:: POLYEQ_3 semantic presentation

REAL is V69() V70() V71() V75() set
NAT is V69() V70() V71() V72() V73() V74() V75() Element of K19(REAL)
K19(REAL) is set
COMPLEX is V69() V75() set
K20(NAT,REAL) is V33() V34() V35() set
K19(K20(NAT,REAL)) is set
RAT is V69() V70() V71() V72() V75() set
INT is V69() V70() V71() V72() V73() V75() set
K20(COMPLEX,COMPLEX) is V33() set
K19(K20(COMPLEX,COMPLEX)) is set
K20(K20(COMPLEX,COMPLEX),COMPLEX) is V33() set
K19(K20(K20(COMPLEX,COMPLEX),COMPLEX)) is set
K20(REAL,REAL) is V33() V34() V35() set
K19(K20(REAL,REAL)) is set
K20(K20(REAL,REAL),REAL) is V33() V34() V35() set
K19(K20(K20(REAL,REAL),REAL)) is set
K20(RAT,RAT) is V5( RAT ) V33() V34() V35() set
K19(K20(RAT,RAT)) is set
K20(K20(RAT,RAT),RAT) is V5( RAT ) V33() V34() V35() set
K19(K20(K20(RAT,RAT),RAT)) is set
K20(INT,INT) is V5( RAT ) V5( INT ) V33() V34() V35() set
K19(K20(INT,INT)) is set
K20(K20(INT,INT),INT) is V5( RAT ) V5( INT ) V33() V34() V35() set
K19(K20(K20(INT,INT),INT)) is set
K20(NAT,NAT) is V5( RAT ) V5( INT ) V33() V34() V35() V36() set
K20(K20(NAT,NAT),NAT) is V5( RAT ) V5( INT ) V33() V34() V35() V36() set
K19(K20(K20(NAT,NAT),NAT)) is set
NAT is V69() V70() V71() V72() V73() V74() V75() set
K19(NAT) is set
K19(NAT) is set
K315() is set
1 is non empty ordinal natural complex real ext-real positive non negative V43() V44() V69() V70() V71() V72() V73() V74() Element of NAT
K20(NAT,COMPLEX) is V33() set
K19(K20(NAT,COMPLEX)) is set
1r is complex Element of COMPLEX
0 is empty ordinal natural complex real ext-real non positive non negative V43() V44() V69() V70() V71() V72() V73() V74() V75() Element of NAT
Re 0 is complex real ext-real Element of REAL
Im 0 is complex real ext-real Element of REAL
<i> is complex Element of COMPLEX
K88(REAL,0,1,0,1) is V1() V4(K81(0,1)) V5( REAL ) V6() V18(K81(0,1), REAL ) V33() V34() V35() Element of K19(K20(K81(0,1),REAL))
K81(0,1) is non empty V69() V70() V71() V72() V73() V74() set
K20(K81(0,1),REAL) is V33() V34() V35() set
K19(K20(K81(0,1),REAL)) is set
|.0.| is complex real ext-real Element of REAL
2 is non empty ordinal natural complex real ext-real positive non negative V43() V44() V69() V70() V71() V72() V73() V74() Element of NAT
3 is non empty ordinal natural complex real ext-real positive non negative V43() V44() V69() V70() V71() V72() V73() V74() Element of NAT
4 is non empty ordinal natural complex real ext-real positive non negative V43() V44() V69() V70() V71() V72() V73() V74() Element of NAT
sqrt 0 is complex real ext-real Element of REAL
sqrt 4 is complex real ext-real Element of REAL
sin is V1() V4( REAL ) V5( REAL ) V6() V18( REAL , REAL ) V33() V34() V35() Element of K19(K20(REAL,REAL))
cos is V1() V4( REAL ) V5( REAL ) V6() V18( REAL , REAL ) V33() V34() V35() Element of K19(K20(REAL,REAL))
cos . 0 is complex real ext-real Element of REAL
sin . 0 is complex real ext-real Element of REAL
cos 0 is complex real ext-real Element of REAL
sin 0 is complex real ext-real Element of REAL
PI is complex real ext-real Element of REAL
2 * PI is complex real ext-real Element of REAL
z is complex Element of COMPLEX
z ^2 is complex set
z * z is complex set
Re z is complex real ext-real Element of REAL
(Re z) ^2 is complex real ext-real Element of REAL
(Re z) * (Re z) is complex real ext-real set
Im z is complex real ext-real Element of REAL
(Im z) ^2 is complex real ext-real Element of REAL
(Im z) * (Im z) is complex real ext-real set
((Re z) ^2) - ((Im z) ^2) is complex real ext-real Element of REAL
- ((Im z) ^2) is complex real ext-real set
((Re z) ^2) + (- ((Im z) ^2)) is complex real ext-real set
(Re z) * (Im z) is complex real ext-real Element of REAL
2 * ((Re z) * (Im z)) is complex real ext-real Element of REAL
(2 * ((Re z) * (Im z))) * <i> is complex Element of COMPLEX
(((Re z) ^2) - ((Im z) ^2)) + ((2 * ((Re z) * (Im z))) * <i>) is complex Element of COMPLEX
(Im z) * <i> is complex Element of COMPLEX
(Re z) + ((Im z) * <i>) is complex Element of COMPLEX
s is complex Element of COMPLEX
n is complex Element of COMPLEX
z is complex real ext-real Element of REAL
s is complex real ext-real Element of REAL
n is complex real ext-real Element of REAL
t is complex Element of COMPLEX
Polynom (z,s,n,t) is complex set
t ^2 is complex set
t * t is complex set
z * (t ^2) is complex set
s * t is complex set
(z * (t ^2)) + (s * t) is complex set
((z * (t ^2)) + (s * t)) + n is complex set
z is complex real ext-real Element of REAL
2 * z is complex real ext-real Element of REAL
s is complex real ext-real Element of REAL
- s is complex real ext-real Element of REAL
s / (2 * z) is complex real ext-real Element of REAL
(2 * z) " is complex real ext-real set
s * ((2 * z) ") is complex real ext-real set
- (s / (2 * z)) is complex real ext-real Element of REAL
n is complex real ext-real Element of REAL
delta (z,s,n) is complex real ext-real Element of REAL
s ^2 is complex real ext-real set
s * s is complex real ext-real set
4 * z is complex real ext-real set
(4 * z) * n is complex real ext-real set
(s ^2) - ((4 * z) * n) is complex real ext-real set
- ((4 * z) * n) is complex real ext-real set
(s ^2) + (- ((4 * z) * n)) is complex real ext-real set
sqrt (delta (z,s,n)) is complex real ext-real Element of REAL
(- s) + (sqrt (delta (z,s,n))) is complex real ext-real Element of REAL
((- s) + (sqrt (delta (z,s,n)))) / (2 * z) is complex real ext-real Element of REAL
((- s) + (sqrt (delta (z,s,n)))) * ((2 * z) ") is complex real ext-real set
(- s) - (sqrt (delta (z,s,n))) is complex real ext-real Element of REAL
- (sqrt (delta (z,s,n))) is complex real ext-real set
(- s) + (- (sqrt (delta (z,s,n)))) is complex real ext-real set
((- s) - (sqrt (delta (z,s,n)))) / (2 * z) is complex real ext-real Element of REAL
((- s) - (sqrt (delta (z,s,n)))) * ((2 * z) ") is complex real ext-real set
t is complex Element of COMPLEX
(z,s,n,t) is complex Element of COMPLEX
t ^2 is complex set
t * t is complex set
z * (t ^2) is complex set
s * t is complex set
(z * (t ^2)) + (s * t) is complex set
((z * (t ^2)) + (s * t)) + n is complex set
0 * <i> is complex Element of COMPLEX
z + (0 * <i>) is complex Element of COMPLEX
Im t is complex real ext-real Element of REAL
Re t is complex real ext-real Element of REAL
(Im t) * <i> is complex Element of COMPLEX
(Re t) + ((Im t) * <i>) is complex Element of COMPLEX
(Re t) ^2 is complex real ext-real Element of REAL
(Re t) * (Re t) is complex real ext-real set
(Im t) ^2 is complex real ext-real Element of REAL
(Im t) * (Im t) is complex real ext-real set
((Re t) ^2) - ((Im t) ^2) is complex real ext-real Element of REAL
- ((Im t) ^2) is complex real ext-real set
((Re t) ^2) + (- ((Im t) ^2)) is complex real ext-real set
(Re t) * (Im t) is complex real ext-real Element of REAL
2 * ((Re t) * (Im t)) is complex real ext-real Element of REAL
(2 * ((Re t) * (Im t))) * <i> is complex Element of COMPLEX
(((Re t) ^2) - ((Im t) ^2)) + ((2 * ((Re t) * (Im t))) * <i>) is complex Element of COMPLEX
(z + (0 * <i>)) * ((((Re t) ^2) - ((Im t) ^2)) + ((2 * ((Re t) * (Im t))) * <i>)) is complex Element of COMPLEX
s * t is complex Element of COMPLEX
((z + (0 * <i>)) * ((((Re t) ^2) - ((Im t) ^2)) + ((2 * ((Re t) * (Im t))) * <i>))) + (s * t) is complex Element of COMPLEX
(((z + (0 * <i>)) * ((((Re t) ^2) - ((Im t) ^2)) + ((2 * ((Re t) * (Im t))) * <i>))) + (s * t)) + n is complex Element of COMPLEX
Re z is complex real ext-real Element of REAL
2 * (Re t) is complex real ext-real Element of REAL
(2 * (Re t)) * (Im t) is complex real ext-real Element of REAL
((2 * (Re t)) * (Im t)) * <i> is complex Element of COMPLEX
(((Re t) ^2) - ((Im t) ^2)) + (((2 * (Re t)) * (Im t)) * <i>) is complex Element of COMPLEX
Re ((((Re t) ^2) - ((Im t) ^2)) + (((2 * (Re t)) * (Im t)) * <i>)) is complex real ext-real Element of REAL
(Re z) * (Re ((((Re t) ^2) - ((Im t) ^2)) + (((2 * (Re t)) * (Im t)) * <i>))) is complex real ext-real Element of REAL
Im z is complex real ext-real Element of REAL
Im ((((Re t) ^2) - ((Im t) ^2)) + (((2 * (Re t)) * (Im t)) * <i>)) is complex real ext-real Element of REAL
(Im z) * (Im ((((Re t) ^2) - ((Im t) ^2)) + (((2 * (Re t)) * (Im t)) * <i>))) is complex real ext-real Element of REAL
((Re z) * (Re ((((Re t) ^2) - ((Im t) ^2)) + (((2 * (Re t)) * (Im t)) * <i>)))) - ((Im z) * (Im ((((Re t) ^2) - ((Im t) ^2)) + (((2 * (Re t)) * (Im t)) * <i>)))) is complex real ext-real Element of REAL
- ((Im z) * (Im ((((Re t) ^2) - ((Im t) ^2)) + (((2 * (Re t)) * (Im t)) * <i>)))) is complex real ext-real set
((Re z) * (Re ((((Re t) ^2) - ((Im t) ^2)) + (((2 * (Re t)) * (Im t)) * <i>)))) + (- ((Im z) * (Im ((((Re t) ^2) - ((Im t) ^2)) + (((2 * (Re t)) * (Im t)) * <i>))))) is complex real ext-real set
(Re z) * (Im ((((Re t) ^2) - ((Im t) ^2)) + (((2 * (Re t)) * (Im t)) * <i>))) is complex real ext-real Element of REAL
(Re ((((Re t) ^2) - ((Im t) ^2)) + (((2 * (Re t)) * (Im t)) * <i>))) * (Im z) is complex real ext-real Element of REAL
((Re z) * (Im ((((Re t) ^2) - ((Im t) ^2)) + (((2 * (Re t)) * (Im t)) * <i>)))) + ((Re ((((Re t) ^2) - ((Im t) ^2)) + (((2 * (Re t)) * (Im t)) * <i>))) * (Im z)) is complex real ext-real Element of REAL
(((Re z) * (Im ((((Re t) ^2) - ((Im t) ^2)) + (((2 * (Re t)) * (Im t)) * <i>)))) + ((Re ((((Re t) ^2) - ((Im t) ^2)) + (((2 * (Re t)) * (Im t)) * <i>))) * (Im z))) * <i> is complex Element of COMPLEX
(((Re z) * (Re ((((Re t) ^2) - ((Im t) ^2)) + (((2 * (Re t)) * (Im t)) * <i>)))) - ((Im z) * (Im ((((Re t) ^2) - ((Im t) ^2)) + (((2 * (Re t)) * (Im t)) * <i>))))) + ((((Re z) * (Im ((((Re t) ^2) - ((Im t) ^2)) + (((2 * (Re t)) * (Im t)) * <i>)))) + ((Re ((((Re t) ^2) - ((Im t) ^2)) + (((2 * (Re t)) * (Im t)) * <i>))) * (Im z))) * <i>) is complex Element of COMPLEX
((((Re z) * (Re ((((Re t) ^2) - ((Im t) ^2)) + (((2 * (Re t)) * (Im t)) * <i>)))) - ((Im z) * (Im ((((Re t) ^2) - ((Im t) ^2)) + (((2 * (Re t)) * (Im t)) * <i>))))) + ((((Re z) * (Im ((((Re t) ^2) - ((Im t) ^2)) + (((2 * (Re t)) * (Im t)) * <i>)))) + ((Re ((((Re t) ^2) - ((Im t) ^2)) + (((2 * (Re t)) * (Im t)) * <i>))) * (Im z))) * <i>)) + (s * t) is complex Element of COMPLEX
(((((Re z) * (Re ((((Re t) ^2) - ((Im t) ^2)) + (((2 * (Re t)) * (Im t)) * <i>)))) - ((Im z) * (Im ((((Re t) ^2) - ((Im t) ^2)) + (((2 * (Re t)) * (Im t)) * <i>))))) + ((((Re z) * (Im ((((Re t) ^2) - ((Im t) ^2)) + (((2 * (Re t)) * (Im t)) * <i>)))) + ((Re ((((Re t) ^2) - ((Im t) ^2)) + (((2 * (Re t)) * (Im t)) * <i>))) * (Im z))) * <i>)) + (s * t)) + n is complex Element of COMPLEX
z * (Re ((((Re t) ^2) - ((Im t) ^2)) + (((2 * (Re t)) * (Im t)) * <i>))) is complex real ext-real Element of REAL
(z * (Re ((((Re t) ^2) - ((Im t) ^2)) + (((2 * (Re t)) * (Im t)) * <i>)))) - ((Im z) * (Im ((((Re t) ^2) - ((Im t) ^2)) + (((2 * (Re t)) * (Im t)) * <i>)))) is complex real ext-real Element of REAL
(z * (Re ((((Re t) ^2) - ((Im t) ^2)) + (((2 * (Re t)) * (Im t)) * <i>)))) + (- ((Im z) * (Im ((((Re t) ^2) - ((Im t) ^2)) + (((2 * (Re t)) * (Im t)) * <i>))))) is complex real ext-real set
((z * (Re ((((Re t) ^2) - ((Im t) ^2)) + (((2 * (Re t)) * (Im t)) * <i>)))) - ((Im z) * (Im ((((Re t) ^2) - ((Im t) ^2)) + (((2 * (Re t)) * (Im t)) * <i>))))) + ((((Re z) * (Im ((((Re t) ^2) - ((Im t) ^2)) + (((2 * (Re t)) * (Im t)) * <i>)))) + ((Re ((((Re t) ^2) - ((Im t) ^2)) + (((2 * (Re t)) * (Im t)) * <i>))) * (Im z))) * <i>) is complex Element of COMPLEX
(((z * (Re ((((Re t) ^2) - ((Im t) ^2)) + (((2 * (Re t)) * (Im t)) * <i>)))) - ((Im z) * (Im ((((Re t) ^2) - ((Im t) ^2)) + (((2 * (Re t)) * (Im t)) * <i>))))) + ((((Re z) * (Im ((((Re t) ^2) - ((Im t) ^2)) + (((2 * (Re t)) * (Im t)) * <i>)))) + ((Re ((((Re t) ^2) - ((Im t) ^2)) + (((2 * (Re t)) * (Im t)) * <i>))) * (Im z))) * <i>)) + (s * t) is complex Element of COMPLEX
((((z * (Re ((((Re t) ^2) - ((Im t) ^2)) + (((2 * (Re t)) * (Im t)) * <i>)))) - ((Im z) * (Im ((((Re t) ^2) - ((Im t) ^2)) + (((2 * (Re t)) * (Im t)) * <i>))))) + ((((Re z) * (Im ((((Re t) ^2) - ((Im t) ^2)) + (((2 * (Re t)) * (Im t)) * <i>)))) + ((Re ((((Re t) ^2) - ((Im t) ^2)) + (((2 * (Re t)) * (Im t)) * <i>))) * (Im z))) * <i>)) + (s * t)) + n is complex Element of COMPLEX
z * (((Re t) ^2) - ((Im t) ^2)) is complex real ext-real Element of REAL
(z * (((Re t) ^2) - ((Im t) ^2))) - ((Im z) * (Im ((((Re t) ^2) - ((Im t) ^2)) + (((2 * (Re t)) * (Im t)) * <i>)))) is complex real ext-real Element of REAL
(z * (((Re t) ^2) - ((Im t) ^2))) + (- ((Im z) * (Im ((((Re t) ^2) - ((Im t) ^2)) + (((2 * (Re t)) * (Im t)) * <i>))))) is complex real ext-real set
((z * (((Re t) ^2) - ((Im t) ^2))) - ((Im z) * (Im ((((Re t) ^2) - ((Im t) ^2)) + (((2 * (Re t)) * (Im t)) * <i>))))) + ((((Re z) * (Im ((((Re t) ^2) - ((Im t) ^2)) + (((2 * (Re t)) * (Im t)) * <i>)))) + ((Re ((((Re t) ^2) - ((Im t) ^2)) + (((2 * (Re t)) * (Im t)) * <i>))) * (Im z))) * <i>) is complex Element of COMPLEX
(((z * (((Re t) ^2) - ((Im t) ^2))) - ((Im z) * (Im ((((Re t) ^2) - ((Im t) ^2)) + (((2 * (Re t)) * (Im t)) * <i>))))) + ((((Re z) * (Im ((((Re t) ^2) - ((Im t) ^2)) + (((2 * (Re t)) * (Im t)) * <i>)))) + ((Re ((((Re t) ^2) - ((Im t) ^2)) + (((2 * (Re t)) * (Im t)) * <i>))) * (Im z))) * <i>)) + (s * t) is complex Element of COMPLEX
((((z * (((Re t) ^2) - ((Im t) ^2))) - ((Im z) * (Im ((((Re t) ^2) - ((Im t) ^2)) + (((2 * (Re t)) * (Im t)) * <i>))))) + ((((Re z) * (Im ((((Re t) ^2) - ((Im t) ^2)) + (((2 * (Re t)) * (Im t)) * <i>)))) + ((Re ((((Re t) ^2) - ((Im t) ^2)) + (((2 * (Re t)) * (Im t)) * <i>))) * (Im z))) * <i>)) + (s * t)) + n is complex Element of COMPLEX
0 * (Im ((((Re t) ^2) - ((Im t) ^2)) + (((2 * (Re t)) * (Im t)) * <i>))) is complex real ext-real Element of REAL
(z * (((Re t) ^2) - ((Im t) ^2))) - (0 * (Im ((((Re t) ^2) - ((Im t) ^2)) + (((2 * (Re t)) * (Im t)) * <i>)))) is complex real ext-real Element of REAL
- (0 * (Im ((((Re t) ^2) - ((Im t) ^2)) + (((2 * (Re t)) * (Im t)) * <i>)))) is complex real ext-real set
(z * (((Re t) ^2) - ((Im t) ^2))) + (- (0 * (Im ((((Re t) ^2) - ((Im t) ^2)) + (((2 * (Re t)) * (Im t)) * <i>))))) is complex real ext-real set
((z * (((Re t) ^2) - ((Im t) ^2))) - (0 * (Im ((((Re t) ^2) - ((Im t) ^2)) + (((2 * (Re t)) * (Im t)) * <i>))))) + ((((Re z) * (Im ((((Re t) ^2) - ((Im t) ^2)) + (((2 * (Re t)) * (Im t)) * <i>)))) + ((Re ((((Re t) ^2) - ((Im t) ^2)) + (((2 * (Re t)) * (Im t)) * <i>))) * (Im z))) * <i>) is complex Element of COMPLEX
(((z * (((Re t) ^2) - ((Im t) ^2))) - (0 * (Im ((((Re t) ^2) - ((Im t) ^2)) + (((2 * (Re t)) * (Im t)) * <i>))))) + ((((Re z) * (Im ((((Re t) ^2) - ((Im t) ^2)) + (((2 * (Re t)) * (Im t)) * <i>)))) + ((Re ((((Re t) ^2) - ((Im t) ^2)) + (((2 * (Re t)) * (Im t)) * <i>))) * (Im z))) * <i>)) + (s * t) is complex Element of COMPLEX
((((z * (((Re t) ^2) - ((Im t) ^2))) - (0 * (Im ((((Re t) ^2) - ((Im t) ^2)) + (((2 * (Re t)) * (Im t)) * <i>))))) + ((((Re z) * (Im ((((Re t) ^2) - ((Im t) ^2)) + (((2 * (Re t)) * (Im t)) * <i>)))) + ((Re ((((Re t) ^2) - ((Im t) ^2)) + (((2 * (Re t)) * (Im t)) * <i>))) * (Im z))) * <i>)) + (s * t)) + n is complex Element of COMPLEX
(z * (((Re t) ^2) - ((Im t) ^2))) - 0 is complex real ext-real Element of REAL
- 0 is empty complex real ext-real non positive non negative V69() V70() V71() V72() V73() V74() V75() set
(z * (((Re t) ^2) - ((Im t) ^2))) + (- 0) is complex real ext-real set
(Re z) * ((2 * (Re t)) * (Im t)) is complex real ext-real Element of REAL
((Re z) * ((2 * (Re t)) * (Im t))) + ((Re ((((Re t) ^2) - ((Im t) ^2)) + (((2 * (Re t)) * (Im t)) * <i>))) * (Im z)) is complex real ext-real Element of REAL
(((Re z) * ((2 * (Re t)) * (Im t))) + ((Re ((((Re t) ^2) - ((Im t) ^2)) + (((2 * (Re t)) * (Im t)) * <i>))) * (Im z))) * <i> is complex Element of COMPLEX
((z * (((Re t) ^2) - ((Im t) ^2))) - 0) + ((((Re z) * ((2 * (Re t)) * (Im t))) + ((Re ((((Re t) ^2) - ((Im t) ^2)) + (((2 * (Re t)) * (Im t)) * <i>))) * (Im z))) * <i>) is complex Element of COMPLEX
(((z * (((Re t) ^2) - ((Im t) ^2))) - 0) + ((((Re z) * ((2 * (Re t)) * (Im t))) + ((Re ((((Re t) ^2) - ((Im t) ^2)) + (((2 * (Re t)) * (Im t)) * <i>))) * (Im z))) * <i>)) + (s * t) is complex Element of COMPLEX
((((z * (((Re t) ^2) - ((Im t) ^2))) - 0) + ((((Re z) * ((2 * (Re t)) * (Im t))) + ((Re ((((Re t) ^2) - ((Im t) ^2)) + (((2 * (Re t)) * (Im t)) * <i>))) * (Im z))) * <i>)) + (s * t)) + n is complex Element of COMPLEX
z * ((2 * (Re t)) * (Im t)) is complex real ext-real Element of REAL
(z * ((2 * (Re t)) * (Im t))) + ((Re ((((Re t) ^2) - ((Im t) ^2)) + (((2 * (Re t)) * (Im t)) * <i>))) * (Im z)) is complex real ext-real Element of REAL
((z * ((2 * (Re t)) * (Im t))) + ((Re ((((Re t) ^2) - ((Im t) ^2)) + (((2 * (Re t)) * (Im t)) * <i>))) * (Im z))) * <i> is complex Element of COMPLEX
((z * (((Re t) ^2) - ((Im t) ^2))) - 0) + (((z * ((2 * (Re t)) * (Im t))) + ((Re ((((Re t) ^2) - ((Im t) ^2)) + (((2 * (Re t)) * (Im t)) * <i>))) * (Im z))) * <i>) is complex Element of COMPLEX
(((z * (((Re t) ^2) - ((Im t) ^2))) - 0) + (((z * ((2 * (Re t)) * (Im t))) + ((Re ((((Re t) ^2) - ((Im t) ^2)) + (((2 * (Re t)) * (Im t)) * <i>))) * (Im z))) * <i>)) + (s * t) is complex Element of COMPLEX
((((z * (((Re t) ^2) - ((Im t) ^2))) - 0) + (((z * ((2 * (Re t)) * (Im t))) + ((Re ((((Re t) ^2) - ((Im t) ^2)) + (((2 * (Re t)) * (Im t)) * <i>))) * (Im z))) * <i>)) + (s * t)) + n is complex Element of COMPLEX
(((Re t) ^2) - ((Im t) ^2)) * (Im z) is complex real ext-real Element of REAL
(z * ((2 * (Re t)) * (Im t))) + ((((Re t) ^2) - ((Im t) ^2)) * (Im z)) is complex real ext-real Element of REAL
((z * ((2 * (Re t)) * (Im t))) + ((((Re t) ^2) - ((Im t) ^2)) * (Im z))) * <i> is complex Element of COMPLEX
((z * (((Re t) ^2) - ((Im t) ^2))) - 0) + (((z * ((2 * (Re t)) * (Im t))) + ((((Re t) ^2) - ((Im t) ^2)) * (Im z))) * <i>) is complex Element of COMPLEX
(((z * (((Re t) ^2) - ((Im t) ^2))) - 0) + (((z * ((2 * (Re t)) * (Im t))) + ((((Re t) ^2) - ((Im t) ^2)) * (Im z))) * <i>)) + (s * t) is complex Element of COMPLEX
((((z * (((Re t) ^2) - ((Im t) ^2))) - 0) + (((z * ((2 * (Re t)) * (Im t))) + ((((Re t) ^2) - ((Im t) ^2)) * (Im z))) * <i>)) + (s * t)) + n is complex Element of COMPLEX
(((Re t) ^2) - ((Im t) ^2)) * 0 is complex real ext-real Element of REAL
(z * ((2 * (Re t)) * (Im t))) + ((((Re t) ^2) - ((Im t) ^2)) * 0) is complex real ext-real Element of REAL
((z * ((2 * (Re t)) * (Im t))) + ((((Re t) ^2) - ((Im t) ^2)) * 0)) * <i> is complex Element of COMPLEX
((z * (((Re t) ^2) - ((Im t) ^2))) - 0) + (((z * ((2 * (Re t)) * (Im t))) + ((((Re t) ^2) - ((Im t) ^2)) * 0)) * <i>) is complex Element of COMPLEX
(((z * (((Re t) ^2) - ((Im t) ^2))) - 0) + (((z * ((2 * (Re t)) * (Im t))) + ((((Re t) ^2) - ((Im t) ^2)) * 0)) * <i>)) + (s * t) is complex Element of COMPLEX
((((z * (((Re t) ^2) - ((Im t) ^2))) - 0) + (((z * ((2 * (Re t)) * (Im t))) + ((((Re t) ^2) - ((Im t) ^2)) * 0)) * <i>)) + (s * t)) + n is complex Element of COMPLEX
0 * ((2 * (Re t)) * (Im t)) is complex real ext-real Element of REAL
(z * (((Re t) ^2) - ((Im t) ^2))) - (0 * ((2 * (Re t)) * (Im t))) is complex real ext-real Element of REAL
- (0 * ((2 * (Re t)) * (Im t))) is complex real ext-real set
(z * (((Re t) ^2) - ((Im t) ^2))) + (- (0 * ((2 * (Re t)) * (Im t)))) is complex real ext-real set
0 + (z * ((2 * (Re t)) * (Im t))) is complex real ext-real Element of REAL
(0 + (z * ((2 * (Re t)) * (Im t)))) * <i> is complex Element of COMPLEX
((z * (((Re t) ^2) - ((Im t) ^2))) - (0 * ((2 * (Re t)) * (Im t)))) + ((0 + (z * ((2 * (Re t)) * (Im t)))) * <i>) is complex Element of COMPLEX
s + (0 * <i>) is complex Element of COMPLEX
(s + (0 * <i>)) * ((Re t) + ((Im t) * <i>)) is complex Element of COMPLEX
(((z * (((Re t) ^2) - ((Im t) ^2))) - (0 * ((2 * (Re t)) * (Im t)))) + ((0 + (z * ((2 * (Re t)) * (Im t)))) * <i>)) + ((s + (0 * <i>)) * ((Re t) + ((Im t) * <i>))) is complex Element of COMPLEX
((((z * (((Re t) ^2) - ((Im t) ^2))) - (0 * ((2 * (Re t)) * (Im t)))) + ((0 + (z * ((2 * (Re t)) * (Im t)))) * <i>)) + ((s + (0 * <i>)) * ((Re t) + ((Im t) * <i>)))) + n is complex Element of COMPLEX
s * (Re t) is complex real ext-real Element of REAL
(z * (((Re t) ^2) - ((Im t) ^2))) + (s * (Re t)) is complex real ext-real Element of REAL
((z * (((Re t) ^2) - ((Im t) ^2))) + (s * (Re t))) + n is complex real ext-real Element of REAL
s * (Im t) is complex real ext-real Element of REAL
(z * ((2 * (Re t)) * (Im t))) + (s * (Im t)) is complex real ext-real Element of REAL
((z * ((2 * (Re t)) * (Im t))) + (s * (Im t))) * <i> is complex Element of COMPLEX
(((z * (((Re t) ^2) - ((Im t) ^2))) + (s * (Re t))) + n) + (((z * ((2 * (Re t)) * (Im t))) + (s * (Im t))) * <i>) is complex Element of COMPLEX
(2 * z) * (Re t) is complex real ext-real Element of REAL
((2 * z) * (Re t)) + s is complex real ext-real Element of REAL
(((2 * z) * (Re t)) + s) * (Im t) is complex real ext-real Element of REAL
Polynom (z,s,n,(Re t)) is complex real ext-real Element of REAL
(Re t) ^2 is complex real ext-real set
z * ((Re t) ^2) is complex real ext-real set
s * (Re t) is complex real ext-real set
(z * ((Re t) ^2)) + (s * (Re t)) is complex real ext-real set
((z * ((Re t) ^2)) + (s * (Re t))) + n is complex real ext-real set
(((- s) + (sqrt (delta (z,s,n)))) / (2 * z)) + (0 * <i>) is complex Element of COMPLEX
(((- s) - (sqrt (delta (z,s,n)))) / (2 * z)) + (0 * <i>) is complex Element of COMPLEX
(- s) / (2 * z) is complex real ext-real Element of REAL
(- s) * ((2 * z) ") is complex real ext-real set
(s / (2 * z)) ^2 is complex real ext-real Element of REAL
(s / (2 * z)) * (s / (2 * z)) is complex real ext-real set
((s / (2 * z)) ^2) - ((Im t) ^2) is complex real ext-real Element of REAL
((s / (2 * z)) ^2) + (- ((Im t) ^2)) is complex real ext-real set
z * (((s / (2 * z)) ^2) - ((Im t) ^2)) is complex real ext-real Element of REAL
s * (- (s / (2 * z))) is complex real ext-real Element of REAL
(z * (((s / (2 * z)) ^2) - ((Im t) ^2))) + (s * (- (s / (2 * z)))) is complex real ext-real Element of REAL
((z * (((s / (2 * z)) ^2) - ((Im t) ^2))) + (s * (- (s / (2 * z))))) + n is complex real ext-real Element of REAL
(s * (- (s / (2 * z)))) + n is complex real ext-real Element of REAL
- ((s * (- (s / (2 * z)))) + n) is complex real ext-real Element of REAL
(- ((s * (- (s / (2 * z)))) + n)) / z is complex real ext-real Element of REAL
z " is complex real ext-real set
(- ((s * (- (s / (2 * z)))) + n)) * (z ") is complex real ext-real set
((- ((s * (- (s / (2 * z)))) + n)) / z) - 0 is complex real ext-real Element of REAL
((- ((s * (- (s / (2 * z)))) + n)) / z) + (- 0) is complex real ext-real set
((s / (2 * z)) ^2) - ((- ((s * (- (s / (2 * z)))) + n)) / z) is complex real ext-real Element of REAL
- ((- ((s * (- (s / (2 * z)))) + n)) / z) is complex real ext-real set
((s / (2 * z)) ^2) + (- ((- ((s * (- (s / (2 * z)))) + n)) / z)) is complex real ext-real set
((Im t) ^2) - 0 is complex real ext-real Element of REAL
((Im t) ^2) + (- 0) is complex real ext-real set
z " is complex real ext-real Element of REAL
n * (z ") is complex real ext-real Element of REAL
((s / (2 * z)) ^2) + (n * (z ")) is complex real ext-real Element of REAL
s ^2 is complex real ext-real Element of REAL
(s ^2) / (2 * z) is complex real ext-real Element of REAL
(s ^2) * ((2 * z) ") is complex real ext-real set
((s ^2) / (2 * z)) * (z ") is complex real ext-real Element of REAL
(((s / (2 * z)) ^2) + (n * (z "))) - (((s ^2) / (2 * z)) * (z ")) is complex real ext-real Element of REAL
- (((s ^2) / (2 * z)) * (z ")) is complex real ext-real set
(((s / (2 * z)) ^2) + (n * (z "))) + (- (((s ^2) / (2 * z)) * (z "))) is complex real ext-real set
(2 * z) ^2 is complex real ext-real Element of REAL
(2 * z) * (2 * z) is complex real ext-real set
((Im t) ^2) * ((2 * z) ^2) is complex real ext-real Element of REAL
(s ^2) / ((2 * z) ^2) is complex real ext-real Element of REAL
((2 * z) ^2) " is complex real ext-real set
(s ^2) * (((2 * z) ^2) ") is complex real ext-real set
((s ^2) / ((2 * z) ^2)) + (n * (z ")) is complex real ext-real Element of REAL
(((s ^2) / ((2 * z) ^2)) + (n * (z "))) - (((s ^2) / (2 * z)) * (z ")) is complex real ext-real Element of REAL
(((s ^2) / ((2 * z) ^2)) + (n * (z "))) + (- (((s ^2) / (2 * z)) * (z "))) is complex real ext-real set
((((s ^2) / ((2 * z) ^2)) + (n * (z "))) - (((s ^2) / (2 * z)) * (z "))) * ((2 * z) ^2) is complex real ext-real Element of REAL
((s ^2) / ((2 * z) ^2)) * ((2 * z) ^2) is complex real ext-real Element of REAL
(n * (z ")) * ((2 * z) ^2) is complex real ext-real Element of REAL
(((s ^2) / ((2 * z) ^2)) * ((2 * z) ^2)) + ((n * (z ")) * ((2 * z) ^2)) is complex real ext-real Element of REAL
(2 * z) " is complex real ext-real Element of REAL
(s ^2) * ((2 * z) ") is complex real ext-real Element of REAL
((s ^2) * ((2 * z) ")) * (z ") is complex real ext-real Element of REAL
(((s ^2) * ((2 * z) ")) * (z ")) * ((2 * z) ^2) is complex real ext-real Element of REAL
((((s ^2) / ((2 * z) ^2)) * ((2 * z) ^2)) + ((n * (z ")) * ((2 * z) ^2))) - ((((s ^2) * ((2 * z) ")) * (z ")) * ((2 * z) ^2)) is complex real ext-real Element of REAL
- ((((s ^2) * ((2 * z) ")) * (z ")) * ((2 * z) ^2)) is complex real ext-real set
((((s ^2) / ((2 * z) ^2)) * ((2 * z) ^2)) + ((n * (z ")) * ((2 * z) ^2))) + (- ((((s ^2) * ((2 * z) ")) * (z ")) * ((2 * z) ^2))) is complex real ext-real set
(s ^2) + ((n * (z ")) * ((2 * z) ^2)) is complex real ext-real Element of REAL
((2 * z) ") * (z ") is complex real ext-real Element of REAL
(s ^2) * (((2 * z) ") * (z ")) is complex real ext-real Element of REAL
((s ^2) * (((2 * z) ") * (z "))) * ((2 * z) ^2) is complex real ext-real Element of REAL
((s ^2) + ((n * (z ")) * ((2 * z) ^2))) - (((s ^2) * (((2 * z) ") * (z "))) * ((2 * z) ^2)) is complex real ext-real Element of REAL
- (((s ^2) * (((2 * z) ") * (z "))) * ((2 * z) ^2)) is complex real ext-real set
((s ^2) + ((n * (z ")) * ((2 * z) ^2))) + (- (((s ^2) * (((2 * z) ") * (z "))) * ((2 * z) ^2))) is complex real ext-real set
(2 * z) * z is complex real ext-real Element of REAL
((2 * z) * z) " is complex real ext-real Element of REAL
(s ^2) * (((2 * z) * z) ") is complex real ext-real Element of REAL
((s ^2) * (((2 * z) * z) ")) * ((2 * z) ^2) is complex real ext-real Element of REAL
((s ^2) + ((n * (z ")) * ((2 * z) ^2))) - (((s ^2) * (((2 * z) * z) ")) * ((2 * z) ^2)) is complex real ext-real Element of REAL
- (((s ^2) * (((2 * z) * z) ")) * ((2 * z) ^2)) is complex real ext-real set
((s ^2) + ((n * (z ")) * ((2 * z) ^2))) + (- (((s ^2) * (((2 * z) * z) ")) * ((2 * z) ^2))) is complex real ext-real set
z * z is complex real ext-real Element of REAL
2 * (z * z) is complex real ext-real Element of REAL
(2 * (z * z)) " is complex real ext-real Element of REAL
(s ^2) * ((2 * (z * z)) ") is complex real ext-real Element of REAL
((s ^2) * ((2 * (z * z)) ")) * ((2 * z) ^2) is complex real ext-real Element of REAL
((s ^2) + ((n * (z ")) * ((2 * z) ^2))) - (((s ^2) * ((2 * (z * z)) ")) * ((2 * z) ^2)) is complex real ext-real Element of REAL
- (((s ^2) * ((2 * (z * z)) ")) * ((2 * z) ^2)) is complex real ext-real set
((s ^2) + ((n * (z ")) * ((2 * z) ^2))) + (- (((s ^2) * ((2 * (z * z)) ")) * ((2 * z) ^2))) is complex real ext-real set
((2 * z) ^2) " is complex real ext-real Element of REAL
(((s ^2) * ((2 * (z * z)) ")) * ((2 * z) ^2)) * (((2 * z) ^2) ") is complex real ext-real Element of REAL
1 / ((2 * z) ^2) is complex real ext-real Element of REAL
1 * (((2 * z) ^2) ") is complex real ext-real set
((2 * z) ^2) * (1 / ((2 * z) ^2)) is complex real ext-real Element of REAL
((s ^2) * ((2 * (z * z)) ")) * (((2 * z) ^2) * (1 / ((2 * z) ^2))) is complex real ext-real Element of REAL
((s ^2) * ((2 * (z * z)) ")) * 1 is complex real ext-real Element of REAL
2 " is non empty complex real ext-real positive non negative V44() Element of RAT
((((s ^2) * ((2 * (z * z)) ")) * ((2 * z) ^2)) * (((2 * z) ^2) ")) * (2 ") is complex real ext-real Element of REAL
z ^2 is complex real ext-real Element of REAL
z * z is complex real ext-real set
2 * (z ^2) is complex real ext-real Element of REAL
(2 * (z ^2)) " is complex real ext-real Element of REAL
(s ^2) * ((2 * (z ^2)) ") is complex real ext-real Element of REAL
((s ^2) * ((2 * (z ^2)) ")) * (2 ") is complex real ext-real Element of REAL
((2 * (z ^2)) ") * (2 ") is complex real ext-real Element of REAL
(s ^2) * (((2 * (z ^2)) ") * (2 ")) is complex real ext-real Element of REAL
(z ^2) * 2 is complex real ext-real Element of REAL
2 * ((z ^2) * 2) is complex real ext-real Element of REAL
(2 * ((z ^2) * 2)) " is complex real ext-real Element of REAL
(s ^2) * ((2 * ((z ^2) * 2)) ") is complex real ext-real Element of REAL
(((s ^2) * ((2 * (z * z)) ")) * ((2 * z) ^2)) * (2 ") is complex real ext-real Element of REAL
((((s ^2) * ((2 * (z * z)) ")) * ((2 * z) ^2)) * (2 ")) / ((2 * z) ^2) is complex real ext-real Element of REAL
((((s ^2) * ((2 * (z * z)) ")) * ((2 * z) ^2)) * (2 ")) * (((2 * z) ^2) ") is complex real ext-real set
(((((s ^2) * ((2 * (z * z)) ")) * ((2 * z) ^2)) * (2 ")) / ((2 * z) ^2)) * ((2 * z) ^2) is complex real ext-real Element of REAL
(((s ^2) * ((2 * (z * z)) ")) * ((2 * z) ^2)) / 2 is complex real ext-real Element of REAL
2 " is non empty complex real ext-real positive non negative set
(((s ^2) * ((2 * (z * z)) ")) * ((2 * z) ^2)) * (2 ") is complex real ext-real set
n / z is complex real ext-real Element of REAL
n * (z ") is complex real ext-real set
(n / z) * z is complex real ext-real Element of REAL
((n / z) * z) * 2 is complex real ext-real Element of REAL
(((n / z) * z) * 2) * (2 * z) is complex real ext-real Element of REAL
n * 2 is complex real ext-real Element of REAL
(n * 2) * (2 * z) is complex real ext-real Element of REAL
- (delta (z,s,n)) is complex real ext-real Element of REAL
(Im t) * (2 * z) is complex real ext-real Element of REAL
((Im t) * (2 * z)) ^2 is complex real ext-real Element of REAL
((Im t) * (2 * z)) * ((Im t) * (2 * z)) is complex real ext-real set
(- (s / (2 * z))) + (0 * <i>) is complex Element of COMPLEX
z is complex real ext-real Element of REAL
2 * z is complex real ext-real Element of REAL
s is complex real ext-real Element of REAL
s / (2 * z) is complex real ext-real Element of REAL
(2 * z) " is complex real ext-real set
s * ((2 * z) ") is complex real ext-real set
- (s / (2 * z)) is complex real ext-real Element of REAL
n is complex real ext-real Element of REAL
delta (z,s,n) is complex real ext-real Element of REAL
s ^2 is complex real ext-real set
s * s is complex real ext-real set
4 * z is complex real ext-real set
(4 * z) * n is complex real ext-real set
(s ^2) - ((4 * z) * n) is complex real ext-real set
- ((4 * z) * n) is complex real ext-real set
(s ^2) + (- ((4 * z) * n)) is complex real ext-real set
- (delta (z,s,n)) is complex real ext-real Element of REAL
sqrt (- (delta (z,s,n))) is complex real ext-real Element of REAL
(sqrt (- (delta (z,s,n)))) / (2 * z) is complex real ext-real Element of REAL
(sqrt (- (delta (z,s,n)))) * ((2 * z) ") is complex real ext-real set
((sqrt (- (delta (z,s,n)))) / (2 * z)) * <i> is complex Element of COMPLEX
(- (s / (2 * z))) + (((sqrt (- (delta (z,s,n)))) / (2 * z)) * <i>) is complex Element of COMPLEX
- ((sqrt (- (delta (z,s,n)))) / (2 * z)) is complex real ext-real Element of REAL
(- ((sqrt (- (delta (z,s,n)))) / (2 * z))) * <i> is complex Element of COMPLEX
(- (s / (2 * z))) + ((- ((sqrt (- (delta (z,s,n)))) / (2 * z))) * <i>) is complex Element of COMPLEX
t is complex Element of COMPLEX
(z,s,n,t) is complex Element of COMPLEX
t ^2 is complex set
t * t is complex set
z * (t ^2) is complex set
s * t is complex set
(z * (t ^2)) + (s * t) is complex set
((z * (t ^2)) + (s * t)) + n is complex set
0 * <i> is complex Element of COMPLEX
z + (0 * <i>) is complex Element of COMPLEX
s ^2 is complex real ext-real Element of REAL
- (s ^2) is complex real ext-real Element of REAL
n * z is complex real ext-real Element of REAL
(n * z) * 4 is complex real ext-real Element of REAL
(- (s ^2)) + ((n * z) * 4) is complex real ext-real Element of REAL
((- (s ^2)) + ((n * z) * 4)) / 4 is complex real ext-real Element of REAL
4 " is non empty complex real ext-real positive non negative set
((- (s ^2)) + ((n * z) * 4)) * (4 ") is complex real ext-real set
t is complex Element of COMPLEX
Re t is complex real ext-real Element of REAL
Im t is complex real ext-real Element of REAL
(Im t) * <i> is complex Element of COMPLEX
(Re t) + ((Im t) * <i>) is complex Element of COMPLEX
(z,s,n,t) is complex Element of COMPLEX
t ^2 is complex set
t * t is complex set
z * (t ^2) is complex set
s * t is complex set
(z * (t ^2)) + (s * t) is complex set
((z * (t ^2)) + (s * t)) + n is complex set
(Re t) ^2 is complex real ext-real Element of REAL
(Re t) * (Re t) is complex real ext-real set
(Im t) ^2 is complex real ext-real Element of REAL
(Im t) * (Im t) is complex real ext-real set
((Re t) ^2) - ((Im t) ^2) is complex real ext-real Element of REAL
- ((Im t) ^2) is complex real ext-real set
((Re t) ^2) + (- ((Im t) ^2)) is complex real ext-real set
2 * (Re t) is complex real ext-real Element of REAL
(2 * (Re t)) * (Im t) is complex real ext-real Element of REAL
((2 * (Re t)) * (Im t)) * <i> is complex Element of COMPLEX
(((Re t) ^2) - ((Im t) ^2)) + (((2 * (Re t)) * (Im t)) * <i>) is complex Element of COMPLEX
(z + (0 * <i>)) * ((((Re t) ^2) - ((Im t) ^2)) + (((2 * (Re t)) * (Im t)) * <i>)) is complex Element of COMPLEX
s * t is complex Element of COMPLEX
((z + (0 * <i>)) * ((((Re t) ^2) - ((Im t) ^2)) + (((2 * (Re t)) * (Im t)) * <i>))) + (s * t) is complex Element of COMPLEX
(((z + (0 * <i>)) * ((((Re t) ^2) - ((Im t) ^2)) + (((2 * (Re t)) * (Im t)) * <i>))) + (s * t)) + n is complex Element of COMPLEX
Re z is complex real ext-real Element of REAL
Re ((((Re t) ^2) - ((Im t) ^2)) + (((2 * (Re t)) * (Im t)) * <i>)) is complex real ext-real Element of REAL
(Re z) * (Re ((((Re t) ^2) - ((Im t) ^2)) + (((2 * (Re t)) * (Im t)) * <i>))) is complex real ext-real Element of REAL
Im z is complex real ext-real Element of REAL
Im ((((Re t) ^2) - ((Im t) ^2)) + (((2 * (Re t)) * (Im t)) * <i>)) is complex real ext-real Element of REAL
(Im z) * (Im ((((Re t) ^2) - ((Im t) ^2)) + (((2 * (Re t)) * (Im t)) * <i>))) is complex real ext-real Element of REAL
((Re z) * (Re ((((Re t) ^2) - ((Im t) ^2)) + (((2 * (Re t)) * (Im t)) * <i>)))) - ((Im z) * (Im ((((Re t) ^2) - ((Im t) ^2)) + (((2 * (Re t)) * (Im t)) * <i>)))) is complex real ext-real Element of REAL
- ((Im z) * (Im ((((Re t) ^2) - ((Im t) ^2)) + (((2 * (Re t)) * (Im t)) * <i>)))) is complex real ext-real set
((Re z) * (Re ((((Re t) ^2) - ((Im t) ^2)) + (((2 * (Re t)) * (Im t)) * <i>)))) + (- ((Im z) * (Im ((((Re t) ^2) - ((Im t) ^2)) + (((2 * (Re t)) * (Im t)) * <i>))))) is complex real ext-real set
(Re z) * (Im ((((Re t) ^2) - ((Im t) ^2)) + (((2 * (Re t)) * (Im t)) * <i>))) is complex real ext-real Element of REAL
(Re ((((Re t) ^2) - ((Im t) ^2)) + (((2 * (Re t)) * (Im t)) * <i>))) * (Im z) is complex real ext-real Element of REAL
((Re z) * (Im ((((Re t) ^2) - ((Im t) ^2)) + (((2 * (Re t)) * (Im t)) * <i>)))) + ((Re ((((Re t) ^2) - ((Im t) ^2)) + (((2 * (Re t)) * (Im t)) * <i>))) * (Im z)) is complex real ext-real Element of REAL
(((Re z) * (Im ((((Re t) ^2) - ((Im t) ^2)) + (((2 * (Re t)) * (Im t)) * <i>)))) + ((Re ((((Re t) ^2) - ((Im t) ^2)) + (((2 * (Re t)) * (Im t)) * <i>))) * (Im z))) * <i> is complex Element of COMPLEX
(((Re z) * (Re ((((Re t) ^2) - ((Im t) ^2)) + (((2 * (Re t)) * (Im t)) * <i>)))) - ((Im z) * (Im ((((Re t) ^2) - ((Im t) ^2)) + (((2 * (Re t)) * (Im t)) * <i>))))) + ((((Re z) * (Im ((((Re t) ^2) - ((Im t) ^2)) + (((2 * (Re t)) * (Im t)) * <i>)))) + ((Re ((((Re t) ^2) - ((Im t) ^2)) + (((2 * (Re t)) * (Im t)) * <i>))) * (Im z))) * <i>) is complex Element of COMPLEX
((((Re z) * (Re ((((Re t) ^2) - ((Im t) ^2)) + (((2 * (Re t)) * (Im t)) * <i>)))) - ((Im z) * (Im ((((Re t) ^2) - ((Im t) ^2)) + (((2 * (Re t)) * (Im t)) * <i>))))) + ((((Re z) * (Im ((((Re t) ^2) - ((Im t) ^2)) + (((2 * (Re t)) * (Im t)) * <i>)))) + ((Re ((((Re t) ^2) - ((Im t) ^2)) + (((2 * (Re t)) * (Im t)) * <i>))) * (Im z))) * <i>)) + (s * t) is complex Element of COMPLEX
(((((Re z) * (Re ((((Re t) ^2) - ((Im t) ^2)) + (((2 * (Re t)) * (Im t)) * <i>)))) - ((Im z) * (Im ((((Re t) ^2) - ((Im t) ^2)) + (((2 * (Re t)) * (Im t)) * <i>))))) + ((((Re z) * (Im ((((Re t) ^2) - ((Im t) ^2)) + (((2 * (Re t)) * (Im t)) * <i>)))) + ((Re ((((Re t) ^2) - ((Im t) ^2)) + (((2 * (Re t)) * (Im t)) * <i>))) * (Im z))) * <i>)) + (s * t)) + n is complex Element of COMPLEX
z * (Re ((((Re t) ^2) - ((Im t) ^2)) + (((2 * (Re t)) * (Im t)) * <i>))) is complex real ext-real Element of REAL
(z * (Re ((((Re t) ^2) - ((Im t) ^2)) + (((2 * (Re t)) * (Im t)) * <i>)))) - ((Im z) * (Im ((((Re t) ^2) - ((Im t) ^2)) + (((2 * (Re t)) * (Im t)) * <i>)))) is complex real ext-real Element of REAL
(z * (Re ((((Re t) ^2) - ((Im t) ^2)) + (((2 * (Re t)) * (Im t)) * <i>)))) + (- ((Im z) * (Im ((((Re t) ^2) - ((Im t) ^2)) + (((2 * (Re t)) * (Im t)) * <i>))))) is complex real ext-real set
((z * (Re ((((Re t) ^2) - ((Im t) ^2)) + (((2 * (Re t)) * (Im t)) * <i>)))) - ((Im z) * (Im ((((Re t) ^2) - ((Im t) ^2)) + (((2 * (Re t)) * (Im t)) * <i>))))) + ((((Re z) * (Im ((((Re t) ^2) - ((Im t) ^2)) + (((2 * (Re t)) * (Im t)) * <i>)))) + ((Re ((((Re t) ^2) - ((Im t) ^2)) + (((2 * (Re t)) * (Im t)) * <i>))) * (Im z))) * <i>) is complex Element of COMPLEX
(((z * (Re ((((Re t) ^2) - ((Im t) ^2)) + (((2 * (Re t)) * (Im t)) * <i>)))) - ((Im z) * (Im ((((Re t) ^2) - ((Im t) ^2)) + (((2 * (Re t)) * (Im t)) * <i>))))) + ((((Re z) * (Im ((((Re t) ^2) - ((Im t) ^2)) + (((2 * (Re t)) * (Im t)) * <i>)))) + ((Re ((((Re t) ^2) - ((Im t) ^2)) + (((2 * (Re t)) * (Im t)) * <i>))) * (Im z))) * <i>)) + (s * t) is complex Element of COMPLEX
((((z * (Re ((((Re t) ^2) - ((Im t) ^2)) + (((2 * (Re t)) * (Im t)) * <i>)))) - ((Im z) * (Im ((((Re t) ^2) - ((Im t) ^2)) + (((2 * (Re t)) * (Im t)) * <i>))))) + ((((Re z) * (Im ((((Re t) ^2) - ((Im t) ^2)) + (((2 * (Re t)) * (Im t)) * <i>)))) + ((Re ((((Re t) ^2) - ((Im t) ^2)) + (((2 * (Re t)) * (Im t)) * <i>))) * (Im z))) * <i>)) + (s * t)) + n is complex Element of COMPLEX
z * (((Re t) ^2) - ((Im t) ^2)) is complex real ext-real Element of REAL
(z * (((Re t) ^2) - ((Im t) ^2))) - ((Im z) * (Im ((((Re t) ^2) - ((Im t) ^2)) + (((2 * (Re t)) * (Im t)) * <i>)))) is complex real ext-real Element of REAL
(z * (((Re t) ^2) - ((Im t) ^2))) + (- ((Im z) * (Im ((((Re t) ^2) - ((Im t) ^2)) + (((2 * (Re t)) * (Im t)) * <i>))))) is complex real ext-real set
((z * (((Re t) ^2) - ((Im t) ^2))) - ((Im z) * (Im ((((Re t) ^2) - ((Im t) ^2)) + (((2 * (Re t)) * (Im t)) * <i>))))) + ((((Re z) * (Im ((((Re t) ^2) - ((Im t) ^2)) + (((2 * (Re t)) * (Im t)) * <i>)))) + ((Re ((((Re t) ^2) - ((Im t) ^2)) + (((2 * (Re t)) * (Im t)) * <i>))) * (Im z))) * <i>) is complex Element of COMPLEX
(((z * (((Re t) ^2) - ((Im t) ^2))) - ((Im z) * (Im ((((Re t) ^2) - ((Im t) ^2)) + (((2 * (Re t)) * (Im t)) * <i>))))) + ((((Re z) * (Im ((((Re t) ^2) - ((Im t) ^2)) + (((2 * (Re t)) * (Im t)) * <i>)))) + ((Re ((((Re t) ^2) - ((Im t) ^2)) + (((2 * (Re t)) * (Im t)) * <i>))) * (Im z))) * <i>)) + (s * t) is complex Element of COMPLEX
((((z * (((Re t) ^2) - ((Im t) ^2))) - ((Im z) * (Im ((((Re t) ^2) - ((Im t) ^2)) + (((2 * (Re t)) * (Im t)) * <i>))))) + ((((Re z) * (Im ((((Re t) ^2) - ((Im t) ^2)) + (((2 * (Re t)) * (Im t)) * <i>)))) + ((Re ((((Re t) ^2) - ((Im t) ^2)) + (((2 * (Re t)) * (Im t)) * <i>))) * (Im z))) * <i>)) + (s * t)) + n is complex Element of COMPLEX
0 * (Im ((((Re t) ^2) - ((Im t) ^2)) + (((2 * (Re t)) * (Im t)) * <i>))) is complex real ext-real Element of REAL
(z * (((Re t) ^2) - ((Im t) ^2))) - (0 * (Im ((((Re t) ^2) - ((Im t) ^2)) + (((2 * (Re t)) * (Im t)) * <i>)))) is complex real ext-real Element of REAL
- (0 * (Im ((((Re t) ^2) - ((Im t) ^2)) + (((2 * (Re t)) * (Im t)) * <i>)))) is complex real ext-real set
(z * (((Re t) ^2) - ((Im t) ^2))) + (- (0 * (Im ((((Re t) ^2) - ((Im t) ^2)) + (((2 * (Re t)) * (Im t)) * <i>))))) is complex real ext-real set
((z * (((Re t) ^2) - ((Im t) ^2))) - (0 * (Im ((((Re t) ^2) - ((Im t) ^2)) + (((2 * (Re t)) * (Im t)) * <i>))))) + ((((Re z) * (Im ((((Re t) ^2) - ((Im t) ^2)) + (((2 * (Re t)) * (Im t)) * <i>)))) + ((Re ((((Re t) ^2) - ((Im t) ^2)) + (((2 * (Re t)) * (Im t)) * <i>))) * (Im z))) * <i>) is complex Element of COMPLEX
