:: QUATERN3 semantic presentation
REAL
is
V43
()
V44
()
V45
()
V49
()
set
NAT
is
V43
()
V44
()
V45
()
V46
()
V47
()
V48
()
V49
()
Element
of
K19
(
REAL
)
K19
(
REAL
) is
set
COMPLEX
is
V43
()
V49
()
set
0
is
set
1 is non
zero
natural
V28
()
V29
()
ext-real
positive
V43
()
V44
()
V45
()
V46
()
V47
()
V48
()
Element
of
NAT
K81
(
0
,1) is
set
QUATERNION
is non
zero
set
omega
is
V43
()
V44
()
V45
()
V46
()
V47
()
V48
()
V49
()
set
K19
(
omega
) is
set
K20
(
QUATERNION
,
QUATERNION
) is
set
K19
(
K20
(
QUATERNION
,
QUATERNION
)) is
set
K20
(
K20
(
QUATERNION
,
QUATERNION
),
QUATERNION
) is
set
K19
(
K20
(
K20
(
QUATERNION
,
QUATERNION
),
QUATERNION
)) is
set
K272
() is
V109
()
L11
()
the
U1
of
K272
() is
set
0
is
natural
V28
()
V29
()
ext-real
V43
()
V44
()
V45
()
V46
()
V47
()
V48
()
Element
of
NAT
2 is non
zero
natural
V28
()
V29
()
ext-real
positive
V43
()
V44
()
V45
()
V46
()
V47
()
V48
()
Element
of
NAT
3 is non
zero
natural
V28
()
V29
()
ext-real
positive
V43
()
V44
()
V45
()
V46
()
V47
()
V48
()
Element
of
NAT
1q
is
quaternion
set
Rea
1q
is
V28
()
V29
()
ext-real
Element
of
REAL
Im1
1q
is
V28
()
V29
()
ext-real
Element
of
REAL
Im2
1q
is
V28
()
V29
()
ext-real
Element
of
REAL
Im3
1q
is
V28
()
V29
()
ext-real
Element
of
REAL
K107
() is
quaternion
set
K88
(
REAL
,
0
,1,
0
,1) is
V6
()
V18
(
K81
(
0
,1),
REAL
)
Element
of
K19
(
K20
(
K81
(
0
,1),
REAL
))
K81
(
0
,1) is
V43
()
V44
()
V45
()
V46
()
V47
()
V48
()
set
K20
(
K81
(
0
,1),
REAL
) is
set
K19
(
K20
(
K81
(
0
,1),
REAL
)) is
set
Rea
K107
() is
V28
()
V29
()
ext-real
Element
of
REAL
Im1
K107
() is
V28
()
V29
()
ext-real
Element
of
REAL
Im2
K107
() is
V28
()
V29
()
ext-real
Element
of
REAL
Im3
K107
() is
V28
()
V29
()
ext-real
Element
of
REAL
<j>
is
quaternion
Element
of
QUATERNION
K200
(
NAT
,
0
,1,2,3,
0
,
0
,1,
0
) is
V1
()
V6
()
V18
(
K191
(
0
,1,2,3),
NAT
)
Element
of
K19
(
K20
(
K191
(
0
,1,2,3),
NAT
))
K191
(
0
,1,2,3) is
set
K20
(
K191
(
0
,1,2,3),
NAT
) is
set
K19
(
K20
(
K191
(
0
,1,2,3),
NAT
)) is
set
K87
(
0
,1,
0
,
0
) is
set
K87
(2,3,1,
0
) is
set
K84
(
K87
(
0
,1,
0
,
0
),
K87
(2,3,1,
0
)) is
V1
()
V6
()
set
[*
0
,
0
,1,
0
*]
is
quaternion
Element
of
QUATERNION
Rea
<j>
is
V28
()
V29
()
ext-real
Element
of
REAL
Im1
<j>
is
V28
()
V29
()
ext-real
Element
of
REAL
Im2
<j>
is
V28
()
V29
()
ext-real
Element
of
REAL
Im3
<j>
is
V28
()
V29
()
ext-real
Element
of
REAL
<k>
is
quaternion
Element
of
QUATERNION
K200
(
NAT
,
0
,1,2,3,
0
,
0
,
0
,1) is
V1
()
V6
()
V18
(
K191
(
0
,1,2,3),
NAT
)
Element
of
K19
(
K20
(
K191
(
0
,1,2,3),
NAT
))
K87
(2,3,
0
,1) is
set
K84
(
K87
(
0
,1,
0
,
0
),
K87
(2,3,
0
,1)) is
V1
()
V6
()
set
[*
0
,
0
,
0
,1
*]
is
quaternion
Element
of
QUATERNION
Rea
<k>
is
V28
()
V29
()
ext-real
Element
of
REAL
Im1
<k>
is
V28
()
V29
()
ext-real
Element
of
REAL
Im2
<k>
is
V28
()
V29
()
ext-real
Element
of
REAL
Im3
<k>
is
V28
()
V29
()
ext-real
Element
of
REAL
|.
1q
.|
is
V29
()
set
(
Rea
1q
)
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Rea
1q
)
,
(
Rea
1q
)
) is
set
(
Im1
1q
)
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Im1
1q
)
,
(
Im1
1q
)
) is
set
(
(
Rea
1q
)
^2
)
+
(
(
Im1
1q
)
^2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im2
1q
)
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Im2
1q
)
,
(
Im2
1q
)
) is
set
(
(
(
Rea
1q
)
^2
)
+
(
(
Im1
1q
)
^2
)
)
+
(
(
Im2
1q
)
^2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im3
1q
)
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Im3
1q
)
,
(
Im3
1q
)
) is
set
(
(
(
(
Rea
1q
)
^2
)
+
(
(
Im1
1q
)
^2
)
)
+
(
(
Im2
1q
)
^2
)
)
+
(
(
Im3
1q
)
^2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
sqrt
(
(
(
(
(
Rea
1q
)
^2
)
+
(
(
Im1
1q
)
^2
)
)
+
(
(
Im2
1q
)
^2
)
)
+
(
(
Im3
1q
)
^2
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
|.
K107
()
.|
is
V29
()
set
(
Rea
K107
()
)
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Rea
K107
()
)
,
(
Rea
K107
()
)
) is
set
(
Im1
K107
()
)
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Im1
K107
()
)
,
(
Im1
K107
()
)
) is
set
(
(
Rea
K107
()
)
^2
)
+
(
(
Im1
K107
()
)
^2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im2
K107
()
)
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Im2
K107
()
)
,
(
Im2
K107
()
)
) is
set
(
(
(
Rea
K107
()
)
^2
)
+
(
(
Im1
K107
()
)
^2
)
)
+
(
(
Im2
K107
()
)
^2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im3
K107
()
)
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Im3
K107
()
)
,
(
Im3
K107
()
)
) is
set
(
(
(
(
Rea
K107
()
)
^2
)
+
(
(
Im1
K107
()
)
^2
)
)
+
(
(
Im2
K107
()
)
^2
)
)
+
(
(
Im3
K107
()
)
^2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
sqrt
(
(
(
(
(
Rea
K107
()
)
^2
)
+
(
(
Im1
K107
()
)
^2
)
)
+
(
(
Im2
K107
()
)
^2
)
)
+
(
(
Im3
K107
()
)
^2
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
|.
<j>
.|
is
V29
()
set
(
Rea
<j>
)
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Rea
<j>
)
,
(
Rea
<j>
)
) is
set
(
Im1
<j>
)
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Im1
<j>
)
,
(
Im1
<j>
)
) is
set
(
(
Rea
<j>
)
^2
)
+
(
(
Im1
<j>
)
^2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im2
<j>
)
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Im2
<j>
)
,
(
Im2
<j>
)
) is
set
(
(
(
Rea
<j>
)
^2
)
+
(
(
Im1
<j>
)
^2
)
)
+
(
(
Im2
<j>
)
^2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im3
<j>
)
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Im3
<j>
)
,
(
Im3
<j>
)
) is
set
(
(
(
(
Rea
<j>
)
^2
)
+
(
(
Im1
<j>
)
^2
)
)
+
(
(
Im2
<j>
)
^2
)
)
+
(
(
Im3
<j>
)
^2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
sqrt
(
(
(
(
(
Rea
<j>
)
^2
)
+
(
(
Im1
<j>
)
^2
)
)
+
(
(
Im2
<j>
)
^2
)
)
+
(
(
Im3
<j>
)
^2
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
|.
<k>
.|
is
V29
()
set
(
Rea
<k>
)
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Rea
<k>
)
,
(
Rea
<k>
)
) is
set
(
Im1
<k>
)
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Im1
<k>
)
,
(
Im1
<k>
)
) is
set
(
(
Rea
<k>
)
^2
)
+
(
(
Im1
<k>
)
^2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im2
<k>
)
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Im2
<k>
)
,
(
Im2
<k>
)
) is
set
(
(
(
Rea
<k>
)
^2
)
+
(
(
Im1
<k>
)
^2
)
)
+
(
(
Im2
<k>
)
^2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im3
<k>
)
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Im3
<k>
)
,
(
Im3
<k>
)
) is
set
(
(
(
(
Rea
<k>
)
^2
)
+
(
(
Im1
<k>
)
^2
)
)
+
(
(
Im2
<k>
)
^2
)
)
+
(
(
Im3
<k>
)
^2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
sqrt
(
(
(
(
(
Rea
<k>
)
^2
)
+
(
(
Im1
<k>
)
^2
)
)
+
(
(
Im2
<k>
)
^2
)
)
+
(
(
Im3
<k>
)
^2
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
1q
is
quaternion
Element
of
QUATERNION
-
1q
is
quaternion
Element
of
QUATERNION
<i>
is
quaternion
Element
of
QUATERNION
z
is
quaternion
set
z2
is
quaternion
set
z
*
z2
is
quaternion
Element
of
QUATERNION
Rea
(
z
*
z2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
z2
*
z
is
quaternion
Element
of
QUATERNION
Rea
(
z2
*
z
)
is
V28
()
V29
()
ext-real
Element
of
REAL
Rea
z2
is
V28
()
V29
()
ext-real
Element
of
REAL
Rea
z
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Rea
z2
)
*
(
Rea
z
)
is
V28
()
V29
()
ext-real
Element
of
REAL
Im1
z2
is
V28
()
V29
()
ext-real
Element
of
REAL
Im1
z
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im1
z2
)
*
(
Im1
z
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
Rea
z2
)
*
(
Rea
z
)
)
-
(
(
Im1
z2
)
*
(
Im1
z
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K110
(
(
(
Im1
z2
)
*
(
Im1
z
)
)
) is
V28
()
set
K108
(
(
(
Rea
z2
)
*
(
Rea
z
)
)
,
K110
(
(
(
Im1
z2
)
*
(
Im1
z
)
)
)) is
set
Im2
z2
is
V28
()
V29
()
ext-real
Element
of
REAL
Im2
z
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im2
z2
)
*
(
Im2
z
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
(
Rea
z2
)
*
(
Rea
z
)
)
-
(
(
Im1
z2
)
*
(
Im1
z
)
)
)
-
(
(
Im2
z2
)
*
(
Im2
z
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K110
(
(
(
Im2
z2
)
*
(
Im2
z
)
)
) is
V28
()
set
K108
(
(
(
(
Rea
z2
)
*
(
Rea
z
)
)
-
(
(
Im1
z2
)
*
(
Im1
z
)
)
)
,
K110
(
(
(
Im2
z2
)
*
(
Im2
z
)
)
)) is
set
Im3
z2
is
V28
()
V29
()
ext-real
Element
of
REAL
Im3
z
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im3
z2
)
*
(
Im3
z
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
(
(
Rea
z2
)
*
(
Rea
z
)
)
-
(
(
Im1
z2
)
*
(
Im1
z
)
)
)
-
(
(
Im2
z2
)
*
(
Im2
z
)
)
)
-
(
(
Im3
z2
)
*
(
Im3
z
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K110
(
(
(
Im3
z2
)
*
(
Im3
z
)
)
) is
V28
()
set
K108
(
(
(
(
(
Rea
z2
)
*
(
Rea
z
)
)
-
(
(
Im1
z2
)
*
(
Im1
z
)
)
)
-
(
(
Im2
z2
)
*
(
Im2
z
)
)
)
,
K110
(
(
(
Im3
z2
)
*
(
Im3
z
)
)
)) is
set
z
is
quaternion
set
Rea
z
is
V28
()
V29
()
ext-real
Element
of
REAL
Im1
z
is
V28
()
V29
()
ext-real
Element
of
REAL
Im2
z
is
V28
()
V29
()
ext-real
Element
of
REAL
Im3
z
is
V28
()
V29
()
ext-real
Element
of
REAL
z2
is
V28
()
V29
()
ext-real
Element
of
REAL
[*
z2
,
0
*]
is
V28
()
Element
of
COMPLEX
[*
z2
,
0
,
0
,
0
*]
is
quaternion
Element
of
QUATERNION
z
is
quaternion
set
Rea
z
is
V28
()
V29
()
ext-real
Element
of
REAL
z2
is
quaternion
set
z
+
z2
is
quaternion
Element
of
QUATERNION
Rea
z2
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Rea
z
)
+
(
Rea
z2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
Im1
z2
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im1
z2
)
*
<i>
is
quaternion
set
(
(
Rea
z
)
+
(
Rea
z2
)
)
+
(
(
Im1
z2
)
*
<i>
)
is
quaternion
set
Im2
z2
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im2
z2
)
*
<j>
is
quaternion
set
(
(
(
Rea
z
)
+
(
Rea
z2
)
)
+
(
(
Im1
z2
)
*
<i>
)
)
+
(
(
Im2
z2
)
*
<j>
)
is
quaternion
Element
of
QUATERNION
Im3
z2
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im3
z2
)
*
<k>
is
quaternion
set
(
(
(
(
Rea
z
)
+
(
Rea
z2
)
)
+
(
(
Im1
z2
)
*
<i>
)
)
+
(
(
Im2
z2
)
*
<j>
)
)
+
(
(
Im3
z2
)
*
<k>
)
is
quaternion
Element
of
QUATERNION
Im3
z
is
V28
()
V29
()
ext-real
Element
of
REAL
Im1
z
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im1
z
)
+
(
Im1
z2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
Im2
z
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im2
z
)
+
(
Im2
z2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im3
z
)
+
(
Im3
z2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
[*
(
(
Rea
z
)
+
(
Rea
z2
)
)
,
(
(
Im1
z
)
+
(
Im1
z2
)
)
,
(
(
Im2
z
)
+
(
Im2
z2
)
)
,
(
(
Im3
z
)
+
(
Im3
z2
)
)
*]
is
quaternion
Element
of
QUATERNION
Rea
[*
(
(
Rea
z
)
+
(
Rea
z2
)
)
,
(
(
Im1
z
)
+
(
Im1
z2
)
)
,
(
(
Im2
z
)
+
(
Im2
z2
)
)
,
(
(
Im3
z
)
+
(
Im3
z2
)
)
*]
is
V28
()
V29
()
ext-real
Element
of
REAL
z2
is
quaternion
set
Rea
z2
is
V28
()
V29
()
ext-real
Element
of
REAL
Im1
[*
(
(
Rea
z
)
+
(
Rea
z2
)
)
,
(
(
Im1
z
)
+
(
Im1
z2
)
)
,
(
(
Im2
z
)
+
(
Im2
z2
)
)
,
(
(
Im3
z
)
+
(
Im3
z2
)
)
*]
is
V28
()
V29
()
ext-real
Element
of
REAL
Im1
z2
is
V28
()
V29
()
ext-real
Element
of
REAL
Im3
[*
(
(
Rea
z
)
+
(
Rea
z2
)
)
,
(
(
Im1
z
)
+
(
Im1
z2
)
)
,
(
(
Im2
z
)
+
(
Im2
z2
)
)
,
(
(
Im3
z
)
+
(
Im3
z2
)
)
*]
is
V28
()
V29
()
ext-real
Element
of
REAL
Im3
z2
is
V28
()
V29
()
ext-real
Element
of
REAL
Im2
[*
(
(
Rea
z
)
+
(
Rea
z2
)
)
,
(
(
Im1
z
)
+
(
Im1
z2
)
)
,
(
(
Im2
z
)
+
(
Im2
z2
)
)
,
(
(
Im3
z
)
+
(
Im3
z2
)
)
*]
is
V28
()
V29
()
ext-real
Element
of
REAL
Im2
z2
is
V28
()
V29
()
ext-real
Element
of
REAL
[*
(
(
Rea
z
)
+
(
Rea
z2
)
)
,
(
Im1
z2
)
,
(
Im2
z2
)
,
(
Im3
z2
)
*]
is
quaternion
Element
of
QUATERNION
z
is
quaternion
set
Rea
z
is
V28
()
V29
()
ext-real
Element
of
REAL
z2
is
quaternion
set
z
-
z2
is
quaternion
Element
of
QUATERNION
-
z2
is
quaternion
set
z
+
(
-
z2
)
is
quaternion
set
Rea
z2
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Rea
z
)
-
(
Rea
z2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K110
(
(
Rea
z2
)
) is
V28
()
set
K108
(
(
Rea
z
)
,
K110
(
(
Rea
z2
)
)) is
set
Im1
z2
is
V28
()
V29
()
ext-real
Element
of
REAL
-
(
Im1
z2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
Im2
z2
is
V28
()
V29
()
ext-real
Element
of
REAL
-
(
Im2
z2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
Im3
z2
is
V28
()
V29
()
ext-real
Element
of
REAL
-
(
Im3
z2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
[*
(
(
Rea
z
)
-
(
Rea
z2
)
)
,
(
-
(
Im1
z2
)
)
,
(
-
(
Im2
z2
)
)
,
(
-
(
Im3
z2
)
)
*]
is
quaternion
Element
of
QUATERNION
-
z2
is
quaternion
Element
of
QUATERNION
z
+
(
-
z2
)
is
quaternion
Element
of
QUATERNION
Im3
z
is
V28
()
V29
()
ext-real
Element
of
REAL
Im1
z
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im1
z
)
-
(
Im1
z2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K110
(
(
Im1
z2
)
) is
V28
()
set
K108
(
(
Im1
z
)
,
K110
(
(
Im1
z2
)
)) is
set
Im2
z
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im2
z
)
-
(
Im2
z2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K110
(
(
Im2
z2
)
) is
V28
()
set
K108
(
(
Im2
z
)
,
K110
(
(
Im2
z2
)
)) is
set
(
Im3
z
)
-
(
Im3
z2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K110
(
(
Im3
z2
)
) is
V28
()
set
K108
(
(
Im3
z
)
,
K110
(
(
Im3
z2
)
)) is
set
[*
(
(
Rea
z
)
-
(
Rea
z2
)
)
,
(
(
Im1
z
)
-
(
Im1
z2
)
)
,
(
(
Im2
z
)
-
(
Im2
z2
)
)
,
(
(
Im3
z
)
-
(
Im3
z2
)
)
*]
is
quaternion
Element
of
QUATERNION
Rea
[*
(
(
Rea
z
)
-
(
Rea
z2
)
)
,
(
(
Im1
z
)
-
(
Im1
z2
)
)
,
(
(
Im2
z
)
-
(
Im2
z2
)
)
,
(
(
Im3
z
)
-
(
Im3
z2
)
)
*]
is
V28
()
V29
()
ext-real
Element
of
REAL
-
(
Rea
z2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Rea
z
)
+
(
-
(
Rea
z2
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
Rea
(
-
z2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Rea
z
)
+
(
Rea
(
-
z2
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
z2
is
quaternion
set
Rea
z2
is
V28
()
V29
()
ext-real
Element
of
REAL
Im1
[*
(
(
Rea
z
)
-
(
Rea
z2
)
)
,
(
(
Im1
z
)
-
(
Im1
z2
)
)
,
(
(
Im2
z
)
-
(
Im2
z2
)
)
,
(
(
Im3
z
)
-
(
Im3
z2
)
)
*]
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im1
z
)
+
(
-
(
Im1
z2
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
Im1
(
-
z2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im1
z
)
+
(
Im1
(
-
z2
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
Im1
z2
is
V28
()
V29
()
ext-real
Element
of
REAL
Im3
[*
(
(
Rea
z
)
-
(
Rea
z2
)
)
,
(
(
Im1
z
)
-
(
Im1
z2
)
)
,
(
(
Im2
z
)
-
(
Im2
z2
)
)
,
(
(
Im3
z
)
-
(
Im3
z2
)
)
*]
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im3
z
)
+
(
-
(
Im3
z2
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
Im3
(
-
z2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im3
z
)
+
(
Im3
(
-
z2
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
Im3
z2
is
V28
()
V29
()
ext-real
Element
of
REAL
Im2
[*
(
(
Rea
z
)
-
(
Rea
z2
)
)
,
(
(
Im1
z
)
-
(
Im1
z2
)
)
,
(
(
Im2
z
)
-
(
Im2
z2
)
)
,
(
(
Im3
z
)
-
(
Im3
z2
)
)
*]
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im2
z
)
+
(
-
(
Im2
z2
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
Im2
(
-
z2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im2
z
)
+
(
Im2
(
-
z2
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
Im2
z2
is
V28
()
V29
()
ext-real
Element
of
REAL
z
is
quaternion
set
Rea
z
is
V28
()
V29
()
ext-real
Element
of
REAL
z2
is
quaternion
set
z
*
z2
is
quaternion
Element
of
QUATERNION
Rea
z2
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Rea
z
)
*
(
Rea
z2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
Im1
z2
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Rea
z
)
*
(
Im1
z2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
Im2
z2
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Rea
z
)
*
(
Im2
z2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
Im3
z2
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Rea
z
)
*
(
Im3
z2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
[*
(
(
Rea
z
)
*
(
Rea
z2
)
)
,
(
(
Rea
z
)
*
(
Im1
z2
)
)
,
(
(
Rea
z
)
*
(
Im2
z2
)
)
,
(
(
Rea
z
)
*
(
Im3
z2
)
)
*]
is
quaternion
Element
of
QUATERNION
Im3
z
is
V28
()
V29
()
ext-real
Element
of
REAL
Im1
z
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im1
z
)
*
(
Im1
z2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
Rea
z
)
*
(
Rea
z2
)
)
-
(
(
Im1
z
)
*
(
Im1
z2
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K110
(
(
(
Im1
z
)
*
(
Im1
z2
)
)
) is
V28
()
set
K108
(
(
(
Rea
z
)
*
(
Rea
z2
)
)
,
K110
(
(
(
Im1
z
)
*
(
Im1
z2
)
)
)) is
set
Im2
z
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im2
z
)
*
(
Im2
z2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
(
Rea
z
)
*
(
Rea
z2
)
)
-
(
(
Im1
z
)
*
(
Im1
z2
)
)
)
-
(
(
Im2
z
)
*
(
Im2
z2
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K110
(
(
(
Im2
z
)
*
(
Im2
z2
)
)
) is
V28
()
set
K108
(
(
(
(
Rea
z
)
*
(
Rea
z2
)
)
-
(
(
Im1
z
)
*
(
Im1
z2
)
)
)
,
K110
(
(
(
Im2
z
)
*
(
Im2
z2
)
)
)) is
set
(
Im3
z
)
*
(
Im3
z2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
(
(
Rea
z
)
*
(
Rea
z2
)
)
-
(
(
Im1
z
)
*
(
Im1
z2
)
)
)
-
(
(
Im2
z
)
*
(
Im2
z2
)
)
)
-
(
(
Im3
z
)
*
(
Im3
z2
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K110
(
(
(
Im3
z
)
*
(
Im3
z2
)
)
) is
V28
()
set
K108
(
(
(
(
(
Rea
z
)
*
(
Rea
z2
)
)
-
(
(
Im1
z
)
*
(
Im1
z2
)
)
)
-
(
(
Im2
z
)
*
(
Im2
z2
)
)
)
,
K110
(
(
(
Im3
z
)
*
(
Im3
z2
)
)
)) is
set
(
Im1
z
)
*
(
Rea
z2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
Rea
z
)
*
(
Im1
z2
)
)
+
(
(
Im1
z
)
*
(
Rea
z2
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im2
z
)
*
(
Im3
z2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
(
Rea
z
)
*
(
Im1
z2
)
)
+
(
(
Im1
z
)
*
(
Rea
z2
)
)
)
+
(
(
Im2
z
)
*
(
Im3
z2
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im3
z
)
*
(
Im2
z2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
(
(
Rea
z
)
*
(
Im1
z2
)
)
+
(
(
Im1
z
)
*
(
Rea
z2
)
)
)
+
(
(
Im2
z
)
*
(
Im3
z2
)
)
)
-
(
(
Im3
z
)
*
(
Im2
z2
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K110
(
(
(
Im3
z
)
*
(
Im2
z2
)
)
) is
V28
()
set
K108
(
(
(
(
(
Rea
z
)
*
(
Im1
z2
)
)
+
(
(
Im1
z
)
*
(
Rea
z2
)
)
)
+
(
(
Im2
z
)
*
(
Im3
z2
)
)
)
,
K110
(
(
(
Im3
z
)
*
(
Im2
z2
)
)
)) is
set
(
Im2
z
)
*
(
Rea
z2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
Rea
z
)
*
(
Im2
z2
)
)
+
(
(
Im2
z
)
*
(
Rea
z2
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im3
z
)
*
(
Im1
z2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
(
Rea
z
)
*
(
Im2
z2
)
)
+
(
(
Im2
z
)
*
(
Rea
z2
)
)
)
+
(
(
Im3
z
)
*
(
Im1
z2
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im1
z
)
*
(
Im3
z2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
(
(
Rea
z
)
*
(
Im2
z2
)
)
+
(
(
Im2
z
)
*
(
Rea
z2
)
)
)
+
(
(
Im3
z
)
*
(
Im1
z2
)
)
)
-
(
(
Im1
z
)
*
(
Im3
z2
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K110
(
(
(
Im1
z
)
*
(
Im3
z2
)
)
) is
V28
()
set
K108
(
(
(
(
(
Rea
z
)
*
(
Im2
z2
)
)
+
(
(
Im2
z
)
*
(
Rea
z2
)
)
)
+
(
(
Im3
z
)
*
(
Im1
z2
)
)
)
,
K110
(
(
(
Im1
z
)
*
(
Im3
z2
)
)
)) is
set
(
Im3
z
)
*
(
Rea
z2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
Rea
z
)
*
(
Im3
z2
)
)
+
(
(
Im3
z
)
*
(
Rea
z2
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im1
z
)
*
(
Im2
z2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
(
Rea
z
)
*
(
Im3
z2
)
)
+
(
(
Im3
z
)
*
(
Rea
z2
)
)
)
+
(
(
Im1
z
)
*
(
Im2
z2
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im2
z
)
*
(
Im1
z2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
(
(
Rea
z
)
*
(
Im3
z2
)
)
+
(
(
Im3
z
)
*
(
Rea
z2
)
)
)
+
(
(
Im1
z
)
*
(
Im2
z2
)
)
)
-
(
(
Im2
z
)
*
(
Im1
z2
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K110
(
(
(
Im2
z
)
*
(
Im1
z2
)
)
) is
V28
()
set
K108
(
(
(
(
(
Rea
z
)
*
(
Im3
z2
)
)
+
(
(
Im3
z
)
*
(
Rea
z2
)
)
)
+
(
(
Im1
z
)
*
(
Im2
z2
)
)
)
,
K110
(
(
(
Im2
z
)
*
(
Im1
z2
)
)
)) is
set
[*
(
(
(
(
(
Rea
z
)
*
(
Rea
z2
)
)
-
(
(
Im1
z
)
*
(
Im1
z2
)
)
)
-
(
(
Im2
z
)
*
(
Im2
z2
)
)
)
-
(
(
Im3
z
)
*
(
Im3
z2
)
)
)
,
(
(
(
(
(
Rea
z
)
*
(
Im1
z2
)
)
+
(
(
Im1
z
)
*
(
Rea
z2
)
)
)
+
(
(
Im2
z
)
*
(
Im3
z2
)
)
)
-
(
(
Im3
z
)
*
(
Im2
z2
)
)
)
,
(
(
(
(
(
Rea
z
)
*
(
Im2
z2
)
)
+
(
(
Im2
z
)
*
(
Rea
z2
)
)
)
+
(
(
Im3
z
)
*
(
Im1
z2
)
)
)
-
(
(
Im1
z
)
*
(
Im3
z2
)
)
)
,
(
(
(
(
(
Rea
z
)
*
(
Im3
z2
)
)
+
(
(
Im3
z
)
*
(
Rea
z2
)
)
)
+
(
(
Im1
z
)
*
(
Im2
z2
)
)
)
-
(
(
Im2
z
)
*
(
Im1
z2
)
)
)
*]
is
quaternion
Element
of
QUATERNION
Im1
[*
(
(
(
(
(
Rea
z
)
*
(
Rea
z2
)
)
-
(
(
Im1
z
)
*
(
Im1
z2
)
)
)
-
(
(
Im2
z
)
*
(
Im2
z2
)
)
)
-
(
(
Im3
z
)
*
(
Im3
z2
)
)
)
,
(
(
(
(
(
Rea
z
)
*
(
Im1
z2
)
)
+
(
(
Im1
z
)
*
(
Rea
z2
)
)
)
+
(
(
Im2
z
)
*
(
Im3
z2
)
)
)
-
(
(
Im3
z
)
*
(
Im2
z2
)
)
)
,
(
(
(
(
(
Rea
z
)
*
(
Im2
z2
)
)
+
(
(
Im2
z
)
*
(
Rea
z2
)
)
)
+
(
(
Im3
z
)
*
(
Im1
z2
)
)
)
-
(
(
Im1
z
)
*
(
Im3
z2
)
)
)
,
(
(
(
(
(
Rea
z
)
*
(
Im3
z2
)
)
+
(
(
Im3
z
)
*
(
Rea
z2
)
)
)
+
(
(
Im1
z
)
*
(
Im2
z2
)
)
)
-
(
(
Im2
z
)
*
(
Im1
z2
)
)
)
*]
is
V28
()
V29
()
ext-real
Element
of
REAL
z2
is
quaternion
set
Im1
z2
is
V28
()
V29
()
ext-real
Element
of
REAL
Im2
[*
(
(
(
(
(
Rea
z
)
*
(
Rea
z2
)
)
-
(
(
Im1
z
)
*
(
Im1
z2
)
)
)
-
(
(
Im2
z
)
*
(
Im2
z2
)
)
)
-
(
(
Im3
z
)
*
(
Im3
z2
)
)
)
,
(
(
(
(
(
Rea
z
)
*
(
Im1
z2
)
)
+
(
(
Im1
z
)
*
(
Rea
z2
)
)
)
+
(
(
Im2
z
)
*
(
Im3
z2
)
)
)
-
(
(
Im3
z
)
*
(
Im2
z2
)
)
)
,
(
(
(
(
(
Rea
z
)
*
(
Im2
z2
)
)
+
(
(
Im2
z
)
*
(
Rea
z2
)
)
)
+
(
(
Im3
z
)
*
(
Im1
z2
)
)
)
-
(
(
Im1
z
)
*
(
Im3
z2
)
)
)
,
(
(
(
(
(
Rea
z
)
*
(
Im3
z2
)
)
+
(
(
Im3
z
)
*
(
Rea
z2
)
)
)
+
(
(
Im1
z
)
*
(
Im2
z2
)
)
)
-
(
(
Im2
z
)
*
(
Im1
z2
)
)
)
*]
is
V28
()
V29
()
ext-real
Element
of
REAL
Im2
z2
is
V28
()
V29
()
ext-real
Element
of
REAL
Im3
[*
(
(
(
(
(
Rea
z
)
*
(
Rea
z2
)
)
-
(
(
Im1
z
)
*
(
Im1
z2
)
)
)
-
(
(
Im2
z
)
*
(
Im2
z2
)
)
)
-
(
(
Im3
z
)
*
(
Im3
z2
)
)
)
,
(
(
(
(
(
Rea
z
)
*
(
Im1
z2
)
)
+
(
(
Im1
z
)
*
(
Rea
z2
)
)
)
+
(
(
Im2
z
)
*
(
Im3
z2
)
)
)
-
(
(
Im3
z
)
*
(
Im2
z2
)
)
)
,
(
(
(
(
(
Rea
z
)
*
(
Im2
z2
)
)
+
(
(
Im2
z
)
*
(
Rea
z2
)
)
)
+
(
(
Im3
z
)
*
(
Im1
z2
)
)
)
-
(
(
Im1
z
)
*
(
Im3
z2
)
)
)
,
(
(
(
(
(
Rea
z
)
*
(
Im3
z2
)
)
+
(
(
Im3
z
)
*
(
Rea
z2
)
)
)
+
(
(
Im1
z
)
*
(
Im2
z2
)
)
)
-
(
(
Im2
z
)
*
(
Im1
z2
)
)
)
*]
is
V28
()
V29
()
ext-real
Element
of
REAL
Im3
z2
is
V28
()
V29
()
ext-real
Element
of
REAL
Rea
[*
(
(
(
(
(
Rea
z
)
*
(
Rea
z2
)
)
-
(
(
Im1
z
)
*
(
Im1
z2
)
)
)
-
(
(
Im2
z
)
*
(
Im2
z2
)
)
)
-
(
(
Im3
z
)
*
(
Im3
z2
)
)
)
,
(
(
(
(
(
Rea
z
)
*
(
Im1
z2
)
)
+
(
(
Im1
z
)
*
(
Rea
z2
)
)
)
+
(
(
Im2
z
)
*
(
Im3
z2
)
)
)
-
(
(
Im3
z
)
*
(
Im2
z2
)
)
)
,
(
(
(
(
(
Rea
z
)
*
(
Im2
z2
)
)
+
(
(
Im2
z
)
*
(
Rea
z2
)
)
)
+
(
(
Im3
z
)
*
(
Im1
z2
)
)
)
-
(
(
Im1
z
)
*
(
Im3
z2
)
)
)
,
(
(
(
(
(
Rea
z
)
*
(
Im3
z2
)
)
+
(
(
Im3
z
)
*
(
Rea
z2
)
)
)
+
(
(
Im1
z
)
*
(
Im2
z2
)
)
)
-
(
(
Im2
z
)
*
(
Im1
z2
)
)
)
*]
is
V28
()
V29
()
ext-real
Element
of
REAL
Rea
z2
is
V28
()
V29
()
ext-real
Element
of
REAL
z
is
quaternion
set
z
*
<i>
is
quaternion
Element
of
QUATERNION
Rea
z
is
V28
()
V29
()
ext-real
Element
of
REAL
[*
0
,
(
Rea
z
)
,
0
,
0
*]
is
quaternion
Element
of
QUATERNION
z2
is
V28
()
V29
()
ext-real
Element
of
REAL
Rea
(
z
*
<i>
)
is
V28
()
V29
()
ext-real
Element
of
REAL
Im1
(
z
*
<i>
)
is
V28
()
V29
()
ext-real
Element
of
REAL
Im2
(
z
*
<i>
)
is
V28
()
V29
()
ext-real
Element
of
REAL
Im3
(
z
*
<i>
)
is
V28
()
V29
()
ext-real
Element
of
REAL
[*
(
Rea
(
z
*
<i>
)
)
,
(
Im1
(
z
*
<i>
)
)
,
(
Im2
(
z
*
<i>
)
)
,
(
Im3
(
z
*
<i>
)
)
*]
is
quaternion
Element
of
QUATERNION
[*
0
,
(
Im1
(
z
*
<i>
)
)
,
(
Im2
(
z
*
<i>
)
)
,
(
Im3
(
z
*
<i>
)
)
*]
is
quaternion
Element
of
QUATERNION
[*
0
,
z2
,
(
Im2
(
z
*
<i>
)
)
,
(
Im3
(
z
*
<i>
)
)
*]
is
quaternion
Element
of
QUATERNION
[*
0
,
z2
,
0
,
(
Im3
(
z
*
<i>
)
)
*]
is
quaternion
Element
of
QUATERNION
z
is
quaternion
set
z
*
<j>
is
quaternion
Element
of
QUATERNION
Rea
z
is
V28
()
V29
()
ext-real
Element
of
REAL
[*
0
,
0
,
(
Rea
z
)
,
0
*]
is
quaternion
Element
of
QUATERNION
z2
is
V28
()
V29
()
ext-real
Element
of
REAL
Rea
(
z
*
<j>
)
is
V28
()
V29
()
ext-real
Element
of
REAL
Im1
(
z
*
<j>
)
is
V28
()
V29
()
ext-real
Element
of
REAL
Im2
(
z
*
<j>
)
is
V28
()
V29
()
ext-real
Element
of
REAL
Im3
(
z
*
<j>
)
is
V28
()
V29
()
ext-real
Element
of
REAL
[*
(
Rea
(
z
*
<j>
)
)
,
(
Im1
(
z
*
<j>
)
)
,
(
Im2
(
z
*
<j>
)
)
,
(
Im3
(
z
*
<j>
)
)
*]
is
quaternion
Element
of
QUATERNION
[*
0
,
(
Im1
(
z
*
<j>
)
)
,
(
Im2
(
z
*
<j>
)
)
,
(
Im3
(
z
*
<j>
)
)
*]
is
quaternion
Element
of
QUATERNION
[*
0
,
0
,
(
Im2
(
z
*
<j>
)
)
,
(
Im3
(
z
*
<j>
)
)
*]
is
quaternion
Element
of
QUATERNION
[*
0
,
0
,
z2
,
(
Im3
(
z
*
<j>
)
)
*]
is
quaternion
Element
of
QUATERNION
z
is
quaternion
set
z
*
<k>
is
quaternion
Element
of
QUATERNION
Rea
z
is
V28
()
V29
()
ext-real
Element
of
REAL
[*
0
,
0
,
0
,
(
Rea
z
)
*]
is
quaternion
Element
of
QUATERNION
z2
is
V28
()
V29
()
ext-real
Element
of
REAL
Rea
(
z
*
<k>
)
is
V28
()
V29
()
ext-real
Element
of
REAL
Im1
(
z
*
<k>
)
is
V28
()
V29
()
ext-real
Element
of
REAL
Im2
(
z
*
<k>
)
is
V28
()
V29
()
ext-real
Element
of
REAL
Im3
(
z
*
<k>
)
is
V28
()
V29
()
ext-real
Element
of
REAL
[*
(
Rea
(
z
*
<k>
)
)
,
(
Im1
(
z
*
<k>
)
)
,
(
Im2
(
z
*
<k>
)
)
,
(
Im3
(
z
*
<k>
)
)
*]
is
quaternion
Element
of
QUATERNION
[*
0
,
(
Im1
(
z
*
<k>
)
)
,
(
Im2
(
z
*
<k>
)
)
,
(
Im3
(
z
*
<k>
)
)
*]
is
quaternion
Element
of
QUATERNION
[*
0
,
0
,
(
Im2
(
z
*
<k>
)
)
,
(
Im3
(
z
*
<k>
)
)
*]
is
quaternion
Element
of
QUATERNION
[*
0
,
0
,
0
,
(
Im3
(
z
*
<k>
)
)
*]
is
quaternion
Element
of
QUATERNION
0q
is
quaternion
Element
of
QUATERNION
z
is
quaternion
set
z
-
0q
is
quaternion
Element
of
QUATERNION
-
0q
is
quaternion
set
z
+
(
-
0q
)
is
quaternion
set
z2
is
V28
()
V29
()
ext-real
Element
of
REAL
z2
is
V28
()
V29
()
ext-real
Element
of
REAL
z4
is
V28
()
V29
()
ext-real
Element
of
REAL
z2
is
V28
()
V29
()
ext-real
Element
of
REAL
[*
z2
,
z2
,
z4
,
z2
*]
is
quaternion
Element
of
QUATERNION
[*
0
,
0
*]
is
V28
()
Element
of
COMPLEX
[*
0
,
0
,
0
,
0
*]
is
quaternion
Element
of
QUATERNION
-
0q
is
quaternion
Element
of
QUATERNION
-
0
is
V28
()
V29
()
ext-real
Element
of
REAL
[*
(
-
0
)
,
(
-
0
)
,
(
-
0
)
,
(
-
0
)
*]
is
quaternion
Element
of
QUATERNION
z2
+
(
-
0
)
is
V28
()
V29
()
ext-real
Element
of
REAL
z2
+
(
-
0
)
is
V28
()
V29
()
ext-real
Element
of
REAL
z4
+
(
-
0
)
is
V28
()
V29
()
ext-real
Element
of
REAL
z2
+
(
-
0
)
is
V28
()
V29
()
ext-real
Element
of
REAL
[*
(
z2
+
(
-
0
)
)
,
(
z2
+
(
-
0
)
)
,
(
z4
+
(
-
0
)
)
,
(
z2
+
(
-
0
)
)
*]
is
quaternion
Element
of
QUATERNION
z
is
quaternion
set
z2
is
quaternion
set
z
*
z2
is
quaternion
Element
of
QUATERNION
z2
*
z
is
quaternion
Element
of
QUATERNION
Im3
z
is
V28
()
V29
()
ext-real
Element
of
REAL
Im1
z
is
V28
()
V29
()
ext-real
Element
of
REAL
Im2
z
is
V28
()
V29
()
ext-real
Element
of
REAL
Rea
z2
is
V28
()
V29
()
ext-real
Element
of
REAL
Rea
z
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Rea
z2
)
*
(
Rea
z
)
is
V28
()
V29
()
ext-real
Element
of
REAL
Im1
z2
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im1
z2
)
*
(
Im1
z
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
Rea
z2
)
*
(
Rea
z
)
)
-
(
(
Im1
z2
)
*
(
Im1
z
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K110
(
(
(
Im1
z2
)
*
(
Im1
z
)
)
) is
V28
()
set
K108
(
(
(
Rea
z2
)
*
(
Rea
z
)
)
,
K110
(
(
(
Im1
z2
)
*
(
Im1
z
)
)
)) is
set
Im2
z2
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im2
z2
)
*
(
Im2
z
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
(
Rea
z2
)
*
(
Rea
z
)
)
-
(
(
Im1
z2
)
*
(
Im1
z
)
)
)
-
(
(
Im2
z2
)
*
(
Im2
z
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K110
(
(
(
Im2
z2
)
*
(
Im2
z
)
)
) is
V28
()
set
K108
(
(
(
(
Rea
z2
)
*
(
Rea
z
)
)
-
(
(
Im1
z2
)
*
(
Im1
z
)
)
)
,
K110
(
(
(
Im2
z2
)
*
(
Im2
z
)
)
)) is
set
Im3
z2
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im3
z2
)
*
(
Im3
z
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
(
(
Rea
z2
)
*
(
Rea
z
)
)
-
(
(
Im1
z2
)
*
(
Im1
z
)
)
)
-
(
(
Im2
z2
)
*
(
Im2
z
)
)
)
-
(
(
Im3
z2
)
*
(
Im3
z
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K110
(
(
(
Im3
z2
)
*
(
Im3
z
)
)
) is
V28
()
set
K108
(
(
(
(
(
Rea
z2
)
*
(
Rea
z
)
)
-
(
(
Im1
z2
)
*
(
Im1
z
)
)
)
-
(
(
Im2
z2
)
*
(
Im2
z
)
)
)
,
K110
(
(
(
Im3
z2
)
*
(
Im3
z
)
)
)) is
set
(
Rea
z2
)
*
(
Im1
z
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im1
z2
)
*
(
Rea
z
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
Rea
z2
)
*
(
Im1
z
)
)
+
(
(
Im1
z2
)
*
(
Rea
z
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im2
z2
)
*
(
Im3
z
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
(
Rea
z2
)
*
(
Im1
z
)
)
+
(
(
Im1
z2
)
*
(
Rea
z
)
)
)
+
(
(
Im2
z2
)
*
(
Im3
z
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im3
z2
)
*
(
Im2
z
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
(
(
Rea
z2
)
*
(
Im1
z
)
)
+
(
(
Im1
z2
)
*
(
Rea
z
)
)
)
+
(
(
Im2
z2
)
*
(
Im3
z
)
)
)
-
(
(
Im3
z2
)
*
(
Im2
z
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K110
(
(
(
Im3
z2
)
*
(
Im2
z
)
)
) is
V28
()
set
K108
(
(
(
(
(
Rea
z2
)
*
(
Im1
z
)
)
+
(
(
Im1
z2
)
*
(
Rea
z
)
)
)
+
(
(
Im2
z2
)
*
(
Im3
z
)
)
)
,
K110
(
(
(
Im3
z2
)
*
(
Im2
z
)
)
)) is
set
(
(
(
(
(
Rea
z2
)
*
(
Im1
z
)
)
+
(
(
Im1
z2
)
*
(
Rea
z
)
)
)
+
(
(
Im2
z2
)
*
(
Im3
z
)
)
)
-
(
(
Im3
z2
)
*
(
Im2
z
)
)
)
*
<i>
is
quaternion
set
(
(
(
(
(
Rea
z2
)
*
(
Rea
z
)
)
-
(
(
Im1
z2
)
*
(
Im1
z
)
)
)
-
(
(
Im2
z2
)
*
(
Im2
z
)
)
)
-
(
(
Im3
z2
)
*
(
Im3
z
)
)
)
+
(
(
(
(
(
(
Rea
z2
)
*
(
Im1
z
)
)
+
(
(
Im1
z2
)
*
(
Rea
z
)
)
)
+
(
(
Im2
z2
)
*
(
Im3
z
)
)
)
-
(
(
Im3
z2
)
*
(
Im2
z
)
)
)
*
<i>
)
is
quaternion
set
(
Rea
z2
)
*
(
Im2
z
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im2
z2
)
*
(
Rea
z
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
Rea
z2
)
*
(
Im2
z
)
)
+
(
(
Im2
z2
)
*
(
Rea
z
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im3
z2
)
*
(
Im1
z
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
(
Rea
z2
)
*
(
Im2
z
)
)
+
(
(
Im2
z2
)
*
(
Rea
z
)
)
)
+
(
(
Im3
z2
)
*
(
Im1
z
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im1
z2
)
*
(
Im3
z
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
(
(
Rea
z2
)
*
(
Im2
z
)
)
+
(
(
Im2
z2
)
*
(
Rea
z
)
)
)
+
(
(
Im3
z2
)
*
(
Im1
z
)
)
)
-
(
(
Im1
z2
)
*
(
Im3
z
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K110
(
(
(
Im1
z2
)
*
(
Im3
z
)
)
) is
V28
()
set
K108
(
(
(
(
(
Rea
z2
)
*
(
Im2
z
)
)
+
(
(
Im2
z2
)
*
(
Rea
z
)
)
)
+
(
(
Im3
z2
)
*
(
Im1
z
)
)
)
,
K110
(
(
(
Im1
z2
)
*
(
Im3
z
)
)
)) is
set
(
(
(
(
(
Rea
z2
)
*
(
Im2
z
)
)
+
(
(
Im2
z2
)
*
(
Rea
z
)
)
)
+
(
(
Im3
z2
)
*
(
Im1
z
)
)
)
-
(
(
Im1
z2
)
*
(
Im3
z
)
)
)
*
<j>
is
quaternion
set
(
(
(
(
(
(
Rea
z2
)
*
(
Rea
z
)
)
-
(
(
Im1
z2
)
*
(
Im1
z
)
)
)
-
(
(
Im2
z2
)
*
(
Im2
z
)
)
)
-
(
(
Im3
z2
)
*
(
Im3
z
)
)
)
+
(
(
(
(
(
(
Rea
z2
)
*
(
Im1
z
)
)
+
(
(
Im1
z2
)
*
(
Rea
z
)
)
)
+
(
(
Im2
z2
)
*
(
Im3
z
)
)
)
-
(
(
Im3
z2
)
*
(
Im2
z
)
)
)
*
<i>
)
)
+
(
(
(
(
(
(
Rea
z2
)
*
(
Im2
z
)
)
+
(
(
Im2
z2
)
*
(
Rea
z
)
)
)
+
(
(
Im3
z2
)
*
(
Im1
z
)
)
)
-
(
(
Im1
z2
)
*
(
Im3
z
)
)
)
*
<j>
)
is
quaternion
Element
of
QUATERNION
(
Rea
z2
)
*
(
Im3
z
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im3
z2
)
*
(
Rea
z
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
Rea
z2
)
*
(
Im3
z
)
)
+
(
(
Im3
z2
)
*
(
Rea
z
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im1
z2
)
*
(
Im2
z
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
(
Rea
z2
)
*
(
Im3
z
)
)
+
(
(
Im3
z2
)
*
(
Rea
z
)
)
)
+
(
(
Im1
z2
)
*
(
Im2
z
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im2
z2
)
*
(
Im1
z
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
(
(
Rea
z2
)
*
(
Im3
z
)
)
+
(
(
Im3
z2
)
*
(
Rea
z
)
)
)
+
(
(
Im1
z2
)
*
(
Im2
z
)
)
)
-
(
(
Im2
z2
)
*
(
Im1
z
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K110
(
(
(
Im2
z2
)
*
(
Im1
z
)
)
) is
V28
()
set
K108
(
(
(
(
(
Rea
z2
)
*
(
Im3
z
)
)
+
(
(
Im3
z2
)
*
(
Rea
z
)
)
)
+
(
(
Im1
z2
)
*
(
Im2
z
)
)
)
,
K110
(
(
(
Im2
z2
)
*
(
Im1
z
)
)
)) is
set
(
(
(
(
(
Rea
z2
)
*
(
Im3
z
)
)
+
(
(
Im3
z2
)
*
(
Rea
z
)
)
)
+
(
(
Im1
z2
)
*
(
Im2
z
)
)
)
-
(
(
Im2
z2
)
*
(
Im1
z
)
)
)
*
<k>
is
quaternion
set
(
(
(
(
(
(
(
Rea
z2
)
*
(
Rea
z
)
)
-
(
(
Im1
z2
)
*
(
Im1
z
)
)
)
-
(
(
Im2
z2
)
*
(
Im2
z
)
)
)
-
(
(
Im3
z2
)
*
(
Im3
z
)
)
)
+
(
(
(
(
(
(
Rea
z2
)
*
(
Im1
z
)
)
+
(
(
Im1
z2
)
*
(
Rea
z
)
)
)
+
(
(
Im2
z2
)
*
(
Im3
z
)
)
)
-
(
(
Im3
z2
)
*
(
Im2
z
)
)
)
*
<i>
)
)
+
(
(
(
(
(
(
Rea
z2
)
*
(
Im2
z
)
)
+
(
(
Im2
z2
)
*
(
Rea
z
)
)
)
+
(
(
Im3
z2
)
*
(
Im1
z
)
)
)
-
(
(
Im1
z2
)
*
(
Im3
z
)
)
)
*
<j>
)
)
+
(
(
(
(
(
(
Rea
z2
)
*
(
Im3
z
)
)
+
(
(
Im3
z2
)
*
(
Rea
z
)
)
)
+
(
(
Im1
z2
)
*
(
Im2
z
)
)
)
-
(
(
Im2
z2
)
*
(
Im1
z
)
)
)
*
<k>
)
is
quaternion
Element
of
QUATERNION
z
is
quaternion
set
Im1
z
is
V28
()
V29
()
ext-real
Element
of
REAL
Im2
z
is
V28
()
V29
()
ext-real
Element
of
REAL
Im3
z
is
V28
()
V29
()
ext-real
Element
of
REAL
Rea
z
is
V28
()
V29
()
ext-real
Element
of
REAL
[*
(
Rea
z
)
,
0
,
0
,
0
*]
is
quaternion
Element
of
QUATERNION
[*
(
Rea
z
)
,
0
*]
is
V28
()
Element
of
COMPLEX
z
is
quaternion
set
|.
