-bounded Element of K6(NAT)
(Y_axis h) . i2 is V11() real ext-real set
rng (Y_axis h) is finite V99() V100() V101() bounded_below bounded_above real-bounded set
rng (Incr (Y_axis h)) is finite V99() V100() V101() bounded_below bounded_above real-bounded set
dom (Incr (Y_axis h)) is finite V99() V100() V101() V102() V103() V104() bounded_below bounded_above real-bounded Element of K6(NAT)
ii is epsilon-transitive epsilon-connected ordinal natural V11() real ext-real set
(Incr (Y_axis h)) . ii is V11() real ext-real set
j is epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real V99() V100() V101() V102() V103() V104() bounded_below Element of NAT
(X_axis h) . j is V11() real ext-real set
h /. j is V42(2) FinSequence-like V91() Element of the carrier of (TOP-REAL 2)
(h /. j) `1 is V11() real ext-real Element of REAL
Y is epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real V99() V100() V101() V102() V103() V104() bounded_below Element of NAT
[i1,Y] is set
{i1,Y} is finite V99() V100() V101() V102() V103() V104() bounded_below bounded_above real-bounded set
{i1} is finite V99() V100() V101() V102() V103() V104() bounded_below bounded_above real-bounded set
{{i1,Y},{i1}} is finite V39() set
(GoB h) * (i1,Y) is V42(2) FinSequence-like V91() Element of the carrier of (TOP-REAL 2)
len (Incr (Y_axis h)) is epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real V99() V100() V101() V102() V103() V104() bounded_below Element of NAT
Seg (len (Incr (Y_axis h))) is finite V42( len (Incr (Y_axis h))) V99() V100() V101() V102() V103() V104() bounded_below bounded_above real-bounded Element of K6(NAT)
width (GoB ((Incr (X_axis h)),(Incr (Y_axis h)))) is epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real V99() V100() V101() V102() V103() V104() bounded_below Element of NAT
Seg (width (GoB ((Incr (X_axis h)),(Incr (Y_axis h))))) is finite V42( width (GoB ((Incr (X_axis h)),(Incr (Y_axis h))))) V99() V100() V101() V102() V103() V104() bounded_below bounded_above real-bounded Element of K6(NAT)
width (GoB h) is epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real V99() V100() V101() V102() V103() V104() bounded_below Element of NAT
Seg (width (GoB h)) is finite V42( width (GoB h)) V99() V100() V101() V102() V103() V104() bounded_below bounded_above real-bounded Element of K6(NAT)
[:(dom (GoB h)),(Seg (width (GoB h))):] is Relation-like NAT -defined NAT -valued RAT -valued INT -valued finite V89() V90() V91() V92() Element of K6(K7(NAT,NAT))
K6(K7(NAT,NAT)) is set
(Y_axis h) . j is V11() real ext-real set
(h /. j) `2 is V11() real ext-real Element of REAL
(Incr (Y_axis h)) . Y is V11() real ext-real set
|[((Incr (X_axis h)) . i1),((Incr (Y_axis h)) . Y)]| is non empty Relation-like NAT -defined Function-like finite V42(2) FinSequence-like FinSubsequence-like V89() V90() V91() Element of the carrier of (TOP-REAL 2)
h is non empty Relation-like NAT -defined the carrier of (TOP-REAL 2) -valued Function-like finite FinSequence-like FinSubsequence-like FinSequence of the carrier of (TOP-REAL 2)
GoB h is Relation-like non empty-yielding NAT -defined K266( the carrier of (TOP-REAL 2)) -valued Function-like finite FinSequence-like FinSubsequence-like tabular X_equal-in-line Y_equal-in-column Y_increasing-in-line X_increasing-in-column FinSequence of K266( the carrier of (TOP-REAL 2))
width (GoB h) is epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real V99() V100() V101() V102() V103() V104() bounded_below Element of NAT
dom h is finite V99() V100() V101() V102() V103() V104() bounded_below bounded_above real-bounded Element of K6(NAT)
Indices (GoB h) is set
i1 is epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real V99() V100() V101() V102() V103() V104() bounded_below Element of NAT
Seg (width (GoB h)) is finite V42( width (GoB h)) V99() V100() V101() V102() V103() V104() bounded_below bounded_above real-bounded Element of K6(NAT)
X_axis h is non empty Relation-like NAT -defined REAL -valued Function-like finite FinSequence-like FinSubsequence-like V89() V90() V91() FinSequence of REAL
Incr (X_axis h) is non empty Relation-like NAT -defined REAL -valued Function-like one-to-one finite FinSequence-like FinSubsequence-like V89() V90() V91() V93() V95() FinSequence of REAL
Y_axis h is non empty Relation-like NAT -defined REAL -valued Function-like finite FinSequence-like FinSubsequence-like V89() V90() V91() FinSequence of REAL
Incr (Y_axis h) is non empty Relation-like NAT -defined REAL -valued Function-like one-to-one finite FinSequence-like FinSubsequence-like V89() V90() V91() V93() V95() FinSequence of REAL
GoB ((Incr (X_axis h)),(Incr (Y_axis h))) is Relation-like non empty-yielding NAT -defined K266( the carrier of (TOP-REAL 2)) -valued Function-like finite FinSequence-like FinSubsequence-like tabular X_equal-in-line Y_equal-in-column Y_increasing-in-line X_increasing-in-column FinSequence of K266( the carrier of (TOP-REAL 2))