(((z * (((Re t) ^2) - ((Im t) ^2))) - (0 * (Im ((((Re t) ^2) - ((Im t) ^2)) + (((2 * (Re t)) * (Im t)) * <i>))))) + ((((Re z) * (Im ((((Re t) ^2) - ((Im t) ^2)) + (((2 * (Re t)) * (Im t)) * <i>)))) + ((Re ((((Re t) ^2) - ((Im t) ^2)) + (((2 * (Re t)) * (Im t)) * <i>))) * (Im z))) * <i>)) + (s * t) is complex Element of COMPLEX
((((z * (((Re t) ^2) - ((Im t) ^2))) - (0 * (Im ((((Re t) ^2) - ((Im t) ^2)) + (((2 * (Re t)) * (Im t)) * <i>))))) + ((((Re z) * (Im ((((Re t) ^2) - ((Im t) ^2)) + (((2 * (Re t)) * (Im t)) * <i>)))) + ((Re ((((Re t) ^2) - ((Im t) ^2)) + (((2 * (Re t)) * (Im t)) * <i>))) * (Im z))) * <i>)) + (s * t)) + n is complex Element of COMPLEX
(z * (((Re t) ^2) - ((Im t) ^2))) - 0 is complex real ext-real Element of REAL
- 0 is empty complex real ext-real non positive non negative V69() V70() V71() V72() V73() V74() V75() set
(z * (((Re t) ^2) - ((Im t) ^2))) + (- 0) is complex real ext-real set
(Re z) * ((2 * (Re t)) * (Im t)) is complex real ext-real Element of REAL
((Re z) * ((2 * (Re t)) * (Im t))) + ((Re ((((Re t) ^2) - ((Im t) ^2)) + (((2 * (Re t)) * (Im t)) * <i>))) * (Im z)) is complex real ext-real Element of REAL
(((Re z) * ((2 * (Re t)) * (Im t))) + ((Re ((((Re t) ^2) - ((Im t) ^2)) + (((2 * (Re t)) * (Im t)) * <i>))) * (Im z))) * <i> is complex Element of COMPLEX
((z * (((Re t) ^2) - ((Im t) ^2))) - 0) + ((((Re z) * ((2 * (Re t)) * (Im t))) + ((Re ((((Re t) ^2) - ((Im t) ^2)) + (((2 * (Re t)) * (Im t)) * <i>))) * (Im z))) * <i>) is complex Element of COMPLEX
(((z * (((Re t) ^2) - ((Im t) ^2))) - 0) + ((((Re z) * ((2 * (Re t)) * (Im t))) + ((Re ((((Re t) ^2) - ((Im t) ^2)) + (((2 * (Re t)) * (Im t)) * <i>))) * (Im z))) * <i>)) + (s * t) is complex Element of COMPLEX
((((z * (((Re t) ^2) - ((Im t) ^2))) - 0) + ((((Re z) * ((2 * (Re t)) * (Im t))) + ((Re ((((Re t) ^2) - ((Im t) ^2)) + (((2 * (Re t)) * (Im t)) * <i>))) * (Im z))) * <i>)) + (s * t)) + n is complex Element of COMPLEX
z * ((2 * (Re t)) * (Im t)) is complex real ext-real Element of REAL
(z * ((2 * (Re t)) * (Im t))) + ((Re ((((Re t) ^2) - ((Im t) ^2)) + (((2 * (Re t)) * (Im t)) * <i>))) * (Im z)) is complex real ext-real Element of REAL
((z * ((2 * (Re t)) * (Im t))) + ((Re ((((Re t) ^2) - ((Im t) ^2)) + (((2 * (Re t)) * (Im t)) * <i>))) * (Im z))) * <i> is complex Element of COMPLEX
((z * (((Re t) ^2) - ((Im t) ^2))) - 0) + (((z * ((2 * (Re t)) * (Im t))) + ((Re ((((Re t) ^2) - ((Im t) ^2)) + (((2 * (Re t)) * (Im t)) * <i>))) * (Im z))) * <i>) is complex Element of COMPLEX
(((z * (((Re t) ^2) - ((Im t) ^2))) - 0) + (((z * ((2 * (Re t)) * (Im t))) + ((Re ((((Re t) ^2) - ((Im t) ^2)) + (((2 * (Re t)) * (Im t)) * <i>))) * (Im z))) * <i>)) + (s * t) is complex Element of COMPLEX
((((z * (((Re t) ^2) - ((Im t) ^2))) - 0) + (((z * ((2 * (Re t)) * (Im t))) + ((Re ((((Re t) ^2) - ((Im t) ^2)) + (((2 * (Re t)) * (Im t)) * <i>))) * (Im z))) * <i>)) + (s * t)) + n is complex Element of COMPLEX
(((Re t) ^2) - ((Im t) ^2)) * (Im z) is complex real ext-real Element of REAL
(z * ((2 * (Re t)) * (Im t))) + ((((Re t) ^2) - ((Im t) ^2)) * (Im z)) is complex real ext-real Element of REAL
((z * ((2 * (Re t)) * (Im t))) + ((((Re t) ^2) - ((Im t) ^2)) * (Im z))) * <i> is complex Element of COMPLEX
((z * (((Re t) ^2) - ((Im t) ^2))) - 0) + (((z * ((2 * (Re t)) * (Im t))) + ((((Re t) ^2) - ((Im t) ^2)) * (Im z))) * <i>) is complex Element of COMPLEX
(((z * (((Re t) ^2) - ((Im t) ^2))) - 0) + (((z * ((2 * (Re t)) * (Im t))) + ((((Re t) ^2) - ((Im t) ^2)) * (Im z))) * <i>)) + (s * t) is complex Element of COMPLEX
((((z * (((Re t) ^2) - ((Im t) ^2))) - 0) + (((z * ((2 * (Re t)) * (Im t))) + ((((Re t) ^2) - ((Im t) ^2)) * (Im z))) * <i>)) + (s * t)) + n is complex Element of COMPLEX
(((Re t) ^2) - ((Im t) ^2)) * 0 is complex real ext-real Element of REAL
(z * ((2 * (Re t)) * (Im t))) + ((((Re t) ^2) - ((Im t) ^2)) * 0) is complex real ext-real Element of REAL
((z * ((2 * (Re t)) * (Im t))) + ((((Re t) ^2) - ((Im t) ^2)) * 0)) * <i> is complex Element of COMPLEX
((z * (((Re t) ^2) - ((Im t) ^2))) - 0) + (((z * ((2 * (Re t)) * (Im t))) + ((((Re t) ^2) - ((Im t) ^2)) * 0)) * <i>) is complex Element of COMPLEX
(((z * (((Re t) ^2) - ((Im t) ^2))) - 0) + (((z * ((2 * (Re t)) * (Im t))) + ((((Re t) ^2) - ((Im t) ^2)) * 0)) * <i>)) + (s * t) is complex Element of COMPLEX
((((z * (((Re t) ^2) - ((Im t) ^2))) - 0) + (((z * ((2 * (Re t)) * (Im t))) + ((((Re t) ^2) - ((Im t) ^2)) * 0)) * <i>)) + (s * t)) + n is complex Element of COMPLEX
0 * ((2 * (Re t)) * (Im t)) is complex real ext-real Element of REAL
(z * (((Re t) ^2) - ((Im t) ^2))) - (0 * ((2 * (Re t)) * (Im t))) is complex real ext-real Element of REAL
- (0 * ((2 * (Re t)) * (Im t))) is complex real ext-real set
(z * (((Re t) ^2) - ((Im t) ^2))) + (- (0 * ((2 * (Re t)) * (Im t)))) is complex real ext-real set
((((Re t) ^2) - ((Im t) ^2)) * 0) + (z * ((2 * (Re t)) * (Im t))) is complex real ext-real Element of REAL
(((((Re t) ^2) - ((Im t) ^2)) * 0) + (z * ((2 * (Re t)) * (Im t)))) * <i> is complex Element of COMPLEX
((z * (((Re t) ^2) - ((Im t) ^2))) - (0 * ((2 * (Re t)) * (Im t)))) + ((((((Re t) ^2) - ((Im t) ^2)) * 0) + (z * ((2 * (Re t)) * (Im t)))) * <i>) is complex Element of COMPLEX
s + (0 * <i>) is complex Element of COMPLEX
(s + (0 * <i>)) * ((Re t) + ((Im t) * <i>)) is complex Element of COMPLEX
(((z * (((Re t) ^2) - ((Im t) ^2))) - (0 * ((2 * (Re t)) * (Im t)))) + ((((((Re t) ^2) - ((Im t) ^2)) * 0) + (z * ((2 * (Re t)) * (Im t)))) * <i>)) + ((s + (0 * <i>)) * ((Re t) + ((Im t) * <i>))) is complex Element of COMPLEX
((((z * (((Re t) ^2) - ((Im t) ^2))) - (0 * ((2 * (Re t)) * (Im t)))) + ((((((Re t) ^2) - ((Im t) ^2)) * 0) + (z * ((2 * (Re t)) * (Im t)))) * <i>)) + ((s + (0 * <i>)) * ((Re t) + ((Im t) * <i>)))) + n is complex Element of COMPLEX
s * (Re t) is complex real ext-real Element of REAL
(z * (((Re t) ^2) - ((Im t) ^2))) + (s * (Re t)) is complex real ext-real Element of REAL
((z * (((Re t) ^2) - ((Im t) ^2))) + (s * (Re t))) + n is complex real ext-real Element of REAL
s * (Im t) is complex real ext-real Element of REAL
(z * ((2 * (Re t)) * (Im t))) + (s * (Im t)) is complex real ext-real Element of REAL
((z * ((2 * (Re t)) * (Im t))) + (s * (Im t))) * <i> is complex Element of COMPLEX
(((z * (((Re t) ^2) - ((Im t) ^2))) + (s * (Re t))) + n) + (((z * ((2 * (Re t)) * (Im t))) + (s * (Im t))) * <i>) is complex Element of COMPLEX
z * (2 * (Re t)) is complex real ext-real Element of REAL
(z * (2 * (Re t))) * (Im t) is complex real ext-real Element of REAL
((z * (2 * (Re t))) * (Im t)) + (s * (Im t)) is complex real ext-real Element of REAL
z * 2 is complex real ext-real Element of REAL
(z * 2) * (Re t) is complex real ext-real Element of REAL
((z * 2) * (Re t)) * (Im t) is complex real ext-real Element of REAL
- s is complex real ext-real Element of REAL
(- s) * (Im t) is complex real ext-real Element of REAL
z * z is complex real ext-real Element of REAL
2 * (z * z) is complex real ext-real Element of REAL
(2 * (z * z)) " is complex real ext-real Element of REAL
(s ^2) * ((2 * (z * z)) ") is complex real ext-real Element of REAL
(2 * z) ^2 is complex real ext-real Element of REAL
(2 * z) * (2 * z) is complex real ext-real set
((s ^2) * ((2 * (z * z)) ")) * ((2 * z) ^2) is complex real ext-real Element of REAL
(Re t) * z is complex real ext-real Element of REAL
s / 2 is complex real ext-real Element of REAL
2 " is non empty complex real ext-real positive non negative set
s * (2 ") is complex real ext-real set
((Re t) * z) + (s / 2) is complex real ext-real Element of REAL
(((Re t) * z) + (s / 2)) ^2 is complex real ext-real Element of REAL
(((Re t) * z) + (s / 2)) * (((Re t) * z) + (s / 2)) is complex real ext-real set
0 - (delta (z,s,n)) is complex real ext-real Element of REAL
- (delta (z,s,n)) is complex real ext-real set
0 + (- (delta (z,s,n))) is complex real ext-real set
((((Re t) * z) + (s / 2)) ^2) + (((- (s ^2)) + ((n * z) * 4)) / 4) is complex real ext-real Element of REAL
0 + 0 is empty ordinal natural complex real ext-real non positive non negative V43() V44() V69() V70() V71() V72() V73() V74() V75() Element of NAT
z * ((Im t) ^2) is complex real ext-real Element of REAL
- (z * ((Im t) ^2)) is complex real ext-real Element of REAL
z * ((Re t) ^2) is complex real ext-real Element of REAL
(s * (Re t)) + (z * ((Re t) ^2)) is complex real ext-real Element of REAL
((s * (Re t)) + (z * ((Re t) ^2))) + n is complex real ext-real Element of REAL
(- (z * ((Im t) ^2))) + (((s * (Re t)) + (z * ((Re t) ^2))) + n) is complex real ext-real Element of REAL
((- (z * ((Im t) ^2))) + (((s * (Re t)) + (z * ((Re t) ^2))) + n)) + (z * ((Im t) ^2)) is complex real ext-real Element of REAL
0 + (z * ((Im t) ^2)) is complex real ext-real Element of REAL
(z * ((Re t) ^2)) * z is complex real ext-real Element of REAL
(s * (Re t)) * z is complex real ext-real Element of REAL
((z * ((Re t) ^2)) * z) + ((s * (Re t)) * z) is complex real ext-real Element of REAL
(((z * ((Re t) ^2)) * z) + ((s * (Re t)) * z)) + (n * z) is complex real ext-real Element of REAL
(z * ((Im t) ^2)) * z is complex real ext-real Element of REAL
(- s) / z is complex real ext-real Element of REAL
z " is complex real ext-real set
(- s) * (z ") is complex real ext-real set
1 / z is complex real ext-real Element of REAL
1 * (z ") is complex real ext-real set
(- s) / 2 is complex real ext-real Element of REAL
(- s) * (2 ") is complex real ext-real set
(1 / z) * ((- s) / 2) is complex real ext-real Element of REAL
(- s) / (2 * z) is complex real ext-real Element of REAL
(- s) * ((2 * z) ") is complex real ext-real set
(s / (2 * z)) ^2 is complex real ext-real Element of REAL
(s / (2 * z)) * (s / (2 * z)) is complex real ext-real set
((s / (2 * z)) ^2) - ((Im t) ^2) is complex real ext-real Element of REAL
((s / (2 * z)) ^2) + (- ((Im t) ^2)) is complex real ext-real set
z * (((s / (2 * z)) ^2) - ((Im t) ^2)) is complex real ext-real Element of REAL
s * (- (s / (2 * z))) is complex real ext-real Element of REAL
(z * (((s / (2 * z)) ^2) - ((Im t) ^2))) + (s * (- (s / (2 * z)))) is complex real ext-real Element of REAL
((z * (((s / (2 * z)) ^2) - ((Im t) ^2))) + (s * (- (s / (2 * z))))) + n is complex real ext-real Element of REAL
(s * (- (s / (2 * z)))) + n is complex real ext-real Element of REAL
- ((s * (- (s / (2 * z)))) + n) is complex real ext-real Element of REAL
(- ((s * (- (s / (2 * z)))) + n)) / z is complex real ext-real Element of REAL
(- ((s * (- (s / (2 * z)))) + n)) * (z ") is complex real ext-real set
((- ((s * (- (s / (2 * z)))) + n)) / z) - 0 is complex real ext-real Element of REAL
((- ((s * (- (s / (2 * z)))) + n)) / z) + (- 0) is complex real ext-real set
((s / (2 * z)) ^2) - ((- ((s * (- (s / (2 * z)))) + n)) / z) is complex real ext-real Element of REAL
- ((- ((s * (- (s / (2 * z)))) + n)) / z) is complex real ext-real set
((s / (2 * z)) ^2) + (- ((- ((s * (- (s / (2 * z)))) + n)) / z)) is complex real ext-real set
((Im t) ^2) - 0 is complex real ext-real Element of REAL
((Im t) ^2) + (- 0) is complex real ext-real set
z " is complex real ext-real Element of REAL
n * (z ") is complex real ext-real Element of REAL
((s / (2 * z)) ^2) + (n * (z ")) is complex real ext-real Element of REAL
(s ^2) / (2 * z) is complex real ext-real Element of REAL
(s ^2) * ((2 * z) ") is complex real ext-real set
((s ^2) / (2 * z)) * (z ") is complex real ext-real Element of REAL
(((s / (2 * z)) ^2) + (n * (z "))) - (((s ^2) / (2 * z)) * (z ")) is complex real ext-real Element of REAL
- (((s ^2) / (2 * z)) * (z ")) is complex real ext-real set
(((s / (2 * z)) ^2) + (n * (z "))) + (- (((s ^2) / (2 * z)) * (z "))) is complex real ext-real set
((Im t) ^2) * ((2 * z) ^2) is complex real ext-real Element of REAL
(s ^2) / ((2 * z) ^2) is complex real ext-real Element of REAL
((2 * z) ^2) " is complex real ext-real set
(s ^2) * (((2 * z) ^2) ") is complex real ext-real set
((s ^2) / ((2 * z) ^2)) + (n * (z ")) is complex real ext-real Element of REAL
(((s ^2) / ((2 * z) ^2)) + (n * (z "))) - (((s ^2) / (2 * z)) * (z ")) is complex real ext-real Element of REAL
(((s ^2) / ((2 * z) ^2)) + (n * (z "))) + (- (((s ^2) / (2 * z)) * (z "))) is complex real ext-real set
((((s ^2) / ((2 * z) ^2)) + (n * (z "))) - (((s ^2) / (2 * z)) * (z "))) * ((2 * z) ^2) is complex real ext-real Element of REAL
((s ^2) / ((2 * z) ^2)) * ((2 * z) ^2) is complex real ext-real Element of REAL
(n * (z ")) * ((2 * z) ^2) is complex real ext-real Element of REAL
(((s ^2) / ((2 * z) ^2)) * ((2 * z) ^2)) + ((n * (z ")) * ((2 * z) ^2)) is complex real ext-real Element of REAL
(2 * z) " is complex real ext-real Element of REAL
(s ^2) * ((2 * z) ") is complex real ext-real Element of REAL
((s ^2) * ((2 * z) ")) * (z ") is complex real ext-real Element of REAL
(((s ^2) * ((2 * z) ")) * (z ")) * ((2 * z) ^2) is complex real ext-real Element of REAL
((((s ^2) / ((2 * z) ^2)) * ((2 * z) ^2)) + ((n * (z ")) * ((2 * z) ^2))) - ((((s ^2) * ((2 * z) ")) * (z ")) * ((2 * z) ^2)) is complex real ext-real Element of REAL
- ((((s ^2) * ((2 * z) ")) * (z ")) * ((2 * z) ^2)) is complex real ext-real set
((((s ^2) / ((2 * z) ^2)) * ((2 * z) ^2)) + ((n * (z ")) * ((2 * z) ^2))) + (- ((((s ^2) * ((2 * z) ")) * (z ")) * ((2 * z) ^2))) is complex real ext-real set
(s ^2) + ((n * (z ")) * ((2 * z) ^2)) is complex real ext-real Element of REAL
((2 * z) ") * (z ") is complex real ext-real Element of REAL
(s ^2) * (((2 * z) ") * (z ")) is complex real ext-real Element of REAL
((s ^2) * (((2 * z) ") * (z "))) * ((2 * z) ^2) is complex real ext-real Element of REAL
((s ^2) + ((n * (z ")) * ((2 * z) ^2))) - (((s ^2) * (((2 * z) ") * (z "))) * ((2 * z) ^2)) is complex real ext-real Element of REAL
- (((s ^2) * (((2 * z) ") * (z "))) * ((2 * z) ^2)) is complex real ext-real set
((s ^2) + ((n * (z ")) * ((2 * z) ^2))) + (- (((s ^2) * (((2 * z) ") * (z "))) * ((2 * z) ^2))) is complex real ext-real set
(2 * z) * z is complex real ext-real Element of REAL
((2 * z) * z) " is complex real ext-real Element of REAL
(s ^2) * (((2 * z) * z) ") is complex real ext-real Element of REAL
((s ^2) * (((2 * z) * z) ")) * ((2 * z) ^2) is complex real ext-real Element of REAL
((s ^2) + ((n * (z ")) * ((2 * z) ^2))) - (((s ^2) * (((2 * z) * z) ")) * ((2 * z) ^2)) is complex real ext-real Element of REAL
- (((s ^2) * (((2 * z) * z) ")) * ((2 * z) ^2)) is complex real ext-real set
((s ^2) + ((n * (z ")) * ((2 * z) ^2))) + (- (((s ^2) * (((2 * z) * z) ")) * ((2 * z) ^2))) is complex real ext-real set
((s ^2) + ((n * (z ")) * ((2 * z) ^2))) - (((s ^2) * ((2 * (z * z)) ")) * ((2 * z) ^2)) is complex real ext-real Element of REAL
- (((s ^2) * ((2 * (z * z)) ")) * ((2 * z) ^2)) is complex real ext-real set
((s ^2) + ((n * (z ")) * ((2 * z) ^2))) + (- (((s ^2) * ((2 * (z * z)) ")) * ((2 * z) ^2))) is complex real ext-real set
((2 * z) ^2) " is complex real ext-real Element of REAL
(((s ^2) * ((2 * (z * z)) ")) * ((2 * z) ^2)) * (((2 * z) ^2) ") is complex real ext-real Element of REAL
1 / ((2 * z) ^2) is complex real ext-real Element of REAL
1 * (((2 * z) ^2) ") is complex real ext-real set
((2 * z) ^2) * (1 / ((2 * z) ^2)) is complex real ext-real Element of REAL
((s ^2) * ((2 * (z * z)) ")) * (((2 * z) ^2) * (1 / ((2 * z) ^2))) is complex real ext-real Element of REAL
((s ^2) * ((2 * (z * z)) ")) * 1 is complex real ext-real Element of REAL
2 " is non empty complex real ext-real positive non negative V44() Element of RAT
((((s ^2) * ((2 * (z * z)) ")) * ((2 * z) ^2)) * (((2 * z) ^2) ")) * (2 ") is complex real ext-real Element of REAL
z ^2 is complex real ext-real Element of REAL
z * z is complex real ext-real set
2 * (z ^2) is complex real ext-real Element of REAL
(2 * (z ^2)) " is complex real ext-real Element of REAL
(s ^2) * ((2 * (z ^2)) ") is complex real ext-real Element of REAL
((s ^2) * ((2 * (z ^2)) ")) * (2 ") is complex real ext-real Element of REAL
((2 * (z ^2)) ") * (2 ") is complex real ext-real Element of REAL
(s ^2) * (((2 * (z ^2)) ") * (2 ")) is complex real ext-real Element of REAL
(z ^2) * 2 is complex real ext-real Element of REAL
2 * ((z ^2) * 2) is complex real ext-real Element of REAL
(2 * ((z ^2) * 2)) " is complex real ext-real Element of REAL
(s ^2) * ((2 * ((z ^2) * 2)) ") is complex real ext-real Element of REAL
(((s ^2) * ((2 * (z * z)) ")) * ((2 * z) ^2)) * (2 ") is complex real ext-real Element of REAL
((((s ^2) * ((2 * (z * z)) ")) * ((2 * z) ^2)) * (2 ")) / ((2 * z) ^2) is complex real ext-real Element of REAL
((((s ^2) * ((2 * (z * z)) ")) * ((2 * z) ^2)) * (2 ")) * (((2 * z) ^2) ") is complex real ext-real set
(((((s ^2) * ((2 * (z * z)) ")) * ((2 * z) ^2)) * (2 ")) / ((2 * z) ^2)) * ((2 * z) ^2) is complex real ext-real Element of REAL
(((s ^2) * ((2 * (z * z)) ")) * ((2 * z) ^2)) / 2 is complex real ext-real Element of REAL
(((s ^2) * ((2 * (z * z)) ")) * ((2 * z) ^2)) * (2 ") is complex real ext-real set
n / z is complex real ext-real Element of REAL
n * (z ") is complex real ext-real set
(n / z) * z is complex real ext-real Element of REAL
((n / z) * z) * 2 is complex real ext-real Element of REAL
(((n / z) * z) * 2) * (2 * z) is complex real ext-real Element of REAL
n * 2 is complex real ext-real Element of REAL
(n * 2) * (2 * z) is complex real ext-real Element of REAL
(Im t) * (2 * z) is complex real ext-real Element of REAL
((Im t) * (2 * z)) ^2 is complex real ext-real Element of REAL
((Im t) * (2 * z)) * ((Im t) * (2 * z)) is complex real ext-real set
(sqrt (- (delta (z,s,n)))) ^2 is complex real ext-real Element of REAL
(sqrt (- (delta (z,s,n)))) * (sqrt (- (delta (z,s,n)))) is complex real ext-real set
((Im t) * (2 * z)) + (sqrt (- (delta (z,s,n)))) is complex real ext-real Element of REAL
((Im t) * (2 * z)) - (sqrt (- (delta (z,s,n)))) is complex real ext-real Element of REAL
- (sqrt (- (delta (z,s,n)))) is complex real ext-real set
((Im t) * (2 * z)) + (- (sqrt (- (delta (z,s,n))))) is complex real ext-real set
(((Im t) * (2 * z)) + (sqrt (- (delta (z,s,n))))) * (((Im t) * (2 * z)) - (sqrt (- (delta (z,s,n))))) is complex real ext-real Element of REAL
- (sqrt (- (delta (z,s,n)))) is complex real ext-real Element of REAL
(- (sqrt (- (delta (z,s,n))))) / (2 * z) is complex real ext-real Element of REAL
(- (sqrt (- (delta (z,s,n))))) * ((2 * z) ") is complex real ext-real set
((Im t) * (2 * z)) / (2 * z) is complex real ext-real Element of REAL
((Im t) * (2 * z)) * ((2 * z) ") is complex real ext-real set
z is complex real ext-real Element of REAL
s is complex real ext-real Element of REAL
s / z is complex real ext-real Element of REAL
z " is complex real ext-real set
s * (z ") is complex real ext-real set
- (s / z) is complex real ext-real Element of REAL
n is complex Element of COMPLEX
0 * <i> is complex Element of COMPLEX
0 + (0 * <i>) is complex Element of COMPLEX
t is complex Element of COMPLEX
(0,z,s,t) is complex Element of COMPLEX
t ^2 is complex set
t * t is complex set
0 * (t ^2) is complex set
z * t is complex set
(0 * (t ^2)) + (z * t) is complex set
((0 * (t ^2)) + (z * t)) + s is complex set
Re t is complex real ext-real Element of REAL
Im t is complex real ext-real Element of REAL
(Im t) * <i> is complex Element of COMPLEX
(Re t) + ((Im t) * <i>) is complex Element of COMPLEX
z * ((Re t) + ((Im t) * <i>)) is complex Element of COMPLEX
(z * ((Re t) + ((Im t) * <i>))) + s is complex Element of COMPLEX
z * (Re t) is complex real ext-real Element of REAL
(z * (Re t)) - 0 is complex real ext-real Element of REAL
- 0 is empty complex real ext-real non positive non negative V69() V70() V71() V72() V73() V74() V75() set
(z * (Re t)) + (- 0) is complex real ext-real set
((z * (Re t)) - 0) + s is complex real ext-real Element of REAL
z * (Im t) is complex real ext-real Element of REAL
(z * (Im t)) + 0 is complex real ext-real Element of REAL
((z * (Im t)) + 0) * <i> is complex Element of COMPLEX
(((z * (Re t)) - 0) + s) + (((z * (Im t)) + 0) * <i>) is complex Element of COMPLEX
- s is complex real ext-real Element of REAL
(- s) / z is complex real ext-real Element of REAL
(- s) * (z ") is complex real ext-real set
(- (s / z)) + (0 * <i>) is complex Element of COMPLEX
z is complex real ext-real Element of REAL
s is complex real ext-real Element of REAL
n is complex real ext-real Element of REAL
s / z is complex real ext-real Element of REAL
z " is complex real ext-real set
s * (z ") is complex real ext-real set
n / z is complex real ext-real Element of REAL
n * (z ") is complex real ext-real set
t is complex set
t is complex set
t + t is complex Element of COMPLEX
- (t + t) is complex Element of COMPLEX
t * t is complex Element of COMPLEX
Polynom (z,s,n,0) is complex real ext-real Element of REAL
0 ^2 is complex real ext-real set
0 * 0 is empty ordinal natural complex real ext-real non positive non negative V69() V70() V71() V72() V73() V74() V75() set
z * (0 ^2) is complex real ext-real set
s * 0 is complex real ext-real set
(z * (0 ^2)) + (s * 0) is complex real ext-real set
((z * (0 ^2)) + (s * 0)) + n is complex real ext-real set
Quard (z,t,t,0) is set
0 - t is complex set
- t is complex set
0 + (- t) is complex set
0 - t is complex set
- t is complex set
0 + (- t) is complex set
(0 - t) * (0 - t) is complex set
z * ((0 - t) * (0 - t)) is complex set
Quard (z,t,t,1) is set
1 - t is complex set
1 + (- t) is complex set
1 - t is complex set
1 + (- t) is complex set
(1 - t) * (1 - t) is complex set
z * ((1 - t) * (1 - t)) is complex set
Polynom (z,s,n,1) is complex real ext-real Element of REAL
1 ^2 is complex real ext-real set
1 * 1 is non empty ordinal natural complex real ext-real positive non negative set
z * (1 ^2) is complex real ext-real set
s * 1 is complex real ext-real set
(z * (1 ^2)) + (s * 1) is complex real ext-real set
((z * (1 ^2)) + (s * 1)) + n is complex real ext-real set
z + s is complex real ext-real Element of REAL
(z + s) + n is complex real ext-real Element of REAL
z * (- (t + t)) is complex Element of COMPLEX
z + (z * (- (t + t))) is complex Element of COMPLEX
(z + (z * (- (t + t)))) + n is complex Element of COMPLEX
z is complex set
z ^2 is complex set
z * z is complex set
(z ^2) * z is complex Element of COMPLEX
z is complex set
z |^ 2 is complex set
z * z is complex Element of COMPLEX
1 + 1 is non empty ordinal natural complex real ext-real positive non negative V43() V44() V69() V70() V71() V72() V73() V74() Element of NAT
z |^ (1 + 1) is complex set
z |^ 1 is complex set
(z |^ 1) * z is complex Element of COMPLEX
z is complex set
s is complex set
n is complex set
t is complex set
t is complex set
Polynom (z,s,n,t,t) is complex set
t |^ 3 is complex set
z * (t |^ 3) is complex set
t ^2 is complex set
t * t is complex set
s * (t ^2) is complex set
(z * (t |^ 3)) + (s * (t ^2)) is complex set
n * t is complex set
((z * (t |^ 3)) + (s * (t ^2))) + (n * t) is complex set
(((z * (t |^ 3)) + (s * (t ^2))) + (n * t)) + t is complex set
(t) is complex Element of COMPLEX
(t ^2) * t is complex Element of COMPLEX
z * (t) is complex Element of COMPLEX
s * (t ^2) is complex Element of COMPLEX
(z * (t)) + (s * (t ^2)) is complex Element of COMPLEX
n * t is complex Element of COMPLEX
((z * (t)) + (s * (t ^2))) + (n * t) is complex Element of COMPLEX
(((z * (t)) + (s * (t ^2))) + (n * t)) + t is complex Element of COMPLEX
t is set
2 + 1 is non empty ordinal natural complex real ext-real positive non negative V43() V44() V69() V70() V71() V72() V73() V74() Element of NAT
t |^ (2 + 1) is complex set
z * (t |^ (2 + 1)) is complex Element of COMPLEX
(z * (t |^ (2 + 1))) + (s * (t ^2)) is complex Element of COMPLEX
((z * (t |^ (2 + 1))) + (s * (t ^2))) + (n * t) is complex Element of COMPLEX
(((z * (t |^ (2 + 1))) + (s * (t ^2))) + (n * t)) + t is complex Element of COMPLEX
t |^ 2 is complex set
(t |^ 2) * t is complex Element of COMPLEX
z * ((t |^ 2) * t) is complex Element of COMPLEX
(z * ((t |^ 2) * t)) + (s * (t ^2)) is complex Element of COMPLEX
((z * ((t |^ 2) * t)) + (s * (t ^2))) + (n * t) is complex Element of COMPLEX
(((z * ((t |^ 2) * t)) + (s * (t ^2))) + (n * t)) + t is complex Element of COMPLEX
z is complex Element of COMPLEX
(z) is complex Element of COMPLEX
z ^2 is complex set
z * z is complex set
(z ^2) * z is complex Element of COMPLEX
Re (z) is complex real ext-real Element of REAL
Re z is complex real ext-real Element of REAL
(Re z) |^ 3 is complex real ext-real Element of REAL
3 * (Re z) is complex real ext-real Element of REAL
Im z is complex real ext-real Element of REAL
(Im z) ^2 is complex real ext-real Element of REAL
(Im z) * (Im z) is complex real ext-real set
(3 * (Re z)) * ((Im z) ^2) is complex real ext-real Element of REAL
((Re z) |^ 3) - ((3 * (Re z)) * ((Im z) ^2)) is complex real ext-real Element of REAL
- ((3 * (Re z)) * ((Im z) ^2)) is complex real ext-real set
((Re z) |^ 3) + (- ((3 * (Re z)) * ((Im z) ^2))) is complex real ext-real set
Im (z) is complex real ext-real Element of REAL
(Im z) |^ 3 is complex real ext-real Element of REAL
- ((Im z) |^ 3) is complex real ext-real Element of REAL
(Re z) ^2 is complex real ext-real Element of REAL
(Re z) * (Re z) is complex real ext-real set
3 * ((Re z) ^2) is complex real ext-real Element of REAL
(3 * ((Re z) ^2)) * (Im z) is complex real ext-real Element of REAL
(- ((Im z) |^ 3)) + ((3 * ((Re z) ^2)) * (Im z)) is complex real ext-real Element of REAL
(Im z) * <i> is complex Element of COMPLEX
(Re z) + ((Im z) * <i>) is complex Element of COMPLEX
((Re z) ^2) - ((Im z) ^2) is complex real ext-real Element of REAL
- ((Im z) ^2) is complex real ext-real set
((Re z) ^2) + (- ((Im z) ^2)) is complex real ext-real set
(Re z) * (Im z) is complex real ext-real Element of REAL
2 * ((Re z) * (Im z)) is complex real ext-real Element of REAL
(2 * ((Re z) * (Im z))) * <i> is complex Element of COMPLEX
(((Re z) ^2) - ((Im z) ^2)) + ((2 * ((Re z) * (Im z))) * <i>) is complex Element of COMPLEX
Re ((((Re z) ^2) - ((Im z) ^2)) + ((2 * ((Re z) * (Im z))) * <i>)) is complex real ext-real Element of REAL
Re ((Re z) + ((Im z) * <i>)) is complex real ext-real Element of REAL
(Re ((((Re z) ^2) - ((Im z) ^2)) + ((2 * ((Re z) * (Im z))) * <i>))) * (Re ((Re z) + ((Im z) * <i>))) is complex real ext-real Element of REAL
Im ((((Re z) ^2) - ((Im z) ^2)) + ((2 * ((Re z) * (Im z))) * <i>)) is complex real ext-real Element of REAL
Im ((Re z) + ((Im z) * <i>)) is complex real ext-real Element of REAL
(Im ((((Re z) ^2) - ((Im z) ^2)) + ((2 * ((Re z) * (Im z))) * <i>))) * (Im ((Re z) + ((Im z) * <i>))) is complex real ext-real Element of REAL
((Re ((((Re z) ^2) - ((Im z) ^2)) + ((2 * ((Re z) * (Im z))) * <i>))) * (Re ((Re z) + ((Im z) * <i>)))) - ((Im ((((Re z) ^2) - ((Im z) ^2)) + ((2 * ((Re z) * (Im z))) * <i>))) * (Im ((Re z) + ((Im z) * <i>)))) is complex real ext-real Element of REAL
- ((Im ((((Re z) ^2) - ((Im z) ^2)) + ((2 * ((Re z) * (Im z))) * <i>))) * (Im ((Re z) + ((Im z) * <i>)))) is complex real ext-real set
((Re ((((Re z) ^2) - ((Im z) ^2)) + ((2 * ((Re z) * (Im z))) * <i>))) * (Re ((Re z) + ((Im z) * <i>)))) + (- ((Im ((((Re z) ^2) - ((Im z) ^2)) + ((2 * ((Re z) * (Im z))) * <i>))) * (Im ((Re z) + ((Im z) * <i>))))) is complex real ext-real set
(Re ((((Re z) ^2) - ((Im z) ^2)) + ((2 * ((Re z) * (Im z))) * <i>))) * (Im ((Re z) + ((Im z) * <i>))) is complex real ext-real Element of REAL
(Re ((Re z) + ((Im z) * <i>))) * (Im ((((Re z) ^2) - ((Im z) ^2)) + ((2 * ((Re z) * (Im z))) * <i>))) is complex real ext-real Element of REAL
((Re ((((Re z) ^2) - ((Im z) ^2)) + ((2 * ((Re z) * (Im z))) * <i>))) * (Im ((Re z) + ((Im z) * <i>)))) + ((Re ((Re z) + ((Im z) * <i>))) * (Im ((((Re z) ^2) - ((Im z) ^2)) + ((2 * ((Re z) * (Im z))) * <i>)))) is complex real ext-real Element of REAL
(((Re ((((Re z) ^2) - ((Im z) ^2)) + ((2 * ((Re z) * (Im z))) * <i>))) * (Im ((Re z) + ((Im z) * <i>)))) + ((Re ((Re z) + ((Im z) * <i>))) * (Im ((((Re z) ^2) - ((Im z) ^2)) + ((2 * ((Re z) * (Im z))) * <i>))))) * <i> is complex Element of COMPLEX
(((Re ((((Re z) ^2) - ((Im z) ^2)) + ((2 * ((Re z) * (Im z))) * <i>))) * (Re ((Re z) + ((Im z) * <i>)))) - ((Im ((((Re z) ^2) - ((Im z) ^2)) + ((2 * ((Re z) * (Im z))) * <i>))) * (Im ((Re z) + ((Im z) * <i>))))) + ((((Re ((((Re z) ^2) - ((Im z) ^2)) + ((2 * ((Re z) * (Im z))) * <i>))) * (Im ((Re z) + ((Im z) * <i>)))) + ((Re ((Re z) + ((Im z) * <i>))) * (Im ((((Re z) ^2) - ((Im z) ^2)) + ((2 * ((Re z) * (Im z))) * <i>))))) * <i>) is complex Element of COMPLEX
(((Re z) ^2) - ((Im z) ^2)) * (Re ((Re z) + ((Im z) * <i>))) is complex real ext-real Element of REAL
((((Re z) ^2) - ((Im z) ^2)) * (Re ((Re z) + ((Im z) * <i>)))) - ((Im ((((Re z) ^2) - ((Im z) ^2)) + ((2 * ((Re z) * (Im z))) * <i>))) * (Im ((Re z) + ((Im z) * <i>)))) is complex real ext-real Element of REAL
((((Re z) ^2) - ((Im z) ^2)) * (Re ((Re z) + ((Im z) * <i>)))) + (- ((Im ((((Re z) ^2) - ((Im z) ^2)) + ((2 * ((Re z) * (Im z))) * <i>))) * (Im ((Re z) + ((Im z) * <i>))))) is complex real ext-real set
(((((Re z) ^2) - ((Im z) ^2)) * (Re ((Re z) + ((Im z) * <i>)))) - ((Im ((((Re z) ^2) - ((Im z) ^2)) + ((2 * ((Re z) * (Im z))) * <i>))) * (Im ((Re z) + ((Im z) * <i>))))) + ((((Re ((((Re z) ^2) - ((Im z) ^2)) + ((2 * ((Re z) * (Im z))) * <i>))) * (Im ((Re z) + ((Im z) * <i>)))) + ((Re ((Re z) + ((Im z) * <i>))) * (Im ((((Re z) ^2) - ((Im z) ^2)) + ((2 * ((Re z) * (Im z))) * <i>))))) * <i>) is complex Element of COMPLEX
(2 * ((Re z) * (Im z))) * (Im ((Re z) + ((Im z) * <i>))) is complex real ext-real Element of REAL
((((Re z) ^2) - ((Im z) ^2)) * (Re ((Re z) + ((Im z) * <i>)))) - ((2 * ((Re z) * (Im z))) * (Im ((Re z) + ((Im z) * <i>)))) is complex real ext-real Element of REAL
- ((2 * ((Re z) * (Im z))) * (Im ((Re z) + ((Im z) * <i>)))) is complex real ext-real set
((((Re z) ^2) - ((Im z) ^2)) * (Re ((Re z) + ((Im z) * <i>)))) + (- ((2 * ((Re z) * (Im z))) * (Im ((Re z) + ((Im z) * <i>))))) is complex real ext-real set
(((((Re z) ^2) - ((Im z) ^2)) * (Re ((Re z) + ((Im z) * <i>)))) - ((2 * ((Re z) * (Im z))) * (Im ((Re z) + ((Im z) * <i>))))) + ((((Re ((((Re z) ^2) - ((Im z) ^2)) + ((2 * ((Re z) * (Im z))) * <i>))) * (Im ((Re z) + ((Im z) * <i>)))) + ((Re ((Re z) + ((Im z) * <i>))) * (Im ((((Re z) ^2) - ((Im z) ^2)) + ((2 * ((Re z) * (Im z))) * <i>))))) * <i>) is complex Element of COMPLEX
(((Re z) ^2) - ((Im z) ^2)) * (Im ((Re z) + ((Im z) * <i>))) is complex real ext-real Element of REAL
((((Re z) ^2) - ((Im z) ^2)) * (Im ((Re z) + ((Im z) * <i>)))) + ((Re ((Re z) + ((Im z) * <i>))) * (Im ((((Re z) ^2) - ((Im z) ^2)) + ((2 * ((Re z) * (Im z))) * <i>)))) is complex real ext-real Element of REAL
(((((Re z) ^2) - ((Im z) ^2)) * (Im ((Re z) + ((Im z) * <i>)))) + ((Re ((Re z) + ((Im z) * <i>))) * (Im ((((Re z) ^2) - ((Im z) ^2)) + ((2 * ((Re z) * (Im z))) * <i>))))) * <i> is complex Element of COMPLEX
(((((Re z) ^2) - ((Im z) ^2)) * (Re ((Re z) + ((Im z) * <i>)))) - ((2 * ((Re z) * (Im z))) * (Im ((Re z) + ((Im z) * <i>))))) + ((((((Re z) ^2) - ((Im z) ^2)) * (Im ((Re z) + ((Im z) * <i>)))) + ((Re ((Re z) + ((Im z) * <i>))) * (Im ((((Re z) ^2) - ((Im z) ^2)) + ((2 * ((Re z) * (Im z))) * <i>))))) * <i>) is complex Element of COMPLEX
(Re ((Re z) + ((Im z) * <i>))) * (2 * ((Re z) * (Im z))) is complex real ext-real Element of REAL
((((Re z) ^2) - ((Im z) ^2)) * (Im ((Re z) + ((Im z) * <i>)))) + ((Re ((Re z) + ((Im z) * <i>))) * (2 * ((Re z) * (Im z)))) is complex real ext-real Element of REAL
(((((Re z) ^2) - ((Im z) ^2)) * (Im ((Re z) + ((Im z) * <i>)))) + ((Re ((Re z) + ((Im z) * <i>))) * (2 * ((Re z) * (Im z))))) * <i> is complex Element of COMPLEX
(((((Re z) ^2) - ((Im z) ^2)) * (Re ((Re z) + ((Im z) * <i>)))) - ((2 * ((Re z) * (Im z))) * (Im ((Re z) + ((Im z) * <i>))))) + ((((((Re z) ^2) - ((Im z) ^2)) * (Im ((Re z) + ((Im z) * <i>)))) + ((Re ((Re z) + ((Im z) * <i>))) * (2 * ((Re z) * (Im z))))) * <i>) is complex Element of COMPLEX
(((Re z) ^2) - ((Im z) ^2)) * (Re z) is complex real ext-real Element of REAL
((((Re z) ^2) - ((Im z) ^2)) * (Re z)) - ((2 * ((Re z) * (Im z))) * (Im ((Re z) + ((Im z) * <i>)))) is complex real ext-real Element of REAL
((((Re z) ^2) - ((Im z) ^2)) * (Re z)) + (- ((2 * ((Re z) * (Im z))) * (Im ((Re z) + ((Im z) * <i>))))) is complex real ext-real set
(((((Re z) ^2) - ((Im z) ^2)) * (Re z)) - ((2 * ((Re z) * (Im z))) * (Im ((Re z) + ((Im z) * <i>))))) + ((((((Re z) ^2) - ((Im z) ^2)) * (Im ((Re z) + ((Im z) * <i>)))) + ((Re ((Re z) + ((Im z) * <i>))) * (2 * ((Re z) * (Im z))))) * <i>) is complex Element of COMPLEX
(2 * ((Re z) * (Im z))) * (Im z) is complex real ext-real Element of REAL
((((Re z) ^2) - ((Im z) ^2)) * (Re z)) - ((2 * ((Re z) * (Im z))) * (Im z)) is complex real ext-real Element of REAL
- ((2 * ((Re z) * (Im z))) * (Im z)) is complex real ext-real set
((((Re z) ^2) - ((Im z) ^2)) * (Re z)) + (- ((2 * ((Re z) * (Im z))) * (Im z))) is complex real ext-real set
(((((Re z) ^2) - ((Im z) ^2)) * (Re z)) - ((2 * ((Re z) * (Im z))) * (Im z))) + ((((((Re z) ^2) - ((Im z) ^2)) * (Im ((Re z) + ((Im z) * <i>)))) + ((Re ((Re z) + ((Im z) * <i>))) * (2 * ((Re z) * (Im z))))) * <i>) is complex Element of COMPLEX
(((Re z) ^2) - ((Im z) ^2)) * (Im z) is complex real ext-real Element of REAL
((((Re z) ^2) - ((Im z) ^2)) * (Im z)) + ((Re ((Re z) + ((Im z) * <i>))) * (2 * ((Re z) * (Im z)))) is complex real ext-real Element of REAL
(((((Re z) ^2) - ((Im z) ^2)) * (Im z)) + ((Re ((Re z) + ((Im z) * <i>))) * (2 * ((Re z) * (Im z))))) * <i> is complex Element of COMPLEX
(((((Re z) ^2) - ((Im z) ^2)) * (Re z)) - ((2 * ((Re z) * (Im z))) * (Im z))) + ((((((Re z) ^2) - ((Im z) ^2)) * (Im z)) + ((Re ((Re z) + ((Im z) * <i>))) * (2 * ((Re z) * (Im z))))) * <i>) is complex Element of COMPLEX
((Re z) ^2) * (Re z) is complex real ext-real Element of REAL
((Im z) ^2) * (Re z) is complex real ext-real Element of REAL
(((Re z) ^2) * (Re z)) - (((Im z) ^2) * (Re z)) is complex real ext-real Element of REAL
- (((Im z) ^2) * (Re z)) is complex real ext-real set
(((Re z) ^2) * (Re z)) + (- (((Im z) ^2) * (Re z))) is complex real ext-real set
0 * (Re z) is complex real ext-real Element of REAL
((((Re z) ^2) * (Re z)) - (((Im z) ^2) * (Re z))) + (0 * (Re z)) is complex real ext-real Element of REAL
(((((Re z) ^2) * (Re z)) - (((Im z) ^2) * (Re z))) + (0 * (Re z))) - ((2 * ((Re z) * (Im z))) * (Im z)) is complex real ext-real Element of REAL
(((((Re z) ^2) * (Re z)) - (((Im z) ^2) * (Re z))) + (0 * (Re z))) + (- ((2 * ((Re z) * (Im z))) * (Im z))) is complex real ext-real set
(((Re z) ^2) - ((Im z) ^2)) + 0 is complex real ext-real Element of REAL
((((Re z) ^2) - ((Im z) ^2)) + 0) * (Im z) is complex real ext-real Element of REAL
(Re z) * (2 * ((Re z) * (Im z))) is complex real ext-real Element of REAL
(((((Re z) ^2) - ((Im z) ^2)) + 0) * (Im z)) + ((Re z) * (2 * ((Re z) * (Im z)))) is complex real ext-real Element of REAL
((((((Re z) ^2) - ((Im z) ^2)) + 0) * (Im z)) + ((Re z) * (2 * ((Re z) * (Im z))))) * <i> is complex Element of COMPLEX
((((((Re z) ^2) * (Re z)) - (((Im z) ^2) * (Re z))) + (0 * (Re z))) - ((2 * ((Re z) * (Im z))) * (Im z))) + (((((((Re z) ^2) - ((Im z) ^2)) + 0) * (Im z)) + ((Re z) * (2 * ((Re z) * (Im z))))) * <i>) is complex Element of COMPLEX
(Re z) |^ 1 is complex real ext-real Element of REAL
((Re z) |^ 1) * (Re z) is complex real ext-real Element of REAL
(((Re z) |^ 1) * (Re z)) * (Re z) is complex real ext-real Element of REAL
((((Re z) |^ 1) * (Re z)) * (Re z)) - (((Im z) ^2) * (Re z)) is complex real ext-real Element of REAL
((((Re z) |^ 1) * (Re z)) * (Re z)) + (- (((Im z) ^2) * (Re z))) is complex real ext-real set
(((((Re z) |^ 1) * (Re z)) * (Re z)) - (((Im z) ^2) * (Re z))) - ((2 * ((Re z) * (Im z))) * (Im z)) is complex real ext-real Element of REAL
(((((Re z) |^ 1) * (Re z)) * (Re z)) - (((Im z) ^2) * (Re z))) + (- ((2 * ((Re z) * (Im z))) * (Im z))) is complex real ext-real set
((Re z) ^2) * (Im z) is complex real ext-real Element of REAL
((Im z) ^2) * (Im z) is complex real ext-real Element of REAL
(((Re z) ^2) * (Im z)) - (((Im z) ^2) * (Im z)) is complex real ext-real Element of REAL
- (((Im z) ^2) * (Im z)) is complex real ext-real set
(((Re z) ^2) * (Im z)) + (- (((Im z) ^2) * (Im z))) is complex real ext-real set
((((Re z) ^2) * (Im z)) - (((Im z) ^2) * (Im z))) + ((Re z) * (2 * ((Re z) * (Im z)))) is complex real ext-real Element of REAL
(((((Re z) ^2) * (Im z)) - (((Im z) ^2) * (Im z))) + ((Re z) * (2 * ((Re z) * (Im z))))) * <i> is complex Element of COMPLEX
((((((Re z) |^ 1) * (Re z)) * (Re z)) - (((Im z) ^2) * (Re z))) - ((2 * ((Re z) * (Im z))) * (Im z))) + ((((((Re z) ^2) * (Im z)) - (((Im z) ^2) * (Im z))) + ((Re z) * (2 * ((Re z) * (Im z))))) * <i>) is complex Element of COMPLEX
1 + 1 is non empty ordinal natural complex real ext-real positive non negative V43() V44() V69() V70() V71() V72() V73() V74() Element of NAT
(Re z) |^ (1 + 1) is complex real ext-real Element of REAL
((Re z) |^ (1 + 1)) * (Re z) is complex real ext-real Element of REAL
(((Re z) |^ (1 + 1)) * (Re z)) - (((Im z) ^2) * (Re z)) is complex real ext-real Element of REAL
(((Re z) |^ (1 + 1)) * (Re z)) + (- (((Im z) ^2) * (Re z))) is complex real ext-real set
((((Re z) |^ (1 + 1)) * (Re z)) - (((Im z) ^2) * (Re z))) - ((2 * ((Re z) * (Im z))) * (Im z)) is complex real ext-real Element of REAL
((((Re z) |^ (1 + 1)) * (Re z)) - (((Im z) ^2) * (Re z))) + (- ((2 * ((Re z) * (Im z))) * (Im z))) is complex real ext-real set
(((((Re z) |^ (1 + 1)) * (Re z)) - (((Im z) ^2) * (Re z))) - ((2 * ((Re z) * (Im z))) * (Im z))) + ((((((Re z) ^2) * (Im z)) - (((Im z) ^2) * (Im z))) + ((Re z) * (2 * ((Re z) * (Im z))))) * <i>) is complex Element of COMPLEX
2 + 1 is non empty ordinal natural complex real ext-real positive non negative V43() V44() V69() V70() V71() V72() V73() V74() Element of NAT
(Re z) |^ (2 + 1) is complex real ext-real Element of REAL
((Re z) |^ (2 + 1)) - (((Im z) ^2) * (Re z)) is complex real ext-real Element of REAL
((Re z) |^ (2 + 1)) + (- (((Im z) ^2) * (Re z))) is complex real ext-real set
(((Re z) |^ (2 + 1)) - (((Im z) ^2) * (Re z))) - ((2 * ((Re z) * (Im z))) * (Im z)) is complex real ext-real Element of REAL
(((Re z) |^ (2 + 1)) - (((Im z) ^2) * (Re z))) + (- ((2 * ((Re z) * (Im z))) * (Im z))) is complex real ext-real set
((((Re z) |^ (2 + 1)) - (((Im z) ^2) * (Re z))) - ((2 * ((Re z) * (Im z))) * (Im z))) + ((((((Re z) ^2) * (Im z)) - (((Im z) ^2) * (Im z))) + ((Re z) * (2 * ((Re z) * (Im z))))) * <i>) is complex Element of COMPLEX
((Re z) |^ 3) - (((Im z) ^2) * (Re z)) is complex real ext-real Element of REAL
((Re z) |^ 3) + (- (((Im z) ^2) * (Re z))) is complex real ext-real set
(((Re z) |^ 3) - (((Im z) ^2) * (Re z))) - ((2 * ((Re z) * (Im z))) * (Im z)) is complex real ext-real Element of REAL
(((Re z) |^ 3) - (((Im z) ^2) * (Re z))) + (- ((2 * ((Re z) * (Im z))) * (Im z))) is complex real ext-real set
(Im z) |^ 1 is complex real ext-real Element of REAL
((Im z) |^ 1) * (Im z) is complex real ext-real Element of REAL
(((Im z) |^ 1) * (Im z)) * (Im z) is complex real ext-real Element of REAL
(((Re z) ^2) * (Im z)) - ((((Im z) |^ 1) * (Im z)) * (Im z)) is complex real ext-real Element of REAL
- ((((Im z) |^ 1) * (Im z)) * (Im z)) is complex real ext-real set
(((Re z) ^2) * (Im z)) + (- ((((Im z) |^ 1) * (Im z)) * (Im z))) is complex real ext-real set
((((Re z) ^2) * (Im z)) - ((((Im z) |^ 1) * (Im z)) * (Im z))) + ((Re z) * (2 * ((Re z) * (Im z)))) is complex real ext-real Element of REAL
(((((Re z) ^2) * (Im z)) - ((((Im z) |^ 1) * (Im z)) * (Im z))) + ((Re z) * (2 * ((Re z) * (Im z))))) * <i> is complex Element of COMPLEX
((((Re z) |^ 3) - (((Im z) ^2) * (Re z))) - ((2 * ((Re z) * (Im z))) * (Im z))) + ((((((Re z) ^2) * (Im z)) - ((((Im z) |^ 1) * (Im z)) * (Im z))) + ((Re z) * (2 * ((Re z) * (Im z))))) * <i>) is complex Element of COMPLEX
(Im z) |^ (1 + 1) is complex real ext-real Element of REAL
((Im z) |^ (1 + 1)) * (Im z) is complex real ext-real Element of REAL
(((Re z) ^2) * (Im z)) - (((Im z) |^ (1 + 1)) * (Im z)) is complex real ext-real Element of REAL
- (((Im z) |^ (1 + 1)) * (Im z)) is complex real ext-real set
(((Re z) ^2) * (Im z)) + (- (((Im z) |^ (1 + 1)) * (Im z))) is complex real ext-real set
((((Re z) ^2) * (Im z)) - (((Im z) |^ (1 + 1)) * (Im z))) + ((Re z) * (2 * ((Re z) * (Im z)))) is complex real ext-real Element of REAL
(((((Re z) ^2) * (Im z)) - (((Im z) |^ (1 + 1)) * (Im z))) + ((Re z) * (2 * ((Re z) * (Im z))))) * <i> is complex Element of COMPLEX
