:: MATRIX10 semantic presentation

REAL is V4() V35() V36() V37() V41() V56() set
NAT is V35() V36() V37() V38() V39() V40() V41() Element of bool REAL
bool REAL is set
COMPLEX is V4() V35() V41() V56() set
RAT is V4() V35() V36() V37() V38() V41() V56() set
INT is V4() V35() V36() V37() V38() V39() V41() V56() set
[:COMPLEX,COMPLEX:] is set
bool [:COMPLEX,COMPLEX:] is set
[:[:COMPLEX,COMPLEX:],COMPLEX:] is set
bool [:[:COMPLEX,COMPLEX:],COMPLEX:] is set
[:REAL,REAL:] is set
bool [:REAL,REAL:] is set
[:[:REAL,REAL:],REAL:] is set
bool [:[:REAL,REAL:],REAL:] is set
[:RAT,RAT:] is set
bool [:RAT,RAT:] is set
[:[:RAT,RAT:],RAT:] is set
bool [:[:RAT,RAT:],RAT:] is set
[:INT,INT:] is set
bool [:INT,INT:] is set
[:[:INT,INT:],INT:] is set
bool [:[:INT,INT:],INT:] is set
[:NAT,NAT:] is set
[:[:NAT,NAT:],NAT:] is set
bool [:[:NAT,NAT:],NAT:] is set
NAT is V35() V36() V37() V38() V39() V40() V41() set
bool NAT is set
bool NAT is set
1 is ext-real positive non negative V4() V9() V13() V14() V15() V33() V34() V35() V36() V37() V38() V39() V40() Element of NAT
2 is ext-real positive non negative V4() V9() V13() V14() V15() V33() V34() V35() V36() V37() V38() V39() V40() Element of NAT
F_Real is V69() V73() V95() V115() V118() V123() V125() V127() V130() V131() V132() right-distributive left-distributive right_unital well-unital V144() left_unital L11()
the U1 of F_Real is V35() V36() V37() set
K291( the U1 of F_Real) is M10( the U1 of F_Real)
K291(REAL) is M10( REAL )
0c is V4() V35() V36() V37() V38() V39() V40() V41() set
0 is ext-real non positive non negative V4() V9() V13() V14() V15() V33() V34() V35() V36() V37() V38() V39() V40() V41() Element of NAT
K158() is V16() V19([:REAL,REAL:]) V20( REAL ) V21() V30([:REAL,REAL:], REAL ) Element of bool [:[:REAL,REAL:],REAL:]
K160() is V16() V19([:REAL,REAL:]) V20( REAL ) V21() V30([:REAL,REAL:], REAL ) Element of bool [:[:REAL,REAL:],REAL:]
G11(REAL,K158(),K160(),1,0) is V118() L11()
a is V16() V19( NAT ) V20(K291(REAL)) V21() FinSequence-like tabular FinSequence of K291(REAL)
len a is ext-real non negative V9() V13() V14() V15() V33() V34() V35() V36() V37() V38() V39() V40() Element of NAT
width a is ext-real non negative V9() V13() V14() V15() V33() V34() V35() V36() V37() V38() V39() V40() Element of NAT
Indices a is set
dom a is V35() V36() V37() V38() V39() V40() Element of bool NAT
Seg (width a) is V35() V36() V37() V38() V39() V40() Element of bool NAT
[:(dom a),(Seg (width a)):] is set
b is V16() V19( NAT ) V20(K291(REAL)) V21() FinSequence-like tabular Matrix of len a, width a, REAL
Indices b is set
dom b is V35() V36() V37() V38() V39() V40() Element of bool NAT
width b is ext-real non negative V9() V13() V14() V15() V33() V34() V35() V36() V37() V38() V39() V40() Element of NAT
Seg (width b) is V35() V36() V37() V38() V39() V40() Element of bool NAT
[:(dom b),(Seg (width b)):] is set
len b is ext-real non negative V9() V13() V14() V15() V33() V34() V35() V36() V37() V38() V39() V40() Element of NAT
n is ext-real non negative V9() V13() V14() V15() set
M1 is ext-real non negative V9() V13() V14() V15() set
[n,M1] is set
b * (n,M1) is ext-real V14() V15() Element of REAL
a * (n,M1) is ext-real V14() V15() Element of REAL
abs (a * (n,M1)) is ext-real V14() V15() Element of REAL
b is V16() V19( NAT ) V20(K291(REAL)) V21() FinSequence-like tabular FinSequence of K291(REAL)
len b is ext-real non negative V9() V13() V14() V15() V33() V34() V35() V36() V37() V38() V39() V40() Element of NAT
width b is ext-real non negative V9() V13() V14() V15() V33() V34() V35() V36() V37() V38() V39() V40() Element of NAT
n is V16() V19( NAT ) V20(K291(REAL)) V21() FinSequence-like tabular FinSequence of K291(REAL)
len n is ext-real non negative V9() V13() V14() V15() V33() V34() V35() V36() V37() V38() V39() V40() Element of NAT
width n is ext-real non negative V9() V13() V14() V15() V33() V34() V35() V36() V37() V38() V39() V40() Element of NAT
M1 is ext-real non negative V9() V13() V14() V15() set
M2 is ext-real non negative V9() V13() V14() V15() set
[M1,M2] is set
Indices b is set
dom b is V35() V36() V37() V38() V39() V40() Element of bool NAT
Seg (width b) is V35() V36() V37() V38() V39() V40() Element of bool NAT
[:(dom b),(Seg (width b)):] is set
b * (M1,M2) is ext-real V14() V15() Element of REAL
a * (M1,M2) is ext-real V14() V15() Element of REAL
abs (a * (M1,M2)) is ext-real V14() V15() Element of REAL
n * (M1,M2) is ext-real V14() V15() Element of REAL
a is ext-real non negative V9() V13() V14() V15() set
b is V16() V19( NAT ) V20(K291(REAL)) V21() FinSequence-like tabular Matrix of a,a, REAL
- b is V16() V19( NAT ) V20(K291(REAL)) V21() FinSequence-like tabular FinSequence of K291(REAL)
MXR2MXF b is V16() V19( NAT ) V20(K291( the U1 of F_Real)) V21() FinSequence-like tabular FinSequence of K291( the U1 of F_Real)
- (MXR2MXF b) is V16() V19( NAT ) V20(K291( the U1 of F_Real)) V21() FinSequence-like tabular FinSequence of K291( the U1 of F_Real)
MXF2MXR (- (MXR2MXF b)) is V16() V19( NAT ) V20(K291(REAL)) V21() FinSequence-like tabular FinSequence of K291(REAL)
len b is ext-real non negative V9() V13() V14() V15() V33() V34() V35() V36() V37() V38() V39() V40() Element of NAT
len (- b) is ext-real non negative V9() V13() V14() V15() V33() V34() V35() V36() V37() V38() V39() V40() Element of NAT
width b is ext-real non negative V9() V13() V14() V15() V33() V34() V35() V36() V37() V38() V39() V40() Element of NAT
width (- b) is ext-real non negative V9() V13() V14() V15() V33() V34() V35() V36() V37() V38() V39() V40() Element of NAT
a is ext-real non negative V9() V13() V14() V15() set
b is V16() V19( NAT ) V20(K291(REAL)) V21() FinSequence-like tabular Matrix of a,a, REAL
n is V16() V19( NAT ) V20(K291(REAL)) V21() FinSequence-like tabular Matrix of a,a, REAL
b + n is V16() V19( NAT ) V20(K291(REAL)) V21() FinSequence-like tabular FinSequence of K291(REAL)
MXR2MXF b is V16() V19( NAT ) V20(K291( the U1 of F_Real)) V21() FinSequence-like tabular FinSequence of K291( the U1 of F_Real)
MXR2MXF n is V16() V19( NAT ) V20(K291( the U1 of F_Real)) V21() FinSequence-like tabular FinSequence of K291( the U1 of F_Real)
(MXR2MXF b) + (MXR2MXF n) is V16() V19( NAT ) V20(K291( the U1 of F_Real)) V21() FinSequence-like tabular FinSequence of K291( the U1 of F_Real)
MXF2MXR ((MXR2MXF b) + (MXR2MXF n)) is V16() V19( NAT ) V20(K291(REAL)) V21() FinSequence-like tabular FinSequence of K291(REAL)
width n is ext-real non negative V9() V13() V14() V15() V33() V34() V35() V36() V37() V38() V39() V40() Element of NAT
width b is ext-real non negative V9() V13() V14() V15() V33() V34() V35() V36() V37() V38() V39() V40() Element of NAT
len (b + n) is ext-real non negative V9() V13() V14() V15() V33() V34() V35() V36() V37() V38() V39() V40() Element of NAT
len b is ext-real non negative V9() V13() V14() V15() V33() V34() V35() V36() V37() V38() V39() V40() Element of NAT
width (b + n) is ext-real non negative V9() V13() V14() V15() V33() V34() V35() V36() V37() V38() V39() V40() Element of NAT