len (Incr (Y_axis h)) is epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real V99() V100() V101() V102() V103() V104() bounded_below Element of NAT
dom (Incr (Y_axis h)) is finite V99() V100() V101() V102() V103() V104() bounded_below bounded_above real-bounded Element of K6(NAT)
(Incr (Y_axis h)) . i1 is V11() real ext-real set
rng (Incr (Y_axis h)) is finite V99() V100() V101() bounded_below bounded_above real-bounded set
rng (Y_axis h) is finite V99() V100() V101() bounded_below bounded_above real-bounded set
dom (Y_axis h) is finite V99() V100() V101() V102() V103() V104() bounded_below bounded_above real-bounded Element of K6(NAT)
i2 is epsilon-transitive epsilon-connected ordinal natural V11() real ext-real set
(Y_axis h) . i2 is V11() real ext-real set
len (X_axis h) is epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real V99() V100() V101() V102() V103() V104() bounded_below Element of NAT
len h is epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real V99() V100() V101() V102() V103() V104() bounded_below Element of NAT
len (Y_axis h) is epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real V99() V100() V101() V102() V103() V104() bounded_below Element of NAT
dom (X_axis h) is finite V99() V100() V101() V102() V103() V104() bounded_below bounded_above real-bounded Element of K6(NAT)
(X_axis h) . i2 is V11() real ext-real set
rng (X_axis h) is finite V99() V100() V101() bounded_below bounded_above real-bounded set
rng (Incr (X_axis h)) is finite V99() V100() V101() bounded_below bounded_above real-bounded set
dom (Incr (X_axis h)) is finite V99() V100() V101() V102() V103() V104() bounded_below bounded_above real-bounded Element of K6(NAT)
ii is epsilon-transitive epsilon-connected ordinal natural V11() real ext-real set
(Incr (X_axis h)) . ii is V11() real ext-real set
j is epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real V99() V100() V101() V102() V103() V104() bounded_below Element of NAT
(X_axis h) . j is V11() real ext-real set
h /. j is V42(2) FinSequence-like V91() Element of the carrier of (TOP-REAL 2)
(h /. j) `1 is V11() real ext-real Element of REAL
Y is epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real V99() V100() V101() V102() V103() V104() bounded_below Element of NAT
[Y,i1] is set
{Y,i1} is finite V99() V100() V101() V102() V103() V104() bounded_below bounded_above real-bounded set
{Y} is finite V99() V100() V101() V102() V103() V104() bounded_below bounded_above real-bounded set
{{Y,i1},{Y}} is finite V39() set
(GoB h) * (Y,i1) is V42(2) FinSequence-like V91() Element of the carrier of (TOP-REAL 2)
len (GoB ((Incr (X_axis h)),(Incr (Y_axis h)))) is epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real V99() V100() V101() V102() V103() V104() bounded_below Element of NAT
len (Incr (X_axis h)) is epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real V99() V100() V101() V102() V103() V104() bounded_below Element of NAT
dom (GoB ((Incr (X_axis h)),(Incr (Y_axis h)))) is finite V99() V100() V101() V102() V103() V104() bounded_below bounded_above real-bounded Element of K6(NAT)
dom (GoB h) is finite V99() V100() V101() V102() V103() V104() bounded_below bounded_above real-bounded Element of K6(NAT)
[:(dom (GoB h)),(Seg (width (GoB h))):] is Relation-like NAT -defined NAT -valued RAT -valued INT -valued finite V89() V90() V91() V92() Element of K6(K7(NAT,NAT))
K6(K7(NAT,NAT)) is set
(Y_axis h) . j is V11() real ext-real set
(h /. j) `2 is V11() real ext-real Element of REAL
(Incr (X_axis h)) . Y is V11() real ext-real set
|[((Incr (X_axis h)) . Y),((Incr (Y_axis h)) . i1)]| is non empty Relation-like NAT -defined Function-like finite V42(2) FinSequence-like FinSubsequence-like V89() V90() V91() Element of the carrier of (TOP-REAL 2)
h is non empty Relation-like NAT -defined the carrier of (TOP-REAL 2) -valued Function-like finite FinSequence-like FinSubsequence-like FinSequence of the carrier of (TOP-REAL 2)
GoB h is Relation-like non empty-yielding NAT -defined K266( the carrier of (TOP-REAL 2)) -valued Function-like finite FinSequence-like FinSubsequence-like tabular X_equal-in-line Y_equal-in-column Y_increasing-in-line X_increasing-in-column FinSequence of K266( the carrier of (TOP-REAL 2))
len (GoB h) is epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real V99() V100() V101() V102() V103() V104() bounded_below Element of NAT
width (GoB h) is epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real V99() V100() V101() V102() V103() V104() bounded_below Element of NAT
dom h is finite V99() V100() V101() V102() V103() V104() bounded_below bounded_above real-bounded Element of K6(NAT)
Indices (GoB h) is set
i1 is epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real V99() V100() V101() V102() V103() V104() bounded_below Element of NAT
i2 is epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real V99() V100() V101() V102() V103() V104() bounded_below Element of NAT