z
.|
is
V28
()
V29
()
ext-real
Element
of
REAL
Rea
z
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Rea
z
)
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Rea
z
)
,
(
Rea
z
)
) is
set
Im1
z
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im1
z
)
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Im1
z
)
,
(
Im1
z
)
) is
set
(
(
Rea
z
)
^2
)
+
(
(
Im1
z
)
^2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
Im2
z
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im2
z
)
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Im2
z
)
,
(
Im2
z
)
) is
set
(
(
(
Rea
z
)
^2
)
+
(
(
Im1
z
)
^2
)
)
+
(
(
Im2
z
)
^2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
Im3
z
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im3
z
)
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Im3
z
)
,
(
Im3
z
)
) is
set
(
(
(
(
Rea
z
)
^2
)
+
(
(
Im1
z
)
^2
)
)
+
(
(
Im2
z
)
^2
)
)
+
(
(
Im3
z
)
^2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
sqrt
(
(
(
(
(
Rea
z
)
^2
)
+
(
(
Im1
z
)
^2
)
)
+
(
(
Im2
z
)
^2
)
)
+
(
(
Im3
z
)
^2
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
|.
z
.|
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
|.
z
.|
,
|.
z
.|
) is
set
(
(
(
(
(
Rea
z
)
^2
)
+
(
(
Im1
z
)
^2
)
)
+
(
(
Im2
z
)
^2
)
)
+
(
(
Im3
z
)
^2
)
)
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
(
(
(
(
Rea
z
)
^2
)
+
(
(
Im1
z
)
^2
)
)
+
(
(
Im2
z
)
^2
)
)
+
(
(
Im3
z
)
^2
)
)
,
(
(
(
(
(
Rea
z
)
^2
)
+
(
(
Im1
z
)
^2
)
)
+
(
(
Im2
z
)
^2
)
)
+
(
(
Im3
z
)
^2
)
)
) is
set
sqrt
(
(
(
(
(
(
Rea
z
)
^2
)
+
(
(
Im1
z
)
^2
)
)
+
(
(
Im2
z
)
^2
)
)
+
(
(
Im3
z
)
^2
)
)
^2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
z
is
quaternion
set
|.
z
.|
is
V28
()
V29
()
ext-real
Element
of
REAL
Rea
z
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Rea
z
)
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Rea
z
)
,
(
Rea
z
)
) is
set
Im1
z
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im1
z
)
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Im1
z
)
,
(
Im1
z
)
) is
set
(
(
Rea
z
)
^2
)
+
(
(
Im1
z
)
^2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
Im2
z
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im2
z
)
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Im2
z
)
,
(
Im2
z
)
) is
set
(
(
(
Rea
z
)
^2
)
+
(
(
Im1
z
)
^2
)
)
+
(
(
Im2
z
)
^2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
Im3
z
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im3
z
)
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Im3
z
)
,
(
Im3
z
)
) is
set
(
(
(
(
Rea
z
)
^2
)
+
(
(
Im1
z
)
^2
)
)
+
(
(
Im2
z
)
^2
)
)
+
(
(
Im3
z
)
^2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
sqrt
(
(
(
(
(
Rea
z
)
^2
)
+
(
(
Im1
z
)
^2
)
)
+
(
(
Im2
z
)
^2
)
)
+
(
(
Im3
z
)
^2
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
|.
z
.|
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
|.
z
.|
,
|.
z
.|
) is
set
z
*'
is
quaternion
Element
of
QUATERNION
-
(
Im1
z
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
-
(
Im1
z
)
)
*
K107
() is
quaternion
set
(
Rea
z
)
+
(
(
-
(
Im1
z
)
)
*
K107
()
)
is
quaternion
set
-
(
Im2
z
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
-
(
Im2
z
)
)
*
<j>
is
quaternion
set
(
(
Rea
z
)
+
(
(
-
(
Im1
z
)
)
*
K107
()
)
)
+
(
(
-
(
Im2
z
)
)
*
<j>
)
is
quaternion
Element
of
QUATERNION
-
(
Im3
z
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
-
(
Im3
z
)
)
*
<k>
is
quaternion
set
(
(
(
Rea
z
)
+
(
(
-
(
Im1
z
)
)
*
K107
()
)
)
+
(
(
-
(
Im2
z
)
)
*
<j>
)
)
+
(
(
-
(
Im3
z
)
)
*
<k>
)
is
quaternion
Element
of
QUATERNION
z
*
(
z
*'
)
is
quaternion
Element
of
QUATERNION
|.
(
z
*
(
z
*'
)
)
.|
is
V28
()
V29
()
ext-real
Element
of
REAL
Rea
(
z
*
(
z
*'
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Rea
(
z
*
(
z
*'
)
)
)
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Rea
(
z
*
(
z
*'
)
)
)
,
(
Rea
(
z
*
(
z
*'
)
)
)
) is
set
Im1
(
z
*
(
z
*'
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im1
(
z
*
(
z
*'
)
)
)
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Im1
(
z
*
(
z
*'
)
)
)
,
(
Im1
(
z
*
(
z
*'
)
)
)
) is
set
(
(
Rea
(
z
*
(
z
*'
)
)
)
^2
)
+
(
(
Im1
(
z
*
(
z
*'
)
)
)
^2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
Im2
(
z
*
(
z
*'
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im2
(
z
*
(
z
*'
)
)
)
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Im2
(
z
*
(
z
*'
)
)
)
,
(
Im2
(
z
*
(
z
*'
)
)
)
) is
set
(
(
(
Rea
(
z
*
(
z
*'
)
)
)
^2
)
+
(
(
Im1
(
z
*
(
z
*'
)
)
)
^2
)
)
+
(
(
Im2
(
z
*
(
z
*'
)
)
)
^2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
Im3
(
z
*
(
z
*'
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im3
(
z
*
(
z
*'
)
)
)
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Im3
(
z
*
(
z
*'
)
)
)
,
(
Im3
(
z
*
(
z
*'
)
)
)
) is
set
(
(
(
(
Rea
(
z
*
(
z
*'
)
)
)
^2
)
+
(
(
Im1
(
z
*
(
z
*'
)
)
)
^2
)
)
+
(
(
Im2
(
z
*
(
z
*'
)
)
)
^2
)
)
+
(
(
Im3
(
z
*
(
z
*'
)
)
)
^2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
sqrt
(
(
(
(
(
Rea
(
z
*
(
z
*'
)
)
)
^2
)
+
(
(
Im1
(
z
*
(
z
*'
)
)
)
^2
)
)
+
(
(
Im2
(
z
*
(
z
*'
)
)
)
^2
)
)
+
(
(
Im3
(
z
*
(
z
*'
)
)
)
^2
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
z
*
z
is
quaternion
Element
of
QUATERNION
|.
(
z
*
z
)
.|
is
V28
()
V29
()
ext-real
Element
of
REAL
Rea
(
z
*
z
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Rea
(
z
*
z
)
)
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Rea
(
z
*
z
)
)
,
(
Rea
(
z
*
z
)
)
) is
set
Im1
(
z
*
z
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im1
(
z
*
z
)
)
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Im1
(
z
*
z
)
)
,
(
Im1
(
z
*
z
)
)
) is
set
(
(
Rea
(
z
*
z
)
)
^2
)
+
(
(
Im1
(
z
*
z
)
)
^2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
Im2
(
z
*
z
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im2
(
z
*
z
)
)
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Im2
(
z
*
z
)
)
,
(
Im2
(
z
*
z
)
)
) is
set
(
(
(
Rea
(
z
*
z
)
)
^2
)
+
(
(
Im1
(
z
*
z
)
)
^2
)
)
+
(
(
Im2
(
z
*
z
)
)
^2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
Im3
(
z
*
z
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im3
(
z
*
z
)
)
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Im3
(
z
*
z
)
)
,
(
Im3
(
z
*
z
)
)
) is
set
(
(
(
(
Rea
(
z
*
z
)
)
^2
)
+
(
(
Im1
(
z
*
z
)
)
^2
)
)
+
(
(
Im2
(
z
*
z
)
)
^2
)
)
+
(
(
Im3
(
z
*
z
)
)
^2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
sqrt
(
(
(
(
(
Rea
(
z
*
z
)
)
^2
)
+
(
(
Im1
(
z
*
z
)
)
^2
)
)
+
(
(
Im2
(
z
*
z
)
)
^2
)
)
+
(
(
Im3
(
z
*
z
)
)
^2
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
z
is
quaternion
set
|.
z
.|
is
V28
()
V29
()
ext-real
Element
of
REAL
Rea
z
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Rea
z
)
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Rea
z
)
,
(
Rea
z
)
) is
set
Im1
z
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im1
z
)
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Im1
z
)
,
(
Im1
z
)
) is
set
(
(
Rea
z
)
^2
)
+
(
(
Im1
z
)
^2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
Im2
z
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im2
z
)
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Im2
z
)
,
(
Im2
z
)
) is
set
(
(
(
Rea
z
)
^2
)
+
(
(
Im1
z
)
^2
)
)
+
(
(
Im2
z
)
^2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
Im3
z
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im3
z
)
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Im3
z
)
,
(
Im3
z
)
) is
set
(
(
(
(
Rea
z
)
^2
)
+
(
(
Im1
z
)
^2
)
)
+
(
(
Im2
z
)
^2
)
)
+
(
(
Im3
z
)
^2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
sqrt
(
(
(
(
(
Rea
z
)
^2
)
+
(
(
Im1
z
)
^2
)
)
+
(
(
Im2
z
)
^2
)
)
+
(
(
Im3
z
)
^2
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
|.
z
.|
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
|.
z
.|
,
|.
z
.|
) is
set
z
*'
is
quaternion
Element
of
QUATERNION
-
(
Im1
z
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
-
(
Im1
z
)
)
*
K107
() is
quaternion
set
(
Rea
z
)
+
(
(
-
(
Im1
z
)
)
*
K107
()
)
is
quaternion
set
-
(
Im2
z
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
-
(
Im2
z
)
)
*
<j>
is
quaternion
set
(
(
Rea
z
)
+
(
(
-
(
Im1
z
)
)
*
K107
()
)
)
+
(
(
-
(
Im2
z
)
)
*
<j>
)
is
quaternion
Element
of
QUATERNION
-
(
Im3
z
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
-
(
Im3
z
)
)
*
<k>
is
quaternion
set
(
(
(
Rea
z
)
+
(
(
-
(
Im1
z
)
)
*
K107
()
)
)
+
(
(
-
(
Im2
z
)
)
*
<j>
)
)
+
(
(
-
(
Im3
z
)
)
*
<k>
)
is
quaternion
Element
of
QUATERNION
z
*
(
z
*'
)
is
quaternion
Element
of
QUATERNION
Rea
(
z
*
(
z
*'
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
z
is
quaternion
set
Rea
z
is
V28
()
V29
()
ext-real
Element
of
REAL
2
*
(
Rea
z
)
is
V28
()
V29
()
ext-real
Element
of
REAL
z
*'
is
quaternion
Element
of
QUATERNION
Im1
z
is
V28
()
V29
()
ext-real
Element
of
REAL
-
(
Im1
z
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
-
(
Im1
z
)
)
*
K107
() is
quaternion
set
(
Rea
z
)
+
(
(
-
(
Im1
z
)
)
*
K107
()
)
is
quaternion
set
Im2
z
is
V28
()
V29
()
ext-real
Element
of
REAL
-
(
Im2
z
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
-
(
Im2
z
)
)
*
<j>
is
quaternion
set
(
(
Rea
z
)
+
(
(
-
(
Im1
z
)
)
*
K107
()
)
)
+
(
(
-
(
Im2
z
)
)
*
<j>
)
is
quaternion
Element
of
QUATERNION
Im3
z
is
V28
()
V29
()
ext-real
Element
of
REAL
-
(
Im3
z
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
-
(
Im3
z
)
)
*
<k>
is
quaternion
set
(
(
(
Rea
z
)
+
(
(
-
(
Im1
z
)
)
*
K107
()
)
)
+
(
(
-
(
Im2
z
)
)
*
<j>
)
)
+
(
(
-
(
Im3
z
)
)
*
<k>
)
is
quaternion
Element
of
QUATERNION
z
+
(
z
*'
)
is
quaternion
Element
of
QUATERNION
Rea
(
z
+
(
z
*'
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
[*
(
Rea
z
)
,
(
Im1
z
)
,
(
Im2
z
)
,
(
Im3
z
)
*]
is
quaternion
Element
of
QUATERNION
[*
(
Rea
z
)
,
(
-
(
Im1
z
)
)
,
(
-
(
Im2
z
)
)
,
(
-
(
Im3
z
)
)
*]
is
quaternion
Element
of
QUATERNION
(
Rea
z
)
+
(
Rea
z
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im1
z
)
+
(
-
(
Im1
z
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im2
z
)
+
(
-
(
Im2
z
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im3
z
)
+
(
-
(
Im3
z
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
[*
(
(
Rea
z
)
+
(
Rea
z
)
)
,
(
(
Im1
z
)
+
(
-
(
Im1
z
)
)
)
,
(
(
Im2
z
)
+
(
-
(
Im2
z
)
)
)
,
(
(
Im3
z
)
+
(
-
(
Im3
z
)
)
)
*]
is
quaternion
Element
of
QUATERNION
[*
(
2
*
(
Rea
z
)
)
,
0
,
0
,
0
*]
is
quaternion
Element
of
QUATERNION
z
is
quaternion
set
z
*'
is
quaternion
Element
of
QUATERNION
Rea
z
is
V28
()
V29
()
ext-real
Element
of
REAL
Im1
z
is
V28
()
V29
()
ext-real
Element
of
REAL
-
(
Im1
z
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
-
(
Im1
z
)
)
*
K107
() is
quaternion
set
(
Rea
z
)
+
(
(
-
(
Im1
z
)
)
*
K107
()
)
is
quaternion
set
Im2
z
is
V28
()
V29
()
ext-real
Element
of
REAL
-
(
Im2
z
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
-
(
Im2
z
)
)
*
<j>
is
quaternion
set
(
(
Rea
z
)
+
(
(
-
(
Im1
z
)
)
*
K107
()
)
)
+
(
(
-
(
Im2
z
)
)
*
<j>
)
is
quaternion
Element
of
QUATERNION
Im3
z
is
V28
()
V29
()
ext-real
Element
of
REAL
-
(
Im3
z
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
-
(
Im3
z
)
)
*
<k>
is
quaternion
set
(
(
(
Rea
z
)
+
(
(
-
(
Im1
z
)
)
*
K107
()
)
)
+
(
(
-
(
Im2
z
)
)
*
<j>
)
)
+
(
(
-
(
Im3
z
)
)
*
<k>
)
is
quaternion
Element
of
QUATERNION
z2
is
quaternion
set
z
*
z2
is
quaternion
Element
of
QUATERNION
(
z
*
z2
)
*'
is
quaternion
Element
of
QUATERNION
Rea
(
z
*
z2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
Im1
(
z
*
z2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
-
(
Im1
(
z
*
z2
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
-
(
Im1
(
z
*
z2
)
)
)
*
K107
() is
quaternion
set
(
Rea
(
z
*
z2
)
)
+
(
(
-
(
Im1
(
z
*
z2
)
)
)
*
K107
()
)
is
quaternion
set
Im2
(
z
*
z2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
-
(
Im2
(
z
*
z2
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
-
(
Im2
(
z
*
z2
)
)
)
*
<j>
is
quaternion
set
(
(
Rea
(
z
*
z2
)
)
+
(
(
-
(
Im1
(
z
*
z2
)
)
)
*
K107
()
)
)
+
(
(
-
(
Im2
(
z
*
z2
)
)
)
*
<j>
)
is
quaternion
Element
of
QUATERNION
Im3
(
z
*
z2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
-
(
Im3
(
z
*
z2
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
-
(
Im3
(
z
*
z2
)
)
)
*
<k>
is
quaternion
set
(
(
(
Rea
(
z
*
z2
)
)
+
(
(
-
(
Im1
(
z
*
z2
)
)
)
*
K107
()
)
)
+
(
(
-
(
Im2
(
z
*
z2
)
)
)
*
<j>
)
)
+
(
(
-
(
Im3
(
z
*
z2
)
)
)
*
<k>
)
is
quaternion
Element
of
QUATERNION
z2
*'
is
quaternion
Element
of
QUATERNION
Rea
z2
is
V28
()
V29
()
ext-real
Element
of
REAL
Im1
z2
is
V28
()
V29
()
ext-real
Element
of
REAL
-
(
Im1
z2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
-
(
Im1
z2
)
)
*
K107
() is
quaternion
set
(
Rea
z2
)
+
(
(
-
(
Im1
z2
)
)
*
K107
()
)
is
quaternion
set
Im2
z2
is
V28
()
V29
()
ext-real
Element
of
REAL
-
(
Im2
z2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
-
(
Im2
z2
)
)
*
<j>
is
quaternion
set
(
(
Rea
z2
)
+
(
(
-
(
Im1
z2
)
)
*
K107
()
)
)
+
(
(
-
(
Im2
z2
)
)
*
<j>
)
is
quaternion
Element
of
QUATERNION
Im3
z2
is
V28
()
V29
()
ext-real
Element
of
REAL
-
(
Im3
z2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
-
(
Im3
z2
)
)
*
<k>
is
quaternion
set
(
(
(
Rea
z2
)
+
(
(
-
(
Im1
z2
)
)
*
K107
()
)
)
+
(
(
-
(
Im2
z2
)
)
*
<j>
)
)
+
(
(
-
(
Im3
z2
)
)
*
<k>
)
is
quaternion
Element
of
QUATERNION
(
z
*'
)
*
(
z2
*'
)
is
quaternion
Element
of
QUATERNION
Im1
(
z2
*'
)
is
V28
()
V29
()
ext-real
Element
of
REAL
Im2
(
z2
*'
)
is
V28
()
V29
()
ext-real
Element
of
REAL
Im3
(
z2
*'
)
is
V28
()
V29
()
ext-real
Element
of
REAL
Rea
(
z
*'
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Rea
z
)
*
(
Rea
z2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im1
z
)
*
(
Im1
z2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
Rea
z
)
*
(
Rea
z2
)
)
-
(
(
Im1
z
)
*
(
Im1
z2
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K110
(
(
(
Im1
z
)
*
(
Im1
z2
)
)
) is
V28
()
set
K108
(
(
(
Rea
z
)
*
(
Rea
z2
)
)
,
K110
(
(
(
Im1
z
)
*
(
Im1
z2
)
)
)) is
set
(
Im2
z
)
*
(
Im2
z2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
(
Rea
z
)
*
(
Rea
z2
)
)
-
(
(
Im1
z
)
*
(
Im1
z2
)
)
)
-
(
(
Im2
z
)
*
(
Im2
z2
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K110
(
(
(
Im2
z
)
*
(
Im2
z2
)
)
) is
V28
()
set
K108
(
(
(
(
Rea
z
)
*
(
Rea
z2
)
)
-
(
(
Im1
z
)
*
(
Im1
z2
)
)
)
,
K110
(
(
(
Im2
z
)
*
(
Im2
z2
)
)
)) is
set
(
Im3
z
)
*
(
Im3
z2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
(
(
Rea
z
)
*
(
Rea
z2
)
)
-
(
(
Im1
z
)
*
(
Im1
z2
)
)
)
-
(
(
Im2
z
)
*
(
Im2
z2
)
)
)
-
(
(
Im3
z
)
*
(
Im3
z2
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K110
(
(
(
Im3
z
)
*
(
Im3
z2
)
)
) is
V28
()
set
K108
(
(
(
(
(
Rea
z
)
*
(
Rea
z2
)
)
-
(
(
Im1
z
)
*
(
Im1
z2
)
)
)
-
(
(
Im2
z
)
*
(
Im2
z2
)
)
)
,
K110
(
(
(
Im3
z
)
*
(
Im3
z2
)
)
)) is
set
Im3
(
z
*'
)
is
V28
()
V29
()
ext-real
Element
of
REAL
Im1
(
z
*'
)
is
V28
()
V29
()
ext-real
Element
of
REAL
Im2
(
z
*'
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Rea
z
)
*
(
Im3
z2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im3
z
)
*
(
Rea
z2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
Rea
z
)
*
(
Im3
z2
)
)
+
(
(
Im3
z
)
*
(
Rea
z2
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im1
z
)
*
(
Im2
z2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
(
Rea
z
)
*
(
Im3
z2
)
)
+
(
(
Im3
z
)
*
(
Rea
z2
)
)
)
+
(
(
Im1
z
)
*
(
Im2
z2
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im2
z
)
*
(
Im1
z2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
(
(
Rea
z
)
*
(
Im3
z2
)
)
+
(
(
Im3
z
)
*
(
Rea
z2
)
)
)
+
(
(
Im1
z
)
*
(
Im2
z2
)
)
)
-
(
(
Im2
z
)
*
(
Im1
z2
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K110
(
(
(
Im2
z
)
*
(
Im1
z2
)
)
) is
V28
()
set
K108
(
(
(
(
(
Rea
z
)
*
(
Im3
z2
)
)
+
(
(
Im3
z
)
*
(
Rea
z2
)
)
)
+
(
(
Im1
z
)
*
(
Im2
z2
)
)
)
,
K110
(
(
(
Im2
z
)
*
(
Im1
z2
)
)
)) is
set
(
Rea
z
)
*
(
Im2
z2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im2
z
)
*
(
Rea
z2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
Rea
z
)
*
(
Im2
z2
)
)
+
(
(
Im2
z
)
*
(
Rea
z2
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im3
z
)
*
(
Im1
z2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
(
Rea
z
)
*
(
Im2
z2
)
)
+
(
(
Im2
z
)
*
(
Rea
z2
)
)
)
+
(
(
Im3
z
)
*
(
Im1
z2
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im1
z
)
*
(
Im3
z2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
(
(
Rea
z
)
*
(
Im2
z2
)
)
+
(
(
Im2
z
)
*
(
Rea
z2
)
)
)
+
(
(
Im3
z
)
*
(
Im1
z2
)
)
)
-
(
(
Im1
z
)
*
(
Im3
z2
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K110
(
(
(
Im1
z
)
*
(
Im3
z2
)
)
) is
V28
()
set
K108
(
(
(
(
(
Rea
z
)
*
(
Im2
z2
)
)
+
(
(
Im2
z
)
*
(
Rea
z2
)
)
)
+
(
(
Im3
z
)
*
(
Im1
z2
)
)
)
,
K110
(
(
(
Im1
z
)
*
(
Im3
z2
)
)
)) is
set
(
Rea
z
)
*
(
Im1
z2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im1
z
)
*
(
Rea
z2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
Rea
z
)
*
(
Im1
z2
)
)
+
(
(
Im1
z
)
*
(
Rea
z2
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im2
z
)
*
(
Im3
z2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
(
Rea
z
)
*
(
Im1
z2
)
)
+
(
(
Im1
z
)
*
(
Rea
z2
)
)
)
+
(
(
Im2
z
)
*
(
Im3
z2
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im3
z
)
*
(
Im2
z2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
(
(
Rea
z
)
*
(
Im1
z2
)
)
+
(
(
Im1
z
)
*
(
Rea
z2
)
)
)
+
(
(
Im2
z
)
*
(
Im3
z2
)
)
)
-
(
(
Im3
z
)
*
(
Im2
z2
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K110
(
(
(
Im3
z
)
*
(
Im2
z2
)
)
) is
V28
()
set
K108
(
(
(
(
(
Rea
z
)
*
(
Im1
z2
)
)
+
(
(
Im1
z
)
*
(
Rea
z2
)
)
)
+
(
(
Im2
z
)
*
(
Im3
z2
)
)
)
,
K110
(
(
(
Im3
z
)
*
(
Im2
z2
)
)
)) is
set
Rea
(
z2
*'
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Rea
(
z
*'
)
)
*
(
Rea
(
z2
*'
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im1
(
z
*'
)
)
*
(
Im1
(
z2
*'
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
Rea
(
z
*'
)
)
*
(
Rea
(
z2
*'
)
)
)
-
(
(
Im1
(
z
*'
)
)
*
(
Im1
(
z2
*'
)
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K110
(
(
(
Im1
(
z
*'
)
)
*
(
Im1
(
z2
*'
)
)
)
) is
V28
()
set
K108
(
(
(
Rea
(
z
*'
)
)
*
(
Rea
(
z2
*'
)
)
)
,
K110
(
(
(
Im1
(
z
*'
)
)
*
(
Im1
(
z2
*'
)
)
)
)) is
set
(
Im2
(
z
*'
)
)
*
(
Im2
(
z2
*'
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
(
Rea
(
z
*'
)
)
*
(
Rea
(
z2
*'
)
)
)
-
(
(
Im1
(
z
*'
)
)
*
(
Im1
(
z2
*'
)
)
)
)
-
(
(
Im2
(
z
*'
)
)
*
(
Im2
(
z2
*'
)
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K110
(
(
(
Im2
(
z
*'
)
)
*
(
Im2
(
z2
*'
)
)
)
) is
V28
()
set
K108
(
(
(
(
Rea
(
z
*'
)
)
*
(
Rea
(
z2
*'
)
)
)
-
(
(
Im1
(
z
*'
)
)
*
(
Im1
(
z2
*'
)
)
)
)
,
K110
(
(
(
Im2
(
z
*'
)
)
*
(
Im2
(
z2
*'
)
)
)
)) is
set
(
Im3
(
z
*'
)
)
*
(
Im3
(
z2
*'
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
(
(
Rea
(
z
*'
)
)
*
(
Rea
(
z2
*'
)
)
)
-
(
(
Im1
(
z
*'
)
)
*
(
Im1
(
z2
*'
)
)
)
)
-
(
(
Im2
(
z
*'
)
)
*
(
Im2
(
z2
*'
)
)
)
)
-
(
(
Im3
(
z
*'
)
)
*
(
Im3
(
z2
*'
)
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K110
(
(
(
Im3
(
z
*'
)
)
*
(
Im3
(
z2
*'
)
)
)
) is
V28
()
set
K108
(
(
(
(
(
Rea
(
z
*'
)
)
*
(
Rea
(
z2
*'
)
)
)
-
(
(
Im1
(
z
*'
)
)
*
(
Im1
(
z2
*'
)
)
)
)
-
(
(
Im2
(
z
*'
)
)
*
(
Im2
(
z2
*'
)
)
)
)
,
K110
(
(
(
Im3
(
z
*'
)
)
*
(
Im3
(
z2
*'
)
)
)
)) is
set
(
Rea
(
z
*'
)
)
*
(
Im1
(
z2
*'
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im1
(
z
*'
)
)
*
(
Rea
(
z2
*'
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
Rea
(
z
*'
)
)
*
(
Im1
(
z2
*'
)
)
)
+
(
(
Im1
(
z
*'
)
)
*
(
Rea
(
z2
*'
)
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im2
(
z
*'
)
)
*
(
Im3
(
z2
*'
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
(
Rea
(
z
*'
)
)
*
(
Im1
(
z2
*'
)
)
)
+
(
(
Im1
(
z
*'
)
)
*
(
Rea
(
z2
*'
)
)
)
)
+
(
(
Im2
(
z
*'
)
)
*
(
Im3
(
z2
*'
)
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im3
(
z
*'
)
)
*
(
Im2
(
z2
*'
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
(
(
Rea
(
z
*'
)
)
*
(
Im1
(
z2
*'
)
)
)
+
(
(
Im1
(
z
*'
)
)
*
(
Rea
(
z2
*'
)
)
)
)
+
(
(
Im2
(
z
*'
)
)
*
(
Im3
(
z2
*'
)
)
)
)
-
(
(
Im3
(
z
*'
)
)
*
(
Im2
(
z2
*'
)
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K110
(
(
(
Im3
(
z
*'
)
)
*
(
Im2
(
z2
*'
)
)
)
) is
V28
()
set
K108
(
(
(
(
(
Rea
(
z
*'
)
)
*
(
Im1
(
z2
*'
)
)
)
+
(
(
Im1
(
z
*'
)
)
*
(
Rea
(
z2
*'
)
)
)
)
+
(
(
Im2
(
z
*'
)
)
*
(
Im3
(
z2
*'
)
)
)
)
,
K110
(
(
(
Im3
(
z
*'
)
)
*
(
Im2
(
z2
*'
)
)
)
)) is
set
(
(
(
(
(
Rea
(
z
*'
)
)
*
(
Im1
(
z2
*'
)
)
)
+
(
(
Im1
(
z
*'
)
)
*
(
Rea
(
z2
*'
)
)
)
)
+
(
(
Im2
(
z
*'
)
)
*
(
Im3
(
z2
*'
)
)
)
)
-
(
(
Im3
(
z
*'
)
)
*
(
Im2
(
z2
*'
)
)
)
)
*
<i>
is
quaternion
set
(
(
(
(
(
Rea
(
z
*'
)
)
*
(
Rea
(
z2
*'
)
)
)
-
(
(
Im1
(
z
*'
)
)
*
(
Im1
(
z2
*'
)
)
)
)
-
(
(
Im2
(
z
*'
)
)
*
(
Im2
(
z2
*'
)
)
)
)
-
(
(
Im3
(
z
*'
)
)
*
(
Im3
(
z2
*'
)
)
)
)
+
(
(
(
(
(
(
Rea
(
z
*'
)
)
*
(
Im1
(
z2
*'
)
)
)
+
(
(
Im1
(
z
*'
)
)
*
(
Rea
(
z2
*'
)
)
)
)
+
(
(
Im2
(
z
*'
)
)
*
(
Im3
(
z2
*'
)
)
)
)
-
(
(
Im3
(
z
*'
)
)
*
(
Im2
(
z2
*'
)
)
)
)
*
<i>
)
is
quaternion
set
(
Rea
(
z
*'
)
)
*
(
Im2
(
z2
*'
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im2
(
z
*'
)
)
*
(
Rea
(
z2
*'
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
Rea
(
z
*'
)
)
*
(
Im2
(
z2
*'
)
)
)
+
(
(
Im2
(
z
*'
)
)
*
(
Rea
(
z2
*'
)
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im3
(
z
*'
)
)
*
(
Im1
(
z2
*'
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
(
Rea
(
z
*'
)
)
*
(
Im2
(
z2
*'
)
)
)
+
(
(
Im2
(
z
*'
)
)
*
(
Rea
(
z2
*'
)
)
)
)
+
(
(
Im3
(
z
*'
)
)
*
(
Im1
(
z2
*'
)
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im1
(
z
*'
)
)
*
(
Im3
(
z2
*'
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
(
(
Rea
(
z
*'
)
)
*
(
Im2
(
z2
*'
)
)
)
+
(
(
Im2
(
z
*'
)
)
*
(
Rea
(
z2
*'
)
)
)
)
+
(
(
Im3
(
z
*'
)
)
*
(
Im1
(
z2
*'
)
)
)
)
-
(
(
Im1
(
z
*'
)
)
*
(
Im3
(
z2
*'
)
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K110
(
(
(
Im1
(
z
*'
)
)
*
(
Im3
(
z2
*'
)
)
)
) is
V28
()
set
K108
(
(
(
(
(
Rea
(
z
*'
)
)
*
(
Im2
(
z2
*'
)
)
)
+
(
(
Im2
(
z
*'
)
)
*
(
Rea
(
z2
*'
)
)
)
)
+
(
(
Im3
(
z
*'
)
)
*
(
Im1
(
z2
*'
)
)
)
)
,
K110
(
(
(
Im1
(
z
*'
)
)
*
(
Im3
(
z2
*'
)
)
)
)) is
set
(
(
(
(
(
Rea
(
z
*'
)
)
*
(
Im2
(
z2
*'
)
)
)
+
(
(
Im2
(
z
*'
)
)
*
(
Rea
(
z2
*'
)
)
)
)
+
(
(
Im3
(
z
*'
)
)
*
(
Im1
(
z2
*'
)
)
)
)
-
(
(
Im1
(
z
*'
)
)
*
(
Im3
(
z2
*'
)
)
)
)
*
<j>
is
quaternion
set
(
(
(
(
(
(
Rea
(
z
*'
)
)
*
(
Rea
(
z2
*'
)
)
)
-
(
(
Im1
(
z
*'
)
)
*
(
Im1
(
z2
*'
)
)
)
)
-
(
(
Im2
(
z
*'
)
)
*
(
Im2
(
z2
*'
)
)
)
)
-
(
(
Im3
(
z
*'
)
)
*
(
Im3
(
z2
*'
)
)
)
)
+
(
(
(
(
(
(
Rea
(
z
*'
)
)
*
(
Im1
(
z2
*'
)
)
)
+
(
(
Im1
(
z
*'
)
)
*
(
Rea
(
z2
*'
)
)
)
)
+
(
(
Im2
(
z
*'
)
)
*
(
Im3
(
z2
*'
)
)
)
)
-
(
(
Im3
(
z
*'
)
)
*
(
Im2
(
z2
*'
)
)
)
)
*
<i>
)
)
+
(
(
(
(
(
(
Rea
(
z
*'
)
)
*
(
Im2
(
z2
*'
)
)
)
+
(
(
Im2
(
z
*'
)
)
*
(
Rea
(
z2
*'
)
)
)
)
+
(
(
Im3
(
z
*'
)
)
*
(
Im1
(
z2
*'
)
)
)
)
-
(
(
Im1
(
z
*'
)
)
*
(
Im3
(
z2
*'
)
)
)
)
*
<j>
)
is
quaternion
Element
of
QUATERNION
(
Rea
(
z
*'
)
)
*
(
Im3
(
z2
*'
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im3
(
z
*'
)
)
*
(
Rea
(
z2
*'
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
Rea
(
z
*'
)
)
*
(
Im3
(
z2
*'
)
)
)
+
(
(
Im3
(
z
*'
)
)
*
(
Rea
(
z2
*'
)
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im1
(
z
*'
)
)
*
(
Im2
(
z2
*'
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
(
Rea
(
z
*'
)
)
*
(
Im3
(
z2
*'
)
)
)
+
(
(
Im3
(
z
*'
)
)
*
(
Rea
(
z2
*'
)
)
)
)
+
(
(
Im1
(
z
*'
)
)
*
(
Im2
(
z2
*'
)
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im2
(
z
*'
)
)
*
(
Im1
(
z2
*'
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
(
(
Rea
(
z
*'
)
)
*
(
Im3
(
z2
*'
)
)
)
+
(
(
Im3
(
z
*'
)
)
*
(
Rea
(
z2
*'
)
)
)
)
+
(
(
Im1
(
z
*'
)
)
*
(
Im2
(
z2
*'
)
)
)
)
-
(
(
Im2
(
z
*'
)
)
*
(
Im1
(
z2
*'
)
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K110
(
(
(
Im2
(
z
*'
)
)
*
(
Im1
(
z2
*'
)
)
)
) is
V28
()
set
K108
(
(
(
(
(
Rea
(
z
*'
)
)
*
(
Im3
(
z2
*'
)
)
)
+
(
(
Im3
(
z
*'
)
)
*
(
Rea
(
z2
*'
)
)
)
)
+
(
(
Im1
(
z
*'
)
)
*
(
Im2
(
z2
*'
)
)
)
)
,
K110
(
(
(
Im2
(
z
*'
)
)
*
(
Im1
(
z2
*'
)
)
)
)) is
set
(
(
(
(
(
Rea
(
z
*'
)
)
*
(
Im3
(
z2
*'
)
)
)
+
(
(
Im3
(
z
*'
)
)
*
(
Rea
(
z2
*'
)
)
)
)
+
(
(
Im1
(
z
*'
)
)
*
(
Im2
(
z2
*'
)
)
)
)
-
(
(
Im2