a is ext-real non negative V9() V13() V14() V15() set
b is V16() V19( NAT ) V20(K291(REAL)) V21() FinSequence-like tabular Matrix of a,a, REAL
n is V16() V19( NAT ) V20(K291(REAL)) V21() FinSequence-like tabular Matrix of a,a, REAL
b - n is V16() V19( NAT ) V20(K291(REAL)) V21() FinSequence-like tabular FinSequence of K291(REAL)
MXR2MXF b is V16() V19( NAT ) V20(K291( the U1 of F_Real)) V21() FinSequence-like tabular FinSequence of K291( the U1 of F_Real)
MXR2MXF n is V16() V19( NAT ) V20(K291( the U1 of F_Real)) V21() FinSequence-like tabular FinSequence of K291( the U1 of F_Real)
K360(F_Real,(MXR2MXF b),(MXR2MXF n)) is V16() V19( NAT ) V20(K291( the U1 of F_Real)) V21() FinSequence-like tabular FinSequence of K291( the U1 of F_Real)
MXF2MXR K360(F_Real,(MXR2MXF b),(MXR2MXF n)) is V16() V19( NAT ) V20(K291(REAL)) V21() FinSequence-like tabular FinSequence of K291(REAL)
(a,n) is V16() V19( NAT ) V20(K291(REAL)) V21() FinSequence-like tabular Matrix of a,a, REAL
- (MXR2MXF n) is V16() V19( NAT ) V20(K291( the U1 of F_Real)) V21() FinSequence-like tabular FinSequence of K291( the U1 of F_Real)
MXF2MXR (- (MXR2MXF n)) is V16() V19( NAT ) V20(K291(REAL)) V21() FinSequence-like tabular FinSequence of K291(REAL)
(a,b,(a,n)) is V16() V19( NAT ) V20(K291(REAL)) V21() FinSequence-like tabular Matrix of a,a, REAL
MXR2MXF (a,n) is V16() V19( NAT ) V20(K291( the U1 of F_Real)) V21() FinSequence-like tabular FinSequence of K291( the U1 of F_Real)
(MXR2MXF b) + (MXR2MXF (a,n)) is V16() V19( NAT ) V20(K291( the U1 of F_Real)) V21() FinSequence-like tabular FinSequence of K291( the U1 of F_Real)
MXF2MXR ((MXR2MXF b) + (MXR2MXF (a,n))) is V16() V19( NAT ) V20(K291(REAL)) V21() FinSequence-like tabular FinSequence of K291(REAL)
len (a,b,(a,n)) is ext-real non negative V9() V13() V14() V15() V33() V34() V35() V36() V37() V38() V39() V40() Element of NAT
len b is ext-real non negative V9() V13() V14() V15() V33() V34() V35() V36() V37() V38() V39() V40() Element of NAT
a is ext-real non negative V9() V13() V14() V15() set
b is ext-real V14() V15() Element of REAL
n is V16() V19( NAT ) V20(K291(REAL)) V21() FinSequence-like tabular Matrix of a,a, REAL
b * n is V16() V19( NAT ) V20(K291(REAL)) V21() FinSequence-like tabular FinSequence of K291(REAL)
width (b * n) is ext-real non negative V9() V13() V14() V15() V33() V34() V35() V36() V37() V38() V39() V40() Element of NAT
width n is ext-real non negative V9() V13() V14() V15() V33() V34() V35() V36() V37() V38() V39() V40() Element of NAT
len (b * n) is ext-real non negative V9() V13() V14() V15() V33() V34() V35() V36() V37() V38() V39() V40() Element of NAT
len n is ext-real non negative V9() V13() V14() V15() V33() V34() V35() V36() V37() V38() V39() V40() Element of NAT
(1,1) --> 1 is V16() V19( NAT ) V20(K291(REAL)) V21() FinSequence-like tabular Matrix of 1,1, REAL
Indices ((1,1) --> 1) is set
dom ((1,1) --> 1) is V35() V36() V37() V38() V39() V40() Element of bool NAT
width ((1,1) --> 1) is ext-real non negative V9() V13() V14() V15() V33() V34() V35() V36() V37() V38() V39() V40() Element of NAT
Seg (width ((1,1) --> 1)) is V35() V36() V37() V38() V39() V40() Element of bool NAT
[:(dom ((1,1) --> 1)),(Seg (width ((1,1) --> 1))):] is set
a is ext-real non negative V9() V13() V14() V15() set
b is ext-real non negative V9() V13() V14() V15() set
[a,b] is set
((1,1) --> 1) * (a,b) is ext-real V14() V15() Element of REAL
a is V16() V19( NAT ) V20(K291(REAL)) V21() FinSequence-like tabular FinSequence of K291(REAL)
Indices ((1,1) --> 1) is set
dom ((1,1) --> 1) is V35() V36() V37() V38() V39() V40() Element of bool NAT
width ((1,1) --> 1) is ext-real non negative V9() V13() V14() V15() V33() V34() V35() V36() V37() V38() V39() V40() Element of NAT
Seg (width ((1,1) --> 1)) is V35() V36() V37() V38() V39() V40() Element of bool NAT
[:(dom ((1,1) --> 1)),(Seg (width ((1,1) --> 1))):] is set
a is ext-real non negative V9() V13() V14() V15() set
b is ext-real non negative V9() V13() V14() V15() set
[a,b] is set
((1,1) --> 1) * (a,b) is ext-real V14() V15() Element of REAL
a is V16() V19( NAT ) V20(K291(REAL)) V21() FinSequence-like tabular FinSequence of K291(REAL)
- 1 is ext-real non positive V14() V15() Element of REAL
(1,1) --> (- 1) is V16() V19( NAT ) V20(K291(REAL)) V21() FinSequence-like tabular Matrix of 1,1, REAL
Indices ((1,1) --> (- 1)) is set
dom ((1,1) --> (- 1)) is V35() V36() V37() V38() V39() V40() Element of bool NAT
width ((1,1) --> (- 1)) is ext-real non negative V9() V13() V14() V15() V33() V34() V35() V36() V37() V38() V39() V40() Element of NAT
Seg (width ((1,1) --> (- 1))) is V35() V36() V37() V38() V39() V40() Element of bool NAT
[:(dom ((1,1) --> (- 1))),(Seg (width ((1,1) --> (- 1)))):] is set
a is ext-real non negative V9() V13() V14() V15() set
b is ext-real non negative V9() V13() V14() V15() set
[a,b] is set
((1,1) --> (- 1)) * (a,b) is ext-real V14() V15() Element of REAL
a is V16() V19( NAT ) V20(K291(REAL)) V21() FinSequence-like tabular FinSequence of K291(REAL)
Indices ((1,1) --> (- 1)) is set
dom ((1,1) --> (- 1)) is V35() V36() V37() V38() V39() V40() Element of bool NAT
width ((1,1) --> (- 1)) is ext-real non negative V9() V13() V14() V15() V33() V34() V35() V36() V37() V38() V39() V40() Element of NAT
Seg (width ((1,1) --> (- 1))) is V35() V36() V37() V38() V39() V40() Element of bool NAT
[:(dom ((1,1) --> (- 1))),(Seg (width ((1,1) --> (- 1)))):] is set
a is ext-real non negative V9() V13() V14() V15() set
b is ext-real non negative V9() V13() V14() V15() set
[a,b] is set
((1,1) --> (- 1)) * (a,b) is ext-real V14() V15() Element of REAL
a is V16() V19( NAT ) V20(K291(REAL)) V21() FinSequence-like tabular FinSequence of K291(REAL)
a is V16() V19( NAT ) V20(K291(REAL)) V21() FinSequence-like tabular () FinSequence of K291(REAL)
a @ is V16() V19( NAT ) V20(K291(REAL)) V21() FinSequence-like tabular FinSequence of K291(REAL)
Indices (a @) is set
dom (a @) is V35() V36() V37() V38() V39() V40() Element of bool NAT
width (a @) is ext-real non negative V9() V13() V14() V15() V33() V34() V35() V36() V37() V38() V39() V40() Element of NAT
Seg (width (a @)) is V35() V36() V37() V38() V39() V40() Element of bool NAT
[:(dom (a @)),(Seg (width (a @))):] is set
b is ext-real non negative V9() V13() V14() V15() set
n is ext-real non negative V9() V13() V14() V15() set
[b,n] is set
(a @) * (b,n) is ext-real V14() V15() Element of REAL
[n,b] is set
Indices a is set
dom a is V35() V36() V37() V38() V39() V40() Element of bool NAT
width a is ext-real non negative V9() V13() V14() V15() V33() V34() V35() V36() V37() V38() V39() V40() Element of NAT
Seg (width a) is V35() V36() V37() V38() V39() V40() Element of bool NAT
[:(dom a),(Seg (width a)):] is set
a * (n,b) is ext-real V14() V15() Element of REAL
a is V16() V19( NAT ) V20(K291(REAL)) V21() FinSequence-like tabular () FinSequence of K291(REAL)
a @ is V16() V19( NAT ) V20(K291(REAL)) V21() FinSequence-like tabular FinSequence of K291(REAL)