[i1,i2] is set
{i1,i2} is finite V99() V100() V101() V102() V103() V104() bounded_below bounded_above real-bounded set
{i1} is finite V99() V100() V101() V102() V103() V104() bounded_below bounded_above real-bounded set
{{i1,i2},{i1}} is finite V39() set
(GoB h) * (i1,i2) is V42(2) FinSequence-like V91() Element of the carrier of (TOP-REAL 2)
((GoB h) * (i1,i2)) `1 is V11() real ext-real Element of REAL
X_axis h is non empty Relation-like NAT -defined REAL -valued Function-like finite FinSequence-like FinSubsequence-like V89() V90() V91() FinSequence of REAL
Incr (X_axis h) is non empty Relation-like NAT -defined REAL -valued Function-like one-to-one finite FinSequence-like FinSubsequence-like V89() V90() V91() V93() V95() FinSequence of REAL
Y_axis h is non empty Relation-like NAT -defined REAL -valued Function-like finite FinSequence-like FinSubsequence-like V89() V90() V91() FinSequence of REAL
Incr (Y_axis h) is non empty Relation-like NAT -defined REAL -valued Function-like one-to-one finite FinSequence-like FinSubsequence-like V89() V90() V91() V93() V95() FinSequence of REAL
GoB ((Incr (X_axis h)),(Incr (Y_axis h))) is Relation-like non empty-yielding NAT -defined K266( the carrier of (TOP-REAL 2)) -valued Function-like finite FinSequence-like FinSubsequence-like tabular X_equal-in-line Y_equal-in-column Y_increasing-in-line X_increasing-in-column FinSequence of K266( the carrier of (TOP-REAL 2))
len (Incr (Y_axis h)) is epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real V99() V100() V101() V102() V103() V104() bounded_below Element of NAT
dom (Incr (Y_axis h)) is finite V99() V100() V101() V102() V103() V104() bounded_below bounded_above real-bounded Element of K6(NAT)
Seg (len (Incr (Y_axis h))) is finite V42( len (Incr (Y_axis h))) V99() V100() V101() V102() V103() V104() bounded_below bounded_above real-bounded Element of K6(NAT)
width (GoB ((Incr (X_axis h)),(Incr (Y_axis h)))) is epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real V99() V100() V101() V102() V103() V104() bounded_below Element of NAT
Seg (width (GoB ((Incr (X_axis h)),(Incr (Y_axis h))))) is finite V42( width (GoB ((Incr (X_axis h)),(Incr (Y_axis h))))) V99() V100() V101() V102() V103() V104() bounded_below bounded_above real-bounded Element of K6(NAT)
len (Incr (X_axis h)) is epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real V99() V100() V101() V102() V103() V104() bounded_below Element of NAT
dom (Incr (X_axis h)) is finite V99() V100() V101() V102() V103() V104() bounded_below bounded_above real-bounded Element of K6(NAT)
(Incr (X_axis h)) . i1 is V11() real ext-real set
rng (Incr (X_axis h)) is finite V99() V100() V101() bounded_below bounded_above real-bounded set
rng (X_axis h) is finite V99() V100() V101() bounded_below bounded_above real-bounded set
dom (X_axis h) is finite V99() V100() V101() V102() V103() V104() bounded_below bounded_above real-bounded Element of K6(NAT)
ii is epsilon-transitive epsilon-connected ordinal natural V11() real ext-real set
(X_axis h) . ii is V11() real ext-real set
j is epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real V99() V100() V101() V102() V103() V104() bounded_below Element of NAT
h /. j is V42(2) FinSequence-like V91() Element of the carrier of (TOP-REAL 2)
(h /. j) `1 is V11() real ext-real Element of REAL
len (X_axis h) is epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real V99() V100() V101() V102() V103() V104() bounded_below Element of NAT
len h is epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real V99() V100() V101() V102() V103() V104() bounded_below Element of NAT
dom (GoB h) is finite V99() V100() V101() V102() V103() V104() bounded_below bounded_above real-bounded Element of K6(NAT)
Seg (width (GoB h)) is finite V42( width (GoB h)) V99() V100() V101() V102() V103() V104() bounded_below bounded_above real-bounded Element of K6(NAT)
[:(dom (GoB h)),(Seg (width (GoB h))):] is Relation-like NAT -defined NAT -valued RAT -valued INT -valued finite V89() V90() V91() V92() Element of K6(K7(NAT,NAT))
K6(K7(NAT,NAT)) is set
(Incr (Y_axis h)) . i2 is V11() real ext-real set
|[((Incr (X_axis h)) . i1),((Incr (Y_axis h)) . i2)]| is non empty Relation-like NAT -defined Function-like finite V42(2) FinSequence-like FinSubsequence-like V89() V90() V91() Element of the carrier of (TOP-REAL 2)
h is non empty Relation-like NAT -defined the carrier of (TOP-REAL 2) -valued Function-like finite FinSequence-like FinSubsequence-like FinSequence of the carrier of (TOP-REAL 2)
GoB h is Relation-like non empty-yielding NAT -defined K266( the carrier of (TOP-REAL 2)) -valued Function-like finite FinSequence-like FinSubsequence-like tabular X_equal-in-line Y_equal-in-column Y_increasing-in-line X_increasing-in-column FinSequence of K266( the carrier of (TOP-REAL 2))
len (GoB h) is epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real V99() V100() V101() V102() V103() V104() bounded_below Element of NAT