((((Re z) |^ 3) - (((Im z) ^2) * (Re z))) - ((2 * ((Re z) * (Im z))) * (Im z))) + ((((((Re z) ^2) * (Im z)) - (((Im z) |^ (1 + 1)) * (Im z))) + ((Re z) * (2 * ((Re z) * (Im z))))) * <i>) is complex Element of COMPLEX
(Im z) * (Im z) is complex real ext-real Element of REAL
(Re z) * ((Im z) * (Im z)) is complex real ext-real Element of REAL
2 * ((Re z) * ((Im z) * (Im z))) is complex real ext-real Element of REAL
(((Re z) |^ 3) - (((Im z) ^2) * (Re z))) - (2 * ((Re z) * ((Im z) * (Im z)))) is complex real ext-real Element of REAL
- (2 * ((Re z) * ((Im z) * (Im z)))) is complex real ext-real set
(((Re z) |^ 3) - (((Im z) ^2) * (Re z))) + (- (2 * ((Re z) * ((Im z) * (Im z))))) is complex real ext-real set
(Im z) |^ (2 + 1) is complex real ext-real Element of REAL
(((Re z) ^2) * (Im z)) - ((Im z) |^ (2 + 1)) is complex real ext-real Element of REAL
- ((Im z) |^ (2 + 1)) is complex real ext-real set
(((Re z) ^2) * (Im z)) + (- ((Im z) |^ (2 + 1))) is complex real ext-real set
((((Re z) ^2) * (Im z)) - ((Im z) |^ (2 + 1))) + ((Re z) * (2 * ((Re z) * (Im z)))) is complex real ext-real Element of REAL
(((((Re z) ^2) * (Im z)) - ((Im z) |^ (2 + 1))) + ((Re z) * (2 * ((Re z) * (Im z))))) * <i> is complex Element of COMPLEX
((((Re z) |^ 3) - (((Im z) ^2) * (Re z))) - (2 * ((Re z) * ((Im z) * (Im z))))) + ((((((Re z) ^2) * (Im z)) - ((Im z) |^ (2 + 1))) + ((Re z) * (2 * ((Re z) * (Im z))))) * <i>) is complex Element of COMPLEX
((- ((Im z) |^ 3)) + ((3 * ((Re z) ^2)) * (Im z))) * <i> is complex Element of COMPLEX
(((Re z) |^ 3) - ((3 * (Re z)) * ((Im z) ^2))) + (((- ((Im z) |^ 3)) + ((3 * ((Re z) ^2)) * (Im z))) * <i>) is complex Element of COMPLEX
z is complex real ext-real Element of REAL
s is complex real ext-real Element of REAL
n is complex real ext-real Element of REAL
t is complex real ext-real Element of REAL
t is complex real ext-real Element of REAL
t is complex real ext-real Element of REAL
t is complex real ext-real Element of REAL
q is complex real ext-real Element of REAL
Polynom (z,s,n,t,0) is complex real ext-real set
0 |^ 3 is ordinal natural complex real ext-real non negative set
z * (0 |^ 3) is complex real ext-real set
0 ^2 is complex real ext-real set
0 * 0 is empty ordinal natural complex real ext-real non positive non negative V69() V70() V71() V72() V73() V74() V75() set
s * (0 ^2) is complex real ext-real set
(z * (0 |^ 3)) + (s * (0 ^2)) is complex real ext-real set
n * 0 is complex real ext-real set
((z * (0 |^ 3)) + (s * (0 ^2))) + (n * 0) is complex real ext-real set
(((z * (0 |^ 3)) + (s * (0 ^2))) + (n * 0)) + t is complex real ext-real set
(0) is complex Element of COMPLEX
(0 ^2) * 0 is complex real ext-real Element of COMPLEX
z * (0) is complex Element of COMPLEX
s * (0 ^2) is complex real ext-real Element of COMPLEX
(z * (0)) + (s * (0 ^2)) is complex Element of COMPLEX
n * 0 is complex real ext-real Element of COMPLEX
((z * (0)) + (s * (0 ^2))) + (n * 0) is complex Element of COMPLEX
(((z * (0)) + (s * (0 ^2))) + (n * 0)) + t is complex Element of COMPLEX
Polynom (t,t,t,q,0) is complex real ext-real set
t * (0 |^ 3) is complex real ext-real set
t * (0 ^2) is complex real ext-real set
(t * (0 |^ 3)) + (t * (0 ^2)) is complex real ext-real set
t * 0 is complex real ext-real set
((t * (0 |^ 3)) + (t * (0 ^2))) + (t * 0) is complex real ext-real set
(((t * (0 |^ 3)) + (t * (0 ^2))) + (t * 0)) + q is complex real ext-real set
t * (0) is complex Element of COMPLEX
t * (0 ^2) is complex real ext-real Element of COMPLEX
(t * (0)) + (t * (0 ^2)) is complex Element of COMPLEX
t * 0 is complex real ext-real Element of COMPLEX
((t * (0)) + (t * (0 ^2))) + (t * 0) is complex Element of COMPLEX
(((t * (0)) + (t * (0 ^2))) + (t * 0)) + q is complex Element of COMPLEX
Polynom (z,s,n,t,1) is complex real ext-real set
1 |^ 3 is ordinal natural complex real ext-real non negative set
z * (1 |^ 3) is complex real ext-real set
1 ^2 is complex real ext-real set
1 * 1 is non empty ordinal natural complex real ext-real positive non negative set
s * (1 ^2) is complex real ext-real set
(z * (1 |^ 3)) + (s * (1 ^2)) is complex real ext-real set
n * 1 is complex real ext-real set
((z * (1 |^ 3)) + (s * (1 ^2))) + (n * 1) is complex real ext-real set
(((z * (1 |^ 3)) + (s * (1 ^2))) + (n * 1)) + t is complex real ext-real set
(1) is complex Element of COMPLEX
(1 ^2) * 1 is complex real ext-real Element of COMPLEX
z * (1) is complex Element of COMPLEX
s * (1 ^2) is complex real ext-real Element of COMPLEX
(z * (1)) + (s * (1 ^2)) is complex Element of COMPLEX
n * 1 is complex real ext-real Element of COMPLEX
((z * (1)) + (s * (1 ^2))) + (n * 1) is complex Element of COMPLEX
(((z * (1)) + (s * (1 ^2))) + (n * 1)) + t is complex Element of COMPLEX
Polynom (t,t,t,q,1) is complex real ext-real set
t * (1 |^ 3) is complex real ext-real set
t * (1 ^2) is complex real ext-real set
(t * (1 |^ 3)) + (t * (1 ^2)) is complex real ext-real set
t * 1 is complex real ext-real set
((t * (1 |^ 3)) + (t * (1 ^2))) + (t * 1) is complex real ext-real set
(((t * (1 |^ 3)) + (t * (1 ^2))) + (t * 1)) + q is complex real ext-real set
t * (1) is complex Element of COMPLEX
t * (1 ^2) is complex real ext-real Element of COMPLEX
(t * (1)) + (t * (1 ^2)) is complex Element of COMPLEX
t * 1 is complex real ext-real Element of COMPLEX
((t * (1)) + (t * (1 ^2))) + (t * 1) is complex Element of COMPLEX
(((t * (1)) + (t * (1 ^2))) + (t * 1)) + q is complex Element of COMPLEX
- 1 is non empty complex real ext-real non positive negative V43() V44() Element of INT
Polynom (z,s,n,t,(- 1)) is complex real ext-real set
(- 1) |^ 3 is complex real ext-real set
z * ((- 1) |^ 3) is complex real ext-real set
(- 1) ^2 is complex real ext-real set
(- 1) * (- 1) is non empty complex real ext-real positive non negative set
s * ((- 1) ^2) is complex real ext-real set
(z * ((- 1) |^ 3)) + (s * ((- 1) ^2)) is complex real ext-real set
n * (- 1) is complex real ext-real set
((z * ((- 1) |^ 3)) + (s * ((- 1) ^2))) + (n * (- 1)) is complex real ext-real set
(((z * ((- 1) |^ 3)) + (s * ((- 1) ^2))) + (n * (- 1))) + t is complex real ext-real set
((- 1)) is complex Element of COMPLEX
((- 1) ^2) * (- 1) is complex real ext-real Element of COMPLEX
z * ((- 1)) is complex Element of COMPLEX
s * ((- 1) ^2) is complex real ext-real Element of COMPLEX
(z * ((- 1))) + (s * ((- 1) ^2)) is complex Element of COMPLEX
n * (- 1) is complex real ext-real Element of COMPLEX
((z * ((- 1))) + (s * ((- 1) ^2))) + (n * (- 1)) is complex Element of COMPLEX
(((z * ((- 1))) + (s * ((- 1) ^2))) + (n * (- 1))) + t is complex Element of COMPLEX
Polynom (t,t,t,q,(- 1)) is complex real ext-real set
t * ((- 1) |^ 3) is complex real ext-real set
t * ((- 1) ^2) is complex real ext-real set
(t * ((- 1) |^ 3)) + (t * ((- 1) ^2)) is complex real ext-real set
t * (- 1) is complex real ext-real set
((t * ((- 1) |^ 3)) + (t * ((- 1) ^2))) + (t * (- 1)) is complex real ext-real set
(((t * ((- 1) |^ 3)) + (t * ((- 1) ^2))) + (t * (- 1))) + q is complex real ext-real set
t * ((- 1)) is complex Element of COMPLEX
t * ((- 1) ^2) is complex real ext-real Element of COMPLEX
(t * ((- 1))) + (t * ((- 1) ^2)) is complex Element of COMPLEX
t * (- 1) is complex real ext-real Element of COMPLEX
((t * ((- 1))) + (t * ((- 1) ^2))) + (t * (- 1)) is complex Element of COMPLEX
(((t * ((- 1))) + (t * ((- 1) ^2))) + (t * (- 1))) + q is complex Element of COMPLEX
Polynom (z,s,n,t,2) is complex real ext-real set
2 |^ 3 is ordinal natural complex real ext-real non negative set
z * (2 |^ 3) is complex real ext-real set
2 ^2 is complex real ext-real set
2 * 2 is non empty ordinal natural complex real ext-real positive non negative set
s * (2 ^2) is complex real ext-real set
(z * (2 |^ 3)) + (s * (2 ^2)) is complex real ext-real set
n * 2 is complex real ext-real set
((z * (2 |^ 3)) + (s * (2 ^2))) + (n * 2) is complex real ext-real set
(((z * (2 |^ 3)) + (s * (2 ^2))) + (n * 2)) + t is complex real ext-real set
(2) is complex Element of COMPLEX
(2 ^2) * 2 is complex real ext-real Element of COMPLEX
z * (2) is complex Element of COMPLEX
s * (2 ^2) is complex real ext-real Element of COMPLEX
(z * (2)) + (s * (2 ^2)) is complex Element of COMPLEX
n * 2 is complex real ext-real Element of COMPLEX
((z * (2)) + (s * (2 ^2))) + (n * 2) is complex Element of COMPLEX
(((z * (2)) + (s * (2 ^2))) + (n * 2)) + t is complex Element of COMPLEX
Polynom (t,t,t,q,2) is complex real ext-real set
t * (2 |^ 3) is complex real ext-real set
t * (2 ^2) is complex real ext-real set
(t * (2 |^ 3)) + (t * (2 ^2)) is complex real ext-real set
t * 2 is complex real ext-real set
((t * (2 |^ 3)) + (t * (2 ^2))) + (t * 2) is complex real ext-real set
(((t * (2 |^ 3)) + (t * (2 ^2))) + (t * 2)) + q is complex real ext-real set
t * (2) is complex Element of COMPLEX
t * (2 ^2) is complex real ext-real Element of COMPLEX
(t * (2)) + (t * (2 ^2)) is complex Element of COMPLEX
t * 2 is complex real ext-real Element of COMPLEX
((t * (2)) + (t * (2 ^2))) + (t * 2) is complex Element of COMPLEX
(((t * (2)) + (t * (2 ^2))) + (t * 2)) + q is complex Element of COMPLEX
z is complex real ext-real Element of REAL
2 * z is complex real ext-real Element of REAL
s is complex real ext-real Element of REAL
- s is complex real ext-real Element of REAL
s / (2 * z) is complex real ext-real Element of REAL
(2 * z) " is complex real ext-real set
s * ((2 * z) ") is complex real ext-real set
- (s / (2 * z)) is complex real ext-real Element of REAL
n is complex real ext-real Element of REAL
delta (z,s,n) is complex real ext-real Element of REAL
s ^2 is complex real ext-real set
s * s is complex real ext-real set
4 * z is complex real ext-real set
(4 * z) * n is complex real ext-real set
(s ^2) - ((4 * z) * n) is complex real ext-real set
- ((4 * z) * n) is complex real ext-real set
(s ^2) + (- ((4 * z) * n)) is complex real ext-real set
sqrt (delta (z,s,n)) is complex real ext-real Element of REAL
(- s) + (sqrt (delta (z,s,n))) is complex real ext-real Element of REAL
((- s) + (sqrt (delta (z,s,n)))) / (2 * z) is complex real ext-real Element of REAL
((- s) + (sqrt (delta (z,s,n)))) * ((2 * z) ") is complex real ext-real set
(- s) - (sqrt (delta (z,s,n))) is complex real ext-real Element of REAL
- (sqrt (delta (z,s,n))) is complex real ext-real set
(- s) + (- (sqrt (delta (z,s,n)))) is complex real ext-real set
((- s) - (sqrt (delta (z,s,n)))) / (2 * z) is complex real ext-real Element of REAL
((- s) - (sqrt (delta (z,s,n)))) * ((2 * z) ") is complex real ext-real set
t is complex Element of COMPLEX
Polynom (0,z,s,n,t) is complex set
t |^ 3 is complex set
0 * (t |^ 3) is complex set
t ^2 is complex set
t * t is complex set
z * (t ^2) is complex set
(0 * (t |^ 3)) + (z * (t ^2)) is complex set
s * t is complex set
((0 * (t |^ 3)) + (z * (t ^2))) + (s * t) is complex set
(((0 * (t |^ 3)) + (z * (t ^2))) + (s * t)) + n is complex set
(t) is complex Element of COMPLEX
(t ^2) * t is complex Element of COMPLEX
0 * (t) is complex Element of COMPLEX
z * (t ^2) is complex Element of COMPLEX
(0 * (t)) + (z * (t ^2)) is complex Element of COMPLEX
s * t is complex Element of COMPLEX
((0 * (t)) + (z * (t ^2))) + (s * t) is complex Element of COMPLEX
(((0 * (t)) + (z * (t ^2))) + (s * t)) + n is complex Element of COMPLEX
(z,s,n,t) is complex Element of COMPLEX
(z * (t ^2)) + (s * t) is complex set
((z * (t ^2)) + (s * t)) + n is complex set
z is complex real ext-real Element of REAL
2 * z is complex real ext-real Element of REAL
s is complex real ext-real Element of REAL
s / (2 * z) is complex real ext-real Element of REAL
(2 * z) " is complex real ext-real set
s * ((2 * z) ") is complex real ext-real set
- (s / (2 * z)) is complex real ext-real Element of REAL
n is complex real ext-real Element of REAL
delta (z,s,n) is complex real ext-real Element of REAL
s ^2 is complex real ext-real set
s * s is complex real ext-real set
4 * z is complex real ext-real set
(4 * z) * n is complex real ext-real set
(s ^2) - ((4 * z) * n) is complex real ext-real set
- ((4 * z) * n) is complex real ext-real set
(s ^2) + (- ((4 * z) * n)) is complex real ext-real set
- (delta (z,s,n)) is complex real ext-real Element of REAL
sqrt (- (delta (z,s,n))) is complex real ext-real Element of REAL
(sqrt (- (delta (z,s,n)))) / (2 * z) is complex real ext-real Element of REAL
(sqrt (- (delta (z,s,n)))) * ((2 * z) ") is complex real ext-real set
((sqrt (- (delta (z,s,n)))) / (2 * z)) * <i> is complex Element of COMPLEX
(- (s / (2 * z))) + (((sqrt (- (delta (z,s,n)))) / (2 * z)) * <i>) is complex Element of COMPLEX
- ((sqrt (- (delta (z,s,n)))) / (2 * z)) is complex real ext-real Element of REAL
(- ((sqrt (- (delta (z,s,n)))) / (2 * z))) * <i> is complex Element of COMPLEX
(- (s / (2 * z))) + ((- ((sqrt (- (delta (z,s,n)))) / (2 * z))) * <i>) is complex Element of COMPLEX
t is complex Element of COMPLEX
Polynom (0,z,s,n,t) is complex set
t |^ 3 is complex set
0 * (t |^ 3) is complex set
t ^2 is complex set
t * t is complex set
z * (t ^2) is complex set
(0 * (t |^ 3)) + (z * (t ^2)) is complex set
s * t is complex set
((0 * (t |^ 3)) + (z * (t ^2))) + (s * t) is complex set
(((0 * (t |^ 3)) + (z * (t ^2))) + (s * t)) + n is complex set
(t) is complex Element of COMPLEX
(t ^2) * t is complex Element of COMPLEX
0 * (t) is complex Element of COMPLEX
z * (t ^2) is complex Element of COMPLEX
(0 * (t)) + (z * (t ^2)) is complex Element of COMPLEX
s * t is complex Element of COMPLEX
((0 * (t)) + (z * (t ^2))) + (s * t) is complex Element of COMPLEX
(((0 * (t)) + (z * (t ^2))) + (s * t)) + n is complex Element of COMPLEX
(z,s,n,t) is complex Element of COMPLEX
(z * (t ^2)) + (s * t) is complex set
((z * (t ^2)) + (s * t)) + n is complex set
z is complex real ext-real Element of REAL
4 * z is complex real ext-real Element of REAL
2 * z is complex real ext-real Element of REAL
s is complex real ext-real Element of REAL
(4 * z) * s is complex real ext-real Element of REAL
- ((4 * z) * s) is complex real ext-real Element of REAL
sqrt (- ((4 * z) * s)) is complex real ext-real Element of REAL
(sqrt (- ((4 * z) * s))) / (2 * z) is complex real ext-real Element of REAL
(2 * z) " is complex real ext-real set
(sqrt (- ((4 * z) * s))) * ((2 * z) ") is complex real ext-real set
- (sqrt (- ((4 * z) * s))) is complex real ext-real Element of REAL
(- (sqrt (- ((4 * z) * s)))) / (2 * z) is complex real ext-real Element of REAL
(- (sqrt (- ((4 * z) * s)))) * ((2 * z) ") is complex real ext-real set
n is complex Element of COMPLEX
Polynom (z,0,s,0,n) is complex set
n |^ 3 is complex set
z * (n |^ 3) is complex set
n ^2 is complex set
n * n is complex set
0 * (n ^2) is complex set
(z * (n |^ 3)) + (0 * (n ^2)) is complex set
s * n is complex set
((z * (n |^ 3)) + (0 * (n ^2))) + (s * n) is complex set
(((z * (n |^ 3)) + (0 * (n ^2))) + (s * n)) + 0 is complex set
(n) is complex Element of COMPLEX
(n ^2) * n is complex Element of COMPLEX
z * (n) is complex Element of COMPLEX
0 * (n ^2) is complex Element of COMPLEX
(z * (n)) + (0 * (n ^2)) is complex Element of COMPLEX
s * n is complex Element of COMPLEX
((z * (n)) + (0 * (n ^2))) + (s * n) is complex Element of COMPLEX
(((z * (n)) + (0 * (n ^2))) + (s * n)) + 0 is complex Element of COMPLEX
(n) is complex Element of COMPLEX
z * (n) is complex Element of COMPLEX
(z * (n)) + s is complex Element of COMPLEX
((z * (n)) + s) * n is complex Element of COMPLEX
(z,0,s,n) is complex Element of COMPLEX
z * (n ^2) is complex set
0 * n is complex set
(z * (n ^2)) + (0 * n) is complex set
((z * (n ^2)) + (0 * n)) + s is complex set
- 0 is empty complex real ext-real non positive non negative V43() V44() V69() V70() V71() V72() V73() V74() V75() Element of INT
delta (z,0,s) is complex real ext-real Element of REAL
0 ^2 is complex real ext-real set
0 * 0 is empty ordinal natural complex real ext-real non positive non negative V69() V70() V71() V72() V73() V74() V75() set
4 * z is complex real ext-real set
(4 * z) * s is complex real ext-real set
(0 ^2) - ((4 * z) * s) is complex real ext-real set
- ((4 * z) * s) is complex real ext-real set
(0 ^2) + (- ((4 * z) * s)) is complex real ext-real set
sqrt (delta (z,0,s)) is complex real ext-real Element of REAL
(- 0) + (sqrt (delta (z,0,s))) is complex real ext-real Element of REAL
((- 0) + (sqrt (delta (z,0,s)))) / (2 * z) is complex real ext-real Element of REAL
((- 0) + (sqrt (delta (z,0,s)))) * ((2 * z) ") is complex real ext-real set
(- 0) - (sqrt (delta (z,0,s))) is complex real ext-real Element of REAL
- (sqrt (delta (z,0,s))) is complex real ext-real set
(- 0) + (- (sqrt (delta (z,0,s)))) is complex real ext-real set
((- 0) - (sqrt (delta (z,0,s)))) / (2 * z) is complex real ext-real Element of REAL
((- 0) - (sqrt (delta (z,0,s)))) * ((2 * z) ") is complex real ext-real set
0 / (2 * z) is complex real ext-real Element of REAL
0 * ((2 * z) ") is complex real ext-real set
z is complex real ext-real Element of REAL
2 * z is complex real ext-real Element of REAL
s is complex real ext-real Element of REAL
- s is complex real ext-real Element of REAL
s / (2 * z) is complex real ext-real Element of REAL
(2 * z) " is complex real ext-real set
s * ((2 * z) ") is complex real ext-real set
- (s / (2 * z)) is complex real ext-real Element of REAL
n is complex real ext-real Element of REAL
delta (z,s,n) is complex real ext-real Element of REAL
s ^2 is complex real ext-real set
s * s is complex real ext-real set
4 * z is complex real ext-real set
(4 * z) * n is complex real ext-real set
(s ^2) - ((4 * z) * n) is complex real ext-real set
- ((4 * z) * n) is complex real ext-real set
(s ^2) + (- ((4 * z) * n)) is complex real ext-real set
sqrt (delta (z,s,n)) is complex real ext-real Element of REAL
(- s) + (sqrt (delta (z,s,n))) is complex real ext-real Element of REAL
((- s) + (sqrt (delta (z,s,n)))) / (2 * z) is complex real ext-real Element of REAL
((- s) + (sqrt (delta (z,s,n)))) * ((2 * z) ") is complex real ext-real set
(- s) - (sqrt (delta (z,s,n))) is complex real ext-real Element of REAL
- (sqrt (delta (z,s,n))) is complex real ext-real set
(- s) + (- (sqrt (delta (z,s,n)))) is complex real ext-real set
((- s) - (sqrt (delta (z,s,n)))) / (2 * z) is complex real ext-real Element of REAL
((- s) - (sqrt (delta (z,s,n)))) * ((2 * z) ") is complex real ext-real set
t is complex Element of COMPLEX
Polynom (z,s,n,0,t) is complex set
t |^ 3 is complex set
z * (t |^ 3) is complex set
t ^2 is complex set
t * t is complex set
s * (t ^2) is complex set
(z * (t |^ 3)) + (s * (t ^2)) is complex set
n * t is complex set
((z * (t |^ 3)) + (s * (t ^2))) + (n * t) is complex set
(((z * (t |^ 3)) + (s * (t ^2))) + (n * t)) + 0 is complex set
(t) is complex Element of COMPLEX
(t ^2) * t is complex Element of COMPLEX
z * (t) is complex Element of COMPLEX
s * (t ^2) is complex Element of COMPLEX
(z * (t)) + (s * (t ^2)) is complex Element of COMPLEX
n * t is complex Element of COMPLEX
((z * (t)) + (s * (t ^2))) + (n * t) is complex Element of COMPLEX
(((z * (t)) + (s * (t ^2))) + (n * t)) + 0 is complex Element of COMPLEX
(t) is complex Element of COMPLEX
z * (t) is complex Element of COMPLEX
s * t is complex Element of COMPLEX
(z * (t)) + (s * t) is complex Element of COMPLEX
((z * (t)) + (s * t)) + n is complex Element of COMPLEX
(((z * (t)) + (s * t)) + n) * t is complex Element of COMPLEX
(z,s,n,t) is complex Element of COMPLEX
z * (t ^2) is complex set
s * t is complex set
(z * (t ^2)) + (s * t) is complex set
((z * (t ^2)) + (s * t)) + n is complex set
z is complex real ext-real Element of REAL
2 * z is complex real ext-real Element of REAL
s is complex real ext-real Element of REAL
s / (2 * z) is complex real ext-real Element of REAL
(2 * z) " is complex real ext-real set
s * ((2 * z) ") is complex real ext-real set
- (s / (2 * z)) is complex real ext-real Element of REAL
n is complex real ext-real Element of REAL
delta (z,s,n) is complex real ext-real Element of REAL
s ^2 is complex real ext-real set
s * s is complex real ext-real set
4 * z is complex real ext-real set
(4 * z) * n is complex real ext-real set
(s ^2) - ((4 * z) * n) is complex real ext-real set
- ((4 * z) * n) is complex real ext-real set
(s ^2) + (- ((4 * z) * n)) is complex real ext-real set
- (delta (z,s,n)) is complex real ext-real Element of REAL
sqrt (- (delta (z,s,n))) is complex real ext-real Element of REAL
(sqrt (- (delta (z,s,n)))) / (2 * z) is complex real ext-real Element of REAL
(sqrt (- (delta (z,s,n)))) * ((2 * z) ") is complex real ext-real set
((sqrt (- (delta (z,s,n)))) / (2 * z)) * <i> is complex Element of COMPLEX
(- (s / (2 * z))) + (((sqrt (- (delta (z,s,n)))) / (2 * z)) * <i>) is complex Element of COMPLEX
- ((sqrt (- (delta (z,s,n)))) / (2 * z)) is complex real ext-real Element of REAL
(- ((sqrt (- (delta (z,s,n)))) / (2 * z))) * <i> is complex Element of COMPLEX
(- (s / (2 * z))) + ((- ((sqrt (- (delta (z,s,n)))) / (2 * z))) * <i>) is complex Element of COMPLEX
t is complex Element of COMPLEX
Polynom (z,s,n,0,t) is complex set
t |^ 3 is complex set
z * (t |^ 3) is complex set
t ^2 is complex set
t * t is complex set
s * (t ^2) is complex set
(z * (t |^ 3)) + (s * (t ^2)) is complex set
n * t is complex set
((z * (t |^ 3)) + (s * (t ^2))) + (n * t) is complex set
(((z * (t |^ 3)) + (s * (t ^2))) + (n * t)) + 0 is complex set
(t) is complex Element of COMPLEX
(t ^2) * t is complex Element of COMPLEX
z * (t) is complex Element of COMPLEX
s * (t ^2) is complex Element of COMPLEX
(z * (t)) + (s * (t ^2)) is complex Element of COMPLEX
n * t is complex Element of COMPLEX
((z * (t)) + (s * (t ^2))) + (n * t) is complex Element of COMPLEX
(((z * (t)) + (s * (t ^2))) + (n * t)) + 0 is complex Element of COMPLEX
(t) is complex Element of COMPLEX
z * (t) is complex Element of COMPLEX
s * t is complex Element of COMPLEX
(z * (t)) + (s * t) is complex Element of COMPLEX
((z * (t)) + (s * t)) + n is complex Element of COMPLEX
(((z * (t)) + (s * t)) + n) * t is complex Element of COMPLEX
(z,s,n,t) is complex Element of COMPLEX
z * (t ^2) is complex set
s * t is complex set
(z * (t ^2)) + (s * t) is complex set
((z * (t ^2)) + (s * t)) + n is complex set
z is complex real ext-real Element of REAL
z ^2 is complex real ext-real Element of REAL
z * z is complex real ext-real set
s is complex real ext-real Element of REAL
sqrt s is complex real ext-real Element of REAL
- (sqrt s) is complex real ext-real Element of REAL
- s is complex real ext-real Element of REAL
Polynom (1,0,(- s),z) is complex real ext-real Element of REAL
z ^2 is complex real ext-real set
1 * (z ^2) is complex real ext-real set
0 * z is complex real ext-real set
(1 * (z ^2)) + (0 * z) is complex real ext-real set
((1 * (z ^2)) + (0 * z)) + (- s) is complex real ext-real set
- 0 is empty complex real ext-real non positive non negative V43() V44() V69() V70() V71() V72() V73() V74() V75() Element of INT
delta (1,0,(- s)) is complex real ext-real Element of REAL
0 ^2 is complex real ext-real set
0 * 0 is empty ordinal natural complex real ext-real non positive non negative V69() V70() V71() V72() V73() V74() V75() set
4 * 1 is non empty ordinal natural complex real ext-real positive non negative set
(4 * 1) * (- s) is complex real ext-real set
(0 ^2) - ((4 * 1) * (- s)) is complex real ext-real set
- ((4 * 1) * (- s)) is complex real ext-real set
(0 ^2) + (- ((4 * 1) * (- s))) is complex real ext-real set
sqrt (delta (1,0,(- s))) is complex real ext-real Element of REAL
(- 0) + (sqrt (delta (1,0,(- s)))) is complex real ext-real Element of REAL
2 * 1 is non empty ordinal natural complex real ext-real positive non negative V43() V44() V69() V70() V71() V72() V73() V74() Element of NAT
((- 0) + (sqrt (delta (1,0,(- s))))) / (2 * 1) is complex real ext-real Element of REAL
(2 * 1) " is non empty complex real ext-real positive non negative set
((- 0) + (sqrt (delta (1,0,(- s))))) * ((2 * 1) ") is complex real ext-real set
(- 0) - (sqrt (delta (1,0,(- s)))) is complex real ext-real Element of REAL
- (sqrt (delta (1,0,(- s)))) is complex real ext-real set
(- 0) + (- (sqrt (delta (1,0,(- s))))) is complex real ext-real set
((- 0) - (sqrt (delta (1,0,(- s))))) / (2 * 1) is complex real ext-real Element of REAL
((- 0) - (sqrt (delta (1,0,(- s))))) * ((2 * 1) ") is complex real ext-real set
4 * s is complex real ext-real Element of REAL
sqrt (4 * s) is complex real ext-real Element of REAL
(sqrt (4 * s)) / 2 is complex real ext-real Element of REAL
2 " is non empty complex real ext-real positive non negative set
(sqrt (4 * s)) * (2 ") is complex real ext-real set
0 - (sqrt (4 * s)) is complex real ext-real Element of REAL
- (sqrt (4 * s)) is complex real ext-real set
0 + (- (sqrt (4 * s))) is complex real ext-real set
(0 - (sqrt (4 * s))) / 2 is complex real ext-real Element of REAL
(0 - (sqrt (4 * s))) * (2 ") is complex real ext-real set
(sqrt s) * 2 is complex real ext-real Element of REAL
((sqrt s) * 2) / 2 is complex real ext-real Element of REAL
((sqrt s) * 2) * (2 ") is complex real ext-real set
2 * (sqrt s) is complex real ext-real Element of REAL
- (2 * (sqrt s)) is complex real ext-real Element of REAL
(- (2 * (sqrt s))) / 2 is complex real ext-real Element of REAL
(- (2 * (sqrt s))) * (2 ") is complex real ext-real set
z is complex real ext-real Element of REAL
2 * z is complex real ext-real Element of REAL
z ^2 is complex real ext-real Element of REAL
z * z is complex real ext-real set
4 * (z ^2) is complex real ext-real Element of REAL
3 * z is complex real ext-real Element of REAL
s is complex real ext-real Element of REAL
s / z is complex real ext-real Element of REAL
z " is complex real ext-real set
s * (z ") is complex real ext-real set
s / (3 * z) is complex real ext-real Element of REAL
(3 * z) " is complex real ext-real set
s * ((3 * z) ") is complex real ext-real set
(s / (3 * z)) |^ 3 is complex real ext-real Element of REAL
n is complex real ext-real Element of REAL
n / (2 * z) is complex real ext-real Element of REAL
(2 * z) " is complex real ext-real set
n * ((2 * z) ") is complex real ext-real set
- (n / (2 * z)) is complex real ext-real Element of REAL
n ^2 is complex real ext-real Element of REAL
n * n is complex real ext-real set
(n ^2) / (4 * (z ^2)) is complex real ext-real Element of REAL
(4 * (z ^2)) " is complex real ext-real set
(n ^2) * ((4 * (z ^2)) ") is complex real ext-real set
((n ^2) / (4 * (z ^2))) + ((s / (3 * z)) |^ 3) is complex real ext-real Element of REAL
sqrt (((n ^2) / (4 * (z ^2))) + ((s / (3 * z)) |^ 3)) is complex real ext-real Element of REAL
(- (n / (2 * z))) + (sqrt (((n ^2) / (4 * (z ^2))) + ((s / (3 * z)) |^ 3))) is complex real ext-real Element of REAL
3 -root ((- (n / (2 * z))) + (sqrt (((n ^2) / (4 * (z ^2))) + ((s / (3 * z)) |^ 3)))) is complex real ext-real Element of REAL
(- (n / (2 * z))) - (sqrt (((n ^2) / (4 * (z ^2))) + ((s / (3 * z)) |^ 3))) is complex real ext-real Element of REAL
- (sqrt (((n ^2) / (4 * (z ^2))) + ((s / (3 * z)) |^ 3))) is complex real ext-real set
(- (n / (2 * z))) + (- (sqrt (((n ^2) / (4 * (z ^2))) + ((s / (3 * z)) |^ 3)))) is complex real ext-real set
3 -root ((- (n / (2 * z))) - (sqrt (((n ^2) / (4 * (z ^2))) + ((s / (3 * z)) |^ 3)))) is complex real ext-real Element of REAL
(3 -root ((- (n / (2 * z))) + (sqrt (((n ^2) / (4 * (z ^2))) + ((s / (3 * z)) |^ 3))))) + (3 -root ((- (n / (2 * z))) - (sqrt (((n ^2) / (4 * (z ^2))) + ((s / (3 * z)) |^ 3))))) is complex real ext-real Element of REAL
(3 -root ((- (n / (2 * z))) + (sqrt (((n ^2) / (4 * (z ^2))) + ((s / (3 * z)) |^ 3))))) + (3 -root ((- (n / (2 * z))) + (sqrt (((n ^2) / (4 * (z ^2))) + ((s / (3 * z)) |^ 3))))) is complex real ext-real Element of REAL
(3 -root ((- (n / (2 * z))) - (sqrt (((n ^2) / (4 * (z ^2))) + ((s / (3 * z)) |^ 3))))) + (3 -root ((- (n / (2 * z))) - (sqrt (((n ^2) / (4 * (z ^2))) + ((s / (3 * z)) |^ 3))))) is complex real ext-real Element of REAL
t is complex Element of COMPLEX
Im t is complex real ext-real Element of REAL
Polynom (z,0,s,n,t) is complex set
t |^ 3 is complex set
z * (t |^ 3) is complex set
t ^2 is complex set
t * t is complex set
0 * (t ^2) is complex set
(z * (t |^ 3)) + (0 * (t ^2)) is complex set
s * t is complex set
((z * (t |^ 3)) + (0 * (t ^2))) + (s * t) is complex set
(((z * (t |^ 3)) + (0 * (t ^2))) + (s * t)) + n is complex set
(t) is complex Element of COMPLEX
(t ^2) * t is complex Element of COMPLEX
z * (t) is complex Element of COMPLEX
0 * (t ^2) is complex Element of COMPLEX
(z * (t)) + (0 * (t ^2)) is complex Element of COMPLEX
s * t is complex Element of COMPLEX
((z * (t)) + (0 * (t ^2))) + (s * t) is complex Element of COMPLEX
(((z * (t)) + (0 * (t ^2))) + (s * t)) + n is complex Element of COMPLEX
Re t is complex real ext-real Element of REAL
0 * <i> is complex Element of COMPLEX
z + (0 * <i>) is complex Element of COMPLEX
Re (t) is complex real ext-real Element of REAL
Im (t) is complex real ext-real Element of REAL
(Im (t)) * <i> is complex Element of COMPLEX
(Re (t)) + ((Im (t)) * <i>) is complex Element of COMPLEX
z * ((Re (t)) + ((Im (t)) * <i>)) is complex Element of COMPLEX
(t) is complex Element of COMPLEX
0 * (t) is complex Element of COMPLEX
(z * ((Re (t)) + ((Im (t)) * <i>))) + (0 * (t)) is complex Element of COMPLEX
((z * ((Re (t)) + ((Im (t)) * <i>))) + (0 * (t))) + (s * t) is complex Element of COMPLEX
(((z * ((Re (t)) + ((Im (t)) * <i>))) + (0 * (t))) + (s * t)) + n is complex Element of COMPLEX
(Re t) |^ 3 is complex real ext-real Element of REAL
3 * (Re t) is complex real ext-real Element of REAL
(Im t) ^2 is complex real ext-real Element of REAL
(Im t) * (Im t) is complex real ext-real set
(3 * (Re t)) * ((Im t) ^2) is complex real ext-real Element of REAL
((Re t) |^ 3) - ((3 * (Re t)) * ((Im t) ^2)) is complex real ext-real Element of REAL
- ((3 * (Re t)) * ((Im t) ^2)) is complex real ext-real set
((Re t) |^ 3) + (- ((3 * (Re t)) * ((Im t) ^2))) is complex real ext-real set
(((Re t) |^ 3) - ((3 * (Re t)) * ((Im t) ^2))) + ((Im (t)) * <i>) is complex Element of COMPLEX
z * ((((Re t) |^ 3) - ((3 * (Re t)) * ((Im t) ^2))) + ((Im (t)) * <i>)) is complex Element of COMPLEX
(z * ((((Re t) |^ 3) - ((3 * (Re t)) * ((Im t) ^2))) + ((Im (t)) * <i>))) + (0 * (t)) is complex Element of COMPLEX
((z * ((((Re t) |^ 3) - ((3 * (Re t)) * ((Im t) ^2))) + ((Im (t)) * <i>))) + (0 * (t))) + (s * t) is complex Element of COMPLEX
(((z * ((((Re t) |^ 3) - ((3 * (Re t)) * ((Im t) ^2))) + ((Im (t)) * <i>))) + (0 * (t))) + (s * t)) + n is complex Element of COMPLEX
(Im t) |^ 3 is complex real ext-real Element of REAL
- ((Im t) |^ 3) is complex real ext-real Element of REAL
(Re t) ^2 is complex real ext-real Element of REAL
(Re t) * (Re t) is complex real ext-real set
3 * ((Re t) ^2) is complex real ext-real Element of REAL
(3 * ((Re t) ^2)) * (Im t) is complex real ext-real Element of REAL
(- ((Im t) |^ 3)) + ((3 * ((Re t) ^2)) * (Im t)) is complex real ext-real Element of REAL
((- ((Im t) |^ 3)) + ((3 * ((Re t) ^2)) * (Im t))) * <i> is complex Element of COMPLEX
(((Re t) |^ 3) - ((3 * (Re t)) * ((Im t) ^2))) + (((- ((Im t) |^ 3)) + ((3 * ((Re t) ^2)) * (Im t))) * <i>) is complex Element of COMPLEX
z * ((((Re t) |^ 3) - ((3 * (Re t)) * ((Im t) ^2))) + (((- ((Im t) |^ 3)) + ((3 * ((Re t) ^2)) * (Im t))) * <i>)) is complex Element of COMPLEX
(z * ((((Re t) |^ 3) - ((3 * (Re t)) * ((Im t) ^2))) + (((- ((Im t) |^ 3)) + ((3 * ((Re t) ^2)) * (Im t))) * <i>))) + (s * t) is complex Element of COMPLEX
((z * ((((Re t) |^ 3) - ((3 * (Re t)) * ((Im t) ^2))) + (((- ((Im t) |^ 3)) + ((3 * ((Re t) ^2)) * (Im t))) * <i>))) + (s * t)) + n is complex Element of COMPLEX
(z + (0 * <i>)) * ((((Re t) |^ 3) - ((3 * (Re t)) * ((Im t) ^2))) + (((- ((Im t) |^ 3)) + ((3 * ((Re t) ^2)) * (Im t))) * <i>)) is complex Element of COMPLEX
(Im t) * <i> is complex Element of COMPLEX
(Re t) + ((Im t) * <i>) is complex Element of COMPLEX
s * ((Re t) + ((Im t) * <i>)) is complex Element of COMPLEX
((z + (0 * <i>)) * ((((Re t) |^ 3) - ((3 * (Re t)) * ((Im t) ^2))) + (((- ((Im t) |^ 3)) + ((3 * ((Re t) ^2)) * (Im t))) * <i>))) + (s * ((Re t) + ((Im t) * <i>))) is complex Element of COMPLEX
(((z + (0 * <i>)) * ((((Re t) |^ 3) - ((3 * (Re t)) * ((Im t) ^2))) + (((- ((Im t) |^ 3)) + ((3 * ((Re t) ^2)) * (Im t))) * <i>))) + (s * ((Re t) + ((Im t) * <i>)))) + n is complex Element of COMPLEX
Re z is complex real ext-real Element of REAL
Re ((((Re t) |^ 3) - ((3 * (Re t)) * ((Im t) ^2))) + (((- ((Im t) |^ 3)) + ((3 * ((Re t) ^2)) * (Im t))) * <i>)) is complex real ext-real Element of REAL
(Re z) * (Re ((((Re t) |^ 3) - ((3 * (Re t)) * ((Im t) ^2))) + (((- ((Im t) |^ 3)) + ((3 * ((Re t) ^2)) * (Im t))) * <i>))) is complex real ext-real Element of REAL
Im z is complex real ext-real Element of REAL
Im ((((Re t) |^ 3) - ((3 * (Re t)) * ((Im t) ^2))) + (((- ((Im t) |^ 3)) + ((3 * ((Re t) ^2)) * (Im t))) * <i>)) is complex real ext-real Element of REAL
(Im z) * (Im ((((Re t) |^ 3) - ((3 * (Re t)) * ((Im t) ^2))) + (((- ((Im t) |^ 3)) + ((3 * ((Re t) ^2)) * (Im t))) * <i>))) is complex real ext-real Element of REAL
((Re z) * (Re ((((Re t) |^ 3) - ((3 * (Re t)) * ((Im t) ^2))) + (((- ((Im t) |^ 3)) + ((3 * ((Re t) ^2)) * (Im t))) * <i>)))) - ((Im z) * (Im ((((Re t) |^ 3) - ((3 * (Re t)) * ((Im t) ^2))) + (((- ((Im t) |^ 3)) + ((3 * ((Re t) ^2)) * (Im t))) * <i>)))) is complex real ext-real Element of REAL
- ((Im z) * (Im ((((Re t) |^ 3) - ((3 * (Re t)) * ((Im t) ^2))) + (((- ((Im t) |^ 3)) + ((3 * ((Re t) ^2)) * (Im t))) * <i>)))) is complex real ext-real set
((Re z) * (Re ((((Re t) |^ 3) - ((3 * (Re t)) * ((Im t) ^2))) + (((- ((Im t) |^ 3)) + ((3 * ((Re t) ^2)) * (Im t))) * <i>)))) + (- ((Im z) * (Im ((((Re t) |^ 3) - ((3 * (Re t)) * ((Im t) ^2))) + (((- ((Im t) |^ 3)) + ((3 * ((Re t) ^2)) * (Im t))) * <i>))))) is complex real ext-real set
(Re z) * (Im ((((Re t) |^ 3) - ((3 * (Re t)) * ((Im t) ^2))) + (((- ((Im t) |^ 3)) + ((3 * ((Re t) ^2)) * (Im t))) * <i>))) is complex real ext-real Element of REAL
(Re ((((Re t) |^ 3) - ((3 * (Re t)) * ((Im t) ^2))) + (((- ((Im t) |^ 3)) + ((3 * ((Re t) ^2)) * (Im t))) * <i>))) * (Im z) is complex real ext-real Element of REAL
((Re z) * (Im ((((Re t) |^ 3) - ((3 * (Re t)) * ((Im t) ^2))) + (((- ((Im t) |^ 3)) + ((3 * ((Re t) ^2)) * (Im t))) * <i>)))) + ((Re ((((Re t) |^ 3) - ((3 * (Re t)) * ((Im t) ^2))) + (((- ((Im t) |^ 3)) + ((3 * ((Re t) ^2)) * (Im t))) * <i>))) * (Im z)) is complex real ext-real Element of REAL
(((Re z) * (Im ((((Re t) |^ 3) - ((3 * (Re t)) * ((Im t) ^2))) + (((- ((Im t) |^ 3)) + ((3 * ((Re t) ^2)) * (Im t))) * <i>)))) + ((Re ((((Re t) |^ 3) - ((3 * (Re t)) * ((Im t) ^2))) + (((- ((Im t) |^ 3)) + ((3 * ((Re t) ^2)) * (Im t))) * <i>))) * (Im z))) * <i> is complex Element of COMPLEX
(((Re z) * (Re ((((Re t) |^ 3) - ((3 * (Re t)) * ((Im t) ^2))) + (((- ((Im t) |^ 3)) + ((3 * ((Re t) ^2)) * (Im t))) * <i>)))) - ((Im z) * (Im ((((Re t) |^ 3) - ((3 * (Re t)) * ((Im t) ^2))) + (((- ((Im t) |^ 3)) + ((3 * ((Re t) ^2)) * (Im t))) * <i>))))) + ((((Re z) * (Im ((((Re t) |^ 3) - ((3 * (Re t)) * ((Im t) ^2))) + (((- ((Im t) |^ 3)) + ((3 * ((Re t) ^2)) * (Im t))) * <i>)))) + ((Re ((((Re t) |^ 3) - ((3 * (Re t)) * ((Im t) ^2))) + (((- ((Im t) |^ 3)) + ((3 * ((Re t) ^2)) * (Im t))) * <i>))) * (Im z))) * <i>) is complex Element of COMPLEX
((((Re z) * (Re ((((Re t) |^ 3) - ((3 * (Re t)) * ((Im t) ^2))) + (((- ((Im t) |^ 3)) + ((3 * ((Re t) ^2)) * (Im t))) * <i>)))) - ((Im z) * (Im ((((Re t) |^ 3) - ((3 * (Re t)) * ((Im t) ^2))) + (((- ((Im t) |^ 3)) + ((3 * ((Re t) ^2)) * (Im t))) * <i>))))) + ((((Re z) * (Im ((((Re t) |^ 3) - ((3 * (Re t)) * ((Im t) ^2))) + (((- ((Im t) |^ 3)) + ((3 * ((Re t) ^2)) * (Im t))) * <i>)))) + ((Re ((((Re t) |^ 3) - ((3 * (Re t)) * ((Im t) ^2))) + (((- ((Im t) |^ 3)) + ((3 * ((Re t) ^2)) * (Im t))) * <i>))) * (Im z))) * <i>)) + (s * ((Re t) + ((Im t) * <i>))) is complex Element of COMPLEX
(((((Re z) * (Re ((((Re t) |^ 3) - ((3 * (Re t)) * ((Im t) ^2))) + (((- ((Im t) |^ 3)) + ((3 * ((Re t) ^2)) * (Im t))) * <i>)))) - ((Im z) * (Im ((((Re t) |^ 3) - ((3 * (Re t)) * ((Im t) ^2))) + (((- ((Im t) |^ 3)) + ((3 * ((Re t) ^2)) * (Im t))) * <i>))))) + ((((Re z) * (Im ((((Re t) |^ 3) - ((3 * (Re t)) * ((Im t) ^2))) + (((- ((Im t) |^ 3)) + ((3 * ((Re t) ^2)) * (Im t))) * <i>)))) + ((Re ((((Re t) |^ 3) - ((3 * (Re t)) * ((Im t) ^2))) + (((- ((Im t) |^ 3)) + ((3 * ((Re t) ^2)) * (Im t))) * <i>))) * (Im z))) * <i>)) + (s * ((Re t) + ((Im t) * <i>)))) + n is complex Element of COMPLEX
(Re z) * (((Re t) |^ 3) - ((3 * (Re t)) * ((Im t) ^2))) is complex real ext-real Element of REAL
((Re z) * (((Re t) |^ 3) - ((3 * (Re t)) * ((Im t) ^2)))) - ((Im z) * (Im ((((Re t) |^ 3) - ((3 * (Re t)) * ((Im t) ^2))) + (((- ((Im t) |^ 3)) + ((3 * ((Re t) ^2)) * (Im t))) * <i>)))) is complex real ext-real Element of REAL
((Re z) * (((Re t) |^ 3) - ((3 * (Re t)) * ((Im t) ^2)))) + (- ((Im z) * (Im ((((Re t) |^ 3) - ((3 * (Re t)) * ((Im t) ^2))) + (((- ((Im t) |^ 3)) + ((3 * ((Re t) ^2)) * (Im t))) * <i>))))) is complex real ext-real set
(((Re z) * (((Re t) |^ 3) - ((3 * (Re t)) * ((Im t) ^2)))) - ((Im z) * (Im ((((Re t) |^ 3) - ((3 * (Re t)) * ((Im t) ^2))) + (((- ((Im t) |^ 3)) + ((3 * ((Re t) ^2)) * (Im t))) * <i>))))) + ((((Re z) * (Im ((((Re t) |^ 3) - ((3 * (Re t)) * ((Im t) ^2))) + (((- ((Im t) |^ 3)) + ((3 * ((Re t) ^2)) * (Im t))) * <i>)))) + ((Re ((((Re t) |^ 3) - ((3 * (Re t)) * ((Im t) ^2))) + (((- ((Im t) |^ 3)) + ((3 * ((Re t) ^2)) * (Im t))) * <i>))) * (Im z))) * <i>) is complex Element of COMPLEX
((((Re z) * (((Re t) |^ 3) - ((3 * (Re t)) * ((Im t) ^2)))) - ((Im z) * (Im ((((Re t) |^ 3) - ((3 * (Re t)) * ((Im t) ^2))) + (((- ((Im t) |^ 3)) + ((3 * ((Re t) ^2)) * (Im t))) * <i>))))) + ((((Re z) * (Im ((((Re t) |^ 3) - ((3 * (Re t)) * ((Im t) ^2))) + (((- ((Im t) |^ 3)) + ((3 * ((Re t) ^2)) * (Im t))) * <i>)))) + ((Re ((((Re t) |^ 3) - ((3 * (Re t)) * ((Im t) ^2))) + (((- ((Im t) |^ 3)) + ((3 * ((Re t) ^2)) * (Im t))) * <i>))) * (Im z))) * <i>)) + (s * ((Re t) + ((Im t) * <i>))) is complex Element of COMPLEX
(((((Re z) * (((Re t) |^ 3) - ((3 * (Re t)) * ((Im t) ^2)))) - ((Im z) * (Im ((((Re t) |^ 3) - ((3 * (Re t)) * ((Im t) ^2))) + (((- ((Im t) |^ 3)) + ((3 * ((Re t) ^2)) * (Im t))) * <i>))))) + ((((Re z) * (Im ((((Re t) |^ 3) - ((3 * (Re t)) * ((Im t) ^2))) + (((- ((Im t) |^ 3)) + ((3 * ((Re t) ^2)) * (Im t))) * <i>)))) + ((Re ((((Re t) |^ 3) - ((3 * (Re t)) * ((Im t) ^2))) + (((- ((Im t) |^ 3)) + ((3 * ((Re t) ^2)) * (Im t))) * <i>))) * (Im z))) * <i>)) + (s * ((Re t) + ((Im t) * <i>)))) + n is complex Element of COMPLEX
(Im z) * ((- ((Im t) |^ 3)) + ((3 * ((Re t) ^2)) * (Im t))) is complex real ext-real Element of REAL
((Re z) * (((Re t) |^ 3) - ((3 * (Re t)) * ((Im t) ^2)))) - ((Im z) * ((- ((Im t) |^ 3)) + ((3 * ((Re t) ^2)) * (Im t)))) is complex real ext-real Element of REAL
- ((Im z) * ((- ((Im t) |^ 3)) + ((3 * ((Re t) ^2)) * (Im t)))) is complex real ext-real set
((Re z) * (((Re t) |^ 3) - ((3 * (Re t)) * ((Im t) ^2)))) + (- ((Im z) * ((- ((Im t) |^ 3)) + ((3 * ((Re t) ^2)) * (Im t))))) is complex real ext-real set
(((Re z) * (((Re t) |^ 3) - ((3 * (Re t)) * ((Im t) ^2)))) - ((Im z) * ((- ((Im t) |^ 3)) + ((3 * ((Re t) ^2)) * (Im t))))) + ((((Re z) * (Im ((((Re t) |^ 3) - ((3 * (Re t)) * ((Im t) ^2))) + (((- ((Im t) |^ 3)) + ((3 * ((Re t) ^2)) * (Im t))) * <i>)))) + ((Re ((((Re t) |^ 3) - ((3 * (Re t)) * ((Im t) ^2))) + (((- ((Im t) |^ 3)) + ((3 * ((Re t) ^2)) * (Im t))) * <i>))) * (Im z))) * <i>) is complex Element of COMPLEX
((((Re z) * (((Re t) |^ 3) - ((3 * (Re t)) * ((Im t) ^2)))) - ((Im z) * ((- ((Im t) |^ 3)) + ((3 * ((Re t) ^2)) * (Im t))))) + ((((Re z) * (Im ((((Re t) |^ 3) - ((3 * (Re t)) * ((Im t) ^2))) + (((- ((Im t) |^ 3)) + ((3 * ((Re t) ^2)) * (Im t))) * <i>)))) + ((Re ((((Re t) |^ 3) - ((3 * (Re t)) * ((Im t) ^2))) + (((- ((Im t) |^ 3)) + ((3 * ((Re t) ^2)) * (Im t))) * <i>))) * (Im z))) * <i>)) + (s * ((Re t) + ((Im t) * <i>))) is complex Element of COMPLEX
(((((Re z) * (((Re t) |^ 3) - ((3 * (Re t)) * ((Im t) ^2)))) - ((Im z) * ((- ((Im t) |^ 3)) + ((3 * ((Re t) ^2)) * (Im t))))) + ((((Re z) * (Im ((((Re t) |^ 3) - ((3 * (Re t)) * ((Im t) ^2))) + (((- ((Im t) |^ 3)) + ((3 * ((Re t) ^2)) * (Im t))) * <i>)))) + ((Re ((((Re t) |^ 3) - ((3 * (Re t)) * ((Im t) ^2))) + (((- ((Im t) |^ 3)) + ((3 * ((Re t) ^2)) * (Im t))) * <i>))) * (Im z))) * <i>)) + (s * ((Re t) + ((Im t) * <i>)))) + n is complex Element of COMPLEX