(
z
*'
)
)
*
(
Im1
(
z2
*'
)
)
)
)
*
<k>
is
quaternion
set
(
(
(
(
(
(
(
Rea
(
z
*'
)
)
*
(
Rea
(
z2
*'
)
)
)
-
(
(
Im1
(
z
*'
)
)
*
(
Im1
(
z2
*'
)
)
)
)
-
(
(
Im2
(
z
*'
)
)
*
(
Im2
(
z2
*'
)
)
)
)
-
(
(
Im3
(
z
*'
)
)
*
(
Im3
(
z2
*'
)
)
)
)
+
(
(
(
(
(
(
Rea
(
z
*'
)
)
*
(
Im1
(
z2
*'
)
)
)
+
(
(
Im1
(
z
*'
)
)
*
(
Rea
(
z2
*'
)
)
)
)
+
(
(
Im2
(
z
*'
)
)
*
(
Im3
(
z2
*'
)
)
)
)
-
(
(
Im3
(
z
*'
)
)
*
(
Im2
(
z2
*'
)
)
)
)
*
<i>
)
)
+
(
(
(
(
(
(
Rea
(
z
*'
)
)
*
(
Im2
(
z2
*'
)
)
)
+
(
(
Im2
(
z
*'
)
)
*
(
Rea
(
z2
*'
)
)
)
)
+
(
(
Im3
(
z
*'
)
)
*
(
Im1
(
z2
*'
)
)
)
)
-
(
(
Im1
(
z
*'
)
)
*
(
Im3
(
z2
*'
)
)
)
)
*
<j>
)
)
+
(
(
(
(
(
(
Rea
(
z
*'
)
)
*
(
Im3
(
z2
*'
)
)
)
+
(
(
Im3
(
z
*'
)
)
*
(
Rea
(
z2
*'
)
)
)
)
+
(
(
Im1
(
z
*'
)
)
*
(
Im2
(
z2
*'
)
)
)
)
-
(
(
Im2
(
z
*'
)
)
*
(
Im1
(
z2
*'
)
)
)
)
*
<k>
)
is
quaternion
Element
of
QUATERNION
Rea
(
(
z
*
z2
)
*'
)
is
V28
()
V29
()
ext-real
Element
of
REAL
Im1
(
(
z
*
z2
)
*'
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im1
(
(
z
*
z2
)
*'
)
)
*
<i>
is
quaternion
set
(
Rea
(
(
z
*
z2
)
*'
)
)
+
(
(
Im1
(
(
z
*
z2
)
*'
)
)
*
<i>
)
is
quaternion
set
Im2
(
(
z
*
z2
)
*'
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im2
(
(
z
*
z2
)
*'
)
)
*
<j>
is
quaternion
set
(
(
Rea
(
(
z
*
z2
)
*'
)
)
+
(
(
Im1
(
(
z
*
z2
)
*'
)
)
*
<i>
)
)
+
(
(
Im2
(
(
z
*
z2
)
*'
)
)
*
<j>
)
is
quaternion
Element
of
QUATERNION
Im3
(
(
z
*
z2
)
*'
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im3
(
(
z
*
z2
)
*'
)
)
*
<k>
is
quaternion
set
(
(
(
Rea
(
(
z
*
z2
)
*'
)
)
+
(
(
Im1
(
(
z
*
z2
)
*'
)
)
*
<i>
)
)
+
(
(
Im2
(
(
z
*
z2
)
*'
)
)
*
<j>
)
)
+
(
(
Im3
(
(
z
*
z2
)
*'
)
)
*
<k>
)
is
quaternion
Element
of
QUATERNION
(
(
(
(
(
Rea
z
)
*
(
Rea
z2
)
)
-
(
(
Im1
z
)
*
(
Im1
z2
)
)
)
-
(
(
Im2
z
)
*
(
Im2
z2
)
)
)
-
(
(
Im3
z
)
*
(
Im3
z2
)
)
)
+
(
(
Im1
(
(
z
*
z2
)
*'
)
)
*
<i>
)
is
quaternion
set
(
(
(
(
(
(
Rea
z
)
*
(
Rea
z2
)
)
-
(
(
Im1
z
)
*
(
Im1
z2
)
)
)
-
(
(
Im2
z
)
*
(
Im2
z2
)
)
)
-
(
(
Im3
z
)
*
(
Im3
z2
)
)
)
+
(
(
Im1
(
(
z
*
z2
)
*'
)
)
*
<i>
)
)
+
(
(
Im2
(
(
z
*
z2
)
*'
)
)
*
<j>
)
is
quaternion
Element
of
QUATERNION
(
(
(
(
(
(
(
Rea
z
)
*
(
Rea
z2
)
)
-
(
(
Im1
z
)
*
(
Im1
z2
)
)
)
-
(
(
Im2
z
)
*
(
Im2
z2
)
)
)
-
(
(
Im3
z
)
*
(
Im3
z2
)
)
)
+
(
(
Im1
(
(
z
*
z2
)
*'
)
)
*
<i>
)
)
+
(
(
Im2
(
(
z
*
z2
)
*'
)
)
*
<j>
)
)
+
(
(
Im3
(
(
z
*
z2
)
*'
)
)
*
<k>
)
is
quaternion
Element
of
QUATERNION
-
(
(
(
(
(
Rea
z
)
*
(
Im1
z2
)
)
+
(
(
Im1
z
)
*
(
Rea
z2
)
)
)
+
(
(
Im2
z
)
*
(
Im3
z2
)
)
)
-
(
(
Im3
z
)
*
(
Im2
z2
)
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
-
(
(
(
(
(
Rea
z
)
*
(
Im1
z2
)
)
+
(
(
Im1
z
)
*
(
Rea
z2
)
)
)
+
(
(
Im2
z
)
*
(
Im3
z2
)
)
)
-
(
(
Im3
z
)
*
(
Im2
z2
)
)
)
)
*
<i>
is
quaternion
set
(
(
(
(
(
Rea
z
)
*
(
Rea
z2
)
)
-
(
(
Im1
z
)
*
(
Im1
z2
)
)
)
-
(
(
Im2
z
)
*
(
Im2
z2
)
)
)
-
(
(
Im3
z
)
*
(
Im3
z2
)
)
)
+
(
(
-
(
(
(
(
(
Rea
z
)
*
(
Im1
z2
)
)
+
(
(
Im1
z
)
*
(
Rea
z2
)
)
)
+
(
(
Im2
z
)
*
(
Im3
z2
)
)
)
-
(
(
Im3
z
)
*
(
Im2
z2
)
)
)
)
*
<i>
)
is
quaternion
set
(
(
(
(
(
(
Rea
z
)
*
(
Rea
z2
)
)
-
(
(
Im1
z
)
*
(
Im1
z2
)
)
)
-
(
(
Im2
z
)
*
(
Im2
z2
)
)
)
-
(
(
Im3
z
)
*
(
Im3
z2
)
)
)
+
(
(
-
(
(
(
(
(
Rea
z
)
*
(
Im1
z2
)
)
+
(
(
Im1
z
)
*
(
Rea
z2
)
)
)
+
(
(
Im2
z
)
*
(
Im3
z2
)
)
)
-
(
(
Im3
z
)
*
(
Im2
z2
)
)
)
)
*
<i>
)
)
+
(
(
Im2
(
(
z
*
z2
)
*'
)
)
*
<j>
)
is
quaternion
Element
of
QUATERNION
(
(
(
(
(
(
(
Rea
z
)
*
(
Rea
z2
)
)
-
(
(
Im1
z
)
*
(
Im1
z2
)
)
)
-
(
(
Im2
z
)
*
(
Im2
z2
)
)
)
-
(
(
Im3
z
)
*
(
Im3
z2
)
)
)
+
(
(
-
(
(
(
(
(
Rea
z
)
*
(
Im1
z2
)
)
+
(
(
Im1
z
)
*
(
Rea
z2
)
)
)
+
(
(
Im2
z
)
*
(
Im3
z2
)
)
)
-
(
(
Im3
z
)
*
(
Im2
z2
)
)
)
)
*
<i>
)
)
+
(
(
Im2
(
(
z
*
z2
)
*'
)
)
*
<j>
)
)
+
(
(
Im3
(
(
z
*
z2
)
*'
)
)
*
<k>
)
is
quaternion
Element
of
QUATERNION
-
(
(
(
(
(
Rea
z
)
*
(
Im2
z2
)
)
+
(
(
Im2
z
)
*
(
Rea
z2
)
)
)
+
(
(
Im3
z
)
*
(
Im1
z2
)
)
)
-
(
(
Im1
z
)
*
(
Im3
z2
)
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
-
(
(
(
(
(
Rea
z
)
*
(
Im2
z2
)
)
+
(
(
Im2
z
)
*
(
Rea
z2
)
)
)
+
(
(
Im3
z
)
*
(
Im1
z2
)
)
)
-
(
(
Im1
z
)
*
(
Im3
z2
)
)
)
)
*
<j>
is
quaternion
set
(
(
(
(
(
(
Rea
z
)
*
(
Rea
z2
)
)
-
(
(
Im1
z
)
*
(
Im1
z2
)
)
)
-
(
(
Im2
z
)
*
(
Im2
z2
)
)
)
-
(
(
Im3
z
)
*
(
Im3
z2
)
)
)
+
(
(
-
(
(
(
(
(
Rea
z
)
*
(
Im1
z2
)
)
+
(
(
Im1
z
)
*
(
Rea
z2
)
)
)
+
(
(
Im2
z
)
*
(
Im3
z2
)
)
)
-
(
(
Im3
z
)
*
(
Im2
z2
)
)
)
)
*
<i>
)
)
+
(
(
-
(
(
(
(
(
Rea
z
)
*
(
Im2
z2
)
)
+
(
(
Im2
z
)
*
(
Rea
z2
)
)
)
+
(
(
Im3
z
)
*
(
Im1
z2
)
)
)
-
(
(
Im1
z
)
*
(
Im3
z2
)
)
)
)
*
<j>
)
is
quaternion
Element
of
QUATERNION
(
(
(
(
(
(
(
Rea
z
)
*
(
Rea
z2
)
)
-
(
(
Im1
z
)
*
(
Im1
z2
)
)
)
-
(
(
Im2
z
)
*
(
Im2
z2
)
)
)
-
(
(
Im3
z
)
*
(
Im3
z2
)
)
)
+
(
(
-
(
(
(
(
(
Rea
z
)
*
(
Im1
z2
)
)
+
(
(
Im1
z
)
*
(
Rea
z2
)
)
)
+
(
(
Im2
z
)
*
(
Im3
z2
)
)
)
-
(
(
Im3
z
)
*
(
Im2
z2
)
)
)
)
*
<i>
)
)
+
(
(
-
(
(
(
(
(
Rea
z
)
*
(
Im2
z2
)
)
+
(
(
Im2
z
)
*
(
Rea
z2
)
)
)
+
(
(
Im3
z
)
*
(
Im1
z2
)
)
)
-
(
(
Im1
z
)
*
(
Im3
z2
)
)
)
)
*
<j>
)
)
+
(
(
Im3
(
(
z
*
z2
)
*'
)
)
*
<k>
)
is
quaternion
Element
of
QUATERNION
-
(
(
(
(
(
Rea
z
)
*
(
Im3
z2
)
)
+
(
(
Im3
z
)
*
(
Rea
z2
)
)
)
+
(
(
Im1
z
)
*
(
Im2
z2
)
)
)
-
(
(
Im2
z
)
*
(
Im1
z2
)
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
-
(
(
(
(
(
Rea
z
)
*
(
Im3
z2
)
)
+
(
(
Im3
z
)
*
(
Rea
z2
)
)
)
+
(
(
Im1
z
)
*
(
Im2
z2
)
)
)
-
(
(
Im2
z
)
*
(
Im1
z2
)
)
)
)
*
<k>
is
quaternion
set
(
(
(
(
(
(
(
Rea
z
)
*
(
Rea
z2
)
)
-
(
(
Im1
z
)
*
(
Im1
z2
)
)
)
-
(
(
Im2
z
)
*
(
Im2
z2
)
)
)
-
(
(
Im3
z
)
*
(
Im3
z2
)
)
)
+
(
(
-
(
(
(
(
(
Rea
z
)
*
(
Im1
z2
)
)
+
(
(
Im1
z
)
*
(
Rea
z2
)
)
)
+
(
(
Im2
z
)
*
(
Im3
z2
)
)
)
-
(
(
Im3
z
)
*
(
Im2
z2
)
)
)
)
*
<i>
)
)
+
(
(
-
(
(
(
(
(
Rea
z
)
*
(
Im2
z2
)
)
+
(
(
Im2
z
)
*
(
Rea
z2
)
)
)
+
(
(
Im3
z
)
*
(
Im1
z2
)
)
)
-
(
(
Im1
z
)
*
(
Im3
z2
)
)
)
)
*
<j>
)
)
+
(
(
-
(
(
(
(
(
Rea
z
)
*
(
Im3
z2
)
)
+
(
(
Im3
z
)
*
(
Rea
z2
)
)
)
+
(
(
Im1
z
)
*
(
Im2
z2
)
)
)
-
(
(
Im2
z
)
*
(
Im1
z2
)
)
)
)
*
<k>
)
is
quaternion
Element
of
QUATERNION
z
is
quaternion
set
z
*'
is
quaternion
Element
of
QUATERNION
Rea
z
is
V28
()
V29
()
ext-real
Element
of
REAL
Im1
z
is
V28
()
V29
()
ext-real
Element
of
REAL
-
(
Im1
z
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
-
(
Im1
z
)
)
*
K107
() is
quaternion
set
(
Rea
z
)
+
(
(
-
(
Im1
z
)
)
*
K107
()
)
is
quaternion
set
Im2
z
is
V28
()
V29
()
ext-real
Element
of
REAL
-
(
Im2
z
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
-
(
Im2
z
)
)
*
<j>
is
quaternion
set
(
(
Rea
z
)
+
(
(
-
(
Im1
z
)
)
*
K107
()
)
)
+
(
(
-
(
Im2
z
)
)
*
<j>
)
is
quaternion
Element
of
QUATERNION
Im3
z
is
V28
()
V29
()
ext-real
Element
of
REAL
-
(
Im3
z
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
-
(
Im3
z
)
)
*
<k>
is
quaternion
set
(
(
(
Rea
z
)
+
(
(
-
(
Im1
z
)
)
*
K107
()
)
)
+
(
(
-
(
Im2
z
)
)
*
<j>
)
)
+
(
(
-
(
Im3
z
)
)
*
<k>
)
is
quaternion
Element
of
QUATERNION
z2
is
quaternion
set
z
*
z2
is
quaternion
Element
of
QUATERNION
(
z
*
z2
)
*'
is
quaternion
Element
of
QUATERNION
Rea
(
z
*
z2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
Im1
(
z
*
z2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
-
(
Im1
(
z
*
z2
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
-
(
Im1
(
z
*
z2
)
)
)
*
K107
() is
quaternion
set
(
Rea
(
z
*
z2
)
)
+
(
(
-
(
Im1
(
z
*
z2
)
)
)
*
K107
()
)
is
quaternion
set
Im2
(
z
*
z2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
-
(
Im2
(
z
*
z2
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
-
(
Im2
(
z
*
z2
)
)
)
*
<j>
is
quaternion
set
(
(
Rea
(
z
*
z2
)
)
+
(
(
-
(
Im1
(
z
*
z2
)
)
)
*
K107
()
)
)
+
(
(
-
(
Im2
(
z
*
z2
)
)
)
*
<j>
)
is
quaternion
Element
of
QUATERNION
Im3
(
z
*
z2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
-
(
Im3
(
z
*
z2
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
-
(
Im3
(
z
*
z2
)
)
)
*
<k>
is
quaternion
set
(
(
(
Rea
(
z
*
z2
)
)
+
(
(
-
(
Im1
(
z
*
z2
)
)
)
*
K107
()
)
)
+
(
(
-
(
Im2
(
z
*
z2
)
)
)
*
<j>
)
)
+
(
(
-
(
Im3
(
z
*
z2
)
)
)
*
<k>
)
is
quaternion
Element
of
QUATERNION
z2
*'
is
quaternion
Element
of
QUATERNION
Rea
z2
is
V28
()
V29
()
ext-real
Element
of
REAL
Im1
z2
is
V28
()
V29
()
ext-real
Element
of
REAL
-
(
Im1
z2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
-
(
Im1
z2
)
)
*
K107
() is
quaternion
set
(
Rea
z2
)
+
(
(
-
(
Im1
z2
)
)
*
K107
()
)
is
quaternion
set
Im2
z2
is
V28
()
V29
()
ext-real
Element
of
REAL
-
(
Im2
z2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
-
(
Im2
z2
)
)
*
<j>
is
quaternion
set
(
(
Rea
z2
)
+
(
(
-
(
Im1
z2
)
)
*
K107
()
)
)
+
(
(
-
(
Im2
z2
)
)
*
<j>
)
is
quaternion
Element
of
QUATERNION
Im3
z2
is
V28
()
V29
()
ext-real
Element
of
REAL
-
(
Im3
z2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
-
(
Im3
z2
)
)
*
<k>
is
quaternion
set
(
(
(
Rea
z2
)
+
(
(
-
(
Im1
z2
)
)
*
K107
()
)
)
+
(
(
-
(
Im2
z2
)
)
*
<j>
)
)
+
(
(
-
(
Im3
z2
)
)
*
<k>
)
is
quaternion
Element
of
QUATERNION
(
z2
*'
)
*
(
z
*'
)
is
quaternion
Element
of
QUATERNION
Rea
(
z2
*'
)
is
V28
()
V29
()
ext-real
Element
of
REAL
Im1
(
z2
*'
)
is
V28
()
V29
()
ext-real
Element
of
REAL
Im2
(
z2
*'
)
is
V28
()
V29
()
ext-real
Element
of
REAL
Im3
(
z2
*'
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Rea
z
)
*
(
Rea
z2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im1
z
)
*
(
Im1
z2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
Rea
z
)
*
(
Rea
z2
)
)
-
(
(
Im1
z
)
*
(
Im1
z2
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K110
(
(
(
Im1
z
)
*
(
Im1
z2
)
)
) is
V28
()
set
K108
(
(
(
Rea
z
)
*
(
Rea
z2
)
)
,
K110
(
(
(
Im1
z
)
*
(
Im1
z2
)
)
)) is
set
(
Im2
z
)
*
(
Im2
z2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
(
Rea
z
)
*
(
Rea
z2
)
)
-
(
(
Im1
z
)
*
(
Im1
z2
)
)
)
-
(
(
Im2
z
)
*
(
Im2
z2
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K110
(
(
(
Im2
z
)
*
(
Im2
z2
)
)
) is
V28
()
set
K108
(
(
(
(
Rea
z
)
*
(
Rea
z2
)
)
-
(
(
Im1
z
)
*
(
Im1
z2
)
)
)
,
K110
(
(
(
Im2
z
)
*
(
Im2
z2
)
)
)) is
set
(
Im3
z
)
*
(
Im3
z2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
(
(
Rea
z
)
*
(
Rea
z2
)
)
-
(
(
Im1
z
)
*
(
Im1
z2
)
)
)
-
(
(
Im2
z
)
*
(
Im2
z2
)
)
)
-
(
(
Im3
z
)
*
(
Im3
z2
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K110
(
(
(
Im3
z
)
*
(
Im3
z2
)
)
) is
V28
()
set
K108
(
(
(
(
(
Rea
z
)
*
(
Rea
z2
)
)
-
(
(
Im1
z
)
*
(
Im1
z2
)
)
)
-
(
(
Im2
z
)
*
(
Im2
z2
)
)
)
,
K110
(
(
(
Im3
z
)
*
(
Im3
z2
)
)
)) is
set
(
Rea
z
)
*
(
Im3
z2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im3
z
)
*
(
Rea
z2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
Rea
z
)
*
(
Im3
z2
)
)
+
(
(
Im3
z
)
*
(
Rea
z2
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im1
z
)
*
(
Im2
z2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
(
Rea
z
)
*
(
Im3
z2
)
)
+
(
(
Im3
z
)
*
(
Rea
z2
)
)
)
+
(
(
Im1
z
)
*
(
Im2
z2
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im2
z
)
*
(
Im1
z2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
(
(
Rea
z
)
*
(
Im3
z2
)
)
+
(
(
Im3
z
)
*
(
Rea
z2
)
)
)
+
(
(
Im1
z
)
*
(
Im2
z2
)
)
)
-
(
(
Im2
z
)
*
(
Im1
z2
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K110
(
(
(
Im2
z
)
*
(
Im1
z2
)
)
) is
V28
()
set
K108
(
(
(
(
(
Rea
z
)
*
(
Im3
z2
)
)
+
(
(
Im3
z
)
*
(
Rea
z2
)
)
)
+
(
(
Im1
z
)
*
(
Im2
z2
)
)
)
,
K110
(
(
(
Im2
z
)
*
(
Im1
z2
)
)
)) is
set
Im2
(
z
*'
)
is
V28
()
V29
()
ext-real
Element
of
REAL
Im3
(
z
*'
)
is
V28
()
V29
()
ext-real
Element
of
REAL
Rea
(
z
*'
)
is
V28
()
V29
()
ext-real
Element
of
REAL
Im1
(
z
*'
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Rea
z
)
*
(
Im2
z2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im2
z
)
*
(
Rea
z2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
Rea
z
)
*
(
Im2
z2
)
)
+
(
(
Im2
z
)
*
(
Rea
z2
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im3
z
)
*
(
Im1
z2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
(
Rea
z
)
*
(
Im2
z2
)
)
+
(
(
Im2
z
)
*
(
Rea
z2
)
)
)
+
(
(
Im3
z
)
*
(
Im1
z2
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im1
z
)
*
(
Im3
z2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
(
(
Rea
z
)
*
(
Im2
z2
)
)
+
(
(
Im2
z
)
*
(
Rea
z2
)
)
)
+
(
(
Im3
z
)
*
(
Im1
z2
)
)
)
-
(
(
Im1
z
)
*
(
Im3
z2
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K110
(
(
(
Im1
z
)
*
(
Im3
z2
)
)
) is
V28
()
set
K108
(
(
(
(
(
Rea
z
)
*
(
Im2
z2
)
)
+
(
(
Im2
z
)
*
(
Rea
z2
)
)
)
+
(
(
Im3
z
)
*
(
Im1
z2
)
)
)
,
K110
(
(
(
Im1
z
)
*
(
Im3
z2
)
)
)) is
set
(
Rea
z
)
*
(
Im1
z2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im1
z
)
*
(
Rea
z2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
Rea
z
)
*
(
Im1
z2
)
)
+
(
(
Im1
z
)
*
(
Rea
z2
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im2
z
)
*
(
Im3
z2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
(
Rea
z
)
*
(
Im1
z2
)
)
+
(
(
Im1
z
)
*
(
Rea
z2
)
)
)
+
(
(
Im2
z
)
*
(
Im3
z2
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im3
z
)
*
(
Im2
z2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
(
(
Rea
z
)
*
(
Im1
z2
)
)
+
(
(
Im1
z
)
*
(
Rea
z2
)
)
)
+
(
(
Im2
z
)
*
(
Im3
z2
)
)
)
-
(
(
Im3
z
)
*
(
Im2
z2
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K110
(
(
(
Im3
z
)
*
(
Im2
z2
)
)
) is
V28
()
set
K108
(
(
(
(
(
Rea
z
)
*
(
Im1
z2
)
)
+
(
(
Im1
z
)
*
(
Rea
z2
)
)
)
+
(
(
Im2
z
)
*
(
Im3
z2
)
)
)
,
K110
(
(
(
Im3
z
)
*
(
Im2
z2
)
)
)) is
set
(
Rea
(
z2
*'
)
)
*
(
Rea
(
z
*'
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im1
(
z2
*'
)
)
*
(
Im1
(
z
*'
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
Rea
(
z2
*'
)
)
*
(
Rea
(
z
*'
)
)
)
-
(
(
Im1
(
z2
*'
)
)
*
(
Im1
(
z
*'
)
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K110
(
(
(
Im1
(
z2
*'
)
)
*
(
Im1
(
z
*'
)
)
)
) is
V28
()
set
K108
(
(
(
Rea
(
z2
*'
)
)
*
(
Rea
(
z
*'
)
)
)
,
K110
(
(
(
Im1
(
z2
*'
)
)
*
(
Im1
(
z
*'
)
)
)
)) is
set
(
Im2
(
z2
*'
)
)
*
(
Im2
(
z
*'
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
(
Rea
(
z2
*'
)
)
*
(
Rea
(
z
*'
)
)
)
-
(
(
Im1
(
z2
*'
)
)
*
(
Im1
(
z
*'
)
)
)
)
-
(
(
Im2
(
z2
*'
)
)
*
(
Im2
(
z
*'
)
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K110
(
(
(
Im2
(
z2
*'
)
)
*
(
Im2
(
z
*'
)
)
)
) is
V28
()
set
K108
(
(
(
(
Rea
(
z2
*'
)
)
*
(
Rea
(
z
*'
)
)
)
-
(
(
Im1
(
z2
*'
)
)
*
(
Im1
(
z
*'
)
)
)
)
,
K110
(
(
(
Im2
(
z2
*'
)
)
*
(
Im2
(
z
*'
)
)
)
)) is
set
(
Im3
(
z2
*'
)
)
*
(
Im3
(
z
*'
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
(
(
Rea
(
z2
*'
)
)
*
(
Rea
(
z
*'
)
)
)
-
(
(
Im1
(
z2
*'
)
)
*
(
Im1
(
z
*'
)
)
)
)
-
(
(
Im2
(
z2
*'
)
)
*
(
Im2
(
z
*'
)
)
)
)
-
(
(
Im3
(
z2
*'
)
)
*
(
Im3
(
z
*'
)
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K110
(
(
(
Im3
(
z2
*'
)
)
*
(
Im3
(
z
*'
)
)
)
) is
V28
()
set
K108
(
(
(
(
(
Rea
(
z2
*'
)
)
*
(
Rea
(
z
*'
)
)
)
-
(
(
Im1
(
z2
*'
)
)
*
(
Im1
(
z
*'
)
)
)
)
-
(
(
Im2
(
z2
*'
)
)
*
(
Im2
(
z
*'
)
)
)
)
,
K110
(
(
(
Im3
(
z2
*'
)
)
*
(
Im3
(
z
*'
)
)
)
)) is
set
(
Rea
(
z2
*'
)
)
*
(
Im1
(
z
*'
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im1
(
z2
*'
)
)
*
(
Rea
(
z
*'
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
Rea
(
z2
*'
)
)
*
(
Im1
(
z
*'
)
)
)
+
(
(
Im1
(
z2
*'
)
)
*
(
Rea
(
z
*'
)
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im2
(
z2
*'
)
)
*
(
Im3
(
z
*'
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
(
Rea
(
z2
*'
)
)
*
(
Im1
(
z
*'
)
)
)
+
(
(
Im1
(
z2
*'
)
)
*
(
Rea
(
z
*'
)
)
)
)
+
(
(
Im2
(
z2
*'
)
)
*
(
Im3
(
z
*'
)
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im3
(
z2
*'
)
)
*
(
Im2
(
z
*'
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
(
(
Rea
(
z2
*'
)
)
*
(
Im1
(
z
*'
)
)
)
+
(
(
Im1
(
z2
*'
)
)
*
(
Rea
(
z
*'
)
)
)
)
+
(
(
Im2
(
z2
*'
)
)
*
(
Im3
(
z
*'
)
)
)
)
-
(
(
Im3
(
z2
*'
)
)
*
(
Im2
(
z
*'
)
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K110
(
(
(
Im3
(
z2
*'
)
)
*
(
Im2
(
z
*'
)
)
)
) is
V28
()
set
K108
(
(
(
(
(
Rea
(
z2
*'
)
)
*
(
Im1
(
z
*'
)
)
)
+
(
(
Im1
(
z2
*'
)
)
*
(
Rea
(
z
*'
)
)
)
)
+
(
(
Im2
(
z2
*'
)
)
*
(
Im3
(
z
*'
)
)
)
)
,
K110
(
(
(
Im3
(
z2
*'
)
)
*
(
Im2
(
z
*'
)
)
)
)) is
set
(
(
(
(
(
Rea
(
z2
*'
)
)
*
(
Im1
(
z
*'
)
)
)
+
(
(
Im1
(
z2
*'
)
)
*
(
Rea
(
z
*'
)
)
)
)
+
(
(
Im2
(
z2
*'
)
)
*
(
Im3
(
z
*'
)
)
)
)
-
(
(
Im3
(
z2
*'
)
)
*
(
Im2
(
z
*'
)
)
)
)
*
<i>
is
quaternion
set
(
(
(
(
(
Rea
(
z2
*'
)
)
*
(
Rea
(
z
*'
)
)
)
-
(
(
Im1
(
z2
*'
)
)
*
(
Im1
(
z
*'
)
)
)
)
-
(
(
Im2
(
z2
*'
)
)
*
(
Im2
(
z
*'
)
)
)
)
-
(
(
Im3
(
z2
*'
)
)
*
(
Im3
(
z
*'
)
)
)
)
+
(
(
(
(
(
(
Rea
(
z2
*'
)
)
*
(
Im1
(
z
*'
)
)
)
+
(
(
Im1
(
z2
*'
)
)
*
(
Rea
(
z
*'
)
)
)
)
+
(
(
Im2
(
z2
*'
)
)
*
(
Im3
(
z
*'
)
)
)
)
-
(
(
Im3
(
z2
*'
)
)
*
(
Im2
(
z
*'
)
)
)
)
*
<i>
)
is
quaternion
set
(
Rea
(
z2
*'
)
)
*
(
Im2
(
z
*'
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im2
(
z2
*'
)
)
*
(
Rea
(
z
*'
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
Rea
(
z2
*'
)
)
*
(
Im2
(
z
*'
)
)
)
+
(
(
Im2
(
z2
*'
)
)
*
(
Rea
(
z
*'
)
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im3
(
z2
*'
)
)
*
(
Im1
(
z
*'
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
(
Rea
(
z2
*'
)
)
*
(
Im2
(
z
*'
)
)
)
+
(
(
Im2
(
z2
*'
)
)
*
(
Rea
(
z
*'
)
)
)
)
+
(
(
Im3
(
z2
*'
)
)
*
(
Im1
(
z
*'
)
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im1
(
z2
*'
)
)
*
(
Im3
(
z
*'
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
(
(
Rea
(
z2
*'
)
)
*
(
Im2
(
z
*'
)
)
)
+
(
(
Im2
(
z2
*'
)
)
*
(
Rea
(
z
*'
)
)
)
)
+
(
(
Im3
(
z2
*'
)
)
*
(
Im1
(
z
*'
)
)
)
)
-
(
(
Im1
(
z2
*'
)
)
*
(
Im3
(
z
*'
)
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K110
(
(
(
Im1
(
z2
*'
)
)
*
(
Im3
(
z
*'
)
)
)
) is
V28
()
set
K108
(
(
(
(
(
Rea
(
z2
*'
)
)
*
(
Im2
(
z
*'
)
)
)
+
(
(
Im2
(
z2
*'
)
)
*
(
Rea
(
z
*'
)
)
)
)
+
(
(
Im3
(
z2
*'
)
)
*
(
Im1
(
z
*'
)
)
)
)
,
K110
(
(
(
Im1
(
z2
*'
)
)
*
(
Im3
(
z
*'
)
)
)
)) is
set
(
(
(
(
(
Rea
(
z2
*'
)
)
*
(
Im2
(
z
*'
)
)
)
+
(
(
Im2
(
z2
*'
)
)
*
(
Rea
(
z
*'
)
)
)
)
+
(
(
Im3
(
z2
*'
)
)
*
(
Im1
(
z
*'
)
)
)
)
-
(
(
Im1
(
z2
*'
)
)
*
(
Im3
(
z
*'
)
)
)
)
*
<j>
is
quaternion
set
(
(
(
(
(
(
Rea
(
z2
*'
)
)
*
(
Rea
(
z
*'
)
)
)
-
(
(
Im1
(
z2
*'
)
)
*
(
Im1
(
z
*'
)
)
)
)
-
(
(
Im2
(
z2
*'
)
)
*
(
Im2
(
z
*'
)
)
)
)
-
(
(
Im3
(
z2
*'
)
)
*
(
Im3
(
z
*'
)
)
)
)
+
(
(
(
(
(
(
Rea
(
z2
*'
)
)
*
(
Im1
(
z
*'
)
)
)
+
(
(
Im1
(
z2
*'
)
)
*
(
Rea
(
z
*'
)
)
)
)
+
(
(
Im2
(
z2
*'
)
)
*
(
Im3
(
z
*'
)
)
)
)
-
(
(
Im3
(
z2
*'
)
)
*
(
Im2
(
z
*'
)
)
)
)
*
<i>
)
)
+
(
(
(
(
(
(
Rea
(
z2
*'
)
)
*
(
Im2
(
z
*'
)
)
)
+
(
(
Im2
(
z2
*'
)
)
*
(
Rea
(
z
*'
)
)
)
)
+
(
(
Im3
(
z2
*'
)
)
*
(
Im1
(
z
*'
)
)
)
)
-
(
(
Im1
(
z2
*'
)
)
*
(
Im3
(
z
*'
)
)
)
)
*
<j>
)
is
quaternion
Element
of
QUATERNION
(
Rea
(
z2
*'
)
)
*
(
Im3
(
z
*'
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im3
(
z2
*'
)
)
*
(
Rea
(
z
*'
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
Rea
(
z2
*'
)
)
*
(
Im3
(
z
*'
)
)
)
+
(
(
Im3
(
z2
*'
)
)
*
(
Rea
(
z
*'
)
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im1
(
z2
*'
)
)
*
(
Im2
(
z
*'
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
(
Rea
(
z2
*'
)
)
*
(
Im3
(
z
*'
)
)
)
+
(
(
Im3
(
z2
*'
)
)
*
(
Rea
(
z
*'
)
)
)
)
+
(
(
Im1
(
z2
*'
)
)
*
(
Im2
(
z
*'
)
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im2
(
z2
*'
)
)
*
(
Im1
(
z
*'
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
(
(
Rea
(
z2
*'
)
)
*
(
Im3
(
z
*'
)
)
)
+
(
(
Im3
(
z2
*'
)
)
*
(
Rea
(
z
*'
)
)
)
)
+
(
(
Im1
(
z2
*'
)
)
*
(
Im2
(
z
*'
)
)
)
)
-
(
(
Im2
(
z2
*'
)
)
*
(
Im1
(
z
*'
)
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K110
(
(
(
Im2
(
z2
*'
)
)
*
(
Im1
(
z
*'
)
)
)
) is
V28
()
set
K108
(
(
(
(
(
Rea
(
z2
*'
)
)
*
(
Im3
(
z
*'
)
)
)
+
(
(
Im3
(
z2
*'
)
)
*
(
Rea
(
z
*'
)
)
)
)
+
(
(
Im1
(
z2
*'
)
)
*
(
Im2
(
z
*'
)
)
)
)
,
K110
(
(
(
Im2
(
z2
*'
)
)
*
(
Im1
(
z
*'
)
)
)
)) is
set
(
(
(
(
(
Rea
(
z2
*'
)
)
*
(
Im3
(
z
*'
)
)
)
+
(
(
Im3
(
z2
*'
)
)
*
(
Rea
(
z
*'
)
)
)
)
+
(
(
Im1
(
z2
*'
)
)
*
(
Im2
(
z
*'
)
)
)
)
-
(
(
Im2
(
z2
*'
)
)
*
(
Im1
(
z
*'
)
)
)
)
*
<k>
is
quaternion
set
(
(
(
(
(
(
(
Rea
(
z2
*'
)
)
*
(
Rea
(
z
*'
)
)
)
-
(
(
Im1
(
z2
*'
)
)
*
(
Im1
(
z
*'
)
)
)
)
-
(
(
Im2
(
z2
*'
)
)
*
(
Im2
(
z
*'
)
)
)
)
-
(
(
Im3
(
z2
*'
)
)
*
(
Im3
(
z
*'
)
)
)
)
+
(
(
(
(
(
(
Rea
(
z2
*'
)
)
*
(
Im1
(
z
*'
)
)
)
+
(
(
Im1
(
z2
*'
)
)
*
(
Rea
(
z
*'
)
)
)
)
+
(
(
Im2
(
z2
*'
)
)
*
(
Im3
(
z
*'
)
)
)
)
-
(
(
Im3
(
z2
*'
)
)
*
(
Im2
(
z
*'
)
)
)
)
*
<i>
)
)
+
(
(
(
(
(
(
Rea
(
z2
*'
)
)
*
(
Im2
(
z
*'
)
)
)
+
(
(
Im2
(
z2
*'
)
)
*
(
Rea
(
z
*'
)
)
)
)
+
(
(
Im3
(
z2
*'
)
)
*
(
Im1
(
z
*'
)
)
)
)
-
(
(
Im1
(
z2
*'
)
)
*
(
Im3
(
z
*'
)
)
)
)
*
<j>
)
)
+
(
(
(
(
(
(
Rea
(
z2
*'
)
)
*
(
Im3
(
z
*'
)
)
)
+
(
(
Im3
(
z2
*'
)
)
*
(
Rea
(
z
*'
)
)
)
)
+
(
(
Im1
(
z2
*'
)
)
*
(
Im2
(
z
*'
)
)
)
)
-
(
(
Im2
(
z2
*'
)
)
*
(
Im1
(
z
*'
)
)
)
)
*
<k>
)
is
quaternion
Element
of
QUATERNION
Rea
(
(
z
*
z2
)
*'
)
is
V28
()
V29
()
ext-real
Element
of
REAL
Im1
(
(
z
*
z2
)
*'
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im1
(
(
z
*
z2
)
*'
)
)
*
<i>
is
quaternion
set
(
Rea
(
(
z
*
z2
)
*'
)
)
+
(
(
Im1
(
(
z
*
z2
)
*'
)
)
*
<i>
)
is
quaternion
set
Im2
(
(
z
*
z2
)
*'
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im2
(
(
z
*
z2
)
*'
)
)
*
<j>
is
quaternion
set
(
(
Rea
(
(
z
*
z2
)
*'
)
)
+
(
(
Im1
(
(
z
*
z2
)
*'
)
)
*
<i>
)
)
+
(
(
Im2
(
(
z
*
z2
)
*'
)
)
*
<j>
)
is
quaternion
Element
of
QUATERNION
Im3
(
(
z
*
z2
)
*'
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im3
(
(
z
*
z2
)
*'
)
)
*
<k>
is
quaternion
set
(
(
(
Rea
(
(
z
*
z2
)
*'
)
)
+
(
(
Im1
(
(
z
*
z2
)
*'
)
)
*
<i>
)
)
+
(
(
Im2
(
(
z
*
z2
)
*'
)
)
*
<j>
)
)
+
(
(
Im3
(
(
z
*
z2
)
*'
)
)
*
<k>
)
is
quaternion
Element
of
QUATERNION
(
(
(
(
(
Rea
z
)
*
(
Rea
z2
)
)
-
(
(
Im1
z
)
*
(
Im1
z2
)
)
)
-
(
(
Im2
z
)
*
(
Im2
z2
)
)
)
-
(
(
Im3
z
)
*
(
Im3
z2
)
)
)
+
(
(
Im1
(
(
z
*
z2
)
*'
)
)
*
<i>
)
is
quaternion
set
(
(
(
(
(
(
Rea
z
)
*
(
Rea
z2
)
)
-
(
(
Im1
z
)
*
(
Im1
z2
)
)
)
-
(
(
Im2
z
)
*
(
Im2
z2
)
)
)
-
(
(
Im3
z
)
*
(
Im3
z2
)
)
)
+
(
(
Im1
(
(
z
*
z2
)
*'
)
)
*
<i>
)
)
+
(
(
Im2
(
(
z
*
z2
)
*'
)
)
*
<j>
)
is
quaternion
Element
of
QUATERNION
(
(
(
(
(
(
(
Rea
z
)
*
(
Rea
z2
)
)
-
(
(
Im1
z
)
*
(
Im1
z2
)
)
)
-
(
(
Im2
z
)
*
(
Im2
z2
)
)
)
-
(
(
Im3
z
)
*
(
Im3
z2
)
)
)
+
(
(
Im1
(
(
z
*
z2
)
*'
)
)
*
<i>
)
)
+
(
(
Im2
(
(
z
*
z2
)
*'
)
)
*
<j>
)
)
+
(
(
Im3
(
(
z
*
z2
)
*'
)
)
*
<k>
)
is
quaternion
Element
of
QUATERNION
-
(
(
(
(
(
Rea
z
)
*
(
Im1
z2
)
)
+
(
(
Im1
z
)
*
(
Rea
z2
)
)
)
+
(
(
Im2
z
)
*
(
Im3
z2
)
)
)
-
(
(
Im3
z
)
*
(
Im2
z2
)
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
-
(
(
(
(
(
Rea
z
)
*
(
Im1
z2
)
)
+
(
(
Im1
z
)
*
(
Rea
z2
)
)
)
+
(
(
Im2
z
)
*
(
Im3
z2
)
)
)
-
(
(
Im3
z
)
*
(
Im2
z2
)
)
)
)
*
<i>
is
quaternion
set
(
(
(
(
(
Rea
z
)
*
(
Rea
z2
)
)
-
(
(
Im1
z
)
*
(
Im1
z2
)
)
)
-
(
(
Im2
z
)
*
(
Im2
z2
)
)
)
-
(
(
Im3
z
)
*
(
Im3
z2
)
)
)
+
(
(
-
(
(
(
(
(
Rea
z
)
*
(
Im1
z2
)
)
+
(
(
Im1
z
)
*
(
Rea
z2
)
)
)
+
(
(
Im2
z
)
*
(
Im3
z2
)
)
)
-
(
(
Im3
z
)
*
(
Im2
z2
)
)
)
)
*
<i>
)
is
quaternion
set
(
(
(
(
(
(
Rea
z
)
*
(
Rea
z2
)
)
-
(
(
Im1
z
)
*
(
Im1
z2
)
)
)
-
(
(
Im2
z
)
*
(
Im2
z2
)
)
)
-
(
(
Im3
z
)
*
(
Im3
z2
)
)
)
+
(
(
-
(
(
(
(
(
Rea
z
)
*
(
Im1
z2
)
)
+
(
(
Im1
z
)
*
(
Rea
z2
)
)
)
+
(
(
Im2
z
)
*
(
Im3
z2
)
)
)
-
(
(
Im3
z
)
*
(
Im2
z2
)
)
)
)
*
<i>
)
)
+
(
(
Im2
(
(
z
*
z2
)
*'
)
)
*
<j>
)
is
quaternion
Element
of
QUATERNION
(
(
(
(
(
(
(
Rea
z
)
*
(
Rea
z2
)
)
-
(
(
Im1
z
)
*
(
Im1
z2
)
)
)
-
(
(
Im2
z
)
*
(
Im2
z2
)
)
)
-
(
(
Im3
z
)
*
(
Im3
z2
)
)
)
+
(
(
-
(
(
(
(
(
Rea
z
)
*
(
Im1
z2
)
)
+
(
(
Im1
z
)
*
(
Rea
z2
)
)
)
+
(
(
Im2
z
)
*
(
Im3
z2
)
)
)
-
(
(
Im3
z
)
*
(
Im2
z2
)
)
)
)
*
<i>
)
)
+
(
(
Im2
(
(
z
*
z2
)
*'
)
)
*
<j>
)
)
+
(
(
Im3
(
(
z
*
z2
)
*'
)
)
*
<k>
)
is
quaternion
Element
of
QUATERNION
-
(
(
(
(
(
Rea
z
)
*
(
Im2
z2
)
)
+
(
(
Im2
z
)
*
(
Rea
z2
)
)
)
+
(
(
Im3
z
)
*
(
Im1
z2
)
)
)
-
(
(
Im1
z
)
*
(
Im3
z2
)
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
-
(
(
(
(
(
Rea
z
)
*
(
Im2
z2
)
)
+
(
(
Im2
z
)
*
(
Rea
z2
)
)
)
+
(
(
Im3
z
)
*
(
Im1
z2
)
)
)
-
(
(
Im1
z
)
*
(
Im3
z2
)
)
)
)
*
<j>
is
quaternion
set
(
(
(
(
(
(
Rea
z
)
*
(
Rea
z2
)
)
-
(
(
Im1
z
)
*
(
Im1
z2
)
)
)
-
(
(
Im2
z
)
*
(
Im2
z2
)
)
)
-
(
(
Im3
z
)
*
(
Im3
z2
)
)
)
+
(
(
-
(
(
(
(
(
Rea
z
)
*
(
Im1
z2
)
)
+
(
(
Im1
z
)
*
(
Rea
z2
)
)
)
+
(
(
Im2
z
)
*
(
Im3
z2
)
)
)
-
(
(
Im3
z
)
*
(
Im2
z2
)
)
)
)
*
<i>