Indices (a @) is set
dom (a @) is V35() V36() V37() V38() V39() V40() Element of bool NAT
width (a @) is ext-real non negative V9() V13() V14() V15() V33() V34() V35() V36() V37() V38() V39() V40() Element of NAT
Seg (width (a @)) is V35() V36() V37() V38() V39() V40() Element of bool NAT
[:(dom (a @)),(Seg (width (a @))):] is set
b is ext-real non negative V9() V13() V14() V15() set
n is ext-real non negative V9() V13() V14() V15() set
[b,n] is set
(a @) * (b,n) is ext-real V14() V15() Element of REAL
[n,b] is set
Indices a is set
dom a is V35() V36() V37() V38() V39() V40() Element of bool NAT
width a is ext-real non negative V9() V13() V14() V15() V33() V34() V35() V36() V37() V38() V39() V40() Element of NAT
Seg (width a) is V35() V36() V37() V38() V39() V40() Element of bool NAT
[:(dom a),(Seg (width a)):] is set
a * (n,b) is ext-real V14() V15() Element of REAL
a is V16() V19( NAT ) V20(K291(REAL)) V21() FinSequence-like tabular () FinSequence of K291(REAL)
a @ is V16() V19( NAT ) V20(K291(REAL)) V21() FinSequence-like tabular FinSequence of K291(REAL)
Indices (a @) is set
dom (a @) is V35() V36() V37() V38() V39() V40() Element of bool NAT
width (a @) is ext-real non negative V9() V13() V14() V15() V33() V34() V35() V36() V37() V38() V39() V40() Element of NAT
Seg (width (a @)) is V35() V36() V37() V38() V39() V40() Element of bool NAT
[:(dom (a @)),(Seg (width (a @))):] is set
b is ext-real non negative V9() V13() V14() V15() set
n is ext-real non negative V9() V13() V14() V15() set
[b,n] is set
(a @) * (b,n) is ext-real V14() V15() Element of REAL
[n,b] is set
Indices a is set
dom a is V35() V36() V37() V38() V39() V40() Element of bool NAT
width a is ext-real non negative V9() V13() V14() V15() V33() V34() V35() V36() V37() V38() V39() V40() Element of NAT
Seg (width a) is V35() V36() V37() V38() V39() V40() Element of bool NAT
[:(dom a),(Seg (width a)):] is set
a * (n,b) is ext-real V14() V15() Element of REAL
a is V16() V19( NAT ) V20(K291(REAL)) V21() FinSequence-like tabular () FinSequence of K291(REAL)
a @ is V16() V19( NAT ) V20(K291(REAL)) V21() FinSequence-like tabular FinSequence of K291(REAL)
Indices (a @) is set
dom (a @) is V35() V36() V37() V38() V39() V40() Element of bool NAT
width (a @) is ext-real non negative V9() V13() V14() V15() V33() V34() V35() V36() V37() V38() V39() V40() Element of NAT
Seg (width (a @)) is V35() V36() V37() V38() V39() V40() Element of bool NAT
[:(dom (a @)),(Seg (width (a @))):] is set
b is ext-real non negative V9() V13() V14() V15() set
n is ext-real non negative V9() V13() V14() V15() set
[b,n] is set
(a @) * (b,n) is ext-real V14() V15() Element of REAL
[n,b] is set
Indices a is set
dom a is V35() V36() V37() V38() V39() V40() Element of bool NAT
width a is ext-real non negative V9() V13() V14() V15() V33() V34() V35() V36() V37() V38() V39() V40() Element of NAT
Seg (width a) is V35() V36() V37() V38() V39() V40() Element of bool NAT
[:(dom a),(Seg (width a)):] is set
a * (n,b) is ext-real V14() V15() Element of REAL
a is ext-real non negative V9() V13() V14() V15() set
(a,a) --> 1 is V16() V19( NAT ) V20(K291(REAL)) V21() FinSequence-like tabular Matrix of a,a, REAL
Indices ((a,a) --> 1) is set
dom ((a,a) --> 1) is V35() V36() V37() V38() V39() V40() Element of bool NAT
width ((a,a) --> 1) is ext-real non negative V9() V13() V14() V15() V33() V34() V35() V36() V37() V38() V39() V40() Element of NAT
Seg (width ((a,a) --> 1)) is V35() V36() V37() V38() V39() V40() Element of bool NAT
[:(dom ((a,a) --> 1)),(Seg (width ((a,a) --> 1))):] is set
b is ext-real non negative V9() V13() V14() V15() set
n is ext-real non negative V9() V13() V14() V15() set
[b,n] is set
((a,a) --> 1) * (b,n) is ext-real V14() V15() Element of REAL
b is V16() V19( NAT ) V20(K291(REAL)) V21() FinSequence-like tabular Matrix of a,a, REAL
(a,a) --> (- 1) is V16() V19( NAT ) V20(K291(REAL)) V21() FinSequence-like tabular Matrix of a,a, REAL
Indices ((a,a) --> (- 1)) is set
dom ((a,a) --> (- 1)) is V35() V36() V37() V38() V39() V40() Element of bool NAT
width ((a,a) --> (- 1)) is ext-real non negative V9() V13() V14() V15() V33() V34() V35() V36() V37() V38() V39() V40() Element of NAT
Seg (width ((a,a) --> (- 1))) is V35() V36() V37() V38() V39() V40() Element of bool NAT
[:(dom ((a,a) --> (- 1))),(Seg (width ((a,a) --> (- 1)))):] is set
b is ext-real non negative V9() V13() V14() V15() set
n is ext-real non negative V9() V13() V14() V15() set
[b,n] is set
((a,a) --> (- 1)) * (b,n) is ext-real V14() V15() Element of REAL
b is V16() V19( NAT ) V20(K291(REAL)) V21() FinSequence-like tabular Matrix of a,a, REAL
Indices ((a,a) --> (- 1)) is set
dom ((a,a) --> (- 1)) is V35() V36() V37() V38() V39() V40() Element of bool NAT
width ((a,a) --> (- 1)) is ext-real non negative V9() V13() V14() V15() V33() V34() V35() V36() V37() V38() V39() V40() Element of NAT
Seg (width ((a,a) --> (- 1))) is V35() V36() V37() V38() V39() V40() Element of bool NAT
[:(dom ((a,a) --> (- 1))),(Seg (width ((a,a) --> (- 1)))):] is set
b is ext-real non negative V9() V13() V14() V15() set
n is ext-real non negative V9() V13() V14() V15() set
[b,n] is set
((a,a) --> (- 1)) * (b,n) is ext-real V14() V15() Element of REAL
b is V16() V19( NAT ) V20(K291(REAL)) V21() FinSequence-like tabular Matrix of a,a, REAL
Indices ((a,a) --> 1) is set
dom ((a,a) --> 1) is V35() V36() V37() V38() V39() V40() Element of bool NAT
width ((a,a) --> 1) is ext-real non negative V9() V13() V14() V15() V33() V34() V35() V36() V37() V38() V39() V40() Element of NAT
Seg (width ((a,a) --> 1)) is V35() V36() V37() V38() V39() V40() Element of bool NAT
[:(dom ((a,a) --> 1)),(Seg (width ((a,a) --> 1))):] is set
b is ext-real non negative V9() V13() V14() V15() set
n is ext-real non negative V9() V13() V14() V15() set
[b,n] is set
((a,a) --> 1) * (b,n) is ext-real V14() V15() Element of REAL
b is V16() V19( NAT ) V20(K291(REAL)) V21() FinSequence-like tabular Matrix of a,a, REAL
a is ext-real non negative V9() V13() V14() V15() set
(a,a) --> 1 is V16() V19( NAT ) V20(K291(REAL)) V20(K291(REAL)) V21() FinSequence-like tabular () () Matrix of a,a, REAL
(a,a) --> (- 1) is V16() V19( NAT ) V20(K291(REAL)) V20(K291(REAL)) V21() FinSequence-like tabular () () Matrix of a,a, REAL
a is ext-real non negative V9() V13() V14() V15() set
b is V16() V19( NAT ) V20(K291(REAL)) V21() FinSequence-like tabular Matrix of a,a, REAL
len b is ext-real non negative V9() V13() V14() V15() V33() V34() V35() V36() V37() V38() V39() V40() Element of NAT
width b is ext-real non negative V9() V13() V14() V15() V33() V34() V35() V36() V37() V38() V39() V40() Element of NAT
n is V16() V19( NAT ) V20(K291(REAL)) V21() FinSequence-like tabular Matrix of a,a, REAL
len n is ext-real non negative V9() V13() V14() V15() V33() V34() V35() V36() V37() V38() V39() V40() Element of NAT
width n is ext-real non negative V9() V13() V14() V15() V33() V34() V35() V36() V37() V38() V39() V40() Element of NAT
a is ext-real V14() V15() Element of the U1 of F_Real