width (GoB h) is epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real V99() V100() V101() V102() V103() V104() bounded_below Element of NAT
dom h is finite V99() V100() V101() V102() V103() V104() bounded_below bounded_above real-bounded Element of K6(NAT)
Indices (GoB h) is set
i1 is epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real V99() V100() V101() V102() V103() V104() bounded_below Element of NAT
i2 is epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real V99() V100() V101() V102() V103() V104() bounded_below Element of NAT
[i1,i2] is set
{i1,i2} is finite V99() V100() V101() V102() V103() V104() bounded_below bounded_above real-bounded set
{i1} is finite V99() V100() V101() V102() V103() V104() bounded_below bounded_above real-bounded set
{{i1,i2},{i1}} is finite V39() set
(GoB h) * (i1,i2) is V42(2) FinSequence-like V91() Element of the carrier of (TOP-REAL 2)
((GoB h) * (i1,i2)) `2 is V11() real ext-real Element of REAL
X_axis h is non empty Relation-like NAT -defined REAL -valued Function-like finite FinSequence-like FinSubsequence-like V89() V90() V91() FinSequence of REAL
Incr (X_axis h) is non empty Relation-like NAT -defined REAL -valued Function-like one-to-one finite FinSequence-like FinSubsequence-like V89() V90() V91() V93() V95() FinSequence of REAL
Y_axis h is non empty Relation-like NAT -defined REAL -valued Function-like finite FinSequence-like FinSubsequence-like V89() V90() V91() FinSequence of REAL
Incr (Y_axis h) is non empty Relation-like NAT -defined REAL -valued Function-like one-to-one finite FinSequence-like FinSubsequence-like V89() V90() V91() V93() V95() FinSequence of REAL
GoB ((Incr (X_axis h)),(Incr (Y_axis h))) is Relation-like non empty-yielding NAT -defined K266( the carrier of (TOP-REAL 2)) -valued Function-like finite FinSequence-like FinSubsequence-like tabular X_equal-in-line Y_equal-in-column Y_increasing-in-line X_increasing-in-column FinSequence of K266( the carrier of (TOP-REAL 2))
len (Incr (Y_axis h)) is epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real V99() V100() V101() V102() V103() V104() bounded_below Element of NAT
dom (Incr (Y_axis h)) is finite V99() V100() V101() V102() V103() V104() bounded_below bounded_above real-bounded Element of K6(NAT)
Seg (len (Incr (Y_axis h))) is finite V42( len (Incr (Y_axis h))) V99() V100() V101() V102() V103() V104() bounded_below bounded_above real-bounded Element of K6(NAT)
width (GoB ((Incr (X_axis h)),(Incr (Y_axis h)))) is epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real V99() V100() V101() V102() V103() V104() bounded_below Element of NAT
Seg (width (GoB ((Incr (X_axis h)),(Incr (Y_axis h))))) is finite V42( width (GoB ((Incr (X_axis h)),(Incr (Y_axis h))))) V99() V100() V101() V102() V103() V104() bounded_below bounded_above real-bounded Element of K6(NAT)
(Incr (Y_axis h)) . i2 is V11() real ext-real set
rng (Incr (Y_axis h)) is finite V99() V100() V101() bounded_below bounded_above real-bounded set
rng (Y_axis h) is finite V99() V100() V101() bounded_below bounded_above real-bounded set
dom (Y_axis h) is finite V99() V100() V101() V102() V103() V104() bounded_below bounded_above real-bounded Element of K6(NAT)
ii is epsilon-transitive epsilon-connected ordinal natural V11() real ext-real set
(Y_axis h) . ii is V11() real ext-real set
j is epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real V99() V100() V101() V102() V103() V104() bounded_below Element of NAT
h /. j is V42(2) FinSequence-like V91() Element of the carrier of (TOP-REAL 2)
(h /. j) `2 is V11() real ext-real Element of REAL
len (Y_axis h) is epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real V99() V100() V101() V102() V103() V104() bounded_below Element of NAT
len h is epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real V99() V100() V101() V102() V103() V104() bounded_below Element of NAT
dom (GoB h) is finite V99() V100() V101() V102() V103() V104() bounded_below bounded_above real-bounded Element of K6(NAT)
Seg (width (GoB h)) is finite V42( width (GoB h)) V99() V100() V101() V102() V103() V104() bounded_below bounded_above real-bounded Element of K6(NAT)
[:(dom (GoB h)),(Seg (width (GoB h))):] is Relation-like NAT -defined NAT -valued RAT -valued INT -valued finite V89() V90() V91() V92() Element of K6(K7(NAT,NAT))
K6(K7(NAT,NAT)) is set
(Incr (X_axis h)) . i1 is V11() real ext-real set
|[((Incr (X_axis h)) . i1),((Incr (Y_axis h)) . i2)]| is non empty Relation-like NAT -defined Function-like finite V42(2) FinSequence-like FinSubsequence-like V89() V90() V91() Element of the carrier of (TOP-REAL 2)
h is non empty non trivial Relation-like NAT -defined the carrier of (TOP-REAL 2) -valued Function-like non constant finite FinSequence-like FinSubsequence-like V186( the carrier of (TOP-REAL 2)) special unfolded s.c.c. standard FinSequence of the carrier of (TOP-REAL 2)