)
)
+
(
(
-
(
(
(
(
(
Rea
z
)
*
(
Im2
z2
)
)
+
(
(
Im2
z
)
*
(
Rea
z2
)
)
)
+
(
(
Im3
z
)
*
(
Im1
z2
)
)
)
-
(
(
Im1
z
)
*
(
Im3
z2
)
)
)
)
*
<j>
)
is
quaternion
Element
of
QUATERNION
(
(
(
(
(
(
(
Rea
z
)
*
(
Rea
z2
)
)
-
(
(
Im1
z
)
*
(
Im1
z2
)
)
)
-
(
(
Im2
z
)
*
(
Im2
z2
)
)
)
-
(
(
Im3
z
)
*
(
Im3
z2
)
)
)
+
(
(
-
(
(
(
(
(
Rea
z
)
*
(
Im1
z2
)
)
+
(
(
Im1
z
)
*
(
Rea
z2
)
)
)
+
(
(
Im2
z
)
*
(
Im3
z2
)
)
)
-
(
(
Im3
z
)
*
(
Im2
z2
)
)
)
)
*
<i>
)
)
+
(
(
-
(
(
(
(
(
Rea
z
)
*
(
Im2
z2
)
)
+
(
(
Im2
z
)
*
(
Rea
z2
)
)
)
+
(
(
Im3
z
)
*
(
Im1
z2
)
)
)
-
(
(
Im1
z
)
*
(
Im3
z2
)
)
)
)
*
<j>
)
)
+
(
(
Im3
(
(
z
*
z2
)
*'
)
)
*
<k>
)
is
quaternion
Element
of
QUATERNION
-
(
(
(
(
(
Rea
z
)
*
(
Im3
z2
)
)
+
(
(
Im3
z
)
*
(
Rea
z2
)
)
)
+
(
(
Im1
z
)
*
(
Im2
z2
)
)
)
-
(
(
Im2
z
)
*
(
Im1
z2
)
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
-
(
(
(
(
(
Rea
z
)
*
(
Im3
z2
)
)
+
(
(
Im3
z
)
*
(
Rea
z2
)
)
)
+
(
(
Im1
z
)
*
(
Im2
z2
)
)
)
-
(
(
Im2
z
)
*
(
Im1
z2
)
)
)
)
*
<k>
is
quaternion
set
(
(
(
(
(
(
(
Rea
z
)
*
(
Rea
z2
)
)
-
(
(
Im1
z
)
*
(
Im1
z2
)
)
)
-
(
(
Im2
z
)
*
(
Im2
z2
)
)
)
-
(
(
Im3
z
)
*
(
Im3
z2
)
)
)
+
(
(
-
(
(
(
(
(
Rea
z
)
*
(
Im1
z2
)
)
+
(
(
Im1
z
)
*
(
Rea
z2
)
)
)
+
(
(
Im2
z
)
*
(
Im3
z2
)
)
)
-
(
(
Im3
z
)
*
(
Im2
z2
)
)
)
)
*
<i>
)
)
+
(
(
-
(
(
(
(
(
Rea
z
)
*
(
Im2
z2
)
)
+
(
(
Im2
z
)
*
(
Rea
z2
)
)
)
+
(
(
Im3
z
)
*
(
Im1
z2
)
)
)
-
(
(
Im1
z
)
*
(
Im3
z2
)
)
)
)
*
<j>
)
)
+
(
(
-
(
(
(
(
(
Rea
z
)
*
(
Im3
z2
)
)
+
(
(
Im3
z
)
*
(
Rea
z2
)
)
)
+
(
(
Im1
z
)
*
(
Im2
z2
)
)
)
-
(
(
Im2
z
)
*
(
Im1
z2
)
)
)
)
*
<k>
)
is
quaternion
Element
of
QUATERNION
z
is
quaternion
set
|.
z
.|
is
V28
()
V29
()
ext-real
Element
of
REAL
Rea
z
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Rea
z
)
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Rea
z
)
,
(
Rea
z
)
) is
set
Im1
z
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im1
z
)
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Im1
z
)
,
(
Im1
z
)
) is
set
(
(
Rea
z
)
^2
)
+
(
(
Im1
z
)
^2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
Im2
z
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im2
z
)
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Im2
z
)
,
(
Im2
z
)
) is
set
(
(
(
Rea
z
)
^2
)
+
(
(
Im1
z
)
^2
)
)
+
(
(
Im2
z
)
^2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
Im3
z
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im3
z
)
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Im3
z
)
,
(
Im3
z
)
) is
set
(
(
(
(
Rea
z
)
^2
)
+
(
(
Im1
z
)
^2
)
)
+
(
(
Im2
z
)
^2
)
)
+
(
(
Im3
z
)
^2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
sqrt
(
(
(
(
(
Rea
z
)
^2
)
+
(
(
Im1
z
)
^2
)
)
+
(
(
Im2
z
)
^2
)
)
+
(
(
Im3
z
)
^2
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
|.
z
.|
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
|.
z
.|
,
|.
z
.|
) is
set
z2
is
quaternion
set
z
*
z2
is
quaternion
Element
of
QUATERNION
|.
(
z
*
z2
)
.|
is
V28
()
V29
()
ext-real
Element
of
REAL
Rea
(
z
*
z2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Rea
(
z
*
z2
)
)
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Rea
(
z
*
z2
)
)
,
(
Rea
(
z
*
z2
)
)
) is
set
Im1
(
z
*
z2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im1
(
z
*
z2
)
)
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Im1
(
z
*
z2
)
)
,
(
Im1
(
z
*
z2
)
)
) is
set
(
(
Rea
(
z
*
z2
)
)
^2
)
+
(
(
Im1
(
z
*
z2
)
)
^2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
Im2
(
z
*
z2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im2
(
z
*
z2
)
)
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Im2
(
z
*
z2
)
)
,
(
Im2
(
z
*
z2
)
)
) is
set
(
(
(
Rea
(
z
*
z2
)
)
^2
)
+
(
(
Im1
(
z
*
z2
)
)
^2
)
)
+
(
(
Im2
(
z
*
z2
)
)
^2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
Im3
(
z
*
z2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im3
(
z
*
z2
)
)
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Im3
(
z
*
z2
)
)
,
(
Im3
(
z
*
z2
)
)
) is
set
(
(
(
(
Rea
(
z
*
z2
)
)
^2
)
+
(
(
Im1
(
z
*
z2
)
)
^2
)
)
+
(
(
Im2
(
z
*
z2
)
)
^2
)
)
+
(
(
Im3
(
z
*
z2
)
)
^2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
sqrt
(
(
(
(
(
Rea
(
z
*
z2
)
)
^2
)
+
(
(
Im1
(
z
*
z2
)
)
^2
)
)
+
(
(
Im2
(
z
*
z2
)
)
^2
)
)
+
(
(
Im3
(
z
*
z2
)
)
^2
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
|.
(
z
*
z2
)
.|
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
|.
(
z
*
z2
)
.|
,
|.
(
z
*
z2
)
.|
) is
set
|.
z2
.|
is
V28
()
V29
()
ext-real
Element
of
REAL
Rea
z2
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Rea
z2
)
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Rea
z2
)
,
(
Rea
z2
)
) is
set
Im1
z2
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im1
z2
)
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Im1
z2
)
,
(
Im1
z2
)
) is
set
(
(
Rea
z2
)
^2
)
+
(
(
Im1
z2
)
^2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
Im2
z2
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im2
z2
)
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Im2
z2
)
,
(
Im2
z2
)
) is
set
(
(
(
Rea
z2
)
^2
)
+
(
(
Im1
z2
)
^2
)
)
+
(
(
Im2
z2
)
^2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
Im3
z2
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im3
z2
)
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Im3
z2
)
,
(
Im3
z2
)
) is
set
(
(
(
(
Rea
z2
)
^2
)
+
(
(
Im1
z2
)
^2
)
)
+
(
(
Im2
z2
)
^2
)
)
+
(
(
Im3
z2
)
^2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
sqrt
(
(
(
(
(
Rea
z2
)
^2
)
+
(
(
Im1
z2
)
^2
)
)
+
(
(
Im2
z2
)
^2
)
)
+
(
(
Im3
z2
)
^2
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
|.
z2
.|
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
|.
z2
.|
,
|.
z2
.|
) is
set
(
|.
z
.|
^2
)
*
(
|.
z2
.|
^2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Rea
z
)
*
(
Rea
z2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im1
z
)
*
(
Im1
z2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
Rea
z
)
*
(
Rea
z2
)
)
-
(
(
Im1
z
)
*
(
Im1
z2
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K110
(
(
(
Im1
z
)
*
(
Im1
z2
)
)
) is
V28
()
set
K108
(
(
(
Rea
z
)
*
(
Rea
z2
)
)
,
K110
(
(
(
Im1
z
)
*
(
Im1
z2
)
)
)) is
set
(
Im2
z
)
*
(
Im2
z2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
(
Rea
z
)
*
(
Rea
z2
)
)
-
(
(
Im1
z
)
*
(
Im1
z2
)
)
)
-
(
(
Im2
z
)
*
(
Im2
z2
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K110
(
(
(
Im2
z
)
*
(
Im2
z2
)
)
) is
V28
()
set
K108
(
(
(
(
Rea
z
)
*
(
Rea
z2
)
)
-
(
(
Im1
z
)
*
(
Im1
z2
)
)
)
,
K110
(
(
(
Im2
z
)
*
(
Im2
z2
)
)
)) is
set
(
Im3
z
)
*
(
Im3
z2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
(
(
Rea
z
)
*
(
Rea
z2
)
)
-
(
(
Im1
z
)
*
(
Im1
z2
)
)
)
-
(
(
Im2
z
)
*
(
Im2
z2
)
)
)
-
(
(
Im3
z
)
*
(
Im3
z2
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K110
(
(
(
Im3
z
)
*
(
Im3
z2
)
)
) is
V28
()
set
K108
(
(
(
(
(
Rea
z
)
*
(
Rea
z2
)
)
-
(
(
Im1
z
)
*
(
Im1
z2
)
)
)
-
(
(
Im2
z
)
*
(
Im2
z2
)
)
)
,
K110
(
(
(
Im3
z
)
*
(
Im3
z2
)
)
)) is
set
(
Rea
z
)
*
(
Im1
z2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im1
z
)
*
(
Rea
z2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
Rea
z
)
*
(
Im1
z2
)
)
+
(
(
Im1
z
)
*
(
Rea
z2
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im2
z
)
*
(
Im3
z2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
(
Rea
z
)
*
(
Im1
z2
)
)
+
(
(
Im1
z
)
*
(
Rea
z2
)
)
)
+
(
(
Im2
z
)
*
(
Im3
z2
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im3
z
)
*
(
Im2
z2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
(
(
Rea
z
)
*
(
Im1
z2
)
)
+
(
(
Im1
z
)
*
(
Rea
z2
)
)
)
+
(
(
Im2
z
)
*
(
Im3
z2
)
)
)
-
(
(
Im3
z
)
*
(
Im2
z2
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K110
(
(
(
Im3
z
)
*
(
Im2
z2
)
)
) is
V28
()
set
K108
(
(
(
(
(
Rea
z
)
*
(
Im1
z2
)
)
+
(
(
Im1
z
)
*
(
Rea
z2
)
)
)
+
(
(
Im2
z
)
*
(
Im3
z2
)
)
)
,
K110
(
(
(
Im3
z
)
*
(
Im2
z2
)
)
)) is
set
(
Rea
z
)
*
(
Im2
z2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im2
z
)
*
(
Rea
z2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
Rea
z
)
*
(
Im2
z2
)
)
+
(
(
Im2
z
)
*
(
Rea
z2
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im3
z
)
*
(
Im1
z2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
(
Rea
z
)
*
(
Im2
z2
)
)
+
(
(
Im2
z
)
*
(
Rea
z2
)
)
)
+
(
(
Im3
z
)
*
(
Im1
z2
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im1
z
)
*
(
Im3
z2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
(
(
Rea
z
)
*
(
Im2
z2
)
)
+
(
(
Im2
z
)
*
(
Rea
z2
)
)
)
+
(
(
Im3
z
)
*
(
Im1
z2
)
)
)
-
(
(
Im1
z
)
*
(
Im3
z2
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K110
(
(
(
Im1
z
)
*
(
Im3
z2
)
)
) is
V28
()
set
K108
(
(
(
(
(
Rea
z
)
*
(
Im2
z2
)
)
+
(
(
Im2
z
)
*
(
Rea
z2
)
)
)
+
(
(
Im3
z
)
*
(
Im1
z2
)
)
)
,
K110
(
(
(
Im1
z
)
*
(
Im3
z2
)
)
)) is
set
(
Rea
z
)
*
(
Im3
z2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im3
z
)
*
(
Rea
z2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
Rea
z
)
*
(
Im3
z2
)
)
+
(
(
Im3
z
)
*
(
Rea
z2
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im1
z
)
*
(
Im2
z2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
(
Rea
z
)
*
(
Im3
z2
)
)
+
(
(
Im3
z
)
*
(
Rea
z2
)
)
)
+
(
(
Im1
z
)
*
(
Im2
z2
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im2
z
)
*
(
Im1
z2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
(
(
Rea
z
)
*
(
Im3
z2
)
)
+
(
(
Im3
z
)
*
(
Rea
z2
)
)
)
+
(
(
Im1
z
)
*
(
Im2
z2
)
)
)
-
(
(
Im2
z
)
*
(
Im1
z2
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K110
(
(
(
Im2
z
)
*
(
Im1
z2
)
)
) is
V28
()
set
K108
(
(
(
(
(
Rea
z
)
*
(
Im3
z2
)
)
+
(
(
Im3
z
)
*
(
Rea
z2
)
)
)
+
(
(
Im1
z
)
*
(
Im2
z2
)
)
)
,
K110
(
(
(
Im2
z
)
*
(
Im1
z2
)
)
)) is
set
z
is
quaternion
set
<i>
*
z
is
quaternion
Element
of
QUATERNION
z
*
<i>
is
quaternion
Element
of
QUATERNION
(
<i>
*
z
)
-
(
z
*
<i>
)
is
quaternion
Element
of
QUATERNION
-
(
z
*
<i>
)
is
quaternion
set
(
<i>
*
z
)
+
(
-
(
z
*
<i>
)
)
is
quaternion
set
Im3
z
is
V28
()
V29
()
ext-real
Element
of
REAL
2
*
(
Im3
z
)
is
V28
()
V29
()
ext-real
Element
of
REAL
-
(
2
*
(
Im3
z
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
Im2
z
is
V28
()
V29
()
ext-real
Element
of
REAL
2
*
(
Im2
z
)
is
V28
()
V29
()
ext-real
Element
of
REAL
[*
0
,
0
,
(
-
(
2
*
(
Im3
z
)
)
)
,
(
2
*
(
Im2
z
)
)
*]
is
quaternion
Element
of
QUATERNION
Rea
(
z
*
<i>
)
is
V28
()
V29
()
ext-real
Element
of
REAL
Rea
z
is
V28
()
V29
()
ext-real
Element
of
REAL
Rea
<i>
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Rea
z
)
*
(
Rea
<i>
)
is
V28
()
V29
()
ext-real
Element
of
REAL
Im1
z
is
V28
()
V29
()
ext-real
Element
of
REAL
Im1
<i>
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im1
z
)
*
(
Im1
<i>
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
Rea
z
)
*
(
Rea
<i>
)
)
-
(
(
Im1
z
)
*
(
Im1
<i>
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K110
(
(
(
Im1
z
)
*
(
Im1
<i>
)
)
) is
V28
()
set
K108
(
(
(
Rea
z
)
*
(
Rea
<i>
)
)
,
K110
(
(
(
Im1
z
)
*
(
Im1
<i>
)
)
)) is
set
Im2
<i>
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im2
z
)
*
(
Im2
<i>
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
(
Rea
z
)
*
(
Rea
<i>
)
)
-
(
(
Im1
z
)
*
(
Im1
<i>
)
)
)
-
(
(
Im2
z
)
*
(
Im2
<i>
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K110
(
(
(
Im2
z
)
*
(
Im2
<i>
)
)
) is
V28
()
set
K108
(
(
(
(
Rea
z
)
*
(
Rea
<i>
)
)
-
(
(
Im1
z
)
*
(
Im1
<i>
)
)
)
,
K110
(
(
(
Im2
z
)
*
(
Im2
<i>
)
)
)) is
set
Im3
<i>
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im3
z
)
*
(
Im3
<i>
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
(
(
Rea
z
)
*
(
Rea
<i>
)
)
-
(
(
Im1
z
)
*
(
Im1
<i>
)
)
)
-
(
(
Im2
z
)
*
(
Im2
<i>
)
)
)
-
(
(
Im3
z
)
*
(
Im3
<i>
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K110
(
(
(
Im3
z
)
*
(
Im3
<i>
)
)
) is
V28
()
set
K108
(
(
(
(
(
Rea
z
)
*
(
Rea
<i>
)
)
-
(
(
Im1
z
)
*
(
Im1
<i>
)
)
)
-
(
(
Im2
z
)
*
(
Im2
<i>
)
)
)
,
K110
(
(
(
Im3
z
)
*
(
Im3
<i>
)
)
)) is
set
Im1
(
z
*
<i>
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Rea
z
)
*
(
Im1
<i>
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im1
z
)
*
(
Rea
<i>
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
Rea
z
)
*
(
Im1
<i>
)
)
+
(
(
Im1
z
)
*
(
Rea
<i>
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im2
z
)
*
(
Im3
<i>
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
(
Rea
z
)
*
(
Im1
<i>
)
)
+
(
(
Im1
z
)
*
(
Rea
<i>
)
)
)
+
(
(
Im2
z
)
*
(
Im3
<i>
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im3
z
)
*
(
Im2
<i>
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
(
(
Rea
z
)
*
(
Im1
<i>
)
)
+
(
(
Im1
z
)
*
(
Rea
<i>
)
)
)
+
(
(
Im2
z
)
*
(
Im3
<i>
)
)
)
-
(
(
Im3
z
)
*
(
Im2
<i>
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K110
(
(
(
Im3
z
)
*
(
Im2
<i>
)
)
) is
V28
()
set
K108
(
(
(
(
(
Rea
z
)
*
(
Im1
<i>
)
)
+
(
(
Im1
z
)
*
(
Rea
<i>
)
)
)
+
(
(
Im2
z
)
*
(
Im3
<i>
)
)
)
,
K110
(
(
(
Im3
z
)
*
(
Im2
<i>
)
)
)) is
set
Im2
(
z
*
<i>
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Rea
z
)
*
(
Im2
<i>
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im2
z
)
*
(
Rea
<i>
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
Rea
z
)
*
(
Im2
<i>
)
)
+
(
(
Im2
z
)
*
(
Rea
<i>
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im3
z
)
*
(
Im1
<i>
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
(
Rea
z
)
*
(
Im2
<i>
)
)
+
(
(
Im2
z
)
*
(
Rea
<i>
)
)
)
+
(
(
Im3
z
)
*
(
Im1
<i>
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im1
z
)
*
(
Im3
<i>
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
(
(
Rea
z
)
*
(
Im2
<i>
)
)
+
(
(
Im2
z
)
*
(
Rea
<i>
)
)
)
+
(
(
Im3
z
)
*
(
Im1
<i>
)
)
)
-
(
(
Im1
z
)
*
(
Im3
<i>
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K110
(
(
(
Im1
z
)
*
(
Im3
<i>
)
)
) is
V28
()
set
K108
(
(
(
(
(
Rea
z
)
*
(
Im2
<i>
)
)
+
(
(
Im2
z
)
*
(
Rea
<i>
)
)
)
+
(
(
Im3
z
)
*
(
Im1
<i>
)
)
)
,
K110
(
(
(
Im1
z
)
*
(
Im3
<i>
)
)
)) is
set
Im3
(
z
*
<i>
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Rea
z
)
*
(
Im3
<i>
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im3
z
)
*
(
Rea
<i>
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
Rea
z
)
*
(
Im3
<i>
)
)
+
(
(
Im3
z
)
*
(
Rea
<i>
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im1
z
)
*
(
Im2
<i>
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
(
Rea
z
)
*
(
Im3
<i>
)
)
+
(
(
Im3
z
)
*
(
Rea
<i>
)
)
)
+
(
(
Im1
z
)
*
(
Im2
<i>
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im2
z
)
*
(
Im1
<i>
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
(
(
Rea
z
)
*
(
Im3
<i>
)
)
+
(
(
Im3
z
)
*
(
Rea
<i>
)
)
)
+
(
(
Im1
z
)
*
(
Im2
<i>
)
)
)
-
(
(
Im2
z
)
*
(
Im1
<i>
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K110
(
(
(
Im2
z
)
*
(
Im1
<i>
)
)
) is
V28
()
set
K108
(
(
(
(
(
Rea
z
)
*
(
Im3
<i>
)
)
+
(
(
Im3
z
)
*
(
Rea
<i>
)
)
)
+
(
(
Im1
z
)
*
(
Im2
<i>
)
)
)
,
K110
(
(
(
Im2
z
)
*
(
Im1
<i>
)
)
)) is
set
Im2
(
<i>
*
z
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Rea
<i>
)
*
(
Im2
z
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im2
<i>
)
*
(
Rea
z
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
Rea
<i>
)
*
(
Im2
z
)
)
+
(
(
Im2
<i>
)
*
(
Rea
z
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im3
<i>
)
*
(
Im1
z
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
(
Rea
<i>
)
*
(
Im2
z
)
)
+
(
(
Im2
<i>
)
*
(
Rea
z
)
)
)
+
(
(
Im3
<i>
)
*
(
Im1
z
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im1
<i>
)
*
(
Im3
z
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
(
(
Rea
<i>
)
*
(
Im2
z
)
)
+
(
(
Im2
<i>
)
*
(
Rea
z
)
)
)
+
(
(
Im3
<i>
)
*
(
Im1
z
)
)
)
-
(
(
Im1
<i>
)
*
(
Im3
z
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K110
(
(
(
Im1
<i>
)
*
(
Im3
z
)
)
) is
V28
()
set
K108
(
(
(
(
(
Rea
<i>
)
*
(
Im2
z
)
)
+
(
(
Im2
<i>
)
*
(
Rea
z
)
)
)
+
(
(
Im3
<i>
)
*
(
Im1
z
)
)
)
,
K110
(
(
(
Im1
<i>
)
*
(
Im3
z
)
)
)) is
set
Im3
(
<i>
*
z
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Rea
<i>
)
*
(
Im3
z
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im3
<i>
)
*
(
Rea
z
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
Rea
<i>
)
*
(
Im3
z
)
)
+
(
(
Im3
<i>
)
*
(
Rea
z
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im1
<i>
)
*
(
Im2
z
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
(
Rea
<i>
)
*
(
Im3
z
)
)
+
(
(
Im3
<i>
)
*
(
Rea
z
)
)
)
+
(
(
Im1
<i>
)
*
(
Im2
z
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im2
<i>
)
*
(
Im1
z
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
(
(
Rea
<i>
)
*
(
Im3
z
)
)
+
(
(
Im3
<i>
)
*
(
Rea
z
)
)
)
+
(
(
Im1
<i>
)
*
(
Im2
z
)
)
)
-
(
(
Im2
<i>
)
*
(
Im1
z
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K110
(
(
(
Im2
<i>
)
*
(
Im1
z
)
)
) is
V28
()
set
K108
(
(
(
(
(
Rea
<i>
)
*
(
Im3
z
)
)
+
(
(
Im3
<i>
)
*
(
Rea
z
)
)
)
+
(
(
Im1
<i>
)
*
(
Im2
z
)
)
)
,
K110
(
(
(
Im2
<i>
)
*
(
Im1
z
)
)
)) is
set
Rea
(
<i>
*
z
)
is
V28
()
V29
()
ext-real
Element
of
REAL
-
(
Im1
z
)
is
V28
()
V29
()
ext-real
Element
of
REAL
Im1
(
<i>
*
z
)
is
V28
()
V29
()
ext-real
Element
of
REAL
Rea
(
(
<i>
*
z
)
-
(
z
*
<i>
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
-
(
Im1
z
)
)
-
(
-
(
Im1
z
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K110
(
(
-
(
Im1
z
)
)
) is
V28
()
set
K108
(
(
-
(
Im1
z
)
)
,
K110
(
(
-
(
Im1
z
)
)
)) is
set
Im1
(
(
<i>
*
z
)
-
(
z
*
<i>
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Rea
z
)
-
(
Rea
z
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K110
(
(
Rea
z
)
) is
V28
()
set
K108
(
(
Rea
z
)
,
K110
(
(
Rea
z
)
)) is
set
Im2
(
(
<i>
*
z
)
-
(
z
*
<i>
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
-
(
Im3
z
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
-
(
Im3
z
)
)
-
(
Im3
z
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K110
(
(
Im3
z
)
) is
V28
()
set
K108
(
(
-
(
Im3
z
)
)
,
K110
(
(
Im3
z
)
)) is
set
Im3
(
(
<i>
*
z
)
-
(
z
*
<i>
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
-
(
Im2
z
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im2
z
)
-
(
-
(
Im2
z
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K110
(
(
-
(
Im2
z
)
)
) is
V28
()
set
K108
(
(
Im2
z
)
,
K110
(
(
-
(
Im2
z
)
)
)) is
set
z
is
quaternion
set
<i>
*
z
is
quaternion
Element
of
QUATERNION
z
*
<i>
is
quaternion
Element
of
QUATERNION
(
<i>
*
z
)
+
(
z
*
<i>
)
is
quaternion
Element
of
QUATERNION
Im1
z
is
V28
()
V29
()
ext-real
Element
of
REAL
2
*
(
Im1
z
)
is
V28
()
V29
()
ext-real
Element
of
REAL
-
(
2
*
(
Im1
z
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
Rea
z
is
V28
()
V29
()
ext-real
Element
of
REAL
2
*
(
Rea
z
)
is
V28
()
V29
()
ext-real
Element
of
REAL
[*
(
-
(
2
*
(
Im1
z
)
)
)
,
(
2
*
(
Rea
z
)
)
,
0
,
0
*]
is
quaternion
Element
of
QUATERNION
Rea
<i>
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Rea
<i>
)
*
(
Rea
z
)
is
V28
()
V29
()
ext-real
Element
of
REAL
Im1
<i>
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im1
<i>
)
*
(
Im1
z
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
Rea
<i>
)
*
(
Rea
z
)
)
-
(
(
Im1
<i>
)
*
(
Im1
z
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K110
(
(
(
Im1
<i>
)
*
(
Im1
z
)
)
) is
V28
()
set
K108
(
(
(
Rea
<i>
)
*
(
Rea
z
)
)
,
K110
(
(
(
Im1
<i>
)
*
(
Im1
z
)
)
)) is
set
Im2
<i>
is
V28
()
V29
()
ext-real
Element
of
REAL
Im2
z
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im2
<i>
)
*
(
Im2
z
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
(
Rea
<i>
)
*
(
Rea
z
)
)
-
(
(
Im1
<i>
)
*
(
Im1
z
)
)
)
-
(
(
Im2
<i>
)
*
(
Im2
z
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K110
(
(
(
Im2
<i>
)
*
(
Im2
z
)
)
) is
V28
()
set
K108
(
(
(
(
Rea
<i>
)
*
(
Rea
z
)
)
-
(
(
Im1
<i>
)
*
(
Im1
z
)
)
)
,
K110
(
(
(
Im2
<i>
)
*
(
Im2
z
)
)
)) is
set
Im3
<i>
is
V28
()
V29
()
ext-real
Element
of
REAL
Im3
z
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im3
<i>
)
*
(
Im3
z
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
(
(
Rea
<i>
)
*
(
Rea
z
)
)
-
(
(
Im1
<i>
)
*
(
Im1
z
)
)
)
-
(
(
Im2
<i>
)
*
(
Im2
z
)
)
)
-
(
(
Im3
<i>
)
*
(
Im3
z
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K110
(
(
(
Im3
<i>
)
*
(
Im3
z
)
)
) is
V28
()
set
K108
(
(
(
(
(
Rea
<i>
)
*
(
Rea
z
)
)
-
(
(
Im1
<i>
)
*
(
Im1
z
)
)
)
-
(
(
Im2
<i>
)
*
(
Im2
z
)
)
)
,
K110
(
(
(
Im3
<i>
)
*
(
Im3
z
)
)
)) is
set
(
Rea
<i>
)
*
(
Im1
z
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im1
<i>
)
*
(
Rea
z
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
Rea
<i>
)
*
(
Im1
z
)
)
+
(
(
Im1
<i>
)
*
(
Rea
z
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im2
<i>
)
*
(
Im3
z
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
(
Rea
<i>
)
*
(
Im1
z
)
)
+
(
(
Im1
<i>
)
*
(
Rea
z
)
)
)
+
(
(
Im2
<i>
)
*
(
Im3
z
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im3
<i>
)
*
(
Im2
z
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
(
(
Rea
<i>
)
*
(
Im1
z
)
)
+
(
(
Im1
<i>
)
*
(
Rea
z
)
)
)
+
(
(
Im2
<i>
)
*
(
Im3
z
)
)
)
-
(
(
Im3
<i>
)
*
(
Im2
z
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K110
(
(
(
Im3
<i>
)
*
(
Im2
z
)
)
) is
V28
()
set
K108
(
(
(
(
(
Rea
<i>
)
*
(
Im1
z
)
)
+
(
(
Im1
<i>
)
*
(
Rea
z
)
)
)
+
(
(
Im2
<i>
)
*
(
Im3
z
)
)
)
,
K110
(
(
(
Im3
<i>
)
*
(
Im2
z
)
)
)) is
set
(
(
(
(
(
Rea
<i>
)
*
(
Im1
z
)
)
+
(
(
Im1
<i>
)
*
(
Rea
z
)
)
)
+
(
(
Im2
<i>
)
*
(
Im3
z
)
)
)
-
(
(
Im3
<i>
)
*
(
Im2
z
)
)
)
*
<i>
is
quaternion
set
(
(
(
(
(
Rea
<i>
)
*
(
Rea
z
)
)
-
(
(
Im1
<i>
)
*
(
Im1
z
)
)
)
-
(
(
Im2
<i>
)
*
(
Im2
z
)
)
)
-
(
(
Im3
<i>
)
*
(
Im3
z
)
)
)
+
(
(
(
(
(
(
Rea
<i>
)
*
(
Im1
z
)
)
+
(
(
Im1
<i>
)
*
(
Rea
z
)
)
)
+
(
(
Im2
<i>
)
*
(
Im3
z
)
)
)
-
(
(
Im3
<i>
)
*
(
Im2
z
)
)
)
*
<i>
)
is
quaternion
set
(
Rea
<i>
)
*
(
Im2
z
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im2
<i>
)
*
(
Rea
z
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
Rea
<i>
)
*
(
Im2
z
)
)
+
(
(
Im2
<i>
)
*
(
Rea
z
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im3
<i>
)
*
(
Im1
z
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
(
Rea
<i>
)
*
(
Im2
z
)
)
+
(
(
Im2
<i>
)
*
(
Rea
z
)
)
)
+
(
(
Im3
<i>
)
*
(
Im1
z
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im1
<i>
)
*
(
Im3
z
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
(
(
Rea
<i>
)
*
(
Im2
z
)
)
+
(
(
Im2
<i>
)
*
(
Rea
z
)
)
)
+
(
(
Im3
<i>
)
*
(
Im1
z
)
)
)
-
(
(
Im1
<i>
)
*
(
Im3
z
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K110
(
(
(
Im1
<i>
)
*
(
Im3
z
)
)
) is
V28
()
set
K108
(
(
(
(
(
Rea
<i>
)
*
(
Im2
z
)
)
+
(
(
Im2
<i>
)
*
(
Rea
z
)
)
)
+
(
(
Im3
<i>
)
*
(
Im1
z
)
)
)
,
K110
(
(
(
Im1
<i>
)
*
(
Im3
z
)
)
)) is
set
(
(
(
(
(
Rea
<i>
)
*
(
Im2
z
)
)
+
(
(
Im2
<i>
)
*
(
Rea
z
)
)
)
+
(
(
Im3
<i>
)
*
(
Im1
z
)
)
)
-
(
(
Im1
<i>
)
*
(
Im3
z
)
)
)
*
<j>
is
quaternion
set
(
(
(
(
(
(
Rea
<i>
)
*
(
Rea
z
)
)
-
(
(
Im1
<i>
)
*
(
Im1
z
)
)
)
-
(
(
Im2
<i>
)
*
(
Im2
z
)
)
)
-
(
(
Im3
<i>
)
*
(
Im3
z
)
)
)
+
(
(
(
(
(
(
Rea
<i>
)
*
(
Im1
z
)
)
+
(
(
Im1
<i>
)
*
(
Rea
z
)
)
)
+
(
(
Im2
<i>
)
*
(
Im3
z
)
)
)
-
(
(
Im3
<i>
)
*
(
Im2
z
)
)
)
*
<i>
)
)
+
(
(
(
(
(
(
Rea
<i>
)
*
(
Im2
z
)
)
+
(
(
Im2
<i>
)
*
(
Rea
z
)
)
)
+
(
(
Im3
<i>
)
*
(
Im1
z
)
)
)
-
(
(
Im1
<i>
)
*
(
Im3
z
)
)
)
*
<j>
)
is
quaternion
Element
of
QUATERNION
(
Rea
<i>
)
*
(
Im3
z
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im3
<i>
)
*
(
Rea
z
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
Rea
<i>
)
*
(
Im3
z
)
)
+
(
(
Im3
<i>
)
*
(
Rea
z
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im1
<i>
)
*
(
Im2
z
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
(
Rea
<i>
)
*
(
Im3
z
)
)
+
(
(
Im3
<i>
)
*
(
Rea
z
)
)
)
+
(
(
Im1
<i>
)
*
(
Im2
z
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im2
<i>
)
*
(
Im1
z
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
(
(
Rea
<i>
)
*
(
Im3
z
)
)
+
(
(
Im3
<i>
)
*
(
Rea
z
)
)
)
+
(
(
Im1
<i>
)
*
(
Im2
z
)
)
)
-
(
(
Im2
<i>
)
*
(
Im1
z
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K110
(
(
(
Im2
<i>
)
*
(
Im1
z
)
)
) is
V28
()
set
K108
(
(
(
(
(
Rea
<i>
)
*
(
Im3
z
)
)
+
(
(
Im3
<i>
)
*
(
Rea
z
)
)
)
+
(
(
Im1
<i>
)
*
(
Im2
z
)
)
)
,
K110
(
(
(
Im2
<i>
)
*
(
Im1
z
)
)
)) is
set
(
(
(
(
(
Rea
<i>
)
*
(
Im3
z
)
)
+
(
(
Im3
<i>
)
*
(
Rea
z
)
)
)
+
(
(
Im1
<i>
)
*
(
Im2
z
)
)
)
-
(
(
Im2
<i>
)
*
(
Im1
z
)
)
)
*
<k>
is
quaternion
set
(
(
(
(
(
(
(
Rea
<i>
)
*
(
Rea
z
)
)
-
(
(
Im1
<i>
)
*
(
Im1
z
)
)
)
-
(
(
Im2
<i>
)
*
(
Im2
z
)
)
)
-
(
(
Im3
<i>
)
*
(
Im3
z
)
)
)
+
(