(((Re t) |^ 3) - ((3 * (Re t)) * ((Im t) ^2))) * (Im z) is complex real ext-real Element of REAL
((Re z) * (Im ((((Re t) |^ 3) - ((3 * (Re t)) * ((Im t) ^2))) + (((- ((Im t) |^ 3)) + ((3 * ((Re t) ^2)) * (Im t))) * <i>)))) + ((((Re t) |^ 3) - ((3 * (Re t)) * ((Im t) ^2))) * (Im z)) is complex real ext-real Element of REAL
(((Re z) * (Im ((((Re t) |^ 3) - ((3 * (Re t)) * ((Im t) ^2))) + (((- ((Im t) |^ 3)) + ((3 * ((Re t) ^2)) * (Im t))) * <i>)))) + ((((Re t) |^ 3) - ((3 * (Re t)) * ((Im t) ^2))) * (Im z))) * <i> is complex Element of COMPLEX
(((Re z) * (((Re t) |^ 3) - ((3 * (Re t)) * ((Im t) ^2)))) - ((Im z) * ((- ((Im t) |^ 3)) + ((3 * ((Re t) ^2)) * (Im t))))) + ((((Re z) * (Im ((((Re t) |^ 3) - ((3 * (Re t)) * ((Im t) ^2))) + (((- ((Im t) |^ 3)) + ((3 * ((Re t) ^2)) * (Im t))) * <i>)))) + ((((Re t) |^ 3) - ((3 * (Re t)) * ((Im t) ^2))) * (Im z))) * <i>) is complex Element of COMPLEX
((((Re z) * (((Re t) |^ 3) - ((3 * (Re t)) * ((Im t) ^2)))) - ((Im z) * ((- ((Im t) |^ 3)) + ((3 * ((Re t) ^2)) * (Im t))))) + ((((Re z) * (Im ((((Re t) |^ 3) - ((3 * (Re t)) * ((Im t) ^2))) + (((- ((Im t) |^ 3)) + ((3 * ((Re t) ^2)) * (Im t))) * <i>)))) + ((((Re t) |^ 3) - ((3 * (Re t)) * ((Im t) ^2))) * (Im z))) * <i>)) + (s * ((Re t) + ((Im t) * <i>))) is complex Element of COMPLEX
(((((Re z) * (((Re t) |^ 3) - ((3 * (Re t)) * ((Im t) ^2)))) - ((Im z) * ((- ((Im t) |^ 3)) + ((3 * ((Re t) ^2)) * (Im t))))) + ((((Re z) * (Im ((((Re t) |^ 3) - ((3 * (Re t)) * ((Im t) ^2))) + (((- ((Im t) |^ 3)) + ((3 * ((Re t) ^2)) * (Im t))) * <i>)))) + ((((Re t) |^ 3) - ((3 * (Re t)) * ((Im t) ^2))) * (Im z))) * <i>)) + (s * ((Re t) + ((Im t) * <i>)))) + n is complex Element of COMPLEX
(Re z) * ((- ((Im t) |^ 3)) + ((3 * ((Re t) ^2)) * (Im t))) is complex real ext-real Element of REAL
((Re z) * ((- ((Im t) |^ 3)) + ((3 * ((Re t) ^2)) * (Im t)))) + ((((Re t) |^ 3) - ((3 * (Re t)) * ((Im t) ^2))) * (Im z)) is complex real ext-real Element of REAL
(((Re z) * ((- ((Im t) |^ 3)) + ((3 * ((Re t) ^2)) * (Im t)))) + ((((Re t) |^ 3) - ((3 * (Re t)) * ((Im t) ^2))) * (Im z))) * <i> is complex Element of COMPLEX
(((Re z) * (((Re t) |^ 3) - ((3 * (Re t)) * ((Im t) ^2)))) - ((Im z) * ((- ((Im t) |^ 3)) + ((3 * ((Re t) ^2)) * (Im t))))) + ((((Re z) * ((- ((Im t) |^ 3)) + ((3 * ((Re t) ^2)) * (Im t)))) + ((((Re t) |^ 3) - ((3 * (Re t)) * ((Im t) ^2))) * (Im z))) * <i>) is complex Element of COMPLEX
((((Re z) * (((Re t) |^ 3) - ((3 * (Re t)) * ((Im t) ^2)))) - ((Im z) * ((- ((Im t) |^ 3)) + ((3 * ((Re t) ^2)) * (Im t))))) + ((((Re z) * ((- ((Im t) |^ 3)) + ((3 * ((Re t) ^2)) * (Im t)))) + ((((Re t) |^ 3) - ((3 * (Re t)) * ((Im t) ^2))) * (Im z))) * <i>)) + (s * ((Re t) + ((Im t) * <i>))) is complex Element of COMPLEX
(((((Re z) * (((Re t) |^ 3) - ((3 * (Re t)) * ((Im t) ^2)))) - ((Im z) * ((- ((Im t) |^ 3)) + ((3 * ((Re t) ^2)) * (Im t))))) + ((((Re z) * ((- ((Im t) |^ 3)) + ((3 * ((Re t) ^2)) * (Im t)))) + ((((Re t) |^ 3) - ((3 * (Re t)) * ((Im t) ^2))) * (Im z))) * <i>)) + (s * ((Re t) + ((Im t) * <i>)))) + n is complex Element of COMPLEX
z * (((Re t) |^ 3) - ((3 * (Re t)) * ((Im t) ^2))) is complex real ext-real Element of REAL
(z * (((Re t) |^ 3) - ((3 * (Re t)) * ((Im t) ^2)))) - ((Im z) * ((- ((Im t) |^ 3)) + ((3 * ((Re t) ^2)) * (Im t)))) is complex real ext-real Element of REAL
(z * (((Re t) |^ 3) - ((3 * (Re t)) * ((Im t) ^2)))) + (- ((Im z) * ((- ((Im t) |^ 3)) + ((3 * ((Re t) ^2)) * (Im t))))) is complex real ext-real set
((z * (((Re t) |^ 3) - ((3 * (Re t)) * ((Im t) ^2)))) - ((Im z) * ((- ((Im t) |^ 3)) + ((3 * ((Re t) ^2)) * (Im t))))) + ((((Re z) * ((- ((Im t) |^ 3)) + ((3 * ((Re t) ^2)) * (Im t)))) + ((((Re t) |^ 3) - ((3 * (Re t)) * ((Im t) ^2))) * (Im z))) * <i>) is complex Element of COMPLEX
(((z * (((Re t) |^ 3) - ((3 * (Re t)) * ((Im t) ^2)))) - ((Im z) * ((- ((Im t) |^ 3)) + ((3 * ((Re t) ^2)) * (Im t))))) + ((((Re z) * ((- ((Im t) |^ 3)) + ((3 * ((Re t) ^2)) * (Im t)))) + ((((Re t) |^ 3) - ((3 * (Re t)) * ((Im t) ^2))) * (Im z))) * <i>)) + (s * ((Re t) + ((Im t) * <i>))) is complex Element of COMPLEX
((((z * (((Re t) |^ 3) - ((3 * (Re t)) * ((Im t) ^2)))) - ((Im z) * ((- ((Im t) |^ 3)) + ((3 * ((Re t) ^2)) * (Im t))))) + ((((Re z) * ((- ((Im t) |^ 3)) + ((3 * ((Re t) ^2)) * (Im t)))) + ((((Re t) |^ 3) - ((3 * (Re t)) * ((Im t) ^2))) * (Im z))) * <i>)) + (s * ((Re t) + ((Im t) * <i>)))) + n is complex Element of COMPLEX
0 * ((- ((Im t) |^ 3)) + ((3 * ((Re t) ^2)) * (Im t))) is complex real ext-real Element of REAL
(z * (((Re t) |^ 3) - ((3 * (Re t)) * ((Im t) ^2)))) - (0 * ((- ((Im t) |^ 3)) + ((3 * ((Re t) ^2)) * (Im t)))) is complex real ext-real Element of REAL
- (0 * ((- ((Im t) |^ 3)) + ((3 * ((Re t) ^2)) * (Im t)))) is complex real ext-real set
(z * (((Re t) |^ 3) - ((3 * (Re t)) * ((Im t) ^2)))) + (- (0 * ((- ((Im t) |^ 3)) + ((3 * ((Re t) ^2)) * (Im t))))) is complex real ext-real set
((z * (((Re t) |^ 3) - ((3 * (Re t)) * ((Im t) ^2)))) - (0 * ((- ((Im t) |^ 3)) + ((3 * ((Re t) ^2)) * (Im t))))) + ((((Re z) * ((- ((Im t) |^ 3)) + ((3 * ((Re t) ^2)) * (Im t)))) + ((((Re t) |^ 3) - ((3 * (Re t)) * ((Im t) ^2))) * (Im z))) * <i>) is complex Element of COMPLEX
(((z * (((Re t) |^ 3) - ((3 * (Re t)) * ((Im t) ^2)))) - (0 * ((- ((Im t) |^ 3)) + ((3 * ((Re t) ^2)) * (Im t))))) + ((((Re z) * ((- ((Im t) |^ 3)) + ((3 * ((Re t) ^2)) * (Im t)))) + ((((Re t) |^ 3) - ((3 * (Re t)) * ((Im t) ^2))) * (Im z))) * <i>)) + (s * ((Re t) + ((Im t) * <i>))) is complex Element of COMPLEX
((((z * (((Re t) |^ 3) - ((3 * (Re t)) * ((Im t) ^2)))) - (0 * ((- ((Im t) |^ 3)) + ((3 * ((Re t) ^2)) * (Im t))))) + ((((Re z) * ((- ((Im t) |^ 3)) + ((3 * ((Re t) ^2)) * (Im t)))) + ((((Re t) |^ 3) - ((3 * (Re t)) * ((Im t) ^2))) * (Im z))) * <i>)) + (s * ((Re t) + ((Im t) * <i>)))) + n is complex Element of COMPLEX
(z * (((Re t) |^ 3) - ((3 * (Re t)) * ((Im t) ^2)))) - 0 is complex real ext-real Element of REAL
- 0 is empty complex real ext-real non positive non negative V69() V70() V71() V72() V73() V74() V75() set
(z * (((Re t) |^ 3) - ((3 * (Re t)) * ((Im t) ^2)))) + (- 0) is complex real ext-real set
z * ((- ((Im t) |^ 3)) + ((3 * ((Re t) ^2)) * (Im t))) is complex real ext-real Element of REAL
(z * ((- ((Im t) |^ 3)) + ((3 * ((Re t) ^2)) * (Im t)))) + ((((Re t) |^ 3) - ((3 * (Re t)) * ((Im t) ^2))) * (Im z)) is complex real ext-real Element of REAL
((z * ((- ((Im t) |^ 3)) + ((3 * ((Re t) ^2)) * (Im t)))) + ((((Re t) |^ 3) - ((3 * (Re t)) * ((Im t) ^2))) * (Im z))) * <i> is complex Element of COMPLEX
((z * (((Re t) |^ 3) - ((3 * (Re t)) * ((Im t) ^2)))) - 0) + (((z * ((- ((Im t) |^ 3)) + ((3 * ((Re t) ^2)) * (Im t)))) + ((((Re t) |^ 3) - ((3 * (Re t)) * ((Im t) ^2))) * (Im z))) * <i>) is complex Element of COMPLEX
(((z * (((Re t) |^ 3) - ((3 * (Re t)) * ((Im t) ^2)))) - 0) + (((z * ((- ((Im t) |^ 3)) + ((3 * ((Re t) ^2)) * (Im t)))) + ((((Re t) |^ 3) - ((3 * (Re t)) * ((Im t) ^2))) * (Im z))) * <i>)) + (s * ((Re t) + ((Im t) * <i>))) is complex Element of COMPLEX
((((z * (((Re t) |^ 3) - ((3 * (Re t)) * ((Im t) ^2)))) - 0) + (((z * ((- ((Im t) |^ 3)) + ((3 * ((Re t) ^2)) * (Im t)))) + ((((Re t) |^ 3) - ((3 * (Re t)) * ((Im t) ^2))) * (Im z))) * <i>)) + (s * ((Re t) + ((Im t) * <i>)))) + n is complex Element of COMPLEX
(((Re t) |^ 3) - ((3 * (Re t)) * ((Im t) ^2))) * 0 is complex real ext-real Element of REAL
(z * ((- ((Im t) |^ 3)) + ((3 * ((Re t) ^2)) * (Im t)))) + ((((Re t) |^ 3) - ((3 * (Re t)) * ((Im t) ^2))) * 0) is complex real ext-real Element of REAL
((z * ((- ((Im t) |^ 3)) + ((3 * ((Re t) ^2)) * (Im t)))) + ((((Re t) |^ 3) - ((3 * (Re t)) * ((Im t) ^2))) * 0)) * <i> is complex Element of COMPLEX
((z * (((Re t) |^ 3) - ((3 * (Re t)) * ((Im t) ^2)))) - 0) + (((z * ((- ((Im t) |^ 3)) + ((3 * ((Re t) ^2)) * (Im t)))) + ((((Re t) |^ 3) - ((3 * (Re t)) * ((Im t) ^2))) * 0)) * <i>) is complex Element of COMPLEX
(((z * (((Re t) |^ 3) - ((3 * (Re t)) * ((Im t) ^2)))) - 0) + (((z * ((- ((Im t) |^ 3)) + ((3 * ((Re t) ^2)) * (Im t)))) + ((((Re t) |^ 3) - ((3 * (Re t)) * ((Im t) ^2))) * 0)) * <i>)) + (s * ((Re t) + ((Im t) * <i>))) is complex Element of COMPLEX
((((z * (((Re t) |^ 3) - ((3 * (Re t)) * ((Im t) ^2)))) - 0) + (((z * ((- ((Im t) |^ 3)) + ((3 * ((Re t) ^2)) * (Im t)))) + ((((Re t) |^ 3) - ((3 * (Re t)) * ((Im t) ^2))) * 0)) * <i>)) + (s * ((Re t) + ((Im t) * <i>)))) + n is complex Element of COMPLEX
((Re t) |^ 3) - 0 is complex real ext-real Element of REAL
((Re t) |^ 3) + (- 0) is complex real ext-real set
z * (((Re t) |^ 3) - 0) is complex real ext-real Element of REAL
s * (Re t) is complex real ext-real Element of REAL
(z * (((Re t) |^ 3) - 0)) + (s * (Re t)) is complex real ext-real Element of REAL
((z * (((Re t) |^ 3) - 0)) + (s * (Re t))) + n is complex real ext-real Element of REAL
- 0 is empty complex real ext-real non positive non negative V43() V44() V69() V70() V71() V72() V73() V74() V75() Element of INT
z * (- 0) is complex real ext-real Element of REAL
(z * (- 0)) * <i> is complex Element of COMPLEX
(((z * (((Re t) |^ 3) - 0)) + (s * (Re t))) + n) + ((z * (- 0)) * <i>) is complex Element of COMPLEX
z * ((Re t) |^ 3) is complex real ext-real Element of REAL
(z * ((Re t) |^ 3)) + (s * (Re t)) is complex real ext-real Element of REAL
((z * ((Re t) |^ 3)) + (s * (Re t))) + n is complex real ext-real Element of REAL
z " is complex real ext-real Element of REAL
(z ") * (((z * ((Re t) |^ 3)) + (s * (Re t))) + n) is complex real ext-real Element of REAL
(z ") * 0 is complex real ext-real Element of REAL
z / z is complex real ext-real Element of REAL
z * (z ") is complex real ext-real set
((Re t) |^ 3) * (z / z) is complex real ext-real Element of REAL
(z ") * s is complex real ext-real Element of REAL
((z ") * s) * (Re t) is complex real ext-real Element of REAL
(((Re t) |^ 3) * (z / z)) + (((z ") * s) * (Re t)) is complex real ext-real Element of REAL
(z ") * n is complex real ext-real Element of REAL
((((Re t) |^ 3) * (z / z)) + (((z ") * s) * (Re t))) + ((z ") * n) is complex real ext-real Element of REAL
n / z is complex real ext-real Element of REAL
n * (z ") is complex real ext-real set
Polynom (1,0,(s / z),(n / z),(Re t)) is complex real ext-real set
(Re t) |^ 3 is complex real ext-real set
1 * ((Re t) |^ 3) is complex real ext-real set
(Re t) ^2 is complex real ext-real set
0 * ((Re t) ^2) is complex real ext-real set
(1 * ((Re t) |^ 3)) + (0 * ((Re t) ^2)) is complex real ext-real set
(s / z) * (Re t) is complex real ext-real set
((1 * ((Re t) |^ 3)) + (0 * ((Re t) ^2))) + ((s / z) * (Re t)) is complex real ext-real set
(((1 * ((Re t) |^ 3)) + (0 * ((Re t) ^2))) + ((s / z) * (Re t))) + (n / z) is complex real ext-real set
((Re t)) is complex Element of COMPLEX
((Re t) ^2) * (Re t) is complex real ext-real Element of COMPLEX
1 * ((Re t)) is complex Element of COMPLEX
0 * ((Re t) ^2) is complex real ext-real Element of COMPLEX
(1 * ((Re t))) + (0 * ((Re t) ^2)) is complex Element of COMPLEX
(s / z) * (Re t) is complex real ext-real Element of COMPLEX
((1 * ((Re t))) + (0 * ((Re t) ^2))) + ((s / z) * (Re t)) is complex Element of COMPLEX
(((1 * ((Re t))) + (0 * ((Re t) ^2))) + ((s / z) * (Re t))) + (n / z) is complex Element of COMPLEX
(n / z) ^2 is complex real ext-real Element of REAL
(n / z) * (n / z) is complex real ext-real set
((n / z) ^2) / 4 is complex real ext-real Element of REAL
4 " is non empty complex real ext-real positive non negative set
((n / z) ^2) * (4 ") is complex real ext-real set
1 / 4 is non empty complex real ext-real positive non negative V44() Element of RAT
1 * (4 ") is non empty complex real ext-real positive non negative set
(n ^2) / (z ^2) is complex real ext-real Element of REAL
(z ^2) " is complex real ext-real set
(n ^2) * ((z ^2) ") is complex real ext-real set
(1 / 4) * ((n ^2) / (z ^2)) is complex real ext-real Element of REAL
(z ^2) * 4 is complex real ext-real Element of REAL
(n ^2) / ((z ^2) * 4) is complex real ext-real Element of REAL
((z ^2) * 4) " is complex real ext-real set
(n ^2) * (((z ^2) * 4) ") is complex real ext-real set
t is complex real ext-real Element of REAL
q is complex real ext-real Element of REAL
t + q is complex real ext-real Element of REAL
3 * q is complex real ext-real Element of REAL
(3 * q) * t is complex real ext-real Element of REAL
((3 * q) * t) + (s / z) is complex real ext-real Element of REAL
(n / z) / 2 is complex real ext-real Element of REAL
2 " is non empty complex real ext-real positive non negative set
(n / z) * (2 ") is complex real ext-real set
- ((n / z) / 2) is complex real ext-real Element of REAL
1 / 2 is non empty complex real ext-real positive non negative V44() Element of RAT
1 * (2 ") is non empty complex real ext-real positive non negative set
(1 / 2) * (n / z) is complex real ext-real Element of REAL
- ((1 / 2) * (n / z)) is complex real ext-real Element of REAL
z * 2 is complex real ext-real Element of REAL
n / (z * 2) is complex real ext-real Element of REAL
(z * 2) " is complex real ext-real set
n * ((z * 2) ") is complex real ext-real set
- (n / (z * 2)) is complex real ext-real Element of REAL
(s / z) / 3 is complex real ext-real Element of REAL
3 " is non empty complex real ext-real positive non negative set
(s / z) * (3 ") is complex real ext-real set
1 / 3 is non empty complex real ext-real positive non negative V44() Element of RAT
1 * (3 ") is non empty complex real ext-real positive non negative set
(1 / 3) * (s / z) is complex real ext-real Element of REAL
z * 3 is complex real ext-real Element of REAL
s / (z * 3) is complex real ext-real Element of REAL
(z * 3) " is complex real ext-real set
s * ((z * 3) ") is complex real ext-real set
16 is non empty ordinal natural complex real ext-real positive non negative V43() V44() V69() V70() V71() V72() V73() V74() Element of NAT
12 is non empty ordinal natural complex real ext-real positive non negative V43() V44() V69() V70() V71() V72() V73() V74() Element of NAT
z is complex real ext-real Element of REAL
4 * z is complex real ext-real Element of REAL
16 * z is complex real ext-real Element of REAL
12 * z is complex real ext-real Element of REAL
s is complex real ext-real Element of REAL
s / (4 * z) is complex real ext-real Element of REAL
(4 * z) " is complex real ext-real set
s * ((4 * z) ") is complex real ext-real set
s / (12 * z) is complex real ext-real Element of REAL
(12 * z) " is complex real ext-real set
s * ((12 * z) ") is complex real ext-real set
(s / (12 * z)) |^ 3 is complex real ext-real Element of REAL
s / z is complex real ext-real Element of REAL
z " is complex real ext-real set
s * (z ") is complex real ext-real set
n is complex real ext-real Element of REAL
n / (16 * z) is complex real ext-real Element of REAL
(16 * z) " is complex real ext-real set
n * ((16 * z) ") is complex real ext-real set
(n / (16 * z)) ^2 is complex real ext-real Element of REAL
(n / (16 * z)) * (n / (16 * z)) is complex real ext-real set
((n / (16 * z)) ^2) + ((s / (12 * z)) |^ 3) is complex real ext-real Element of REAL
sqrt (((n / (16 * z)) ^2) + ((s / (12 * z)) |^ 3)) is complex real ext-real Element of REAL
(n / (16 * z)) + (sqrt (((n / (16 * z)) ^2) + ((s / (12 * z)) |^ 3))) is complex real ext-real Element of REAL
3 -root ((n / (16 * z)) + (sqrt (((n / (16 * z)) ^2) + ((s / (12 * z)) |^ 3)))) is complex real ext-real Element of REAL
(n / (16 * z)) - (sqrt (((n / (16 * z)) ^2) + ((s / (12 * z)) |^ 3))) is complex real ext-real Element of REAL
- (sqrt (((n / (16 * z)) ^2) + ((s / (12 * z)) |^ 3))) is complex real ext-real set
(n / (16 * z)) + (- (sqrt (((n / (16 * z)) ^2) + ((s / (12 * z)) |^ 3)))) is complex real ext-real set
3 -root ((n / (16 * z)) - (sqrt (((n / (16 * z)) ^2) + ((s / (12 * z)) |^ 3)))) is complex real ext-real Element of REAL
(3 -root ((n / (16 * z)) + (sqrt (((n / (16 * z)) ^2) + ((s / (12 * z)) |^ 3))))) + (3 -root ((n / (16 * z)) - (sqrt (((n / (16 * z)) ^2) + ((s / (12 * z)) |^ 3))))) is complex real ext-real Element of REAL
((3 -root ((n / (16 * z)) + (sqrt (((n / (16 * z)) ^2) + ((s / (12 * z)) |^ 3))))) + (3 -root ((n / (16 * z)) - (sqrt (((n / (16 * z)) ^2) + ((s / (12 * z)) |^ 3)))))) ^2 is complex real ext-real Element of REAL
((3 -root ((n / (16 * z)) + (sqrt (((n / (16 * z)) ^2) + ((s / (12 * z)) |^ 3))))) + (3 -root ((n / (16 * z)) - (sqrt (((n / (16 * z)) ^2) + ((s / (12 * z)) |^ 3)))))) * ((3 -root ((n / (16 * z)) + (sqrt (((n / (16 * z)) ^2) + ((s / (12 * z)) |^ 3))))) + (3 -root ((n / (16 * z)) - (sqrt (((n / (16 * z)) ^2) + ((s / (12 * z)) |^ 3)))))) is complex real ext-real set
3 * (((3 -root ((n / (16 * z)) + (sqrt (((n / (16 * z)) ^2) + ((s / (12 * z)) |^ 3))))) + (3 -root ((n / (16 * z)) - (sqrt (((n / (16 * z)) ^2) + ((s / (12 * z)) |^ 3)))))) ^2) is complex real ext-real Element of REAL
(3 * (((3 -root ((n / (16 * z)) + (sqrt (((n / (16 * z)) ^2) + ((s / (12 * z)) |^ 3))))) + (3 -root ((n / (16 * z)) - (sqrt (((n / (16 * z)) ^2) + ((s / (12 * z)) |^ 3)))))) ^2)) + (s / z) is complex real ext-real Element of REAL
sqrt ((3 * (((3 -root ((n / (16 * z)) + (sqrt (((n / (16 * z)) ^2) + ((s / (12 * z)) |^ 3))))) + (3 -root ((n / (16 * z)) - (sqrt (((n / (16 * z)) ^2) + ((s / (12 * z)) |^ 3)))))) ^2)) + (s / z)) is complex real ext-real Element of REAL
(sqrt ((3 * (((3 -root ((n / (16 * z)) + (sqrt (((n / (16 * z)) ^2) + ((s / (12 * z)) |^ 3))))) + (3 -root ((n / (16 * z)) - (sqrt (((n / (16 * z)) ^2) + ((s / (12 * z)) |^ 3)))))) ^2)) + (s / z))) * <i> is complex Element of COMPLEX
((3 -root ((n / (16 * z)) + (sqrt (((n / (16 * z)) ^2) + ((s / (12 * z)) |^ 3))))) + (3 -root ((n / (16 * z)) - (sqrt (((n / (16 * z)) ^2) + ((s / (12 * z)) |^ 3)))))) + ((sqrt ((3 * (((3 -root ((n / (16 * z)) + (sqrt (((n / (16 * z)) ^2) + ((s / (12 * z)) |^ 3))))) + (3 -root ((n / (16 * z)) - (sqrt (((n / (16 * z)) ^2) + ((s / (12 * z)) |^ 3)))))) ^2)) + (s / z))) * <i>) is complex Element of COMPLEX
((3 -root ((n / (16 * z)) + (sqrt (((n / (16 * z)) ^2) + ((s / (12 * z)) |^ 3))))) + (3 -root ((n / (16 * z)) - (sqrt (((n / (16 * z)) ^2) + ((s / (12 * z)) |^ 3)))))) - ((sqrt ((3 * (((3 -root ((n / (16 * z)) + (sqrt (((n / (16 * z)) ^2) + ((s / (12 * z)) |^ 3))))) + (3 -root ((n / (16 * z)) - (sqrt (((n / (16 * z)) ^2) + ((s / (12 * z)) |^ 3)))))) ^2)) + (s / z))) * <i>) is complex Element of COMPLEX
- ((sqrt ((3 * (((3 -root ((n / (16 * z)) + (sqrt (((n / (16 * z)) ^2) + ((s / (12 * z)) |^ 3))))) + (3 -root ((n / (16 * z)) - (sqrt (((n / (16 * z)) ^2) + ((s / (12 * z)) |^ 3)))))) ^2)) + (s / z))) * <i>) is complex set
((3 -root ((n / (16 * z)) + (sqrt (((n / (16 * z)) ^2) + ((s / (12 * z)) |^ 3))))) + (3 -root ((n / (16 * z)) - (sqrt (((n / (16 * z)) ^2) + ((s / (12 * z)) |^ 3)))))) + (- ((sqrt ((3 * (((3 -root ((n / (16 * z)) + (sqrt (((n / (16 * z)) ^2) + ((s / (12 * z)) |^ 3))))) + (3 -root ((n / (16 * z)) - (sqrt (((n / (16 * z)) ^2) + ((s / (12 * z)) |^ 3)))))) ^2)) + (s / z))) * <i>)) is complex set
2 * (3 -root ((n / (16 * z)) + (sqrt (((n / (16 * z)) ^2) + ((s / (12 * z)) |^ 3))))) is complex real ext-real Element of REAL
(2 * (3 -root ((n / (16 * z)) + (sqrt (((n / (16 * z)) ^2) + ((s / (12 * z)) |^ 3)))))) ^2 is complex real ext-real Element of REAL
(2 * (3 -root ((n / (16 * z)) + (sqrt (((n / (16 * z)) ^2) + ((s / (12 * z)) |^ 3)))))) * (2 * (3 -root ((n / (16 * z)) + (sqrt (((n / (16 * z)) ^2) + ((s / (12 * z)) |^ 3)))))) is complex real ext-real set
3 * ((2 * (3 -root ((n / (16 * z)) + (sqrt (((n / (16 * z)) ^2) + ((s / (12 * z)) |^ 3)))))) ^2) is complex real ext-real Element of REAL
(3 * ((2 * (3 -root ((n / (16 * z)) + (sqrt (((n / (16 * z)) ^2) + ((s / (12 * z)) |^ 3)))))) ^2)) + (s / z) is complex real ext-real Element of REAL
sqrt ((3 * ((2 * (3 -root ((n / (16 * z)) + (sqrt (((n / (16 * z)) ^2) + ((s / (12 * z)) |^ 3)))))) ^2)) + (s / z)) is complex real ext-real Element of REAL
(sqrt ((3 * ((2 * (3 -root ((n / (16 * z)) + (sqrt (((n / (16 * z)) ^2) + ((s / (12 * z)) |^ 3)))))) ^2)) + (s / z))) * <i> is complex Element of COMPLEX
(2 * (3 -root ((n / (16 * z)) + (sqrt (((n / (16 * z)) ^2) + ((s / (12 * z)) |^ 3)))))) + ((sqrt ((3 * ((2 * (3 -root ((n / (16 * z)) + (sqrt (((n / (16 * z)) ^2) + ((s / (12 * z)) |^ 3)))))) ^2)) + (s / z))) * <i>) is complex Element of COMPLEX
(2 * (3 -root ((n / (16 * z)) + (sqrt (((n / (16 * z)) ^2) + ((s / (12 * z)) |^ 3)))))) - ((sqrt ((3 * ((2 * (3 -root ((n / (16 * z)) + (sqrt (((n / (16 * z)) ^2) + ((s / (12 * z)) |^ 3)))))) ^2)) + (s / z))) * <i>) is complex Element of COMPLEX
- ((sqrt ((3 * ((2 * (3 -root ((n / (16 * z)) + (sqrt (((n / (16 * z)) ^2) + ((s / (12 * z)) |^ 3)))))) ^2)) + (s / z))) * <i>) is complex set
(2 * (3 -root ((n / (16 * z)) + (sqrt (((n / (16 * z)) ^2) + ((s / (12 * z)) |^ 3)))))) + (- ((sqrt ((3 * ((2 * (3 -root ((n / (16 * z)) + (sqrt (((n / (16 * z)) ^2) + ((s / (12 * z)) |^ 3)))))) ^2)) + (s / z))) * <i>)) is complex set
2 * (3 -root ((n / (16 * z)) - (sqrt (((n / (16 * z)) ^2) + ((s / (12 * z)) |^ 3))))) is complex real ext-real Element of REAL
(2 * (3 -root ((n / (16 * z)) - (sqrt (((n / (16 * z)) ^2) + ((s / (12 * z)) |^ 3)))))) ^2 is complex real ext-real Element of REAL
(2 * (3 -root ((n / (16 * z)) - (sqrt (((n / (16 * z)) ^2) + ((s / (12 * z)) |^ 3)))))) * (2 * (3 -root ((n / (16 * z)) - (sqrt (((n / (16 * z)) ^2) + ((s / (12 * z)) |^ 3)))))) is complex real ext-real set
3 * ((2 * (3 -root ((n / (16 * z)) - (sqrt (((n / (16 * z)) ^2) + ((s / (12 * z)) |^ 3)))))) ^2) is complex real ext-real Element of REAL
(3 * ((2 * (3 -root ((n / (16 * z)) - (sqrt (((n / (16 * z)) ^2) + ((s / (12 * z)) |^ 3)))))) ^2)) + (s / z) is complex real ext-real Element of REAL
sqrt ((3 * ((2 * (3 -root ((n / (16 * z)) - (sqrt (((n / (16 * z)) ^2) + ((s / (12 * z)) |^ 3)))))) ^2)) + (s / z)) is complex real ext-real Element of REAL
(sqrt ((3 * ((2 * (3 -root ((n / (16 * z)) - (sqrt (((n / (16 * z)) ^2) + ((s / (12 * z)) |^ 3)))))) ^2)) + (s / z))) * <i> is complex Element of COMPLEX
(2 * (3 -root ((n / (16 * z)) - (sqrt (((n / (16 * z)) ^2) + ((s / (12 * z)) |^ 3)))))) + ((sqrt ((3 * ((2 * (3 -root ((n / (16 * z)) - (sqrt (((n / (16 * z)) ^2) + ((s / (12 * z)) |^ 3)))))) ^2)) + (s / z))) * <i>) is complex Element of COMPLEX
(2 * (3 -root ((n / (16 * z)) - (sqrt (((n / (16 * z)) ^2) + ((s / (12 * z)) |^ 3)))))) - ((sqrt ((3 * ((2 * (3 -root ((n / (16 * z)) - (sqrt (((n / (16 * z)) ^2) + ((s / (12 * z)) |^ 3)))))) ^2)) + (s / z))) * <i>) is complex Element of COMPLEX
- ((sqrt ((3 * ((2 * (3 -root ((n / (16 * z)) - (sqrt (((n / (16 * z)) ^2) + ((s / (12 * z)) |^ 3)))))) ^2)) + (s / z))) * <i>) is complex set
(2 * (3 -root ((n / (16 * z)) - (sqrt (((n / (16 * z)) ^2) + ((s / (12 * z)) |^ 3)))))) + (- ((sqrt ((3 * ((2 * (3 -root ((n / (16 * z)) - (sqrt (((n / (16 * z)) ^2) + ((s / (12 * z)) |^ 3)))))) ^2)) + (s / z))) * <i>)) is complex set
t is complex Element of COMPLEX
Im t is complex real ext-real Element of REAL
Polynom (z,0,s,n,t) is complex set
t |^ 3 is complex set
z * (t |^ 3) is complex set
t ^2 is complex set
t * t is complex set
0 * (t ^2) is complex set
(z * (t |^ 3)) + (0 * (t ^2)) is complex set
s * t is complex set
((z * (t |^ 3)) + (0 * (t ^2))) + (s * t) is complex set
(((z * (t |^ 3)) + (0 * (t ^2))) + (s * t)) + n is complex set
(t) is complex Element of COMPLEX
(t ^2) * t is complex Element of COMPLEX
z * (t) is complex Element of COMPLEX
0 * (t ^2) is complex Element of COMPLEX
(z * (t)) + (0 * (t ^2)) is complex Element of COMPLEX
s * t is complex Element of COMPLEX
((z * (t)) + (0 * (t ^2))) + (s * t) is complex Element of COMPLEX
(((z * (t)) + (0 * (t ^2))) + (s * t)) + n is complex Element of COMPLEX
Re t is complex real ext-real Element of REAL
0 * <i> is complex Element of COMPLEX
z + (0 * <i>) is complex Element of COMPLEX
Re (t) is complex real ext-real Element of REAL
Im (t) is complex real ext-real Element of REAL
(Im (t)) * <i> is complex Element of COMPLEX
(Re (t)) + ((Im (t)) * <i>) is complex Element of COMPLEX
z * ((Re (t)) + ((Im (t)) * <i>)) is complex Element of COMPLEX
(t) is complex Element of COMPLEX
0 * (t) is complex Element of COMPLEX
(z * ((Re (t)) + ((Im (t)) * <i>))) + (0 * (t)) is complex Element of COMPLEX
((z * ((Re (t)) + ((Im (t)) * <i>))) + (0 * (t))) + (s * t) is complex Element of COMPLEX
(((z * ((Re (t)) + ((Im (t)) * <i>))) + (0 * (t))) + (s * t)) + n is complex Element of COMPLEX
(Re t) |^ 3 is complex real ext-real Element of REAL
3 * (Re t) is complex real ext-real Element of REAL
(Im t) ^2 is complex real ext-real Element of REAL
(Im t) * (Im t) is complex real ext-real set
(3 * (Re t)) * ((Im t) ^2) is complex real ext-real Element of REAL
((Re t) |^ 3) - ((3 * (Re t)) * ((Im t) ^2)) is complex real ext-real Element of REAL
- ((3 * (Re t)) * ((Im t) ^2)) is complex real ext-real set
((Re t) |^ 3) + (- ((3 * (Re t)) * ((Im t) ^2))) is complex real ext-real set
(((Re t) |^ 3) - ((3 * (Re t)) * ((Im t) ^2))) + ((Im (t)) * <i>) is complex Element of COMPLEX
z * ((((Re t) |^ 3) - ((3 * (Re t)) * ((Im t) ^2))) + ((Im (t)) * <i>)) is complex Element of COMPLEX
(z * ((((Re t) |^ 3) - ((3 * (Re t)) * ((Im t) ^2))) + ((Im (t)) * <i>))) + (s * t) is complex Element of COMPLEX
((z * ((((Re t) |^ 3) - ((3 * (Re t)) * ((Im t) ^2))) + ((Im (t)) * <i>))) + (s * t)) + n is complex Element of COMPLEX
(Im t) |^ 3 is complex real ext-real Element of REAL
- ((Im t) |^ 3) is complex real ext-real Element of REAL
(Re t) ^2 is complex real ext-real Element of REAL
(Re t) * (Re t) is complex real ext-real set
3 * ((Re t) ^2) is complex real ext-real Element of REAL
(3 * ((Re t) ^2)) * (Im t) is complex real ext-real Element of REAL
(- ((Im t) |^ 3)) + ((3 * ((Re t) ^2)) * (Im t)) is complex real ext-real Element of REAL
((- ((Im t) |^ 3)) + ((3 * ((Re t) ^2)) * (Im t))) * <i> is complex Element of COMPLEX
(((Re t) |^ 3) - ((3 * (Re t)) * ((Im t) ^2))) + (((- ((Im t) |^ 3)) + ((3 * ((Re t) ^2)) * (Im t))) * <i>) is complex Element of COMPLEX
z * ((((Re t) |^ 3) - ((3 * (Re t)) * ((Im t) ^2))) + (((- ((Im t) |^ 3)) + ((3 * ((Re t) ^2)) * (Im t))) * <i>)) is complex Element of COMPLEX
(z * ((((Re t) |^ 3) - ((3 * (Re t)) * ((Im t) ^2))) + (((- ((Im t) |^ 3)) + ((3 * ((Re t) ^2)) * (Im t))) * <i>))) + (s * t) is complex Element of COMPLEX
((z * ((((Re t) |^ 3) - ((3 * (Re t)) * ((Im t) ^2))) + (((- ((Im t) |^ 3)) + ((3 * ((Re t) ^2)) * (Im t))) * <i>))) + (s * t)) + n is complex Element of COMPLEX
(z + (0 * <i>)) * ((((Re t) |^ 3) - ((3 * (Re t)) * ((Im t) ^2))) + (((- ((Im t) |^ 3)) + ((3 * ((Re t) ^2)) * (Im t))) * <i>)) is complex Element of COMPLEX
(Im t) * <i> is complex Element of COMPLEX
(Re t) + ((Im t) * <i>) is complex Element of COMPLEX
s * ((Re t) + ((Im t) * <i>)) is complex Element of COMPLEX
((z + (0 * <i>)) * ((((Re t) |^ 3) - ((3 * (Re t)) * ((Im t) ^2))) + (((- ((Im t) |^ 3)) + ((3 * ((Re t) ^2)) * (Im t))) * <i>))) + (s * ((Re t) + ((Im t) * <i>))) is complex Element of COMPLEX
(((z + (0 * <i>)) * ((((Re t) |^ 3) - ((3 * (Re t)) * ((Im t) ^2))) + (((- ((Im t) |^ 3)) + ((3 * ((Re t) ^2)) * (Im t))) * <i>))) + (s * ((Re t) + ((Im t) * <i>)))) + n is complex Element of COMPLEX
Re z is complex real ext-real Element of REAL
Re ((((Re t) |^ 3) - ((3 * (Re t)) * ((Im t) ^2))) + (((- ((Im t) |^ 3)) + ((3 * ((Re t) ^2)) * (Im t))) * <i>)) is complex real ext-real Element of REAL
(Re z) * (Re ((((Re t) |^ 3) - ((3 * (Re t)) * ((Im t) ^2))) + (((- ((Im t) |^ 3)) + ((3 * ((Re t) ^2)) * (Im t))) * <i>))) is complex real ext-real Element of REAL
Im z is complex real ext-real Element of REAL
Im ((((Re t) |^ 3) - ((3 * (Re t)) * ((Im t) ^2))) + (((- ((Im t) |^ 3)) + ((3 * ((Re t) ^2)) * (Im t))) * <i>)) is complex real ext-real Element of REAL
(Im z) * (Im ((((Re t) |^ 3) - ((3 * (Re t)) * ((Im t) ^2))) + (((- ((Im t) |^ 3)) + ((3 * ((Re t) ^2)) * (Im t))) * <i>))) is complex real ext-real Element of REAL
((Re z) * (Re ((((Re t) |^ 3) - ((3 * (Re t)) * ((Im t) ^2))) + (((- ((Im t) |^ 3)) + ((3 * ((Re t) ^2)) * (Im t))) * <i>)))) - ((Im z) * (Im ((((Re t) |^ 3) - ((3 * (Re t)) * ((Im t) ^2))) + (((- ((Im t) |^ 3)) + ((3 * ((Re t) ^2)) * (Im t))) * <i>)))) is complex real ext-real Element of REAL
- ((Im z) * (Im ((((Re t) |^ 3) - ((3 * (Re t)) * ((Im t) ^2))) + (((- ((Im t) |^ 3)) + ((3 * ((Re t) ^2)) * (Im t))) * <i>)))) is complex real ext-real set
((Re z) * (Re ((((Re t) |^ 3) - ((3 * (Re t)) * ((Im t) ^2))) + (((- ((Im t) |^ 3)) + ((3 * ((Re t) ^2)) * (Im t))) * <i>)))) + (- ((Im z) * (Im ((((Re t) |^ 3) - ((3 * (Re t)) * ((Im t) ^2))) + (((- ((Im t) |^ 3)) + ((3 * ((Re t) ^2)) * (Im t))) * <i>))))) is complex real ext-real set
(Re z) * (Im ((((Re t) |^ 3) - ((3 * (Re t)) * ((Im t) ^2))) + (((- ((Im t) |^ 3)) + ((3 * ((Re t) ^2)) * (Im t))) * <i>))) is complex real ext-real Element of REAL
(Re ((((Re t) |^ 3) - ((3 * (Re t)) * ((Im t) ^2))) + (((- ((Im t) |^ 3)) + ((3 * ((Re t) ^2)) * (Im t))) * <i>))) * (Im z) is complex real ext-real Element of REAL
((Re z) * (Im ((((Re t) |^ 3) - ((3 * (Re t)) * ((Im t) ^2))) + (((- ((Im t) |^ 3)) + ((3 * ((Re t) ^2)) * (Im t))) * <i>)))) + ((Re ((((Re t) |^ 3) - ((3 * (Re t)) * ((Im t) ^2))) + (((- ((Im t) |^ 3)) + ((3 * ((Re t) ^2)) * (Im t))) * <i>))) * (Im z)) is complex real ext-real Element of REAL
(((Re z) * (Im ((((Re t) |^ 3) - ((3 * (Re t)) * ((Im t) ^2))) + (((- ((Im t) |^ 3)) + ((3 * ((Re t) ^2)) * (Im t))) * <i>)))) + ((Re ((((Re t) |^ 3) - ((3 * (Re t)) * ((Im t) ^2))) + (((- ((Im t) |^ 3)) + ((3 * ((Re t) ^2)) * (Im t))) * <i>))) * (Im z))) * <i> is complex Element of COMPLEX
(((Re z) * (Re ((((Re t) |^ 3) - ((3 * (Re t)) * ((Im t) ^2))) + (((- ((Im t) |^ 3)) + ((3 * ((Re t) ^2)) * (Im t))) * <i>)))) - ((Im z) * (Im ((((Re t) |^ 3) - ((3 * (Re t)) * ((Im t) ^2))) + (((- ((Im t) |^ 3)) + ((3 * ((Re t) ^2)) * (Im t))) * <i>))))) + ((((Re z) * (Im ((((Re t) |^ 3) - ((3 * (Re t)) * ((Im t) ^2))) + (((- ((Im t) |^ 3)) + ((3 * ((Re t) ^2)) * (Im t))) * <i>)))) + ((Re ((((Re t) |^ 3) - ((3 * (Re t)) * ((Im t) ^2))) + (((- ((Im t) |^ 3)) + ((3 * ((Re t) ^2)) * (Im t))) * <i>))) * (Im z))) * <i>) is complex Element of COMPLEX
((((Re z) * (Re ((((Re t) |^ 3) - ((3 * (Re t)) * ((Im t) ^2))) + (((- ((Im t) |^ 3)) + ((3 * ((Re t) ^2)) * (Im t))) * <i>)))) - ((Im z) * (Im ((((Re t) |^ 3) - ((3 * (Re t)) * ((Im t) ^2))) + (((- ((Im t) |^ 3)) + ((3 * ((Re t) ^2)) * (Im t))) * <i>))))) + ((((Re z) * (Im ((((Re t) |^ 3) - ((3 * (Re t)) * ((Im t) ^2))) + (((- ((Im t) |^ 3)) + ((3 * ((Re t) ^2)) * (Im t))) * <i>)))) + ((Re ((((Re t) |^ 3) - ((3 * (Re t)) * ((Im t) ^2))) + (((- ((Im t) |^ 3)) + ((3 * ((Re t) ^2)) * (Im t))) * <i>))) * (Im z))) * <i>)) + (s * ((Re t) + ((Im t) * <i>))) is complex Element of COMPLEX
(((((Re z) * (Re ((((Re t) |^ 3) - ((3 * (Re t)) * ((Im t) ^2))) + (((- ((Im t) |^ 3)) + ((3 * ((Re t) ^2)) * (Im t))) * <i>)))) - ((Im z) * (Im ((((Re t) |^ 3) - ((3 * (Re t)) * ((Im t) ^2))) + (((- ((Im t) |^ 3)) + ((3 * ((Re t) ^2)) * (Im t))) * <i>))))) + ((((Re z) * (Im ((((Re t) |^ 3) - ((3 * (Re t)) * ((Im t) ^2))) + (((- ((Im t) |^ 3)) + ((3 * ((Re t) ^2)) * (Im t))) * <i>)))) + ((Re ((((Re t) |^ 3) - ((3 * (Re t)) * ((Im t) ^2))) + (((- ((Im t) |^ 3)) + ((3 * ((Re t) ^2)) * (Im t))) * <i>))) * (Im z))) * <i>)) + (s * ((Re t) + ((Im t) * <i>)))) + n is complex Element of COMPLEX
(Re z) * (((Re t) |^ 3) - ((3 * (Re t)) * ((Im t) ^2))) is complex real ext-real Element of REAL
((Re z) * (((Re t) |^ 3) - ((3 * (Re t)) * ((Im t) ^2)))) - ((Im z) * (Im ((((Re t) |^ 3) - ((3 * (Re t)) * ((Im t) ^2))) + (((- ((Im t) |^ 3)) + ((3 * ((Re t) ^2)) * (Im t))) * <i>)))) is complex real ext-real Element of REAL
((Re z) * (((Re t) |^ 3) - ((3 * (Re t)) * ((Im t) ^2)))) + (- ((Im z) * (Im ((((Re t) |^ 3) - ((3 * (Re t)) * ((Im t) ^2))) + (((- ((Im t) |^ 3)) + ((3 * ((Re t) ^2)) * (Im t))) * <i>))))) is complex real ext-real set
(((Re z) * (((Re t) |^ 3) - ((3 * (Re t)) * ((Im t) ^2)))) - ((Im z) * (Im ((((Re t) |^ 3) - ((3 * (Re t)) * ((Im t) ^2))) + (((- ((Im t) |^ 3)) + ((3 * ((Re t) ^2)) * (Im t))) * <i>))))) + ((((Re z) * (Im ((((Re t) |^ 3) - ((3 * (Re t)) * ((Im t) ^2))) + (((- ((Im t) |^ 3)) + ((3 * ((Re t) ^2)) * (Im t))) * <i>)))) + ((Re ((((Re t) |^ 3) - ((3 * (Re t)) * ((Im t) ^2))) + (((- ((Im t) |^ 3)) + ((3 * ((Re t) ^2)) * (Im t))) * <i>))) * (Im z))) * <i>) is complex Element of COMPLEX
((((Re z) * (((Re t) |^ 3) - ((3 * (Re t)) * ((Im t) ^2)))) - ((Im z) * (Im ((((Re t) |^ 3) - ((3 * (Re t)) * ((Im t) ^2))) + (((- ((Im t) |^ 3)) + ((3 * ((Re t) ^2)) * (Im t))) * <i>))))) + ((((Re z) * (Im ((((Re t) |^ 3) - ((3 * (Re t)) * ((Im t) ^2))) + (((- ((Im t) |^ 3)) + ((3 * ((Re t) ^2)) * (Im t))) * <i>)))) + ((Re ((((Re t) |^ 3) - ((3 * (Re t)) * ((Im t) ^2))) + (((- ((Im t) |^ 3)) + ((3 * ((Re t) ^2)) * (Im t))) * <i>))) * (Im z))) * <i>)) + (s * ((Re t) + ((Im t) * <i>))) is complex Element of COMPLEX
(((((Re z) * (((Re t) |^ 3) - ((3 * (Re t)) * ((Im t) ^2)))) - ((Im z) * (Im ((((Re t) |^ 3) - ((3 * (Re t)) * ((Im t) ^2))) + (((- ((Im t) |^ 3)) + ((3 * ((Re t) ^2)) * (Im t))) * <i>))))) + ((((Re z) * (Im ((((Re t) |^ 3) - ((3 * (Re t)) * ((Im t) ^2))) + (((- ((Im t) |^ 3)) + ((3 * ((Re t) ^2)) * (Im t))) * <i>)))) + ((Re ((((Re t) |^ 3) - ((3 * (Re t)) * ((Im t) ^2))) + (((- ((Im t) |^ 3)) + ((3 * ((Re t) ^2)) * (Im t))) * <i>))) * (Im z))) * <i>)) + (s * ((Re t) + ((Im t) * <i>)))) + n is complex Element of COMPLEX
(Im z) * ((- ((Im t) |^ 3)) + ((3 * ((Re t) ^2)) * (Im t))) is complex real ext-real Element of REAL
((Re z) * (((Re t) |^ 3) - ((3 * (Re t)) * ((Im t) ^2)))) - ((Im z) * ((- ((Im t) |^ 3)) + ((3 * ((Re t) ^2)) * (Im t)))) is complex real ext-real Element of REAL
- ((Im z) * ((- ((Im t) |^ 3)) + ((3 * ((Re t) ^2)) * (Im t)))) is complex real ext-real set
((Re z) * (((Re t) |^ 3) - ((3 * (Re t)) * ((Im t) ^2)))) + (- ((Im z) * ((- ((Im t) |^ 3)) + ((3 * ((Re t) ^2)) * (Im t))))) is complex real ext-real set
(((Re z) * (((Re t) |^ 3) - ((3 * (Re t)) * ((Im t) ^2)))) - ((Im z) * ((- ((Im t) |^ 3)) + ((3 * ((Re t) ^2)) * (Im t))))) + ((((Re z) * (Im ((((Re t) |^ 3) - ((3 * (Re t)) * ((Im t) ^2))) + (((- ((Im t) |^ 3)) + ((3 * ((Re t) ^2)) * (Im t))) * <i>)))) + ((Re ((((Re t) |^ 3) - ((3 * (Re t)) * ((Im t) ^2))) + (((- ((Im t) |^ 3)) + ((3 * ((Re t) ^2)) * (Im t))) * <i>))) * (Im z))) * <i>) is complex Element of COMPLEX
((((Re z) * (((Re t) |^ 3) - ((3 * (Re t)) * ((Im t) ^2)))) - ((Im z) * ((- ((Im t) |^ 3)) + ((3 * ((Re t) ^2)) * (Im t))))) + ((((Re z) * (Im ((((Re t) |^ 3) - ((3 * (Re t)) * ((Im t) ^2))) + (((- ((Im t) |^ 3)) + ((3 * ((Re t) ^2)) * (Im t))) * <i>)))) + ((Re ((((Re t) |^ 3) - ((3 * (Re t)) * ((Im t) ^2))) + (((- ((Im t) |^ 3)) + ((3 * ((Re t) ^2)) * (Im t))) * <i>))) * (Im z))) * <i>)) + (s * ((Re t) + ((Im t) * <i>))) is complex Element of COMPLEX
(((((Re z) * (((Re t) |^ 3) - ((3 * (Re t)) * ((Im t) ^2)))) - ((Im z) * ((- ((Im t) |^ 3)) + ((3 * ((Re t) ^2)) * (Im t))))) + ((((Re z) * (Im ((((Re t) |^ 3) - ((3 * (Re t)) * ((Im t) ^2))) + (((- ((Im t) |^ 3)) + ((3 * ((Re t) ^2)) * (Im t))) * <i>)))) + ((Re ((((Re t) |^ 3) - ((3 * (Re t)) * ((Im t) ^2))) + (((- ((Im t) |^ 3)) + ((3 * ((Re t) ^2)) * (Im t))) * <i>))) * (Im z))) * <i>)) + (s * ((Re t) + ((Im t) * <i>)))) + n is complex Element of COMPLEX
(((Re t) |^ 3) - ((3 * (Re t)) * ((Im t) ^2))) * (Im z) is complex real ext-real Element of REAL
((Re z) * (Im ((((Re t) |^ 3) - ((3 * (Re t)) * ((Im t) ^2))) + (((- ((Im t) |^ 3)) + ((3 * ((Re t) ^2)) * (Im t))) * <i>)))) + ((((Re t) |^ 3) - ((3 * (Re t)) * ((Im t) ^2))) * (Im z)) is complex real ext-real Element of REAL
(((Re z) * (Im ((((Re t) |^ 3) - ((3 * (Re t)) * ((Im t) ^2))) + (((- ((Im t) |^ 3)) + ((3 * ((Re t) ^2)) * (Im t))) * <i>)))) + ((((Re t) |^ 3) - ((3 * (Re t)) * ((Im t) ^2))) * (Im z))) * <i> is complex Element of COMPLEX
(((Re z) * (((Re t) |^ 3) - ((3 * (Re t)) * ((Im t) ^2)))) - ((Im z) * ((- ((Im t) |^ 3)) + ((3 * ((Re t) ^2)) * (Im t))))) + ((((Re z) * (Im ((((Re t) |^ 3) - ((3 * (Re t)) * ((Im t) ^2))) + (((- ((Im t) |^ 3)) + ((3 * ((Re t) ^2)) * (Im t))) * <i>)))) + ((((Re t) |^ 3) - ((3 * (Re t)) * ((Im t) ^2))) * (Im z))) * <i>) is complex Element of COMPLEX
((((Re z) * (((Re t) |^ 3) - ((3 * (Re t)) * ((Im t) ^2)))) - ((Im z) * ((- ((Im t) |^ 3)) + ((3 * ((Re t) ^2)) * (Im t))))) + ((((Re z) * (Im ((((Re t) |^ 3) - ((3 * (Re t)) * ((Im t) ^2))) + (((- ((Im t) |^ 3)) + ((3 * ((Re t) ^2)) * (Im t))) * <i>)))) + ((((Re t) |^ 3) - ((3 * (Re t)) * ((Im t) ^2))) * (Im z))) * <i>)) + (s * ((Re t) + ((Im t) * <i>))) is complex Element of COMPLEX
(((((Re z) * (((Re t) |^ 3) - ((3 * (Re t)) * ((Im t) ^2)))) - ((Im z) * ((- ((Im t) |^ 3)) + ((3 * ((Re t) ^2)) * (Im t))))) + ((((Re z) * (Im ((((Re t) |^ 3) - ((3 * (Re t)) * ((Im t) ^2))) + (((- ((Im t) |^ 3)) + ((3 * ((Re t) ^2)) * (Im t))) * <i>)))) + ((((Re t) |^ 3) - ((3 * (Re t)) * ((Im t) ^2))) * (Im z))) * <i>)) + (s * ((Re t) + ((Im t) * <i>)))) + n is complex Element of COMPLEX
(Re z) * ((- ((Im t) |^ 3)) + ((3 * ((Re t) ^2)) * (Im t))) is complex real ext-real Element of REAL
((Re z) * ((- ((Im t) |^ 3)) + ((3 * ((Re t) ^2)) * (Im t)))) + ((((Re t) |^ 3) - ((3 * (Re t)) * ((Im t) ^2))) * (Im z)) is complex real ext-real Element of REAL
(((Re z) * ((- ((Im t) |^ 3)) + ((3 * ((Re t) ^2)) * (Im t)))) + ((((Re t) |^ 3) - ((3 * (Re t)) * ((Im t) ^2))) * (Im z))) * <i> is complex Element of COMPLEX
(((Re z) * (((Re t) |^ 3) - ((3 * (Re t)) * ((Im t) ^2)))) - ((Im z) * ((- ((Im t) |^ 3)) + ((3 * ((Re t) ^2)) * (Im t))))) + ((((Re z) * ((- ((Im t) |^ 3)) + ((3 * ((Re t) ^2)) * (Im t)))) + ((((Re t) |^ 3) - ((3 * (Re t)) * ((Im t) ^2))) * (Im z))) * <i>) is complex Element of COMPLEX
((((Re z) * (((Re t) |^ 3) - ((3 * (Re t)) * ((Im t) ^2)))) - ((Im z) * ((- ((Im t) |^ 3)) + ((3 * ((Re t) ^2)) * (Im t))))) + ((((Re z) * ((- ((Im t) |^ 3)) + ((3 * ((Re t) ^2)) * (Im t)))) + ((((Re t) |^ 3) - ((3 * (Re t)) * ((Im t) ^2))) * (Im z))) * <i>)) + (s * ((Re t) + ((Im t) * <i>))) is complex Element of COMPLEX
(((((Re z) * (((Re t) |^ 3) - ((3 * (Re t)) * ((Im t) ^2)))) - ((Im z) * ((- ((Im t) |^ 3)) + ((3 * ((Re t) ^2)) * (Im t))))) + ((((Re z) * ((- ((Im t) |^ 3)) + ((3 * ((Re t) ^2)) * (Im t)))) + ((((Re t) |^ 3) - ((3 * (Re t)) * ((Im t) ^2))) * (Im z))) * <i>)) + (s * ((Re t) + ((Im t) * <i>)))) + n is complex Element of COMPLEX
z * (((Re t) |^ 3) - ((3 * (Re t)) * ((Im t) ^2))) is complex real ext-real Element of REAL
(z * (((Re t) |^ 3) - ((3 * (Re t)) * ((Im t) ^2)))) - ((Im z) * ((- ((Im t) |^ 3)) + ((3 * ((Re t) ^2)) * (Im t)))) is complex real ext-real Element of REAL
(z * (((Re t) |^ 3) - ((3 * (Re t)) * ((Im t) ^2)))) + (- ((Im z) * ((- ((Im t) |^ 3)) + ((3 * ((Re t) ^2)) * (Im t))))) is complex real ext-real set
((z * (((Re t) |^ 3) - ((3 * (Re t)) * ((Im t) ^2)))) - ((Im z) * ((- ((Im t) |^ 3)) + ((3 * ((Re t) ^2)) * (Im t))))) + ((((Re z) * ((- ((Im t) |^ 3)) + ((3 * ((Re t) ^2)) * (Im t)))) + ((((Re t) |^ 3) - ((3 * (Re t)) * ((Im t) ^2))) * (Im z))) * <i>) is complex Element of COMPLEX
(((z * (((Re t) |^ 3) - ((3 * (Re t)) * ((Im t) ^2)))) - ((Im z) * ((- ((Im t) |^ 3)) + ((3 * ((Re t) ^2)) * (Im t))))) + ((((Re z) * ((- ((Im t) |^ 3)) + ((3 * ((Re t) ^2)) * (Im t)))) + ((((Re t) |^ 3) - ((3 * (Re t)) * ((Im t) ^2))) * (Im z))) * <i>)) + (s * ((Re t) + ((Im t) * <i>))) is complex Element of COMPLEX
((((z * (((Re t) |^ 3) - ((3 * (Re t)) * ((Im t) ^2)))) - ((Im z) * ((- ((Im t) |^ 3)) + ((3 * ((Re t) ^2)) * (Im t))))) + ((((Re z) * ((- ((Im t) |^ 3)) + ((3 * ((Re t) ^2)) * (Im t)))) + ((((Re t) |^ 3) - ((3 * (Re t)) * ((Im t) ^2))) * (Im z))) * <i>)) + (s * ((Re t) + ((Im t) * <i>)))) + n is complex Element of COMPLEX
0 * ((- ((Im t) |^ 3)) + ((3 * ((Re t) ^2)) * (Im t))) is complex real ext-real Element of REAL
(z * (((Re t) |^ 3) - ((3 * (Re t)) * ((Im t) ^2)))) - (0 * ((- ((Im t) |^ 3)) + ((3 * ((Re t) ^2)) * (Im t)))) is complex real ext-real Element of REAL
- (0 * ((- ((Im t) |^ 3)) + ((3 * ((Re t) ^2)) * (Im t)))) is complex real ext-real set
(z * (((Re t) |^ 3) - ((3 * (Re t)) * ((Im t) ^2)))) + (- (0 * ((- ((Im t) |^ 3)) + ((3 * ((Re t) ^2)) * (Im t))))) is complex real ext-real set
((z * (((Re t) |^ 3) - ((3 * (Re t)) * ((Im t) ^2)))) - (0 * ((- ((Im t) |^ 3)) + ((3 * ((Re t) ^2)) * (Im t))))) + ((((Re z) * ((- ((Im t) |^ 3)) + ((3 * ((Re t) ^2)) * (Im t)))) + ((((Re t) |^ 3) - ((3 * (Re t)) * ((Im t) ^2))) * (Im z))) * <i>) is complex Element of COMPLEX