len h is epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real V99() V100() V101() V102() V103() V104() bounded_below Element of NAT
L~ h is non empty V85( TOP-REAL 2) Element of K6( the carrier of (TOP-REAL 2))
S-bound (L~ h) is V11() real ext-real Element of REAL
(TOP-REAL 2) | (L~ h) is strict SubSpace of TOP-REAL 2
proj2 | (L~ h) is Relation-like the carrier of ((TOP-REAL 2) | (L~ h)) -defined REAL -valued Function-like V29( the carrier of ((TOP-REAL 2) | (L~ h)), REAL ) V89() V90() V91() Element of K6(K7( the carrier of ((TOP-REAL 2) | (L~ h)),REAL))
the carrier of ((TOP-REAL 2) | (L~ h)) is set
K7( the carrier of ((TOP-REAL 2) | (L~ h)),REAL) is V89() V90() V91() set
K6(K7( the carrier of ((TOP-REAL 2) | (L~ h)),REAL)) is set
lower_bound (proj2 | (L~ h)) is V11() real ext-real Element of REAL
K568( the carrier of ((TOP-REAL 2) | (L~ h)),REAL,(proj2 | (L~ h)), the carrier of ((TOP-REAL 2) | (L~ h))) is V99() V100() V101() Element of K6(REAL)
lower_bound K568( the carrier of ((TOP-REAL 2) | (L~ h)),REAL,(proj2 | (L~ h)), the carrier of ((TOP-REAL 2) | (L~ h))) is V11() real ext-real Element of REAL
N-bound (L~ h) is V11() real ext-real Element of REAL
upper_bound (proj2 | (L~ h)) is V11() real ext-real Element of REAL
upper_bound K568( the carrier of ((TOP-REAL 2) | (L~ h)),REAL,(proj2 | (L~ h)), the carrier of ((TOP-REAL 2) | (L~ h))) is V11() real ext-real Element of REAL
i1 is epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real V99() V100() V101() V102() V103() V104() bounded_below Element of NAT
h /. i1 is V42(2) FinSequence-like V91() Element of the carrier of (TOP-REAL 2)
(h /. i1) `2 is V11() real ext-real Element of REAL
dom h is non trivial finite V99() V100() V101() V102() V103() V104() bounded_below bounded_above real-bounded Element of K6(NAT)
h is non empty non trivial Relation-like NAT -defined the carrier of (TOP-REAL 2) -valued Function-like non constant finite FinSequence-like FinSubsequence-like V186( the carrier of (TOP-REAL 2)) special unfolded s.c.c. standard FinSequence of the carrier of (TOP-REAL 2)
len h is epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real V99() V100() V101() V102() V103() V104() bounded_below Element of NAT
L~ h is non empty V85( TOP-REAL 2) Element of K6( the carrier of (TOP-REAL 2))
W-bound (L~ h) is V11() real ext-real Element of REAL
(TOP-REAL 2) | (L~ h) is strict SubSpace of TOP-REAL 2
proj1 | (L~ h) is Relation-like the carrier of ((TOP-REAL 2) | (L~ h)) -defined REAL -valued Function-like V29( the carrier of ((TOP-REAL 2) | (L~ h)), REAL ) V89() V90() V91() Element of K6(K7( the carrier of ((TOP-REAL 2) | (L~ h)),REAL))
the carrier of ((TOP-REAL 2) | (L~ h)) is set
K7( the carrier of ((TOP-REAL 2) | (L~ h)),REAL) is V89() V90() V91() set
K6(K7( the carrier of ((TOP-REAL 2) | (L~ h)),REAL)) is set
lower_bound (proj1 | (L~ h)) is V11() real ext-real Element of REAL
K568( the carrier of ((TOP-REAL 2) | (L~ h)),REAL,(proj1 | (L~ h)), the carrier of ((TOP-REAL 2) | (L~ h))) is V99() V100() V101() Element of K6(REAL)
lower_bound K568( the carrier of ((TOP-REAL 2) | (L~ h)),REAL,(proj1 | (L~ h)), the carrier of ((TOP-REAL 2) | (L~ h))) is V11() real ext-real Element of REAL
E-bound (L~ h) is V11() real ext-real Element of REAL
upper_bound (proj1 | (L~ h)) is V11() real ext-real Element of REAL
upper_bound K568( the carrier of ((TOP-REAL 2) | (L~ h)),REAL,(proj1 | (L~ h)), the carrier of ((TOP-REAL 2) | (L~ h))) is V11() real ext-real Element of REAL
i1 is epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real V99() V100() V101() V102() V103() V104() bounded_below Element of NAT
h /. i1 is V42(2) FinSequence-like V91() Element of the carrier of (TOP-REAL 2)
(h /. i1) `1 is V11() real ext-real Element of REAL
dom h is non trivial finite V99() V100() V101() V102() V103() V104() bounded_below bounded_above real-bounded Element of K6(NAT)
h is non empty non trivial Relation-like NAT -defined the carrier of (TOP-REAL 2) -valued Function-like non constant finite FinSequence-like FinSubsequence-like V186( the carrier of (TOP-REAL 2)) special unfolded s.c.c. standard FinSequence of the carrier of (TOP-REAL 2)
L~ h is non empty V85( TOP-REAL 2) Element of K6( the carrier of (TOP-REAL 2))
W-bound (L~ h) is V11() real ext-real Element of REAL
(TOP-REAL 2) | (L~ h) is strict SubSpace of TOP-REAL 2
proj1 | (L~ h) is Relation-like the carrier of ((TOP-REAL 2) | (L~ h)) -defined REAL -valued Function-like V29( the carrier of ((TOP-REAL 2) | (L~ h)), REAL ) V89() V90() V91() Element of K6(K7( the carrier of ((TOP-REAL 2) | (L~ h)),REAL))
the carrier of ((TOP-REAL 2) | (L~ h)) is set
K7( the carrier of ((TOP-REAL 2) | (L~ h)),REAL) is V89() V90() V91() set
K6(K7( the carrier of ((TOP-REAL 2) | (L~ h)),REAL)) is set
lower_bound (proj1 | (L~ h)) is V11() real ext-real Element of REAL
K568( the carrier of ((TOP-REAL 2) | (L~ h)),REAL,(proj1 | (L~ h)), the carrier of ((TOP-REAL 2) | (L~ h))) is V99() V100() V101() Element of K6(REAL)