(
(
(
(
(
Rea
<i>
)
*
(
Im1
z
)
)
+
(
(
Im1
<i>
)
*
(
Rea
z
)
)
)
+
(
(
Im2
<i>
)
*
(
Im3
z
)
)
)
-
(
(
Im3
<i>
)
*
(
Im2
z
)
)
)
*
<i>
)
)
+
(
(
(
(
(
(
Rea
<i>
)
*
(
Im2
z
)
)
+
(
(
Im2
<i>
)
*
(
Rea
z
)
)
)
+
(
(
Im3
<i>
)
*
(
Im1
z
)
)
)
-
(
(
Im1
<i>
)
*
(
Im3
z
)
)
)
*
<j>
)
)
+
(
(
(
(
(
(
Rea
<i>
)
*
(
Im3
z
)
)
+
(
(
Im3
<i>
)
*
(
Rea
z
)
)
)
+
(
(
Im1
<i>
)
*
(
Im2
z
)
)
)
-
(
(
Im2
<i>
)
*
(
Im1
z
)
)
)
*
<k>
)
is
quaternion
Element
of
QUATERNION
-
(
Im1
z
)
is
V28
()
V29
()
ext-real
Element
of
REAL
-
(
Im3
z
)
is
V28
()
V29
()
ext-real
Element
of
REAL
[*
(
-
(
Im1
z
)
)
,
(
Rea
z
)
,
(
-
(
Im3
z
)
)
,
(
Im2
z
)
*]
is
quaternion
Element
of
QUATERNION
Im2
(
<i>
*
z
)
is
V28
()
V29
()
ext-real
Element
of
REAL
Im3
(
<i>
*
z
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Rea
z
)
*
(
Rea
<i>
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im1
z
)
*
(
Im1
<i>
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
Rea
z
)
*
(
Rea
<i>
)
)
-
(
(
Im1
z
)
*
(
Im1
<i>
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K110
(
(
(
Im1
z
)
*
(
Im1
<i>
)
)
) is
V28
()
set
K108
(
(
(
Rea
z
)
*
(
Rea
<i>
)
)
,
K110
(
(
(
Im1
z
)
*
(
Im1
<i>
)
)
)) is
set
(
Im2
z
)
*
(
Im2
<i>
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
(
Rea
z
)
*
(
Rea
<i>
)
)
-
(
(
Im1
z
)
*
(
Im1
<i>
)
)
)
-
(
(
Im2
z
)
*
(
Im2
<i>
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K110
(
(
(
Im2
z
)
*
(
Im2
<i>
)
)
) is
V28
()
set
K108
(
(
(
(
Rea
z
)
*
(
Rea
<i>
)
)
-
(
(
Im1
z
)
*
(
Im1
<i>
)
)
)
,
K110
(
(
(
Im2
z
)
*
(
Im2
<i>
)
)
)) is
set
(
Im3
z
)
*
(
Im3
<i>
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
(
(
Rea
z
)
*
(
Rea
<i>
)
)
-
(
(
Im1
z
)
*
(
Im1
<i>
)
)
)
-
(
(
Im2
z
)
*
(
Im2
<i>
)
)
)
-
(
(
Im3
z
)
*
(
Im3
<i>
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K110
(
(
(
Im3
z
)
*
(
Im3
<i>
)
)
) is
V28
()
set
K108
(
(
(
(
(
Rea
z
)
*
(
Rea
<i>
)
)
-
(
(
Im1
z
)
*
(
Im1
<i>
)
)
)
-
(
(
Im2
z
)
*
(
Im2
<i>
)
)
)
,
K110
(
(
(
Im3
z
)
*
(
Im3
<i>
)
)
)) is
set
(
Rea
z
)
*
(
Im1
<i>
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im1
z
)
*
(
Rea
<i>
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
Rea
z
)
*
(
Im1
<i>
)
)
+
(
(
Im1
z
)
*
(
Rea
<i>
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im2
z
)
*
(
Im3
<i>
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
(
Rea
z
)
*
(
Im1
<i>
)
)
+
(
(
Im1
z
)
*
(
Rea
<i>
)
)
)
+
(
(
Im2
z
)
*
(
Im3
<i>
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im3
z
)
*
(
Im2
<i>
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
(
(
Rea
z
)
*
(
Im1
<i>
)
)
+
(
(
Im1
z
)
*
(
Rea
<i>
)
)
)
+
(
(
Im2
z
)
*
(
Im3
<i>
)
)
)
-
(
(
Im3
z
)
*
(
Im2
<i>
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K110
(
(
(
Im3
z
)
*
(
Im2
<i>
)
)
) is
V28
()
set
K108
(
(
(
(
(
Rea
z
)
*
(
Im1
<i>
)
)
+
(
(
Im1
z
)
*
(
Rea
<i>
)
)
)
+
(
(
Im2
z
)
*
(
Im3
<i>
)
)
)
,
K110
(
(
(
Im3
z
)
*
(
Im2
<i>
)
)
)) is
set
(
(
(
(
(
Rea
z
)
*
(
Im1
<i>
)
)
+
(
(
Im1
z
)
*
(
Rea
<i>
)
)
)
+
(
(
Im2
z
)
*
(
Im3
<i>
)
)
)
-
(
(
Im3
z
)
*
(
Im2
<i>
)
)
)
*
<i>
is
quaternion
set
(
(
(
(
(
Rea
z
)
*
(
Rea
<i>
)
)
-
(
(
Im1
z
)
*
(
Im1
<i>
)
)
)
-
(
(
Im2
z
)
*
(
Im2
<i>
)
)
)
-
(
(
Im3
z
)
*
(
Im3
<i>
)
)
)
+
(
(
(
(
(
(
Rea
z
)
*
(
Im1
<i>
)
)
+
(
(
Im1
z
)
*
(
Rea
<i>
)
)
)
+
(
(
Im2
z
)
*
(
Im3
<i>
)
)
)
-
(
(
Im3
z
)
*
(
Im2
<i>
)
)
)
*
<i>
)
is
quaternion
set
(
Rea
z
)
*
(
Im2
<i>
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im2
z
)
*
(
Rea
<i>
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
Rea
z
)
*
(
Im2
<i>
)
)
+
(
(
Im2
z
)
*
(
Rea
<i>
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im3
z
)
*
(
Im1
<i>
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
(
Rea
z
)
*
(
Im2
<i>
)
)
+
(
(
Im2
z
)
*
(
Rea
<i>
)
)
)
+
(
(
Im3
z
)
*
(
Im1
<i>
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im1
z
)
*
(
Im3
<i>
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
(
(
Rea
z
)
*
(
Im2
<i>
)
)
+
(
(
Im2
z
)
*
(
Rea
<i>
)
)
)
+
(
(
Im3
z
)
*
(
Im1
<i>
)
)
)
-
(
(
Im1
z
)
*
(
Im3
<i>
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K110
(
(
(
Im1
z
)
*
(
Im3
<i>
)
)
) is
V28
()
set
K108
(
(
(
(
(
Rea
z
)
*
(
Im2
<i>
)
)
+
(
(
Im2
z
)
*
(
Rea
<i>
)
)
)
+
(
(
Im3
z
)
*
(
Im1
<i>
)
)
)
,
K110
(
(
(
Im1
z
)
*
(
Im3
<i>
)
)
)) is
set
(
(
(
(
(
Rea
z
)
*
(
Im2
<i>
)
)
+
(
(
Im2
z
)
*
(
Rea
<i>
)
)
)
+
(
(
Im3
z
)
*
(
Im1
<i>
)
)
)
-
(
(
Im1
z
)
*
(
Im3
<i>
)
)
)
*
<j>
is
quaternion
set
(
(
(
(
(
(
Rea
z
)
*
(
Rea
<i>
)
)
-
(
(
Im1
z
)
*
(
Im1
<i>
)
)
)
-
(
(
Im2
z
)
*
(
Im2
<i>
)
)
)
-
(
(
Im3
z
)
*
(
Im3
<i>
)
)
)
+
(
(
(
(
(
(
Rea
z
)
*
(
Im1
<i>
)
)
+
(
(
Im1
z
)
*
(
Rea
<i>
)
)
)
+
(
(
Im2
z
)
*
(
Im3
<i>
)
)
)
-
(
(
Im3
z
)
*
(
Im2
<i>
)
)
)
*
<i>
)
)
+
(
(
(
(
(
(
Rea
z
)
*
(
Im2
<i>
)
)
+
(
(
Im2
z
)
*
(
Rea
<i>
)
)
)
+
(
(
Im3
z
)
*
(
Im1
<i>
)
)
)
-
(
(
Im1
z
)
*
(
Im3
<i>
)
)
)
*
<j>
)
is
quaternion
Element
of
QUATERNION
(
Rea
z
)
*
(
Im3
<i>
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im3
z
)
*
(
Rea
<i>
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
Rea
z
)
*
(
Im3
<i>
)
)
+
(
(
Im3
z
)
*
(
Rea
<i>
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im1
z
)
*
(
Im2
<i>
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
(
Rea
z
)
*
(
Im3
<i>
)
)
+
(
(
Im3
z
)
*
(
Rea
<i>
)
)
)
+
(
(
Im1
z
)
*
(
Im2
<i>
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im2
z
)
*
(
Im1
<i>
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
(
(
Rea
z
)
*
(
Im3
<i>
)
)
+
(
(
Im3
z
)
*
(
Rea
<i>
)
)
)
+
(
(
Im1
z
)
*
(
Im2
<i>
)
)
)
-
(
(
Im2
z
)
*
(
Im1
<i>
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K110
(
(
(
Im2
z
)
*
(
Im1
<i>
)
)
) is
V28
()
set
K108
(
(
(
(
(
Rea
z
)
*
(
Im3
<i>
)
)
+
(
(
Im3
z
)
*
(
Rea
<i>
)
)
)
+
(
(
Im1
z
)
*
(
Im2
<i>
)
)
)
,
K110
(
(
(
Im2
z
)
*
(
Im1
<i>
)
)
)) is
set
(
(
(
(
(
Rea
z
)
*
(
Im3
<i>
)
)
+
(
(
Im3
z
)
*
(
Rea
<i>
)
)
)
+
(
(
Im1
z
)
*
(
Im2
<i>
)
)
)
-
(
(
Im2
z
)
*
(
Im1
<i>
)
)
)
*
<k>
is
quaternion
set
(
(
(
(
(
(
(
Rea
z
)
*
(
Rea
<i>
)
)
-
(
(
Im1
z
)
*
(
Im1
<i>
)
)
)
-
(
(
Im2
z
)
*
(
Im2
<i>
)
)
)
-
(
(
Im3
z
)
*
(
Im3
<i>
)
)
)
+
(
(
(
(
(
(
Rea
z
)
*
(
Im1
<i>
)
)
+
(
(
Im1
z
)
*
(
Rea
<i>
)
)
)
+
(
(
Im2
z
)
*
(
Im3
<i>
)
)
)
-
(
(
Im3
z
)
*
(
Im2
<i>
)
)
)
*
<i>
)
)
+
(
(
(
(
(
(
Rea
z
)
*
(
Im2
<i>
)
)
+
(
(
Im2
z
)
*
(
Rea
<i>
)
)
)
+
(
(
Im3
z
)
*
(
Im1
<i>
)
)
)
-
(
(
Im1
z
)
*
(
Im3
<i>
)
)
)
*
<j>
)
)
+
(
(
(
(
(
(
Rea
z
)
*
(
Im3
<i>
)
)
+
(
(
Im3
z
)
*
(
Rea
<i>
)
)
)
+
(
(
Im1
z
)
*
(
Im2
<i>
)
)
)
-
(
(
Im2
z
)
*
(
Im1
<i>
)
)
)
*
<k>
)
is
quaternion
Element
of
QUATERNION
-
(
Im2
z
)
is
V28
()
V29
()
ext-real
Element
of
REAL
[*
(
-
(
Im1
z
)
)
,
(
Rea
z
)
,
(
Im3
z
)
,
(
-
(
Im2
z
)
)
*]
is
quaternion
Element
of
QUATERNION
Rea
(
z
*
<i>
)
is
V28
()
V29
()
ext-real
Element
of
REAL
Im1
(
z
*
<i>
)
is
V28
()
V29
()
ext-real
Element
of
REAL
Im2
(
z
*
<i>
)
is
V28
()
V29
()
ext-real
Element
of
REAL
Im3
(
z
*
<i>
)
is
V28
()
V29
()
ext-real
Element
of
REAL
Rea
(
<i>
*
z
)
is
V28
()
V29
()
ext-real
Element
of
REAL
Im1
(
<i>
*
z
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
-
(
Im1
z
)
)
+
(
-
(
Im1
z
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Rea
z
)
+
(
Rea
z
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
Rea
z
)
+
(
Rea
z
)
)
*
<i>
is
quaternion
set
(
(
-
(
Im1
z
)
)
+
(
-
(
Im1
z
)
)
)
+
(
(
(
Rea
z
)
+
(
Rea
z
)
)
*
<i>
)
is
quaternion
set
(
-
(
Im3
z
)
)
+
(
Im3
z
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
-
(
Im3
z
)
)
+
(
Im3
z
)
)
*
<j>
is
quaternion
set
(
(
(
-
(
Im1
z
)
)
+
(
-
(
Im1
z
)
)
)
+
(
(
(
Rea
z
)
+
(
Rea
z
)
)
*
<i>
)
)
+
(
(
(
-
(
Im3
z
)
)
+
(
Im3
z
)
)
*
<j>
)
is
quaternion
Element
of
QUATERNION
(
Im2
z
)
+
(
-
(
Im2
z
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
Im2
z
)
+
(
-
(
Im2
z
)
)
)
*
<k>
is
quaternion
set
(
(
(
(
-
(
Im1
z
)
)
+
(
-
(
Im1
z
)
)
)
+
(
(
(
Rea
z
)
+
(
Rea
z
)
)
*
<i>
)
)
+
(
(
(
-
(
Im3
z
)
)
+
(
Im3
z
)
)
*
<j>
)
)
+
(
(
(
Im2
z
)
+
(
-
(
Im2
z
)
)
)
*
<k>
)
is
quaternion
Element
of
QUATERNION
z
is
quaternion
set
<j>
*
z
is
quaternion
Element
of
QUATERNION
z
*
<j>
is
quaternion
Element
of
QUATERNION
(
<j>
*
z
)
-
(
z
*
<j>
)
is
quaternion
Element
of
QUATERNION
-
(
z
*
<j>
)
is
quaternion
set
(
<j>
*
z
)
+
(
-
(
z
*
<j>
)
)
is
quaternion
set
Im3
z
is
V28
()
V29
()
ext-real
Element
of
REAL
2
*
(
Im3
z
)
is
V28
()
V29
()
ext-real
Element
of
REAL
Im1
z
is
V28
()
V29
()
ext-real
Element
of
REAL
2
*
(
Im1
z
)
is
V28
()
V29
()
ext-real
Element
of
REAL
-
(
2
*
(
Im1
z
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
[*
0
,
(
2
*
(
Im3
z
)
)
,
0
,
(
-
(
2
*
(
Im1
z
)
)
)
*]
is
quaternion
Element
of
QUATERNION
Rea
z
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Rea
<j>
)
*
(
Rea
z
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im1
<j>
)
*
(
Im1
z
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
Rea
<j>
)
*
(
Rea
z
)
)
-
(
(
Im1
<j>
)
*
(
Im1
z
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K110
(
(
(
Im1
<j>
)
*
(
Im1
z
)
)
) is
V28
()
set
K108
(
(
(
Rea
<j>
)
*
(
Rea
z
)
)
,
K110
(
(
(
Im1
<j>
)
*
(
Im1
z
)
)
)) is
set
Im2
z
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im2
<j>
)
*
(
Im2
z
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
(
Rea
<j>
)
*
(
Rea
z
)
)
-
(
(
Im1
<j>
)
*
(
Im1
z
)
)
)
-
(
(
Im2
<j>
)
*
(
Im2
z
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K110
(
(
(
Im2
<j>
)
*
(
Im2
z
)
)
) is
V28
()
set
K108
(
(
(
(
Rea
<j>
)
*
(
Rea
z
)
)
-
(
(
Im1
<j>
)
*
(
Im1
z
)
)
)
,
K110
(
(
(
Im2
<j>
)
*
(
Im2
z
)
)
)) is
set
(
Im3
<j>
)
*
(
Im3
z
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
(
(
Rea
<j>
)
*
(
Rea
z
)
)
-
(
(
Im1
<j>
)
*
(
Im1
z
)
)
)
-
(
(
Im2
<j>
)
*
(
Im2
z
)
)
)
-
(
(
Im3
<j>
)
*
(
Im3
z
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K110
(
(
(
Im3
<j>
)
*
(
Im3
z
)
)
) is
V28
()
set
K108
(
(
(
(
(
Rea
<j>
)
*
(
Rea
z
)
)
-
(
(
Im1
<j>
)
*
(
Im1
z
)
)
)
-
(
(
Im2
<j>
)
*
(
Im2
z
)
)
)
,
K110
(
(
(
Im3
<j>
)
*
(
Im3
z
)
)
)) is
set
(
Rea
<j>
)
*
(
Im1
z
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im1
<j>
)
*
(
Rea
z
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
Rea
<j>
)
*
(
Im1
z
)
)
+
(
(
Im1
<j>
)
*
(
Rea
z
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im2
<j>
)
*
(
Im3
z
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
(
Rea
<j>
)
*
(
Im1
z
)
)
+
(
(
Im1
<j>
)
*
(
Rea
z
)
)
)
+
(
(
Im2
<j>
)
*
(
Im3
z
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im3
<j>
)
*
(
Im2
z
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
(
(
Rea
<j>
)
*
(
Im1
z
)
)
+
(
(
Im1
<j>
)
*
(
Rea
z
)
)
)
+
(
(
Im2
<j>
)
*
(
Im3
z
)
)
)
-
(
(
Im3
<j>
)
*
(
Im2
z
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K110
(
(
(
Im3
<j>
)
*
(
Im2
z
)
)
) is
V28
()
set
K108
(
(
(
(
(
Rea
<j>
)
*
(
Im1
z
)
)
+
(
(
Im1
<j>
)
*
(
Rea
z
)
)
)
+
(
(
Im2
<j>
)
*
(
Im3
z
)
)
)
,
K110
(
(
(
Im3
<j>
)
*
(
Im2
z
)
)
)) is
set
(
(
(
(
(
Rea
<j>
)
*
(
Im1
z
)
)
+
(
(
Im1
<j>
)
*
(
Rea
z
)
)
)
+
(
(
Im2
<j>
)
*
(
Im3
z
)
)
)
-
(
(
Im3
<j>
)
*
(
Im2
z
)
)
)
*
<i>
is
quaternion
set
(
(
(
(
(
Rea
<j>
)
*
(
Rea
z
)
)
-
(
(
Im1
<j>
)
*
(
Im1
z
)
)
)
-
(
(
Im2
<j>
)
*
(
Im2
z
)
)
)
-
(
(
Im3
<j>
)
*
(
Im3
z
)
)
)
+
(
(
(
(
(
(
Rea
<j>
)
*
(
Im1
z
)
)
+
(
(
Im1
<j>
)
*
(
Rea
z
)
)
)
+
(
(
Im2
<j>
)
*
(
Im3
z
)
)
)
-
(
(
Im3
<j>
)
*
(
Im2
z
)
)
)
*
<i>
)
is
quaternion
set
(
Rea
<j>
)
*
(
Im2
z
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im2
<j>
)
*
(
Rea
z
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
Rea
<j>
)
*
(
Im2
z
)
)
+
(
(
Im2
<j>
)
*
(
Rea
z
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im3
<j>
)
*
(
Im1
z
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
(
Rea
<j>
)
*
(
Im2
z
)
)
+
(
(
Im2
<j>
)
*
(
Rea
z
)
)
)
+
(
(
Im3
<j>
)
*
(
Im1
z
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im1
<j>
)
*
(
Im3
z
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
(
(
Rea
<j>
)
*
(
Im2
z
)
)
+
(
(
Im2
<j>
)
*
(
Rea
z
)
)
)
+
(
(
Im3
<j>
)
*
(
Im1
z
)
)
)
-
(
(
Im1
<j>
)
*
(
Im3
z
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K110
(
(
(
Im1
<j>
)
*
(
Im3
z
)
)
) is
V28
()
set
K108
(
(
(
(
(
Rea
<j>
)
*
(
Im2
z
)
)
+
(
(
Im2
<j>
)
*
(
Rea
z
)
)
)
+
(
(
Im3
<j>
)
*
(
Im1
z
)
)
)
,
K110
(
(
(
Im1
<j>
)
*
(
Im3
z
)
)
)) is
set
(
(
(
(
(
Rea
<j>
)
*
(
Im2
z
)
)
+
(
(
Im2
<j>
)
*
(
Rea
z
)
)
)
+
(
(
Im3
<j>
)
*
(
Im1
z
)
)
)
-
(
(
Im1
<j>
)
*
(
Im3
z
)
)
)
*
<j>
is
quaternion
set
(
(
(
(
(
(
Rea
<j>
)
*
(
Rea
z
)
)
-
(
(
Im1
<j>
)
*
(
Im1
z
)
)
)
-
(
(
Im2
<j>
)
*
(
Im2
z
)
)
)
-
(
(
Im3
<j>
)
*
(
Im3
z
)
)
)
+
(
(
(
(
(
(
Rea
<j>
)
*
(
Im1
z
)
)
+
(
(
Im1
<j>
)
*
(
Rea
z
)
)
)
+
(
(
Im2
<j>
)
*
(
Im3
z
)
)
)
-
(
(
Im3
<j>
)
*
(
Im2
z
)
)
)
*
<i>
)
)
+
(
(
(
(
(
(
Rea
<j>
)
*
(
Im2
z
)
)
+
(
(
Im2
<j>
)
*
(
Rea
z
)
)
)
+
(
(
Im3
<j>
)
*
(
Im1
z
)
)
)
-
(
(
Im1
<j>
)
*
(
Im3
z
)
)
)
*
<j>
)
is
quaternion
Element
of
QUATERNION
(
Rea
<j>
)
*
(
Im3
z
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im3
<j>
)
*
(
Rea
z
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
Rea
<j>
)
*
(
Im3
z
)
)
+
(
(
Im3
<j>
)
*
(
Rea
z
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im1
<j>
)
*
(
Im2
z
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
(
Rea
<j>
)
*
(
Im3
z
)
)
+
(
(
Im3
<j>
)
*
(
Rea
z
)
)
)
+
(
(
Im1
<j>
)
*
(
Im2
z
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im2
<j>
)
*
(
Im1
z
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
(
(
Rea
<j>
)
*
(
Im3
z
)
)
+
(
(
Im3
<j>
)
*
(
Rea
z
)
)
)
+
(
(
Im1
<j>
)
*
(
Im2
z
)
)
)
-
(
(
Im2
<j>
)
*
(
Im1
z
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K110
(
(
(
Im2
<j>
)
*
(
Im1
z
)
)
) is
V28
()
set
K108
(
(
(
(
(
Rea
<j>
)
*
(
Im3
z
)
)
+
(
(
Im3
<j>
)
*
(
Rea
z
)
)
)
+
(
(
Im1
<j>
)
*
(
Im2
z
)
)
)
,
K110
(
(
(
Im2
<j>
)
*
(
Im1
z
)
)
)) is
set
(
(
(
(
(
Rea
<j>
)
*
(
Im3
z
)
)
+
(
(
Im3
<j>
)
*
(
Rea
z
)
)
)
+
(
(
Im1
<j>
)
*
(
Im2
z
)
)
)
-
(
(
Im2
<j>
)
*
(
Im1
z
)
)
)
*
<k>
is
quaternion
set
(
(
(
(
(
(
(
Rea
<j>
)
*
(
Rea
z
)
)
-
(
(
Im1
<j>
)
*
(
Im1
z
)
)
)
-
(
(
Im2
<j>
)
*
(
Im2
z
)
)
)
-
(
(
Im3
<j>
)
*
(
Im3
z
)
)
)
+
(
(
(
(
(
(
Rea
<j>
)
*
(
Im1
z
)
)
+
(
(
Im1
<j>
)
*
(
Rea
z
)
)
)
+
(
(
Im2
<j>
)
*
(
Im3
z
)
)
)
-
(
(
Im3
<j>
)
*
(
Im2
z
)
)
)
*
<i>
)
)
+
(
(
(
(
(
(
Rea
<j>
)
*
(
Im2
z
)
)
+
(
(
Im2
<j>
)
*
(
Rea
z
)
)
)
+
(
(
Im3
<j>
)
*
(
Im1
z
)
)
)
-
(
(
Im1
<j>
)
*
(
Im3
z
)
)
)
*
<j>
)
)
+
(
(
(
(
(
(
Rea
<j>
)
*
(
Im3
z
)
)
+
(
(
Im3
<j>
)
*
(
Rea
z
)
)
)
+
(
(
Im1
<j>
)
*
(
Im2
z
)
)
)
-
(
(
Im2
<j>
)
*
(
Im1
z
)
)
)
*
<k>
)
is
quaternion
Element
of
QUATERNION
-
(
Im2
z
)
is
V28
()
V29
()
ext-real
Element
of
REAL
-
(
Im1
z
)
is
V28
()
V29
()
ext-real
Element
of
REAL
[*
(
-
(
Im2
z
)
)
,
(
Im3
z
)
,
(
Rea
z
)
,
(
-
(
Im1
z
)
)
*]
is
quaternion
Element
of
QUATERNION
(
Rea
z
)
*
(
Rea
<j>
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im1
z
)
*
(
Im1
<j>
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
Rea
z
)
*
(
Rea
<j>
)
)
-
(
(
Im1
z
)
*
(
Im1
<j>
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K110
(
(
(
Im1
z
)
*
(
Im1
<j>
)
)
) is
V28
()
set
K108
(
(
(
Rea
z
)
*
(
Rea
<j>
)
)
,
K110
(
(
(
Im1
z
)
*
(
Im1
<j>
)
)
)) is
set
(
Im2
z
)
*
(
Im2
<j>
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
(
Rea
z
)
*
(
Rea
<j>
)
)
-
(
(
Im1
z
)
*
(
Im1
<j>
)
)
)
-
(
(
Im2
z
)
*
(
Im2
<j>
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K110
(
(
(
Im2
z
)
*
(
Im2
<j>
)
)
) is
V28
()
set
K108
(
(
(
(
Rea
z
)
*
(
Rea
<j>
)
)
-
(
(
Im1
z
)
*
(
Im1
<j>
)
)
)
,
K110
(
(
(
Im2
z
)
*
(
Im2
<j>
)
)
)) is
set
(
Im3
z
)
*
(
Im3
<j>
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
(
(
Rea
z
)
*
(
Rea
<j>
)
)
-
(
(
Im1
z
)
*
(
Im1
<j>
)
)
)
-
(
(
Im2
z
)
*
(
Im2
<j>
)
)
)
-
(
(
Im3
z
)
*
(
Im3
<j>
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K110
(
(
(
Im3
z
)
*
(
Im3
<j>
)
)
) is
V28
()
set
K108
(
(
(
(
(
Rea
z
)
*
(
Rea
<j>
)
)
-
(
(
Im1
z
)
*
(
Im1
<j>
)
)
)
-
(
(
Im2
z
)
*
(
Im2
<j>
)
)
)
,
K110
(
(
(
Im3
z
)
*
(
Im3
<j>
)
)
)) is
set
(
Rea
z
)
*
(
Im1
<j>
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im1
z
)
*
(
Rea
<j>
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
Rea
z
)
*
(
Im1
<j>
)
)
+
(
(
Im1
z
)
*
(
Rea
<j>
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im2
z
)
*
(
Im3
<j>
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
(
Rea
z
)
*
(
Im1
<j>
)
)
+
(
(
Im1
z
)
*
(
Rea
<j>
)
)
)
+
(
(
Im2
z
)
*
(
Im3
<j>
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im3
z
)
*
(
Im2
<j>
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
(
(
Rea
z
)
*
(
Im1
<j>
)
)
+
(
(
Im1
z
)
*
(
Rea
<j>
)
)
)
+
(
(
Im2
z
)
*
(
Im3
<j>
)
)
)
-
(
(
Im3
z
)
*
(
Im2
<j>
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K110
(
(
(
Im3
z
)
*
(
Im2
<j>
)
)
) is
V28
()
set
K108
(
(
(
(
(
Rea
z
)
*
(
Im1
<j>
)
)
+
(
(
Im1
z
)
*
(
Rea
<j>
)
)
)
+
(
(
Im2
z
)
*
(
Im3
<j>
)
)
)
,
K110
(
(
(
Im3
z
)
*
(
Im2
<j>
)
)
)) is
set
(
(
(
(
(
Rea
z
)
*
(
Im1
<j>
)
)
+
(
(
Im1
z
)
*
(
Rea
<j>
)
)
)
+
(
(
Im2
z
)
*
(
Im3
<j>
)
)
)
-
(
(
Im3
z
)
*
(
Im2
<j>
)
)
)
*
<i>
is
quaternion
set
(
(
(
(
(
Rea
z
)
*
(
Rea
<j>
)
)
-
(
(
Im1
z
)
*
(
Im1
<j>
)
)
)
-
(
(
Im2
z
)
*
(
Im2
<j>
)
)
)
-
(
(
Im3
z
)
*
(
Im3
<j>
)
)
)
+
(
(
(
(
(
(
Rea
z
)
*
(
Im1
<j>
)
)
+
(
(
Im1
z
)
*
(
Rea
<j>
)
)
)
+
(
(
Im2
z
)
*
(
Im3
<j>
)
)
)
-
(
(
Im3
z
)
*
(
Im2
<j>
)
)
)
*
<i>
)
is
quaternion
set
(
Rea
z
)
*
(
Im2
<j>
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im2
z
)
*
(
Rea
<j>
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
Rea
z
)
*
(
Im2
<j>
)
)
+
(
(
Im2
z
)
*
(
Rea
<j>
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im3
z
)
*
(
Im1
<j>
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
(
Rea
z
)
*
(
Im2
<j>
)
)
+
(
(
Im2
z
)
*
(
Rea
<j>
)
)
)
+
(
(
Im3
z
)
*
(
Im1
<j>
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im1
z
)
*
(
Im3
<j>
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
(
(
Rea
z
)
*
(
Im2
<j>
)
)
+
(
(
Im2
z
)
*
(
Rea
<j>
)
)
)
+
(
(
Im3
z
)
*
(
Im1
<j>
)
)
)
-
(
(
Im1
z
)
*
(
Im3
<j>
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K110
(
(
(
Im1
z
)
*
(
Im3
<j>
)
)
) is
V28
()
set
K108
(
(
(
(
(
Rea
z
)
*
(
Im2
<j>
)
)
+
(
(
Im2
z
)
*
(
Rea
<j>
)
)
)
+
(
(
Im3
z
)
*
(
Im1
<j>
)
)
)
,
K110
(
(
(
Im1
z
)
*
(
Im3
<j>
)
)
)) is
set
(
(
(
(
(
Rea
z
)
*
(
Im2
<j>
)
)
+
(
(
Im2
z
)
*
(
Rea
<j>
)
)
)
+
(
(
Im3
z
)
*
(
Im1
<j>
)
)
)
-
(
(
Im1
z
)
*
(
Im3
<j>
)
)
)
*
<j>
is
quaternion
set
(
(
(
(
(
(
Rea
z
)
*
(
Rea
<j>
)
)
-
(
(
Im1
z
)
*
(
Im1
<j>
)
)
)
-
(
(
Im2
z
)
*
(
Im2
<j>
)
)
)
-
(
(
Im3
z
)
*
(
Im3
<j>
)
)
)
+
(
(
(
(
(
(
Rea
z
)
*
(
Im1
<j>
)
)
+
(
(
Im1
z
)
*
(
Rea
<j>
)
)
)
+
(
(
Im2
z
)
*
(
Im3
<j>
)
)
)
-
(
(
Im3
z
)
*
(
Im2
<j>
)
)
)
*
<i>
)
)
+
(
(
(
(
(
(
Rea
z
)
*
(
Im2
<j>
)
)
+
(
(
Im2
z
)
*
(
Rea
<j>
)
)
)
+
(
(
Im3
z
)
*
(
Im1
<j>
)
)
)
-
(
(
Im1
z
)
*
(
Im3
<j>
)
)
)
*
<j>
)
is
quaternion
Element
of
QUATERNION
(
Rea
z
)
*
(
Im3
<j>
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im3
z
)
*
(
Rea
<j>
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
Rea
z
)
*
(
Im3
<j>
)
)
+
(
(
Im3
z
)
*
(
Rea
<j>
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im1
z
)
*
(
Im2
<j>
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
(
Rea
z
)
*
(
Im3
<j>
)
)
+
(
(
Im3
z
)
*
(
Rea
<j>
)
)
)
+
(
(
Im1
z
)
*
(
Im2
<j>
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im2
z
)
*
(
Im1
<j>
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
(
(
Rea
z
)
*
(
Im3
<j>
)
)
+
(
(
Im3
z
)
*
(
Rea
<j>
)
)
)
+
(
(
Im1
z
)
*
(
Im2
<j>
)
)
)
-
(
(
Im2
z
)
*
(
Im1
<j>
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K110
(
(
(
Im2
z
)
*
(
Im1
<j>
)
)
) is
V28
()
set
K108
(
(
(
(
(
Rea
z
)
*
(
Im3
<j>
)
)
+
(
(
Im3
z
)
*
(
Rea
<j>
)
)
)
+
(
(
Im1
z
)
*
(
Im2
<j>
)
)
)
,
K110
(
(
(
Im2
z
)
*
(
Im1
<j>
)
)
)) is
set
(
(
(
(
(
Rea
z
)
*
(
Im3
<j>
)
)
+
(
(
Im3
z
)
*
(
Rea
<j>
)
)
)
+
(
(
Im1
z
)
*
(
Im2
<j>
)
)
)
-
(
(
Im2
z
)
*
(
Im1
<j>
)
)
)
*
<k>
is
quaternion
set
(
(
(
(
(
(
(
Rea
z
)
*
(
Rea
<j>
)
)
-
(
(
Im1
z
)
*
(
Im1
<j>
)
)
)
-
(
(
Im2
z
)
*
(
Im2
<j>
)
)
)
-
(
(
Im3
z
)
*
(
Im3
<j>
)
)
)
+
(
(
(
(
(
(
Rea
z
)
*
(
Im1
<j>
)
)
+
(
(
Im1
z
)
*
(
Rea
<j>
)
)
)
+
(
(
Im2
z
)
*
(
Im3
<j>
)
)
)
-
(
(
Im3
z
)
*
(
Im2
<j>
)
)
)
*
<i>
)
)
+
(
(
(
(
(
(
Rea
z
)
*
(
Im2
<j>
)
)
+
(
(
Im2
z
)
*
(
Rea
<j>
)
)
)
+
(
(
Im3
z
)
*
(
Im1
<j>
)
)
)
-
(
(
Im1
z
)
*
(
Im3
<j>
)
)
)
*
<j>
)
)
+
(
(
(
(
(
(
Rea
z
)
*
(
Im3
<j>
)
)
+
(
(
Im3
z
)
*
(
Rea
<j>
)
)
)
+
(
(
Im1
z
)
*
(
Im2
<j>
)
)
)
-
(
(
Im2
z
)
*
(
Im1
<j>
)
)
)
*
<k>
)
is
quaternion
Element
of
QUATERNION
-
(
Im3
z
)
is
V28
()
V29
()
ext-real
Element
of
REAL
[*
(
-
(
Im2
z
)
)
,
(
-
(
Im3
z
)
)
,
(
Rea
z
)
,
(
Im1
z
)
*]
is
quaternion
Element
of
QUATERNION
(
-
(
Im2
z
)
)
-
(
-
(
Im2
z
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K110
(
(
-
(
Im2
z
)
)
) is
V28
()
set
K108
(
(
-
(
Im2
z
)
)
,
K110
(
(
-
(
Im2
z
)
)
)) is
set
(
Im3
z
)
-
(
-
(
Im3
z
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K110
(
(
-
(
Im3
z
)
)
) is
V28
()
set
K108
(
(
Im3
z
)
,
K110
(
(
-
(
Im3
z
)
)
)) is
set
(
Rea
z
)
-
(
Rea
z
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K110
(
(
Rea
z
)
) is
V28
()
set
K108
(
(
Rea
z
)
,
K110
(
(
Rea
z
)
)) is
set
(
-
(
Im1
z
)
)
-
(
Im1
z
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K110
(
(
Im1
z
)
) is
V28
()
set
K108
(
(
-
(
Im1
z
)
)
,
K110
(
(
Im1
z
)
)) is
set
[*
(
(
-
(
Im2
z
)
)
-
(
-
(
Im2
z
)
)
)
,
(
(
Im3
z
)
-
(
-
(
Im3
z
)
)
)
,
(
(
Rea
z
)
-
(
Rea
z
)
)
,
(
(
-
(
Im1
z
)
)
-
(
Im1
z
)
)
*]
is
quaternion
Element
of
QUATERNION
z
is
quaternion
set
<j>
*
z
is
quaternion
Element
of
QUATERNION
z
*
<j>
is
quaternion
Element
of
QUATERNION
(
<j>
*
z
)
+
(
z
*
<j>
)
is
quaternion
Element
of
QUATERNION
Im2
z
is
V28
()
V29
()
ext-real
Element
of
REAL
2
*
(
Im2
z
)
is
V28
()
V29
()
ext-real
Element
of
REAL
-
(
2
*
(
Im2
z
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
Rea
z
is
V28
()
V29
()
ext-real
Element
of
REAL
2
*
(
Rea
z
)
is
V28
()
V29
()
ext-real
Element
of
REAL
[*
(
-
(
2
*
(
Im2
z
)
)
)
,
0
,
(
2
*
(
Rea
z
)
)
,
0
*]
is
quaternion
Element
of
QUATERNION
(
Rea
<j>
)
*
(
Rea
z
)
is
V28
()
V29
()
ext-real
Element
of
REAL
Im1
z
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im1
<j>
)
*
(
Im1
z
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
Rea
<j>
)
*
(
Rea
z
)
)
-
(
(
Im1
<j>
)
*
(
Im1
z
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K110
(
(
(
Im1
<j>
)
*
(
Im1
z
)
)
) is
V28
()
set
K108
(
(
(
Rea
<j>
)
*
(
Rea
z
)
)
,
K110
(
(
(
Im1
<j>
)
*
(
Im1
z
)
)
)) is
set
(
Im2
<j>
)
*
(
Im2
z
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
(
Rea
<j>
)
*
(
Rea
z
)
)
-
(
(
Im1
<j>
)
*
(
Im1
z
)
)
)
-
(
(
Im2
<j>
)
*
(
Im2
z
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K110
(
(
(
Im2
<j>
)
*
(
Im2
z
)
)
) is
V28
()
set
K108
(
(
(
(
Rea
<j>
)
*
(
Rea
z
)
)
-
(
(
Im1
<j>
)
*
(
Im1
z
)
)
)
,
K110
(
(
(
Im2
<j>
)
*
(
Im2
z
)
)
)) is
set
Im3
z
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im3
<j>
)
*
(
Im3
z
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
(
(
Rea
<j>
)
*
(
Rea
z
)
)
-
(
(
Im1
<j>
)
*
(
Im1
z
)
)
)
-
(
(
Im2
<j>
)
*
(
Im2
z
)
)
)
-
(
(
Im3
<j>
)
*
(
Im3
z
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K110
(
(
(
Im3
<j>
)
*
(
Im3
z
)
)
) is
V28
()
set
K108
(
(
(
(
(
Rea
<j>
)
*
(
Rea
z
)
)
-
(
(
Im1
<j>
)
*
(
Im1
z
)
)
)
-
(
(
Im2
<j>
)
*
(
Im2
z
)
)
)
,
K110
(
(
(
Im3
<j>
)
*
(
Im3
z
)
)
)) is
set
(
Rea
<j>
)
*
(
Im1
z
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im1
<j>
)
*
(
Rea
z
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
Rea
<j>
)
*
(
Im1
z
)
)
+
(
(
Im1
<j>
)
*
(
Rea
z
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im2
<j>
)
*
(
Im3
z
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
(
Rea
<j>
)
*
(
Im1
z
)
)
+
(
(
Im1
<j>
)
*
(
Rea
z
)
)
)
+
(
(
Im2
<j>
)
*
(
Im3
z
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im3
<j>
)
*
(
Im2
z
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
(
(
Rea
<j>
)
*
(
Im1
z
)
)
+
(
(
Im1
<j>
)
*
(
Rea
z
)
)
)
+
(
(
Im2
<j>
)
*
(
Im3
z
)
)
)
-
(
(
Im3
<j>
)
*
(
Im2
z
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K110
(
(
(
Im3
<j>
)
*
(
Im2
z
)
)
) is
V28
()
set
K108
(
(
(
(
(
Rea
<j>
)
*
(
Im1
z
)
)
+
(
(
Im1
<j>
)
*
(
Rea