(((z * (((Re t) |^ 3) - ((3 * (Re t)) * ((Im t) ^2)))) - (0 * ((- ((Im t) |^ 3)) + ((3 * ((Re t) ^2)) * (Im t))))) + ((((Re z) * ((- ((Im t) |^ 3)) + ((3 * ((Re t) ^2)) * (Im t)))) + ((((Re t) |^ 3) - ((3 * (Re t)) * ((Im t) ^2))) * (Im z))) * <i>)) + (s * ((Re t) + ((Im t) * <i>))) is complex Element of COMPLEX
((((z * (((Re t) |^ 3) - ((3 * (Re t)) * ((Im t) ^2)))) - (0 * ((- ((Im t) |^ 3)) + ((3 * ((Re t) ^2)) * (Im t))))) + ((((Re z) * ((- ((Im t) |^ 3)) + ((3 * ((Re t) ^2)) * (Im t)))) + ((((Re t) |^ 3) - ((3 * (Re t)) * ((Im t) ^2))) * (Im z))) * <i>)) + (s * ((Re t) + ((Im t) * <i>)))) + n is complex Element of COMPLEX
(z * (((Re t) |^ 3) - ((3 * (Re t)) * ((Im t) ^2)))) - 0 is complex real ext-real Element of REAL
- 0 is empty complex real ext-real non positive non negative V69() V70() V71() V72() V73() V74() V75() set
(z * (((Re t) |^ 3) - ((3 * (Re t)) * ((Im t) ^2)))) + (- 0) is complex real ext-real set
z * ((- ((Im t) |^ 3)) + ((3 * ((Re t) ^2)) * (Im t))) is complex real ext-real Element of REAL
(z * ((- ((Im t) |^ 3)) + ((3 * ((Re t) ^2)) * (Im t)))) + ((((Re t) |^ 3) - ((3 * (Re t)) * ((Im t) ^2))) * (Im z)) is complex real ext-real Element of REAL
((z * ((- ((Im t) |^ 3)) + ((3 * ((Re t) ^2)) * (Im t)))) + ((((Re t) |^ 3) - ((3 * (Re t)) * ((Im t) ^2))) * (Im z))) * <i> is complex Element of COMPLEX
((z * (((Re t) |^ 3) - ((3 * (Re t)) * ((Im t) ^2)))) - 0) + (((z * ((- ((Im t) |^ 3)) + ((3 * ((Re t) ^2)) * (Im t)))) + ((((Re t) |^ 3) - ((3 * (Re t)) * ((Im t) ^2))) * (Im z))) * <i>) is complex Element of COMPLEX
(((z * (((Re t) |^ 3) - ((3 * (Re t)) * ((Im t) ^2)))) - 0) + (((z * ((- ((Im t) |^ 3)) + ((3 * ((Re t) ^2)) * (Im t)))) + ((((Re t) |^ 3) - ((3 * (Re t)) * ((Im t) ^2))) * (Im z))) * <i>)) + (s * ((Re t) + ((Im t) * <i>))) is complex Element of COMPLEX
((((z * (((Re t) |^ 3) - ((3 * (Re t)) * ((Im t) ^2)))) - 0) + (((z * ((- ((Im t) |^ 3)) + ((3 * ((Re t) ^2)) * (Im t)))) + ((((Re t) |^ 3) - ((3 * (Re t)) * ((Im t) ^2))) * (Im z))) * <i>)) + (s * ((Re t) + ((Im t) * <i>)))) + n is complex Element of COMPLEX
(((Re t) |^ 3) - ((3 * (Re t)) * ((Im t) ^2))) * 0 is complex real ext-real Element of REAL
(z * ((- ((Im t) |^ 3)) + ((3 * ((Re t) ^2)) * (Im t)))) + ((((Re t) |^ 3) - ((3 * (Re t)) * ((Im t) ^2))) * 0) is complex real ext-real Element of REAL
((z * ((- ((Im t) |^ 3)) + ((3 * ((Re t) ^2)) * (Im t)))) + ((((Re t) |^ 3) - ((3 * (Re t)) * ((Im t) ^2))) * 0)) * <i> is complex Element of COMPLEX
((z * (((Re t) |^ 3) - ((3 * (Re t)) * ((Im t) ^2)))) - 0) + (((z * ((- ((Im t) |^ 3)) + ((3 * ((Re t) ^2)) * (Im t)))) + ((((Re t) |^ 3) - ((3 * (Re t)) * ((Im t) ^2))) * 0)) * <i>) is complex Element of COMPLEX
(((z * (((Re t) |^ 3) - ((3 * (Re t)) * ((Im t) ^2)))) - 0) + (((z * ((- ((Im t) |^ 3)) + ((3 * ((Re t) ^2)) * (Im t)))) + ((((Re t) |^ 3) - ((3 * (Re t)) * ((Im t) ^2))) * 0)) * <i>)) + (s * ((Re t) + ((Im t) * <i>))) is complex Element of COMPLEX
((((z * (((Re t) |^ 3) - ((3 * (Re t)) * ((Im t) ^2)))) - 0) + (((z * ((- ((Im t) |^ 3)) + ((3 * ((Re t) ^2)) * (Im t)))) + ((((Re t) |^ 3) - ((3 * (Re t)) * ((Im t) ^2))) * 0)) * <i>)) + (s * ((Re t) + ((Im t) * <i>)))) + n is complex Element of COMPLEX
s * (Re t) is complex real ext-real Element of REAL
(z * (((Re t) |^ 3) - ((3 * (Re t)) * ((Im t) ^2)))) + (s * (Re t)) is complex real ext-real Element of REAL
((z * (((Re t) |^ 3) - ((3 * (Re t)) * ((Im t) ^2)))) + (s * (Re t))) + n is complex real ext-real Element of REAL
s * (Im t) is complex real ext-real Element of REAL
(z * ((- ((Im t) |^ 3)) + ((3 * ((Re t) ^2)) * (Im t)))) + (s * (Im t)) is complex real ext-real Element of REAL
((z * ((- ((Im t) |^ 3)) + ((3 * ((Re t) ^2)) * (Im t)))) + (s * (Im t))) + 0 is complex real ext-real Element of REAL
(((z * ((- ((Im t) |^ 3)) + ((3 * ((Re t) ^2)) * (Im t)))) + (s * (Im t))) + 0) * <i> is complex Element of COMPLEX
(((z * (((Re t) |^ 3) - ((3 * (Re t)) * ((Im t) ^2)))) + (s * (Re t))) + n) + ((((z * ((- ((Im t) |^ 3)) + ((3 * ((Re t) ^2)) * (Im t)))) + (s * (Im t))) + 0) * <i>) is complex Element of COMPLEX
2 + 1 is non empty ordinal natural complex real ext-real positive non negative V43() V44() V69() V70() V71() V72() V73() V74() Element of NAT
(Im t) |^ (2 + 1) is complex real ext-real Element of REAL
- ((Im t) |^ (2 + 1)) is complex real ext-real Element of REAL
(- ((Im t) |^ (2 + 1))) + ((3 * ((Re t) ^2)) * (Im t)) is complex real ext-real Element of REAL
z * ((- ((Im t) |^ (2 + 1))) + ((3 * ((Re t) ^2)) * (Im t))) is complex real ext-real Element of REAL
(z * ((- ((Im t) |^ (2 + 1))) + ((3 * ((Re t) ^2)) * (Im t)))) + (s * (Im t)) is complex real ext-real Element of REAL
(Im t) |^ 2 is complex real ext-real Element of REAL
((Im t) |^ 2) * (Im t) is complex real ext-real Element of REAL
- (((Im t) |^ 2) * (Im t)) is complex real ext-real Element of REAL
(- (((Im t) |^ 2) * (Im t))) + ((3 * ((Re t) ^2)) * (Im t)) is complex real ext-real Element of REAL
z * ((- (((Im t) |^ 2) * (Im t))) + ((3 * ((Re t) ^2)) * (Im t))) is complex real ext-real Element of REAL
(z * ((- (((Im t) |^ 2) * (Im t))) + ((3 * ((Re t) ^2)) * (Im t)))) + (s * (Im t)) is complex real ext-real Element of REAL
- ((Im t) |^ 2) is complex real ext-real Element of REAL
(- ((Im t) |^ 2)) + (3 * ((Re t) ^2)) is complex real ext-real Element of REAL
z * ((- ((Im t) |^ 2)) + (3 * ((Re t) ^2))) is complex real ext-real Element of REAL
(z * ((- ((Im t) |^ 2)) + (3 * ((Re t) ^2)))) + s is complex real ext-real Element of REAL
((z * ((- ((Im t) |^ 2)) + (3 * ((Re t) ^2)))) + s) + 0 is complex real ext-real Element of REAL
(((z * ((- ((Im t) |^ 2)) + (3 * ((Re t) ^2)))) + s) + 0) * (Im t) is complex real ext-real Element of REAL
z * ((Im t) |^ 2) is complex real ext-real Element of REAL
- (z * ((Im t) |^ 2)) is complex real ext-real Element of REAL
z * (3 * ((Re t) ^2)) is complex real ext-real Element of REAL
(z * (3 * ((Re t) ^2))) + s is complex real ext-real Element of REAL
(- (z * ((Im t) |^ 2))) + ((z * (3 * ((Re t) ^2))) + s) is complex real ext-real Element of REAL
(z * ((Im t) |^ 2)) + ((- (z * ((Im t) |^ 2))) + ((z * (3 * ((Re t) ^2))) + s)) is complex real ext-real Element of REAL
(z * ((Im t) |^ 2)) + 0 is complex real ext-real Element of REAL
1 + 1 is non empty ordinal natural complex real ext-real positive non negative V43() V44() V69() V70() V71() V72() V73() V74() Element of NAT
(Im t) |^ (1 + 1) is complex real ext-real Element of REAL
((z * (3 * ((Re t) ^2))) + s) / z is complex real ext-real Element of REAL
((z * (3 * ((Re t) ^2))) + s) * (z ") is complex real ext-real set
(Im t) |^ 1 is complex real ext-real Element of REAL
((Im t) |^ 1) * (Im t) is complex real ext-real Element of REAL
(3 * ((Re t) ^2)) * z is complex real ext-real Element of REAL
((3 * ((Re t) ^2)) * z) / z is complex real ext-real Element of REAL
((3 * ((Re t) ^2)) * z) * (z ") is complex real ext-real set
(((3 * ((Re t) ^2)) * z) / z) + (s / z) is complex real ext-real Element of REAL
0 / z is complex real ext-real Element of REAL
0 * (z ") is complex real ext-real set
((((3 * ((Re t) ^2)) * z) / z) + (s / z)) + (0 / z) is complex real ext-real Element of REAL
(3 * ((Re t) ^2)) + (s / z) is complex real ext-real Element of REAL
z " is complex real ext-real Element of REAL
0 * (z ") is complex real ext-real Element of REAL
((3 * ((Re t) ^2)) + (s / z)) + (0 * (z ")) is complex real ext-real Element of REAL
8 is non empty ordinal natural complex real ext-real positive non negative V43() V44() V69() V70() V71() V72() V73() V74() Element of NAT
8 * z is complex real ext-real Element of REAL
n / (8 * z) is complex real ext-real Element of REAL
(8 * z) " is complex real ext-real set
n * ((8 * z) ") is complex real ext-real set
- (n / (8 * z)) is complex real ext-real Element of REAL
c9 is complex real ext-real Element of REAL
a9 is complex real ext-real Element of REAL
c9 + a9 is complex real ext-real Element of REAL
3 * a9 is complex real ext-real Element of REAL
(3 * a9) * c9 is complex real ext-real Element of REAL
((3 * a9) * c9) + (s / (4 * z)) is complex real ext-real Element of REAL
(- (n / (8 * z))) / 2 is complex real ext-real Element of REAL
2 " is non empty complex real ext-real positive non negative set
(- (n / (8 * z))) * (2 ") is complex real ext-real set
- ((- (n / (8 * z))) / 2) is complex real ext-real Element of REAL
(- (n / (8 * z))) ^2 is complex real ext-real Element of REAL
(- (n / (8 * z))) * (- (n / (8 * z))) is complex real ext-real set
((- (n / (8 * z))) ^2) / 4 is complex real ext-real Element of REAL
4 " is non empty complex real ext-real positive non negative set
((- (n / (8 * z))) ^2) * (4 ") is complex real ext-real set
(s / (4 * z)) / 3 is complex real ext-real Element of REAL
3 " is non empty complex real ext-real positive non negative set
(s / (4 * z)) * (3 ") is complex real ext-real set
((s / (4 * z)) / 3) |^ 3 is complex real ext-real Element of REAL
(((- (n / (8 * z))) ^2) / 4) + (((s / (4 * z)) / 3) |^ 3) is complex real ext-real Element of REAL
sqrt ((((- (n / (8 * z))) ^2) / 4) + (((s / (4 * z)) / 3) |^ 3)) is complex real ext-real Element of REAL
(- ((- (n / (8 * z))) / 2)) + (sqrt ((((- (n / (8 * z))) ^2) / 4) + (((s / (4 * z)) / 3) |^ 3))) is complex real ext-real Element of REAL
3 -root ((- ((- (n / (8 * z))) / 2)) + (sqrt ((((- (n / (8 * z))) ^2) / 4) + (((s / (4 * z)) / 3) |^ 3)))) is complex real ext-real Element of REAL
(- ((- (n / (8 * z))) / 2)) - (sqrt ((((- (n / (8 * z))) ^2) / 4) + (((s / (4 * z)) / 3) |^ 3))) is complex real ext-real Element of REAL
- (sqrt ((((- (n / (8 * z))) ^2) / 4) + (((s / (4 * z)) / 3) |^ 3))) is complex real ext-real set
(- ((- (n / (8 * z))) / 2)) + (- (sqrt ((((- (n / (8 * z))) ^2) / 4) + (((s / (4 * z)) / 3) |^ 3)))) is complex real ext-real set
3 -root ((- ((- (n / (8 * z))) / 2)) - (sqrt ((((- (n / (8 * z))) ^2) / 4) + (((s / (4 * z)) / 3) |^ 3)))) is complex real ext-real Element of REAL
1 / 3 is non empty complex real ext-real positive non negative V44() Element of RAT
1 * (3 ") is non empty complex real ext-real positive non negative set
(1 / 3) * (s / (4 * z)) is complex real ext-real Element of REAL
z * 4 is complex real ext-real Element of REAL
(z * 4) * 3 is complex real ext-real Element of REAL
s / ((z * 4) * 3) is complex real ext-real Element of REAL
((z * 4) * 3) " is complex real ext-real set
s * (((z * 4) * 3) ") is complex real ext-real set
4 * 3 is non empty ordinal natural complex real ext-real positive non negative V43() V44() V69() V70() V71() V72() V73() V74() Element of NAT
z * (4 * 3) is complex real ext-real Element of REAL
s / (z * (4 * 3)) is complex real ext-real Element of REAL
(z * (4 * 3)) " is complex real ext-real set
s * ((z * (4 * 3)) ") is complex real ext-real set
1 / 2 is non empty complex real ext-real positive non negative V44() Element of RAT
1 * (2 ") is non empty complex real ext-real positive non negative set
(1 / 2) * (n / (8 * z)) is complex real ext-real Element of REAL
z * 8 is complex real ext-real Element of REAL
(z * 8) * 2 is complex real ext-real Element of REAL
n / ((z * 8) * 2) is complex real ext-real Element of REAL
((z * 8) * 2) " is complex real ext-real set
n * (((z * 8) * 2) ") is complex real ext-real set
(3 * (Re t)) * ((3 * ((Re t) ^2)) + (s / z)) is complex real ext-real Element of REAL
((Re t) |^ 3) - ((3 * (Re t)) * ((3 * ((Re t) ^2)) + (s / z))) is complex real ext-real Element of REAL
- ((3 * (Re t)) * ((3 * ((Re t) ^2)) + (s / z))) is complex real ext-real set
((Re t) |^ 3) + (- ((3 * (Re t)) * ((3 * ((Re t) ^2)) + (s / z)))) is complex real ext-real set
(((Re t) |^ 3) - ((3 * (Re t)) * ((3 * ((Re t) ^2)) + (s / z)))) + 0 is complex real ext-real Element of REAL
z * ((((Re t) |^ 3) - ((3 * (Re t)) * ((3 * ((Re t) ^2)) + (s / z)))) + 0) is complex real ext-real Element of REAL
(z * ((((Re t) |^ 3) - ((3 * (Re t)) * ((3 * ((Re t) ^2)) + (s / z)))) + 0)) + (s * (Re t)) is complex real ext-real Element of REAL
((z * ((((Re t) |^ 3) - ((3 * (Re t)) * ((3 * ((Re t) ^2)) + (s / z)))) + 0)) + (s * (Re t))) + n is complex real ext-real Element of REAL
z * ((Re t) |^ 3) is complex real ext-real Element of REAL
9 is non empty ordinal natural complex real ext-real positive non negative V43() V44() V69() V70() V71() V72() V73() V74() Element of NAT
(Re t) * ((Re t) ^2) is complex real ext-real Element of REAL
9 * ((Re t) * ((Re t) ^2)) is complex real ext-real Element of REAL
(3 * (Re t)) * (s / z) is complex real ext-real Element of REAL
(9 * ((Re t) * ((Re t) ^2))) + ((3 * (Re t)) * (s / z)) is complex real ext-real Element of REAL
z * ((9 * ((Re t) * ((Re t) ^2))) + ((3 * (Re t)) * (s / z))) is complex real ext-real Element of REAL
(z * ((Re t) |^ 3)) - (z * ((9 * ((Re t) * ((Re t) ^2))) + ((3 * (Re t)) * (s / z)))) is complex real ext-real Element of REAL
- (z * ((9 * ((Re t) * ((Re t) ^2))) + ((3 * (Re t)) * (s / z)))) is complex real ext-real set
(z * ((Re t) |^ 3)) + (- (z * ((9 * ((Re t) * ((Re t) ^2))) + ((3 * (Re t)) * (s / z))))) is complex real ext-real set
((z * ((Re t) |^ 3)) - (z * ((9 * ((Re t) * ((Re t) ^2))) + ((3 * (Re t)) * (s / z))))) + (s * (Re t)) is complex real ext-real Element of REAL
(((z * ((Re t) |^ 3)) - (z * ((9 * ((Re t) * ((Re t) ^2))) + ((3 * (Re t)) * (s / z))))) + (s * (Re t))) + n is complex real ext-real Element of REAL
(Re t) |^ 1 is complex real ext-real Element of REAL
((Re t) |^ 1) * (Re t) is complex real ext-real Element of REAL
(((Re t) |^ 1) * (Re t)) * (Re t) is complex real ext-real Element of REAL
9 * ((((Re t) |^ 1) * (Re t)) * (Re t)) is complex real ext-real Element of REAL
(9 * ((((Re t) |^ 1) * (Re t)) * (Re t))) + ((3 * (Re t)) * (s / z)) is complex real ext-real Element of REAL
z * ((9 * ((((Re t) |^ 1) * (Re t)) * (Re t))) + ((3 * (Re t)) * (s / z))) is complex real ext-real Element of REAL
(z * ((Re t) |^ 3)) - (z * ((9 * ((((Re t) |^ 1) * (Re t)) * (Re t))) + ((3 * (Re t)) * (s / z)))) is complex real ext-real Element of REAL
- (z * ((9 * ((((Re t) |^ 1) * (Re t)) * (Re t))) + ((3 * (Re t)) * (s / z)))) is complex real ext-real set
(z * ((Re t) |^ 3)) + (- (z * ((9 * ((((Re t) |^ 1) * (Re t)) * (Re t))) + ((3 * (Re t)) * (s / z))))) is complex real ext-real set
((z * ((Re t) |^ 3)) - (z * ((9 * ((((Re t) |^ 1) * (Re t)) * (Re t))) + ((3 * (Re t)) * (s / z))))) + (s * (Re t)) is complex real ext-real Element of REAL
(((z * ((Re t) |^ 3)) - (z * ((9 * ((((Re t) |^ 1) * (Re t)) * (Re t))) + ((3 * (Re t)) * (s / z))))) + (s * (Re t))) + n is complex real ext-real Element of REAL
(Re t) |^ (1 + 1) is complex real ext-real Element of REAL
((Re t) |^ (1 + 1)) * (Re t) is complex real ext-real Element of REAL
9 * (((Re t) |^ (1 + 1)) * (Re t)) is complex real ext-real Element of REAL
(9 * (((Re t) |^ (1 + 1)) * (Re t))) + ((3 * (Re t)) * (s / z)) is complex real ext-real Element of REAL
z * ((9 * (((Re t) |^ (1 + 1)) * (Re t))) + ((3 * (Re t)) * (s / z))) is complex real ext-real Element of REAL
(z * ((Re t) |^ 3)) - (z * ((9 * (((Re t) |^ (1 + 1)) * (Re t))) + ((3 * (Re t)) * (s / z)))) is complex real ext-real Element of REAL
- (z * ((9 * (((Re t) |^ (1 + 1)) * (Re t))) + ((3 * (Re t)) * (s / z)))) is complex real ext-real set
(z * ((Re t) |^ 3)) + (- (z * ((9 * (((Re t) |^ (1 + 1)) * (Re t))) + ((3 * (Re t)) * (s / z))))) is complex real ext-real set
((z * ((Re t) |^ 3)) - (z * ((9 * (((Re t) |^ (1 + 1)) * (Re t))) + ((3 * (Re t)) * (s / z))))) + (s * (Re t)) is complex real ext-real Element of REAL
(((z * ((Re t) |^ 3)) - (z * ((9 * (((Re t) |^ (1 + 1)) * (Re t))) + ((3 * (Re t)) * (s / z))))) + (s * (Re t))) + n is complex real ext-real Element of REAL
(Re t) |^ (2 + 1) is complex real ext-real Element of REAL
9 * ((Re t) |^ (2 + 1)) is complex real ext-real Element of REAL
(9 * ((Re t) |^ (2 + 1))) + ((3 * (Re t)) * (s / z)) is complex real ext-real Element of REAL
((9 * ((Re t) |^ (2 + 1))) + ((3 * (Re t)) * (s / z))) + 0 is complex real ext-real Element of REAL
z * (((9 * ((Re t) |^ (2 + 1))) + ((3 * (Re t)) * (s / z))) + 0) is complex real ext-real Element of REAL
(z * ((Re t) |^ 3)) - (z * (((9 * ((Re t) |^ (2 + 1))) + ((3 * (Re t)) * (s / z))) + 0)) is complex real ext-real Element of REAL
- (z * (((9 * ((Re t) |^ (2 + 1))) + ((3 * (Re t)) * (s / z))) + 0)) is complex real ext-real set
(z * ((Re t) |^ 3)) + (- (z * (((9 * ((Re t) |^ (2 + 1))) + ((3 * (Re t)) * (s / z))) + 0))) is complex real ext-real set
((z * ((Re t) |^ 3)) - (z * (((9 * ((Re t) |^ (2 + 1))) + ((3 * (Re t)) * (s / z))) + 0))) + (s * (Re t)) is complex real ext-real Element of REAL
(((z * ((Re t) |^ 3)) - (z * (((9 * ((Re t) |^ (2 + 1))) + ((3 * (Re t)) * (s / z))) + 0))) + (s * (Re t))) + n is complex real ext-real Element of REAL
9 * ((Re t) |^ 3) is complex real ext-real Element of REAL
z * (9 * ((Re t) |^ 3)) is complex real ext-real Element of REAL
z / z is complex real ext-real Element of REAL
z * (z ") is complex real ext-real set
s * (z / z) is complex real ext-real Element of REAL
(3 * (Re t)) * (s * (z / z)) is complex real ext-real Element of REAL
(z * (9 * ((Re t) |^ 3))) + ((3 * (Re t)) * (s * (z / z))) is complex real ext-real Element of REAL
(z * ((Re t) |^ 3)) - ((z * (9 * ((Re t) |^ 3))) + ((3 * (Re t)) * (s * (z / z)))) is complex real ext-real Element of REAL
- ((z * (9 * ((Re t) |^ 3))) + ((3 * (Re t)) * (s * (z / z)))) is complex real ext-real set
(z * ((Re t) |^ 3)) + (- ((z * (9 * ((Re t) |^ 3))) + ((3 * (Re t)) * (s * (z / z))))) is complex real ext-real set
((z * ((Re t) |^ 3)) - ((z * (9 * ((Re t) |^ 3))) + ((3 * (Re t)) * (s * (z / z))))) + (s * (Re t)) is complex real ext-real Element of REAL
(((z * ((Re t) |^ 3)) - ((z * (9 * ((Re t) |^ 3))) + ((3 * (Re t)) * (s * (z / z))))) + (s * (Re t))) + n is complex real ext-real Element of REAL
(3 * (Re t)) * s is complex real ext-real Element of REAL
(z * (9 * ((Re t) |^ 3))) + ((3 * (Re t)) * s) is complex real ext-real Element of REAL
(z * ((Re t) |^ 3)) - ((z * (9 * ((Re t) |^ 3))) + ((3 * (Re t)) * s)) is complex real ext-real Element of REAL
- ((z * (9 * ((Re t) |^ 3))) + ((3 * (Re t)) * s)) is complex real ext-real set
(z * ((Re t) |^ 3)) + (- ((z * (9 * ((Re t) |^ 3))) + ((3 * (Re t)) * s))) is complex real ext-real set
((z * ((Re t) |^ 3)) - ((z * (9 * ((Re t) |^ 3))) + ((3 * (Re t)) * s))) + (s * (Re t)) is complex real ext-real Element of REAL
(((z * ((Re t) |^ 3)) - ((z * (9 * ((Re t) |^ 3))) + ((3 * (Re t)) * s))) + (s * (Re t))) + n is complex real ext-real Element of REAL
- (8 * z) is complex real ext-real Element of REAL
(- (8 * z)) * ((Re t) |^ 3) is complex real ext-real Element of REAL
2 * s is complex real ext-real Element of REAL
- (2 * s) is complex real ext-real Element of REAL
(- (2 * s)) * (Re t) is complex real ext-real Element of REAL
((- (8 * z)) * ((Re t) |^ 3)) + ((- (2 * s)) * (Re t)) is complex real ext-real Element of REAL
(((- (8 * z)) * ((Re t) |^ 3)) + ((- (2 * s)) * (Re t))) + n is complex real ext-real Element of REAL
- 1 is non empty complex real ext-real non positive negative V43() V44() Element of INT
(- 1) * 0 is empty complex real ext-real non positive non negative V43() V44() V69() V70() V71() V72() V73() V74() V75() Element of INT
(8 * z) * ((Re t) |^ 3) is complex real ext-real Element of REAL
(2 * s) * (Re t) is complex real ext-real Element of REAL
((8 * z) * ((Re t) |^ 3)) + ((2 * s) * (Re t)) is complex real ext-real Element of REAL
- n is complex real ext-real Element of REAL
(((8 * z) * ((Re t) |^ 3)) + ((2 * s) * (Re t))) + (- n) is complex real ext-real Element of REAL
(8 * z) / (8 * z) is complex real ext-real Element of REAL
(8 * z) * ((8 * z) ") is complex real ext-real set
((Re t) |^ 3) * ((8 * z) / (8 * z)) is complex real ext-real Element of REAL
(8 * z) " is complex real ext-real Element of REAL
((8 * z) ") * ((2 * s) * (Re t)) is complex real ext-real Element of REAL
(((Re t) |^ 3) * ((8 * z) / (8 * z))) + (((8 * z) ") * ((2 * s) * (Re t))) is complex real ext-real Element of REAL
((8 * z) ") * (- n) is complex real ext-real Element of REAL
((((Re t) |^ 3) * ((8 * z) / (8 * z))) + (((8 * z) ") * ((2 * s) * (Re t)))) + (((8 * z) ") * (- n)) is complex real ext-real Element of REAL
1 * ((Re t) |^ 3) is complex real ext-real Element of REAL
0 * ((Re t) ^2) is complex real ext-real Element of REAL
(1 * ((Re t) |^ 3)) + (0 * ((Re t) ^2)) is complex real ext-real Element of REAL
(2 * s) / (8 * z) is complex real ext-real Element of REAL
(2 * s) * ((8 * z) ") is complex real ext-real set
((2 * s) / (8 * z)) * (Re t) is complex real ext-real Element of REAL
((1 * ((Re t) |^ 3)) + (0 * ((Re t) ^2))) + (((2 * s) / (8 * z)) * (Re t)) is complex real ext-real Element of REAL
(((1 * ((Re t) |^ 3)) + (0 * ((Re t) ^2))) + (((2 * s) / (8 * z)) * (Re t))) + (((8 * z) ") * (- n)) is complex real ext-real Element of REAL
2 / 8 is non empty complex real ext-real positive non negative V44() Element of RAT
8 " is non empty complex real ext-real positive non negative set
2 * (8 ") is non empty complex real ext-real positive non negative set
(2 / 8) * s is complex real ext-real Element of REAL
((2 / 8) * s) / z is complex real ext-real Element of REAL
((2 / 8) * s) * (z ") is complex real ext-real set
(((2 / 8) * s) / z) * (Re t) is complex real ext-real Element of REAL
((1 * ((Re t) |^ 3)) + (0 * ((Re t) ^2))) + ((((2 / 8) * s) / z) * (Re t)) is complex real ext-real Element of REAL
(- n) / (8 * z) is complex real ext-real Element of REAL
(- n) * ((8 * z) ") is complex real ext-real set
(((1 * ((Re t) |^ 3)) + (0 * ((Re t) ^2))) + ((((2 / 8) * s) / z) * (Re t))) + ((- n) / (8 * z)) is complex real ext-real Element of REAL
1 / z is complex real ext-real Element of REAL
1 * (z ") is complex real ext-real set
s / 4 is complex real ext-real Element of REAL
s * (4 ") is complex real ext-real set
(1 / z) * (s / 4) is complex real ext-real Element of REAL
((1 / z) * (s / 4)) * (Re t) is complex real ext-real Element of REAL
((1 * ((Re t) |^ 3)) + (0 * ((Re t) ^2))) + (((1 / z) * (s / 4)) * (Re t)) is complex real ext-real Element of REAL
(((1 * ((Re t) |^ 3)) + (0 * ((Re t) ^2))) + (((1 / z) * (s / 4)) * (Re t))) + ((- n) / (8 * z)) is complex real ext-real Element of REAL
Polynom (1,0,(s / (4 * z)),(- (n / (8 * z))),(Re t)) is complex real ext-real set
(Re t) |^ 3 is complex real ext-real set
1 * ((Re t) |^ 3) is complex real ext-real set
(Re t) ^2 is complex real ext-real set
0 * ((Re t) ^2) is complex real ext-real set
(1 * ((Re t) |^ 3)) + (0 * ((Re t) ^2)) is complex real ext-real set
(s / (4 * z)) * (Re t) is complex real ext-real set
((1 * ((Re t) |^ 3)) + (0 * ((Re t) ^2))) + ((s / (4 * z)) * (Re t)) is complex real ext-real set
(((1 * ((Re t) |^ 3)) + (0 * ((Re t) ^2))) + ((s / (4 * z)) * (Re t))) + (- (n / (8 * z))) is complex real ext-real set
((Re t)) is complex Element of COMPLEX
((Re t) ^2) * (Re t) is complex real ext-real Element of COMPLEX
1 * ((Re t)) is complex Element of COMPLEX
0 * ((Re t) ^2) is complex real ext-real Element of COMPLEX
(1 * ((Re t))) + (0 * ((Re t) ^2)) is complex Element of COMPLEX
(s / (4 * z)) * (Re t) is complex real ext-real Element of COMPLEX
((1 * ((Re t))) + (0 * ((Re t) ^2))) + ((s / (4 * z)) * (Re t)) is complex Element of COMPLEX
(((1 * ((Re t))) + (0 * ((Re t) ^2))) + ((s / (4 * z)) * (Re t))) + (- (n / (8 * z))) is complex Element of COMPLEX
(3 -root ((- ((- (n / (8 * z))) / 2)) + (sqrt ((((- (n / (8 * z))) ^2) / 4) + (((s / (4 * z)) / 3) |^ 3))))) + (3 -root ((- ((- (n / (8 * z))) / 2)) - (sqrt ((((- (n / (8 * z))) ^2) / 4) + (((s / (4 * z)) / 3) |^ 3))))) is complex real ext-real Element of REAL
(3 -root ((- ((- (n / (8 * z))) / 2)) + (sqrt ((((- (n / (8 * z))) ^2) / 4) + (((s / (4 * z)) / 3) |^ 3))))) + (3 -root ((- ((- (n / (8 * z))) / 2)) + (sqrt ((((- (n / (8 * z))) ^2) / 4) + (((s / (4 * z)) / 3) |^ 3))))) is complex real ext-real Element of REAL
(3 -root ((- ((- (n / (8 * z))) / 2)) - (sqrt ((((- (n / (8 * z))) ^2) / 4) + (((s / (4 * z)) / 3) |^ 3))))) + (3 -root ((- ((- (n / (8 * z))) / 2)) - (sqrt ((((- (n / (8 * z))) ^2) / 4) + (((s / (4 * z)) / 3) |^ 3))))) is complex real ext-real Element of REAL
((3 -root ((- ((- (n / (8 * z))) / 2)) + (sqrt ((((- (n / (8 * z))) ^2) / 4) + (((s / (4 * z)) / 3) |^ 3))))) + (3 -root ((- ((- (n / (8 * z))) / 2)) - (sqrt ((((- (n / (8 * z))) ^2) / 4) + (((s / (4 * z)) / 3) |^ 3)))))) ^2 is complex real ext-real Element of REAL
((3 -root ((- ((- (n / (8 * z))) / 2)) + (sqrt ((((- (n / (8 * z))) ^2) / 4) + (((s / (4 * z)) / 3) |^ 3))))) + (3 -root ((- ((- (n / (8 * z))) / 2)) - (sqrt ((((- (n / (8 * z))) ^2) / 4) + (((s / (4 * z)) / 3) |^ 3)))))) * ((3 -root ((- ((- (n / (8 * z))) / 2)) + (sqrt ((((- (n / (8 * z))) ^2) / 4) + (((s / (4 * z)) / 3) |^ 3))))) + (3 -root ((- ((- (n / (8 * z))) / 2)) - (sqrt ((((- (n / (8 * z))) ^2) / 4) + (((s / (4 * z)) / 3) |^ 3)))))) is complex real ext-real set
3 * (((3 -root ((- ((- (n / (8 * z))) / 2)) + (sqrt ((((- (n / (8 * z))) ^2) / 4) + (((s / (4 * z)) / 3) |^ 3))))) + (3 -root ((- ((- (n / (8 * z))) / 2)) - (sqrt ((((- (n / (8 * z))) ^2) / 4) + (((s / (4 * z)) / 3) |^ 3)))))) ^2) is complex real ext-real Element of REAL
(3 * (((3 -root ((- ((- (n / (8 * z))) / 2)) + (sqrt ((((- (n / (8 * z))) ^2) / 4) + (((s / (4 * z)) / 3) |^ 3))))) + (3 -root ((- ((- (n / (8 * z))) / 2)) - (sqrt ((((- (n / (8 * z))) ^2) / 4) + (((s / (4 * z)) / 3) |^ 3)))))) ^2)) + (s / z) is complex real ext-real Element of REAL
sqrt ((3 * (((3 -root ((- ((- (n / (8 * z))) / 2)) + (sqrt ((((- (n / (8 * z))) ^2) / 4) + (((s / (4 * z)) / 3) |^ 3))))) + (3 -root ((- ((- (n / (8 * z))) / 2)) - (sqrt ((((- (n / (8 * z))) ^2) / 4) + (((s / (4 * z)) / 3) |^ 3)))))) ^2)) + (s / z)) is complex real ext-real Element of REAL
(sqrt ((3 * (((3 -root ((- ((- (n / (8 * z))) / 2)) + (sqrt ((((- (n / (8 * z))) ^2) / 4) + (((s / (4 * z)) / 3) |^ 3))))) + (3 -root ((- ((- (n / (8 * z))) / 2)) - (sqrt ((((- (n / (8 * z))) ^2) / 4) + (((s / (4 * z)) / 3) |^ 3)))))) ^2)) + (s / z))) * <i> is complex Element of COMPLEX
((3 -root ((- ((- (n / (8 * z))) / 2)) + (sqrt ((((- (n / (8 * z))) ^2) / 4) + (((s / (4 * z)) / 3) |^ 3))))) + (3 -root ((- ((- (n / (8 * z))) / 2)) - (sqrt ((((- (n / (8 * z))) ^2) / 4) + (((s / (4 * z)) / 3) |^ 3)))))) + ((sqrt ((3 * (((3 -root ((- ((- (n / (8 * z))) / 2)) + (sqrt ((((- (n / (8 * z))) ^2) / 4) + (((s / (4 * z)) / 3) |^ 3))))) + (3 -root ((- ((- (n / (8 * z))) / 2)) - (sqrt ((((- (n / (8 * z))) ^2) / 4) + (((s / (4 * z)) / 3) |^ 3)))))) ^2)) + (s / z))) * <i>) is complex Element of COMPLEX
- (sqrt ((3 * (((3 -root ((- ((- (n / (8 * z))) / 2)) + (sqrt ((((- (n / (8 * z))) ^2) / 4) + (((s / (4 * z)) / 3) |^ 3))))) + (3 -root ((- ((- (n / (8 * z))) / 2)) - (sqrt ((((- (n / (8 * z))) ^2) / 4) + (((s / (4 * z)) / 3) |^ 3)))))) ^2)) + (s / z))) is complex real ext-real Element of REAL
(- (sqrt ((3 * (((3 -root ((- ((- (n / (8 * z))) / 2)) + (sqrt ((((- (n / (8 * z))) ^2) / 4) + (((s / (4 * z)) / 3) |^ 3))))) + (3 -root ((- ((- (n / (8 * z))) / 2)) - (sqrt ((((- (n / (8 * z))) ^2) / 4) + (((s / (4 * z)) / 3) |^ 3)))))) ^2)) + (s / z)))) * <i> is complex Element of COMPLEX
((3 -root ((- ((- (n / (8 * z))) / 2)) + (sqrt ((((- (n / (8 * z))) ^2) / 4) + (((s / (4 * z)) / 3) |^ 3))))) + (3 -root ((- ((- (n / (8 * z))) / 2)) - (sqrt ((((- (n / (8 * z))) ^2) / 4) + (((s / (4 * z)) / 3) |^ 3)))))) + ((- (sqrt ((3 * (((3 -root ((- ((- (n / (8 * z))) / 2)) + (sqrt ((((- (n / (8 * z))) ^2) / 4) + (((s / (4 * z)) / 3) |^ 3))))) + (3 -root ((- ((- (n / (8 * z))) / 2)) - (sqrt ((((- (n / (8 * z))) ^2) / 4) + (((s / (4 * z)) / 3) |^ 3)))))) ^2)) + (s / z)))) * <i>) is complex Element of COMPLEX
2 * (3 -root ((- ((- (n / (8 * z))) / 2)) + (sqrt ((((- (n / (8 * z))) ^2) / 4) + (((s / (4 * z)) / 3) |^ 3))))) is complex real ext-real Element of REAL
(2 * (3 -root ((- ((- (n / (8 * z))) / 2)) + (sqrt ((((- (n / (8 * z))) ^2) / 4) + (((s / (4 * z)) / 3) |^ 3)))))) ^2 is complex real ext-real Element of REAL
(2 * (3 -root ((- ((- (n / (8 * z))) / 2)) + (sqrt ((((- (n / (8 * z))) ^2) / 4) + (((s / (4 * z)) / 3) |^ 3)))))) * (2 * (3 -root ((- ((- (n / (8 * z))) / 2)) + (sqrt ((((- (n / (8 * z))) ^2) / 4) + (((s / (4 * z)) / 3) |^ 3)))))) is complex real ext-real set
3 * ((2 * (3 -root ((- ((- (n / (8 * z))) / 2)) + (sqrt ((((- (n / (8 * z))) ^2) / 4) + (((s / (4 * z)) / 3) |^ 3)))))) ^2) is complex real ext-real Element of REAL
(3 * ((2 * (3 -root ((- ((- (n / (8 * z))) / 2)) + (sqrt ((((- (n / (8 * z))) ^2) / 4) + (((s / (4 * z)) / 3) |^ 3)))))) ^2)) + (s / z) is complex real ext-real Element of REAL
sqrt ((3 * ((2 * (3 -root ((- ((- (n / (8 * z))) / 2)) + (sqrt ((((- (n / (8 * z))) ^2) / 4) + (((s / (4 * z)) / 3) |^ 3)))))) ^2)) + (s / z)) is complex real ext-real Element of REAL
(sqrt ((3 * ((2 * (3 -root ((- ((- (n / (8 * z))) / 2)) + (sqrt ((((- (n / (8 * z))) ^2) / 4) + (((s / (4 * z)) / 3) |^ 3)))))) ^2)) + (s / z))) * <i> is complex Element of COMPLEX
(2 * (3 -root ((- ((- (n / (8 * z))) / 2)) + (sqrt ((((- (n / (8 * z))) ^2) / 4) + (((s / (4 * z)) / 3) |^ 3)))))) + ((sqrt ((3 * ((2 * (3 -root ((- ((- (n / (8 * z))) / 2)) + (sqrt ((((- (n / (8 * z))) ^2) / 4) + (((s / (4 * z)) / 3) |^ 3)))))) ^2)) + (s / z))) * <i>) is complex Element of COMPLEX
- (sqrt ((3 * ((2 * (3 -root ((- ((- (n / (8 * z))) / 2)) + (sqrt ((((- (n / (8 * z))) ^2) / 4) + (((s / (4 * z)) / 3) |^ 3)))))) ^2)) + (s / z))) is complex real ext-real Element of REAL
(- (sqrt ((3 * ((2 * (3 -root ((- ((- (n / (8 * z))) / 2)) + (sqrt ((((- (n / (8 * z))) ^2) / 4) + (((s / (4 * z)) / 3) |^ 3)))))) ^2)) + (s / z)))) * <i> is complex Element of COMPLEX
(2 * (3 -root ((- ((- (n / (8 * z))) / 2)) + (sqrt ((((- (n / (8 * z))) ^2) / 4) + (((s / (4 * z)) / 3) |^ 3)))))) + ((- (sqrt ((3 * ((2 * (3 -root ((- ((- (n / (8 * z))) / 2)) + (sqrt ((((- (n / (8 * z))) ^2) / 4) + (((s / (4 * z)) / 3) |^ 3)))))) ^2)) + (s / z)))) * <i>) is complex Element of COMPLEX
2 * (3 -root ((- ((- (n / (8 * z))) / 2)) - (sqrt ((((- (n / (8 * z))) ^2) / 4) + (((s / (4 * z)) / 3) |^ 3))))) is complex real ext-real Element of REAL
(2 * (3 -root ((- ((- (n / (8 * z))) / 2)) - (sqrt ((((- (n / (8 * z))) ^2) / 4) + (((s / (4 * z)) / 3) |^ 3)))))) ^2 is complex real ext-real Element of REAL
(2 * (3 -root ((- ((- (n / (8 * z))) / 2)) - (sqrt ((((- (n / (8 * z))) ^2) / 4) + (((s / (4 * z)) / 3) |^ 3)))))) * (2 * (3 -root ((- ((- (n / (8 * z))) / 2)) - (sqrt ((((- (n / (8 * z))) ^2) / 4) + (((s / (4 * z)) / 3) |^ 3)))))) is complex real ext-real set
3 * ((2 * (3 -root ((- ((- (n / (8 * z))) / 2)) - (sqrt ((((- (n / (8 * z))) ^2) / 4) + (((s / (4 * z)) / 3) |^ 3)))))) ^2) is complex real ext-real Element of REAL
(3 * ((2 * (3 -root ((- ((- (n / (8 * z))) / 2)) - (sqrt ((((- (n / (8 * z))) ^2) / 4) + (((s / (4 * z)) / 3) |^ 3)))))) ^2)) + (s / z) is complex real ext-real Element of REAL
sqrt ((3 * ((2 * (3 -root ((- ((- (n / (8 * z))) / 2)) - (sqrt ((((- (n / (8 * z))) ^2) / 4) + (((s / (4 * z)) / 3) |^ 3)))))) ^2)) + (s / z)) is complex real ext-real Element of REAL
(sqrt ((3 * ((2 * (3 -root ((- ((- (n / (8 * z))) / 2)) - (sqrt ((((- (n / (8 * z))) ^2) / 4) + (((s / (4 * z)) / 3) |^ 3)))))) ^2)) + (s / z))) * <i> is complex Element of COMPLEX
(2 * (3 -root ((- ((- (n / (8 * z))) / 2)) - (sqrt ((((- (n / (8 * z))) ^2) / 4) + (((s / (4 * z)) / 3) |^ 3)))))) + ((sqrt ((3 * ((2 * (3 -root ((- ((- (n / (8 * z))) / 2)) - (sqrt ((((- (n / (8 * z))) ^2) / 4) + (((s / (4 * z)) / 3) |^ 3)))))) ^2)) + (s / z))) * <i>) is complex Element of COMPLEX
- (sqrt ((3 * ((2 * (3 -root ((- ((- (n / (8 * z))) / 2)) - (sqrt ((((- (n / (8 * z))) ^2) / 4) + (((s / (4 * z)) / 3) |^ 3)))))) ^2)) + (s / z))) is complex real ext-real Element of REAL
(- (sqrt ((3 * ((2 * (3 -root ((- ((- (n / (8 * z))) / 2)) - (sqrt ((((- (n / (8 * z))) ^2) / 4) + (((s / (4 * z)) / 3) |^ 3)))))) ^2)) + (s / z)))) * <i> is complex Element of COMPLEX
(2 * (3 -root ((- ((- (n / (8 * z))) / 2)) - (sqrt ((((- (n / (8 * z))) ^2) / 4) + (((s / (4 * z)) / 3) |^ 3)))))) + ((- (sqrt ((3 * ((2 * (3 -root ((- ((- (n / (8 * z))) / 2)) - (sqrt ((((- (n / (8 * z))) ^2) / 4) + (((s / (4 * z)) / 3) |^ 3)))))) ^2)) + (s / z)))) * <i>) is complex Element of COMPLEX
2 * (3 -root ((- ((- (n / (8 * z))) / 2)) + (sqrt ((((- (n / (8 * z))) ^2) / 4) + (((s / (4 * z)) / 3) |^ 3))))) is complex real ext-real Element of REAL
2 * (3 -root ((- ((- (n / (8 * z))) / 2)) - (sqrt ((((- (n / (8 * z))) ^2) / 4) + (((s / (4 * z)) / 3) |^ 3))))) is complex real ext-real Element of REAL
((3 -root ((- ((- (n / (8 * z))) / 2)) + (sqrt ((((- (n / (8 * z))) ^2) / 4) + (((s / (4 * z)) / 3) |^ 3))))) + (3 -root ((- ((- (n / (8 * z))) / 2)) - (sqrt ((((- (n / (8 * z))) ^2) / 4) + (((s / (4 * z)) / 3) |^ 3)))))) ^2 is complex real ext-real Element of REAL
((3 -root ((- ((- (n / (8 * z))) / 2)) + (sqrt ((((- (n / (8 * z))) ^2) / 4) + (((s / (4 * z)) / 3) |^ 3))))) + (3 -root ((- ((- (n / (8 * z))) / 2)) - (sqrt ((((- (n / (8 * z))) ^2) / 4) + (((s / (4 * z)) / 3) |^ 3)))))) * ((3 -root ((- ((- (n / (8 * z))) / 2)) + (sqrt ((((- (n / (8 * z))) ^2) / 4) + (((s / (4 * z)) / 3) |^ 3))))) + (3 -root ((- ((- (n / (8 * z))) / 2)) - (sqrt ((((- (n / (8 * z))) ^2) / 4) + (((s / (4 * z)) / 3) |^ 3)))))) is complex real ext-real set
3 * (((3 -root ((- ((- (n / (8 * z))) / 2)) + (sqrt ((((- (n / (8 * z))) ^2) / 4) + (((s / (4 * z)) / 3) |^ 3))))) + (3 -root ((- ((- (n / (8 * z))) / 2)) - (sqrt ((((- (n / (8 * z))) ^2) / 4) + (((s / (4 * z)) / 3) |^ 3)))))) ^2) is complex real ext-real Element of REAL
(3 * (((3 -root ((- ((- (n / (8 * z))) / 2)) + (sqrt ((((- (n / (8 * z))) ^2) / 4) + (((s / (4 * z)) / 3) |^ 3))))) + (3 -root ((- ((- (n / (8 * z))) / 2)) - (sqrt ((((- (n / (8 * z))) ^2) / 4) + (((s / (4 * z)) / 3) |^ 3)))))) ^2)) + (s / z) is complex real ext-real Element of REAL
sqrt ((3 * (((3 -root ((- ((- (n / (8 * z))) / 2)) + (sqrt ((((- (n / (8 * z))) ^2) / 4) + (((s / (4 * z)) / 3) |^ 3))))) + (3 -root ((- ((- (n / (8 * z))) / 2)) - (sqrt ((((- (n / (8 * z))) ^2) / 4) + (((s / (4 * z)) / 3) |^ 3)))))) ^2)) + (s / z)) is complex real ext-real Element of REAL
(sqrt ((3 * (((3 -root ((- ((- (n / (8 * z))) / 2)) + (sqrt ((((- (n / (8 * z))) ^2) / 4) + (((s / (4 * z)) / 3) |^ 3))))) + (3 -root ((- ((- (n / (8 * z))) / 2)) - (sqrt ((((- (n / (8 * z))) ^2) / 4) + (((s / (4 * z)) / 3) |^ 3)))))) ^2)) + (s / z))) * <i> is complex Element of COMPLEX
((3 -root ((- ((- (n / (8 * z))) / 2)) + (sqrt ((((- (n / (8 * z))) ^2) / 4) + (((s / (4 * z)) / 3) |^ 3))))) + (3 -root ((- ((- (n / (8 * z))) / 2)) - (sqrt ((((- (n / (8 * z))) ^2) / 4) + (((s / (4 * z)) / 3) |^ 3)))))) + ((sqrt ((3 * (((3 -root ((- ((- (n / (8 * z))) / 2)) + (sqrt ((((- (n / (8 * z))) ^2) / 4) + (((s / (4 * z)) / 3) |^ 3))))) + (3 -root ((- ((- (n / (8 * z))) / 2)) - (sqrt ((((- (n / (8 * z))) ^2) / 4) + (((s / (4 * z)) / 3) |^ 3)))))) ^2)) + (s / z))) * <i>) is complex Element of COMPLEX
- (sqrt ((3 * (((3 -root ((- ((- (n / (8 * z))) / 2)) + (sqrt ((((- (n / (8 * z))) ^2) / 4) + (((s / (4 * z)) / 3) |^ 3))))) + (3 -root ((- ((- (n / (8 * z))) / 2)) - (sqrt ((((- (n / (8 * z))) ^2) / 4) + (((s / (4 * z)) / 3) |^ 3)))))) ^2)) + (s / z))) is complex real ext-real Element of REAL
(- (sqrt ((3 * (((3 -root ((- ((- (n / (8 * z))) / 2)) + (sqrt ((((- (n / (8 * z))) ^2) / 4) + (((s / (4 * z)) / 3) |^ 3))))) + (3 -root ((- ((- (n / (8 * z))) / 2)) - (sqrt ((((- (n / (8 * z))) ^2) / 4) + (((s / (4 * z)) / 3) |^ 3)))))) ^2)) + (s / z)))) * <i> is complex Element of COMPLEX
((3 -root ((- ((- (n / (8 * z))) / 2)) + (sqrt ((((- (n / (8 * z))) ^2) / 4) + (((s / (4 * z)) / 3) |^ 3))))) + (3 -root ((- ((- (n / (8 * z))) / 2)) - (sqrt ((((- (n / (8 * z))) ^2) / 4) + (((s / (4 * z)) / 3) |^ 3)))))) + ((- (sqrt ((3 * (((3 -root ((- ((- (n / (8 * z))) / 2)) + (sqrt ((((- (n / (8 * z))) ^2) / 4) + (((s / (4 * z)) / 3) |^ 3))))) + (3 -root ((- ((- (n / (8 * z))) / 2)) - (sqrt ((((- (n / (8 * z))) ^2) / 4) + (((s / (4 * z)) / 3) |^ 3)))))) ^2)) + (s / z)))) * <i>) is complex Element of COMPLEX
(2 * (3 -root ((- ((- (n / (8 * z))) / 2)) + (sqrt ((((- (n / (8 * z))) ^2) / 4) + (((s / (4 * z)) / 3) |^ 3)))))) ^2 is complex real ext-real Element of REAL
(2 * (3 -root ((- ((- (n / (8 * z))) / 2)) + (sqrt ((((- (n / (8 * z))) ^2) / 4) + (((s / (4 * z)) / 3) |^ 3)))))) * (2 * (3 -root ((- ((- (n / (8 * z))) / 2)) + (sqrt ((((- (n / (8 * z))) ^2) / 4) + (((s / (4 * z)) / 3) |^ 3)))))) is complex real ext-real set
3 * ((2 * (3 -root ((- ((- (n / (8 * z))) / 2)) + (sqrt ((((- (n / (8 * z))) ^2) / 4) + (((s / (4 * z)) / 3) |^ 3)))))) ^2) is complex real ext-real Element of REAL
(3 * ((2 * (3 -root ((- ((- (n / (8 * z))) / 2)) + (sqrt ((((- (n / (8 * z))) ^2) / 4) + (((s / (4 * z)) / 3) |^ 3)))))) ^2)) + (s / z) is complex real ext-real Element of REAL
sqrt ((3 * ((2 * (3 -root ((- ((- (n / (8 * z))) / 2)) + (sqrt ((((- (n / (8 * z))) ^2) / 4) + (((s / (4 * z)) / 3) |^ 3)))))) ^2)) + (s / z)) is complex real ext-real Element of REAL
(sqrt ((3 * ((2 * (3 -root ((- ((- (n / (8 * z))) / 2)) + (sqrt ((((- (n / (8 * z))) ^2) / 4) + (((s / (4 * z)) / 3) |^ 3)))))) ^2)) + (s / z))) * <i> is complex Element of COMPLEX
(2 * (3 -root ((- ((- (n / (8 * z))) / 2)) + (sqrt ((((- (n / (8 * z))) ^2) / 4) + (((s / (4 * z)) / 3) |^ 3)))))) + ((sqrt ((3 * ((2 * (3 -root ((- ((- (n / (8 * z))) / 2)) + (sqrt ((((- (n / (8 * z))) ^2) / 4) + (((s / (4 * z)) / 3) |^ 3)))))) ^2)) + (s / z))) * <i>) is complex Element of COMPLEX
- (sqrt ((3 * ((2 * (3 -root ((- ((- (n / (8 * z))) / 2)) + (sqrt ((((- (n / (8 * z))) ^2) / 4) + (((s / (4 * z)) / 3) |^ 3)))))) ^2)) + (s / z))) is complex real ext-real Element of REAL
(- (sqrt ((3 * ((2 * (3 -root ((- ((- (n / (8 * z))) / 2)) + (sqrt ((((- (n / (8 * z))) ^2) / 4) + (((s / (4 * z)) / 3) |^ 3)))))) ^2)) + (s / z)))) * <i> is complex Element of COMPLEX
(2 * (3 -root ((- ((- (n / (8 * z))) / 2)) + (sqrt ((((- (n / (8 * z))) ^2) / 4) + (((s / (4 * z)) / 3) |^ 3)))))) + ((- (sqrt ((3 * ((2 * (3 -root ((- ((- (n / (8 * z))) / 2)) + (sqrt ((((- (n / (8 * z))) ^2) / 4) + (((s / (4 * z)) / 3) |^ 3)))))) ^2)) + (s / z)))) * <i>) is complex Element of COMPLEX
(2 * (3 -root ((- ((- (n / (8 * z))) / 2)) - (sqrt ((((- (n / (8 * z))) ^2) / 4) + (((s / (4 * z)) / 3) |^ 3)))))) ^2 is complex real ext-real Element of REAL
(2 * (3 -root ((- ((- (n / (8 * z))) / 2)) - (sqrt ((((- (n / (8 * z))) ^2) / 4) + (((s / (4 * z)) / 3) |^ 3)))))) * (2 * (3 -root ((- ((- (n / (8 * z))) / 2)) - (sqrt ((((- (n / (8 * z))) ^2) / 4) + (((s / (4 * z)) / 3) |^ 3)))))) is complex real ext-real set
3 * ((2 * (3 -root ((- ((- (n / (8 * z))) / 2)) - (sqrt ((((- (n / (8 * z))) ^2) / 4) + (((s / (4 * z)) / 3) |^ 3)))))) ^2) is complex real ext-real Element of REAL
(3 * ((2 * (3 -root ((- ((- (n / (8 * z))) / 2)) - (sqrt ((((- (n / (8 * z))) ^2) / 4) + (((s / (4 * z)) / 3) |^ 3)))))) ^2)) + (s / z) is complex real ext-real Element of REAL
sqrt ((3 * ((2 * (3 -root ((- ((- (n / (8 * z))) / 2)) - (sqrt ((((- (n / (8 * z))) ^2) / 4) + (((s / (4 * z)) / 3) |^ 3)))))) ^2)) + (s / z)) is complex real ext-real Element of REAL
(sqrt ((3 * ((2 * (3 -root ((- ((- (n / (8 * z))) / 2)) - (sqrt ((((- (n / (8 * z))) ^2) / 4) + (((s / (4 * z)) / 3) |^ 3)))))) ^2)) + (s / z))) * <i> is complex Element of COMPLEX
(2 * (3 -root ((- ((- (n / (8 * z))) / 2)) - (sqrt ((((- (n / (8 * z))) ^2) / 4) + (((s / (4 * z)) / 3) |^ 3)))))) + ((sqrt ((3 * ((2 * (3 -root ((- ((- (n / (8 * z))) / 2)) - (sqrt ((((- (n / (8 * z))) ^2) / 4) + (((s / (4 * z)) / 3) |^ 3)))))) ^2)) + (s / z))) * <i>) is complex Element of COMPLEX
- (sqrt ((3 * ((2 * (3 -root ((- ((- (n / (8 * z))) / 2)) - (sqrt ((((- (n / (8 * z))) ^2) / 4) + (((s / (4 * z)) / 3) |^ 3)))))) ^2)) + (s / z))) is complex real ext-real Element of REAL
(- (sqrt ((3 * ((2 * (3 -root ((- ((- (n / (8 * z))) / 2)) - (sqrt ((((- (n / (8 * z))) ^2) / 4) + (((s / (4 * z)) / 3) |^ 3)))))) ^2)) + (s / z)))) * <i> is complex Element of COMPLEX
(2 * (3 -root ((- ((- (n / (8 * z))) / 2)) - (sqrt ((((- (n / (8 * z))) ^2) / 4) + (((s / (4 * z)) / 3) |^ 3)))))) + ((- (sqrt ((3 * ((2 * (3 -root ((- ((- (n / (8 * z))) / 2)) - (sqrt ((((- (n / (8 * z))) ^2) / 4) + (((s / (4 * z)) / 3) |^ 3)))))) ^2)) + (s / z)))) * <i>) is complex Element of COMPLEX