b is ext-real V14() V15() Element of REAL
- a is ext-real V14() V15() Element of the U1 of F_Real
K132(a) is ext-real V14() V15() Element of REAL
- b is ext-real V14() V15() Element of REAL
a is ext-real non negative V9() V13() V14() V15() set
b is ext-real non negative V9() V13() V14() V15() set
[a,b] is set
n is V16() V19( NAT ) V20(K291(REAL)) V21() FinSequence-like tabular FinSequence of K291(REAL)
Indices n is set
dom n is V35() V36() V37() V38() V39() V40() Element of bool NAT
width n is ext-real non negative V9() V13() V14() V15() V33() V34() V35() V36() V37() V38() V39() V40() Element of NAT
Seg (width n) is V35() V36() V37() V38() V39() V40() Element of bool NAT
[:(dom n),(Seg (width n)):] is set
- n is V16() V19( NAT ) V20(K291(REAL)) V21() FinSequence-like tabular FinSequence of K291(REAL)
MXR2MXF n is V16() V19( NAT ) V20(K291( the U1 of F_Real)) V21() FinSequence-like tabular FinSequence of K291( the U1 of F_Real)
- (MXR2MXF n) is V16() V19( NAT ) V20(K291( the U1 of F_Real)) V21() FinSequence-like tabular FinSequence of K291( the U1 of F_Real)
MXF2MXR (- (MXR2MXF n)) is V16() V19( NAT ) V20(K291(REAL)) V21() FinSequence-like tabular FinSequence of K291(REAL)
(- n) * (a,b) is ext-real V14() V15() Element of REAL
n * (a,b) is ext-real V14() V15() Element of REAL
- (n * (a,b)) is ext-real V14() V15() Element of REAL
(MXR2MXF n) * (a,b) is ext-real V14() V15() Element of the U1 of F_Real
- ((MXR2MXF n) * (a,b)) is ext-real V14() V15() Element of the U1 of F_Real
K132(((MXR2MXF n) * (a,b))) is ext-real V14() V15() Element of REAL
a is ext-real non negative V9() V13() V14() V15() set
b is ext-real non negative V9() V13() V14() V15() set
[a,b] is set
n is V16() V19( NAT ) V20(K291(REAL)) V21() FinSequence-like tabular FinSequence of K291(REAL)
len n is ext-real non negative V9() V13() V14() V15() V33() V34() V35() V36() V37() V38() V39() V40() Element of NAT
M1 is V16() V19( NAT ) V20(K291(REAL)) V21() FinSequence-like tabular FinSequence of K291(REAL)
len M1 is ext-real non negative V9() V13() V14() V15() V33() V34() V35() V36() V37() V38() V39() V40() Element of NAT
width n is ext-real non negative V9() V13() V14() V15() V33() V34() V35() V36() V37() V38() V39() V40() Element of NAT
width M1 is ext-real non negative V9() V13() V14() V15() V33() V34() V35() V36() V37() V38() V39() V40() Element of NAT
Indices n is set
dom n is V35() V36() V37() V38() V39() V40() Element of bool NAT
Seg (width n) is V35() V36() V37() V38() V39() V40() Element of bool NAT
[:(dom n),(Seg (width n)):] is set
n - M1 is V16() V19( NAT ) V20(K291(REAL)) V21() FinSequence-like tabular FinSequence of K291(REAL)
MXR2MXF n is V16() V19( NAT ) V20(K291( the U1 of F_Real)) V21() FinSequence-like tabular FinSequence of K291( the U1 of F_Real)
MXR2MXF M1 is V16() V19( NAT ) V20(K291( the U1 of F_Real)) V21() FinSequence-like tabular FinSequence of K291( the U1 of F_Real)
K360(F_Real,(MXR2MXF n),(MXR2MXF M1)) is V16() V19( NAT ) V20(K291( the U1 of F_Real)) V21() FinSequence-like tabular FinSequence of K291( the U1 of F_Real)
MXF2MXR K360(F_Real,(MXR2MXF n),(MXR2MXF M1)) is V16() V19( NAT ) V20(K291(REAL)) V21() FinSequence-like tabular FinSequence of K291(REAL)
(n - M1) * (a,b) is ext-real V14() V15() Element of REAL
n * (a,b) is ext-real V14() V15() Element of REAL
M1 * (a,b) is ext-real V14() V15() Element of REAL
(n * (a,b)) - (M1 * (a,b)) is ext-real V14() V15() Element of REAL
Indices (MXR2MXF M1) is set
dom (MXR2MXF M1) is V35() V36() V37() V38() V39() V40() Element of bool NAT
width (MXR2MXF M1) is ext-real non negative V9() V13() V14() V15() V33() V34() V35() V36() V37() V38() V39() V40() Element of NAT
Seg (width (MXR2MXF M1)) is V35() V36() V37() V38() V39() V40() Element of bool NAT
[:(dom (MXR2MXF M1)),(Seg (width (MXR2MXF M1))):] is set
- (MXR2MXF M1) is V16() V19( NAT ) V20(K291( the U1 of F_Real)) V21() FinSequence-like tabular FinSequence of K291( the U1 of F_Real)
(MXR2MXF n) + (- (MXR2MXF M1)) is V16() V19( NAT ) V20(K291( the U1 of F_Real)) V21() FinSequence-like tabular FinSequence of K291( the U1 of F_Real)
((MXR2MXF n) + (- (MXR2MXF M1))) * (a,b) is ext-real V14() V15() Element of the U1 of F_Real
(MXR2MXF n) * (a,b) is ext-real V14() V15() Element of the U1 of F_Real
(- (MXR2MXF M1)) * (a,b) is ext-real V14() V15() Element of the U1 of F_Real
((MXR2MXF n) * (a,b)) + ((- (MXR2MXF M1)) * (a,b)) is ext-real V14() V15() Element of the U1 of F_Real
K134(((MXR2MXF n) * (a,b)),((- (MXR2MXF M1)) * (a,b))) is ext-real V14() V15() Element of REAL
(MXR2MXF M1) * (a,b) is ext-real V14() V15() Element of the U1 of F_Real
- ((MXR2MXF M1) * (a,b)) is ext-real V14() V15() Element of the U1 of F_Real
K132(((MXR2MXF M1) * (a,b))) is ext-real V14() V15() Element of REAL
((MXR2MXF n) * (a,b)) + (- ((MXR2MXF M1) * (a,b))) is ext-real V14() V15() Element of the U1 of F_Real
K134(((MXR2MXF n) * (a,b)),(- ((MXR2MXF M1) * (a,b)))) is ext-real V14() V15() Element of REAL
a is ext-real V14() V15() Element of REAL
b is ext-real non negative V9() V13() V14() V15() set
n is ext-real non negative V9() V13() V14() V15() set
[b,n] is set
M1 is V16() V19( NAT ) V20(K291(REAL)) V21() FinSequence-like tabular FinSequence of K291(REAL)
Indices M1 is set
dom M1 is V35() V36() V37() V38() V39() V40() Element of bool NAT
width M1 is ext-real non negative V9() V13() V14() V15() V33() V34() V35() V36() V37() V38() V39() V40() Element of NAT
Seg (width M1) is V35() V36() V37() V38() V39() V40() Element of bool NAT
[:(dom M1),(Seg (width M1)):] is set
a * M1 is V16() V19( NAT ) V20(K291(REAL)) V21() FinSequence-like tabular FinSequence of K291(REAL)
(a * M1) * (b,n) is ext-real V14() V15() Element of REAL
M1 * (b,n) is ext-real V14() V15() Element of REAL
a * (M1 * (b,n)) is ext-real V14() V15() Element of REAL
MXR2MXF (a * M1) is V16() V19( NAT ) V20(K291( the U1 of F_Real)) V21() FinSequence-like tabular FinSequence of K291( the U1 of F_Real)
MXR2MXF M1 is V16() V19( NAT ) V20(K291( the U1 of F_Real)) V21() FinSequence-like tabular FinSequence of K291( the U1 of F_Real)
M2 is ext-real V14() V15() Element of the U1 of F_Real
M2 * (MXR2MXF M1) is V16() V19( NAT ) V20(K291( the U1 of F_Real)) V21() FinSequence-like tabular FinSequence of K291( the U1 of F_Real)
MXF2MXR (M2 * (MXR2MXF M1)) is V16() V19( NAT ) V20(K291(REAL)) V21() FinSequence-like tabular FinSequence of K291(REAL)
MXR2MXF (MXF2MXR (M2 * (MXR2MXF M1))) is V16() V19( NAT ) V20(K291( the U1 of F_Real)) V21() FinSequence-like tabular FinSequence of K291( the U1 of F_Real)
(MXR2MXF M1) * (b,n) is ext-real V14() V15() Element of the U1 of F_Real
M2 * ((MXR2MXF M1) * (b,n)) is ext-real V14() V15() Element of the U1 of F_Real
K136(M2,((MXR2MXF M1) * (b,n))) is ext-real V14() V15() Element of REAL
a is ext-real non negative V9() V13() V14() V15() set
b is V16() V19( NAT ) V20(K291(REAL)) V21() FinSequence-like tabular Matrix of a,a, REAL
Indices b is set
dom b is V35() V36() V37() V38() V39() V40() Element of bool NAT