z
)
)
)
+
(
(
Im2
<j>
)
*
(
Im3
z
)
)
)
,
K110
(
(
(
Im3
<j>
)
*
(
Im2
z
)
)
)) is
set
(
(
(
(
(
Rea
<j>
)
*
(
Im1
z
)
)
+
(
(
Im1
<j>
)
*
(
Rea
z
)
)
)
+
(
(
Im2
<j>
)
*
(
Im3
z
)
)
)
-
(
(
Im3
<j>
)
*
(
Im2
z
)
)
)
*
<i>
is
quaternion
set
(
(
(
(
(
Rea
<j>
)
*
(
Rea
z
)
)
-
(
(
Im1
<j>
)
*
(
Im1
z
)
)
)
-
(
(
Im2
<j>
)
*
(
Im2
z
)
)
)
-
(
(
Im3
<j>
)
*
(
Im3
z
)
)
)
+
(
(
(
(
(
(
Rea
<j>
)
*
(
Im1
z
)
)
+
(
(
Im1
<j>
)
*
(
Rea
z
)
)
)
+
(
(
Im2
<j>
)
*
(
Im3
z
)
)
)
-
(
(
Im3
<j>
)
*
(
Im2
z
)
)
)
*
<i>
)
is
quaternion
set
(
Rea
<j>
)
*
(
Im2
z
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im2
<j>
)
*
(
Rea
z
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
Rea
<j>
)
*
(
Im2
z
)
)
+
(
(
Im2
<j>
)
*
(
Rea
z
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im3
<j>
)
*
(
Im1
z
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
(
Rea
<j>
)
*
(
Im2
z
)
)
+
(
(
Im2
<j>
)
*
(
Rea
z
)
)
)
+
(
(
Im3
<j>
)
*
(
Im1
z
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im1
<j>
)
*
(
Im3
z
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
(
(
Rea
<j>
)
*
(
Im2
z
)
)
+
(
(
Im2
<j>
)
*
(
Rea
z
)
)
)
+
(
(
Im3
<j>
)
*
(
Im1
z
)
)
)
-
(
(
Im1
<j>
)
*
(
Im3
z
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K110
(
(
(
Im1
<j>
)
*
(
Im3
z
)
)
) is
V28
()
set
K108
(
(
(
(
(
Rea
<j>
)
*
(
Im2
z
)
)
+
(
(
Im2
<j>
)
*
(
Rea
z
)
)
)
+
(
(
Im3
<j>
)
*
(
Im1
z
)
)
)
,
K110
(
(
(
Im1
<j>
)
*
(
Im3
z
)
)
)) is
set
(
(
(
(
(
Rea
<j>
)
*
(
Im2
z
)
)
+
(
(
Im2
<j>
)
*
(
Rea
z
)
)
)
+
(
(
Im3
<j>
)
*
(
Im1
z
)
)
)
-
(
(
Im1
<j>
)
*
(
Im3
z
)
)
)
*
<j>
is
quaternion
set
(
(
(
(
(
(
Rea
<j>
)
*
(
Rea
z
)
)
-
(
(
Im1
<j>
)
*
(
Im1
z
)
)
)
-
(
(
Im2
<j>
)
*
(
Im2
z
)
)
)
-
(
(
Im3
<j>
)
*
(
Im3
z
)
)
)
+
(
(
(
(
(
(
Rea
<j>
)
*
(
Im1
z
)
)
+
(
(
Im1
<j>
)
*
(
Rea
z
)
)
)
+
(
(
Im2
<j>
)
*
(
Im3
z
)
)
)
-
(
(
Im3
<j>
)
*
(
Im2
z
)
)
)
*
<i>
)
)
+
(
(
(
(
(
(
Rea
<j>
)
*
(
Im2
z
)
)
+
(
(
Im2
<j>
)
*
(
Rea
z
)
)
)
+
(
(
Im3
<j>
)
*
(
Im1
z
)
)
)
-
(
(
Im1
<j>
)
*
(
Im3
z
)
)
)
*
<j>
)
is
quaternion
Element
of
QUATERNION
(
Rea
<j>
)
*
(
Im3
z
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im3
<j>
)
*
(
Rea
z
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
Rea
<j>
)
*
(
Im3
z
)
)
+
(
(
Im3
<j>
)
*
(
Rea
z
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im1
<j>
)
*
(
Im2
z
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
(
Rea
<j>
)
*
(
Im3
z
)
)
+
(
(
Im3
<j>
)
*
(
Rea
z
)
)
)
+
(
(
Im1
<j>
)
*
(
Im2
z
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im2
<j>
)
*
(
Im1
z
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
(
(
Rea
<j>
)
*
(
Im3
z
)
)
+
(
(
Im3
<j>
)
*
(
Rea
z
)
)
)
+
(
(
Im1
<j>
)
*
(
Im2
z
)
)
)
-
(
(
Im2
<j>
)
*
(
Im1
z
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K110
(
(
(
Im2
<j>
)
*
(
Im1
z
)
)
) is
V28
()
set
K108
(
(
(
(
(
Rea
<j>
)
*
(
Im3
z
)
)
+
(
(
Im3
<j>
)
*
(
Rea
z
)
)
)
+
(
(
Im1
<j>
)
*
(
Im2
z
)
)
)
,
K110
(
(
(
Im2
<j>
)
*
(
Im1
z
)
)
)) is
set
(
(
(
(
(
Rea
<j>
)
*
(
Im3
z
)
)
+
(
(
Im3
<j>
)
*
(
Rea
z
)
)
)
+
(
(
Im1
<j>
)
*
(
Im2
z
)
)
)
-
(
(
Im2
<j>
)
*
(
Im1
z
)
)
)
*
<k>
is
quaternion
set
(
(
(
(
(
(
(
Rea
<j>
)
*
(
Rea
z
)
)
-
(
(
Im1
<j>
)
*
(
Im1
z
)
)
)
-
(
(
Im2
<j>
)
*
(
Im2
z
)
)
)
-
(
(
Im3
<j>
)
*
(
Im3
z
)
)
)
+
(
(
(
(
(
(
Rea
<j>
)
*
(
Im1
z
)
)
+
(
(
Im1
<j>
)
*
(
Rea
z
)
)
)
+
(
(
Im2
<j>
)
*
(
Im3
z
)
)
)
-
(
(
Im3
<j>
)
*
(
Im2
z
)
)
)
*
<i>
)
)
+
(
(
(
(
(
(
Rea
<j>
)
*
(
Im2
z
)
)
+
(
(
Im2
<j>
)
*
(
Rea
z
)
)
)
+
(
(
Im3
<j>
)
*
(
Im1
z
)
)
)
-
(
(
Im1
<j>
)
*
(
Im3
z
)
)
)
*
<j>
)
)
+
(
(
(
(
(
(
Rea
<j>
)
*
(
Im3
z
)
)
+
(
(
Im3
<j>
)
*
(
Rea
z
)
)
)
+
(
(
Im1
<j>
)
*
(
Im2
z
)
)
)
-
(
(
Im2
<j>
)
*
(
Im1
z
)
)
)
*
<k>
)
is
quaternion
Element
of
QUATERNION
-
(
Im2
z
)
is
V28
()
V29
()
ext-real
Element
of
REAL
-
(
Im1
z
)
is
V28
()
V29
()
ext-real
Element
of
REAL
[*
(
-
(
Im2
z
)
)
,
(
Im3
z
)
,
(
Rea
z
)
,
(
-
(
Im1
z
)
)
*]
is
quaternion
Element
of
QUATERNION
Im2
(
<j>
*
z
)
is
V28
()
V29
()
ext-real
Element
of
REAL
Im3
(
<j>
*
z
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Rea
z
)
*
(
Rea
<j>
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im1
z
)
*
(
Im1
<j>
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
Rea
z
)
*
(
Rea
<j>
)
)
-
(
(
Im1
z
)
*
(
Im1
<j>
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K110
(
(
(
Im1
z
)
*
(
Im1
<j>
)
)
) is
V28
()
set
K108
(
(
(
Rea
z
)
*
(
Rea
<j>
)
)
,
K110
(
(
(
Im1
z
)
*
(
Im1
<j>
)
)
)) is
set
(
Im2
z
)
*
(
Im2
<j>
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
(
Rea
z
)
*
(
Rea
<j>
)
)
-
(
(
Im1
z
)
*
(
Im1
<j>
)
)
)
-
(
(
Im2
z
)
*
(
Im2
<j>
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K110
(
(
(
Im2
z
)
*
(
Im2
<j>
)
)
) is
V28
()
set
K108
(
(
(
(
Rea
z
)
*
(
Rea
<j>
)
)
-
(
(
Im1
z
)
*
(
Im1
<j>
)
)
)
,
K110
(
(
(
Im2
z
)
*
(
Im2
<j>
)
)
)) is
set
(
Im3
z
)
*
(
Im3
<j>
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
(
(
Rea
z
)
*
(
Rea
<j>
)
)
-
(
(
Im1
z
)
*
(
Im1
<j>
)
)
)
-
(
(
Im2
z
)
*
(
Im2
<j>
)
)
)
-
(
(
Im3
z
)
*
(
Im3
<j>
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K110
(
(
(
Im3
z
)
*
(
Im3
<j>
)
)
) is
V28
()
set
K108
(
(
(
(
(
Rea
z
)
*
(
Rea
<j>
)
)
-
(
(
Im1
z
)
*
(
Im1
<j>
)
)
)
-
(
(
Im2
z
)
*
(
Im2
<j>
)
)
)
,
K110
(
(
(
Im3
z
)
*
(
Im3
<j>
)
)
)) is
set
(
Rea
z
)
*
(
Im1
<j>
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im1
z
)
*
(
Rea
<j>
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
Rea
z
)
*
(
Im1
<j>
)
)
+
(
(
Im1
z
)
*
(
Rea
<j>
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im2
z
)
*
(
Im3
<j>
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
(
Rea
z
)
*
(
Im1
<j>
)
)
+
(
(
Im1
z
)
*
(
Rea
<j>
)
)
)
+
(
(
Im2
z
)
*
(
Im3
<j>
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im3
z
)
*
(
Im2
<j>
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
(
(
Rea
z
)
*
(
Im1
<j>
)
)
+
(
(
Im1
z
)
*
(
Rea
<j>
)
)
)
+
(
(
Im2
z
)
*
(
Im3
<j>
)
)
)
-
(
(
Im3
z
)
*
(
Im2
<j>
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K110
(
(
(
Im3
z
)
*
(
Im2
<j>
)
)
) is
V28
()
set
K108
(
(
(
(
(
Rea
z
)
*
(
Im1
<j>
)
)
+
(
(
Im1
z
)
*
(
Rea
<j>
)
)
)
+
(
(
Im2
z
)
*
(
Im3
<j>
)
)
)
,
K110
(
(
(
Im3
z
)
*
(
Im2
<j>
)
)
)) is
set
(
(
(
(
(
Rea
z
)
*
(
Im1
<j>
)
)
+
(
(
Im1
z
)
*
(
Rea
<j>
)
)
)
+
(
(
Im2
z
)
*
(
Im3
<j>
)
)
)
-
(
(
Im3
z
)
*
(
Im2
<j>
)
)
)
*
<i>
is
quaternion
set
(
(
(
(
(
Rea
z
)
*
(
Rea
<j>
)
)
-
(
(
Im1
z
)
*
(
Im1
<j>
)
)
)
-
(
(
Im2
z
)
*
(
Im2
<j>
)
)
)
-
(
(
Im3
z
)
*
(
Im3
<j>
)
)
)
+
(
(
(
(
(
(
Rea
z
)
*
(
Im1
<j>
)
)
+
(
(
Im1
z
)
*
(
Rea
<j>
)
)
)
+
(
(
Im2
z
)
*
(
Im3
<j>
)
)
)
-
(
(
Im3
z
)
*
(
Im2
<j>
)
)
)
*
<i>
)
is
quaternion
set
(
Rea
z
)
*
(
Im2
<j>
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im2
z
)
*
(
Rea
<j>
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
Rea
z
)
*
(
Im2
<j>
)
)
+
(
(
Im2
z
)
*
(
Rea
<j>
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im3
z
)
*
(
Im1
<j>
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
(
Rea
z
)
*
(
Im2
<j>
)
)
+
(
(
Im2
z
)
*
(
Rea
<j>
)
)
)
+
(
(
Im3
z
)
*
(
Im1
<j>
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im1
z
)
*
(
Im3
<j>
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
(
(
Rea
z
)
*
(
Im2
<j>
)
)
+
(
(
Im2
z
)
*
(
Rea
<j>
)
)
)
+
(
(
Im3
z
)
*
(
Im1
<j>
)
)
)
-
(
(
Im1
z
)
*
(
Im3
<j>
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K110
(
(
(
Im1
z
)
*
(
Im3
<j>
)
)
) is
V28
()
set
K108
(
(
(
(
(
Rea
z
)
*
(
Im2
<j>
)
)
+
(
(
Im2
z
)
*
(
Rea
<j>
)
)
)
+
(
(
Im3
z
)
*
(
Im1
<j>
)
)
)
,
K110
(
(
(
Im1
z
)
*
(
Im3
<j>
)
)
)) is
set
(
(
(
(
(
Rea
z
)
*
(
Im2
<j>
)
)
+
(
(
Im2
z
)
*
(
Rea
<j>
)
)
)
+
(
(
Im3
z
)
*
(
Im1
<j>
)
)
)
-
(
(
Im1
z
)
*
(
Im3
<j>
)
)
)
*
<j>
is
quaternion
set
(
(
(
(
(
(
Rea
z
)
*
(
Rea
<j>
)
)
-
(
(
Im1
z
)
*
(
Im1
<j>
)
)
)
-
(
(
Im2
z
)
*
(
Im2
<j>
)
)
)
-
(
(
Im3
z
)
*
(
Im3
<j>
)
)
)
+
(
(
(
(
(
(
Rea
z
)
*
(
Im1
<j>
)
)
+
(
(
Im1
z
)
*
(
Rea
<j>
)
)
)
+
(
(
Im2
z
)
*
(
Im3
<j>
)
)
)
-
(
(
Im3
z
)
*
(
Im2
<j>
)
)
)
*
<i>
)
)
+
(
(
(
(
(
(
Rea
z
)
*
(
Im2
<j>
)
)
+
(
(
Im2
z
)
*
(
Rea
<j>
)
)
)
+
(
(
Im3
z
)
*
(
Im1
<j>
)
)
)
-
(
(
Im1
z
)
*
(
Im3
<j>
)
)
)
*
<j>
)
is
quaternion
Element
of
QUATERNION
(
Rea
z
)
*
(
Im3
<j>
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im3
z
)
*
(
Rea
<j>
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
Rea
z
)
*
(
Im3
<j>
)
)
+
(
(
Im3
z
)
*
(
Rea
<j>
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im1
z
)
*
(
Im2
<j>
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
(
Rea
z
)
*
(
Im3
<j>
)
)
+
(
(
Im3
z
)
*
(
Rea
<j>
)
)
)
+
(
(
Im1
z
)
*
(
Im2
<j>
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im2
z
)
*
(
Im1
<j>
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
(
(
Rea
z
)
*
(
Im3
<j>
)
)
+
(
(
Im3
z
)
*
(
Rea
<j>
)
)
)
+
(
(
Im1
z
)
*
(
Im2
<j>
)
)
)
-
(
(
Im2
z
)
*
(
Im1
<j>
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K110
(
(
(
Im2
z
)
*
(
Im1
<j>
)
)
) is
V28
()
set
K108
(
(
(
(
(
Rea
z
)
*
(
Im3
<j>
)
)
+
(
(
Im3
z
)
*
(
Rea
<j>
)
)
)
+
(
(
Im1
z
)
*
(
Im2
<j>
)
)
)
,
K110
(
(
(
Im2
z
)
*
(
Im1
<j>
)
)
)) is
set
(
(
(
(
(
Rea
z
)
*
(
Im3
<j>
)
)
+
(
(
Im3
z
)
*
(
Rea
<j>
)
)
)
+
(
(
Im1
z
)
*
(
Im2
<j>
)
)
)
-
(
(
Im2
z
)
*
(
Im1
<j>
)
)
)
*
<k>
is
quaternion
set
(
(
(
(
(
(
(
Rea
z
)
*
(
Rea
<j>
)
)
-
(
(
Im1
z
)
*
(
Im1
<j>
)
)
)
-
(
(
Im2
z
)
*
(
Im2
<j>
)
)
)
-
(
(
Im3
z
)
*
(
Im3
<j>
)
)
)
+
(
(
(
(
(
(
Rea
z
)
*
(
Im1
<j>
)
)
+
(
(
Im1
z
)
*
(
Rea
<j>
)
)
)
+
(
(
Im2
z
)
*
(
Im3
<j>
)
)
)
-
(
(
Im3
z
)
*
(
Im2
<j>
)
)
)
*
<i>
)
)
+
(
(
(
(
(
(
Rea
z
)
*
(
Im2
<j>
)
)
+
(
(
Im2
z
)
*
(
Rea
<j>
)
)
)
+
(
(
Im3
z
)
*
(
Im1
<j>
)
)
)
-
(
(
Im1
z
)
*
(
Im3
<j>
)
)
)
*
<j>
)
)
+
(
(
(
(
(
(
Rea
z
)
*
(
Im3
<j>
)
)
+
(
(
Im3
z
)
*
(
Rea
<j>
)
)
)
+
(
(
Im1
z
)
*
(
Im2
<j>
)
)
)
-
(
(
Im2
z
)
*
(
Im1
<j>
)
)
)
*
<k>
)
is
quaternion
Element
of
QUATERNION
-
(
Im3
z
)
is
V28
()
V29
()
ext-real
Element
of
REAL
[*
(
-
(
Im2
z
)
)
,
(
-
(
Im3
z
)
)
,
(
Rea
z
)
,
(
Im1
z
)
*]
is
quaternion
Element
of
QUATERNION
Rea
(
z
*
<j>
)
is
V28
()
V29
()
ext-real
Element
of
REAL
Im1
(
z
*
<j>
)
is
V28
()
V29
()
ext-real
Element
of
REAL
Im2
(
z
*
<j>
)
is
V28
()
V29
()
ext-real
Element
of
REAL
Im3
(
z
*
<j>
)
is
V28
()
V29
()
ext-real
Element
of
REAL
Rea
(
<j>
*
z
)
is
V28
()
V29
()
ext-real
Element
of
REAL
Im1
(
<j>
*
z
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
z
*
<j>
)
+
(
<j>
*
z
)
is
quaternion
Element
of
QUATERNION
(
-
(
Im2
z
)
)
+
(
-
(
Im2
z
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im3
z
)
-
(
Im3
z
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K110
(
(
Im3
z
)
) is
V28
()
set
K108
(
(
Im3
z
)
,
K110
(
(
Im3
z
)
)) is
set
(
(
Im3
z
)
-
(
Im3
z
)
)
*
<i>
is
quaternion
set
(
(
-
(
Im2
z
)
)
+
(
-
(
Im2
z
)
)
)
+
(
(
(
Im3
z
)
-
(
Im3
z
)
)
*
<i>
)
is
quaternion
set
(
Rea
z
)
+
(
Rea
z
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
Rea
z
)
+
(
Rea
z
)
)
*
<j>
is
quaternion
set
(
(
(
-
(
Im2
z
)
)
+
(
-
(
Im2
z
)
)
)
+
(
(
(
Im3
z
)
-
(
Im3
z
)
)
*
<i>
)
)
+
(
(
(
Rea
z
)
+
(
Rea
z
)
)
*
<j>
)
is
quaternion
Element
of
QUATERNION
(
-
(
Im1
z
)
)
+
(
Im1
z
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
-
(
Im1
z
)
)
+
(
Im1
z
)
)
*
<k>
is
quaternion
set
(
(
(
(
-
(
Im2
z
)
)
+
(
-
(
Im2
z
)
)
)
+
(
(
(
Im3
z
)
-
(
Im3
z
)
)
*
<i>
)
)
+
(
(
(
Rea
z
)
+
(
Rea
z
)
)
*
<j>
)
)
+
(
(
(
-
(
Im1
z
)
)
+
(
Im1
z
)
)
*
<k>
)
is
quaternion
Element
of
QUATERNION
z
is
quaternion
set
<k>
*
z
is
quaternion
Element
of
QUATERNION
z
*
<k>
is
quaternion
Element
of
QUATERNION
(
<k>
*
z
)
-
(
z
*
<k>
)
is
quaternion
Element
of
QUATERNION
-
(
z
*
<k>
)
is
quaternion
set
(
<k>
*
z
)
+
(
-
(
z
*
<k>
)
)
is
quaternion
set
Im2
z
is
V28
()
V29
()
ext-real
Element
of
REAL
2
*
(
Im2
z
)
is
V28
()
V29
()
ext-real
Element
of
REAL
-
(
2
*
(
Im2
z
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
Im1
z
is
V28
()
V29
()
ext-real
Element
of
REAL
2
*
(
Im1
z
)
is
V28
()
V29
()
ext-real
Element
of
REAL
[*
0
,
(
-
(
2
*
(
Im2
z
)
)
)
,
(
2
*
(
Im1
z
)
)
,
0
*]
is
quaternion
Element
of
QUATERNION
Rea
z
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Rea
<k>
)
*
(
Rea
z
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im1
<k>
)
*
(
Im1
z
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
Rea
<k>
)
*
(
Rea
z
)
)
-
(
(
Im1
<k>
)
*
(
Im1
z
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K110
(
(
(
Im1
<k>
)
*
(
Im1
z
)
)
) is
V28
()
set
K108
(
(
(
Rea
<k>
)
*
(
Rea
z
)
)
,
K110
(
(
(
Im1
<k>
)
*
(
Im1
z
)
)
)) is
set
(
Im2
<k>
)
*
(
Im2
z
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
(
Rea
<k>
)
*
(
Rea
z
)
)
-
(
(
Im1
<k>
)
*
(
Im1
z
)
)
)
-
(
(
Im2
<k>
)
*
(
Im2
z
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K110
(
(
(
Im2
<k>
)
*
(
Im2
z
)
)
) is
V28
()
set
K108
(
(
(
(
Rea
<k>
)
*
(
Rea
z
)
)
-
(
(
Im1
<k>
)
*
(
Im1
z
)
)
)
,
K110
(
(
(
Im2
<k>
)
*
(
Im2
z
)
)
)) is
set
Im3
z
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im3
<k>
)
*
(
Im3
z
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
(
(
Rea
<k>
)
*
(
Rea
z
)
)
-
(
(
Im1
<k>
)
*
(
Im1
z
)
)
)
-
(
(
Im2
<k>
)
*
(
Im2
z
)
)
)
-
(
(
Im3
<k>
)
*
(
Im3
z
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K110
(
(
(
Im3
<k>
)
*
(
Im3
z
)
)
) is
V28
()
set
K108
(
(
(
(
(
Rea
<k>
)
*
(
Rea
z
)
)
-
(
(
Im1
<k>
)
*
(
Im1
z
)
)
)
-
(
(
Im2
<k>
)
*
(
Im2
z
)
)
)
,
K110
(
(
(
Im3
<k>
)
*
(
Im3
z
)
)
)) is
set
(
Rea
<k>
)
*
(
Im1
z
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im1
<k>
)
*
(
Rea
z
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
Rea
<k>
)
*
(
Im1
z
)
)
+
(
(
Im1
<k>
)
*
(
Rea
z
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im2
<k>
)
*
(
Im3
z
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
(
Rea
<k>
)
*
(
Im1
z
)
)
+
(
(
Im1
<k>
)
*
(
Rea
z
)
)
)
+
(
(
Im2
<k>
)
*
(
Im3
z
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im3
<k>
)
*
(
Im2
z
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
(
(
Rea
<k>
)
*
(
Im1
z
)
)
+
(
(
Im1
<k>
)
*
(
Rea
z
)
)
)
+
(
(
Im2
<k>
)
*
(
Im3
z
)
)
)
-
(
(
Im3
<k>
)
*
(
Im2
z
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K110
(
(
(
Im3
<k>
)
*
(
Im2
z
)
)
) is
V28
()
set
K108
(
(
(
(
(
Rea
<k>
)
*
(
Im1
z
)
)
+
(
(
Im1
<k>
)
*
(
Rea
z
)
)
)
+
(
(
Im2
<k>
)
*
(
Im3
z
)
)
)
,
K110
(
(
(
Im3
<k>
)
*
(
Im2
z
)
)
)) is
set
(
(
(
(
(
Rea
<k>
)
*
(
Im1
z
)
)
+
(
(
Im1
<k>
)
*
(
Rea
z
)
)
)
+
(
(
Im2
<k>
)
*
(
Im3
z
)
)
)
-
(
(
Im3
<k>
)
*
(
Im2
z
)
)
)
*
<i>
is
quaternion
set
(
(
(
(
(
Rea
<k>
)
*
(
Rea
z
)
)
-
(
(
Im1
<k>
)
*
(
Im1
z
)
)
)
-
(
(
Im2
<k>
)
*
(
Im2
z
)
)
)
-
(
(
Im3
<k>
)
*
(
Im3
z
)
)
)
+
(
(
(
(
(
(
Rea
<k>
)
*
(
Im1
z
)
)
+
(
(
Im1
<k>
)
*
(
Rea
z
)
)
)
+
(
(
Im2
<k>
)
*
(
Im3
z
)
)
)
-
(
(
Im3
<k>
)
*
(
Im2
z
)
)
)
*
<i>
)
is
quaternion
set
(
Rea
<k>
)
*
(
Im2
z
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im2
<k>
)
*
(
Rea
z
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
Rea
<k>
)
*
(
Im2
z
)
)
+
(
(
Im2
<k>
)
*
(
Rea
z
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im3
<k>
)
*
(
Im1
z
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
(
Rea
<k>
)
*
(
Im2
z
)
)
+
(
(
Im2
<k>
)
*
(
Rea
z
)
)
)
+
(
(
Im3
<k>
)
*
(
Im1
z
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im1
<k>
)
*
(
Im3
z
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
(
(
Rea
<k>
)
*
(
Im2
z
)
)
+
(
(
Im2
<k>
)
*
(
Rea
z
)
)
)
+
(
(
Im3
<k>
)
*
(
Im1
z
)
)
)
-
(
(
Im1
<k>
)
*
(
Im3
z
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K110
(
(
(
Im1
<k>
)
*
(
Im3
z
)
)
) is
V28
()
set
K108
(
(
(
(
(
Rea
<k>
)
*
(
Im2
z
)
)
+
(
(
Im2
<k>
)
*
(
Rea
z
)
)
)
+
(
(
Im3
<k>
)
*
(
Im1
z
)
)
)
,
K110
(
(
(
Im1
<k>
)
*
(
Im3
z
)
)
)) is
set
(
(
(
(
(
Rea
<k>
)
*
(
Im2
z
)
)
+
(
(
Im2
<k>
)
*
(
Rea
z
)
)
)
+
(
(
Im3
<k>
)
*
(
Im1
z
)
)
)
-
(
(
Im1
<k>
)
*
(
Im3
z
)
)
)
*
<j>
is
quaternion
set
(
(
(
(
(
(
Rea
<k>
)
*
(
Rea
z
)
)
-
(
(
Im1
<k>
)
*
(
Im1
z
)
)
)
-
(
(
Im2
<k>
)
*
(
Im2
z
)
)
)
-
(
(
Im3
<k>
)
*
(
Im3
z
)
)
)
+
(
(
(
(
(
(
Rea
<k>
)
*
(
Im1
z
)
)
+
(
(
Im1
<k>
)
*
(
Rea
z
)
)
)
+
(
(
Im2
<k>
)
*
(
Im3
z
)
)
)
-
(
(
Im3
<k>
)
*
(
Im2
z
)
)
)
*
<i>
)
)
+
(
(
(
(
(
(
Rea
<k>
)
*
(
Im2
z
)
)
+
(
(
Im2
<k>
)
*
(
Rea
z
)
)
)
+
(
(
Im3
<k>
)
*
(
Im1
z
)
)
)
-
(
(
Im1
<k>
)
*
(
Im3
z
)
)
)
*
<j>
)
is
quaternion
Element
of
QUATERNION
(
Rea
<k>
)
*
(
Im3
z
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im3
<k>
)
*
(
Rea
z
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
Rea
<k>
)
*
(
Im3
z
)
)
+
(
(
Im3
<k>
)
*
(
Rea
z
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im1
<k>
)
*
(
Im2
z
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
(
Rea
<k>
)
*
(
Im3
z
)
)
+
(
(
Im3
<k>
)
*
(
Rea
z
)
)
)
+
(
(
Im1
<k>
)
*
(
Im2
z
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im2
<k>
)
*
(
Im1
z
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
(
(
Rea
<k>
)
*
(
Im3
z
)
)
+
(
(
Im3
<k>
)
*
(
Rea
z
)
)
)
+
(
(
Im1
<k>
)
*
(
Im2
z
)
)
)
-
(
(
Im2
<k>
)
*
(
Im1
z
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K110
(
(
(
Im2
<k>
)
*
(
Im1
z
)
)
) is
V28
()
set
K108
(
(
(
(
(
Rea
<k>
)
*
(
Im3
z
)
)
+
(
(
Im3
<k>
)
*
(
Rea
z
)
)
)
+
(
(
Im1
<k>
)
*
(
Im2
z
)
)
)
,
K110
(
(
(
Im2
<k>
)
*
(
Im1
z
)
)
)) is
set
(
(
(
(
(
Rea
<k>
)
*
(
Im3
z
)
)
+
(
(
Im3
<k>
)
*
(
Rea
z
)
)
)
+
(
(
Im1
<k>
)
*
(
Im2
z
)
)
)
-
(
(
Im2
<k>
)
*
(
Im1
z
)
)
)
*
<k>
is
quaternion
set
(
(
(
(
(
(
(
Rea
<k>
)
*
(
Rea
z
)
)
-
(
(
Im1
<k>
)
*
(
Im1
z
)
)
)
-
(
(
Im2
<k>
)
*
(
Im2
z
)
)
)
-
(
(
Im3
<k>
)
*
(
Im3
z
)
)
)
+
(
(
(
(
(
(
Rea
<k>
)
*
(
Im1
z
)
)
+
(
(
Im1
<k>
)
*
(
Rea
z
)
)
)
+
(
(
Im2
<k>
)
*
(
Im3
z
)
)
)
-
(
(
Im3
<k>
)
*
(
Im2
z
)
)
)
*
<i>
)
)
+
(
(
(
(
(
(
Rea
<k>
)
*
(
Im2
z
)
)
+
(
(
Im2
<k>
)
*
(
Rea
z
)
)
)
+
(
(
Im3
<k>
)
*
(
Im1
z
)
)
)
-
(
(
Im1
<k>
)
*
(
Im3
z
)
)
)
*
<j>
)
)
+
(
(
(
(
(
(
Rea
<k>
)
*
(
Im3
z
)
)
+
(
(
Im3
<k>
)
*
(
Rea
z
)
)
)
+
(
(
Im1
<k>
)
*
(
Im2
z
)
)
)
-
(
(
Im2
<k>
)
*
(
Im1
z
)
)
)
*
<k>
)
is
quaternion
Element
of
QUATERNION
-
(
Im3
z
)
is
V28
()
V29
()
ext-real
Element
of
REAL
-
(
Im2
z
)
is
V28
()
V29
()
ext-real
Element
of
REAL
[*
(
-
(
Im3
z
)
)
,
(
-
(
Im2
z
)
)
,
(
Im1
z
)
,
(
Rea
z
)
*]
is
quaternion
Element
of
QUATERNION
(
Rea
z
)
*
(
Rea
<k>
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im1
z
)
*
(
Im1
<k>
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
Rea
z
)
*
(
Rea
<k>
)
)
-
(
(
Im1
z
)
*
(
Im1
<k>
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K110
(
(
(
Im1
z
)
*
(
Im1
<k>
)
)
) is
V28
()
set
K108
(
(
(
Rea
z
)
*
(
Rea
<k>
)
)
,
K110
(
(
(
Im1
z
)
*
(
Im1
<k>
)
)
)) is
set
(
Im2
z
)
*
(
Im2
<k>
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
(
Rea
z
)
*
(
Rea
<k>
)
)
-
(
(
Im1
z
)
*
(
Im1
<k>
)
)
)
-
(
(
Im2
z
)
*
(
Im2
<k>
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K110
(
(
(
Im2
z
)
*
(
Im2
<k>
)
)
) is
V28
()
set
K108
(
(
(
(
Rea
z
)
*
(
Rea
<k>
)
)
-
(
(
Im1
z
)
*
(
Im1
<k>
)
)
)
,
K110
(
(
(
Im2
z
)
*
(
Im2
<k>
)
)
)) is
set
(
Im3
z
)
*
(
Im3
<k>
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
(
(
Rea
z
)
*
(
Rea
<k>
)
)
-
(
(
Im1
z
)
*
(
Im1
<k>
)
)
)
-
(
(
Im2
z
)
*
(
Im2
<k>
)
)
)
-
(
(
Im3
z
)
*
(
Im3
<k>
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K110
(
(
(
Im3
z
)
*
(
Im3
<k>
)
)
) is
V28
()
set
K108
(
(
(
(
(
Rea
z
)
*
(
Rea
<k>
)
)
-
(
(
Im1
z
)
*
(
Im1
<k>
)
)
)
-
(
(
Im2
z
)
*
(
Im2
<k>
)
)
)
,
K110
(
(
(
Im3
z
)
*
(
Im3
<k>
)
)
)) is
set
(
Rea
z
)
*
(
Im1
<k>
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im1
z
)
*
(
Rea
<k>
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
Rea
z
)
*
(
Im1
<k>
)
)
+
(
(
Im1
z
)
*
(
Rea
<k>
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im2
z
)
*
(
Im3
<k>
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
(
Rea
z
)
*
(
Im1
<k>
)
)
+
(
(
Im1
z
)
*
(
Rea
<k>
)
)
)
+
(
(
Im2
z
)
*
(
Im3
<k>
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im3
z
)
*
(
Im2
<k>
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
(
(
Rea
z
)
*
(
Im1
<k>
)
)
+
(
(
Im1
z
)
*
(
Rea
<k>
)
)
)
+
(
(
Im2
z
)
*
(
Im3
<k>
)
)
)
-
(
(
Im3
z
)
*
(
Im2
<k>
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K110
(
(
(
Im3
z
)
*
(
Im2
<k>
)
)
) is
V28
()
set
K108
(
(
(
(
(
Rea
z
)
*
(
Im1
<k>
)
)
+
(
(
Im1
z
)
*
(
Rea
<k>
)
)
)
+
(
(
Im2
z
)
*
(
Im3
<k>
)
)
)
,
K110
(
(
(
Im3
z
)
*
(
Im2
<k>
)
)
)) is
set
(
(
(
(
(
Rea
z
)
*
(
Im1
<k>
)
)
+
(
(
Im1
z
)
*
(
Rea
<k>
)
)
)
+
(
(
Im2
z
)
*
(
Im3
<k>
)
)
)
-
(
(
Im3
z
)
*
(
Im2
<k>
)
)
)
*
<i>
is
quaternion
set
(
(
(
(
(
Rea
z
)
*
(
Rea
<k>
)
)
-
(
(
Im1
z
)
*
(
Im1
<k>
)
)
)
-
(
(
Im2
z
)
*
(
Im2
<k>
)
)
)
-
(
(
Im3
z
)
*
(
Im3
<k>
)
)
)
+
(
(
(
(
(
(
Rea
z
)
*
(
Im1
<k>
)
)
+
(
(
Im1
z
)
*
(
Rea
<k>
)
)
)
+
(
(
Im2
z
)
*
(
Im3
<k>
)
)
)
-
(
(
Im3
z
)
*
(
Im2
<k>
)
)
)
*
<i>
)
is
quaternion
set
(
Rea
z
)
*
(
Im2
<k>
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im2
z
)
*
(
Rea
<k>
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
Rea
z
)
*
(
Im2
<k>
)
)
+
(
(
Im2
z
)
*
(
Rea
<k>
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im3
z
)
*
(
Im1
<k>
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
(
Rea
z
)
*
(
Im2
<k>
)
)
+
(
(
Im2
z
)
*
(
Rea
<k>
)
)
)
+
(
(
Im3
z
)
*
(
Im1
<k>
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im1
z
)
*
(
Im3
<k>
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
(
(
Rea
z
)
*
(
Im2
<k>
)
)
+
(
(
Im2
z
)
*
(
Rea
<k>
)
)
)
+
(
(
Im3
z
)
*
(
Im1
<k>
)
)
)
-
(
(
Im1
z
)
*
(
Im3
<k>
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K110
(
(
(
Im1
z
)
*
(
Im3
<k>
)
)
) is
V28
()
set
K108
(
(
(
(
(
Rea
z
)
*
(
Im2
<k>
)
)
+
(
(
Im2
z
)
*
(
Rea
<k>
)
)
)
+
(
(
Im3
z
)
*
(
Im1
<k>
)
)
)
,
K110
(
(
(
Im1
z
)
*
(
Im3
<k>
)
)
)) is
set
(
(
(
(
(
Rea
z
)
*
(
Im2
<k>
)
)
+
(
(
Im2
z
)
*
(
Rea
<k>
)
)
)
+
(
(
Im3
z
)
*
(
Im1
<k>
)
)
)
-
(
(
Im1
z
)
*
(
Im3
<k>
)
)
)
*
<j>
is
quaternion
set
(
(
(
(
(
(
Rea
z
)
*
(
Rea
<k>
)
)
-
(
(
Im1
z
)
*
(
Im1
<k>
)
)
)
-
(
(
Im2
z
)
*
(
Im2
<k>
)
)
)
-
(
(
Im3
z
)
*
(
Im3
<k>
)
)
)
+
(
(
(
(
(
(
Rea
z
)
*
(
Im1
<k>
)
)
+
(
(
Im1
z
)
*
(
Rea
<k>
)
)
)
+
(
(
Im2
z
)
*
(
Im3
<k>
)
)
)
-
(
(
Im3
z
)
*
(
Im2
<k>
)
)
)
*
<i>
)
)
+
(
(
(
(
(
(
Rea
z
)
*
(
Im2
<k>
)
)
+
(
(
Im2
z
)
*
(
Rea
<k>
)
)
)
+
(
(
Im3
z
)
*
(
Im1
<k>
)
)
)
-
(
(
Im1
z
)
*
(
Im3
<k>
)
)
)
*
<j>
)
is
quaternion
Element
of
QUATERNION
(
Rea
z
)
*
(
Im3
<k>
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im3
z
)
*
(
Rea
<k>
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
Rea
z
)
*
(
Im3
<k>
)
)
+
(
(
Im3
z
)
*
(
Rea
<k>
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im1
z
)
*
(
Im2
<k>
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
(
Rea
z
)
*
(
Im3
<k>
)
)
+
(
(
Im3
z
)
*
(
Rea
<k>
)
)
)
+
(
(
Im1
z
)
*
(
Im2
<k>
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im2
z
)
*
(
Im1
<k>
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
(
(
Rea
z
)
*
(
Im3
<k>
)
)
+
(
(
Im3
z
)
*
(
Rea
<k>
)
)
)
+
(
(
Im1
z
)
*
(
Im2
<k>
)
)
)
-
(
(
Im2
z
)
*
(
Im1
<k>
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K110
(
(
(
Im2
z
)
*
(
Im1
<k>
)
)
) is
V28
()
set
K108
(
(
(
(
(
Rea
z
)
*
(
Im3
<k>
)
)
+
(
(
Im3
z
)
*
(
Rea
<k>
)
)
)
+
(
(
Im1
z
)
*
(
Im2
<k>
)
)
)
,
K110
(
(
(
Im2
z
)
*
(
Im1
<k>
)
)
)) is
set
(
(
(
(
(
Rea
z
)
*
(
Im3
<k>
)
)
+
(
(
Im3
z
)
*
(
Rea
<k>
)
)
)
+
(
(
Im1
z
)
*
(
Im2
<k>
)
)
)
-
(
(
Im2
z
)
*
(
Im1
<k>
)
)
)
*
<k>
is
quaternion
set
(
(
(
(
(
(
(
Rea
z
)
*
(
Rea
<k>
)
)
-
(
(
Im1
z
)
*
(
Im1
<k>
)
)
)
-
(
(
Im2
z
)
*
(
Im2
<k>
)
)
)
-
(
(
Im3
z
)
*
(
Im3
<k>
)
)
)
+
(
(
(
(
(
(
Rea
z
)
*
(
Im1
<k>
)
)
+
(
(
Im1
z
)
*
(
Rea
<k>
)
)
)
+
(
(
Im2
z
)
*
(
Im3
<k>
)
)
)
-
(
(
Im3
z
)
*
(
Im2
<k>
)
)
)
*
<i>
)
)
+
(
(
(
(
(
(
Rea
z
)
*
(
Im2
<k>
)
)
+
(
(
Im2
z
)
*
(
Rea
<k>
)
)
)
+
(
(
Im3
z
)
*
(
Im1
<k>
)
)
)
-
(
(
Im1
z
)
*
(
Im3
<k>
)
)
)
*
<j>
)
)
+
(
(
(
(
(
(
Rea
z
)
*
(
Im3
<k>
)
)
+
(
(
Im3
z
)
*
(
Rea
<k>
)
)
)
+
(
(
Im1
z
)
*
(
Im2
<k>
)
)
)
-
(
(
Im2
z
)
*
(
Im1
<k>
)
)
)
*
<k>
)
is
quaternion
Element
of
QUATERNION
-
(
Im1
z
)
is
V28
()
V29
()
ext-real
Element
of
REAL
[*
(
-
(
Im3
z
)
)
,
(
Im2
z
)
,
(
-
(
Im1
z
)
)
,
(
Rea
z
)
*]
is
quaternion
Element
of
QUATERNION
(
-
(
Im3
z
)
)
-
(
-
(
Im3
z
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K110
(
(
-
(
Im3
z
)
)
) is
V28
()
set
K108
(
(
-
(
Im3
z
)
)
,
K110