((3 -root ((- ((- (n / (8 * z))) / 2)) + (sqrt ((((- (n / (8 * z))) ^2) / 4) + (((s / (4 * z)) / 3) |^ 3))))) + (3 -root ((- ((- (n / (8 * z))) / 2)) - (sqrt ((((- (n / (8 * z))) ^2) / 4) + (((s / (4 * z)) / 3) |^ 3)))))) ^2 is complex real ext-real Element of REAL
((3 -root ((- ((- (n / (8 * z))) / 2)) + (sqrt ((((- (n / (8 * z))) ^2) / 4) + (((s / (4 * z)) / 3) |^ 3))))) + (3 -root ((- ((- (n / (8 * z))) / 2)) - (sqrt ((((- (n / (8 * z))) ^2) / 4) + (((s / (4 * z)) / 3) |^ 3)))))) * ((3 -root ((- ((- (n / (8 * z))) / 2)) + (sqrt ((((- (n / (8 * z))) ^2) / 4) + (((s / (4 * z)) / 3) |^ 3))))) + (3 -root ((- ((- (n / (8 * z))) / 2)) - (sqrt ((((- (n / (8 * z))) ^2) / 4) + (((s / (4 * z)) / 3) |^ 3)))))) is complex real ext-real set
3 * (((3 -root ((- ((- (n / (8 * z))) / 2)) + (sqrt ((((- (n / (8 * z))) ^2) / 4) + (((s / (4 * z)) / 3) |^ 3))))) + (3 -root ((- ((- (n / (8 * z))) / 2)) - (sqrt ((((- (n / (8 * z))) ^2) / 4) + (((s / (4 * z)) / 3) |^ 3)))))) ^2) is complex real ext-real Element of REAL
(3 * (((3 -root ((- ((- (n / (8 * z))) / 2)) + (sqrt ((((- (n / (8 * z))) ^2) / 4) + (((s / (4 * z)) / 3) |^ 3))))) + (3 -root ((- ((- (n / (8 * z))) / 2)) - (sqrt ((((- (n / (8 * z))) ^2) / 4) + (((s / (4 * z)) / 3) |^ 3)))))) ^2)) + (s / z) is complex real ext-real Element of REAL
sqrt ((3 * (((3 -root ((- ((- (n / (8 * z))) / 2)) + (sqrt ((((- (n / (8 * z))) ^2) / 4) + (((s / (4 * z)) / 3) |^ 3))))) + (3 -root ((- ((- (n / (8 * z))) / 2)) - (sqrt ((((- (n / (8 * z))) ^2) / 4) + (((s / (4 * z)) / 3) |^ 3)))))) ^2)) + (s / z)) is complex real ext-real Element of REAL
(sqrt ((3 * (((3 -root ((- ((- (n / (8 * z))) / 2)) + (sqrt ((((- (n / (8 * z))) ^2) / 4) + (((s / (4 * z)) / 3) |^ 3))))) + (3 -root ((- ((- (n / (8 * z))) / 2)) - (sqrt ((((- (n / (8 * z))) ^2) / 4) + (((s / (4 * z)) / 3) |^ 3)))))) ^2)) + (s / z))) * <i> is complex Element of COMPLEX
((3 -root ((- ((- (n / (8 * z))) / 2)) + (sqrt ((((- (n / (8 * z))) ^2) / 4) + (((s / (4 * z)) / 3) |^ 3))))) + (3 -root ((- ((- (n / (8 * z))) / 2)) - (sqrt ((((- (n / (8 * z))) ^2) / 4) + (((s / (4 * z)) / 3) |^ 3)))))) + ((sqrt ((3 * (((3 -root ((- ((- (n / (8 * z))) / 2)) + (sqrt ((((- (n / (8 * z))) ^2) / 4) + (((s / (4 * z)) / 3) |^ 3))))) + (3 -root ((- ((- (n / (8 * z))) / 2)) - (sqrt ((((- (n / (8 * z))) ^2) / 4) + (((s / (4 * z)) / 3) |^ 3)))))) ^2)) + (s / z))) * <i>) is complex Element of COMPLEX
- (sqrt ((3 * (((3 -root ((- ((- (n / (8 * z))) / 2)) + (sqrt ((((- (n / (8 * z))) ^2) / 4) + (((s / (4 * z)) / 3) |^ 3))))) + (3 -root ((- ((- (n / (8 * z))) / 2)) - (sqrt ((((- (n / (8 * z))) ^2) / 4) + (((s / (4 * z)) / 3) |^ 3)))))) ^2)) + (s / z))) is complex real ext-real Element of REAL
(- (sqrt ((3 * (((3 -root ((- ((- (n / (8 * z))) / 2)) + (sqrt ((((- (n / (8 * z))) ^2) / 4) + (((s / (4 * z)) / 3) |^ 3))))) + (3 -root ((- ((- (n / (8 * z))) / 2)) - (sqrt ((((- (n / (8 * z))) ^2) / 4) + (((s / (4 * z)) / 3) |^ 3)))))) ^2)) + (s / z)))) * <i> is complex Element of COMPLEX
((3 -root ((- ((- (n / (8 * z))) / 2)) + (sqrt ((((- (n / (8 * z))) ^2) / 4) + (((s / (4 * z)) / 3) |^ 3))))) + (3 -root ((- ((- (n / (8 * z))) / 2)) - (sqrt ((((- (n / (8 * z))) ^2) / 4) + (((s / (4 * z)) / 3) |^ 3)))))) + ((- (sqrt ((3 * (((3 -root ((- ((- (n / (8 * z))) / 2)) + (sqrt ((((- (n / (8 * z))) ^2) / 4) + (((s / (4 * z)) / 3) |^ 3))))) + (3 -root ((- ((- (n / (8 * z))) / 2)) - (sqrt ((((- (n / (8 * z))) ^2) / 4) + (((s / (4 * z)) / 3) |^ 3)))))) ^2)) + (s / z)))) * <i>) is complex Element of COMPLEX
2 * (3 -root ((- ((- (n / (8 * z))) / 2)) + (sqrt ((((- (n / (8 * z))) ^2) / 4) + (((s / (4 * z)) / 3) |^ 3))))) is complex real ext-real Element of REAL
(2 * (3 -root ((- ((- (n / (8 * z))) / 2)) + (sqrt ((((- (n / (8 * z))) ^2) / 4) + (((s / (4 * z)) / 3) |^ 3)))))) ^2 is complex real ext-real Element of REAL
(2 * (3 -root ((- ((- (n / (8 * z))) / 2)) + (sqrt ((((- (n / (8 * z))) ^2) / 4) + (((s / (4 * z)) / 3) |^ 3)))))) * (2 * (3 -root ((- ((- (n / (8 * z))) / 2)) + (sqrt ((((- (n / (8 * z))) ^2) / 4) + (((s / (4 * z)) / 3) |^ 3)))))) is complex real ext-real set
3 * ((2 * (3 -root ((- ((- (n / (8 * z))) / 2)) + (sqrt ((((- (n / (8 * z))) ^2) / 4) + (((s / (4 * z)) / 3) |^ 3)))))) ^2) is complex real ext-real Element of REAL
(3 * ((2 * (3 -root ((- ((- (n / (8 * z))) / 2)) + (sqrt ((((- (n / (8 * z))) ^2) / 4) + (((s / (4 * z)) / 3) |^ 3)))))) ^2)) + (s / z) is complex real ext-real Element of REAL
sqrt ((3 * ((2 * (3 -root ((- ((- (n / (8 * z))) / 2)) + (sqrt ((((- (n / (8 * z))) ^2) / 4) + (((s / (4 * z)) / 3) |^ 3)))))) ^2)) + (s / z)) is complex real ext-real Element of REAL
(sqrt ((3 * ((2 * (3 -root ((- ((- (n / (8 * z))) / 2)) + (sqrt ((((- (n / (8 * z))) ^2) / 4) + (((s / (4 * z)) / 3) |^ 3)))))) ^2)) + (s / z))) * <i> is complex Element of COMPLEX
(2 * (3 -root ((- ((- (n / (8 * z))) / 2)) + (sqrt ((((- (n / (8 * z))) ^2) / 4) + (((s / (4 * z)) / 3) |^ 3)))))) + ((sqrt ((3 * ((2 * (3 -root ((- ((- (n / (8 * z))) / 2)) + (sqrt ((((- (n / (8 * z))) ^2) / 4) + (((s / (4 * z)) / 3) |^ 3)))))) ^2)) + (s / z))) * <i>) is complex Element of COMPLEX
- (sqrt ((3 * ((2 * (3 -root ((- ((- (n / (8 * z))) / 2)) + (sqrt ((((- (n / (8 * z))) ^2) / 4) + (((s / (4 * z)) / 3) |^ 3)))))) ^2)) + (s / z))) is complex real ext-real Element of REAL
(- (sqrt ((3 * ((2 * (3 -root ((- ((- (n / (8 * z))) / 2)) + (sqrt ((((- (n / (8 * z))) ^2) / 4) + (((s / (4 * z)) / 3) |^ 3)))))) ^2)) + (s / z)))) * <i> is complex Element of COMPLEX
(2 * (3 -root ((- ((- (n / (8 * z))) / 2)) + (sqrt ((((- (n / (8 * z))) ^2) / 4) + (((s / (4 * z)) / 3) |^ 3)))))) + ((- (sqrt ((3 * ((2 * (3 -root ((- ((- (n / (8 * z))) / 2)) + (sqrt ((((- (n / (8 * z))) ^2) / 4) + (((s / (4 * z)) / 3) |^ 3)))))) ^2)) + (s / z)))) * <i>) is complex Element of COMPLEX
2 * (3 -root ((- ((- (n / (8 * z))) / 2)) - (sqrt ((((- (n / (8 * z))) ^2) / 4) + (((s / (4 * z)) / 3) |^ 3))))) is complex real ext-real Element of REAL
(2 * (3 -root ((- ((- (n / (8 * z))) / 2)) - (sqrt ((((- (n / (8 * z))) ^2) / 4) + (((s / (4 * z)) / 3) |^ 3)))))) ^2 is complex real ext-real Element of REAL
(2 * (3 -root ((- ((- (n / (8 * z))) / 2)) - (sqrt ((((- (n / (8 * z))) ^2) / 4) + (((s / (4 * z)) / 3) |^ 3)))))) * (2 * (3 -root ((- ((- (n / (8 * z))) / 2)) - (sqrt ((((- (n / (8 * z))) ^2) / 4) + (((s / (4 * z)) / 3) |^ 3)))))) is complex real ext-real set
3 * ((2 * (3 -root ((- ((- (n / (8 * z))) / 2)) - (sqrt ((((- (n / (8 * z))) ^2) / 4) + (((s / (4 * z)) / 3) |^ 3)))))) ^2) is complex real ext-real Element of REAL
(3 * ((2 * (3 -root ((- ((- (n / (8 * z))) / 2)) - (sqrt ((((- (n / (8 * z))) ^2) / 4) + (((s / (4 * z)) / 3) |^ 3)))))) ^2)) + (s / z) is complex real ext-real Element of REAL
sqrt ((3 * ((2 * (3 -root ((- ((- (n / (8 * z))) / 2)) - (sqrt ((((- (n / (8 * z))) ^2) / 4) + (((s / (4 * z)) / 3) |^ 3)))))) ^2)) + (s / z)) is complex real ext-real Element of REAL
(sqrt ((3 * ((2 * (3 -root ((- ((- (n / (8 * z))) / 2)) - (sqrt ((((- (n / (8 * z))) ^2) / 4) + (((s / (4 * z)) / 3) |^ 3)))))) ^2)) + (s / z))) * <i> is complex Element of COMPLEX
(2 * (3 -root ((- ((- (n / (8 * z))) / 2)) - (sqrt ((((- (n / (8 * z))) ^2) / 4) + (((s / (4 * z)) / 3) |^ 3)))))) + ((sqrt ((3 * ((2 * (3 -root ((- ((- (n / (8 * z))) / 2)) - (sqrt ((((- (n / (8 * z))) ^2) / 4) + (((s / (4 * z)) / 3) |^ 3)))))) ^2)) + (s / z))) * <i>) is complex Element of COMPLEX
- (sqrt ((3 * ((2 * (3 -root ((- ((- (n / (8 * z))) / 2)) - (sqrt ((((- (n / (8 * z))) ^2) / 4) + (((s / (4 * z)) / 3) |^ 3)))))) ^2)) + (s / z))) is complex real ext-real Element of REAL
(- (sqrt ((3 * ((2 * (3 -root ((- ((- (n / (8 * z))) / 2)) - (sqrt ((((- (n / (8 * z))) ^2) / 4) + (((s / (4 * z)) / 3) |^ 3)))))) ^2)) + (s / z)))) * <i> is complex Element of COMPLEX
(2 * (3 -root ((- ((- (n / (8 * z))) / 2)) - (sqrt ((((- (n / (8 * z))) ^2) / 4) + (((s / (4 * z)) / 3) |^ 3)))))) + ((- (sqrt ((3 * ((2 * (3 -root ((- ((- (n / (8 * z))) / 2)) - (sqrt ((((- (n / (8 * z))) ^2) / 4) + (((s / (4 * z)) / 3) |^ 3)))))) ^2)) + (s / z)))) * <i>) is complex Element of COMPLEX
((1 / 2) * (n / (8 * z))) ^2 is complex real ext-real Element of REAL
((1 / 2) * (n / (8 * z))) * ((1 / 2) * (n / (8 * z))) is complex real ext-real set
6 is non empty ordinal natural complex real ext-real positive non negative V43() V44() V69() V70() V71() V72() V73() V74() Element of NAT
9 is non empty ordinal natural complex real ext-real positive non negative V43() V44() V69() V70() V71() V72() V73() V74() Element of NAT
0 * <i> is complex Element of COMPLEX
z is complex real ext-real Element of REAL
3 * z is complex real ext-real Element of REAL
z ^2 is complex real ext-real Element of REAL
z * z is complex real ext-real set
3 * (z ^2) is complex real ext-real Element of REAL
6 * (z ^2) is complex real ext-real Element of REAL
9 * (z ^2) is complex real ext-real Element of REAL
s is complex real ext-real Element of REAL
s / (3 * z) is complex real ext-real Element of REAL
(3 * z) " is complex real ext-real set
s * ((3 * z) ") is complex real ext-real set
s ^2 is complex real ext-real Element of REAL
s * s is complex real ext-real set
(s / (3 * z)) |^ 3 is complex real ext-real Element of REAL
- ((s / (3 * z)) |^ 3) is complex real ext-real Element of REAL
2 * ((s / (3 * z)) |^ 3) is complex real ext-real Element of REAL
n is complex real ext-real Element of REAL
(3 * z) * n is complex real ext-real Element of REAL
((3 * z) * n) - (s ^2) is complex real ext-real Element of REAL
- (s ^2) is complex real ext-real set
((3 * z) * n) + (- (s ^2)) is complex real ext-real set
(((3 * z) * n) - (s ^2)) / (3 * (z ^2)) is complex real ext-real Element of REAL
(3 * (z ^2)) " is complex real ext-real set
(((3 * z) * n) - (s ^2)) * ((3 * (z ^2)) ") is complex real ext-real set
s * n is complex real ext-real Element of REAL
(((3 * z) * n) - (s ^2)) / (9 * (z ^2)) is complex real ext-real Element of REAL
(9 * (z ^2)) " is complex real ext-real set
(((3 * z) * n) - (s ^2)) * ((9 * (z ^2)) ") is complex real ext-real set
((((3 * z) * n) - (s ^2)) / (9 * (z ^2))) |^ 3 is complex real ext-real Element of REAL
t is complex real ext-real Element of REAL
(3 * z) * t is complex real ext-real Element of REAL
((3 * z) * t) - (s * n) is complex real ext-real Element of REAL
- (s * n) is complex real ext-real set
((3 * z) * t) + (- (s * n)) is complex real ext-real set
(((3 * z) * t) - (s * n)) / (6 * (z ^2)) is complex real ext-real Element of REAL
(6 * (z ^2)) " is complex real ext-real set
(((3 * z) * t) - (s * n)) * ((6 * (z ^2)) ") is complex real ext-real set
(- ((s / (3 * z)) |^ 3)) - ((((3 * z) * t) - (s * n)) / (6 * (z ^2))) is complex real ext-real Element of REAL
- ((((3 * z) * t) - (s * n)) / (6 * (z ^2))) is complex real ext-real set
(- ((s / (3 * z)) |^ 3)) + (- ((((3 * z) * t) - (s * n)) / (6 * (z ^2)))) is complex real ext-real set
(((3 * z) * t) - (s * n)) / (3 * (z ^2)) is complex real ext-real Element of REAL
(((3 * z) * t) - (s * n)) * ((3 * (z ^2)) ") is complex real ext-real set
(2 * ((s / (3 * z)) |^ 3)) + ((((3 * z) * t) - (s * n)) / (3 * (z ^2))) is complex real ext-real Element of REAL
((2 * ((s / (3 * z)) |^ 3)) + ((((3 * z) * t) - (s * n)) / (3 * (z ^2)))) ^2 is complex real ext-real Element of REAL
((2 * ((s / (3 * z)) |^ 3)) + ((((3 * z) * t) - (s * n)) / (3 * (z ^2)))) * ((2 * ((s / (3 * z)) |^ 3)) + ((((3 * z) * t) - (s * n)) / (3 * (z ^2)))) is complex real ext-real set
(((2 * ((s / (3 * z)) |^ 3)) + ((((3 * z) * t) - (s * n)) / (3 * (z ^2)))) ^2) / 4 is complex real ext-real Element of REAL
4 " is non empty complex real ext-real positive non negative set
(((2 * ((s / (3 * z)) |^ 3)) + ((((3 * z) * t) - (s * n)) / (3 * (z ^2)))) ^2) * (4 ") is complex real ext-real set
((((2 * ((s / (3 * z)) |^ 3)) + ((((3 * z) * t) - (s * n)) / (3 * (z ^2)))) ^2) / 4) + (((((3 * z) * n) - (s ^2)) / (9 * (z ^2))) |^ 3) is complex real ext-real Element of REAL
sqrt (((((2 * ((s / (3 * z)) |^ 3)) + ((((3 * z) * t) - (s * n)) / (3 * (z ^2)))) ^2) / 4) + (((((3 * z) * n) - (s ^2)) / (9 * (z ^2))) |^ 3)) is complex real ext-real Element of REAL
((- ((s / (3 * z)) |^ 3)) - ((((3 * z) * t) - (s * n)) / (6 * (z ^2)))) + (sqrt (((((2 * ((s / (3 * z)) |^ 3)) + ((((3 * z) * t) - (s * n)) / (3 * (z ^2)))) ^2) / 4) + (((((3 * z) * n) - (s ^2)) / (9 * (z ^2))) |^ 3))) is complex real ext-real Element of REAL
3 -root (((- ((s / (3 * z)) |^ 3)) - ((((3 * z) * t) - (s * n)) / (6 * (z ^2)))) + (sqrt (((((2 * ((s / (3 * z)) |^ 3)) + ((((3 * z) * t) - (s * n)) / (3 * (z ^2)))) ^2) / 4) + (((((3 * z) * n) - (s ^2)) / (9 * (z ^2))) |^ 3)))) is complex real ext-real Element of REAL
((- ((s / (3 * z)) |^ 3)) - ((((3 * z) * t) - (s * n)) / (6 * (z ^2)))) - (sqrt (((((2 * ((s / (3 * z)) |^ 3)) + ((((3 * z) * t) - (s * n)) / (3 * (z ^2)))) ^2) / 4) + (((((3 * z) * n) - (s ^2)) / (9 * (z ^2))) |^ 3))) is complex real ext-real Element of REAL
- (sqrt (((((2 * ((s / (3 * z)) |^ 3)) + ((((3 * z) * t) - (s * n)) / (3 * (z ^2)))) ^2) / 4) + (((((3 * z) * n) - (s ^2)) / (9 * (z ^2))) |^ 3))) is complex real ext-real set
((- ((s / (3 * z)) |^ 3)) - ((((3 * z) * t) - (s * n)) / (6 * (z ^2)))) + (- (sqrt (((((2 * ((s / (3 * z)) |^ 3)) + ((((3 * z) * t) - (s * n)) / (3 * (z ^2)))) ^2) / 4) + (((((3 * z) * n) - (s ^2)) / (9 * (z ^2))) |^ 3)))) is complex real ext-real set
3 -root (((- ((s / (3 * z)) |^ 3)) - ((((3 * z) * t) - (s * n)) / (6 * (z ^2)))) - (sqrt (((((2 * ((s / (3 * z)) |^ 3)) + ((((3 * z) * t) - (s * n)) / (3 * (z ^2)))) ^2) / 4) + (((((3 * z) * n) - (s ^2)) / (9 * (z ^2))) |^ 3)))) is complex real ext-real Element of REAL
(3 -root (((- ((s / (3 * z)) |^ 3)) - ((((3 * z) * t) - (s * n)) / (6 * (z ^2)))) + (sqrt (((((2 * ((s / (3 * z)) |^ 3)) + ((((3 * z) * t) - (s * n)) / (3 * (z ^2)))) ^2) / 4) + (((((3 * z) * n) - (s ^2)) / (9 * (z ^2))) |^ 3))))) + (3 -root (((- ((s / (3 * z)) |^ 3)) - ((((3 * z) * t) - (s * n)) / (6 * (z ^2)))) - (sqrt (((((2 * ((s / (3 * z)) |^ 3)) + ((((3 * z) * t) - (s * n)) / (3 * (z ^2)))) ^2) / 4) + (((((3 * z) * n) - (s ^2)) / (9 * (z ^2))) |^ 3))))) is complex real ext-real Element of REAL
((3 -root (((- ((s / (3 * z)) |^ 3)) - ((((3 * z) * t) - (s * n)) / (6 * (z ^2)))) + (sqrt (((((2 * ((s / (3 * z)) |^ 3)) + ((((3 * z) * t) - (s * n)) / (3 * (z ^2)))) ^2) / 4) + (((((3 * z) * n) - (s ^2)) / (9 * (z ^2))) |^ 3))))) + (3 -root (((- ((s / (3 * z)) |^ 3)) - ((((3 * z) * t) - (s * n)) / (6 * (z ^2)))) - (sqrt (((((2 * ((s / (3 * z)) |^ 3)) + ((((3 * z) * t) - (s * n)) / (3 * (z ^2)))) ^2) / 4) + (((((3 * z) * n) - (s ^2)) / (9 * (z ^2))) |^ 3)))))) - (s / (3 * z)) is complex real ext-real Element of REAL
- (s / (3 * z)) is complex real ext-real set
((3 -root (((- ((s / (3 * z)) |^ 3)) - ((((3 * z) * t) - (s * n)) / (6 * (z ^2)))) + (sqrt (((((2 * ((s / (3 * z)) |^ 3)) + ((((3 * z) * t) - (s * n)) / (3 * (z ^2)))) ^2) / 4) + (((((3 * z) * n) - (s ^2)) / (9 * (z ^2))) |^ 3))))) + (3 -root (((- ((s / (3 * z)) |^ 3)) - ((((3 * z) * t) - (s * n)) / (6 * (z ^2)))) - (sqrt (((((2 * ((s / (3 * z)) |^ 3)) + ((((3 * z) * t) - (s * n)) / (3 * (z ^2)))) ^2) / 4) + (((((3 * z) * n) - (s ^2)) / (9 * (z ^2))) |^ 3)))))) + (- (s / (3 * z))) is complex real ext-real set
(((3 -root (((- ((s / (3 * z)) |^ 3)) - ((((3 * z) * t) - (s * n)) / (6 * (z ^2)))) + (sqrt (((((2 * ((s / (3 * z)) |^ 3)) + ((((3 * z) * t) - (s * n)) / (3 * (z ^2)))) ^2) / 4) + (((((3 * z) * n) - (s ^2)) / (9 * (z ^2))) |^ 3))))) + (3 -root (((- ((s / (3 * z)) |^ 3)) - ((((3 * z) * t) - (s * n)) / (6 * (z ^2)))) - (sqrt (((((2 * ((s / (3 * z)) |^ 3)) + ((((3 * z) * t) - (s * n)) / (3 * (z ^2)))) ^2) / 4) + (((((3 * z) * n) - (s ^2)) / (9 * (z ^2))) |^ 3)))))) - (s / (3 * z))) + (0 * <i>) is complex Element of COMPLEX
(3 -root (((- ((s / (3 * z)) |^ 3)) - ((((3 * z) * t) - (s * n)) / (6 * (z ^2)))) + (sqrt (((((2 * ((s / (3 * z)) |^ 3)) + ((((3 * z) * t) - (s * n)) / (3 * (z ^2)))) ^2) / 4) + (((((3 * z) * n) - (s ^2)) / (9 * (z ^2))) |^ 3))))) + (3 -root (((- ((s / (3 * z)) |^ 3)) - ((((3 * z) * t) - (s * n)) / (6 * (z ^2)))) + (sqrt (((((2 * ((s / (3 * z)) |^ 3)) + ((((3 * z) * t) - (s * n)) / (3 * (z ^2)))) ^2) / 4) + (((((3 * z) * n) - (s ^2)) / (9 * (z ^2))) |^ 3))))) is complex real ext-real Element of REAL
((3 -root (((- ((s / (3 * z)) |^ 3)) - ((((3 * z) * t) - (s * n)) / (6 * (z ^2)))) + (sqrt (((((2 * ((s / (3 * z)) |^ 3)) + ((((3 * z) * t) - (s * n)) / (3 * (z ^2)))) ^2) / 4) + (((((3 * z) * n) - (s ^2)) / (9 * (z ^2))) |^ 3))))) + (3 -root (((- ((s / (3 * z)) |^ 3)) - ((((3 * z) * t) - (s * n)) / (6 * (z ^2)))) + (sqrt (((((2 * ((s / (3 * z)) |^ 3)) + ((((3 * z) * t) - (s * n)) / (3 * (z ^2)))) ^2) / 4) + (((((3 * z) * n) - (s ^2)) / (9 * (z ^2))) |^ 3)))))) - (s / (3 * z)) is complex real ext-real Element of REAL
((3 -root (((- ((s / (3 * z)) |^ 3)) - ((((3 * z) * t) - (s * n)) / (6 * (z ^2)))) + (sqrt (((((2 * ((s / (3 * z)) |^ 3)) + ((((3 * z) * t) - (s * n)) / (3 * (z ^2)))) ^2) / 4) + (((((3 * z) * n) - (s ^2)) / (9 * (z ^2))) |^ 3))))) + (3 -root (((- ((s / (3 * z)) |^ 3)) - ((((3 * z) * t) - (s * n)) / (6 * (z ^2)))) + (sqrt (((((2 * ((s / (3 * z)) |^ 3)) + ((((3 * z) * t) - (s * n)) / (3 * (z ^2)))) ^2) / 4) + (((((3 * z) * n) - (s ^2)) / (9 * (z ^2))) |^ 3)))))) + (- (s / (3 * z))) is complex real ext-real set
(((3 -root (((- ((s / (3 * z)) |^ 3)) - ((((3 * z) * t) - (s * n)) / (6 * (z ^2)))) + (sqrt (((((2 * ((s / (3 * z)) |^ 3)) + ((((3 * z) * t) - (s * n)) / (3 * (z ^2)))) ^2) / 4) + (((((3 * z) * n) - (s ^2)) / (9 * (z ^2))) |^ 3))))) + (3 -root (((- ((s / (3 * z)) |^ 3)) - ((((3 * z) * t) - (s * n)) / (6 * (z ^2)))) + (sqrt (((((2 * ((s / (3 * z)) |^ 3)) + ((((3 * z) * t) - (s * n)) / (3 * (z ^2)))) ^2) / 4) + (((((3 * z) * n) - (s ^2)) / (9 * (z ^2))) |^ 3)))))) - (s / (3 * z))) + (0 * <i>) is complex Element of COMPLEX
(3 -root (((- ((s / (3 * z)) |^ 3)) - ((((3 * z) * t) - (s * n)) / (6 * (z ^2)))) - (sqrt (((((2 * ((s / (3 * z)) |^ 3)) + ((((3 * z) * t) - (s * n)) / (3 * (z ^2)))) ^2) / 4) + (((((3 * z) * n) - (s ^2)) / (9 * (z ^2))) |^ 3))))) + (3 -root (((- ((s / (3 * z)) |^ 3)) - ((((3 * z) * t) - (s * n)) / (6 * (z ^2)))) - (sqrt (((((2 * ((s / (3 * z)) |^ 3)) + ((((3 * z) * t) - (s * n)) / (3 * (z ^2)))) ^2) / 4) + (((((3 * z) * n) - (s ^2)) / (9 * (z ^2))) |^ 3))))) is complex real ext-real Element of REAL
((3 -root (((- ((s / (3 * z)) |^ 3)) - ((((3 * z) * t) - (s * n)) / (6 * (z ^2)))) - (sqrt (((((2 * ((s / (3 * z)) |^ 3)) + ((((3 * z) * t) - (s * n)) / (3 * (z ^2)))) ^2) / 4) + (((((3 * z) * n) - (s ^2)) / (9 * (z ^2))) |^ 3))))) + (3 -root (((- ((s / (3 * z)) |^ 3)) - ((((3 * z) * t) - (s * n)) / (6 * (z ^2)))) - (sqrt (((((2 * ((s / (3 * z)) |^ 3)) + ((((3 * z) * t) - (s * n)) / (3 * (z ^2)))) ^2) / 4) + (((((3 * z) * n) - (s ^2)) / (9 * (z ^2))) |^ 3)))))) - (s / (3 * z)) is complex real ext-real Element of REAL
((3 -root (((- ((s / (3 * z)) |^ 3)) - ((((3 * z) * t) - (s * n)) / (6 * (z ^2)))) - (sqrt (((((2 * ((s / (3 * z)) |^ 3)) + ((((3 * z) * t) - (s * n)) / (3 * (z ^2)))) ^2) / 4) + (((((3 * z) * n) - (s ^2)) / (9 * (z ^2))) |^ 3))))) + (3 -root (((- ((s / (3 * z)) |^ 3)) - ((((3 * z) * t) - (s * n)) / (6 * (z ^2)))) - (sqrt (((((2 * ((s / (3 * z)) |^ 3)) + ((((3 * z) * t) - (s * n)) / (3 * (z ^2)))) ^2) / 4) + (((((3 * z) * n) - (s ^2)) / (9 * (z ^2))) |^ 3)))))) + (- (s / (3 * z))) is complex real ext-real set
(((3 -root (((- ((s / (3 * z)) |^ 3)) - ((((3 * z) * t) - (s * n)) / (6 * (z ^2)))) - (sqrt (((((2 * ((s / (3 * z)) |^ 3)) + ((((3 * z) * t) - (s * n)) / (3 * (z ^2)))) ^2) / 4) + (((((3 * z) * n) - (s ^2)) / (9 * (z ^2))) |^ 3))))) + (3 -root (((- ((s / (3 * z)) |^ 3)) - ((((3 * z) * t) - (s * n)) / (6 * (z ^2)))) - (sqrt (((((2 * ((s / (3 * z)) |^ 3)) + ((((3 * z) * t) - (s * n)) / (3 * (z ^2)))) ^2) / 4) + (((((3 * z) * n) - (s ^2)) / (9 * (z ^2))) |^ 3)))))) - (s / (3 * z))) + (0 * <i>) is complex Element of COMPLEX
t is complex Element of COMPLEX
Polynom (z,s,n,t,t) is complex set
t |^ 3 is complex set
z * (t |^ 3) is complex set
t ^2 is complex set
t * t is complex set
s * (t ^2) is complex set
(z * (t |^ 3)) + (s * (t ^2)) is complex set
n * t is complex set
((z * (t |^ 3)) + (s * (t ^2))) + (n * t) is complex set
(((z * (t |^ 3)) + (s * (t ^2))) + (n * t)) + t is complex set
(t) is complex Element of COMPLEX
(t ^2) * t is complex Element of COMPLEX
z * (t) is complex Element of COMPLEX
s * (t ^2) is complex Element of COMPLEX
(z * (t)) + (s * (t ^2)) is complex Element of COMPLEX
n * t is complex Element of COMPLEX
((z * (t)) + (s * (t ^2))) + (n * t) is complex Element of COMPLEX
(((z * (t)) + (s * (t ^2))) + (n * t)) + t is complex Element of COMPLEX
Im t is complex real ext-real Element of REAL
Re t is complex real ext-real Element of REAL
(Re t) + (s / (3 * z)) is complex real ext-real Element of REAL
n / z is complex real ext-real Element of REAL
z " is complex real ext-real set
n * (z ") is complex real ext-real set
z + (0 * <i>) is complex Element of COMPLEX
t / z is complex real ext-real Element of REAL
t * (z ") is complex real ext-real set
s / z is complex real ext-real Element of REAL
s * (z ") is complex real ext-real set
(Im t) * <i> is complex Element of COMPLEX
(Re t) + ((Im t) * <i>) is complex Element of COMPLEX
Re (t) is complex real ext-real Element of REAL
Im (t) is complex real ext-real Element of REAL
(Im (t)) * <i> is complex Element of COMPLEX
(Re (t)) + ((Im (t)) * <i>) is complex Element of COMPLEX
z * ((Re (t)) + ((Im (t)) * <i>)) is complex Element of COMPLEX
(t) is complex Element of COMPLEX
s * (t) is complex Element of COMPLEX
(z * ((Re (t)) + ((Im (t)) * <i>))) + (s * (t)) is complex Element of COMPLEX
((z * ((Re (t)) + ((Im (t)) * <i>))) + (s * (t))) + (n * t) is complex Element of COMPLEX
(((z * ((Re (t)) + ((Im (t)) * <i>))) + (s * (t))) + (n * t)) + t is complex Element of COMPLEX
(Re t) |^ 3 is complex real ext-real Element of REAL
3 * (Re t) is complex real ext-real Element of REAL
(Im t) ^2 is complex real ext-real Element of REAL
(Im t) * (Im t) is complex real ext-real set
(3 * (Re t)) * ((Im t) ^2) is complex real ext-real Element of REAL
((Re t) |^ 3) - ((3 * (Re t)) * ((Im t) ^2)) is complex real ext-real Element of REAL
- ((3 * (Re t)) * ((Im t) ^2)) is complex real ext-real set
((Re t) |^ 3) + (- ((3 * (Re t)) * ((Im t) ^2))) is complex real ext-real set
(((Re t) |^ 3) - ((3 * (Re t)) * ((Im t) ^2))) + ((Im (t)) * <i>) is complex Element of COMPLEX
z * ((((Re t) |^ 3) - ((3 * (Re t)) * ((Im t) ^2))) + ((Im (t)) * <i>)) is complex Element of COMPLEX
(z * ((((Re t) |^ 3) - ((3 * (Re t)) * ((Im t) ^2))) + ((Im (t)) * <i>))) + (s * (t)) is complex Element of COMPLEX
((z * ((((Re t) |^ 3) - ((3 * (Re t)) * ((Im t) ^2))) + ((Im (t)) * <i>))) + (s * (t))) + (n * t) is complex Element of COMPLEX
(((z * ((((Re t) |^ 3) - ((3 * (Re t)) * ((Im t) ^2))) + ((Im (t)) * <i>))) + (s * (t))) + (n * t)) + t is complex Element of COMPLEX
(Im t) |^ 3 is complex real ext-real Element of REAL
- ((Im t) |^ 3) is complex real ext-real Element of REAL
(Re t) ^2 is complex real ext-real Element of REAL
(Re t) * (Re t) is complex real ext-real set
3 * ((Re t) ^2) is complex real ext-real Element of REAL
(3 * ((Re t) ^2)) * (Im t) is complex real ext-real Element of REAL
(- ((Im t) |^ 3)) + ((3 * ((Re t) ^2)) * (Im t)) is complex real ext-real Element of REAL
((- ((Im t) |^ 3)) + ((3 * ((Re t) ^2)) * (Im t))) * <i> is complex Element of COMPLEX
(((Re t) |^ 3) - ((3 * (Re t)) * ((Im t) ^2))) + (((- ((Im t) |^ 3)) + ((3 * ((Re t) ^2)) * (Im t))) * <i>) is complex Element of COMPLEX
z * ((((Re t) |^ 3) - ((3 * (Re t)) * ((Im t) ^2))) + (((- ((Im t) |^ 3)) + ((3 * ((Re t) ^2)) * (Im t))) * <i>)) is complex Element of COMPLEX
(z * ((((Re t) |^ 3) - ((3 * (Re t)) * ((Im t) ^2))) + (((- ((Im t) |^ 3)) + ((3 * ((Re t) ^2)) * (Im t))) * <i>))) + (s * (t)) is complex Element of COMPLEX
((z * ((((Re t) |^ 3) - ((3 * (Re t)) * ((Im t) ^2))) + (((- ((Im t) |^ 3)) + ((3 * ((Re t) ^2)) * (Im t))) * <i>))) + (s * (t))) + (n * t) is complex Element of COMPLEX
(((z * ((((Re t) |^ 3) - ((3 * (Re t)) * ((Im t) ^2))) + (((- ((Im t) |^ 3)) + ((3 * ((Re t) ^2)) * (Im t))) * <i>))) + (s * (t))) + (n * t)) + t is complex Element of COMPLEX
(z + (0 * <i>)) * ((((Re t) |^ 3) - ((3 * (Re t)) * ((Im t) ^2))) + (((- ((Im t) |^ 3)) + ((3 * ((Re t) ^2)) * (Im t))) * <i>)) is complex Element of COMPLEX
((z + (0 * <i>)) * ((((Re t) |^ 3) - ((3 * (Re t)) * ((Im t) ^2))) + (((- ((Im t) |^ 3)) + ((3 * ((Re t) ^2)) * (Im t))) * <i>))) + (s * (t)) is complex Element of COMPLEX
n * ((Re t) + ((Im t) * <i>)) is complex Element of COMPLEX
(((z + (0 * <i>)) * ((((Re t) |^ 3) - ((3 * (Re t)) * ((Im t) ^2))) + (((- ((Im t) |^ 3)) + ((3 * ((Re t) ^2)) * (Im t))) * <i>))) + (s * (t))) + (n * ((Re t) + ((Im t) * <i>))) is complex Element of COMPLEX
((((z + (0 * <i>)) * ((((Re t) |^ 3) - ((3 * (Re t)) * ((Im t) ^2))) + (((- ((Im t) |^ 3)) + ((3 * ((Re t) ^2)) * (Im t))) * <i>))) + (s * (t))) + (n * ((Re t) + ((Im t) * <i>)))) + t is complex Element of COMPLEX
Re z is complex real ext-real Element of REAL
Re ((((Re t) |^ 3) - ((3 * (Re t)) * ((Im t) ^2))) + (((- ((Im t) |^ 3)) + ((3 * ((Re t) ^2)) * (Im t))) * <i>)) is complex real ext-real Element of REAL
(Re z) * (Re ((((Re t) |^ 3) - ((3 * (Re t)) * ((Im t) ^2))) + (((- ((Im t) |^ 3)) + ((3 * ((Re t) ^2)) * (Im t))) * <i>))) is complex real ext-real Element of REAL
Im z is complex real ext-real Element of REAL
Im ((((Re t) |^ 3) - ((3 * (Re t)) * ((Im t) ^2))) + (((- ((Im t) |^ 3)) + ((3 * ((Re t) ^2)) * (Im t))) * <i>)) is complex real ext-real Element of REAL
(Im z) * (Im ((((Re t) |^ 3) - ((3 * (Re t)) * ((Im t) ^2))) + (((- ((Im t) |^ 3)) + ((3 * ((Re t) ^2)) * (Im t))) * <i>))) is complex real ext-real Element of REAL
((Re z) * (Re ((((Re t) |^ 3) - ((3 * (Re t)) * ((Im t) ^2))) + (((- ((Im t) |^ 3)) + ((3 * ((Re t) ^2)) * (Im t))) * <i>)))) - ((Im z) * (Im ((((Re t) |^ 3) - ((3 * (Re t)) * ((Im t) ^2))) + (((- ((Im t) |^ 3)) + ((3 * ((Re t) ^2)) * (Im t))) * <i>)))) is complex real ext-real Element of REAL
- ((Im z) * (Im ((((Re t) |^ 3) - ((3 * (Re t)) * ((Im t) ^2))) + (((- ((Im t) |^ 3)) + ((3 * ((Re t) ^2)) * (Im t))) * <i>)))) is complex real ext-real set
((Re z) * (Re ((((Re t) |^ 3) - ((3 * (Re t)) * ((Im t) ^2))) + (((- ((Im t) |^ 3)) + ((3 * ((Re t) ^2)) * (Im t))) * <i>)))) + (- ((Im z) * (Im ((((Re t) |^ 3) - ((3 * (Re t)) * ((Im t) ^2))) + (((- ((Im t) |^ 3)) + ((3 * ((Re t) ^2)) * (Im t))) * <i>))))) is complex real ext-real set
(Re z) * (Im ((((Re t) |^ 3) - ((3 * (Re t)) * ((Im t) ^2))) + (((- ((Im t) |^ 3)) + ((3 * ((Re t) ^2)) * (Im t))) * <i>))) is complex real ext-real Element of REAL
(Re ((((Re t) |^ 3) - ((3 * (Re t)) * ((Im t) ^2))) + (((- ((Im t) |^ 3)) + ((3 * ((Re t) ^2)) * (Im t))) * <i>))) * (Im z) is complex real ext-real Element of REAL
((Re z) * (Im ((((Re t) |^ 3) - ((3 * (Re t)) * ((Im t) ^2))) + (((- ((Im t) |^ 3)) + ((3 * ((Re t) ^2)) * (Im t))) * <i>)))) + ((Re ((((Re t) |^ 3) - ((3 * (Re t)) * ((Im t) ^2))) + (((- ((Im t) |^ 3)) + ((3 * ((Re t) ^2)) * (Im t))) * <i>))) * (Im z)) is complex real ext-real Element of REAL
(((Re z) * (Im ((((Re t) |^ 3) - ((3 * (Re t)) * ((Im t) ^2))) + (((- ((Im t) |^ 3)) + ((3 * ((Re t) ^2)) * (Im t))) * <i>)))) + ((Re ((((Re t) |^ 3) - ((3 * (Re t)) * ((Im t) ^2))) + (((- ((Im t) |^ 3)) + ((3 * ((Re t) ^2)) * (Im t))) * <i>))) * (Im z))) * <i> is complex Element of COMPLEX
(((Re z) * (Re ((((Re t) |^ 3) - ((3 * (Re t)) * ((Im t) ^2))) + (((- ((Im t) |^ 3)) + ((3 * ((Re t) ^2)) * (Im t))) * <i>)))) - ((Im z) * (Im ((((Re t) |^ 3) - ((3 * (Re t)) * ((Im t) ^2))) + (((- ((Im t) |^ 3)) + ((3 * ((Re t) ^2)) * (Im t))) * <i>))))) + ((((Re z) * (Im ((((Re t) |^ 3) - ((3 * (Re t)) * ((Im t) ^2))) + (((- ((Im t) |^ 3)) + ((3 * ((Re t) ^2)) * (Im t))) * <i>)))) + ((Re ((((Re t) |^ 3) - ((3 * (Re t)) * ((Im t) ^2))) + (((- ((Im t) |^ 3)) + ((3 * ((Re t) ^2)) * (Im t))) * <i>))) * (Im z))) * <i>) is complex Element of COMPLEX
((((Re z) * (Re ((((Re t) |^ 3) - ((3 * (Re t)) * ((Im t) ^2))) + (((- ((Im t) |^ 3)) + ((3 * ((Re t) ^2)) * (Im t))) * <i>)))) - ((Im z) * (Im ((((Re t) |^ 3) - ((3 * (Re t)) * ((Im t) ^2))) + (((- ((Im t) |^ 3)) + ((3 * ((Re t) ^2)) * (Im t))) * <i>))))) + ((((Re z) * (Im ((((Re t) |^ 3) - ((3 * (Re t)) * ((Im t) ^2))) + (((- ((Im t) |^ 3)) + ((3 * ((Re t) ^2)) * (Im t))) * <i>)))) + ((Re ((((Re t) |^ 3) - ((3 * (Re t)) * ((Im t) ^2))) + (((- ((Im t) |^ 3)) + ((3 * ((Re t) ^2)) * (Im t))) * <i>))) * (Im z))) * <i>)) + (s * (t)) is complex Element of COMPLEX
(((((Re z) * (Re ((((Re t) |^ 3) - ((3 * (Re t)) * ((Im t) ^2))) + (((- ((Im t) |^ 3)) + ((3 * ((Re t) ^2)) * (Im t))) * <i>)))) - ((Im z) * (Im ((((Re t) |^ 3) - ((3 * (Re t)) * ((Im t) ^2))) + (((- ((Im t) |^ 3)) + ((3 * ((Re t) ^2)) * (Im t))) * <i>))))) + ((((Re z) * (Im ((((Re t) |^ 3) - ((3 * (Re t)) * ((Im t) ^2))) + (((- ((Im t) |^ 3)) + ((3 * ((Re t) ^2)) * (Im t))) * <i>)))) + ((Re ((((Re t) |^ 3) - ((3 * (Re t)) * ((Im t) ^2))) + (((- ((Im t) |^ 3)) + ((3 * ((Re t) ^2)) * (Im t))) * <i>))) * (Im z))) * <i>)) + (s * (t))) + (n * ((Re t) + ((Im t) * <i>))) is complex Element of COMPLEX
((((((Re z) * (Re ((((Re t) |^ 3) - ((3 * (Re t)) * ((Im t) ^2))) + (((- ((Im t) |^ 3)) + ((3 * ((Re t) ^2)) * (Im t))) * <i>)))) - ((Im z) * (Im ((((Re t) |^ 3) - ((3 * (Re t)) * ((Im t) ^2))) + (((- ((Im t) |^ 3)) + ((3 * ((Re t) ^2)) * (Im t))) * <i>))))) + ((((Re z) * (Im ((((Re t) |^ 3) - ((3 * (Re t)) * ((Im t) ^2))) + (((- ((Im t) |^ 3)) + ((3 * ((Re t) ^2)) * (Im t))) * <i>)))) + ((Re ((((Re t) |^ 3) - ((3 * (Re t)) * ((Im t) ^2))) + (((- ((Im t) |^ 3)) + ((3 * ((Re t) ^2)) * (Im t))) * <i>))) * (Im z))) * <i>)) + (s * (t))) + (n * ((Re t) + ((Im t) * <i>)))) + t is complex Element of COMPLEX
0 * (Im ((((Re t) |^ 3) - ((3 * (Re t)) * ((Im t) ^2))) + (((- ((Im t) |^ 3)) + ((3 * ((Re t) ^2)) * (Im t))) * <i>))) is complex real ext-real Element of REAL
((Re z) * (Re ((((Re t) |^ 3) - ((3 * (Re t)) * ((Im t) ^2))) + (((- ((Im t) |^ 3)) + ((3 * ((Re t) ^2)) * (Im t))) * <i>)))) - (0 * (Im ((((Re t) |^ 3) - ((3 * (Re t)) * ((Im t) ^2))) + (((- ((Im t) |^ 3)) + ((3 * ((Re t) ^2)) * (Im t))) * <i>)))) is complex real ext-real Element of REAL
- (0 * (Im ((((Re t) |^ 3) - ((3 * (Re t)) * ((Im t) ^2))) + (((- ((Im t) |^ 3)) + ((3 * ((Re t) ^2)) * (Im t))) * <i>)))) is complex real ext-real set
((Re z) * (Re ((((Re t) |^ 3) - ((3 * (Re t)) * ((Im t) ^2))) + (((- ((Im t) |^ 3)) + ((3 * ((Re t) ^2)) * (Im t))) * <i>)))) + (- (0 * (Im ((((Re t) |^ 3) - ((3 * (Re t)) * ((Im t) ^2))) + (((- ((Im t) |^ 3)) + ((3 * ((Re t) ^2)) * (Im t))) * <i>))))) is complex real ext-real set
(((Re z) * (Re ((((Re t) |^ 3) - ((3 * (Re t)) * ((Im t) ^2))) + (((- ((Im t) |^ 3)) + ((3 * ((Re t) ^2)) * (Im t))) * <i>)))) - (0 * (Im ((((Re t) |^ 3) - ((3 * (Re t)) * ((Im t) ^2))) + (((- ((Im t) |^ 3)) + ((3 * ((Re t) ^2)) * (Im t))) * <i>))))) + ((((Re z) * (Im ((((Re t) |^ 3) - ((3 * (Re t)) * ((Im t) ^2))) + (((- ((Im t) |^ 3)) + ((3 * ((Re t) ^2)) * (Im t))) * <i>)))) + ((Re ((((Re t) |^ 3) - ((3 * (Re t)) * ((Im t) ^2))) + (((- ((Im t) |^ 3)) + ((3 * ((Re t) ^2)) * (Im t))) * <i>))) * (Im z))) * <i>) is complex Element of COMPLEX
((((Re z) * (Re ((((Re t) |^ 3) - ((3 * (Re t)) * ((Im t) ^2))) + (((- ((Im t) |^ 3)) + ((3 * ((Re t) ^2)) * (Im t))) * <i>)))) - (0 * (Im ((((Re t) |^ 3) - ((3 * (Re t)) * ((Im t) ^2))) + (((- ((Im t) |^ 3)) + ((3 * ((Re t) ^2)) * (Im t))) * <i>))))) + ((((Re z) * (Im ((((Re t) |^ 3) - ((3 * (Re t)) * ((Im t) ^2))) + (((- ((Im t) |^ 3)) + ((3 * ((Re t) ^2)) * (Im t))) * <i>)))) + ((Re ((((Re t) |^ 3) - ((3 * (Re t)) * ((Im t) ^2))) + (((- ((Im t) |^ 3)) + ((3 * ((Re t) ^2)) * (Im t))) * <i>))) * (Im z))) * <i>)) + (s * (t)) is complex Element of COMPLEX
(((((Re z) * (Re ((((Re t) |^ 3) - ((3 * (Re t)) * ((Im t) ^2))) + (((- ((Im t) |^ 3)) + ((3 * ((Re t) ^2)) * (Im t))) * <i>)))) - (0 * (Im ((((Re t) |^ 3) - ((3 * (Re t)) * ((Im t) ^2))) + (((- ((Im t) |^ 3)) + ((3 * ((Re t) ^2)) * (Im t))) * <i>))))) + ((((Re z) * (Im ((((Re t) |^ 3) - ((3 * (Re t)) * ((Im t) ^2))) + (((- ((Im t) |^ 3)) + ((3 * ((Re t) ^2)) * (Im t))) * <i>)))) + ((Re ((((Re t) |^ 3) - ((3 * (Re t)) * ((Im t) ^2))) + (((- ((Im t) |^ 3)) + ((3 * ((Re t) ^2)) * (Im t))) * <i>))) * (Im z))) * <i>)) + (s * (t))) + (n * ((Re t) + ((Im t) * <i>))) is complex Element of COMPLEX
((((((Re z) * (Re ((((Re t) |^ 3) - ((3 * (Re t)) * ((Im t) ^2))) + (((- ((Im t) |^ 3)) + ((3 * ((Re t) ^2)) * (Im t))) * <i>)))) - (0 * (Im ((((Re t) |^ 3) - ((3 * (Re t)) * ((Im t) ^2))) + (((- ((Im t) |^ 3)) + ((3 * ((Re t) ^2)) * (Im t))) * <i>))))) + ((((Re z) * (Im ((((Re t) |^ 3) - ((3 * (Re t)) * ((Im t) ^2))) + (((- ((Im t) |^ 3)) + ((3 * ((Re t) ^2)) * (Im t))) * <i>)))) + ((Re ((((Re t) |^ 3) - ((3 * (Re t)) * ((Im t) ^2))) + (((- ((Im t) |^ 3)) + ((3 * ((Re t) ^2)) * (Im t))) * <i>))) * (Im z))) * <i>)) + (s * (t))) + (n * ((Re t) + ((Im t) * <i>)))) + t is complex Element of COMPLEX
((Re z) * (Re ((((Re t) |^ 3) - ((3 * (Re t)) * ((Im t) ^2))) + (((- ((Im t) |^ 3)) + ((3 * ((Re t) ^2)) * (Im t))) * <i>)))) - 0 is complex real ext-real Element of REAL
- 0 is empty complex real ext-real non positive non negative V69() V70() V71() V72() V73() V74() V75() set
((Re z) * (Re ((((Re t) |^ 3) - ((3 * (Re t)) * ((Im t) ^2))) + (((- ((Im t) |^ 3)) + ((3 * ((Re t) ^2)) * (Im t))) * <i>)))) + (- 0) is complex real ext-real set
(Re ((((Re t) |^ 3) - ((3 * (Re t)) * ((Im t) ^2))) + (((- ((Im t) |^ 3)) + ((3 * ((Re t) ^2)) * (Im t))) * <i>))) * 0 is complex real ext-real Element of REAL
((Re z) * (Im ((((Re t) |^ 3) - ((3 * (Re t)) * ((Im t) ^2))) + (((- ((Im t) |^ 3)) + ((3 * ((Re t) ^2)) * (Im t))) * <i>)))) + ((Re ((((Re t) |^ 3) - ((3 * (Re t)) * ((Im t) ^2))) + (((- ((Im t) |^ 3)) + ((3 * ((Re t) ^2)) * (Im t))) * <i>))) * 0) is complex real ext-real Element of REAL
(((Re z) * (Im ((((Re t) |^ 3) - ((3 * (Re t)) * ((Im t) ^2))) + (((- ((Im t) |^ 3)) + ((3 * ((Re t) ^2)) * (Im t))) * <i>)))) + ((Re ((((Re t) |^ 3) - ((3 * (Re t)) * ((Im t) ^2))) + (((- ((Im t) |^ 3)) + ((3 * ((Re t) ^2)) * (Im t))) * <i>))) * 0)) * <i> is complex Element of COMPLEX
(((Re z) * (Re ((((Re t) |^ 3) - ((3 * (Re t)) * ((Im t) ^2))) + (((- ((Im t) |^ 3)) + ((3 * ((Re t) ^2)) * (Im t))) * <i>)))) - 0) + ((((Re z) * (Im ((((Re t) |^ 3) - ((3 * (Re t)) * ((Im t) ^2))) + (((- ((Im t) |^ 3)) + ((3 * ((Re t) ^2)) * (Im t))) * <i>)))) + ((Re ((((Re t) |^ 3) - ((3 * (Re t)) * ((Im t) ^2))) + (((- ((Im t) |^ 3)) + ((3 * ((Re t) ^2)) * (Im t))) * <i>))) * 0)) * <i>) is complex Element of COMPLEX
((((Re z) * (Re ((((Re t) |^ 3) - ((3 * (Re t)) * ((Im t) ^2))) + (((- ((Im t) |^ 3)) + ((3 * ((Re t) ^2)) * (Im t))) * <i>)))) - 0) + ((((Re z) * (Im ((((Re t) |^ 3) - ((3 * (Re t)) * ((Im t) ^2))) + (((- ((Im t) |^ 3)) + ((3 * ((Re t) ^2)) * (Im t))) * <i>)))) + ((Re ((((Re t) |^ 3) - ((3 * (Re t)) * ((Im t) ^2))) + (((- ((Im t) |^ 3)) + ((3 * ((Re t) ^2)) * (Im t))) * <i>))) * 0)) * <i>)) + (s * (t)) is complex Element of COMPLEX
(((((Re z) * (Re ((((Re t) |^ 3) - ((3 * (Re t)) * ((Im t) ^2))) + (((- ((Im t) |^ 3)) + ((3 * ((Re t) ^2)) * (Im t))) * <i>)))) - 0) + ((((Re z) * (Im ((((Re t) |^ 3) - ((3 * (Re t)) * ((Im t) ^2))) + (((- ((Im t) |^ 3)) + ((3 * ((Re t) ^2)) * (Im t))) * <i>)))) + ((Re ((((Re t) |^ 3) - ((3 * (Re t)) * ((Im t) ^2))) + (((- ((Im t) |^ 3)) + ((3 * ((Re t) ^2)) * (Im t))) * <i>))) * 0)) * <i>)) + (s * (t))) + (n * ((Re t) + ((Im t) * <i>))) is complex Element of COMPLEX
((((((Re z) * (Re ((((Re t) |^ 3) - ((3 * (Re t)) * ((Im t) ^2))) + (((- ((Im t) |^ 3)) + ((3 * ((Re t) ^2)) * (Im t))) * <i>)))) - 0) + ((((Re z) * (Im ((((Re t) |^ 3) - ((3 * (Re t)) * ((Im t) ^2))) + (((- ((Im t) |^ 3)) + ((3 * ((Re t) ^2)) * (Im t))) * <i>)))) + ((Re ((((Re t) |^ 3) - ((3 * (Re t)) * ((Im t) ^2))) + (((- ((Im t) |^ 3)) + ((3 * ((Re t) ^2)) * (Im t))) * <i>))) * 0)) * <i>)) + (s * (t))) + (n * ((Re t) + ((Im t) * <i>)))) + t is complex Element of COMPLEX
(Re z) * ((- ((Im t) |^ 3)) + ((3 * ((Re t) ^2)) * (Im t))) is complex real ext-real Element of REAL
((Re z) * ((- ((Im t) |^ 3)) + ((3 * ((Re t) ^2)) * (Im t)))) + 0 is complex real ext-real Element of REAL
(((Re z) * ((- ((Im t) |^ 3)) + ((3 * ((Re t) ^2)) * (Im t)))) + 0) * <i> is complex Element of COMPLEX
(((Re z) * (Re ((((Re t) |^ 3) - ((3 * (Re t)) * ((Im t) ^2))) + (((- ((Im t) |^ 3)) + ((3 * ((Re t) ^2)) * (Im t))) * <i>)))) - 0) + ((((Re z) * ((- ((Im t) |^ 3)) + ((3 * ((Re t) ^2)) * (Im t)))) + 0) * <i>) is complex Element of COMPLEX
((((Re z) * (Re ((((Re t) |^ 3) - ((3 * (Re t)) * ((Im t) ^2))) + (((- ((Im t) |^ 3)) + ((3 * ((Re t) ^2)) * (Im t))) * <i>)))) - 0) + ((((Re z) * ((- ((Im t) |^ 3)) + ((3 * ((Re t) ^2)) * (Im t)))) + 0) * <i>)) + (s * (t)) is complex Element of COMPLEX
(((((Re z) * (Re ((((Re t) |^ 3) - ((3 * (Re t)) * ((Im t) ^2))) + (((- ((Im t) |^ 3)) + ((3 * ((Re t) ^2)) * (Im t))) * <i>)))) - 0) + ((((Re z) * ((- ((Im t) |^ 3)) + ((3 * ((Re t) ^2)) * (Im t)))) + 0) * <i>)) + (s * (t))) + (n * ((Re t) + ((Im t) * <i>))) is complex Element of COMPLEX
((((((Re z) * (Re ((((Re t) |^ 3) - ((3 * (Re t)) * ((Im t) ^2))) + (((- ((Im t) |^ 3)) + ((3 * ((Re t) ^2)) * (Im t))) * <i>)))) - 0) + ((((Re z) * ((- ((Im t) |^ 3)) + ((3 * ((Re t) ^2)) * (Im t)))) + 0) * <i>)) + (s * (t))) + (n * ((Re t) + ((Im t) * <i>)))) + t is complex Element of COMPLEX
(Re z) * (((Re t) |^ 3) - ((3 * (Re t)) * ((Im t) ^2))) is complex real ext-real Element of REAL
((Re z) * (((Re t) |^ 3) - ((3 * (Re t)) * ((Im t) ^2)))) - 0 is complex real ext-real Element of REAL
((Re z) * (((Re t) |^ 3) - ((3 * (Re t)) * ((Im t) ^2)))) + (- 0) is complex real ext-real set
((Re z) * ((- ((Im t) |^ 3)) + ((3 * ((Re t) ^2)) * (Im t)))) * <i> is complex Element of COMPLEX
(((Re z) * (((Re t) |^ 3) - ((3 * (Re t)) * ((Im t) ^2)))) - 0) + (((Re z) * ((- ((Im t) |^ 3)) + ((3 * ((Re t) ^2)) * (Im t)))) * <i>) is complex Element of COMPLEX
((((Re z) * (((Re t) |^ 3) - ((3 * (Re t)) * ((Im t) ^2)))) - 0) + (((Re z) * ((- ((Im t) |^ 3)) + ((3 * ((Re t) ^2)) * (Im t)))) * <i>)) + (s * (t)) is complex Element of COMPLEX
(((((Re z) * (((Re t) |^ 3) - ((3 * (Re t)) * ((Im t) ^2)))) - 0) + (((Re z) * ((- ((Im t) |^ 3)) + ((3 * ((Re t) ^2)) * (Im t)))) * <i>)) + (s * (t))) + (n * ((Re t) + ((Im t) * <i>))) is complex Element of COMPLEX
((((((Re z) * (((Re t) |^ 3) - ((3 * (Re t)) * ((Im t) ^2)))) - 0) + (((Re z) * ((- ((Im t) |^ 3)) + ((3 * ((Re t) ^2)) * (Im t)))) * <i>)) + (s * (t))) + (n * ((Re t) + ((Im t) * <i>)))) + t is complex Element of COMPLEX
z * (((Re t) |^ 3) - ((3 * (Re t)) * ((Im t) ^2))) is complex real ext-real Element of REAL
(z * (((Re t) |^ 3) - ((3 * (Re t)) * ((Im t) ^2)))) - 0 is complex real ext-real Element of REAL
(z * (((Re t) |^ 3) - ((3 * (Re t)) * ((Im t) ^2)))) + (- 0) is complex real ext-real set
((z * (((Re t) |^ 3) - ((3 * (Re t)) * ((Im t) ^2)))) - 0) + (((Re z) * ((- ((Im t) |^ 3)) + ((3 * ((Re t) ^2)) * (Im t)))) * <i>) is complex Element of COMPLEX
(((z * (((Re t) |^ 3) - ((3 * (Re t)) * ((Im t) ^2)))) - 0) + (((Re z) * ((- ((Im t) |^ 3)) + ((3 * ((Re t) ^2)) * (Im t)))) * <i>)) + (s * (t)) is complex Element of COMPLEX
((((z * (((Re t) |^ 3) - ((3 * (Re t)) * ((Im t) ^2)))) - 0) + (((Re z) * ((- ((Im t) |^ 3)) + ((3 * ((Re t) ^2)) * (Im t)))) * <i>)) + (s * (t))) + (n * ((Re t) + ((Im t) * <i>))) is complex Element of COMPLEX
(((((z * (((Re t) |^ 3) - ((3 * (Re t)) * ((Im t) ^2)))) - 0) + (((Re z) * ((- ((Im t) |^ 3)) + ((3 * ((Re t) ^2)) * (Im t)))) * <i>)) + (s * (t))) + (n * ((Re t) + ((Im t) * <i>)))) + t is complex Element of COMPLEX
z * ((- ((Im t) |^ 3)) + ((3 * ((Re t) ^2)) * (Im t))) is complex real ext-real Element of REAL
(z * ((- ((Im t) |^ 3)) + ((3 * ((Re t) ^2)) * (Im t)))) * <i> is complex Element of COMPLEX
(z * (((Re t) |^ 3) - ((3 * (Re t)) * ((Im t) ^2)))) + ((z * ((- ((Im t) |^ 3)) + ((3 * ((Re t) ^2)) * (Im t)))) * <i>) is complex Element of COMPLEX
((Re t) ^2) - ((Im t) ^2) is complex real ext-real Element of REAL
- ((Im t) ^2) is complex real ext-real set
((Re t) ^2) + (- ((Im t) ^2)) is complex real ext-real set
2 * (Re t) is complex real ext-real Element of REAL
(2 * (Re t)) * (Im t) is complex real ext-real Element of REAL
((2 * (Re t)) * (Im t)) * <i> is complex Element of COMPLEX
(((Re t) ^2) - ((Im t) ^2)) + (((2 * (Re t)) * (Im t)) * <i>) is complex Element of COMPLEX
s * ((((Re t) ^2) - ((Im t) ^2)) + (((2 * (Re t)) * (Im t)) * <i>)) is complex Element of COMPLEX