width b is ext-real non negative V9() V13() V14() V15() V33() V34() V35() V36() V37() V38() V39() V40() Element of NAT
Seg (width b) is V35() V36() V37() V38() V39() V40() Element of bool NAT
[:(dom b),(Seg (width b)):] is set
(b) is V16() V19( NAT ) V20(K291(REAL)) V21() FinSequence-like tabular FinSequence of K291(REAL)
Indices (b) is set
dom (b) is V35() V36() V37() V38() V39() V40() Element of bool NAT
width (b) is ext-real non negative V9() V13() V14() V15() V33() V34() V35() V36() V37() V38() V39() V40() Element of NAT
Seg (width (b)) is V35() V36() V37() V38() V39() V40() Element of bool NAT
[:(dom (b)),(Seg (width (b))):] is set
len b is ext-real non negative V9() V13() V14() V15() V33() V34() V35() V36() V37() V38() V39() V40() Element of NAT
Seg (len b) is V35() V36() V37() V38() V39() V40() Element of bool NAT
len (b) is ext-real non negative V9() V13() V14() V15() V33() V34() V35() V36() V37() V38() V39() V40() Element of NAT
a is ext-real V14() V15() Element of REAL
abs a is ext-real V14() V15() Element of REAL
b is ext-real non negative V9() V13() V14() V15() set
n is V16() V19( NAT ) V20(K291(REAL)) V21() FinSequence-like tabular Matrix of b,b, REAL
(b,a,n) is V16() V19( NAT ) V20(K291(REAL)) V21() FinSequence-like tabular Matrix of b,b, REAL
((b,a,n)) is V16() V19( NAT ) V20(K291(REAL)) V21() FinSequence-like tabular FinSequence of K291(REAL)
(n) is V16() V19( NAT ) V20(K291(REAL)) V21() FinSequence-like tabular FinSequence of K291(REAL)
(abs a) * (n) is V16() V19( NAT ) V20(K291(REAL)) V21() FinSequence-like tabular FinSequence of K291(REAL)
len (b,a,n) is ext-real non negative V9() V13() V14() V15() V33() V34() V35() V36() V37() V38() V39() V40() Element of NAT
len n is ext-real non negative V9() V13() V14() V15() V33() V34() V35() V36() V37() V38() V39() V40() Element of NAT
width (b,a,n) is ext-real non negative V9() V13() V14() V15() V33() V34() V35() V36() V37() V38() V39() V40() Element of NAT
width n is ext-real non negative V9() V13() V14() V15() V33() V34() V35() V36() V37() V38() V39() V40() Element of NAT
len ((abs a) * (n)) is ext-real non negative V9() V13() V14() V15() V33() V34() V35() V36() V37() V38() V39() V40() Element of NAT
len (n) is ext-real non negative V9() V13() V14() V15() V33() V34() V35() V36() V37() V38() V39() V40() Element of NAT
Indices ((b,a,n)) is set
dom ((b,a,n)) is V35() V36() V37() V38() V39() V40() Element of bool NAT
width ((b,a,n)) is ext-real non negative V9() V13() V14() V15() V33() V34() V35() V36() V37() V38() V39() V40() Element of NAT
Seg (width ((b,a,n))) is V35() V36() V37() V38() V39() V40() Element of bool NAT
[:(dom ((b,a,n))),(Seg (width ((b,a,n)))):] is set
Indices (b,a,n) is set
dom (b,a,n) is V35() V36() V37() V38() V39() V40() Element of bool NAT
Seg (width (b,a,n)) is V35() V36() V37() V38() V39() V40() Element of bool NAT
[:(dom (b,a,n)),(Seg (width (b,a,n))):] is set
Indices n is set
dom n is V35() V36() V37() V38() V39() V40() Element of bool NAT
Seg (width n) is V35() V36() V37() V38() V39() V40() Element of bool NAT
[:(dom n),(Seg (width n)):] is set
M1 is ext-real non negative V9() V13() V14() V15() set
M2 is ext-real non negative V9() V13() V14() V15() set
[M1,M2] is set
((b,a,n)) * (M1,M2) is ext-real V14() V15() Element of REAL
((abs a) * (n)) * (M1,M2) is ext-real V14() V15() Element of REAL
(b,a,n) * (M1,M2) is ext-real V14() V15() Element of REAL
abs ((b,a,n) * (M1,M2)) is ext-real V14() V15() Element of REAL
n * (M1,M2) is ext-real V14() V15() Element of REAL
a * (n * (M1,M2)) is ext-real V14() V15() Element of REAL
abs (a * (n * (M1,M2))) is ext-real V14() V15() Element of REAL
abs (n * (M1,M2)) is ext-real V14() V15() Element of REAL
(abs a) * (abs (n * (M1,M2))) is ext-real V14() V15() Element of REAL
Indices (n) is set
dom (n) is V35() V36() V37() V38() V39() V40() Element of bool NAT
width (n) is ext-real non negative V9() V13() V14() V15() V33() V34() V35() V36() V37() V38() V39() V40() Element of NAT
Seg (width (n)) is V35() V36() V37() V38() V39() V40() Element of bool NAT
[:(dom (n)),(Seg (width (n))):] is set
(n) * (M1,M2) is ext-real V14() V15() Element of REAL
(abs a) * ((n) * (M1,M2)) is ext-real V14() V15() Element of REAL
width ((abs a) * (n)) is ext-real non negative V9() V13() V14() V15() V33() V34() V35() V36() V37() V38() V39() V40() Element of NAT
width (n) is ext-real non negative V9() V13() V14() V15() V33() V34() V35() V36() V37() V38() V39() V40() Element of NAT
len ((b,a,n)) is ext-real non negative V9() V13() V14() V15() V33() V34() V35() V36() V37() V38() V39() V40() Element of NAT
a is ext-real non negative V9() V13() V14() V15() set
b is V16() V19( NAT ) V20(K291(REAL)) V21() FinSequence-like tabular Matrix of a,a, REAL
(a,b) is V16() V19( NAT ) V20(K291(REAL)) V21() FinSequence-like tabular Matrix of a,a, REAL
MXR2MXF b is V16() V19( NAT ) V20(K291( the U1 of F_Real)) V21() FinSequence-like tabular FinSequence of K291( the U1 of F_Real)
- (MXR2MXF b) is V16() V19( NAT ) V20(K291( the U1 of F_Real)) V21() FinSequence-like tabular FinSequence of K291( the U1 of F_Real)
MXF2MXR (- (MXR2MXF b)) is V16() V19( NAT ) V20(K291(REAL)) V21() FinSequence-like tabular FinSequence of K291(REAL)
Indices b is set
dom b is V35() V36() V37() V38() V39() V40() Element of bool NAT
width b is ext-real non negative V9() V13() V14() V15() V33() V34() V35() V36() V37() V38() V39() V40() Element of NAT
Seg (width b) is V35() V36() V37() V38() V39() V40() Element of bool NAT
[:(dom b),(Seg (width b)):] is set
Seg a is V35() V36() V37() V38() V39() V40() Element of bool NAT
[:(Seg a),(Seg a):] is set
Indices (a,b) is set
dom (a,b) is V35() V36() V37() V38() V39() V40() Element of bool NAT
width (a,b) is ext-real non negative V9() V13() V14() V15() V33() V34() V35() V36() V37() V38() V39() V40() Element of NAT
Seg (width (a,b)) is V35() V36() V37() V38() V39() V40() Element of bool NAT
[:(dom (a,b)),(Seg (width (a,b))):] is set
n is ext-real non negative V9() V13() V14() V15() set
M1 is ext-real non negative V9() V13() V14() V15() set
[n,M1] is set
(a,b) * (n,M1) is ext-real V14() V15() Element of REAL
b * (n,M1) is ext-real V14() V15() Element of REAL
- (b * (n,M1)) is ext-real V14() V15() Element of REAL
a is ext-real non negative V9() V13() V14() V15() set
b is V16() V19( NAT ) V20(K291(REAL)) V21() FinSequence-like tabular Matrix of a,a, REAL
n is V16() V19( NAT ) V20(K291(REAL)) V21() FinSequence-like tabular Matrix of a,a, REAL
(a,b,n) is V16() V19( NAT ) V20(K291(REAL)) V21() FinSequence-like tabular Matrix of a,a, REAL
MXR2MXF b is V16() V19( NAT ) V20(K291( the U1 of F_Real)) V21() FinSequence-like tabular FinSequence of K291( the U1 of F_Real)
MXR2MXF n is V16() V19( NAT ) V20(K291( the U1 of F_Real)) V21() FinSequence-like tabular FinSequence of K291( the U1 of F_Real)
(MXR2MXF b) + (MXR2MXF n) is V16() V19( NAT ) V20(K291( the U1 of F_Real)) V21() FinSequence-like tabular FinSequence of K291( the U1 of F_Real)
MXF2MXR ((MXR2MXF b) + (MXR2MXF n)) is V16() V19( NAT ) V20(K291(REAL)) V21() FinSequence-like tabular FinSequence of K291(REAL)