lower_bound K568( the carrier of ((TOP-REAL 2) | (L~ h)),REAL,(proj1 | (L~ h)), the carrier of ((TOP-REAL 2) | (L~ h))) is V11() real ext-real Element of REAL
{ (b1 `2) where b1 is V42(2) FinSequence-like V91() Element of the carrier of (TOP-REAL 2) : ( b1 `1 = W-bound (L~ h) & b1 in L~ h ) } is set
W-most (L~ h) is Element of K6( the carrier of (TOP-REAL 2))
SW-corner (L~ h) is V42(2) FinSequence-like V91() Element of the carrier of (TOP-REAL 2)
S-bound (L~ h) is V11() real ext-real Element of REAL
proj2 | (L~ h) is Relation-like the carrier of ((TOP-REAL 2) | (L~ h)) -defined REAL -valued Function-like V29( the carrier of ((TOP-REAL 2) | (L~ h)), REAL ) V89() V90() V91() Element of K6(K7( the carrier of ((TOP-REAL 2) | (L~ h)),REAL))
lower_bound (proj2 | (L~ h)) is V11() real ext-real Element of REAL
K568( the carrier of ((TOP-REAL 2) | (L~ h)),REAL,(proj2 | (L~ h)), the carrier of ((TOP-REAL 2) | (L~ h))) is V99() V100() V101() Element of K6(REAL)
lower_bound K568( the carrier of ((TOP-REAL 2) | (L~ h)),REAL,(proj2 | (L~ h)), the carrier of ((TOP-REAL 2) | (L~ h))) is V11() real ext-real Element of REAL
|[(W-bound (L~ h)),(S-bound (L~ h))]| is non empty Relation-like NAT -defined Function-like finite V42(2) FinSequence-like FinSubsequence-like V89() V90() V91() Element of the carrier of (TOP-REAL 2)
NW-corner (L~ h) is V42(2) FinSequence-like V91() Element of the carrier of (TOP-REAL 2)
N-bound (L~ h) is V11() real ext-real Element of REAL
upper_bound (proj2 | (L~ h)) is V11() real ext-real Element of REAL
upper_bound K568( the carrier of ((TOP-REAL 2) | (L~ h)),REAL,(proj2 | (L~ h)), the carrier of ((TOP-REAL 2) | (L~ h))) is V11() real ext-real Element of REAL
|[(W-bound (L~ h)),(N-bound (L~ h))]| is non empty Relation-like NAT -defined Function-like finite V42(2) FinSequence-like FinSubsequence-like V89() V90() V91() Element of the carrier of (TOP-REAL 2)
LSeg ((SW-corner (L~ h)),(NW-corner (L~ h))) is Element of K6( the carrier of (TOP-REAL 2))
(LSeg ((SW-corner (L~ h)),(NW-corner (L~ h)))) /\ (L~ h) is Element of K6( the carrier of (TOP-REAL 2))
proj2 | (W-most (L~ h)) is Relation-like the carrier of ((TOP-REAL 2) | (W-most (L~ h))) -defined REAL -valued Function-like V29( the carrier of ((TOP-REAL 2) | (W-most (L~ h))), REAL ) V89() V90() V91() Element of K6(K7( the carrier of ((TOP-REAL 2) | (W-most (L~ h))),REAL))
(TOP-REAL 2) | (W-most (L~ h)) is strict SubSpace of TOP-REAL 2
the carrier of ((TOP-REAL 2) | (W-most (L~ h))) is set
K7( the carrier of ((TOP-REAL 2) | (W-most (L~ h))),REAL) is V89() V90() V91() set
K6(K7( the carrier of ((TOP-REAL 2) | (W-most (L~ h))),REAL)) is set
(proj2 | (W-most (L~ h))) .: the carrier of ((TOP-REAL 2) | (W-most (L~ h))) is V99() V100() V101() set
ii is V99() V100() V101() Element of K6(REAL)
j is set
dom (proj2 | (W-most (L~ h))) is set
[#] ((TOP-REAL 2) | (W-most (L~ h))) is non proper Element of K6( the carrier of ((TOP-REAL 2) | (W-most (L~ h))))
K6( the carrier of ((TOP-REAL 2) | (W-most (L~ h)))) is set
Y is V42(2) FinSequence-like V91() Element of the carrier of (TOP-REAL 2)
Y `2 is V11() real ext-real Element of REAL
Y `1 is V11() real ext-real Element of REAL
(proj2 | (W-most (L~ h))) . Y is V11() real ext-real set
j is set
dom (proj2 | (W-most (L~ h))) is set
Y is set
(proj2 | (W-most (L~ h))) . Y is V11() real ext-real set
[#] ((TOP-REAL 2) | (W-most (L~ h))) is non proper Element of K6( the carrier of ((TOP-REAL 2) | (W-most (L~ h))))
K6( the carrier of ((TOP-REAL 2) | (W-most (L~ h)))) is set
i1 is V42(2) FinSequence-like V91() Element of the carrier of (TOP-REAL 2)
i1 `1 is V11() real ext-real Element of REAL
W-min (L~ h) is V42(2) FinSequence-like V91() Element of the carrier of (TOP-REAL 2)
lower_bound (proj2 | (W-most (L~ h))) is V11() real ext-real Element of REAL
K568( the carrier of ((TOP-REAL 2) | (W-most (L~ h))),REAL,(proj2 | (W-most (L~ h))), the carrier of ((TOP-REAL 2) | (W-most (L~ h)))) is V99() V100() V101() Element of K6(REAL)
lower_bound K568( the carrier of ((TOP-REAL 2) | (W-most (L~ h))),REAL,(proj2 | (W-most (L~ h))), the carrier of ((TOP-REAL 2) | (W-most (L~ h)))) is V11() real ext-real Element of REAL
|[(W-bound (L~ h)),(lower_bound (proj2 | (W-most (L~ h))))]| is non empty Relation-like NAT -defined Function-like finite V42(2) FinSequence-like FinSubsequence-like V89() V90() V91() Element of the carrier of (TOP-REAL 2)
(W-min (L~ h)) `1 is V11() real ext-real Element of REAL
i1 `2 is V11() real ext-real Element of REAL
h is non empty non trivial Relation-like NAT -defined the carrier of (TOP-REAL 2) -valued Function-like non constant finite FinSequence-like FinSubsequence-like V186( the carrier of (TOP-REAL 2)) special unfolded s.c.c. standard FinSequence of the carrier of (TOP-REAL 2)
L~ h is non empty V85( TOP-REAL 2) Element of K6( the carrier of (TOP-REAL 2))
E-bound (L~ h) is V11() real ext-real Element of REAL
(TOP-REAL 2) | (L~ h) is strict SubSpace of TOP-REAL 2