((z * (((Re t) |^ 3) - ((3 * (Re t)) * ((Im t) ^2)))) + ((z * ((- ((Im t) |^ 3)) + ((3 * ((Re t) ^2)) * (Im t)))) * <i>)) + (s * ((((Re t) ^2) - ((Im t) ^2)) + (((2 * (Re t)) * (Im t)) * <i>))) is complex Element of COMPLEX
n * (Re t) is complex real ext-real Element of REAL
n * (Im t) is complex real ext-real Element of REAL
(n * (Im t)) * <i> is complex Element of COMPLEX
(n * (Re t)) + ((n * (Im t)) * <i>) is complex Element of COMPLEX
(((z * (((Re t) |^ 3) - ((3 * (Re t)) * ((Im t) ^2)))) + ((z * ((- ((Im t) |^ 3)) + ((3 * ((Re t) ^2)) * (Im t)))) * <i>)) + (s * ((((Re t) ^2) - ((Im t) ^2)) + (((2 * (Re t)) * (Im t)) * <i>)))) + ((n * (Re t)) + ((n * (Im t)) * <i>)) is complex Element of COMPLEX
((((z * (((Re t) |^ 3) - ((3 * (Re t)) * ((Im t) ^2)))) + ((z * ((- ((Im t) |^ 3)) + ((3 * ((Re t) ^2)) * (Im t)))) * <i>)) + (s * ((((Re t) ^2) - ((Im t) ^2)) + (((2 * (Re t)) * (Im t)) * <i>)))) + ((n * (Re t)) + ((n * (Im t)) * <i>))) + t is complex Element of COMPLEX
(3 * (Re t)) * 0 is complex real ext-real Element of REAL
((Re t) |^ 3) - ((3 * (Re t)) * 0) is complex real ext-real Element of REAL
- ((3 * (Re t)) * 0) is complex real ext-real set
((Re t) |^ 3) + (- ((3 * (Re t)) * 0)) is complex real ext-real set
z * (((Re t) |^ 3) - ((3 * (Re t)) * 0)) is complex real ext-real Element of REAL
((Re t) ^2) - 0 is complex real ext-real Element of REAL
((Re t) ^2) + (- 0) is complex real ext-real set
s * (((Re t) ^2) - 0) is complex real ext-real Element of REAL
(z * (((Re t) |^ 3) - ((3 * (Re t)) * 0))) + (s * (((Re t) ^2) - 0)) is complex real ext-real Element of REAL
((z * (((Re t) |^ 3) - ((3 * (Re t)) * 0))) + (s * (((Re t) ^2) - 0))) + (n * (Re t)) is complex real ext-real Element of REAL
(((z * (((Re t) |^ 3) - ((3 * (Re t)) * 0))) + (s * (((Re t) ^2) - 0))) + (n * (Re t))) + t is complex real ext-real Element of REAL
0 |^ 3 is ordinal natural complex real ext-real non negative V43() V44() V69() V70() V71() V72() V73() V74() Element of NAT
- (0 |^ 3) is complex real ext-real non positive V43() V44() Element of INT
(- (0 |^ 3)) + 0 is complex real ext-real non positive V43() V44() Element of INT
z * ((- (0 |^ 3)) + 0) is complex real ext-real Element of REAL
s * 0 is complex real ext-real Element of REAL
(z * ((- (0 |^ 3)) + 0)) + (s * 0) is complex real ext-real Element of REAL
((z * ((- (0 |^ 3)) + 0)) + (s * 0)) + 0 is complex real ext-real Element of REAL
(((z * ((- (0 |^ 3)) + 0)) + (s * 0)) + 0) * <i> is complex Element of COMPLEX
((((z * (((Re t) |^ 3) - ((3 * (Re t)) * 0))) + (s * (((Re t) ^2) - 0))) + (n * (Re t))) + t) + ((((z * ((- (0 |^ 3)) + 0)) + (s * 0)) + 0) * <i>) is complex Element of COMPLEX
z * ((Re t) |^ 3) is complex real ext-real Element of REAL
s * ((Re t) ^2) is complex real ext-real Element of REAL
(z * ((Re t) |^ 3)) + (s * ((Re t) ^2)) is complex real ext-real Element of REAL
((z * ((Re t) |^ 3)) + (s * ((Re t) ^2))) + (n * (Re t)) is complex real ext-real Element of REAL
(((z * ((Re t) |^ 3)) + (s * ((Re t) ^2))) + (n * (Re t))) + t is complex real ext-real Element of REAL
z * 0 is complex real ext-real Element of REAL
(z * 0) + 0 is complex real ext-real Element of REAL
((z * 0) + 0) * <i> is complex Element of COMPLEX
((((z * ((Re t) |^ 3)) + (s * ((Re t) ^2))) + (n * (Re t))) + t) + (((z * 0) + 0) * <i>) is complex Element of COMPLEX
Polynom (z,s,n,t,(Re t)) is complex real ext-real set
(Re t) |^ 3 is complex real ext-real set
z * ((Re t) |^ 3) is complex real ext-real set
(Re t) ^2 is complex real ext-real set
s * ((Re t) ^2) is complex real ext-real set
(z * ((Re t) |^ 3)) + (s * ((Re t) ^2)) is complex real ext-real set
n * (Re t) is complex real ext-real set
((z * ((Re t) |^ 3)) + (s * ((Re t) ^2))) + (n * (Re t)) is complex real ext-real set
(((z * ((Re t) |^ 3)) + (s * ((Re t) ^2))) + (n * (Re t))) + t is complex real ext-real set
((Re t)) is complex Element of COMPLEX
((Re t) ^2) * (Re t) is complex real ext-real Element of COMPLEX
z * ((Re t)) is complex Element of COMPLEX
s * ((Re t) ^2) is complex real ext-real Element of COMPLEX
(z * ((Re t))) + (s * ((Re t) ^2)) is complex Element of COMPLEX
n * (Re t) is complex real ext-real Element of COMPLEX
((z * ((Re t))) + (s * ((Re t) ^2))) + (n * (Re t)) is complex Element of COMPLEX
(((z * ((Re t))) + (s * ((Re t) ^2))) + (n * (Re t))) + t is complex Element of COMPLEX
((((3 * z) * n) - (s ^2)) / (3 * (z ^2))) / 3 is complex real ext-real Element of REAL
3 " is non empty complex real ext-real positive non negative set
((((3 * z) * n) - (s ^2)) / (3 * (z ^2))) * (3 ") is complex real ext-real set
1 / 3 is non empty complex real ext-real positive non negative V44() Element of RAT
1 * (3 ") is non empty complex real ext-real positive non negative set
(1 / 3) * ((((3 * z) * n) - (s ^2)) / (3 * (z ^2))) is complex real ext-real Element of REAL
(z ^2) * 3 is complex real ext-real Element of REAL
((z ^2) * 3) * 3 is complex real ext-real Element of REAL
(((3 * z) * n) - (s ^2)) / (((z ^2) * 3) * 3) is complex real ext-real Element of REAL
(((z ^2) * 3) * 3) " is complex real ext-real set
(((3 * z) * n) - (s ^2)) * ((((z ^2) * 3) * 3) ") is complex real ext-real set
((2 * ((s / (3 * z)) |^ 3)) + ((((3 * z) * t) - (s * n)) / (3 * (z ^2)))) / 2 is complex real ext-real Element of REAL
2 " is non empty complex real ext-real positive non negative set
((2 * ((s / (3 * z)) |^ 3)) + ((((3 * z) * t) - (s * n)) / (3 * (z ^2)))) * (2 ") is complex real ext-real set
- (((2 * ((s / (3 * z)) |^ 3)) + ((((3 * z) * t) - (s * n)) / (3 * (z ^2)))) / 2) is complex real ext-real Element of REAL
1 / 2 is non empty complex real ext-real positive non negative V44() Element of RAT
1 * (2 ") is non empty complex real ext-real positive non negative set
(1 / 2) * ((((3 * z) * t) - (s * n)) / (3 * (z ^2))) is complex real ext-real Element of REAL
((s / (3 * z)) |^ 3) + ((1 / 2) * ((((3 * z) * t) - (s * n)) / (3 * (z ^2)))) is complex real ext-real Element of REAL
- (((s / (3 * z)) |^ 3) + ((1 / 2) * ((((3 * z) * t) - (s * n)) / (3 * (z ^2))))) is complex real ext-real Element of REAL
((z ^2) * 3) * 2 is complex real ext-real Element of REAL
(((3 * z) * t) - (s * n)) / (((z ^2) * 3) * 2) is complex real ext-real Element of REAL
(((z ^2) * 3) * 2) " is complex real ext-real set
(((3 * z) * t) - (s * n)) * ((((z ^2) * 3) * 2) ") is complex real ext-real set
((s / (3 * z)) |^ 3) + ((((3 * z) * t) - (s * n)) / (((z ^2) * 3) * 2)) is complex real ext-real Element of REAL
- (((s / (3 * z)) |^ 3) + ((((3 * z) * t) - (s * n)) / (((z ^2) * 3) * 2))) is complex real ext-real Element of REAL
u is complex real ext-real Element of REAL
3 * u is complex real ext-real Element of REAL
v is complex real ext-real Element of REAL
u + v is complex real ext-real Element of REAL
(u + v) - (s / (3 * z)) is complex real ext-real Element of REAL
(u + v) + (- (s / (3 * z))) is complex real ext-real set
(3 * u) * v is complex real ext-real Element of REAL
((3 * u) * v) + ((((3 * z) * n) - (s ^2)) / (3 * (z ^2))) is complex real ext-real Element of REAL
x1 is complex real ext-real Element of REAL
Polynom (1,0,((((3 * z) * n) - (s ^2)) / (3 * (z ^2))),((2 * ((s / (3 * z)) |^ 3)) + ((((3 * z) * t) - (s * n)) / (3 * (z ^2)))),x1) is complex real ext-real set
x1 |^ 3 is complex real ext-real set
1 * (x1 |^ 3) is complex real ext-real set
x1 ^2 is complex real ext-real set
x1 * x1 is complex real ext-real set
0 * (x1 ^2) is complex real ext-real set
(1 * (x1 |^ 3)) + (0 * (x1 ^2)) is complex real ext-real set
((((3 * z) * n) - (s ^2)) / (3 * (z ^2))) * x1 is complex real ext-real set
((1 * (x1 |^ 3)) + (0 * (x1 ^2))) + (((((3 * z) * n) - (s ^2)) / (3 * (z ^2))) * x1) is complex real ext-real set
(((1 * (x1 |^ 3)) + (0 * (x1 ^2))) + (((((3 * z) * n) - (s ^2)) / (3 * (z ^2))) * x1)) + ((2 * ((s / (3 * z)) |^ 3)) + ((((3 * z) * t) - (s * n)) / (3 * (z ^2)))) is complex real ext-real set
(x1) is complex Element of COMPLEX
(x1 ^2) * x1 is complex real ext-real Element of COMPLEX
1 * (x1) is complex Element of COMPLEX
0 * (x1 ^2) is complex real ext-real Element of COMPLEX
(1 * (x1)) + (0 * (x1 ^2)) is complex Element of COMPLEX
((((3 * z) * n) - (s ^2)) / (3 * (z ^2))) * x1 is complex real ext-real Element of COMPLEX
((1 * (x1)) + (0 * (x1 ^2))) + (((((3 * z) * n) - (s ^2)) / (3 * (z ^2))) * x1) is complex Element of COMPLEX
(((1 * (x1)) + (0 * (x1 ^2))) + (((((3 * z) * n) - (s ^2)) / (3 * (z ^2))) * x1)) + ((2 * ((s / (3 * z)) |^ 3)) + ((((3 * z) * t) - (s * n)) / (3 * (z ^2)))) is complex Element of COMPLEX
(((((3 * z) * n) - (s ^2)) / (3 * (z ^2))) / 3) |^ 3 is complex real ext-real Element of REAL
((((2 * ((s / (3 * z)) |^ 3)) + ((((3 * z) * t) - (s * n)) / (3 * (z ^2)))) ^2) / 4) + ((((((3 * z) * n) - (s ^2)) / (3 * (z ^2))) / 3) |^ 3) is complex real ext-real Element of REAL
sqrt (((((2 * ((s / (3 * z)) |^ 3)) + ((((3 * z) * t) - (s * n)) / (3 * (z ^2)))) ^2) / 4) + ((((((3 * z) * n) - (s ^2)) / (3 * (z ^2))) / 3) |^ 3)) is complex real ext-real Element of REAL
(- (((2 * ((s / (3 * z)) |^ 3)) + ((((3 * z) * t) - (s * n)) / (3 * (z ^2)))) / 2)) + (sqrt (((((2 * ((s / (3 * z)) |^ 3)) + ((((3 * z) * t) - (s * n)) / (3 * (z ^2)))) ^2) / 4) + ((((((3 * z) * n) - (s ^2)) / (3 * (z ^2))) / 3) |^ 3))) is complex real ext-real Element of REAL
3 -root ((- (((2 * ((s / (3 * z)) |^ 3)) + ((((3 * z) * t) - (s * n)) / (3 * (z ^2)))) / 2)) + (sqrt (((((2 * ((s / (3 * z)) |^ 3)) + ((((3 * z) * t) - (s * n)) / (3 * (z ^2)))) ^2) / 4) + ((((((3 * z) * n) - (s ^2)) / (3 * (z ^2))) / 3) |^ 3)))) is complex real ext-real Element of REAL
(- (((2 * ((s / (3 * z)) |^ 3)) + ((((3 * z) * t) - (s * n)) / (3 * (z ^2)))) / 2)) - (sqrt (((((2 * ((s / (3 * z)) |^ 3)) + ((((3 * z) * t) - (s * n)) / (3 * (z ^2)))) ^2) / 4) + ((((((3 * z) * n) - (s ^2)) / (3 * (z ^2))) / 3) |^ 3))) is complex real ext-real Element of REAL
- (sqrt (((((2 * ((s / (3 * z)) |^ 3)) + ((((3 * z) * t) - (s * n)) / (3 * (z ^2)))) ^2) / 4) + ((((((3 * z) * n) - (s ^2)) / (3 * (z ^2))) / 3) |^ 3))) is complex real ext-real set
(- (((2 * ((s / (3 * z)) |^ 3)) + ((((3 * z) * t) - (s * n)) / (3 * (z ^2)))) / 2)) + (- (sqrt (((((2 * ((s / (3 * z)) |^ 3)) + ((((3 * z) * t) - (s * n)) / (3 * (z ^2)))) ^2) / 4) + ((((((3 * z) * n) - (s ^2)) / (3 * (z ^2))) / 3) |^ 3)))) is complex real ext-real set
3 -root ((- (((2 * ((s / (3 * z)) |^ 3)) + ((((3 * z) * t) - (s * n)) / (3 * (z ^2)))) / 2)) - (sqrt (((((2 * ((s / (3 * z)) |^ 3)) + ((((3 * z) * t) - (s * n)) / (3 * (z ^2)))) ^2) / 4) + ((((((3 * z) * n) - (s ^2)) / (3 * (z ^2))) / 3) |^ 3)))) is complex real ext-real Element of REAL
(3 -root ((- (((2 * ((s / (3 * z)) |^ 3)) + ((((3 * z) * t) - (s * n)) / (3 * (z ^2)))) / 2)) + (sqrt (((((2 * ((s / (3 * z)) |^ 3)) + ((((3 * z) * t) - (s * n)) / (3 * (z ^2)))) ^2) / 4) + ((((((3 * z) * n) - (s ^2)) / (3 * (z ^2))) / 3) |^ 3))))) + (3 -root ((- (((2 * ((s / (3 * z)) |^ 3)) + ((((3 * z) * t) - (s * n)) / (3 * (z ^2)))) / 2)) - (sqrt (((((2 * ((s / (3 * z)) |^ 3)) + ((((3 * z) * t) - (s * n)) / (3 * (z ^2)))) ^2) / 4) + ((((((3 * z) * n) - (s ^2)) / (3 * (z ^2))) / 3) |^ 3))))) is complex real ext-real Element of REAL
(3 -root ((- (((2 * ((s / (3 * z)) |^ 3)) + ((((3 * z) * t) - (s * n)) / (3 * (z ^2)))) / 2)) + (sqrt (((((2 * ((s / (3 * z)) |^ 3)) + ((((3 * z) * t) - (s * n)) / (3 * (z ^2)))) ^2) / 4) + ((((((3 * z) * n) - (s ^2)) / (3 * (z ^2))) / 3) |^ 3))))) + (3 -root ((- (((2 * ((s / (3 * z)) |^ 3)) + ((((3 * z) * t) - (s * n)) / (3 * (z ^2)))) / 2)) + (sqrt (((((2 * ((s / (3 * z)) |^ 3)) + ((((3 * z) * t) - (s * n)) / (3 * (z ^2)))) ^2) / 4) + ((((((3 * z) * n) - (s ^2)) / (3 * (z ^2))) / 3) |^ 3))))) is complex real ext-real Element of REAL
(3 -root ((- (((2 * ((s / (3 * z)) |^ 3)) + ((((3 * z) * t) - (s * n)) / (3 * (z ^2)))) / 2)) - (sqrt (((((2 * ((s / (3 * z)) |^ 3)) + ((((3 * z) * t) - (s * n)) / (3 * (z ^2)))) ^2) / 4) + ((((((3 * z) * n) - (s ^2)) / (3 * (z ^2))) / 3) |^ 3))))) + (3 -root ((- (((2 * ((s / (3 * z)) |^ 3)) + ((((3 * z) * t) - (s * n)) / (3 * (z ^2)))) / 2)) - (sqrt (((((2 * ((s / (3 * z)) |^ 3)) + ((((3 * z) * t) - (s * n)) / (3 * (z ^2)))) ^2) / 4) + ((((((3 * z) * n) - (s ^2)) / (3 * (z ^2))) / 3) |^ 3))))) is complex real ext-real Element of REAL
z is complex Element of COMPLEX
s is complex Element of COMPLEX
s / z is complex Element of COMPLEX
z " is complex set
s * (z ") is complex set
- (s / z) is complex Element of COMPLEX
n is complex Element of COMPLEX
Polynom (z,s,n) is complex set
z * n is complex set
(z * n) + s is complex set
- s is complex Element of COMPLEX
z " is complex Element of COMPLEX
(- s) * (z ") is complex Element of COMPLEX
z is complex Element of COMPLEX
s is complex Element of COMPLEX
n is complex Element of COMPLEX
t is complex Element of COMPLEX
t is complex Element of COMPLEX
t is complex Element of COMPLEX
- 1r is complex Element of COMPLEX
Polynom (z,s,n,(- 1r)) is complex set
(- 1r) ^2 is complex set
(- 1r) * (- 1r) is complex set
z * ((- 1r) ^2) is complex set
s * (- 1r) is complex set
(z * ((- 1r) ^2)) + (s * (- 1r)) is complex set
((z * ((- 1r) ^2)) + (s * (- 1r))) + n is complex set
Polynom (t,t,t,(- 1r)) is complex set
t * ((- 1r) ^2) is complex set
t * (- 1r) is complex set
(t * ((- 1r) ^2)) + (t * (- 1r)) is complex set
((t * ((- 1r) ^2)) + (t * (- 1r))) + t is complex set
0c is empty complex V69() V70() V71() V72() V73() V74() V75() Element of COMPLEX
Polynom (z,s,n,0c) is complex set
0c ^2 is complex set
0c * 0c is complex set
z * (0c ^2) is complex set
s * 0c is complex set
(z * (0c ^2)) + (s * 0c) is complex set
((z * (0c ^2)) + (s * 0c)) + n is complex set
Polynom (t,t,t,0c) is complex set
t * (0c ^2) is complex set
t * 0c is complex set
(t * (0c ^2)) + (t * 0c) is complex set
((t * (0c ^2)) + (t * 0c)) + t is complex set
Polynom (z,s,n,1r) is complex set
1r ^2 is complex set
1r * 1r is complex set
z * (1r ^2) is complex set
s * 1r is complex set
(z * (1r ^2)) + (s * 1r) is complex set
((z * (1r ^2)) + (s * 1r)) + n is complex set
Polynom (t,t,t,1r) is complex set
t * (1r ^2) is complex set
t * 1r is complex set
(t * (1r ^2)) + (t * 1r) is complex set
((t * (1r ^2)) + (t * 1r)) + t is complex set
z is complex real ext-real Element of REAL
- z is complex real ext-real Element of REAL
z ^2 is complex real ext-real Element of REAL
z * z is complex real ext-real set
s is complex real ext-real Element of REAL
s ^2 is complex real ext-real Element of REAL
s * s is complex real ext-real set
(z ^2) + (s ^2) is complex real ext-real Element of REAL
sqrt ((z ^2) + (s ^2)) is complex real ext-real Element of REAL
(- z) + (sqrt ((z ^2) + (s ^2))) is complex real ext-real Element of REAL
((- z) + (sqrt ((z ^2) + (s ^2)))) / 2 is complex real ext-real Element of REAL
2 " is non empty complex real ext-real positive non negative set
((- z) + (sqrt ((z ^2) + (s ^2)))) * (2 ") is complex real ext-real set
z + (sqrt ((z ^2) + (s ^2))) is complex real ext-real Element of REAL
(z + (sqrt ((z ^2) + (s ^2)))) / 2 is complex real ext-real Element of REAL
(z + (sqrt ((z ^2) + (s ^2)))) * (2 ") is complex real ext-real set
0 + (z ^2) is complex real ext-real Element of REAL
sqrt (z ^2) is complex real ext-real Element of REAL
z - z is complex real ext-real Element of REAL
- z is complex real ext-real set
z + (- z) is complex real ext-real set
(sqrt ((z ^2) + (s ^2))) - z is complex real ext-real Element of REAL
(sqrt ((z ^2) + (s ^2))) + (- z) is complex real ext-real set
(- z) - (- z) is complex real ext-real Element of REAL
- (- z) is complex real ext-real set
(- z) + (- (- z)) is complex real ext-real set
(sqrt ((z ^2) + (s ^2))) - (- z) is complex real ext-real Element of REAL
(sqrt ((z ^2) + (s ^2))) + (- (- z)) is complex real ext-real set
z is complex Element of COMPLEX
(z) is complex Element of COMPLEX
z * z is complex set
s is complex Element of COMPLEX
Im s is complex real ext-real Element of REAL
Re s is complex real ext-real Element of REAL
(Re s) ^2 is complex real ext-real Element of REAL
(Re s) * (Re s) is complex real ext-real set
(Im s) ^2 is complex real ext-real Element of REAL
(Im s) * (Im s) is complex real ext-real set
((Re s) ^2) + ((Im s) ^2) is complex real ext-real Element of REAL
sqrt (((Re s) ^2) + ((Im s) ^2)) is complex real ext-real Element of REAL
(Re s) + (sqrt (((Re s) ^2) + ((Im s) ^2))) is complex real ext-real Element of REAL
((Re s) + (sqrt (((Re s) ^2) + ((Im s) ^2)))) / 2 is complex real ext-real Element of REAL
2 " is non empty complex real ext-real positive non negative set
((Re s) + (sqrt (((Re s) ^2) + ((Im s) ^2)))) * (2 ") is complex real ext-real set
sqrt (((Re s) + (sqrt (((Re s) ^2) + ((Im s) ^2)))) / 2) is complex real ext-real Element of REAL
- (Re s) is complex real ext-real Element of REAL
(- (Re s)) + (sqrt (((Re s) ^2) + ((Im s) ^2))) is complex real ext-real Element of REAL
((- (Re s)) + (sqrt (((Re s) ^2) + ((Im s) ^2)))) / 2 is complex real ext-real Element of REAL
((- (Re s)) + (sqrt (((Re s) ^2) + ((Im s) ^2)))) * (2 ") is complex real ext-real set
sqrt (((- (Re s)) + (sqrt (((Re s) ^2) + ((Im s) ^2)))) / 2) is complex real ext-real Element of REAL
(sqrt (((- (Re s)) + (sqrt (((Re s) ^2) + ((Im s) ^2)))) / 2)) * <i> is complex Element of COMPLEX
(sqrt (((Re s) + (sqrt (((Re s) ^2) + ((Im s) ^2)))) / 2)) + ((sqrt (((- (Re s)) + (sqrt (((Re s) ^2) + ((Im s) ^2)))) / 2)) * <i>) is complex Element of COMPLEX
- (sqrt (((Re s) + (sqrt (((Re s) ^2) + ((Im s) ^2)))) / 2)) is complex real ext-real Element of REAL
- (sqrt (((- (Re s)) + (sqrt (((Re s) ^2) + ((Im s) ^2)))) / 2)) is complex real ext-real Element of REAL
(- (sqrt (((- (Re s)) + (sqrt (((Re s) ^2) + ((Im s) ^2)))) / 2))) * <i> is complex Element of COMPLEX
(- (sqrt (((Re s) + (sqrt (((Re s) ^2) + ((Im s) ^2)))) / 2))) + ((- (sqrt (((- (Re s)) + (sqrt (((Re s) ^2) + ((Im s) ^2)))) / 2))) * <i>) is complex Element of COMPLEX
Re z is complex real ext-real Element of REAL
Im z is complex real ext-real Element of REAL
(Im z) * <i> is complex Element of COMPLEX
(Re z) + ((Im z) * <i>) is complex Element of COMPLEX
(Re z) ^2 is complex real ext-real Element of REAL
(Re z) * (Re z) is complex real ext-real set
(Im z) ^2 is complex real ext-real Element of REAL
(Im z) * (Im z) is complex real ext-real set
((Re z) ^2) - ((Im z) ^2) is complex real ext-real Element of REAL
- ((Im z) ^2) is complex real ext-real set
((Re z) ^2) + (- ((Im z) ^2)) is complex real ext-real set
2 * (Re z) is complex real ext-real Element of REAL
(2 * (Re z)) * (Im z) is complex real ext-real Element of REAL
((2 * (Re z)) * (Im z)) * <i> is complex Element of COMPLEX
(((Re z) ^2) - ((Im z) ^2)) + (((2 * (Re z)) * (Im z)) * <i>) is complex Element of COMPLEX
(Im s) * <i> is complex Element of COMPLEX
(Re s) + ((Im s) * <i>) is complex Element of COMPLEX
((Re z) ^2) + ((Im z) ^2) is complex real ext-real Element of REAL
(((Re z) ^2) + ((Im z) ^2)) ^2 is complex real ext-real Element of REAL
(((Re z) ^2) + ((Im z) ^2)) * (((Re z) ^2) + ((Im z) ^2)) is complex real ext-real set
- (Re z) is complex real ext-real Element of REAL
- (Im z) is complex real ext-real Element of REAL
z is complex Element of COMPLEX
(z) is complex Element of COMPLEX
z * z is complex set
s is complex Element of COMPLEX
Im s is complex real ext-real Element of REAL
Re s is complex real ext-real Element of REAL
sqrt (Re s) is complex real ext-real Element of REAL
- (sqrt (Re s)) is complex real ext-real Element of REAL
(Re s) ^2 is complex real ext-real Element of REAL
(Re s) * (Re s) is complex real ext-real set
((Re s) ^2) + 0 is complex real ext-real Element of REAL
sqrt (((Re s) ^2) + 0) is complex real ext-real Element of REAL
(Re s) + (sqrt (((Re s) ^2) + 0)) is complex real ext-real Element of REAL
((Re s) + (sqrt (((Re s) ^2) + 0))) / 2 is complex real ext-real Element of REAL
2 " is non empty complex real ext-real positive non negative set
((Re s) + (sqrt (((Re s) ^2) + 0))) * (2 ") is complex real ext-real set
sqrt (((Re s) + (sqrt (((Re s) ^2) + 0))) / 2) is complex real ext-real Element of REAL
- (Re s) is complex real ext-real Element of REAL
(- (Re s)) + (sqrt (((Re s) ^2) + 0)) is complex real ext-real Element of REAL
((- (Re s)) + (sqrt (((Re s) ^2) + 0))) / 2 is complex real ext-real Element of REAL
((- (Re s)) + (sqrt (((Re s) ^2) + 0))) * (2 ") is complex real ext-real set
sqrt (((- (Re s)) + (sqrt (((Re s) ^2) + 0))) / 2) is complex real ext-real Element of REAL
(sqrt (((- (Re s)) + (sqrt (((Re s) ^2) + 0))) / 2)) * <i> is complex Element of COMPLEX
(sqrt (((Re s) + (sqrt (((Re s) ^2) + 0))) / 2)) + ((sqrt (((- (Re s)) + (sqrt (((Re s) ^2) + 0))) / 2)) * <i>) is complex Element of COMPLEX
- (sqrt (((Re s) + (sqrt (((Re s) ^2) + 0))) / 2)) is complex real ext-real Element of REAL
0 ^2 is complex real ext-real Element of REAL
0 * 0 is empty ordinal natural complex real ext-real non positive non negative V69() V70() V71() V72() V73() V74() V75() set
((Re s) ^2) + (0 ^2) is complex real ext-real Element of REAL
sqrt (((Re s) ^2) + (0 ^2)) is complex real ext-real Element of REAL
(- (Re s)) + (sqrt (((Re s) ^2) + (0 ^2))) is complex real ext-real Element of REAL
((- (Re s)) + (sqrt (((Re s) ^2) + (0 ^2)))) / 2 is complex real ext-real Element of REAL
((- (Re s)) + (sqrt (((Re s) ^2) + (0 ^2)))) * (2 ") is complex real ext-real set
sqrt (((- (Re s)) + (sqrt (((Re s) ^2) + (0 ^2)))) / 2) is complex real ext-real Element of REAL
- (sqrt (((- (Re s)) + (sqrt (((Re s) ^2) + (0 ^2)))) / 2)) is complex real ext-real Element of REAL
(- (sqrt (((- (Re s)) + (sqrt (((Re s) ^2) + (0 ^2)))) / 2))) * <i> is complex Element of COMPLEX
(- (sqrt (((Re s) + (sqrt (((Re s) ^2) + 0))) / 2))) + ((- (sqrt (((- (Re s)) + (sqrt (((Re s) ^2) + (0 ^2)))) / 2))) * <i>) is complex Element of COMPLEX
(Re s) + (Re s) is complex real ext-real Element of REAL
((Re s) + (Re s)) / 2 is complex real ext-real Element of REAL
((Re s) + (Re s)) * (2 ") is complex real ext-real set
sqrt (((Re s) + (Re s)) / 2) is complex real ext-real Element of REAL
(sqrt (((Re s) + (Re s)) / 2)) + ((sqrt (((- (Re s)) + (sqrt (((Re s) ^2) + 0))) / 2)) * <i>) is complex Element of COMPLEX
- ((sqrt (((- (Re s)) + (sqrt (((Re s) ^2) + 0))) / 2)) * <i>) is complex Element of COMPLEX
(- (sqrt (((Re s) + (sqrt (((Re s) ^2) + 0))) / 2))) + (- ((sqrt (((- (Re s)) + (sqrt (((Re s) ^2) + 0))) / 2)) * <i>)) is complex Element of COMPLEX
(- (Re s)) + (Re s) is complex real ext-real Element of REAL
((- (Re s)) + (Re s)) / 2 is complex real ext-real Element of REAL
((- (Re s)) + (Re s)) * (2 ") is complex real ext-real set
sqrt (((- (Re s)) + (Re s)) / 2) is complex real ext-real Element of REAL
(sqrt (((- (Re s)) + (Re s)) / 2)) * <i> is complex Element of COMPLEX
(sqrt (((Re s) + (Re s)) / 2)) + ((sqrt (((- (Re s)) + (Re s)) / 2)) * <i>) is complex Element of COMPLEX
- (sqrt (((Re s) + (Re s)) / 2)) is complex real ext-real Element of REAL
(- (sqrt (((Re s) + (Re s)) / 2))) + (- ((sqrt (((- (Re s)) + (sqrt (((Re s) ^2) + 0))) / 2)) * <i>)) is complex Element of COMPLEX
(Re s) - (Re s) is complex real ext-real Element of REAL
- (Re s) is complex real ext-real set
(Re s) + (- (Re s)) is complex real ext-real set
0 + ((Re s) - (Re s)) is complex real ext-real Element of REAL
(0 + ((Re s) - (Re s))) / 2 is complex real ext-real Element of REAL
(0 + ((Re s) - (Re s))) * (2 ") is complex real ext-real set
sqrt ((0 + ((Re s) - (Re s))) / 2) is complex real ext-real Element of REAL
(sqrt ((0 + ((Re s) - (Re s))) / 2)) * <i> is complex Element of COMPLEX
(sqrt (Re s)) + ((sqrt ((0 + ((Re s) - (Re s))) / 2)) * <i>) is complex Element of COMPLEX
- ((sqrt ((0 + ((Re s) - (Re s))) / 2)) * <i>) is complex Element of COMPLEX
(- (sqrt (Re s))) + (- ((sqrt ((0 + ((Re s) - (Re s))) / 2)) * <i>)) is complex Element of COMPLEX
z is complex Element of COMPLEX
(z) is complex Element of COMPLEX
z * z is complex set
s is complex Element of COMPLEX
Im s is complex real ext-real Element of REAL
Re s is complex real ext-real Element of REAL
- (Re s) is complex real ext-real Element of REAL
sqrt (- (Re s)) is complex real ext-real Element of REAL
(sqrt (- (Re s))) * <i> is complex Element of COMPLEX
- ((sqrt (- (Re s))) * <i>) is complex Element of COMPLEX
(Re s) ^2 is complex real ext-real Element of REAL
(Re s) * (Re s) is complex real ext-real set
((Re s) ^2) + 0 is complex real ext-real Element of REAL
sqrt (((Re s) ^2) + 0) is complex real ext-real Element of REAL
(Re s) + (sqrt (((Re s) ^2) + 0)) is complex real ext-real Element of REAL
((Re s) + (sqrt (((Re s) ^2) + 0))) / 2 is complex real ext-real Element of REAL
2 " is non empty complex real ext-real positive non negative set
((Re s) + (sqrt (((Re s) ^2) + 0))) * (2 ") is complex real ext-real set
sqrt (((Re s) + (sqrt (((Re s) ^2) + 0))) / 2) is complex real ext-real Element of REAL
(- (Re s)) + (sqrt (((Re s) ^2) + 0)) is complex real ext-real Element of REAL
((- (Re s)) + (sqrt (((Re s) ^2) + 0))) / 2 is complex real ext-real Element of REAL
((- (Re s)) + (sqrt (((Re s) ^2) + 0))) * (2 ") is complex real ext-real set
sqrt (((- (Re s)) + (sqrt (((Re s) ^2) + 0))) / 2) is complex real ext-real Element of REAL
(sqrt (((- (Re s)) + (sqrt (((Re s) ^2) + 0))) / 2)) * <i> is complex Element of COMPLEX
(sqrt (((Re s) + (sqrt (((Re s) ^2) + 0))) / 2)) + ((sqrt (((- (Re s)) + (sqrt (((Re s) ^2) + 0))) / 2)) * <i>) is complex Element of COMPLEX
- (sqrt (((Re s) + (sqrt (((Re s) ^2) + 0))) / 2)) is complex real ext-real Element of REAL
0 ^2 is complex real ext-real Element of REAL
0 * 0 is empty ordinal natural complex real ext-real non positive non negative V69() V70() V71() V72() V73() V74() V75() set
((Re s) ^2) + (0 ^2) is complex real ext-real Element of REAL
sqrt (((Re s) ^2) + (0 ^2)) is complex real ext-real Element of REAL
(- (Re s)) + (sqrt (((Re s) ^2) + (0 ^2))) is complex real ext-real Element of REAL
((- (Re s)) + (sqrt (((Re s) ^2) + (0 ^2)))) / 2 is complex real ext-real Element of REAL
((- (Re s)) + (sqrt (((Re s) ^2) + (0 ^2)))) * (2 ") is complex real ext-real set
sqrt (((- (Re s)) + (sqrt (((Re s) ^2) + (0 ^2)))) / 2) is complex real ext-real Element of REAL
- (sqrt (((- (Re s)) + (sqrt (((Re s) ^2) + (0 ^2)))) / 2)) is complex real ext-real Element of REAL
(- (sqrt (((- (Re s)) + (sqrt (((Re s) ^2) + (0 ^2)))) / 2))) * <i> is complex Element of COMPLEX
(- (sqrt (((Re s) + (sqrt (((Re s) ^2) + 0))) / 2))) + ((- (sqrt (((- (Re s)) + (sqrt (((Re s) ^2) + (0 ^2)))) / 2))) * <i>) is complex Element of COMPLEX
(Re s) + (- (Re s)) is complex real ext-real Element of REAL
((Re s) + (- (Re s))) / 2 is complex real ext-real Element of REAL
((Re s) + (- (Re s))) * (2 ") is complex real ext-real set
sqrt (((Re s) + (- (Re s))) / 2) is complex real ext-real Element of REAL
(sqrt (((Re s) + (- (Re s))) / 2)) + ((sqrt (((- (Re s)) + (sqrt (((Re s) ^2) + 0))) / 2)) * <i>) is complex Element of COMPLEX
- (sqrt (((- (Re s)) + (sqrt (((Re s) ^2) + 0))) / 2)) is complex real ext-real Element of REAL
(- (sqrt (((- (Re s)) + (sqrt (((Re s) ^2) + 0))) / 2))) * <i> is complex Element of COMPLEX
(- (sqrt (((Re s) + (sqrt (((Re s) ^2) + 0))) / 2))) + ((- (sqrt (((- (Re s)) + (sqrt (((Re s) ^2) + 0))) / 2))) * <i>) is complex Element of COMPLEX
(- (Re s)) + (- (Re s)) is complex real ext-real Element of REAL
((- (Re s)) + (- (Re s))) / 2 is complex real ext-real Element of REAL
((- (Re s)) + (- (Re s))) * (2 ") is complex real ext-real set
sqrt (((- (Re s)) + (- (Re s))) / 2) is complex real ext-real Element of REAL
(sqrt (((- (Re s)) + (- (Re s))) / 2)) * <i> is complex Element of COMPLEX
(sqrt (((Re s) + (- (Re s))) / 2)) + ((sqrt (((- (Re s)) + (- (Re s))) / 2)) * <i>) is complex Element of COMPLEX
- (sqrt (((Re s) + (- (Re s))) / 2)) is complex real ext-real Element of REAL
(- (sqrt (((Re s) + (- (Re s))) / 2))) + ((- (sqrt (((- (Re s)) + (sqrt (((Re s) ^2) + 0))) / 2))) * <i>) is complex Element of COMPLEX
- (sqrt (((- (Re s)) + (- (Re s))) / 2)) is complex real ext-real Element of REAL
(- (sqrt (((- (Re s)) + (- (Re s))) / 2))) * <i> is complex Element of COMPLEX
(- (sqrt (((Re s) + (- (Re s))) / 2))) + ((- (sqrt (((- (Re s)) + (- (Re s))) / 2))) * <i>) is complex Element of COMPLEX
z is complex Element of COMPLEX
(z) is complex Element of COMPLEX
z * z is complex set
s is complex Element of COMPLEX
Im s is complex real ext-real Element of REAL
Re s is complex real ext-real Element of REAL
(Re s) ^2 is complex real ext-real Element of REAL
(Re s) * (Re s) is complex real ext-real set
(Im s) ^2 is complex real ext-real Element of REAL
(Im s) * (Im s) is complex real ext-real set
((Re s) ^2) + ((Im s) ^2) is complex real ext-real Element of REAL
sqrt (((Re s) ^2) + ((Im s) ^2)) is complex real ext-real Element of REAL
(Re s) + (sqrt (((Re s) ^2) + ((Im s) ^2))) is complex real ext-real Element of REAL
((Re s) + (sqrt (((Re s) ^2) + ((Im s) ^2)))) / 2 is complex real ext-real Element of REAL
2 " is non empty complex real ext-real positive non negative set
((Re s) + (sqrt (((Re s) ^2) + ((Im s) ^2)))) * (2 ") is complex real ext-real set
sqrt (((Re s) + (sqrt (((Re s) ^2) + ((Im s) ^2)))) / 2) is complex real ext-real Element of REAL
- (Re s) is complex real ext-real Element of REAL
(- (Re s)) + (sqrt (((Re s) ^2) + ((Im s) ^2))) is complex real ext-real Element of REAL
((- (Re s)) + (sqrt (((Re s) ^2) + ((Im s) ^2)))) / 2 is complex real ext-real Element of REAL
((- (Re s)) + (sqrt (((Re s) ^2) + ((Im s) ^2)))) * (2 ") is complex real ext-real set
sqrt (((- (Re s)) + (sqrt (((Re s) ^2) + ((Im s) ^2)))) / 2) is complex real ext-real Element of REAL
- (sqrt (((- (Re s)) + (sqrt (((Re s) ^2) + ((Im s) ^2)))) / 2)) is complex real ext-real Element of REAL
(- (sqrt (((- (Re s)) + (sqrt (((Re s) ^2) + ((Im s) ^2)))) / 2))) * <i> is complex Element of COMPLEX
(sqrt (((Re s) + (sqrt (((Re s) ^2) + ((Im s) ^2)))) / 2)) + ((- (sqrt (((- (Re s)) + (sqrt (((Re s) ^2) + ((Im s) ^2)))) / 2))) * <i>) is complex Element of COMPLEX
- (sqrt (((Re s) + (sqrt (((Re s) ^2) + ((Im s) ^2)))) / 2)) is complex real ext-real Element of REAL
(sqrt (((- (Re s)) + (sqrt (((Re s) ^2) + ((Im s) ^2)))) / 2)) * <i> is complex Element of COMPLEX
(- (sqrt (((Re s) + (sqrt (((Re s) ^2) + ((Im s) ^2)))) / 2))) + ((sqrt (((- (Re s)) + (sqrt (((Re s) ^2) + ((Im s) ^2)))) / 2)) * <i>) is complex Element of COMPLEX
Im z is complex real ext-real Element of REAL
Re z is complex real ext-real Element of REAL
(Im z) * <i> is complex Element of COMPLEX
(Re z) + ((Im z) * <i>) is complex Element of COMPLEX
(Im s) * <i> is complex Element of COMPLEX
(Re s) + ((Im s) * <i>) is complex Element of COMPLEX
(Re z) ^2 is complex real ext-real Element of REAL
(Re z) * (Re z) is complex real ext-real set
(Im z) ^2 is complex real ext-real Element of REAL
(Im z) * (Im z) is complex real ext-real set
((Re z) ^2) - ((Im z) ^2) is complex real ext-real Element of REAL
- ((Im z) ^2) is complex real ext-real set
((Re z) ^2) + (- ((Im z) ^2)) is complex real ext-real set
2 * (Re z) is complex real ext-real Element of REAL
(2 * (Re z)) * (Im z) is complex real ext-real Element of REAL
((2 * (Re z)) * (Im z)) * <i> is complex Element of COMPLEX
(((Re z) ^2) - ((Im z) ^2)) + (((2 * (Re z)) * (Im z)) * <i>) is complex Element of COMPLEX
(Re z) * (Im z) is complex real ext-real Element of REAL
2 * ((Re z) * (Im z)) is complex real ext-real Element of REAL
((Re z) ^2) + ((Im z) ^2) is complex real ext-real Element of REAL
(((Re z) ^2) + ((Im z) ^2)) ^2 is complex real ext-real Element of REAL
(((Re z) ^2) + ((Im z) ^2)) * (((Re z) ^2) + ((Im z) ^2)) is complex real ext-real set
sqrt ((((Re z) ^2) + ((Im z) ^2)) ^2) is complex real ext-real Element of REAL
- (Re z) is complex real ext-real Element of REAL
- (Im z) is complex real ext-real Element of REAL
z is complex Element of COMPLEX
(z) is complex Element of COMPLEX
z * z is complex set
s is complex Element of COMPLEX
Re s is complex real ext-real Element of REAL
(Re s) ^2 is complex real ext-real Element of REAL
(Re s) * (Re s) is complex real ext-real set
Im s is complex real ext-real Element of REAL
(Im s) ^2 is complex real ext-real Element of REAL
(Im s) * (Im s) is complex real ext-real set
((Re s) ^2) + ((Im s) ^2) is complex real ext-real Element of REAL
sqrt (((Re s) ^2) + ((Im s) ^2)) is complex real ext-real Element of REAL
(Re s) + (sqrt (((Re s) ^2) + ((Im s) ^2))) is complex real ext-real Element of REAL
((Re s) + (sqrt (((Re s) ^2) + ((Im s) ^2)))) / 2 is complex real ext-real Element of REAL
2 " is non empty complex real ext-real positive non negative set
((Re s) + (sqrt (((Re s) ^2) + ((Im s) ^2)))) * (2 ") is complex real ext-real set
sqrt (((Re s) + (sqrt (((Re s) ^2) + ((Im s) ^2)))) / 2) is complex real ext-real Element of REAL
- (Re s) is complex real ext-real Element of REAL
(- (Re s)) + (sqrt (((Re s) ^2) + ((Im s) ^2))) is complex real ext-real Element of REAL
((- (Re s)) + (sqrt (((Re s) ^2) + ((Im s) ^2)))) / 2 is complex real ext-real Element of REAL
((- (Re s)) + (sqrt (((Re s) ^2) + ((Im s) ^2)))) * (2 ") is complex real ext-real set
sqrt (((- (Re s)) + (sqrt (((Re s) ^2) + ((Im s) ^2)))) / 2) is complex real ext-real Element of REAL
(sqrt (((- (Re s)) + (sqrt (((Re s) ^2) + ((Im s) ^2)))) / 2)) * <i> is complex Element of COMPLEX
(sqrt (((Re s) + (sqrt (((Re s) ^2) + ((Im s) ^2)))) / 2)) + ((sqrt (((- (Re s)) + (sqrt (((Re s) ^2) + ((Im s) ^2)))) / 2)) * <i>) is complex Element of COMPLEX
- (sqrt (((Re s) + (sqrt (((Re s) ^2) + ((Im s) ^2)))) / 2)) is complex real ext-real Element of REAL
- (sqrt (((- (Re s)) + (sqrt (((Re s) ^2) + ((Im s) ^2)))) / 2)) is complex real ext-real Element of REAL
(- (sqrt (((- (Re s)) + (sqrt (((Re s) ^2) + ((Im s) ^2)))) / 2))) * <i> is complex Element of COMPLEX
(- (sqrt (((Re s) + (sqrt (((Re s) ^2) + ((Im s) ^2)))) / 2))) + ((- (sqrt (((- (Re s)) + (sqrt (((Re s) ^2) + ((Im s) ^2)))) / 2))) * <i>) is complex Element of COMPLEX
(sqrt (((Re s) + (sqrt (((Re s) ^2) + ((Im s) ^2)))) / 2)) + ((- (sqrt (((- (Re s)) + (sqrt (((Re s) ^2) + ((Im s) ^2)))) / 2))) * <i>) is complex Element of COMPLEX
(- (sqrt (((Re s) + (sqrt (((Re s) ^2) + ((Im s) ^2)))) / 2))) + ((sqrt (((- (Re s)) + (sqrt (((Re s) ^2) + ((Im s) ^2)))) / 2)) * <i>) is complex Element of COMPLEX
Re z is complex real ext-real Element of REAL
Im z is complex real ext-real Element of REAL
(Re z) ^2 is complex real ext-real Element of REAL
(Re z) * (Re z) is complex real ext-real set
(Im z) ^2 is complex real ext-real Element of REAL
(Im z) * (Im z) is complex real ext-real set
(Im z) * <i> is complex Element of COMPLEX
(Re z) + ((Im z) * <i>) is complex Element of COMPLEX
(Im s) * <i> is complex Element of COMPLEX
(Re s) + ((Im s) * <i>) is complex Element of COMPLEX
((Re z) ^2) - ((Im z) ^2) is complex real ext-real Element of REAL
- ((Im z) ^2) is complex real ext-real set
((Re z) ^2) + (- ((Im z) ^2)) is complex real ext-real set
2 * (Re z) is complex real ext-real Element of REAL
(2 * (Re z)) * (Im z) is complex real ext-real Element of REAL
((2 * (Re z)) * (Im z)) * <i> is complex Element of COMPLEX
(((Re z) ^2) - ((Im z) ^2)) + (((2 * (Re z)) * (Im z)) * <i>) is complex Element of COMPLEX
((Re z) ^2) + ((Im z) ^2) is complex real ext-real Element of REAL
(((Re z) ^2) + ((Im z) ^2)) ^2 is complex real ext-real Element of REAL
(((Re z) ^2) + ((Im z) ^2)) * (((Re z) ^2) + ((Im z) ^2)) is complex real ext-real set
sqrt ((((Re z) ^2) + ((Im z) ^2)) ^2) is complex real ext-real Element of REAL
- (Re z) is complex real ext-real Element of REAL
- (Im z) is complex real ext-real Element of REAL
(Re z) * (Im z) is complex real ext-real Element of REAL
2 * ((Re z) * (Im z)) is complex real ext-real Element of REAL
- (Re z) is complex real ext-real Element of REAL
- (Im z) is complex real ext-real Element of REAL
z is complex Element of COMPLEX
s is complex Element of COMPLEX
s / z is complex Element of COMPLEX
z " is complex set
s * (z ") is complex set
- (s / z) is complex Element of COMPLEX
n is complex Element of COMPLEX
Polynom (z,s,0,n) is complex set
n ^2 is complex set
n * n is complex set
z * (n ^2) is complex set
s * n is complex set
(z * (n ^2)) + (s * n) is complex set
((z * (n ^2)) + (s * n)) + 0 is complex set
z * n is complex Element of COMPLEX
(z * n) + s is complex Element of COMPLEX
((z * n) + s) * n is complex Element of COMPLEX
Polynom (z,s,n) is complex set
z * n is complex set
(z * n) + s is complex set
z is complex Element of COMPLEX
s is complex Element of COMPLEX
s / z is complex Element of COMPLEX
z " is complex set
s * (z ") is complex set
- (s / z) is complex Element of COMPLEX
n is complex Element of COMPLEX
Polynom (z,0,s,n) is complex set
n ^2 is complex set
n * n is complex set
z * (n ^2) is complex set
0 * n is complex set
(z * (n ^2)) + (0 * n) is complex set
((z * (n ^2)) + (0 * n)) + s is complex set
(n) is complex Element of COMPLEX
- s is complex Element of COMPLEX
(- s) / z is complex Element of COMPLEX
(- s) * (z ") is complex set
t is complex Element of COMPLEX
Re t is complex real ext-real Element of REAL
(Re t) ^2 is complex real ext-real Element of REAL
(Re t) * (Re t) is complex real ext-real set
Im t is complex real ext-real Element of REAL
(Im t) ^2 is complex real ext-real Element of REAL
(Im t) * (Im t) is complex real ext-real set
((Re t) ^2) + ((Im t) ^2) is complex real ext-real Element of REAL
sqrt (((Re t) ^2) + ((Im t) ^2)) is complex real ext-real Element of REAL
(Re t) + (sqrt (((Re t) ^2) + ((Im t) ^2))) is complex real ext-real Element of REAL
((Re t) + (sqrt (((Re t) ^2) + ((Im t) ^2)))) / 2 is complex real ext-real Element of REAL
2 " is non empty complex real ext-real positive non negative set
((Re t) + (sqrt (((Re t) ^2) + ((Im t) ^2)))) * (2 ") is complex real ext-real set
sqrt (((Re t) + (sqrt (((Re t) ^2) + ((Im t) ^2)))) / 2) is complex real ext-real Element of REAL
- (Re t) is complex real ext-real Element of REAL
(- (Re t)) + (sqrt (((Re t) ^2) + ((Im t) ^2))) is complex real ext-real Element of REAL
((- (Re t)) + (sqrt (((Re t) ^2) + ((Im t) ^2)))) / 2 is complex real ext-real Element of REAL
((- (Re t)) + (sqrt (((Re t) ^2) + ((Im t) ^2)))) * (2 ") is complex real ext-real set
sqrt (((- (Re t)) + (sqrt (((Re t) ^2) + ((Im t) ^2)))) / 2) is complex real ext-real Element of REAL
(sqrt (((- (Re t)) + (sqrt (((Re t) ^2) + ((Im t) ^2)))) / 2)) * <i> is complex Element of COMPLEX
(sqrt (((Re t) + (sqrt (((Re t) ^2) + ((Im t) ^2)))) / 2)) + ((sqrt (((- (Re t)) + (sqrt (((Re t) ^2) + ((Im t) ^2)))) / 2)) * <i>) is complex Element of COMPLEX
- (sqrt (((Re t) + (sqrt (((Re t) ^2) + ((Im t) ^2)))) / 2)) is complex real ext-real Element of REAL
- (sqrt (((- (Re t)) + (sqrt (((Re t) ^2) + ((Im t) ^2)))) / 2)) is complex real ext-real Element of REAL
(- (sqrt (((- (Re t)) + (sqrt (((Re t) ^2) + ((Im t) ^2)))) / 2))) * <i> is complex Element of COMPLEX
(- (sqrt (((Re t) + (sqrt (((Re t) ^2) + ((Im t) ^2)))) / 2))) + ((- (sqrt (((- (Re t)) + (sqrt (((Re t) ^2) + ((Im t) ^2)))) / 2))) * <i>) is complex Element of COMPLEX
(sqrt (((Re t) + (sqrt (((Re t) ^2) + ((Im t) ^2)))) / 2)) + ((- (sqrt (((- (Re t)) + (sqrt (((Re t) ^2) + ((Im t) ^2)))) / 2))) * <i>) is complex Element of COMPLEX
(- (sqrt (((Re t) + (sqrt (((Re t) ^2) + ((Im t) ^2)))) / 2))) + ((sqrt (((- (Re t)) + (sqrt (((Re t) ^2) + ((Im t) ^2)))) / 2)) * <i>) is complex Element of COMPLEX
z is complex Element of COMPLEX
2 * z is complex Element of COMPLEX
s is complex Element of COMPLEX
s / (2 * z) is complex Element of COMPLEX
(2 * z) " is complex set
s * ((2 * z) ") is complex set
((s / (2 * z))) is complex Element of COMPLEX
(s / (2 * z)) * (s / (2 * z)) is complex set
n is complex Element of COMPLEX
n / z is complex Element of COMPLEX
z " is complex set
n * (z ") is complex set
((s / (2 * z))) - (n / z) is complex Element of COMPLEX
- (n / z) is complex set
((s / (2 * z))) + (- (n / z)) is complex set
t is complex Element of COMPLEX
Polynom (z,s,n,t) is complex set
t ^2 is complex set
t * t is complex set
z * (t ^2) is complex set
s * t is complex set
(z * (t ^2)) + (s * t) is complex set
((z * (t ^2)) + (s * t)) + n is complex set
(t) is complex Element of COMPLEX
z * (t) is complex Element of COMPLEX
s * t is complex Element of COMPLEX
(z * (t)) + (s * t) is complex Element of COMPLEX
((z * (t)) + (s * t)) + n is complex Element of COMPLEX