Indices n is set
dom n is V35() V36() V37() V38() V39() V40() Element of bool NAT
width n is ext-real non negative V9() V13() V14() V15() V33() V34() V35() V36() V37() V38() V39() V40() Element of NAT
Seg (width n) is V35() V36() V37() V38() V39() V40() Element of bool NAT
[:(dom n),(Seg (width n)):] is set
Seg a is V35() V36() V37() V38() V39() V40() Element of bool NAT
[:(Seg a),(Seg a):] is set
Indices b is set
dom b is V35() V36() V37() V38() V39() V40() Element of bool NAT
width b is ext-real non negative V9() V13() V14() V15() V33() V34() V35() V36() V37() V38() V39() V40() Element of NAT
Seg (width b) is V35() V36() V37() V38() V39() V40() Element of bool NAT
[:(dom b),(Seg (width b)):] is set
Indices (a,b,n) is set
dom (a,b,n) is V35() V36() V37() V38() V39() V40() Element of bool NAT
width (a,b,n) is ext-real non negative V9() V13() V14() V15() V33() V34() V35() V36() V37() V38() V39() V40() Element of NAT
Seg (width (a,b,n)) is V35() V36() V37() V38() V39() V40() Element of bool NAT
[:(dom (a,b,n)),(Seg (width (a,b,n))):] is set
M1 is ext-real non negative V9() V13() V14() V15() set
M2 is ext-real non negative V9() V13() V14() V15() set
[M1,M2] is set
(a,b,n) * (M1,M2) is ext-real V14() V15() Element of REAL
b * (M1,M2) is ext-real V14() V15() Element of REAL
n * (M1,M2) is ext-real V14() V15() Element of REAL
(b * (M1,M2)) + (n * (M1,M2)) is ext-real V14() V15() Element of REAL
a is ext-real non negative V9() V13() V14() V15() set
b is V16() V19( NAT ) V20(K291(REAL)) V21() FinSequence-like tabular Matrix of a,a, REAL
(a,b) is V16() V19( NAT ) V20(K291(REAL)) V21() FinSequence-like tabular Matrix of a,a, REAL
MXR2MXF b is V16() V19( NAT ) V20(K291( the U1 of F_Real)) V21() FinSequence-like tabular FinSequence of K291( the U1 of F_Real)
- (MXR2MXF b) is V16() V19( NAT ) V20(K291( the U1 of F_Real)) V21() FinSequence-like tabular FinSequence of K291( the U1 of F_Real)
MXF2MXR (- (MXR2MXF b)) is V16() V19( NAT ) V20(K291(REAL)) V21() FinSequence-like tabular FinSequence of K291(REAL)
n is V16() V19( NAT ) V20(K291(REAL)) V21() FinSequence-like tabular Matrix of a,a, REAL
(a,n,b) is V16() V19( NAT ) V20(K291(REAL)) V21() FinSequence-like tabular Matrix of a,a, REAL
MXR2MXF n is V16() V19( NAT ) V20(K291( the U1 of F_Real)) V21() FinSequence-like tabular FinSequence of K291( the U1 of F_Real)
(MXR2MXF n) + (MXR2MXF b) is V16() V19( NAT ) V20(K291( the U1 of F_Real)) V21() FinSequence-like tabular FinSequence of K291( the U1 of F_Real)
MXF2MXR ((MXR2MXF n) + (MXR2MXF b)) is V16() V19( NAT ) V20(K291(REAL)) V21() FinSequence-like tabular FinSequence of K291(REAL)
Indices n is set
dom n is V35() V36() V37() V38() V39() V40() Element of bool NAT
width n is ext-real non negative V9() V13() V14() V15() V33() V34() V35() V36() V37() V38() V39() V40() Element of NAT
Seg (width n) is V35() V36() V37() V38() V39() V40() Element of bool NAT
[:(dom n),(Seg (width n)):] is set
Seg a is V35() V36() V37() V38() V39() V40() Element of bool NAT
[:(Seg a),(Seg a):] is set
Indices b is set
dom b is V35() V36() V37() V38() V39() V40() Element of bool NAT
width b is ext-real non negative V9() V13() V14() V15() V33() V34() V35() V36() V37() V38() V39() V40() Element of NAT
Seg (width b) is V35() V36() V37() V38() V39() V40() Element of bool NAT
[:(dom b),(Seg (width b)):] is set
Indices (a,b) is set
dom (a,b) is V35() V36() V37() V38() V39() V40() Element of bool NAT
width (a,b) is ext-real non negative V9() V13() V14() V15() V33() V34() V35() V36() V37() V38() V39() V40() Element of NAT
Seg (width (a,b)) is V35() V36() V37() V38() V39() V40() Element of bool NAT
[:(dom (a,b)),(Seg (width (a,b))):] is set
Indices (a,n,b) is set
dom (a,n,b) is V35() V36() V37() V38() V39() V40() Element of bool NAT
width (a,n,b) is ext-real non negative V9() V13() V14() V15() V33() V34() V35() V36() V37() V38() V39() V40() Element of NAT
Seg (width (a,n,b)) is V35() V36() V37() V38() V39() V40() Element of bool NAT
[:(dom (a,n,b)),(Seg (width (a,n,b))):] is set
M1 is ext-real non negative V9() V13() V14() V15() set
M2 is ext-real non negative V9() V13() V14() V15() set
[M1,M2] is set
(a,n,b) * (M1,M2) is ext-real V14() V15() Element of REAL
n * (M1,M2) is ext-real V14() V15() Element of REAL
(a,b) * (M1,M2) is ext-real V14() V15() Element of REAL
b * (M1,M2) is ext-real V14() V15() Element of REAL
- (b * (M1,M2)) is ext-real V14() V15() Element of REAL
(n * (M1,M2)) + (b * (M1,M2)) is ext-real V14() V15() Element of REAL
a is ext-real non negative V9() V13() V14() V15() set
b is V16() V19( NAT ) V20(K291(REAL)) V21() FinSequence-like tabular Matrix of a,a, REAL
n is V16() V19( NAT ) V20(K291(REAL)) V21() FinSequence-like tabular Matrix of a,a, REAL
(a,b,n) is V16() V19( NAT ) V20(K291(REAL)) V21() FinSequence-like tabular Matrix of a,a, REAL
MXR2MXF b is V16() V19( NAT ) V20(K291( the U1 of F_Real)) V21() FinSequence-like tabular FinSequence of K291( the U1 of F_Real)
MXR2MXF n is V16() V19( NAT ) V20(K291( the U1 of F_Real)) V21() FinSequence-like tabular FinSequence of K291( the U1 of F_Real)
(MXR2MXF b) + (MXR2MXF n) is V16() V19( NAT ) V20(K291( the U1 of F_Real)) V21() FinSequence-like tabular FinSequence of K291( the U1 of F_Real)
MXF2MXR ((MXR2MXF b) + (MXR2MXF n)) is V16() V19( NAT ) V20(K291(REAL)) V21() FinSequence-like tabular FinSequence of K291(REAL)
Indices n is set
dom n is V35() V36() V37() V38() V39() V40() Element of bool NAT
width n is ext-real non negative V9() V13() V14() V15() V33() V34() V35() V36() V37() V38() V39() V40() Element of NAT
Seg (width n) is V35() V36() V37() V38() V39() V40() Element of bool NAT
[:(dom n),(Seg (width n)):] is set
Seg a is V35() V36() V37() V38() V39() V40() Element of bool NAT
[:(Seg a),(Seg a):] is set
Indices b is set
dom b is V35() V36() V37() V38() V39() V40() Element of bool NAT
width b is ext-real non negative V9() V13() V14() V15() V33() V34() V35() V36() V37() V38() V39() V40() Element of NAT
Seg (width b) is V35() V36() V37() V38() V39() V40() Element of bool NAT
[:(dom b),(Seg (width b)):] is set
Indices (a,b,n) is set
dom (a,b,n) is V35() V36() V37() V38() V39() V40() Element of bool NAT
width (a,b,n) is ext-real non negative V9() V13() V14() V15() V33() V34() V35() V36() V37() V38() V39() V40() Element of NAT
Seg (width (a,b,n)) is V35() V36() V37() V38() V39() V40() Element of bool NAT
[:(dom (a,b,n)),(Seg (width (a,b,n))):] is set
M1 is ext-real non negative V9() V13() V14() V15() set
M2 is ext-real non negative V9() V13() V14() V15() set
[M1,M2] is set
(a,b,n) * (M1,M2) is ext-real V14() V15() Element of REAL
b * (M1,M2) is ext-real V14() V15() Element of REAL
n * (M1,M2) is ext-real V14() V15() Element of REAL
(b * (M1,M2)) + (n * (M1,M2)) is ext-real V14() V15() Element of REAL
a is ext-real non negative V9() V13() V14() V15() set
b is V16() V19( NAT ) V20(K291(REAL)) V21() FinSequence-like tabular Matrix of a,a, REAL
(b) is V16() V19( NAT ) V20(K291(REAL)) V21() FinSequence-like tabular FinSequence of K291(REAL)