proj1 | (L~ h) is Relation-like the carrier of ((TOP-REAL 2) | (L~ h)) -defined REAL -valued Function-like V29( the carrier of ((TOP-REAL 2) | (L~ h)), REAL ) V89() V90() V91() Element of K6(K7( the carrier of ((TOP-REAL 2) | (L~ h)),REAL))
the carrier of ((TOP-REAL 2) | (L~ h)) is set
K7( the carrier of ((TOP-REAL 2) | (L~ h)),REAL) is V89() V90() V91() set
K6(K7( the carrier of ((TOP-REAL 2) | (L~ h)),REAL)) is set
upper_bound (proj1 | (L~ h)) is V11() real ext-real Element of REAL
K568( the carrier of ((TOP-REAL 2) | (L~ h)),REAL,(proj1 | (L~ h)), the carrier of ((TOP-REAL 2) | (L~ h))) is V99() V100() V101() Element of K6(REAL)
upper_bound K568( the carrier of ((TOP-REAL 2) | (L~ h)),REAL,(proj1 | (L~ h)), the carrier of ((TOP-REAL 2) | (L~ h))) is V11() real ext-real Element of REAL
{ (b1 `2) where b1 is V42(2) FinSequence-like V91() Element of the carrier of (TOP-REAL 2) : ( b1 `1 = E-bound (L~ h) & b1 in L~ h ) } is set
E-most (L~ h) is Element of K6( the carrier of (TOP-REAL 2))
SE-corner (L~ h) is V42(2) FinSequence-like V91() Element of the carrier of (TOP-REAL 2)
S-bound (L~ h) is V11() real ext-real Element of REAL
proj2 | (L~ h) is Relation-like the carrier of ((TOP-REAL 2) | (L~ h)) -defined REAL -valued Function-like V29( the carrier of ((TOP-REAL 2) | (L~ h)), REAL ) V89() V90() V91() Element of K6(K7( the carrier of ((TOP-REAL 2) | (L~ h)),REAL))
lower_bound (proj2 | (L~ h)) is V11() real ext-real Element of REAL
K568( the carrier of ((TOP-REAL 2) | (L~ h)),REAL,(proj2 | (L~ h)), the carrier of ((TOP-REAL 2) | (L~ h))) is V99() V100() V101() Element of K6(REAL)
lower_bound K568( the carrier of ((TOP-REAL 2) | (L~ h)),REAL,(proj2 | (L~ h)), the carrier of ((TOP-REAL 2) | (L~ h))) is V11() real ext-real Element of REAL
|[(E-bound (L~ h)),(S-bound (L~ h))]| is non empty Relation-like NAT -defined Function-like finite V42(2) FinSequence-like FinSubsequence-like V89() V90() V91() Element of the carrier of (TOP-REAL 2)
NE-corner (L~ h) is V42(2) FinSequence-like V91() Element of the carrier of (TOP-REAL 2)
N-bound (L~ h) is V11() real ext-real Element of REAL
upper_bound (proj2 | (L~ h)) is V11() real ext-real Element of REAL
upper_bound K568( the carrier of ((TOP-REAL 2) | (L~ h)),REAL,(proj2 | (L~ h)), the carrier of ((TOP-REAL 2) | (L~ h))) is V11() real ext-real Element of REAL
|[(E-bound (L~ h)),(N-bound (L~ h))]| is non empty Relation-like NAT -defined Function-like finite V42(2) FinSequence-like FinSubsequence-like V89() V90() V91() Element of the carrier of (TOP-REAL 2)
LSeg ((SE-corner (L~ h)),(NE-corner (L~ h))) is Element of K6( the carrier of (TOP-REAL 2))
(LSeg ((SE-corner (L~ h)),(NE-corner (L~ h)))) /\ (L~ h) is Element of K6( the carrier of (TOP-REAL 2))
proj2 | (E-most (L~ h)) is Relation-like the carrier of ((TOP-REAL 2) | (E-most (L~ h))) -defined REAL -valued Function-like V29( the carrier of ((TOP-REAL 2) | (E-most (L~ h))), REAL ) V89() V90() V91() Element of K6(K7( the carrier of ((TOP-REAL 2) | (E-most (L~ h))),REAL))
(TOP-REAL 2) | (E-most (L~ h)) is strict SubSpace of TOP-REAL 2
the carrier of ((TOP-REAL 2) | (E-most (L~ h))) is set
K7( the carrier of ((TOP-REAL 2) | (E-most (L~ h))),REAL) is V89() V90() V91() set
K6(K7( the carrier of ((TOP-REAL 2) | (E-most (L~ h))),REAL)) is set
(proj2 | (E-most (L~ h))) .: the carrier of ((TOP-REAL 2) | (E-most (L~ h))) is V99() V100() V101() set
ii is V99() V100() V101() Element of K6(REAL)
j is set
dom (proj2 | (E-most (L~ h))) is set
[#] ((TOP-REAL 2) | (E-most (L~ h))) is non proper Element of K6( the carrier of ((TOP-REAL 2) | (E-most (L~ h))))
K6( the carrier of ((TOP-REAL 2) | (E-most (L~ h)))) is set
Y is V42(2) FinSequence-like V91() Element of the carrier of (TOP-REAL 2)
Y `2 is V11() real ext-real Element of REAL
Y `1 is V11() real ext-real Element of REAL
(proj2 | (E-most (L~ h))) . Y is V11() real ext-real set
j is set
dom (proj2 | (E-most (L~ h))) is set
Y is set
(proj2 | (E-most (L~ h))) . Y is V11() real ext-real set
[#] ((TOP-REAL 2) | (E-most (L~ h))) is non proper Element of K6( the carrier of ((TOP-REAL 2) | (E-most (L~ h))))
K6( the carrier of ((TOP-REAL 2) | (E-most (L~ h)))) is set
i1 is V42(2) FinSequence-like V91() Element of the carrier of (TOP-REAL 2)
i1 `1 is V11() real ext-real Element of REAL
E-min (L~ h) is V42(2) FinSequence-like V91() Element of the carrier of (TOP-REAL 2)
lower_bound (proj2 | (E-most (L~ h))) is V11() real ext-real Element of REAL
K568( the carrier of ((TOP-REAL 2) | (E-most (L~ h))),REAL,(proj2 | (E-most (L~ h))), the carrier of ((TOP-REAL 2) | (E-most (L~ h)))) is V99() V100() V101() Element of K6(REAL)
lower_bound K568( the carrier of ((TOP-REAL 2) | (E-most (L~ h))),REAL,(proj2 | (E-most (L~ h))), the carrier of ((TOP-REAL 2) | (E-most (L~ h)))) is V11() real ext-real Element of REAL
|[(E-bound (L~ h)),(lower_bound (proj2 | (E-most (L~ h))))]| is non empty Relation-like NAT -defined Function-like finite V42(2) FinSequence-like FinSubsequence-like V89() V90() V91() Element of the carrier of (TOP-REAL 2)