(
(
-
(
Im3
z
)
)
)) is
set
(
-
(
Im2
z
)
)
-
(
Im2
z
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K110
(
(
Im2
z
)
) is
V28
()
set
K108
(
(
-
(
Im2
z
)
)
,
K110
(
(
Im2
z
)
)) is
set
(
Im1
z
)
-
(
-
(
Im1
z
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K110
(
(
-
(
Im1
z
)
)
) is
V28
()
set
K108
(
(
Im1
z
)
,
K110
(
(
-
(
Im1
z
)
)
)) is
set
(
Rea
z
)
-
(
Rea
z
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K110
(
(
Rea
z
)
) is
V28
()
set
K108
(
(
Rea
z
)
,
K110
(
(
Rea
z
)
)) is
set
[*
(
(
-
(
Im3
z
)
)
-
(
-
(
Im3
z
)
)
)
,
(
(
-
(
Im2
z
)
)
-
(
Im2
z
)
)
,
(
(
Im1
z
)
-
(
-
(
Im1
z
)
)
)
,
(
(
Rea
z
)
-
(
Rea
z
)
)
*]
is
quaternion
Element
of
QUATERNION
z
is
quaternion
set
<k>
*
z
is
quaternion
Element
of
QUATERNION
z
*
<k>
is
quaternion
Element
of
QUATERNION
(
<k>
*
z
)
+
(
z
*
<k>
)
is
quaternion
Element
of
QUATERNION
Im3
z
is
V28
()
V29
()
ext-real
Element
of
REAL
2
*
(
Im3
z
)
is
V28
()
V29
()
ext-real
Element
of
REAL
-
(
2
*
(
Im3
z
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
Rea
z
is
V28
()
V29
()
ext-real
Element
of
REAL
2
*
(
Rea
z
)
is
V28
()
V29
()
ext-real
Element
of
REAL
[*
(
-
(
2
*
(
Im3
z
)
)
)
,
0
,
0
,
(
2
*
(
Rea
z
)
)
*]
is
quaternion
Element
of
QUATERNION
(
Rea
<k>
)
*
(
Rea
z
)
is
V28
()
V29
()
ext-real
Element
of
REAL
Im1
z
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im1
<k>
)
*
(
Im1
z
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
Rea
<k>
)
*
(
Rea
z
)
)
-
(
(
Im1
<k>
)
*
(
Im1
z
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K110
(
(
(
Im1
<k>
)
*
(
Im1
z
)
)
) is
V28
()
set
K108
(
(
(
Rea
<k>
)
*
(
Rea
z
)
)
,
K110
(
(
(
Im1
<k>
)
*
(
Im1
z
)
)
)) is
set
Im2
z
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im2
<k>
)
*
(
Im2
z
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
(
Rea
<k>
)
*
(
Rea
z
)
)
-
(
(
Im1
<k>
)
*
(
Im1
z
)
)
)
-
(
(
Im2
<k>
)
*
(
Im2
z
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K110
(
(
(
Im2
<k>
)
*
(
Im2
z
)
)
) is
V28
()
set
K108
(
(
(
(
Rea
<k>
)
*
(
Rea
z
)
)
-
(
(
Im1
<k>
)
*
(
Im1
z
)
)
)
,
K110
(
(
(
Im2
<k>
)
*
(
Im2
z
)
)
)) is
set
(
Im3
<k>
)
*
(
Im3
z
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
(
(
Rea
<k>
)
*
(
Rea
z
)
)
-
(
(
Im1
<k>
)
*
(
Im1
z
)
)
)
-
(
(
Im2
<k>
)
*
(
Im2
z
)
)
)
-
(
(
Im3
<k>
)
*
(
Im3
z
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K110
(
(
(
Im3
<k>
)
*
(
Im3
z
)
)
) is
V28
()
set
K108
(
(
(
(
(
Rea
<k>
)
*
(
Rea
z
)
)
-
(
(
Im1
<k>
)
*
(
Im1
z
)
)
)
-
(
(
Im2
<k>
)
*
(
Im2
z
)
)
)
,
K110
(
(
(
Im3
<k>
)
*
(
Im3
z
)
)
)) is
set
(
Rea
<k>
)
*
(
Im1
z
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im1
<k>
)
*
(
Rea
z
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
Rea
<k>
)
*
(
Im1
z
)
)
+
(
(
Im1
<k>
)
*
(
Rea
z
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im2
<k>
)
*
(
Im3
z
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
(
Rea
<k>
)
*
(
Im1
z
)
)
+
(
(
Im1
<k>
)
*
(
Rea
z
)
)
)
+
(
(
Im2
<k>
)
*
(
Im3
z
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im3
<k>
)
*
(
Im2
z
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
(
(
Rea
<k>
)
*
(
Im1
z
)
)
+
(
(
Im1
<k>
)
*
(
Rea
z
)
)
)
+
(
(
Im2
<k>
)
*
(
Im3
z
)
)
)
-
(
(
Im3
<k>
)
*
(
Im2
z
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K110
(
(
(
Im3
<k>
)
*
(
Im2
z
)
)
) is
V28
()
set
K108
(
(
(
(
(
Rea
<k>
)
*
(
Im1
z
)
)
+
(
(
Im1
<k>
)
*
(
Rea
z
)
)
)
+
(
(
Im2
<k>
)
*
(
Im3
z
)
)
)
,
K110
(
(
(
Im3
<k>
)
*
(
Im2
z
)
)
)) is
set
(
(
(
(
(
Rea
<k>
)
*
(
Im1
z
)
)
+
(
(
Im1
<k>
)
*
(
Rea
z
)
)
)
+
(
(
Im2
<k>
)
*
(
Im3
z
)
)
)
-
(
(
Im3
<k>
)
*
(
Im2
z
)
)
)
*
<i>
is
quaternion
set
(
(
(
(
(
Rea
<k>
)
*
(
Rea
z
)
)
-
(
(
Im1
<k>
)
*
(
Im1
z
)
)
)
-
(
(
Im2
<k>
)
*
(
Im2
z
)
)
)
-
(
(
Im3
<k>
)
*
(
Im3
z
)
)
)
+
(
(
(
(
(
(
Rea
<k>
)
*
(
Im1
z
)
)
+
(
(
Im1
<k>
)
*
(
Rea
z
)
)
)
+
(
(
Im2
<k>
)
*
(
Im3
z
)
)
)
-
(
(
Im3
<k>
)
*
(
Im2
z
)
)
)
*
<i>
)
is
quaternion
set
(
Rea
<k>
)
*
(
Im2
z
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im2
<k>
)
*
(
Rea
z
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
Rea
<k>
)
*
(
Im2
z
)
)
+
(
(
Im2
<k>
)
*
(
Rea
z
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im3
<k>
)
*
(
Im1
z
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
(
Rea
<k>
)
*
(
Im2
z
)
)
+
(
(
Im2
<k>
)
*
(
Rea
z
)
)
)
+
(
(
Im3
<k>
)
*
(
Im1
z
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im1
<k>
)
*
(
Im3
z
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
(
(
Rea
<k>
)
*
(
Im2
z
)
)
+
(
(
Im2
<k>
)
*
(
Rea
z
)
)
)
+
(
(
Im3
<k>
)
*
(
Im1
z
)
)
)
-
(
(
Im1
<k>
)
*
(
Im3
z
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K110
(
(
(
Im1
<k>
)
*
(
Im3
z
)
)
) is
V28
()
set
K108
(
(
(
(
(
Rea
<k>
)
*
(
Im2
z
)
)
+
(
(
Im2
<k>
)
*
(
Rea
z
)
)
)
+
(
(
Im3
<k>
)
*
(
Im1
z
)
)
)
,
K110
(
(
(
Im1
<k>
)
*
(
Im3
z
)
)
)) is
set
(
(
(
(
(
Rea
<k>
)
*
(
Im2
z
)
)
+
(
(
Im2
<k>
)
*
(
Rea
z
)
)
)
+
(
(
Im3
<k>
)
*
(
Im1
z
)
)
)
-
(
(
Im1
<k>
)
*
(
Im3
z
)
)
)
*
<j>
is
quaternion
set
(
(
(
(
(
(
Rea
<k>
)
*
(
Rea
z
)
)
-
(
(
Im1
<k>
)
*
(
Im1
z
)
)
)
-
(
(
Im2
<k>
)
*
(
Im2
z
)
)
)
-
(
(
Im3
<k>
)
*
(
Im3
z
)
)
)
+
(
(
(
(
(
(
Rea
<k>
)
*
(
Im1
z
)
)
+
(
(
Im1
<k>
)
*
(
Rea
z
)
)
)
+
(
(
Im2
<k>
)
*
(
Im3
z
)
)
)
-
(
(
Im3
<k>
)
*
(
Im2
z
)
)
)
*
<i>
)
)
+
(
(
(
(
(
(
Rea
<k>
)
*
(
Im2
z
)
)
+
(
(
Im2
<k>
)
*
(
Rea
z
)
)
)
+
(
(
Im3
<k>
)
*
(
Im1
z
)
)
)
-
(
(
Im1
<k>
)
*
(
Im3
z
)
)
)
*
<j>
)
is
quaternion
Element
of
QUATERNION
(
Rea
<k>
)
*
(
Im3
z
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im3
<k>
)
*
(
Rea
z
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
Rea
<k>
)
*
(
Im3
z
)
)
+
(
(
Im3
<k>
)
*
(
Rea
z
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im1
<k>
)
*
(
Im2
z
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
(
Rea
<k>
)
*
(
Im3
z
)
)
+
(
(
Im3
<k>
)
*
(
Rea
z
)
)
)
+
(
(
Im1
<k>
)
*
(
Im2
z
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im2
<k>
)
*
(
Im1
z
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
(
(
Rea
<k>
)
*
(
Im3
z
)
)
+
(
(
Im3
<k>
)
*
(
Rea
z
)
)
)
+
(
(
Im1
<k>
)
*
(
Im2
z
)
)
)
-
(
(
Im2
<k>
)
*
(
Im1
z
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K110
(
(
(
Im2
<k>
)
*
(
Im1
z
)
)
) is
V28
()
set
K108
(
(
(
(
(
Rea
<k>
)
*
(
Im3
z
)
)
+
(
(
Im3
<k>
)
*
(
Rea
z
)
)
)
+
(
(
Im1
<k>
)
*
(
Im2
z
)
)
)
,
K110
(
(
(
Im2
<k>
)
*
(
Im1
z
)
)
)) is
set
(
(
(
(
(
Rea
<k>
)
*
(
Im3
z
)
)
+
(
(
Im3
<k>
)
*
(
Rea
z
)
)
)
+
(
(
Im1
<k>
)
*
(
Im2
z
)
)
)
-
(
(
Im2
<k>
)
*
(
Im1
z
)
)
)
*
<k>
is
quaternion
set
(
(
(
(
(
(
(
Rea
<k>
)
*
(
Rea
z
)
)
-
(
(
Im1
<k>
)
*
(
Im1
z
)
)
)
-
(
(
Im2
<k>
)
*
(
Im2
z
)
)
)
-
(
(
Im3
<k>
)
*
(
Im3
z
)
)
)
+
(
(
(
(
(
(
Rea
<k>
)
*
(
Im1
z
)
)
+
(
(
Im1
<k>
)
*
(
Rea
z
)
)
)
+
(
(
Im2
<k>
)
*
(
Im3
z
)
)
)
-
(
(
Im3
<k>
)
*
(
Im2
z
)
)
)
*
<i>
)
)
+
(
(
(
(
(
(
Rea
<k>
)
*
(
Im2
z
)
)
+
(
(
Im2
<k>
)
*
(
Rea
z
)
)
)
+
(
(
Im3
<k>
)
*
(
Im1
z
)
)
)
-
(
(
Im1
<k>
)
*
(
Im3
z
)
)
)
*
<j>
)
)
+
(
(
(
(
(
(
Rea
<k>
)
*
(
Im3
z
)
)
+
(
(
Im3
<k>
)
*
(
Rea
z
)
)
)
+
(
(
Im1
<k>
)
*
(
Im2
z
)
)
)
-
(
(
Im2
<k>
)
*
(
Im1
z
)
)
)
*
<k>
)
is
quaternion
Element
of
QUATERNION
-
(
Im3
z
)
is
V28
()
V29
()
ext-real
Element
of
REAL
-
(
Im2
z
)
is
V28
()
V29
()
ext-real
Element
of
REAL
[*
(
-
(
Im3
z
)
)
,
(
-
(
Im2
z
)
)
,
(
Im1
z
)
,
(
Rea
z
)
*]
is
quaternion
Element
of
QUATERNION
Im2
(
<k>
*
z
)
is
V28
()
V29
()
ext-real
Element
of
REAL
Im3
(
<k>
*
z
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Rea
z
)
*
(
Rea
<k>
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im1
z
)
*
(
Im1
<k>
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
Rea
z
)
*
(
Rea
<k>
)
)
-
(
(
Im1
z
)
*
(
Im1
<k>
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K110
(
(
(
Im1
z
)
*
(
Im1
<k>
)
)
) is
V28
()
set
K108
(
(
(
Rea
z
)
*
(
Rea
<k>
)
)
,
K110
(
(
(
Im1
z
)
*
(
Im1
<k>
)
)
)) is
set
(
Im2
z
)
*
(
Im2
<k>
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
(
Rea
z
)
*
(
Rea
<k>
)
)
-
(
(
Im1
z
)
*
(
Im1
<k>
)
)
)
-
(
(
Im2
z
)
*
(
Im2
<k>
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K110
(
(
(
Im2
z
)
*
(
Im2
<k>
)
)
) is
V28
()
set
K108
(
(
(
(
Rea
z
)
*
(
Rea
<k>
)
)
-
(
(
Im1
z
)
*
(
Im1
<k>
)
)
)
,
K110
(
(
(
Im2
z
)
*
(
Im2
<k>
)
)
)) is
set
(
Im3
z
)
*
(
Im3
<k>
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
(
(
Rea
z
)
*
(
Rea
<k>
)
)
-
(
(
Im1
z
)
*
(
Im1
<k>
)
)
)
-
(
(
Im2
z
)
*
(
Im2
<k>
)
)
)
-
(
(
Im3
z
)
*
(
Im3
<k>
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K110
(
(
(
Im3
z
)
*
(
Im3
<k>
)
)
) is
V28
()
set
K108
(
(
(
(
(
Rea
z
)
*
(
Rea
<k>
)
)
-
(
(
Im1
z
)
*
(
Im1
<k>
)
)
)
-
(
(
Im2
z
)
*
(
Im2
<k>
)
)
)
,
K110
(
(
(
Im3
z
)
*
(
Im3
<k>
)
)
)) is
set
(
Rea
z
)
*
(
Im1
<k>
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im1
z
)
*
(
Rea
<k>
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
Rea
z
)
*
(
Im1
<k>
)
)
+
(
(
Im1
z
)
*
(
Rea
<k>
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im2
z
)
*
(
Im3
<k>
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
(
Rea
z
)
*
(
Im1
<k>
)
)
+
(
(
Im1
z
)
*
(
Rea
<k>
)
)
)
+
(
(
Im2
z
)
*
(
Im3
<k>
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im3
z
)
*
(
Im2
<k>
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
(
(
Rea
z
)
*
(
Im1
<k>
)
)
+
(
(
Im1
z
)
*
(
Rea
<k>
)
)
)
+
(
(
Im2
z
)
*
(
Im3
<k>
)
)
)
-
(
(
Im3
z
)
*
(
Im2
<k>
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K110
(
(
(
Im3
z
)
*
(
Im2
<k>
)
)
) is
V28
()
set
K108
(
(
(
(
(
Rea
z
)
*
(
Im1
<k>
)
)
+
(
(
Im1
z
)
*
(
Rea
<k>
)
)
)
+
(
(
Im2
z
)
*
(
Im3
<k>
)
)
)
,
K110
(
(
(
Im3
z
)
*
(
Im2
<k>
)
)
)) is
set
(
(
(
(
(
Rea
z
)
*
(
Im1
<k>
)
)
+
(
(
Im1
z
)
*
(
Rea
<k>
)
)
)
+
(
(
Im2
z
)
*
(
Im3
<k>
)
)
)
-
(
(
Im3
z
)
*
(
Im2
<k>
)
)
)
*
<i>
is
quaternion
set
(
(
(
(
(
Rea
z
)
*
(
Rea
<k>
)
)
-
(
(
Im1
z
)
*
(
Im1
<k>
)
)
)
-
(
(
Im2
z
)
*
(
Im2
<k>
)
)
)
-
(
(
Im3
z
)
*
(
Im3
<k>
)
)
)
+
(
(
(
(
(
(
Rea
z
)
*
(
Im1
<k>
)
)
+
(
(
Im1
z
)
*
(
Rea
<k>
)
)
)
+
(
(
Im2
z
)
*
(
Im3
<k>
)
)
)
-
(
(
Im3
z
)
*
(
Im2
<k>
)
)
)
*
<i>
)
is
quaternion
set
(
Rea
z
)
*
(
Im2
<k>
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im2
z
)
*
(
Rea
<k>
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
Rea
z
)
*
(
Im2
<k>
)
)
+
(
(
Im2
z
)
*
(
Rea
<k>
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im3
z
)
*
(
Im1
<k>
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
(
Rea
z
)
*
(
Im2
<k>
)
)
+
(
(
Im2
z
)
*
(
Rea
<k>
)
)
)
+
(
(
Im3
z
)
*
(
Im1
<k>
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im1
z
)
*
(
Im3
<k>
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
(
(
Rea
z
)
*
(
Im2
<k>
)
)
+
(
(
Im2
z
)
*
(
Rea
<k>
)
)
)
+
(
(
Im3
z
)
*
(
Im1
<k>
)
)
)
-
(
(
Im1
z
)
*
(
Im3
<k>
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K110
(
(
(
Im1
z
)
*
(
Im3
<k>
)
)
) is
V28
()
set
K108
(
(
(
(
(
Rea
z
)
*
(
Im2
<k>
)
)
+
(
(
Im2
z
)
*
(
Rea
<k>
)
)
)
+
(
(
Im3
z
)
*
(
Im1
<k>
)
)
)
,
K110
(
(
(
Im1
z
)
*
(
Im3
<k>
)
)
)) is
set
(
(
(
(
(
Rea
z
)
*
(
Im2
<k>
)
)
+
(
(
Im2
z
)
*
(
Rea
<k>
)
)
)
+
(
(
Im3
z
)
*
(
Im1
<k>
)
)
)
-
(
(
Im1
z
)
*
(
Im3
<k>
)
)
)
*
<j>
is
quaternion
set
(
(
(
(
(
(
Rea
z
)
*
(
Rea
<k>
)
)
-
(
(
Im1
z
)
*
(
Im1
<k>
)
)
)
-
(
(
Im2
z
)
*
(
Im2
<k>
)
)
)
-
(
(
Im3
z
)
*
(
Im3
<k>
)
)
)
+
(
(
(
(
(
(
Rea
z
)
*
(
Im1
<k>
)
)
+
(
(
Im1
z
)
*
(
Rea
<k>
)
)
)
+
(
(
Im2
z
)
*
(
Im3
<k>
)
)
)
-
(
(
Im3
z
)
*
(
Im2
<k>
)
)
)
*
<i>
)
)
+
(
(
(
(
(
(
Rea
z
)
*
(
Im2
<k>
)
)
+
(
(
Im2
z
)
*
(
Rea
<k>
)
)
)
+
(
(
Im3
z
)
*
(
Im1
<k>
)
)
)
-
(
(
Im1
z
)
*
(
Im3
<k>
)
)
)
*
<j>
)
is
quaternion
Element
of
QUATERNION
(
Rea
z
)
*
(
Im3
<k>
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im3
z
)
*
(
Rea
<k>
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
Rea
z
)
*
(
Im3
<k>
)
)
+
(
(
Im3
z
)
*
(
Rea
<k>
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im1
z
)
*
(
Im2
<k>
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
(
Rea
z
)
*
(
Im3
<k>
)
)
+
(
(
Im3
z
)
*
(
Rea
<k>
)
)
)
+
(
(
Im1
z
)
*
(
Im2
<k>
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im2
z
)
*
(
Im1
<k>
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
(
(
Rea
z
)
*
(
Im3
<k>
)
)
+
(
(
Im3
z
)
*
(
Rea
<k>
)
)
)
+
(
(
Im1
z
)
*
(
Im2
<k>
)
)
)
-
(
(
Im2
z
)
*
(
Im1
<k>
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K110
(
(
(
Im2
z
)
*
(
Im1
<k>
)
)
) is
V28
()
set
K108
(
(
(
(
(
Rea
z
)
*
(
Im3
<k>
)
)
+
(
(
Im3
z
)
*
(
Rea
<k>
)
)
)
+
(
(
Im1
z
)
*
(
Im2
<k>
)
)
)
,
K110
(
(
(
Im2
z
)
*
(
Im1
<k>
)
)
)) is
set
(
(
(
(
(
Rea
z
)
*
(
Im3
<k>
)
)
+
(
(
Im3
z
)
*
(
Rea
<k>
)
)
)
+
(
(
Im1
z
)
*
(
Im2
<k>
)
)
)
-
(
(
Im2
z
)
*
(
Im1
<k>
)
)
)
*
<k>
is
quaternion
set
(
(
(
(
(
(
(
Rea
z
)
*
(
Rea
<k>
)
)
-
(
(
Im1
z
)
*
(
Im1
<k>
)
)
)
-
(
(
Im2
z
)
*
(
Im2
<k>
)
)
)
-
(
(
Im3
z
)
*
(
Im3
<k>
)
)
)
+
(
(
(
(
(
(
Rea
z
)
*
(
Im1
<k>
)
)
+
(
(
Im1
z
)
*
(
Rea
<k>
)
)
)
+
(
(
Im2
z
)
*
(
Im3
<k>
)
)
)
-
(
(
Im3
z
)
*
(
Im2
<k>
)
)
)
*
<i>
)
)
+
(
(
(
(
(
(
Rea
z
)
*
(
Im2
<k>
)
)
+
(
(
Im2
z
)
*
(
Rea
<k>
)
)
)
+
(
(
Im3
z
)
*
(
Im1
<k>
)
)
)
-
(
(
Im1
z
)
*
(
Im3
<k>
)
)
)
*
<j>
)
)
+
(
(
(
(
(
(
Rea
z
)
*
(
Im3
<k>
)
)
+
(
(
Im3
z
)
*
(
Rea
<k>
)
)
)
+
(
(
Im1
z
)
*
(
Im2
<k>
)
)
)
-
(
(
Im2
z
)
*
(
Im1
<k>
)
)
)
*
<k>
)
is
quaternion
Element
of
QUATERNION
-
(
Im1
z
)
is
V28
()
V29
()
ext-real
Element
of
REAL
[*
(
-
(
Im3
z
)
)
,
(
Im2
z
)
,
(
-
(
Im1
z
)
)
,
(
Rea
z
)
*]
is
quaternion
Element
of
QUATERNION
Rea
(
z
*
<k>
)
is
V28
()
V29
()
ext-real
Element
of
REAL
Im1
(
z
*
<k>
)
is
V28
()
V29
()
ext-real
Element
of
REAL
Im2
(
z
*
<k>
)
is
V28
()
V29
()
ext-real
Element
of
REAL
Im3
(
z
*
<k>
)
is
V28
()
V29
()
ext-real
Element
of
REAL
Rea
(
<k>
*
z
)
is
V28
()
V29
()
ext-real
Element
of
REAL
Im1
(
<k>
*
z
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
z
*
<k>
)
+
(
<k>
*
z
)
is
quaternion
Element
of
QUATERNION
(
-
(
Im3
z
)
)
+
(
-
(
Im3
z
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
-
(
Im2
z
)
)
+
(
Im2
z
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
-
(
Im2
z
)
)
+
(
Im2
z
)
)
*
<i>
is
quaternion
set
(
(
-
(
Im3
z
)
)
+
(
-
(
Im3
z
)
)
)
+
(
(
(
-
(
Im2
z
)
)
+
(
Im2
z
)
)
*
<i>
)
is
quaternion
set
(
Im1
z
)
-
(
Im1
z
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K110
(
(
Im1
z
)
) is
V28
()
set
K108
(
(
Im1
z
)
,
K110
(
(
Im1
z
)
)) is
set
(
(
Im1
z
)
-
(
Im1
z
)
)
*
<j>
is
quaternion
set
(
(
(
-
(
Im3
z
)
)
+
(
-
(
Im3
z
)
)
)
+
(
(
(
-
(
Im2
z
)
)
+
(
Im2
z
)
)
*
<i>
)
)
+
(
(
(
Im1
z
)
-
(
Im1
z
)
)
*
<j>
)
is
quaternion
Element
of
QUATERNION
(
Rea
z
)
+
(
Rea
z
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
Rea
z
)
+
(
Rea
z
)
)
*
<k>
is
quaternion
set
(
(
(
(
-
(
Im3
z
)
)
+
(
-
(
Im3
z
)
)
)
+
(
(
(
-
(
Im2
z
)
)
+
(
Im2
z
)
)
*
<i>
)
)
+
(
(
(
Im1
z
)
-
(
Im1
z
)
)
*
<j>
)
)
+
(
(
(
Rea
z
)
+
(
Rea
z
)
)
*
<k>
)
is
quaternion
Element
of
QUATERNION
z
is
quaternion
set
|.
z
.|
is
V28
()
V29
()
ext-real
Element
of
REAL
Rea
z
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Rea
z
)
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Rea
z
)
,
(
Rea
z
)
) is
set
Im1
z
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im1
z
)
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Im1
z
)
,
(
Im1
z
)
) is
set
(
(
Rea
z
)
^2
)
+
(
(
Im1
z
)
^2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
Im2
z
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im2
z
)
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Im2
z
)
,
(
Im2
z
)
) is
set
(
(
(
Rea
z
)
^2
)
+
(
(
Im1
z
)
^2
)
)
+
(
(
Im2
z
)
^2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
Im3
z
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im3
z
)
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Im3
z
)
,
(
Im3
z
)
) is
set
(
(
(
(
Rea
z
)
^2
)
+
(
(
Im1
z
)
^2
)
)
+
(
(
Im2
z
)
^2
)
)
+
(
(
Im3
z
)
^2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
sqrt
(
(
(
(
(
Rea
z
)
^2
)
+
(
(
Im1
z
)
^2
)
)
+
(
(
Im2
z
)
^2
)
)
+
(
(
Im3
z
)
^2
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
|.
z
.|
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
|.
z
.|
,
|.
z
.|
) is
set
1
/
(
|.
z
.|
^2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K111
(
(
|.
z
.|
^2
)
) is
V28
()
set
K109
(1,
K111
(
(
|.
z
.|
^2
)
)) is
set
z
*'
is
quaternion
Element
of
QUATERNION
-
(
Im1
z
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
-
(
Im1
z
)
)
*
K107
() is
quaternion
set
(
Rea
z
)
+
(
(
-
(
Im1
z
)
)
*
K107
()
)
is
quaternion
set
-
(
Im2
z
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
-
(
Im2
z
)
)
*
<j>
is
quaternion
set
(
(
Rea
z
)
+
(
(
-
(
Im1
z
)
)
*
K107
()
)
)
+
(
(
-
(
Im2
z
)
)
*
<j>
)
is
quaternion
Element
of
QUATERNION
-
(
Im3
z
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
-
(
Im3
z
)
)
*
<k>
is
quaternion
set
(
(
(
Rea
z
)
+
(
(
-
(
Im1
z
)
)
*
K107
()
)
)
+
(
(
-
(
Im2
z
)
)
*
<j>
)
)
+
(
(
-
(
Im3
z
)
)
*
<k>
)
is
quaternion
Element
of
QUATERNION
(
1
/
(
|.
z
.|
^2
)
)
*
(
z
*'
)
is
quaternion
set
Rea
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
z
*'
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
1
/
(
|.
z
.|
^2
)
)
*
(
Rea
z
)
is
V28
()
V29
()
ext-real
Element
of
REAL
[*
(
Rea
z
)
,
(
-
(
Im1
z
)
)
,
(
-
(
Im2
z
)
)
,
(
-
(
Im3
z
)
)
*]
is
quaternion
Element
of
QUATERNION
(
1
/
(
|.
z
.|
^2
)
)
*
(
-
(
Im1
z
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
1
/
(
|.
z
.|
^2
)
)
*
(
-
(
Im2
z
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
1
/
(
|.
z
.|
^2
)
)
*
(
-
(
Im3
z
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
[*
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
Rea
z
)
)
,
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
-
(
Im1
z
)
)
)
,
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
-
(
Im2
z
)
)
)
,
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
-
(
Im3
z
)
)
)
*]
is
quaternion
Element
of
QUATERNION
z
is
quaternion
set
|.
z
.|
is
V28
()
V29
()
ext-real
Element
of
REAL
Rea
z
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Rea
z
)
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Rea
z
)
,
(
Rea
z
)
) is
set
Im1
z
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im1
z
)
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Im1
z
)
,
(
Im1
z
)
) is
set
(
(
Rea
z
)
^2
)
+
(
(
Im1
z
)
^2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
Im2
z
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im2
z
)
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Im2
z
)
,
(
Im2
z
)
) is
set
(
(
(
Rea
z
)
^2
)
+
(
(
Im1
z
)
^2
)
)
+
(
(
Im2
z
)
^2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
Im3
z
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im3
z
)
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Im3
z
)
,
(
Im3
z
)
) is
set
(
(
(
(
Rea
z
)
^2
)
+
(
(
Im1
z
)
^2
)
)
+
(
(
Im2
z
)
^2
)
)
+
(
(
Im3
z
)
^2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
sqrt
(
(
(
(
(
Rea
z
)
^2
)
+
(
(
Im1
z
)
^2
)
)
+
(
(
Im2
z
)
^2
)
)
+
(
(
Im3
z
)
^2
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
|.
z
.|
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
|.
z
.|
,
|.
z
.|
) is
set
1
/
(
|.
z
.|
^2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K111
(
(
|.
z
.|
^2
)
) is
V28
()
set
K109
(1,
K111
(
(
|.
z
.|
^2
)
)) is
set
z
*'
is
quaternion
Element
of
QUATERNION
-
(
Im1
z
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
-
(
Im1
z
)
)
*
K107
() is
quaternion
set
(
Rea
z
)
+
(
(
-
(
Im1
z
)
)
*
K107
()
)
is
quaternion
set
-
(
Im2
z
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
-
(
Im2
z
)
)
*
<j>
is
quaternion
set
(
(
Rea
z
)
+
(
(
-
(
Im1
z
)
)
*
K107
()
)
)
+
(
(
-
(
Im2
z
)
)
*
<j>
)
is
quaternion
Element
of
QUATERNION
-
(
Im3
z
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
-
(
Im3
z
)
)
*
<k>
is
quaternion
set
(
(
(
Rea
z
)
+
(
(
-
(
Im1
z
)
)
*
K107
()
)
)
+
(
(
-
(
Im2
z
)
)
*
<j>
)
)
+
(
(
-
(
Im3
z
)
)
*
<k>
)
is
quaternion
Element
of
QUATERNION
(
1
/
(
|.
z
.|
^2
)
)
*
(
z
*'
)
is
quaternion
set
Im1
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
z
*'
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
1
/
(
|.
z
.|
^2
)
)
*
(
Im1
z
)
is
V28
()
V29
()
ext-real
Element
of
REAL
-
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
Im1
z
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
[*
(
Rea
z
)
,
(
-
(
Im1
z
)
)
,
(
-
(
Im2
z
)
)
,
(
-
(
Im3
z
)
)
*]
is
quaternion
Element
of
QUATERNION
(
1
/
(
|.
z
.|
^2
)
)
*
(
Rea
z
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
1
/
(
|.
z
.|
^2
)
)
*
(
-
(
Im1
z
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
1
/
(
|.
z
.|
^2
)
)
*
(
-
(
Im2
z
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
1
/
(
|.
z
.|
^2
)
)
*
(
-
(
Im3
z
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
[*
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
Rea
z
)
)
,
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
-
(
Im1
z
)
)
)
,
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
-
(
Im2
z
)
)
)
,
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
-
(
Im3
z
)
)
)
*]
is
quaternion
Element
of
QUATERNION
z
is
quaternion
set
|.
z
.|
is
V28
()
V29
()
ext-real
Element
of
REAL
Rea
z
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Rea
z
)
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Rea
z
)
,
(
Rea
z
)
) is
set
Im1
z
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im1
z
)
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Im1
z
)
,
(
Im1
z
)
) is
set
(
(
Rea
z
)
^2
)
+
(
(
Im1
z
)
^2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
Im2
z
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im2
z
)
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Im2
z
)
,
(
Im2
z
)
) is
set
(
(
(
Rea
z
)
^2
)
+
(
(
Im1
z
)
^2
)
)
+
(
(
Im2
z
)
^2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
Im3
z
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im3
z
)
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Im3
z
)
,
(
Im3
z
)
) is
set
(
(
(
(
Rea
z
)
^2
)
+
(
(
Im1
z
)
^2
)
)
+
(
(
Im2
z
)
^2
)
)
+
(
(
Im3
z
)
^2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
sqrt
(
(
(
(
(
Rea
z
)
^2
)
+
(
(
Im1
z
)
^2
)
)
+
(
(
Im2
z
)
^2
)
)
+
(
(
Im3
z
)
^2
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
|.
z
.|
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
|.
z
.|
,
|.
z
.|
) is
set
1
/
(
|.
z
.|
^2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K111
(
(
|.
z
.|
^2
)
) is
V28
()
set
K109
(1,
K111
(
(
|.
z
.|
^2
)
)) is
set
z
*'
is
quaternion
Element
of
QUATERNION
-
(
Im1
z
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
-
(
Im1
z
)
)
*
K107
() is
quaternion
set
(
Rea
z
)
+
(
(
-
(
Im1
z
)
)
*
K107
()
)
is
quaternion
set
-
(
Im2
z
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
-
(
Im2
z
)
)
*
<j>
is
quaternion
set
(
(
Rea
z
)
+
(
(
-
(
Im1
z
)
)
*
K107
()
)
)
+
(
(
-
(
Im2
z
)
)
*
<j>
)
is
quaternion
Element
of
QUATERNION
-
(
Im3
z
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
-
(
Im3
z
)
)
*
<k>
is
quaternion
set
(
(
(
Rea
z
)
+
(
(
-
(
Im1
z
)
)
*
K107
()
)
)
+
(
(
-
(
Im2
z
)
)
*
<j>
)
)
+
(
(
-
(
Im3
z
)
)
*
<k>
)
is
quaternion
Element
of
QUATERNION
(
1
/
(
|.
z
.|
^2
)
)
*
(
z
*'
)
is
quaternion
set
Im2
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
z
*'
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
1
/
(
|.
z
.|
^2
)
)
*
(
Im2
z
)
is
V28
()
V29
()
ext-real
Element
of
REAL
-
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
Im2
z
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
[*
(
Rea
z
)
,
(
-
(
Im1
z
)
)
,
(
-
(
Im2
z
)
)
,
(
-
(
Im3
z
)
)
*]
is
quaternion
Element
of
QUATERNION
(
1
/
(
|.
z
.|
^2
)
)
*
(
Rea
z
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
1
/
(
|.
z
.|
^2
)
)
*
(
-
(
Im1
z
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
1
/
(
|.
z
.|
^2
)
)
*
(
-
(
Im2
z
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
1
/
(
|.
z
.|
^2
)
)
*
(
-
(
Im3
z
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
[*
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
Rea
z
)
)
,
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
-
(
Im1
z
)
)
)
,
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
-
(
Im2
z
)
)
)
,
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
-
(
Im3
z
)
)
)
*]
is
quaternion
Element
of
QUATERNION
z
is
quaternion
set
|.