n is V16() V19( NAT ) V20(K291(REAL)) V21() FinSequence-like tabular Matrix of a,a, REAL
(n) is V16() V19( NAT ) V20(K291(REAL)) V21() FinSequence-like tabular FinSequence of K291(REAL)
(a,b,n) is V16() V19( NAT ) V20(K291(REAL)) V21() FinSequence-like tabular Matrix of a,a, REAL
MXR2MXF b is V16() V19( NAT ) V20(K291( the U1 of F_Real)) V21() FinSequence-like tabular FinSequence of K291( the U1 of F_Real)
MXR2MXF n is V16() V19( NAT ) V20(K291( the U1 of F_Real)) V21() FinSequence-like tabular FinSequence of K291( the U1 of F_Real)
(MXR2MXF b) + (MXR2MXF n) is V16() V19( NAT ) V20(K291( the U1 of F_Real)) V21() FinSequence-like tabular FinSequence of K291( the U1 of F_Real)
MXF2MXR ((MXR2MXF b) + (MXR2MXF n)) is V16() V19( NAT ) V20(K291(REAL)) V21() FinSequence-like tabular FinSequence of K291(REAL)
Indices n is set
dom n is V35() V36() V37() V38() V39() V40() Element of bool NAT
width n is ext-real non negative V9() V13() V14() V15() V33() V34() V35() V36() V37() V38() V39() V40() Element of NAT
Seg (width n) is V35() V36() V37() V38() V39() V40() Element of bool NAT
[:(dom n),(Seg (width n)):] is set
Seg a is V35() V36() V37() V38() V39() V40() Element of bool NAT
[:(Seg a),(Seg a):] is set
Indices (a,b,n) is set
dom (a,b,n) is V35() V36() V37() V38() V39() V40() Element of bool NAT
width (a,b,n) is ext-real non negative V9() V13() V14() V15() V33() V34() V35() V36() V37() V38() V39() V40() Element of NAT
Seg (width (a,b,n)) is V35() V36() V37() V38() V39() V40() Element of bool NAT
[:(dom (a,b,n)),(Seg (width (a,b,n))):] is set
Indices b is set
dom b is V35() V36() V37() V38() V39() V40() Element of bool NAT
width b is ext-real non negative V9() V13() V14() V15() V33() V34() V35() V36() V37() V38() V39() V40() Element of NAT
Seg (width b) is V35() V36() V37() V38() V39() V40() Element of bool NAT
[:(dom b),(Seg (width b)):] is set
M1 is ext-real non negative V9() V13() V14() V15() set
M2 is ext-real non negative V9() V13() V14() V15() set
[M1,M2] is set
(a,b,n) * (M1,M2) is ext-real V14() V15() Element of REAL
Indices (n) is set
dom (n) is V35() V36() V37() V38() V39() V40() Element of bool NAT
width (n) is ext-real non negative V9() V13() V14() V15() V33() V34() V35() V36() V37() V38() V39() V40() Element of NAT
Seg (width (n)) is V35() V36() V37() V38() V39() V40() Element of bool NAT
[:(dom (n)),(Seg (width (n))):] is set
(b) * (M1,M2) is ext-real V14() V15() Element of REAL
(n) * (M1,M2) is ext-real V14() V15() Element of REAL
n * (M1,M2) is ext-real V14() V15() Element of REAL
abs (n * (M1,M2)) is ext-real V14() V15() Element of REAL
b * (M1,M2) is ext-real V14() V15() Element of REAL
abs (b * (M1,M2)) is ext-real V14() V15() Element of REAL
(abs (b * (M1,M2))) - (abs (n * (M1,M2))) is ext-real V14() V15() Element of REAL
- (n * (M1,M2)) is ext-real V14() V15() Element of REAL
(b * (M1,M2)) + (n * (M1,M2)) is ext-real V14() V15() Element of REAL
a is ext-real non negative V9() V13() V14() V15() set
b is V16() V19( NAT ) V20(K291(REAL)) V21() FinSequence-like tabular Matrix of a,a, REAL
n is V16() V19( NAT ) V20(K291(REAL)) V21() FinSequence-like tabular Matrix of a,a, REAL
(a,b,n) is V16() V19( NAT ) V20(K291(REAL)) V21() FinSequence-like tabular Matrix of a,a, REAL
MXR2MXF b is V16() V19( NAT ) V20(K291( the U1 of F_Real)) V21() FinSequence-like tabular FinSequence of K291( the U1 of F_Real)
MXR2MXF n is V16() V19( NAT ) V20(K291( the U1 of F_Real)) V21() FinSequence-like tabular FinSequence of K291( the U1 of F_Real)
K360(F_Real,(MXR2MXF b),(MXR2MXF n)) is V16() V19( NAT ) V20(K291( the U1 of F_Real)) V21() FinSequence-like tabular FinSequence of K291( the U1 of F_Real)
MXF2MXR K360(F_Real,(MXR2MXF b),(MXR2MXF n)) is V16() V19( NAT ) V20(K291(REAL)) V21() FinSequence-like tabular FinSequence of K291(REAL)
Indices n is set
dom n is V35() V36() V37() V38() V39() V40() Element of bool NAT
width n is ext-real non negative V9() V13() V14() V15() V33() V34() V35() V36() V37() V38() V39() V40() Element of NAT
Seg (width n) is V35() V36() V37() V38() V39() V40() Element of bool NAT
[:(dom n),(Seg (width n)):] is set
Seg a is V35() V36() V37() V38() V39() V40() Element of bool NAT
[:(Seg a),(Seg a):] is set
Indices b is set
dom b is V35() V36() V37() V38() V39() V40() Element of bool NAT
width b is ext-real non negative V9() V13() V14() V15() V33() V34() V35() V36() V37() V38() V39() V40() Element of NAT
Seg (width b) is V35() V36() V37() V38() V39() V40() Element of bool NAT
[:(dom b),(Seg (width b)):] is set
Indices (a,b,n) is set
dom (a,b,n) is V35() V36() V37() V38() V39() V40() Element of bool NAT
width (a,b,n) is ext-real non negative V9() V13() V14() V15() V33() V34() V35() V36() V37() V38() V39() V40() Element of NAT
Seg (width (a,b,n)) is V35() V36() V37() V38() V39() V40() Element of bool NAT
[:(dom (a,b,n)),(Seg (width (a,b,n))):] is set
len b is ext-real non negative V9() V13() V14() V15() V33() V34() V35() V36() V37() V38() V39() V40() Element of NAT
len n is ext-real non negative V9() V13() V14() V15() V33() V34() V35() V36() V37() V38() V39() V40() Element of NAT
M1 is ext-real non negative V9() V13() V14() V15() set
M2 is ext-real non negative V9() V13() V14() V15() set
[M1,M2] is set
(a,b,n) * (M1,M2) is ext-real V14() V15() Element of REAL
b * (M1,M2) is ext-real V14() V15() Element of REAL
n * (M1,M2) is ext-real V14() V15() Element of REAL
(b * (M1,M2)) - (n * (M1,M2)) is ext-real V14() V15() Element of REAL
0 - 0 is ext-real non positive non negative V4() V14() V15() V35() V36() V37() V38() V39() V40() V41() Element of REAL
a is ext-real non negative V9() V13() V14() V15() set
b is V16() V19( NAT ) V20(K291(REAL)) V21() FinSequence-like tabular Matrix of a,a, REAL
n is V16() V19( NAT ) V20(K291(REAL)) V21() FinSequence-like tabular Matrix of a,a, REAL
(a,n,b) is V16() V19( NAT ) V20(K291(REAL)) V21() FinSequence-like tabular Matrix of a,a, REAL
MXR2MXF n is V16() V19( NAT ) V20(K291( the U1 of F_Real)) V21() FinSequence-like tabular FinSequence of K291( the U1 of F_Real)
MXR2MXF b is V16() V19( NAT ) V20(K291( the U1 of F_Real)) V21() FinSequence-like tabular FinSequence of K291( the U1 of F_Real)
K360(F_Real,(MXR2MXF n),(MXR2MXF b)) is V16() V19( NAT ) V20(K291( the U1 of F_Real)) V21() FinSequence-like tabular FinSequence of K291( the U1 of F_Real)
MXF2MXR K360(F_Real,(MXR2MXF n),(MXR2MXF b)) is V16() V19( NAT ) V20(K291(REAL)) V21() FinSequence-like tabular FinSequence of K291(REAL)
Indices b is set
dom b is V35() V36() V37() V38() V39() V40() Element of bool NAT
width b is ext-real non negative V9() V13() V14() V15() V33() V34() V35() V36() V37() V38() V39() V40() Element of NAT
Seg (width b) is V35() V36() V37() V38() V39() V40() Element of bool NAT
[:(dom b),(Seg (width b)):] is set
Seg a is V35() V36() V37() V38() V39() V40() Element of bool NAT
[:(Seg a),(Seg a):] is set
width n is ext-real non negative V9() V13() V14() V15() V33() V34() V35() V36() V37() V38() V39() V40() Element of NAT
Indices (a,n,b) is set
dom (a,n,b) is V35() V36() V37() V38() V39() V40() Element of bool NAT