(((z * (t)) + (s * t)) + n) / z is complex Element of COMPLEX
(((z * (t)) + (s * t)) + n) * (z ") is complex set
(t) * z is complex Element of COMPLEX
((t) * z) / z is complex Element of COMPLEX
((t) * z) * (z ") is complex set
(s * t) / z is complex Element of COMPLEX
(s * t) * (z ") is complex set
(((t) * z) / z) + ((s * t) / z) is complex Element of COMPLEX
((((t) * z) / z) + ((s * t) / z)) + (n / z) is complex Element of COMPLEX
s / z is complex Element of COMPLEX
s * (z ") is complex set
(s / z) * t is complex Element of COMPLEX
(t) + ((s / z) * t) is complex Element of COMPLEX
((t) + ((s / z) * t)) + (n / z) is complex Element of COMPLEX
2 * s is complex Element of COMPLEX
(2 * s) / (2 * z) is complex Element of COMPLEX
(2 * s) * ((2 * z) ") is complex set
((2 * s) / (2 * z)) * t is complex Element of COMPLEX
(t) + (((2 * s) / (2 * z)) * t) is complex Element of COMPLEX
((t) + (((2 * s) / (2 * z)) * t)) + (n / z) is complex Element of COMPLEX
t + (s / (2 * z)) is complex Element of COMPLEX
((t + (s / (2 * z)))) is complex Element of COMPLEX
(t + (s / (2 * z))) * (t + (s / (2 * z))) is complex set
((t + (s / (2 * z)))) - (((s / (2 * z))) - (n / z)) is complex Element of COMPLEX
- (((s / (2 * z))) - (n / z)) is complex set
((t + (s / (2 * z)))) + (- (((s / (2 * z))) - (n / z))) is complex set
t is complex Element of COMPLEX
Re t is complex real ext-real Element of REAL
(Re t) ^2 is complex real ext-real Element of REAL
(Re t) * (Re t) is complex real ext-real set
Im t is complex real ext-real Element of REAL
(Im t) ^2 is complex real ext-real Element of REAL
(Im t) * (Im t) is complex real ext-real set
((Re t) ^2) + ((Im t) ^2) is complex real ext-real Element of REAL
sqrt (((Re t) ^2) + ((Im t) ^2)) is complex real ext-real Element of REAL
(Re t) + (sqrt (((Re t) ^2) + ((Im t) ^2))) is complex real ext-real Element of REAL
((Re t) + (sqrt (((Re t) ^2) + ((Im t) ^2)))) / 2 is complex real ext-real Element of REAL
2 " is non empty complex real ext-real positive non negative set
((Re t) + (sqrt (((Re t) ^2) + ((Im t) ^2)))) * (2 ") is complex real ext-real set
sqrt (((Re t) + (sqrt (((Re t) ^2) + ((Im t) ^2)))) / 2) is complex real ext-real Element of REAL
- (Re t) is complex real ext-real Element of REAL
(- (Re t)) + (sqrt (((Re t) ^2) + ((Im t) ^2))) is complex real ext-real Element of REAL
((- (Re t)) + (sqrt (((Re t) ^2) + ((Im t) ^2)))) / 2 is complex real ext-real Element of REAL
((- (Re t)) + (sqrt (((Re t) ^2) + ((Im t) ^2)))) * (2 ") is complex real ext-real set
sqrt (((- (Re t)) + (sqrt (((Re t) ^2) + ((Im t) ^2)))) / 2) is complex real ext-real Element of REAL
(sqrt (((- (Re t)) + (sqrt (((Re t) ^2) + ((Im t) ^2)))) / 2)) * <i> is complex Element of COMPLEX
(sqrt (((Re t) + (sqrt (((Re t) ^2) + ((Im t) ^2)))) / 2)) + ((sqrt (((- (Re t)) + (sqrt (((Re t) ^2) + ((Im t) ^2)))) / 2)) * <i>) is complex Element of COMPLEX
- (sqrt (((Re t) + (sqrt (((Re t) ^2) + ((Im t) ^2)))) / 2)) is complex real ext-real Element of REAL
- (sqrt (((- (Re t)) + (sqrt (((Re t) ^2) + ((Im t) ^2)))) / 2)) is complex real ext-real Element of REAL
(- (sqrt (((- (Re t)) + (sqrt (((Re t) ^2) + ((Im t) ^2)))) / 2))) * <i> is complex Element of COMPLEX
(- (sqrt (((Re t) + (sqrt (((Re t) ^2) + ((Im t) ^2)))) / 2))) + ((- (sqrt (((- (Re t)) + (sqrt (((Re t) ^2) + ((Im t) ^2)))) / 2))) * <i>) is complex Element of COMPLEX
(sqrt (((Re t) + (sqrt (((Re t) ^2) + ((Im t) ^2)))) / 2)) + ((- (sqrt (((- (Re t)) + (sqrt (((Re t) ^2) + ((Im t) ^2)))) / 2))) * <i>) is complex Element of COMPLEX
(- (sqrt (((Re t) + (sqrt (((Re t) ^2) + ((Im t) ^2)))) / 2))) + ((sqrt (((- (Re t)) + (sqrt (((Re t) ^2) + ((Im t) ^2)))) / 2)) * <i>) is complex Element of COMPLEX
t is complex Element of COMPLEX
((sqrt (((Re t) + (sqrt (((Re t) ^2) + ((Im t) ^2)))) / 2)) + ((sqrt (((- (Re t)) + (sqrt (((Re t) ^2) + ((Im t) ^2)))) / 2)) * <i>)) - t is complex Element of COMPLEX
- t is complex set
((sqrt (((Re t) + (sqrt (((Re t) ^2) + ((Im t) ^2)))) / 2)) + ((sqrt (((- (Re t)) + (sqrt (((Re t) ^2) + ((Im t) ^2)))) / 2)) * <i>)) + (- t) is complex set
((- (sqrt (((Re t) + (sqrt (((Re t) ^2) + ((Im t) ^2)))) / 2))) + ((- (sqrt (((- (Re t)) + (sqrt (((Re t) ^2) + ((Im t) ^2)))) / 2))) * <i>)) - t is complex Element of COMPLEX
((- (sqrt (((Re t) + (sqrt (((Re t) ^2) + ((Im t) ^2)))) / 2))) + ((- (sqrt (((- (Re t)) + (sqrt (((Re t) ^2) + ((Im t) ^2)))) / 2))) * <i>)) + (- t) is complex set
((sqrt (((Re t) + (sqrt (((Re t) ^2) + ((Im t) ^2)))) / 2)) + ((- (sqrt (((- (Re t)) + (sqrt (((Re t) ^2) + ((Im t) ^2)))) / 2))) * <i>)) - t is complex Element of COMPLEX
((sqrt (((Re t) + (sqrt (((Re t) ^2) + ((Im t) ^2)))) / 2)) + ((- (sqrt (((- (Re t)) + (sqrt (((Re t) ^2) + ((Im t) ^2)))) / 2))) * <i>)) + (- t) is complex set
((- (sqrt (((Re t) + (sqrt (((Re t) ^2) + ((Im t) ^2)))) / 2))) + ((sqrt (((- (Re t)) + (sqrt (((Re t) ^2) + ((Im t) ^2)))) / 2)) * <i>)) - t is complex Element of COMPLEX
((- (sqrt (((Re t) + (sqrt (((Re t) ^2) + ((Im t) ^2)))) / 2))) + ((sqrt (((- (Re t)) + (sqrt (((Re t) ^2) + ((Im t) ^2)))) / 2)) * <i>)) + (- t) is complex set
t + t is complex Element of COMPLEX
(t + t) - t is complex Element of COMPLEX
(t + t) + (- t) is complex set
z is complex Element of COMPLEX
z |^ 3 is complex set
z * z is complex Element of COMPLEX
(z * z) * z is complex Element of COMPLEX
(z) is complex Element of COMPLEX
z * z is complex set
(z) * z is complex Element of COMPLEX
(z) is complex Element of COMPLEX
z ^2 is complex set
(z ^2) * z is complex Element of COMPLEX
2 + 1 is non empty ordinal natural complex real ext-real positive non negative V43() V44() V69() V70() V71() V72() V73() V74() Element of NAT
z |^ (2 + 1) is complex set
1 + 1 is non empty ordinal natural complex real ext-real positive non negative V43() V44() V69() V70() V71() V72() V73() V74() Element of NAT
z |^ (1 + 1) is complex set
(z |^ (1 + 1)) * z is complex Element of COMPLEX
z |^ 1 is complex set
(z |^ 1) * z is complex Element of COMPLEX
((z |^ 1) * z) * z is complex Element of COMPLEX
z is complex Element of COMPLEX
s is complex Element of COMPLEX
s / z is complex Element of COMPLEX
z " is complex set
s * (z ") is complex set
- (s / z) is complex Element of COMPLEX
n is complex Element of COMPLEX
Polynom (z,s,0,0,n) is complex set
n |^ 3 is complex set
z * (n |^ 3) is complex set
n ^2 is complex set
n * n is complex set
s * (n ^2) is complex set
(z * (n |^ 3)) + (s * (n ^2)) is complex set
0 * n is complex set
((z * (n |^ 3)) + (s * (n ^2))) + (0 * n) is complex set
(((z * (n |^ 3)) + (s * (n ^2))) + (0 * n)) + 0 is complex set
(n) is complex Element of COMPLEX
(n ^2) * n is complex Element of COMPLEX
z * (n) is complex Element of COMPLEX
s * (n ^2) is complex Element of COMPLEX
(z * (n)) + (s * (n ^2)) is complex Element of COMPLEX
0 * n is complex Element of COMPLEX
((z * (n)) + (s * (n ^2))) + (0 * n) is complex Element of COMPLEX
(((z * (n)) + (s * (n ^2))) + (0 * n)) + 0 is complex Element of COMPLEX
z * n is complex Element of COMPLEX
(z * n) + s is complex Element of COMPLEX
(n) is complex Element of COMPLEX
((z * n) + s) * (n) is complex Element of COMPLEX
Polynom (z,s,n) is complex set
z * n is complex set
(z * n) + s is complex set
1 * (n) is complex Element of COMPLEX
(1 * (n)) + (0 * n) is complex Element of COMPLEX
((1 * (n)) + (0 * n)) + 0 is complex Element of COMPLEX
z is complex Element of COMPLEX
s is complex Element of COMPLEX
s / z is complex Element of COMPLEX
z " is complex set
s * (z ") is complex set
- (s / z) is complex Element of COMPLEX
n is complex Element of COMPLEX
Polynom (z,0,s,0,n) is complex set
n |^ 3 is complex set
z * (n |^ 3) is complex set
n ^2 is complex set
n * n is complex set
0 * (n ^2) is complex set
(z * (n |^ 3)) + (0 * (n ^2)) is complex set
s * n is complex set
((z * (n |^ 3)) + (0 * (n ^2))) + (s * n) is complex set
(((z * (n |^ 3)) + (0 * (n ^2))) + (s * n)) + 0 is complex set
(n) is complex Element of COMPLEX
(n ^2) * n is complex Element of COMPLEX
z * (n) is complex Element of COMPLEX
0 * (n ^2) is complex Element of COMPLEX
(z * (n)) + (0 * (n ^2)) is complex Element of COMPLEX
s * n is complex Element of COMPLEX
((z * (n)) + (0 * (n ^2))) + (s * n) is complex Element of COMPLEX
(((z * (n)) + (0 * (n ^2))) + (s * n)) + 0 is complex Element of COMPLEX
t is complex Element of COMPLEX
Re t is complex real ext-real Element of REAL
(Re t) ^2 is complex real ext-real Element of REAL
(Re t) * (Re t) is complex real ext-real set
Im t is complex real ext-real Element of REAL
(Im t) ^2 is complex real ext-real Element of REAL
(Im t) * (Im t) is complex real ext-real set
((Re t) ^2) + ((Im t) ^2) is complex real ext-real Element of REAL
sqrt (((Re t) ^2) + ((Im t) ^2)) is complex real ext-real Element of REAL
(Re t) + (sqrt (((Re t) ^2) + ((Im t) ^2))) is complex real ext-real Element of REAL
((Re t) + (sqrt (((Re t) ^2) + ((Im t) ^2)))) / 2 is complex real ext-real Element of REAL
2 " is non empty complex real ext-real positive non negative set
((Re t) + (sqrt (((Re t) ^2) + ((Im t) ^2)))) * (2 ") is complex real ext-real set
sqrt (((Re t) + (sqrt (((Re t) ^2) + ((Im t) ^2)))) / 2) is complex real ext-real Element of REAL
- (Re t) is complex real ext-real Element of REAL
(- (Re t)) + (sqrt (((Re t) ^2) + ((Im t) ^2))) is complex real ext-real Element of REAL
((- (Re t)) + (sqrt (((Re t) ^2) + ((Im t) ^2)))) / 2 is complex real ext-real Element of REAL
((- (Re t)) + (sqrt (((Re t) ^2) + ((Im t) ^2)))) * (2 ") is complex real ext-real set
sqrt (((- (Re t)) + (sqrt (((Re t) ^2) + ((Im t) ^2)))) / 2) is complex real ext-real Element of REAL
(sqrt (((- (Re t)) + (sqrt (((Re t) ^2) + ((Im t) ^2)))) / 2)) * <i> is complex Element of COMPLEX
(sqrt (((Re t) + (sqrt (((Re t) ^2) + ((Im t) ^2)))) / 2)) + ((sqrt (((- (Re t)) + (sqrt (((Re t) ^2) + ((Im t) ^2)))) / 2)) * <i>) is complex Element of COMPLEX
- (sqrt (((Re t) + (sqrt (((Re t) ^2) + ((Im t) ^2)))) / 2)) is complex real ext-real Element of REAL
- (sqrt (((- (Re t)) + (sqrt (((Re t) ^2) + ((Im t) ^2)))) / 2)) is complex real ext-real Element of REAL
(- (sqrt (((- (Re t)) + (sqrt (((Re t) ^2) + ((Im t) ^2)))) / 2))) * <i> is complex Element of COMPLEX
(- (sqrt (((Re t) + (sqrt (((Re t) ^2) + ((Im t) ^2)))) / 2))) + ((- (sqrt (((- (Re t)) + (sqrt (((Re t) ^2) + ((Im t) ^2)))) / 2))) * <i>) is complex Element of COMPLEX
(sqrt (((Re t) + (sqrt (((Re t) ^2) + ((Im t) ^2)))) / 2)) + ((- (sqrt (((- (Re t)) + (sqrt (((Re t) ^2) + ((Im t) ^2)))) / 2))) * <i>) is complex Element of COMPLEX
(- (sqrt (((Re t) + (sqrt (((Re t) ^2) + ((Im t) ^2)))) / 2))) + ((sqrt (((- (Re t)) + (sqrt (((Re t) ^2) + ((Im t) ^2)))) / 2)) * <i>) is complex Element of COMPLEX
(n) is complex Element of COMPLEX
z * (n) is complex Element of COMPLEX
(z * (n)) + s is complex Element of COMPLEX
((z * (n)) + s) * n is complex Element of COMPLEX
Polynom (z,0,s,n) is complex set
z * (n ^2) is complex set
0 * n is complex set
(z * (n ^2)) + (0 * n) is complex set
((z * (n ^2)) + (0 * n)) + s is complex set
z is complex Element of COMPLEX
2 * z is complex Element of COMPLEX
s is complex Element of COMPLEX
s / (2 * z) is complex Element of COMPLEX
(2 * z) " is complex set
s * ((2 * z) ") is complex set
((s / (2 * z))) is complex Element of COMPLEX
(s / (2 * z)) * (s / (2 * z)) is complex set
n is complex Element of COMPLEX
n / z is complex Element of COMPLEX
z " is complex set
n * (z ") is complex set
((s / (2 * z))) - (n / z) is complex Element of COMPLEX
- (n / z) is complex set
((s / (2 * z))) + (- (n / z)) is complex set
t is complex Element of COMPLEX
Polynom (z,s,n,0,t) is complex set
t |^ 3 is complex set
z * (t |^ 3) is complex set
t ^2 is complex set
t * t is complex set
s * (t ^2) is complex set
(z * (t |^ 3)) + (s * (t ^2)) is complex set
n * t is complex set
((z * (t |^ 3)) + (s * (t ^2))) + (n * t) is complex set
(((z * (t |^ 3)) + (s * (t ^2))) + (n * t)) + 0 is complex set
(t) is complex Element of COMPLEX
(t ^2) * t is complex Element of COMPLEX
z * (t) is complex Element of COMPLEX
s * (t ^2) is complex Element of COMPLEX
(z * (t)) + (s * (t ^2)) is complex Element of COMPLEX
n * t is complex Element of COMPLEX
((z * (t)) + (s * (t ^2))) + (n * t) is complex Element of COMPLEX
(((z * (t)) + (s * (t ^2))) + (n * t)) + 0 is complex Element of COMPLEX
t is complex Element of COMPLEX
Re t is complex real ext-real Element of REAL
(Re t) ^2 is complex real ext-real Element of REAL
(Re t) * (Re t) is complex real ext-real set
Im t is complex real ext-real Element of REAL
(Im t) ^2 is complex real ext-real Element of REAL
(Im t) * (Im t) is complex real ext-real set
((Re t) ^2) + ((Im t) ^2) is complex real ext-real Element of REAL
sqrt (((Re t) ^2) + ((Im t) ^2)) is complex real ext-real Element of REAL
(Re t) + (sqrt (((Re t) ^2) + ((Im t) ^2))) is complex real ext-real Element of REAL
((Re t) + (sqrt (((Re t) ^2) + ((Im t) ^2)))) / 2 is complex real ext-real Element of REAL
2 " is non empty complex real ext-real positive non negative set
((Re t) + (sqrt (((Re t) ^2) + ((Im t) ^2)))) * (2 ") is complex real ext-real set
sqrt (((Re t) + (sqrt (((Re t) ^2) + ((Im t) ^2)))) / 2) is complex real ext-real Element of REAL
- (Re t) is complex real ext-real Element of REAL
(- (Re t)) + (sqrt (((Re t) ^2) + ((Im t) ^2))) is complex real ext-real Element of REAL
((- (Re t)) + (sqrt (((Re t) ^2) + ((Im t) ^2)))) / 2 is complex real ext-real Element of REAL
((- (Re t)) + (sqrt (((Re t) ^2) + ((Im t) ^2)))) * (2 ") is complex real ext-real set
sqrt (((- (Re t)) + (sqrt (((Re t) ^2) + ((Im t) ^2)))) / 2) is complex real ext-real Element of REAL
(sqrt (((- (Re t)) + (sqrt (((Re t) ^2) + ((Im t) ^2)))) / 2)) * <i> is complex Element of COMPLEX
(sqrt (((Re t) + (sqrt (((Re t) ^2) + ((Im t) ^2)))) / 2)) + ((sqrt (((- (Re t)) + (sqrt (((Re t) ^2) + ((Im t) ^2)))) / 2)) * <i>) is complex Element of COMPLEX
- (sqrt (((Re t) + (sqrt (((Re t) ^2) + ((Im t) ^2)))) / 2)) is complex real ext-real Element of REAL
- (sqrt (((- (Re t)) + (sqrt (((Re t) ^2) + ((Im t) ^2)))) / 2)) is complex real ext-real Element of REAL
(- (sqrt (((- (Re t)) + (sqrt (((Re t) ^2) + ((Im t) ^2)))) / 2))) * <i> is complex Element of COMPLEX
(- (sqrt (((Re t) + (sqrt (((Re t) ^2) + ((Im t) ^2)))) / 2))) + ((- (sqrt (((- (Re t)) + (sqrt (((Re t) ^2) + ((Im t) ^2)))) / 2))) * <i>) is complex Element of COMPLEX
(sqrt (((Re t) + (sqrt (((Re t) ^2) + ((Im t) ^2)))) / 2)) + ((- (sqrt (((- (Re t)) + (sqrt (((Re t) ^2) + ((Im t) ^2)))) / 2))) * <i>) is complex Element of COMPLEX
(- (sqrt (((Re t) + (sqrt (((Re t) ^2) + ((Im t) ^2)))) / 2))) + ((sqrt (((- (Re t)) + (sqrt (((Re t) ^2) + ((Im t) ^2)))) / 2)) * <i>) is complex Element of COMPLEX
t is complex Element of COMPLEX
((sqrt (((Re t) + (sqrt (((Re t) ^2) + ((Im t) ^2)))) / 2)) + ((sqrt (((- (Re t)) + (sqrt (((Re t) ^2) + ((Im t) ^2)))) / 2)) * <i>)) - t is complex Element of COMPLEX
- t is complex set
((sqrt (((Re t) + (sqrt (((Re t) ^2) + ((Im t) ^2)))) / 2)) + ((sqrt (((- (Re t)) + (sqrt (((Re t) ^2) + ((Im t) ^2)))) / 2)) * <i>)) + (- t) is complex set
((- (sqrt (((Re t) + (sqrt (((Re t) ^2) + ((Im t) ^2)))) / 2))) + ((- (sqrt (((- (Re t)) + (sqrt (((Re t) ^2) + ((Im t) ^2)))) / 2))) * <i>)) - t is complex Element of COMPLEX
((- (sqrt (((Re t) + (sqrt (((Re t) ^2) + ((Im t) ^2)))) / 2))) + ((- (sqrt (((- (Re t)) + (sqrt (((Re t) ^2) + ((Im t) ^2)))) / 2))) * <i>)) + (- t) is complex set
((sqrt (((Re t) + (sqrt (((Re t) ^2) + ((Im t) ^2)))) / 2)) + ((- (sqrt (((- (Re t)) + (sqrt (((Re t) ^2) + ((Im t) ^2)))) / 2))) * <i>)) - t is complex Element of COMPLEX
((sqrt (((Re t) + (sqrt (((Re t) ^2) + ((Im t) ^2)))) / 2)) + ((- (sqrt (((- (Re t)) + (sqrt (((Re t) ^2) + ((Im t) ^2)))) / 2))) * <i>)) + (- t) is complex set
((- (sqrt (((Re t) + (sqrt (((Re t) ^2) + ((Im t) ^2)))) / 2))) + ((sqrt (((- (Re t)) + (sqrt (((Re t) ^2) + ((Im t) ^2)))) / 2)) * <i>)) - t is complex Element of COMPLEX
((- (sqrt (((Re t) + (sqrt (((Re t) ^2) + ((Im t) ^2)))) / 2))) + ((sqrt (((- (Re t)) + (sqrt (((Re t) ^2) + ((Im t) ^2)))) / 2)) * <i>)) + (- t) is complex set
Polynom (z,s,n,t) is complex set
z * (t ^2) is complex set
s * t is complex set
(z * (t ^2)) + (s * t) is complex set
((z * (t ^2)) + (s * t)) + n is complex set
(Polynom (z,s,n,t)) * t is complex Element of COMPLEX
z is ordinal natural complex real ext-real non negative set
0 |^ z is ordinal natural complex real ext-real non negative Element of REAL
0 + 1 is non empty ordinal natural complex real ext-real positive non negative V43() V44() V69() V70() V71() V72() V73() V74() Element of NAT
z is complex real ext-real set
cos z is complex real ext-real set
sin z is complex real ext-real set
(sin z) * <i> is complex Element of COMPLEX
(cos z) + ((sin z) * <i>) is complex Element of COMPLEX
s is ordinal natural complex real ext-real non negative V43() V44() V69() V70() V71() V72() V73() V74() Element of NAT
((cos z) + ((sin z) * <i>)) |^ s is complex set
s * z is complex real ext-real Element of REAL
cos (s * z) is complex real ext-real Element of REAL
sin (s * z) is complex real ext-real Element of REAL
(sin (s * z)) * <i> is complex Element of COMPLEX
(cos (s * z)) + ((sin (s * z)) * <i>) is complex Element of COMPLEX
s + 1 is non empty ordinal natural complex real ext-real positive non negative V43() V44() V69() V70() V71() V72() V73() V74() Element of NAT
((cos z) + ((sin z) * <i>)) |^ (s + 1) is complex set
((cos (s * z)) + ((sin (s * z)) * <i>)) * ((cos z) + ((sin z) * <i>)) is complex Element of COMPLEX
(cos (s * z)) * (cos z) is complex real ext-real Element of REAL
(sin (s * z)) * (sin z) is complex real ext-real Element of REAL
((cos (s * z)) * (cos z)) - ((sin (s * z)) * (sin z)) is complex real ext-real Element of REAL
- ((sin (s * z)) * (sin z)) is complex real ext-real set
((cos (s * z)) * (cos z)) + (- ((sin (s * z)) * (sin z))) is complex real ext-real set
(cos (s * z)) * (sin z) is complex real ext-real Element of REAL
(cos z) * (sin (s * z)) is complex real ext-real Element of REAL
((cos (s * z)) * (sin z)) + ((cos z) * (sin (s * z))) is complex real ext-real Element of REAL
(((cos (s * z)) * (sin z)) + ((cos z) * (sin (s * z)))) * <i> is complex Element of COMPLEX
(((cos (s * z)) * (cos z)) - ((sin (s * z)) * (sin z))) + ((((cos (s * z)) * (sin z)) + ((cos z) * (sin (s * z)))) * <i>) is complex Element of COMPLEX
(s * z) + z is complex real ext-real Element of REAL
cos ((s * z) + z) is complex real ext-real Element of REAL
(cos ((s * z) + z)) + ((((cos (s * z)) * (sin z)) + ((cos z) * (sin (s * z)))) * <i>) is complex Element of COMPLEX
(s + 1) * z is complex real ext-real Element of REAL
cos ((s + 1) * z) is complex real ext-real Element of REAL
sin ((s + 1) * z) is complex real ext-real Element of REAL
(sin ((s + 1) * z)) * <i> is complex Element of COMPLEX
(cos ((s + 1) * z)) + ((sin ((s + 1) * z)) * <i>) is complex Element of COMPLEX
((cos z) + ((sin z) * <i>)) |^ 0 is complex set
0 * z is complex real ext-real Element of REAL
cos (0 * z) is complex real ext-real Element of REAL
sin (0 * z) is complex real ext-real Element of REAL
(sin (0 * z)) * <i> is complex Element of COMPLEX
(cos (0 * z)) + ((sin (0 * z)) * <i>) is complex Element of COMPLEX
z is complex Element of COMPLEX
|.z.| is complex real ext-real Element of REAL
Arg z is complex real ext-real Element of REAL
s is ordinal natural complex real ext-real non negative V43() V44() V69() V70() V71() V72() V73() V74() Element of NAT
z |^ s is complex set
|.z.| to_power s is complex real ext-real set
|.z.| |^ s is complex real ext-real set
s * (Arg z) is complex real ext-real Element of REAL
cos (s * (Arg z)) is complex real ext-real Element of REAL
(|.z.| to_power s) * (cos (s * (Arg z))) is complex real ext-real Element of REAL
sin (s * (Arg z)) is complex real ext-real Element of REAL
(|.z.| to_power s) * (sin (s * (Arg z))) is complex real ext-real Element of REAL
((|.z.| to_power s) * (sin (s * (Arg z)))) * <i> is complex Element of COMPLEX
((|.z.| to_power s) * (cos (s * (Arg z)))) + (((|.z.| to_power s) * (sin (s * (Arg z)))) * <i>) is complex Element of COMPLEX
cos (Arg z) is complex real ext-real Element of REAL
|.z.| * (cos (Arg z)) is complex real ext-real Element of REAL
sin (Arg z) is complex real ext-real Element of REAL
0 * (sin (Arg z)) is complex real ext-real Element of REAL
(|.z.| * (cos (Arg z))) - (0 * (sin (Arg z))) is complex real ext-real Element of REAL
- (0 * (sin (Arg z))) is complex real ext-real set
(|.z.| * (cos (Arg z))) + (- (0 * (sin (Arg z)))) is complex real ext-real set
|.z.| * (sin (Arg z)) is complex real ext-real Element of REAL
(cos (Arg z)) * 0 is complex real ext-real Element of REAL
(|.z.| * (sin (Arg z))) + ((cos (Arg z)) * 0) is complex real ext-real Element of REAL
((|.z.| * (sin (Arg z))) + ((cos (Arg z)) * 0)) * <i> is complex Element of COMPLEX
((|.z.| * (cos (Arg z))) - (0 * (sin (Arg z)))) + (((|.z.| * (sin (Arg z))) + ((cos (Arg z)) * 0)) * <i>) is complex Element of COMPLEX
(((|.z.| * (cos (Arg z))) - (0 * (sin (Arg z)))) + (((|.z.| * (sin (Arg z))) + ((cos (Arg z)) * 0)) * <i>)) |^ s is complex set
(sin (Arg z)) * <i> is complex Element of COMPLEX
(cos (Arg z)) + ((sin (Arg z)) * <i>) is complex Element of COMPLEX
|.z.| * ((cos (Arg z)) + ((sin (Arg z)) * <i>)) is complex Element of COMPLEX
(|.z.| * ((cos (Arg z)) + ((sin (Arg z)) * <i>))) |^ s is complex set
|.z.| |^ s is complex real ext-real Element of REAL
((cos (Arg z)) + ((sin (Arg z)) * <i>)) |^ s is complex set
(|.z.| |^ s) * (((cos (Arg z)) + ((sin (Arg z)) * <i>)) |^ s) is complex Element of COMPLEX
(sin (s * (Arg z))) * <i> is complex Element of COMPLEX
(cos (s * (Arg z))) + ((sin (s * (Arg z))) * <i>) is complex Element of COMPLEX
(|.z.| to_power s) * ((cos (s * (Arg z))) + ((sin (s * (Arg z))) * <i>)) is complex Element of COMPLEX
2 * PI is complex real ext-real Element of REAL
z is ordinal natural complex real ext-real non negative V43() V44() V69() V70() V71() V72() V73() V74() Element of NAT
s is ordinal natural complex real ext-real non negative V43() V44() V69() V70() V71() V72() V73() V74() Element of NAT
(2 * PI) * s is complex real ext-real Element of REAL
n is complex real ext-real Element of REAL
n + ((2 * PI) * s) is complex real ext-real Element of REAL
(n + ((2 * PI) * s)) / z is complex real ext-real Element of REAL
z " is complex real ext-real non negative set
(n + ((2 * PI) * s)) * (z ") is complex real ext-real set
cos ((n + ((2 * PI) * s)) / z) is complex real ext-real Element of REAL
sin ((n + ((2 * PI) * s)) / z) is complex real ext-real Element of REAL
(sin ((n + ((2 * PI) * s)) / z)) * <i> is complex Element of COMPLEX
(cos ((n + ((2 * PI) * s)) / z)) + ((sin ((n + ((2 * PI) * s)) / z)) * <i>) is complex Element of COMPLEX
((cos ((n + ((2 * PI) * s)) / z)) + ((sin ((n + ((2 * PI) * s)) / z)) * <i>)) |^ z is complex set
cos n is complex real ext-real Element of REAL
sin n is complex real ext-real Element of REAL
(sin n) * <i> is complex Element of COMPLEX
(cos n) + ((sin n) * <i>) is complex Element of COMPLEX
z * ((n + ((2 * PI) * s)) / z) is complex real ext-real Element of REAL
cos (z * ((n + ((2 * PI) * s)) / z)) is complex real ext-real Element of REAL
sin (z * ((n + ((2 * PI) * s)) / z)) is complex real ext-real Element of REAL
(sin (z * ((n + ((2 * PI) * s)) / z))) * <i> is complex Element of COMPLEX
(cos (z * ((n + ((2 * PI) * s)) / z))) + ((sin (z * ((n + ((2 * PI) * s)) / z))) * <i>) is complex Element of COMPLEX
cos (n + ((2 * PI) * s)) is complex real ext-real Element of REAL
(cos (n + ((2 * PI) * s))) + ((sin (z * ((n + ((2 * PI) * s)) / z))) * <i>) is complex Element of COMPLEX
sin (n + ((2 * PI) * s)) is complex real ext-real Element of REAL
(sin (n + ((2 * PI) * s))) * <i> is complex Element of COMPLEX
(cos (n + ((2 * PI) * s))) + ((sin (n + ((2 * PI) * s))) * <i>) is complex Element of COMPLEX
cos . (n + ((2 * PI) * s)) is complex real ext-real Element of REAL
(cos . (n + ((2 * PI) * s))) + ((sin (n + ((2 * PI) * s))) * <i>) is complex Element of COMPLEX
sin . (n + ((2 * PI) * s)) is complex real ext-real Element of REAL
(sin . (n + ((2 * PI) * s))) * <i> is complex Element of COMPLEX
(cos . (n + ((2 * PI) * s))) + ((sin . (n + ((2 * PI) * s))) * <i>) is complex Element of COMPLEX
sin . n is complex real ext-real Element of REAL
(sin . n) * <i> is complex Element of COMPLEX
(cos . (n + ((2 * PI) * s))) + ((sin . n) * <i>) is complex Element of COMPLEX
cos . n is complex real ext-real Element of REAL
(cos . n) + ((sin . n) * <i>) is complex Element of COMPLEX
(cos . n) + ((sin n) * <i>) is complex Element of COMPLEX
z is complex set
|.z.| is complex real ext-real Element of REAL
Arg z is complex real ext-real Element of REAL
s is ordinal natural complex real ext-real non negative V43() V44() V69() V70() V71() V72() V73() V74() Element of NAT
s -root |.z.| is complex real ext-real Element of REAL
n is ordinal natural complex real ext-real non negative V43() V44() V69() V70() V71() V72() V73() V74() Element of NAT
(2 * PI) * n is complex real ext-real Element of REAL
(Arg z) + ((2 * PI) * n) is complex real ext-real Element of REAL
((Arg z) + ((2 * PI) * n)) / s is complex real ext-real Element of REAL
s " is complex real ext-real non negative set
((Arg z) + ((2 * PI) * n)) * (s ") is complex real ext-real set
cos (((Arg z) + ((2 * PI) * n)) / s) is complex real ext-real Element of REAL
(s -root |.z.|) * (cos (((Arg z) + ((2 * PI) * n)) / s)) is complex real ext-real Element of REAL
sin (((Arg z) + ((2 * PI) * n)) / s) is complex real ext-real Element of REAL
(s -root |.z.|) * (sin (((Arg z) + ((2 * PI) * n)) / s)) is complex real ext-real Element of REAL
((s -root |.z.|) * (sin (((Arg z) + ((2 * PI) * n)) / s))) * <i> is complex Element of COMPLEX
((s -root |.z.|) * (cos (((Arg z) + ((2 * PI) * n)) / s))) + (((s -root |.z.|) * (sin (((Arg z) + ((2 * PI) * n)) / s))) * <i>) is complex Element of COMPLEX
(((s -root |.z.|) * (cos (((Arg z) + ((2 * PI) * n)) / s))) + (((s -root |.z.|) * (sin (((Arg z) + ((2 * PI) * n)) / s))) * <i>)) |^ s is complex set
0 + 1 is non empty ordinal natural complex real ext-real positive non negative V43() V44() V69() V70() V71() V72() V73() V74() Element of NAT
(sin (((Arg z) + ((2 * PI) * n)) / s)) * <i> is complex Element of COMPLEX
(cos (((Arg z) + ((2 * PI) * n)) / s)) + ((sin (((Arg z) + ((2 * PI) * n)) / s)) * <i>) is complex Element of COMPLEX
(s -root |.z.|) * ((cos (((Arg z) + ((2 * PI) * n)) / s)) + ((sin (((Arg z) + ((2 * PI) * n)) / s)) * <i>)) is complex Element of COMPLEX
((s -root |.z.|) * ((cos (((Arg z) + ((2 * PI) * n)) / s)) + ((sin (((Arg z) + ((2 * PI) * n)) / s)) * <i>))) |^ s is complex set
(s -root |.z.|) |^ s is complex real ext-real Element of REAL
((cos (((Arg z) + ((2 * PI) * n)) / s)) + ((sin (((Arg z) + ((2 * PI) * n)) / s)) * <i>)) |^ s is complex set
((s -root |.z.|) |^ s) * (((cos (((Arg z) + ((2 * PI) * n)) / s)) + ((sin (((Arg z) + ((2 * PI) * n)) / s)) * <i>)) |^ s) is complex Element of COMPLEX
cos (Arg z) is complex real ext-real Element of REAL
sin (Arg z) is complex real ext-real Element of REAL
(sin (Arg z)) * <i> is complex Element of COMPLEX
(cos (Arg z)) + ((sin (Arg z)) * <i>) is complex Element of COMPLEX
((s -root |.z.|) |^ s) * ((cos (Arg z)) + ((sin (Arg z)) * <i>)) is complex Element of COMPLEX
|.z.| * ((cos (Arg z)) + ((sin (Arg z)) * <i>)) is complex Element of COMPLEX
|.z.| * (cos (Arg z)) is complex real ext-real Element of REAL
0 * (sin (Arg z)) is complex real ext-real Element of REAL
(|.z.| * (cos (Arg z))) - (0 * (sin (Arg z))) is complex real ext-real Element of REAL
- (0 * (sin (Arg z))) is complex real ext-real set
(|.z.| * (cos (Arg z))) + (- (0 * (sin (Arg z)))) is complex real ext-real set
|.z.| * (sin (Arg z)) is complex real ext-real Element of REAL
0 * (cos (Arg z)) is complex real ext-real Element of REAL
(|.z.| * (sin (Arg z))) + (0 * (cos (Arg z))) is complex real ext-real Element of REAL
((|.z.| * (sin (Arg z))) + (0 * (cos (Arg z)))) * <i> is complex Element of COMPLEX
((|.z.| * (cos (Arg z))) - (0 * (sin (Arg z)))) + (((|.z.| * (sin (Arg z))) + (0 * (cos (Arg z)))) * <i>) is complex Element of COMPLEX
0 * (cos (((Arg z) + ((2 * PI) * n)) / s)) is complex real ext-real Element of REAL
s -root 0 is complex real ext-real Element of REAL
(s -root 0) * (sin (((Arg z) + ((2 * PI) * n)) / s)) is complex real ext-real Element of REAL
((s -root 0) * (sin (((Arg z) + ((2 * PI) * n)) / s))) * <i> is complex Element of COMPLEX
(0 * (cos (((Arg z) + ((2 * PI) * n)) / s))) + (((s -root 0) * (sin (((Arg z) + ((2 * PI) * n)) / s))) * <i>) is complex Element of COMPLEX
((0 * (cos (((Arg z) + ((2 * PI) * n)) / s))) + (((s -root 0) * (sin (((Arg z) + ((2 * PI) * n)) / s))) * <i>)) |^ s is complex set
0 * (sin (((Arg z) + ((2 * PI) * n)) / s)) is complex real ext-real Element of REAL
(0 * (sin (((Arg z) + ((2 * PI) * n)) / s))) * <i> is complex Element of COMPLEX
((0 * (sin (((Arg z) + ((2 * PI) * n)) / s))) * <i>) |^ s is complex set
z is complex Element of COMPLEX
|.z.| is complex real ext-real Element of REAL
Arg z is complex real ext-real Element of REAL
s is non empty ordinal natural complex real ext-real positive non negative V43() V44() V69() V70() V71() V72() V73() V74() Element of NAT
s -root |.z.| is complex real ext-real Element of REAL
n is ordinal natural complex real ext-real non negative V43() V44() V69() V70() V71() V72() V73() V74() Element of NAT
(2 * PI) * n is complex real ext-real Element of REAL
(Arg z) + ((2 * PI) * n) is complex real ext-real Element of REAL
((Arg z) + ((2 * PI) * n)) / s is complex real ext-real Element of REAL
s " is non empty complex real ext-real positive non negative set
((Arg z) + ((2 * PI) * n)) * (s ") is complex real ext-real set
cos (((Arg z) + ((2 * PI) * n)) / s) is complex real ext-real Element of REAL
(s -root |.z.|) * (cos (((Arg z) + ((2 * PI) * n)) / s)) is complex real ext-real Element of REAL
sin (((Arg z) + ((2 * PI) * n)) / s) is complex real ext-real Element of REAL
(s -root |.z.|) * (sin (((Arg z) + ((2 * PI) * n)) / s)) is complex real ext-real Element of REAL
((s -root |.z.|) * (sin (((Arg z) + ((2 * PI) * n)) / s))) * <i> is complex Element of COMPLEX
((s -root |.z.|) * (cos (((Arg z) + ((2 * PI) * n)) / s))) + (((s -root |.z.|) * (sin (((Arg z) + ((2 * PI) * n)) / s))) * <i>) is complex Element of COMPLEX
(((s -root |.z.|) * (cos (((Arg z) + ((2 * PI) * n)) / s))) + (((s -root |.z.|) * (sin (((Arg z) + ((2 * PI) * n)) / s))) * <i>)) |^ s is complex set
z is complex set
s is complex CRoot of 1,z
s |^ 1 is complex set
z is non empty ordinal natural complex real ext-real positive non negative set
s is complex CRoot of z, 0
n is non empty ordinal natural complex real ext-real positive non negative set
s |^ n is complex set
t is ordinal natural complex real ext-real non negative set
t + 1 is non empty ordinal natural complex real ext-real positive non negative V43() V44() V69() V70() V71() V72() V73() V74() Element of NAT
t is non empty ordinal natural complex real ext-real positive non negative set
t is non empty ordinal natural complex real ext-real positive non negative set
s |^ t is complex set
(s |^ t) * s is complex Element of COMPLEX
s |^ z is complex set
s |^ 1 is complex set
z is non empty ordinal natural complex real ext-real positive non negative V43() V44() V69() V70() V71() V72() V73() V74() Element of NAT
s is complex set
n is complex CRoot of z,s
0 |^ z is ordinal natural complex real ext-real non negative V43() V44() V69() V70() V71() V72() V73() V74() Element of NAT
z is non empty ordinal natural complex real ext-real positive non negative V43() V44() V69() V70() V71() V72() V73() V74() Element of NAT
s is ordinal natural complex real ext-real non negative V43() V44() V69() V70() V71() V72() V73() V74() Element of NAT
(2 * PI) * s is complex real ext-real Element of REAL
((2 * PI) * s) / z is complex real ext-real Element of REAL
z " is non empty complex real ext-real positive non negative set
((2 * PI) * s) * (z ") is complex real ext-real set
cos (((2 * PI) * s) / z) is complex real ext-real Element of REAL
sin (((2 * PI) * s) / z) is complex real ext-real Element of REAL
(sin (((2 * PI) * s) / z)) * <i> is complex Element of COMPLEX
(cos (((2 * PI) * s) / z)) + ((sin (((2 * PI) * s) / z)) * <i>) is complex Element of COMPLEX
((cos (((2 * PI) * s) / z)) + ((sin (((2 * PI) * s) / z)) * <i>)) |^ z is complex set
z * (((2 * PI) * s) / z) is complex real ext-real Element of REAL
cos (z * (((2 * PI) * s) / z)) is complex real ext-real Element of REAL
sin (z * (((2 * PI) * s) / z)) is complex real ext-real Element of REAL
(sin (z * (((2 * PI) * s) / z))) * <i> is complex Element of COMPLEX
(cos (z * (((2 * PI) * s) / z))) + ((sin (z * (((2 * PI) * s) / z))) * <i>) is complex Element of COMPLEX
cos ((2 * PI) * s) is complex real ext-real Element of REAL
(cos ((2 * PI) * s)) + ((sin (z * (((2 * PI) * s) / z))) * <i>) is complex Element of COMPLEX
((2 * PI) * s) + 0 is complex real ext-real Element of REAL
cos (((2 * PI) * s) + 0) is complex real ext-real Element of REAL
sin (((2 * PI) * s) + 0) is complex real ext-real Element of REAL
(sin (((2 * PI) * s) + 0)) * <i> is complex Element of COMPLEX
(cos (((2 * PI) * s) + 0)) + ((sin (((2 * PI) * s) + 0)) * <i>) is complex Element of COMPLEX
cos . (((2 * PI) * s) + 0) is complex real ext-real Element of REAL
(cos . (((2 * PI) * s) + 0)) + ((sin (((2 * PI) * s) + 0)) * <i>) is complex Element of COMPLEX
sin . (((2 * PI) * s) + 0) is complex real ext-real Element of REAL
(sin . (((2 * PI) * s) + 0)) * <i> is complex Element of COMPLEX
(cos . (((2 * PI) * s) + 0)) + ((sin . (((2 * PI) * s) + 0)) * <i>) is complex Element of COMPLEX
(sin . 0) * <i> is complex Element of COMPLEX
(cos . (((2 * PI) * s) + 0)) + ((sin . 0) * <i>) is complex Element of COMPLEX
s is complex Element of COMPLEX
z is complex Element of COMPLEX
|.s.| is complex real ext-real Element of REAL
|.z.| is complex real ext-real Element of REAL
n is ordinal natural complex real ext-real non negative V43() V44() V69() V70() V71() V72() V73() V74() Element of NAT
s |^ n is complex set
z |^ n is complex set
Arg s is complex real ext-real Element of REAL
cos (Arg s) is complex real ext-real Element of REAL
|.s.| * (cos (Arg s)) is complex real ext-real Element of REAL
sin (Arg s) is complex real ext-real Element of REAL
|.s.| * (sin (Arg s)) is complex real ext-real Element of REAL
(|.s.| * (sin (Arg s))) * <i> is complex Element of COMPLEX
(|.s.| * (cos (Arg s))) + ((|.s.| * (sin (Arg s))) * <i>) is complex Element of COMPLEX
((|.s.| * (cos (Arg s))) + ((|.s.| * (sin (Arg s))) * <i>)) |^ n is complex set
(sin (Arg s)) * <i> is complex Element of COMPLEX
(cos (Arg s)) + ((sin (Arg s)) * <i>) is complex Element of COMPLEX
|.s.| * ((cos (Arg s)) + ((sin (Arg s)) * <i>)) is complex Element of COMPLEX
(|.s.| * ((cos (Arg s)) + ((sin (Arg s)) * <i>))) |^ n is complex set
|.s.| |^ n is complex real ext-real Element of REAL
((cos (Arg s)) + ((sin (Arg s)) * <i>)) |^ n is complex set
(|.s.| |^ n) * (((cos (Arg s)) + ((sin (Arg s)) * <i>)) |^ n) is complex Element of COMPLEX
|.s.| to_power n is complex real ext-real set
|.s.| |^ n is complex real ext-real set
n * (Arg s) is complex real ext-real Element of REAL
cos (n * (Arg s)) is complex real ext-real Element of REAL
sin (n * (Arg s)) is complex real ext-real Element of REAL
(sin (n * (Arg s))) * <i> is complex Element of COMPLEX
(cos (n * (Arg s))) + ((sin (n * (Arg s))) * <i>) is complex Element of COMPLEX
(|.s.| to_power n) * ((cos (n * (Arg s))) + ((sin (n * (Arg s))) * <i>)) is complex Element of COMPLEX
(|.s.| to_power n) * (cos (n * (Arg s))) is complex real ext-real Element of REAL
(|.s.| to_power n) * (sin (n * (Arg s))) is complex real ext-real Element of REAL
((|.s.| to_power n) * (sin (n * (Arg s)))) * <i> is complex Element of COMPLEX
((|.s.| to_power n) * (cos (n * (Arg s)))) + (((|.s.| to_power n) * (sin (n * (Arg s)))) * <i>) is complex Element of COMPLEX
Arg z is complex real ext-real Element of REAL
cos (Arg z) is complex real ext-real Element of REAL
|.z.| * (cos (Arg z)) is complex real ext-real Element of REAL
sin (Arg z) is complex real ext-real Element of REAL
|.z.| * (sin (Arg z)) is complex real ext-real Element of REAL
(|.z.| * (sin (Arg z))) * <i> is complex Element of COMPLEX
(|.z.| * (cos (Arg z))) + ((|.z.| * (sin (Arg z))) * <i>) is complex Element of COMPLEX
((|.z.| * (cos (Arg z))) + ((|.z.| * (sin (Arg z))) * <i>)) |^ n is complex set
(sin (Arg z)) * <i> is complex Element of COMPLEX
(cos (Arg z)) + ((sin (Arg z)) * <i>) is complex Element of COMPLEX
|.z.| * ((cos (Arg z)) + ((sin (Arg z)) * <i>)) is complex Element of COMPLEX
(|.z.| * ((cos (Arg z)) + ((sin (Arg z)) * <i>))) |^ n is complex set
|.z.| |^ n is complex real ext-real Element of REAL
((cos (Arg z)) + ((sin (Arg z)) * <i>)) |^ n is complex set
(|.z.| |^ n) * (((cos (Arg z)) + ((sin (Arg z)) * <i>)) |^ n) is complex Element of COMPLEX
|.z.| to_power n is complex real ext-real set
|.z.| |^ n is complex real ext-real set
n * (Arg z) is complex real ext-real Element of REAL
cos (n * (Arg z)) is complex real ext-real Element of REAL
sin (n * (Arg z)) is complex real ext-real Element of REAL
(sin (n * (Arg z))) * <i> is complex Element of COMPLEX
(cos (n * (Arg z))) + ((sin (n * (Arg z))) * <i>) is complex Element of COMPLEX
(|.z.| to_power n) * ((cos (n * (Arg z))) + ((sin (n * (Arg z))) * <i>)) is complex Element of COMPLEX
(|.z.| to_power n) * (cos (n * (Arg z))) is complex real ext-real Element of REAL
(|.z.| to_power n) * (sin (n * (Arg z))) is complex real ext-real Element of REAL
((|.z.| to_power n) * (sin (n * (Arg z)))) * <i> is complex Element of COMPLEX
((|.z.| to_power n) * (cos (n * (Arg z)))) + (((|.z.| to_power n) * (sin (n * (Arg z)))) * <i>) is complex Element of COMPLEX
(|.s.| to_power n) ^2 is complex real ext-real set
(|.s.| to_power n) * (|.s.| to_power n) is complex real ext-real set
(cos (n * (Arg s))) ^2 is complex real ext-real Element of REAL
(cos (n * (Arg s))) * (cos (n * (Arg s))) is complex real ext-real set
((|.s.| to_power n) ^2) * ((cos (n * (Arg s))) ^2) is complex real ext-real Element of REAL
((|.s.| to_power n) * (sin (n * (Arg s)))) ^2 is complex real ext-real Element of REAL
((|.s.| to_power n) * (sin (n * (Arg s)))) * ((|.s.| to_power n) * (sin (n * (Arg s)))) is complex real ext-real set
(((|.s.| to_power n) ^2) * ((cos (n * (Arg s))) ^2)) + (((|.s.| to_power n) * (sin (n * (Arg s)))) ^2) is complex real ext-real Element of REAL
((|.z.| to_power n) * (cos (n * (Arg z)))) ^2 is complex real ext-real Element of REAL
((|.z.| to_power n) * (cos (n * (Arg z)))) * ((|.z.| to_power n) * (cos (n * (Arg z)))) is complex real ext-real set
((|.z.| to_power n) * (sin (n * (Arg z)))) ^2 is complex real ext-real Element of REAL
((|.z.| to_power n) * (sin (n * (Arg z)))) * ((|.z.| to_power n) * (sin (n * (Arg z)))) is complex real ext-real set
(((|.z.| to_power n) * (cos (n * (Arg z)))) ^2) + (((|.z.| to_power n) * (sin (n * (Arg z)))) ^2) is complex real ext-real Element of REAL
(sin (n * (Arg s))) ^2 is complex real ext-real Element of REAL
(sin (n * (Arg s))) * (sin (n * (Arg s))) is complex real ext-real set
((cos (n * (Arg s))) ^2) + ((sin (n * (Arg s))) ^2) is complex real ext-real Element of REAL
((|.s.| to_power n) ^2) * (((cos (n * (Arg s))) ^2) + ((sin (n * (Arg s))) ^2)) is complex real ext-real Element of REAL
(|.z.| to_power n) ^2 is complex real ext-real set
(|.z.| to_power n) * (|.z.| to_power n) is complex real ext-real set
(cos (n * (Arg z))) ^2 is complex real ext-real Element of REAL
(cos (n * (Arg z))) * (cos (n * (Arg z))) is complex real ext-real set
(sin (n * (Arg z))) ^2 is complex real ext-real Element of REAL
(sin (n * (Arg z))) * (sin (n * (Arg z))) is complex real ext-real set
((cos (n * (Arg z))) ^2) + ((sin (n * (Arg z))) ^2) is complex real ext-real Element of REAL
((|.z.| to_power n) ^2) * (((cos (n * (Arg z))) ^2) + ((sin (n * (Arg z))) ^2)) is complex real ext-real Element of REAL
((|.z.| to_power n) ^2) * 1 is complex real ext-real Element of REAL
((|.s.| to_power n) ^2) * 1 is complex real ext-real Element of REAL
sqrt ((|.z.| to_power n) ^2) is complex real ext-real set
n -root (|.z.| |^ n) is complex real ext-real Element of REAL