(E-min (L~ h)) `1 is V11() real ext-real Element of REAL
i1 `2 is V11() real ext-real Element of REAL
h is non empty non trivial Relation-like NAT -defined the carrier of (TOP-REAL 2) -valued Function-like non constant finite FinSequence-like FinSubsequence-like V186( the carrier of (TOP-REAL 2)) special unfolded s.c.c. standard FinSequence of the carrier of (TOP-REAL 2)
L~ h is non empty V85( TOP-REAL 2) Element of K6( the carrier of (TOP-REAL 2))
N-bound (L~ h) is V11() real ext-real Element of REAL
(TOP-REAL 2) | (L~ h) is strict SubSpace of TOP-REAL 2
proj2 | (L~ h) is Relation-like the carrier of ((TOP-REAL 2) | (L~ h)) -defined REAL -valued Function-like V29( the carrier of ((TOP-REAL 2) | (L~ h)), REAL ) V89() V90() V91() Element of K6(K7( the carrier of ((TOP-REAL 2) | (L~ h)),REAL))
the carrier of ((TOP-REAL 2) | (L~ h)) is set
K7( the carrier of ((TOP-REAL 2) | (L~ h)),REAL) is V89() V90() V91() set
K6(K7( the carrier of ((TOP-REAL 2) | (L~ h)),REAL)) is set
upper_bound (proj2 | (L~ h)) is V11() real ext-real Element of REAL
K568( the carrier of ((TOP-REAL 2) | (L~ h)),REAL,(proj2 | (L~ h)), the carrier of ((TOP-REAL 2) | (L~ h))) is V99() V100() V101() Element of K6(REAL)
upper_bound K568( the carrier of ((TOP-REAL 2) | (L~ h)),REAL,(proj2 | (L~ h)), the carrier of ((TOP-REAL 2) | (L~ h))) is V11() real ext-real Element of REAL
{ (b1 `1) where b1 is V42(2) FinSequence-like V91() Element of the carrier of (TOP-REAL 2) : ( b1 `2 = N-bound (L~ h) & b1 in L~ h ) } is set
N-most (L~ h) is Element of K6( the carrier of (TOP-REAL 2))
NW-corner (L~ h) is V42(2) FinSequence-like V91() Element of the carrier of (TOP-REAL 2)
W-bound (L~ h) is V11() real ext-real Element of REAL
proj1 | (L~ h) is Relation-like the carrier of ((TOP-REAL 2) | (L~ h)) -defined REAL -valued Function-like V29( the carrier of ((TOP-REAL 2) | (L~ h)), REAL ) V89() V90() V91() Element of K6(K7( the carrier of ((TOP-REAL 2) | (L~ h)),REAL))
lower_bound (proj1 | (L~ h)) is V11() real ext-real Element of REAL
K568( the carrier of ((TOP-REAL 2) | (L~ h)),REAL,(proj1 | (L~ h)), the carrier of ((TOP-REAL 2) | (L~ h))) is V99() V100() V101() Element of K6(REAL)
lower_bound K568( the carrier of ((TOP-REAL 2) | (L~ h)),REAL,(proj1 | (L~ h)), the carrier of ((TOP-REAL 2) | (L~ h))) is V11() real ext-real Element of REAL
|[(W-bound (L~ h)),(N-bound (L~ h))]| is non empty Relation-like NAT -defined Function-like finite V42(2) FinSequence-like FinSubsequence-like V89() V90() V91() Element of the carrier of (TOP-REAL 2)
NE-corner (L~ h) is V42(2) FinSequence-like V91() Element of the carrier of (TOP-REAL 2)
E-bound (L~ h) is V11() real ext-real Element of REAL
upper_bound (proj1 | (L~ h)) is V11() real ext-real Element of REAL
upper_bound K568( the carrier of ((TOP-REAL 2) | (L~ h)),REAL,(proj1 | (L~ h)), the carrier of ((TOP-REAL 2) | (L~ h))) is V11() real ext-real Element of REAL
|[(E-bound (L~ h)),(N-bound (L~ h))]| is non empty Relation-like NAT -defined Function-like finite V42(2) FinSequence-like FinSubsequence-like V89() V90() V91() Element of the carrier of (TOP-REAL 2)
LSeg ((NW-corner (L~ h)),(NE-corner (L~ h))) is Element of K6( the carrier of (TOP-REAL 2))
(LSeg ((NW-corner (L~ h)),(NE-corner (L~ h)))) /\ (L~ h) is Element of K6( the carrier of (TOP-REAL 2))
proj1 | (N-most (L~ h)) is Relation-like the carrier of ((TOP-REAL 2) | (N-most (L~ h))) -defined REAL -valued Function-like V29( the carrier of ((TOP-REAL 2) | (N-most (L~ h))), REAL ) V89() V90() V91() Element of K6(K7( the carrier of ((TOP-REAL 2) | (N-most (L~ h))),REAL))
(TOP-REAL 2) | (N-most (L~ h)) is strict SubSpace of TOP-REAL 2
the carrier of ((TOP-REAL 2) | (N-most (L~ h))) is set
K7( the carrier of ((TOP-REAL 2) | (N-most (L~ h))),REAL) is V89() V90() V91() set
K6(K7( the carrier of ((TOP-REAL 2) | (N-most (L~ h))),REAL)) is set
(proj1 | (N-most (L~ h))) .: the carrier of ((TOP-REAL 2) | (N-most (L~ h))) is V99() V100() V101() set
ii is V99() V100() V101() Element of K6(REAL)
j is set
dom (proj1 | (N-most (L~ h))) is set
[#] ((TOP-REAL 2) | (N-most (L~ h))) is non proper Element of K6( the carrier of ((TOP-REAL 2) | (N-most (L~ h))))
K6( the carrier of ((TOP-REAL 2) | (N-most (L~ h)))) is set
Y is V42(2) FinSequence-like V91() Element of the carrier of (TOP-REAL 2)
Y `1 is V11() real ext-real Element of REAL
Y `2 is V11() real ext-real Element of REAL
(proj1 | (N-most (L~ h))) . Y is V11() real ext-real set
j is set
dom (proj1 | (N-most (L~ h))) is set
Y is set
(proj1 | (N-most (L~ h))) . Y is V11() real ext-real set
[#] ((TOP-REAL 2) | (N-most (L~ h))) is non proper Element of K6( the carrier of ((TOP-REAL 2) | (N-most (L~ h))))
K6( the carrier of ((TOP-REAL 2) | (N-most (L~ h)))) is set
i1 is V42(2) FinSequence-like V91() Element of the carrier of (TOP-REAL 2)
i1 `2 is V11() real ext-real Element of REAL
N-min (L~ h) is V42(2) FinSequence-like