width (a,n,b) is ext-real non negative V9() V13() V14() V15() V33() V34() V35() V36() V37() V38() V39() V40() Element of NAT
Seg (width (a,n,b)) is V35() V36() V37() V38() V39() V40() Element of bool NAT
[:(dom (a,n,b)),(Seg (width (a,n,b))):] is set
Indices n is set
dom n is V35() V36() V37() V38() V39() V40() Element of bool NAT
Seg (width n) is V35() V36() V37() V38() V39() V40() Element of bool NAT
[:(dom n),(Seg (width n)):] is set
len n is ext-real non negative V9() V13() V14() V15() V33() V34() V35() V36() V37() V38() V39() V40() Element of NAT
len b is ext-real non negative V9() V13() V14() V15() V33() V34() V35() V36() V37() V38() V39() V40() Element of NAT
M1 is ext-real non negative V9() V13() V14() V15() set
M2 is ext-real non negative V9() V13() V14() V15() set
[M1,M2] is set
(a,n,b) * (M1,M2) is ext-real V14() V15() Element of REAL
n * (M1,M2) is ext-real V14() V15() Element of REAL
b * (M1,M2) is ext-real V14() V15() Element of REAL
(n * (M1,M2)) - (b * (M1,M2)) is ext-real V14() V15() Element of REAL
a is ext-real V14() V15() Element of REAL
b is ext-real non negative V9() V13() V14() V15() set
n is V16() V19( NAT ) V20(K291(REAL)) V21() FinSequence-like tabular Matrix of b,b, REAL
(b,a,n) is V16() V19( NAT ) V20(K291(REAL)) V21() FinSequence-like tabular Matrix of b,b, REAL
Indices (b,a,n) is set
dom (b,a,n) is V35() V36() V37() V38() V39() V40() Element of bool NAT
width (b,a,n) is ext-real non negative V9() V13() V14() V15() V33() V34() V35() V36() V37() V38() V39() V40() Element of NAT
Seg (width (b,a,n)) is V35() V36() V37() V38() V39() V40() Element of bool NAT
[:(dom (b,a,n)),(Seg (width (b,a,n))):] is set
M1 is ext-real non negative V9() V13() V14() V15() set
M2 is ext-real non negative V9() V13() V14() V15() set
[M1,M2] is set
(b,a,n) * (M1,M2) is ext-real V14() V15() Element of REAL
Indices n is set
dom n is V35() V36() V37() V38() V39() V40() Element of bool NAT
width n is ext-real non negative V9() V13() V14() V15() V33() V34() V35() V36() V37() V38() V39() V40() Element of NAT
Seg (width n) is V35() V36() V37() V38() V39() V40() Element of bool NAT
[:(dom n),(Seg (width n)):] is set
n * (M1,M2) is ext-real V14() V15() Element of REAL
a * (n * (M1,M2)) is ext-real V14() V15() Element of REAL
a is ext-real V14() V15() Element of REAL
b is ext-real non negative V9() V13() V14() V15() set
n is V16() V19( NAT ) V20(K291(REAL)) V21() FinSequence-like tabular Matrix of b,b, REAL
(b,a,n) is V16() V19( NAT ) V20(K291(REAL)) V21() FinSequence-like tabular Matrix of b,b, REAL
Indices (b,a,n) is set
dom (b,a,n) is V35() V36() V37() V38() V39() V40() Element of bool NAT
width (b,a,n) is ext-real non negative V9() V13() V14() V15() V33() V34() V35() V36() V37() V38() V39() V40() Element of NAT
Seg (width (b,a,n)) is V35() V36() V37() V38() V39() V40() Element of bool NAT
[:(dom (b,a,n)),(Seg (width (b,a,n))):] is set
Indices n is set
dom n is V35() V36() V37() V38() V39() V40() Element of bool NAT
width n is ext-real non negative V9() V13() V14() V15() V33() V34() V35() V36() V37() V38() V39() V40() Element of NAT
Seg (width n) is V35() V36() V37() V38() V39() V40() Element of bool NAT
[:(dom n),(Seg (width n)):] is set
M1 is ext-real non negative V9() V13() V14() V15() set
M2 is ext-real non negative V9() V13() V14() V15() set
[M1,M2] is set
(b,a,n) * (M1,M2) is ext-real V14() V15() Element of REAL
n * (M1,M2) is ext-real V14() V15() Element of REAL
a * (n * (M1,M2)) is ext-real V14() V15() Element of REAL
a is ext-real non negative V9() V13() V14() V15() set
b is V16() V19( NAT ) V20(K291(REAL)) V21() FinSequence-like tabular Matrix of a,a, REAL
(a,b) is V16() V19( NAT ) V20(K291(REAL)) V21() FinSequence-like tabular Matrix of a,a, REAL
MXR2MXF b is V16() V19( NAT ) V20(K291( the U1 of F_Real)) V21() FinSequence-like tabular FinSequence of K291( the U1 of F_Real)
- (MXR2MXF b) is V16() V19( NAT ) V20(K291( the U1 of F_Real)) V21() FinSequence-like tabular FinSequence of K291( the U1 of F_Real)
MXF2MXR (- (MXR2MXF b)) is V16() V19( NAT ) V20(K291(REAL)) V21() FinSequence-like tabular FinSequence of K291(REAL)
Indices b is set
dom b is V35() V36() V37() V38() V39() V40() Element of bool NAT
width b is ext-real non negative V9() V13() V14() V15() V33() V34() V35() V36() V37() V38() V39() V40() Element of NAT
Seg (width b) is V35() V36() V37() V38() V39() V40() Element of bool NAT
[:(dom b),(Seg (width b)):] is set
Seg a is V35() V36() V37() V38() V39() V40() Element of bool NAT
[:(Seg a),(Seg a):] is set
Indices (a,b) is set
dom (a,b) is V35() V36() V37() V38() V39() V40() Element of bool NAT
width (a,b) is ext-real non negative V9() V13() V14() V15() V33() V34() V35() V36() V37() V38() V39() V40() Element of NAT
Seg (width (a,b)) is V35() V36() V37() V38() V39() V40() Element of bool NAT
[:(dom (a,b)),(Seg (width (a,b))):] is set
n is ext-real non negative V9() V13() V14() V15() set
M1 is ext-real non negative V9() V13() V14() V15() set
[n,M1] is set
(a,b) * (n,M1) is ext-real V14() V15() Element of REAL
b * (n,M1) is ext-real V14() V15() Element of REAL
0 * (- 1) is ext-real non positive non negative V4() V14() V15() V35() V36() V37() V38() V39() V40() V41() Element of REAL
(- 1) * (b * (n,M1)) is ext-real V14() V15() Element of REAL
- (b * (n,M1)) is ext-real V14() V15() Element of REAL
a is ext-real non negative V9() V13() V14() V15() set
b is V16() V19( NAT ) V20(K291(REAL)) V21() FinSequence-like tabular Matrix of a,a, REAL
n is V16() V19( NAT ) V20(K291(REAL)) V21() FinSequence-like tabular Matrix of a,a, REAL
(a,b,n) is V16() V19( NAT ) V20(K291(REAL)) V21() FinSequence-like tabular Matrix of a,a, REAL
MXR2MXF b is V16() V19( NAT ) V20(K291( the U1 of F_Real)) V21() FinSequence-like tabular FinSequence of K291( the U1 of F_Real)
MXR2MXF n is V16() V19( NAT ) V20(K291( the U1 of F_Real)) V21() FinSequence-like tabular FinSequence of K291( the U1 of F_Real)
(MXR2MXF b) + (MXR2MXF n) is V16() V19( NAT ) V20(K291( the U1 of F_Real)) V21() FinSequence-like tabular FinSequence of K291( the U1 of F_Real)
MXF2MXR ((MXR2MXF b) + (MXR2MXF n)) is V16() V19( NAT ) V20(K291(REAL)) V21() FinSequence-like tabular FinSequence of K291(REAL)
Indices b is set
dom b is V35() V36() V37() V38() V39() V40() Element of bool NAT
width b is ext-real non negative V9() V13() V14() V15() V33() V34() V35() V36() V37() V38() V39() V40() Element of NAT
Seg (width b) is V35() V36() V37() V38() V39() V40() Element of bool NAT
[:(dom b),(Seg (width b)):] is set
Seg a is V35() V36() V37() V38() V39() V40() Element of bool NAT
[:(Seg a),(Seg a):] is set
Indices (a,b,n) is set
dom (a,b,n) is V35() V36() V37() V38() V39() V40() Element of bool NAT
width (a,b,n) is ext-real non negative V9() V13() V14() V15() V33() V34() V35() V36() V37() V38() V39() V40() Element of NAT
Seg (width (a,b,n)) is V35() V36() V37() V38() V39() V40() Element of bool NAT
[:(dom (a,b,n)),(Seg (width (a,b,n))):] is set
Indices n is set
dom n is V35() V36() V37() V38() V39() V40() Element of bool NAT
width n i