z
.|
is
V28
()
V29
()
ext-real
Element
of
REAL
Rea
z
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Rea
z
)
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Rea
z
)
,
(
Rea
z
)
) is
set
Im1
z
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im1
z
)
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Im1
z
)
,
(
Im1
z
)
) is
set
(
(
Rea
z
)
^2
)
+
(
(
Im1
z
)
^2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
Im2
z
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im2
z
)
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Im2
z
)
,
(
Im2
z
)
) is
set
(
(
(
Rea
z
)
^2
)
+
(
(
Im1
z
)
^2
)
)
+
(
(
Im2
z
)
^2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
Im3
z
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im3
z
)
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Im3
z
)
,
(
Im3
z
)
) is
set
(
(
(
(
Rea
z
)
^2
)
+
(
(
Im1
z
)
^2
)
)
+
(
(
Im2
z
)
^2
)
)
+
(
(
Im3
z
)
^2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
sqrt
(
(
(
(
(
Rea
z
)
^2
)
+
(
(
Im1
z
)
^2
)
)
+
(
(
Im2
z
)
^2
)
)
+
(
(
Im3
z
)
^2
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
|.
z
.|
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
|.
z
.|
,
|.
z
.|
) is
set
1
/
(
|.
z
.|
^2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K111
(
(
|.
z
.|
^2
)
) is
V28
()
set
K109
(1,
K111
(
(
|.
z
.|
^2
)
)) is
set
z
*'
is
quaternion
Element
of
QUATERNION
-
(
Im1
z
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
-
(
Im1
z
)
)
*
K107
() is
quaternion
set
(
Rea
z
)
+
(
(
-
(
Im1
z
)
)
*
K107
()
)
is
quaternion
set
-
(
Im2
z
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
-
(
Im2
z
)
)
*
<j>
is
quaternion
set
(
(
Rea
z
)
+
(
(
-
(
Im1
z
)
)
*
K107
()
)
)
+
(
(
-
(
Im2
z
)
)
*
<j>
)
is
quaternion
Element
of
QUATERNION
-
(
Im3
z
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
-
(
Im3
z
)
)
*
<k>
is
quaternion
set
(
(
(
Rea
z
)
+
(
(
-
(
Im1
z
)
)
*
K107
()
)
)
+
(
(
-
(
Im2
z
)
)
*
<j>
)
)
+
(
(
-
(
Im3
z
)
)
*
<k>
)
is
quaternion
Element
of
QUATERNION
(
1
/
(
|.
z
.|
^2
)
)
*
(
z
*'
)
is
quaternion
set
Im3
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
z
*'
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
1
/
(
|.
z
.|
^2
)
)
*
(
Im3
z
)
is
V28
()
V29
()
ext-real
Element
of
REAL
-
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
Im3
z
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
[*
(
Rea
z
)
,
(
-
(
Im1
z
)
)
,
(
-
(
Im2
z
)
)
,
(
-
(
Im3
z
)
)
*]
is
quaternion
Element
of
QUATERNION
(
1
/
(
|.
z
.|
^2
)
)
*
(
Rea
z
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
1
/
(
|.
z
.|
^2
)
)
*
(
-
(
Im1
z
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
1
/
(
|.
z
.|
^2
)
)
*
(
-
(
Im2
z
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
1
/
(
|.
z
.|
^2
)
)
*
(
-
(
Im3
z
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
[*
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
Rea
z
)
)
,
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
-
(
Im1
z
)
)
)
,
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
-
(
Im2
z
)
)
)
,
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
-
(
Im3
z
)
)
)
*]
is
quaternion
Element
of
QUATERNION
z
is
quaternion
set
|.
z
.|
is
V28
()
V29
()
ext-real
Element
of
REAL
Rea
z
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Rea
z
)
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Rea
z
)
,
(
Rea
z
)
) is
set
Im1
z
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im1
z
)
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Im1
z
)
,
(
Im1
z
)
) is
set
(
(
Rea
z
)
^2
)
+
(
(
Im1
z
)
^2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
Im2
z
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im2
z
)
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Im2
z
)
,
(
Im2
z
)
) is
set
(
(
(
Rea
z
)
^2
)
+
(
(
Im1
z
)
^2
)
)
+
(
(
Im2
z
)
^2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
Im3
z
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im3
z
)
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Im3
z
)
,
(
Im3
z
)
) is
set
(
(
(
(
Rea
z
)
^2
)
+
(
(
Im1
z
)
^2
)
)
+
(
(
Im2
z
)
^2
)
)
+
(
(
Im3
z
)
^2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
sqrt
(
(
(
(
(
Rea
z
)
^2
)
+
(
(
Im1
z
)
^2
)
)
+
(
(
Im2
z
)
^2
)
)
+
(
(
Im3
z
)
^2
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
|.
z
.|
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
|.
z
.|
,
|.
z
.|
) is
set
1
/
(
|.
z
.|
^2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K111
(
(
|.
z
.|
^2
)
) is
V28
()
set
K109
(1,
K111
(
(
|.
z
.|
^2
)
)) is
set
z
*'
is
quaternion
Element
of
QUATERNION
-
(
Im1
z
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
-
(
Im1
z
)
)
*
K107
() is
quaternion
set
(
Rea
z
)
+
(
(
-
(
Im1
z
)
)
*
K107
()
)
is
quaternion
set
-
(
Im2
z
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
-
(
Im2
z
)
)
*
<j>
is
quaternion
set
(
(
Rea
z
)
+
(
(
-
(
Im1
z
)
)
*
K107
()
)
)
+
(
(
-
(
Im2
z
)
)
*
<j>
)
is
quaternion
Element
of
QUATERNION
-
(
Im3
z
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
-
(
Im3
z
)
)
*
<k>
is
quaternion
set
(
(
(
Rea
z
)
+
(
(
-
(
Im1
z
)
)
*
K107
()
)
)
+
(
(
-
(
Im2
z
)
)
*
<j>
)
)
+
(
(
-
(
Im3
z
)
)
*
<k>
)
is
quaternion
Element
of
QUATERNION
(
1
/
(
|.
z
.|
^2
)
)
*
(
z
*'
)
is
quaternion
set
(
1
/
(
|.
z
.|
^2
)
)
*
(
Rea
z
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
1
/
(
|.
z
.|
^2
)
)
*
(
Im1
z
)
is
V28
()
V29
()
ext-real
Element
of
REAL
-
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
Im1
z
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
1
/
(
|.
z
.|
^2
)
)
*
(
Im2
z
)
is
V28
()
V29
()
ext-real
Element
of
REAL
-
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
Im2
z
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
1
/
(
|.
z
.|
^2
)
)
*
(
Im3
z
)
is
V28
()
V29
()
ext-real
Element
of
REAL
-
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
Im3
z
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
[*
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
Rea
z
)
)
,
(
-
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
Im1
z
)
)
)
,
(
-
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
Im2
z
)
)
)
,
(
-
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
Im3
z
)
)
)
*]
is
quaternion
Element
of
QUATERNION
Rea
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
z
*'
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
Im1
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
z
*'
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
Im2
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
z
*'
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
Im3
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
z
*'
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
[*
(
Rea
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
z
*'
)
)
)
,
(
Im1
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
z
*'
)
)
)
,
(
Im2
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
z
*'
)
)
)
,
(
Im3
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
z
*'
)
)
)
*]
is
quaternion
Element
of
QUATERNION
[*
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
Rea
z
)
)
,
(
Im1
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
z
*'
)
)
)
,
(
Im2
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
z
*'
)
)
)
,
(
Im3
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
z
*'
)
)
)
*]
is
quaternion
Element
of
QUATERNION
[*
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
Rea
z
)
)
,
(
-
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
Im1
z
)
)
)
,
(
Im2
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
z
*'
)
)
)
,
(
Im3
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
z
*'
)
)
)
*]
is
quaternion
Element
of
QUATERNION
[*
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
Rea
z
)
)
,
(
-
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
Im1
z
)
)
)
,
(
-
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
Im2
z
)
)
)
,
(
Im3
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
z
*'
)
)
)
*]
is
quaternion
Element
of
QUATERNION
z
is
quaternion
set
|.
z
.|
is
V28
()
V29
()
ext-real
Element
of
REAL
Rea
z
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Rea
z
)
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Rea
z
)
,
(
Rea
z
)
) is
set
Im1
z
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im1
z
)
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Im1
z
)
,
(
Im1
z
)
) is
set
(
(
Rea
z
)
^2
)
+
(
(
Im1
z
)
^2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
Im2
z
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im2
z
)
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Im2
z
)
,
(
Im2
z
)
) is
set
(
(
(
Rea
z
)
^2
)
+
(
(
Im1
z
)
^2
)
)
+
(
(
Im2
z
)
^2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
Im3
z
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im3
z
)
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Im3
z
)
,
(
Im3
z
)
) is
set
(
(
(
(
Rea
z
)
^2
)
+
(
(
Im1
z
)
^2
)
)
+
(
(
Im2
z
)
^2
)
)
+
(
(
Im3
z
)
^2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
sqrt
(
(
(
(
(
Rea
z
)
^2
)
+
(
(
Im1
z
)
^2
)
)
+
(
(
Im2
z
)
^2
)
)
+
(
(
Im3
z
)
^2
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
|.
z
.|
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
|.
z
.|
,
|.
z
.|
) is
set
1
/
(
|.
z
.|
^2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K111
(
(
|.
z
.|
^2
)
) is
V28
()
set
K109
(1,
K111
(
(
|.
z
.|
^2
)
)) is
set
z
*'
is
quaternion
Element
of
QUATERNION
-
(
Im1
z
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
-
(
Im1
z
)
)
*
K107
() is
quaternion
set
(
Rea
z
)
+
(
(
-
(
Im1
z
)
)
*
K107
()
)
is
quaternion
set
-
(
Im2
z
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
-
(
Im2
z
)
)
*
<j>
is
quaternion
set
(
(
Rea
z
)
+
(
(
-
(
Im1
z
)
)
*
K107
()
)
)
+
(
(
-
(
Im2
z
)
)
*
<j>
)
is
quaternion
Element
of
QUATERNION
-
(
Im3
z
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
-
(
Im3
z
)
)
*
<k>
is
quaternion
set
(
(
(
Rea
z
)
+
(
(
-
(
Im1
z
)
)
*
K107
()
)
)
+
(
(
-
(
Im2
z
)
)
*
<j>
)
)
+
(
(
-
(
Im3
z
)
)
*
<k>
)
is
quaternion
Element
of
QUATERNION
(
1
/
(
|.
z
.|
^2
)
)
*
(
z
*'
)
is
quaternion
set
z
*
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
z
*'
)
)
is
quaternion
Element
of
QUATERNION
(
|.
z
.|
^2
)
/
(
|.
z
.|
^2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
|.
z
.|
^2
)
,
K111
(
(
|.
z
.|
^2
)
)) is
set
[*
(
(
|.
z
.|
^2
)
/
(
|.
z
.|
^2
)
)
,
0
,
0
,
0
*]
is
quaternion
Element
of
QUATERNION
Rea
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
z
*'
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Rea
z
)
*
(
Rea
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
z
*'
)
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
Im1
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
z
*'
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im1
z
)
*
(
Im1
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
z
*'
)
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
Rea
z
)
*
(
Rea
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
z
*'
)
)
)
)
-
(
(
Im1
z
)
*
(
Im1
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
z
*'
)
)
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K110
(
(
(
Im1
z
)
*
(
Im1
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
z
*'
)
)
)
)
) is
V28
()
set
K108
(
(
(
Rea
z
)
*
(
Rea
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
z
*'
)
)
)
)
,
K110
(
(
(
Im1
z
)
*
(
Im1
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
z
*'
)
)
)
)
)) is
set
Im2
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
z
*'
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im2
z
)
*
(
Im2
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
z
*'
)
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
(
Rea
z
)
*
(
Rea
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
z
*'
)
)
)
)
-
(
(
Im1
z
)
*
(
Im1
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
z
*'
)
)
)
)
)
-
(
(
Im2
z
)
*
(
Im2
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
z
*'
)
)
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K110
(
(
(
Im2
z
)
*
(
Im2
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
z
*'
)
)
)
)
) is
V28
()
set
K108
(
(
(
(
Rea
z
)
*
(
Rea
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
z
*'
)
)
)
)
-
(
(
Im1
z
)
*
(
Im1
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
z
*'
)
)
)
)
)
,
K110
(
(
(
Im2
z
)
*
(
Im2
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
z
*'
)
)
)
)
)) is
set
Im3
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
z
*'
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im3
z
)
*
(
Im3
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
z
*'
)
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
(
(
Rea
z
)
*
(
Rea
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
z
*'
)
)
)
)
-
(
(
Im1
z
)
*
(
Im1
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
z
*'
)
)
)
)
)
-
(
(
Im2
z
)
*
(
Im2
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
z
*'
)
)
)
)
)
-
(
(
Im3
z
)
*
(
Im3
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
z
*'
)
)
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K110
(
(
(
Im3
z
)
*
(
Im3
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
z
*'
)
)
)
)
) is
V28
()
set
K108
(
(
(
(
(
Rea
z
)
*
(
Rea
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
z
*'
)
)
)
)
-
(
(
Im1
z
)
*
(
Im1
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
z
*'
)
)
)
)
)
-
(
(
Im2
z
)
*
(
Im2
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
z
*'
)
)
)
)
)
,
K110
(
(
(
Im3
z
)
*
(
Im3
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
z
*'
)
)
)
)
)) is
set
(
Rea
z
)
*
(
Im1
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
z
*'
)
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im1
z
)
*
(
Rea
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
z
*'
)
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
Rea
z
)
*
(
Im1
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
z
*'
)
)
)
)
+
(
(
Im1
z
)
*
(
Rea
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
z
*'
)
)
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im2
z
)
*
(
Im3
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
z
*'
)
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
(
Rea
z
)
*
(
Im1
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
z
*'
)
)
)
)
+
(
(
Im1
z
)
*
(
Rea
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
z
*'
)
)
)
)
)
+
(
(
Im2
z
)
*
(
Im3
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
z
*'
)
)
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im3
z
)
*
(
Im2
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
z
*'
)
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
(
(
Rea
z
)
*
(
Im1
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
z
*'
)
)
)
)
+
(
(
Im1
z
)
*
(
Rea
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
z
*'
)
)
)
)
)
+
(
(
Im2
z
)
*
(
Im3
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
z
*'
)
)
)
)
)
-
(
(
Im3
z
)
*
(
Im2
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
z
*'
)
)
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K110
(
(
(
Im3
z
)
*
(
Im2
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
z
*'
)
)
)
)
) is
V28
()
set
K108
(
(
(
(
(
Rea
z
)
*
(
Im1
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
z
*'
)
)
)
)
+
(
(
Im1
z
)
*
(
Rea
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
z
*'
)
)
)
)
)
+
(
(
Im2
z
)
*
(
Im3
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
z
*'
)
)
)
)
)
,
K110
(
(
(
Im3
z
)
*
(
Im2
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
z
*'
)
)
)
)
)) is
set
(
(
(
(
(
Rea
z
)
*
(
Im1
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
z
*'
)
)
)
)
+
(
(
Im1
z
)
*
(
Rea
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
z
*'
)
)
)
)
)
+
(
(
Im2
z
)
*
(
Im3
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
z
*'
)
)
)
)
)
-
(
(
Im3
z
)
*
(
Im2
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
z
*'
)
)
)
)
)
*
<i>
is
quaternion
set
(
(
(
(
(
Rea
z
)
*
(
Rea
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
z
*'
)
)
)
)
-
(
(
Im1
z
)
*
(
Im1
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
z
*'
)
)
)
)
)
-
(
(
Im2
z
)
*
(
Im2
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
z
*'
)
)
)
)
)
-
(
(
Im3
z
)
*
(
Im3
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
z
*'
)
)
)
)
)
+
(
(
(
(
(
(
Rea
z
)
*
(
Im1
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
z
*'
)
)
)
)
+
(
(
Im1
z
)
*
(
Rea
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
z
*'
)
)
)
)
)
+
(
(
Im2
z
)
*
(
Im3
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
z
*'
)
)
)
)
)
-
(
(
Im3
z
)
*
(
Im2
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
z
*'
)
)
)
)
)
*
<i>
)
is
quaternion
set
(
Rea
z
)
*
(
Im2
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
z
*'
)
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im2
z
)
*
(
Rea
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
z
*'
)
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
Rea
z
)
*
(
Im2
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
z
*'
)
)
)
)
+
(
(
Im2
z
)
*
(
Rea
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
z
*'
)
)
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im3
z
)
*
(
Im1
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
z
*'
)
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
(
Rea
z
)
*
(
Im2
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
z
*'
)
)
)
)
+
(
(
Im2
z
)
*
(
Rea
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
z
*'
)
)
)
)
)
+
(
(
Im3
z
)
*
(
Im1
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
z
*'
)
)
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im1
z
)
*
(
Im3
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
z
*'
)
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
(
(
Rea
z
)
*
(
Im2
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
z
*'
)
)
)
)
+
(
(
Im2
z
)
*
(
Rea
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
z
*'
)
)
)
)
)
+
(
(
Im3
z
)
*
(
Im1
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
z
*'
)
)
)
)
)
-
(
(
Im1
z
)
*
(
Im3
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
z
*'
)
)
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K110
(
(
(
Im1
z
)
*
(
Im3
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
z
*'
)
)
)
)
) is
V28
()
set
K108
(
(
(
(
(
Rea
z
)
*
(
Im2
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
z
*'
)
)
)
)
+
(
(
Im2
z
)
*
(
Rea
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
z
*'
)
)
)
)
)
+
(
(
Im3
z
)
*
(
Im1
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
z
*'
)
)
)
)
)
,
K110
(
(
(
Im1
z
)
*
(
Im3
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
z
*'
)
)
)
)
)) is
set
(
(
(
(
(
Rea
z
)
*
(
Im2
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
z
*'
)
)
)
)
+
(
(
Im2
z
)
*
(
Rea
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
z
*'
)
)
)
)
)
+
(
(
Im3
z
)
*
(
Im1
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
z
*'
)
)
)
)
)
-
(
(
Im1
z
)
*
(
Im3
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
z
*'
)
)
)
)
)
*
<j>
is
quaternion
set
(
(
(
(
(
(
Rea
z
)
*
(
Rea
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
z
*'
)
)
)
)
-
(
(
Im1
z
)
*
(
Im1
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
z
*'
)
)
)
)
)
-
(
(
Im2
z
)
*
(
Im2
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
z
*'
)
)
)
)
)
-
(
(
Im3
z
)
*
(
Im3
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
z
*'
)
)
)
)
)
+
(
(
(
(
(
(
Rea
z
)
*
(
Im1
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
z
*'
)
)
)
)
+
(
(
Im1
z
)
*
(
Rea
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
z
*'
)
)
)
)
)
+
(
(
Im2
z
)
*
(
Im3
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
z
*'
)
)
)
)
)
-
(
(
Im3
z
)
*
(
Im2
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
z
*'
)
)
)
)
)
*
<i>
)
)
+
(
(
(
(
(
(
Rea
z
)
*
(
Im2
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
z
*'
)
)
)
)
+
(
(
Im2
z
)
*
(
Rea
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
z
*'
)
)
)
)
)
+
(
(
Im3
z
)
*
(
Im1
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
z
*'
)
)
)
)
)
-
(
(
Im1
z
)
*
(
Im3
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
z
*'
)
)
)
)
)
*
<j>
)
is
quaternion
Element
of
QUATERNION
(
Rea
z
)
*
(
Im3
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
z
*'
)
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im3
z
)
*
(
Rea
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
z
*'
)
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
Rea
z
)
*
(
Im3
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
z
*'
)
)
)
)
+
(
(
Im3
z
)
*
(
Rea
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
z
*'
)
)
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im1
z
)
*
(
Im2
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
z
*'
)
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
(
Rea
z
)
*
(
Im3
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
z
*'
)
)
)
)
+
(
(
Im3
z
)
*
(
Rea
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
z
*'
)
)
)
)
)
+
(
(
Im1
z
)
*
(
Im2
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
z
*'
)
)
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im2
z
)
*
(
Im1
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
z
*'
)
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
(
(
Rea
z
)
*
(
Im3
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
z
*'
)
)
)
)
+
(
(
Im3
z
)
*
(
Rea
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
z
*'
)
)
)
)
)
+
(
(
Im1
z
)
*
(
Im2
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
z
*'
)
)
)
)
)
-
(
(
Im2
z
)
*
(
Im1
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
z
*'
)
)
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K110
(
(
(
Im2
z
)
*
(
Im1
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
z
*'
)
)
)
)
) is
V28
()
set
K108
(
(
(
(
(
Rea
z
)
*
(
Im3
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
z
*'
)
)
)
)
+
(
(
Im3
z
)
*
(
Rea
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
z
*'
)
)
)
)
)
+
(
(
Im1
z
)
*
(
Im2
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
z
*'
)
)
)
)
)
,
K110
(
(
(
Im2
z
)
*
(
Im1
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
z
*'
)
)
)
)
)) is
set
(
(
(
(
(
Rea
z
)
*
(
Im3
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
z
*'
)
)
)
)
+
(
(
Im3
z
)
*
(
Rea
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
z
*'
)
)
)
)
)
+
(
(
Im1
z
)
*
(
Im2
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
z
*'
)
)
)
)
)
-
(
(
Im2
z
)
*
(
Im1
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
z
*'
)
)
)
)
)
*
<k>
is
quaternion
set
(
(
(
(
(
(
(
Rea
z
)
*
(
Rea
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
z
*'
)
)
)
)
-
(
(
Im1
z
)
*
(
Im1
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
z
*'
)
)
)
)
)
-
(
(
Im2
z
)
*
(
Im2
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
z
*'
)
)
)
)
)
-
(
(
Im3
z
)
*
(
Im3
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
z
*'
)
)
)
)
)
+
(
(
(
(
(
(
Rea
z
)
*
(
Im1
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
z
*'
)
)
)
)
+
(
(
Im1
z
)
*
(
Rea
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
z
*'
)
)
)
)
)
+
(
(
Im2
z
)
*
(
Im3
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
z
*'
)
)
)
)
)
-
(
(
Im3
z
)
*
(
Im2
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
z
*'
)
)
)
)
)
*
<i>
)
)
+
(
(
(
(
(
(
Rea
z
)
*
(
Im2
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
z
*'
)
)
)
)
+
(
(
Im2
z
)
*
(
Rea
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
z
*'
)
)
)
)
)
+
(
(
Im3
z
)
*
(
Im1
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
z
*'
)
)
)
)
)
-
(
(
Im1
z
)
*
(
Im3
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
z
*'
)
)
)
)
)
*
<j>
)
)
+
(
(
(
(
(
(
Rea
z
)
*
(
Im3
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
z
*'
)
)
)
)
+
(
(
Im3
z
)
*
(
Rea
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
z
*'
)
)
)
)
)
+
(
(
Im1
z
)
*
(
Im2
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
z
*'
)
)
)
)
)
-
(
(
Im2
z
)
*
(
Im1
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
z
*'
)
)
)
)
)
*
<k>
)
is
quaternion
Element
of
QUATERNION
[*
(
(
(
(
(
Rea
z
)
*
(
Rea
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
z
*'
)
)
)
)
-
(
(
Im1
z
)
*
(
Im1
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
z
*'
)
)
)
)
)
-
(
(
Im2
z
)
*
(
Im2
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
z
*'
)
)
)
)
)
-
(
(
Im3
z
)
*
(
Im3
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
z
*'
)
)
)
)
)
,
(
(
(
(
(
Rea
z
)
*
(
Im1
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
z
*'
)
)
)
)
+
(
(
Im1
z
)
*
(
Rea
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
z
*'
)
)
)
)
)
+
(
(
Im2
z
)
*
(
Im3
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
z
*'
)
)
)
)
)
-
(
(
Im3
z
)
*
(
Im2
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
z
*'
)
)
)
)
)
,
(
(
(
(
(
Rea
z
)
*
(
Im2
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
z
*'
)
)
)
)
+
(
(
Im2
z
)
*
(
Rea
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
z
*'
)
)
)
)
)
+
(
(
Im3
z
)
*
(
Im1
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
z
*'
)
)
)
)
)
-
(
(
Im1
z
)
*
(
Im3
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
z
*'
)
)
)
)
)
,
(
(
(
(
(
Rea
z
)
*
(
Im3
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
z
*'
)
)
)
)
+
(
(
Im3
z
)
*
(
Rea
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
z
*'
)
)
)
)
)
+
(
(
Im1
z
)
*
(
Im2
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
z
*'
)
)
)
)
)
-
(
(
Im2
z
)
*
(
Im1
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
z
*'
)
)
)
)
)
*]
is
quaternion
Element
of
QUATERNION
(
1
/
(
|.
z
.|
^2
)
)
*
(
Rea
z
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Rea
z
)
*
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
Rea
z
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
Rea
z
)
*
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
Rea
z
)
)
)
-
(
(
Im1
z
)
*
(
Im1
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
z
*'
)
)
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K108
(
(
(
Rea
z
)
*
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
Rea
z
)
)
)
,
K110
(
(
(
Im1
z
)
*
(
Im1
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
z
*'
)
)
)
)
)) is
set
(
(
(
Rea
z
)
*
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
Rea
z
)
)
)
-
(
(
Im1
z
)
*
(
Im1
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
z
*'
)
)
)
)
)
-
(
(
Im2
z
)
*
(
Im2
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
z
*'
)
)
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K108
(
(
(
(
Rea
z
)
*
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
Rea
z
)
)
)
-
(
(
Im1
z
)
*
(
Im1
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
z
*'
)
)
)
)
)
,
K110
(
(
(
Im2
z
)
*
(
Im2
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
z
*'
)
)
)
)
)) is
set
(
(
(
(
Rea
z
)
*
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
Rea
z
)
)
)
-
(
(
Im1
z
)
*
(
Im1
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
z
*'
)
)
)
)
)
-
(
(
Im2
z
)
*
(
Im2
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
z
*'
)
)
)
)
)
-
(
(
Im3
z
)
*
(
Im3
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
z
*'
)
)
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K108
(
(
(
(
(
Rea
z
)
*
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
Rea
z
)
)
)
-
(
(
Im1
z
)
*
(
Im1
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
z
*'
)
)
)
)
)
-
(
(
Im2
z
)
*
(
Im2
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
z
*'
)
)
)
)
)
,
K110
(
(
(
Im3
z
)
*
(
Im3
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
z
*'
)
)
)
)
)) is
set
[*
(
(
(
(
(
Rea
z
)
*
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
Rea
z
)
)
)
-
(
(
Im1
z
)
*
(
Im1
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
z
*'
)
)
)
)
)
-
(
(
Im2
z
)
*
(
Im2
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
z
*'
)
)
)
)
)
-
(
(
Im3
z
)
*
(
Im3
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
z
*'
)
)
)
)
)
,
(
(
(
(
(
Rea
z
)
*
(
Im1
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
z
*'
)
)
)
)
+
(
(
Im1
z
)
*
(
Rea
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
z
*'
)
)
)
)
)
+
(
(
Im2
z
)
*
(
Im3
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
z
*'
)
)
)
)
)
-
(
(
Im3
z
)
*
(
Im2
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
z
*'
)
)
)
)
)
,
(
(
(
(
(
Rea
z
)
*
(
Im2
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
z
*'
)
)
)
)
+
(
(
Im2
z
)
*
(
Rea
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
z
*'
)
)
)
)
)
+
(
(
Im3
z
)
*
(
Im1
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
z
*'
)
)
)
)
)
-
(
(
Im1
z
)
*
(
Im3
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
z
*'
)
)
)
)
)
,
(
(
(
(
(
Rea
z
)
*
(
Im3
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
z
*'
)
)
)
)
+
(
(
Im3
z
)
*
(
Rea
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
z
*'
)
)
)
)
)
+
(
(
Im1
z
)
*
(
Im2
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
z
*'
)
)
)
)
)
-
(
(
Im2
z
)
*
(
Im1
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
z
*'
)
)
)
)
)
*]
is
quaternion
Element
of
QUATERNION
(
1
/
(
|.
z
.|
^2
)
)
*
(
Im1
z
)
is
V28
()
V29
()
ext-real
Element
of
REAL
-
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
Im1
z
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im1
z
)
*
(
-
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
Im1
z
)
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
Rea
z
)
*
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
Rea
z
)
)
)
-
(
(
Im1
z
)
*
(
-
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
Im1
z
)
)
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K110
(
(
(
Im1
z
)
*
(
-
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
Im1
z
)
)
)
)
) is
V28
()
set
K108
(
(
(
Rea
z
)
*
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
Rea
z
)
)
)
,
K110
(
(
(
Im1
z
)
*
(
-
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
Im1
z
)
)
)
)
)) is
set
(
(
(
Rea
z
)
*
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
Rea
z
)
)
)
-
(
(
Im1
z
)
*
(
-
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
Im1
z
)
)
)
)
)
-
(
(
Im2
z
)
*
(
Im2
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
z
*'
)
)
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K108
(
(
(
(
Rea
z
)
*
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
Rea
z
)
)
)
-
(
(
Im1
z
)
*
(
-
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
Im1
z
)
)
)
)
)
,
K110
(
(
(
Im2
z
)
*
(
Im2
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
z
*'
)
)
)
)
)) is
set
(
(
(
(
Rea
z
)
*
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
Rea
z
)
)
)
-
(
(
Im1
z
)
*
(
-
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
Im1
z
)
)
)
)
)
-
(
(
Im2
z
)
*
(
Im2
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
z
*'
)
)
)
)
)
-
(
(
Im3
z
)
*
(
Im3
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
z
*'
)
)
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K108
(
(
(
(
(
Rea
z
)
*
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
Rea
z
)
)
)
-
(
(
Im1
z
)
*
(
-
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
Im1
z
)
)
)
)
)
-
(
(
Im2
z
)
*
(
Im2
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
z
*'
)
)
)
)
)
,
K110
(
(
(
Im3
z
)
*
(
Im3
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
z
*'
)
)
)
)
)) is
set
[*
(
(
(
(
(
Rea
z
)
*
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
Rea
z
)
)
)
-
(
(
Im1
z
)
*
(
-
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
Im1
z
)
)
)
)
)
-
(
(
Im2
z
)
*
(
Im2
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
z
*'
)
)
)
)
)
-
(
(
Im3
z
)
*
(
Im3
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
z
*'
)
)
)
)
)
,
(
(
(
(
(
Rea
z
)
*
(
Im1
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
z
*'
)
)
)
)
+
(
(
Im1
z
)
*
(
Rea
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
z
*'
)
)
)
)
)
+
(
(
Im2
z
)
*
(
Im3
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
z
*'
)
)
)
)
)
-
(
(
Im3
z
)
*
(
Im2
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
z
*'
)
)
)
)
)
,
(
(
(
(
(
Rea
z
)
*
(
Im2
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
z
*'
)
)
)
)
+
(
(
Im2
z
)
*
(
Rea
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
z
*'
)
)
)
)
)
+
(
(
Im3
z
)
*
(
Im1
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
z
*'
)
)
)
)
)
-
(
(
Im1
z
)
*
(
Im3
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
z
*'
)
)
)
)
)
,
(
(
(
(
(
Rea
z
)
*
(
Im3
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
z
*'
)
)
)
)
+
(
(
Im3
z
)
*
(
Rea
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
z
*'
)
)
)
)
)
+
(
(
Im1
z
)
*
(
Im2
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
z
*'
)
)
)
)
)
-
(
(
Im2
z
)
*
(
Im1
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
z
*'
)
)
)
)
)
*]
is
quaternion
Element
of
QUATERNION
(
1
/
(
|.
z
.|
^2
)
)
*
(
Im2
z
)
is
V28
()
V29
()
ext-real
Element
of
REAL
-
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
Im2
z
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im2
z
)
*
(
-
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
Im2
z
)
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
(
Rea
z
)
*
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
Rea
z
)
)
)
-
(
(
Im1
z
)
*
(
-
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
Im1
z
)
)
)
)
)
-
(
(
Im2
z
)
*
(
-
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
Im2
z
)
)
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K110
(
(
(
Im2
z
)
*
(
-
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
Im2
z
)
)
)
)
) is
V28
()
set
K108
(
(
(
(
Rea
z
)
*
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
Rea
z
)
)
)
-
(
(
Im1
z
)
*
(
-
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
Im1
z
)
)
)
)
)
,
K110
(
(
(
Im2
z
)
*
(
-
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
Im2
z
)
)
)
)
)) is
set
(
(
(
(
Rea
z
)
*
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
Rea
z
)
)
)
-
(
(
Im1
z
)
*
(
-
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
Im1
z
)
)
)
)
)
-
(
(
Im2
z
)
*
(
-
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
Im2
z
)
)
)
)
)
-
(
(
Im3
z
)
*
(
Im3
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
z
*'
)
)
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K108
(
(
(
(
(
Rea
z
)
*
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
Rea
z
)
)
)
-
(
(
Im1
z
)
*
(
-
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
Im1
z
)
)
)
)
)
-
(
(
Im2
z
)
*
(
-
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
Im2
z
)
)
)
)
)
,
K110
(
(
(
Im3
z
)
*
(
Im3
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
z
*'
)
)
)
)
)) is
set
[*
(
(
(
(
(
Rea
z
)
*
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
Rea
z
)
)
)
-
(
(
Im1
z
)
*
(
-
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
Im1
z
)
)
)
)
)
-
(
(
Im2
z
)
*
(
-
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
Im2
z
)
)
)
)
)
-
(
(
Im3
z
)
*
(
Im3
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
z
*'
)
)
)
)
)
,
(
(
(
(
(
Rea
z
)
*
(
Im1
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
z
*'
)
)
)
)
+
(
(
Im1
z
)
*
(
Rea
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
z
*'
)
)
)
)
)
+
(
(
Im2
z
)
*
(
Im3
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
z
*'
)
)
)
)
)
-
(
(
Im3
z
)
*
(
Im2
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
z
*'
)
)
)
)
)
,
(
(
(
(
(
Rea
z
)
*
(
Im2
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
z
*'
)
)
)
)
+
(
(
Im2
z
)
*
(
Rea
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
z
*'
)
)
)
)
)
+
(
(
Im3
z
)
*
(
Im1
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
z
*'
)
)
)
)
)
-
(
(
Im1
z
)
*
(
Im3
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
z
*'
)
)
)
)
)
,
(
(
(
(
(
Rea
z
)
*
(
Im3
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
z
*'
)
)
)
)
+
(
(
Im3
z
)
*
(
Rea
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
z
*'
)
)
)
)
)
+
(
(
Im1
z
)
*
(
Im2
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
z
*'
)
)
)
)
)
-
(
(
Im2
z
)
*
(
Im1
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
z
*'
)
)
)
)
)
*]
is
quaternion
Element
of
QUATERNION
(
1
/
(
|.
z
.|
^2
)
)
*
(
Im3
z
)
is
V28
()
V29
()
ext-real
Element
of
REAL
-
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
Im3
z
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im3
z
)
*
(
-
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
Im3
z
)
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
(
(
Rea
z
)
*
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
Rea
z
)
)
)
-
(
(
Im1
z
)
*
(
-
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
Im1
z
)
)
)
)
)
-
(
(
Im2
z
)
*
(
-
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
Im2
z
)
)
)
)
)
-
(
(
Im3
z
)
*
(
-
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
Im3
z
)
)
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K110
(
(
(
Im3
z
)
*
(
-
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
Im3
z
)
)
)
)
) is
V28
()
set
K108
(
(
(
(
(
Rea
z
)
*
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
Rea
z
)
)
)
-
(
(
Im1
z
)
*
(
-
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
Im1
z
)
)
)
)
)
-
(
(
Im2
z
)
*
(
-
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
Im2
z
)
)
)
)
)
,
K110
(
(
(
Im3
z
)
*
(
-
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
Im3
z
)
)
)
)
)) is
set
[*
(
(
(
(
(
Rea
z
)
*
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
Rea
z
)
)
)
-
(
(
Im1
z
)
*
(
-
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
Im1
z
)
)
)
)
)
-
(
(
Im2
z
)
*
(
-
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
Im2
z
)
)
)
)
)
-
(
(
Im3
z
)
*
(
-
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
Im3
z
)
)
)
)
)
,
(
(
(
(
(
Rea
z
)
*
(
Im1
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
z
*'
)
)
)
)
+
(
(
Im1
z
)
*
(
Rea
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
z
*'
)
)
)
)
)
+
(
(
Im2
z
)
*
(
Im3
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
z
*'
)
)
)
)
)
-
(
(
Im3
z
)
*
(
Im2
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
z
*'
)
)
)
)
)
,
(
(
(
(
(
Rea
z
)
*
(
Im2
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
z
*'
)
)
)
)
+
(
(
Im2
z
)
*
(
Rea
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
z
*'
)
)
)
)
)
+
(
(
Im3
z
)
*
(
Im1
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
z
*'
)
)
)
)
)
-
(
(
Im1
z
)
*
(
Im3
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
z
*'
)
)
)
)
)
,
(
(
(
(
(
Rea
z
)
*
(
Im3
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
z
*'
)
)
)
)
+
(
(
Im3
z
)
*
(
Rea
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
z
*'
)
)
)
)
)
+
(
(
Im1
z
)
*
(
Im2
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
z
*'
)
)
)
)
)
-
(
(
Im2
z
)
*
(
Im1
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
z
*'
)
)
)
)
)
*]
is
quaternion
Element
of
QUATERNION
(
Rea
z
)
*
(
-
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
Im1
z
)
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
Rea
z
)
*
(
-
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
Im1
z
)
)
)
)
+
(
(
Im1
z
)
*
(
Rea
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
z
*'
)
)
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
(
Rea
z
)
*
(
-
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
Im1
z
)
)
)
)
+
(
(
Im1
z
)
*
(
Rea
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
z
*'
)
)
)
)
)
+
(
(
Im2
z
)
*
(
Im3
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
z
*'
)
)
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
(
(
Rea
z
)
*
(
-
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
Im1
z
)
)
)
)
+
(
(
Im1
z
)
*
(
Rea
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
z
*'
)
)
)
)
)
+
(
(
Im2
z
)
*
(
Im3
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
z
*'
)
)
)
)
)
-
(
(
Im3
z
)
*
(
Im2
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
z
*'
)
)
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K108
(
(
(
(
(
Rea
z
)
*
(
-
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
Im1
z
)
)
)
)
+
(
(
Im1
z
)
*
(
Rea
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
z
*'
)
)
)
)
)
+
(
(
Im2
z
)
*
(
Im3
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
z
*'
)
)
)
)
)
,
K110
(
(
(
Im3
z
)
*
(
Im2
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
z
*'
)
)
)
)
)) is
set
[*
(
(
(
(
(
Rea
z
)
*
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
Rea
z
)
)
)
-
(
(
Im1
z
)
*
(
-
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
Im1
z
)
)
)
)
)
-
(
(
Im2
z
)
*
(
-
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
Im2
z
)
)
)
)
)
-
(
(
Im3
z
)
*
(
-
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
Im3
z
)
)
)
)
)
,
(
(
(
(
(
Rea
z
)
*
(
-
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
Im1
z
)
)
)
)
+
(
(
Im1
z
)
*
(
Rea
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
z
*'
)
)
)
)
)
+
(
(
Im2
z
)
*
(
Im3
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
z
*'
)
)
)
)
)
-
(
(
Im3
z
)
*
(
Im2
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
z
*'
)
)
)
)
)
,
(
(
(
(
(
Rea
z
)
*
(
Im2
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
z
*'
)
)
)
)
+
(
(
Im2
z
)
*
(
Rea
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
z
*'
)
)
)
)
)
+
(
(
Im3
z
)
*
(
Im1
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
z
*'
)
)
)
)
)
-
(
(
Im1
z
)
*
(
Im3
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
z
*'
)
)
)
)
)
,
(
(
(
(
(
Rea
z
)
*
(
Im3
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
z
*'
)
)
)
)
+
(
(
Im3
z
)
*
(
Rea
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
z
*'
)
)
)
)
)
+
(
(
Im1
z
)
*
(
Im2
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
z
*'
)
)
)
)
)
-
(
(
Im2
z
)
*
(
Im1
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
z
*'
)
)
)
)
)
*]
is
quaternion
Element
of
QUATERNION
(
Im1
z
)
*
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
Rea
z
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
Rea
z
)
*
(
-
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
Im1
z
)
)
)
)
+
(
(
Im1
z
)
*
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
Rea
z
)
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
(
Rea
z
)
*
(
-
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
Im1
z
)
)
)
)
+
(
(
Im1
z
)
*
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
Rea
z
)
)
)
)
+
(
(
Im2
z
)
*
(
Im3
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
z
*'
)
)
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
(
(
Rea
z
)
*
(
-
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
Im1
z
)
)
)
)
+
(
(
Im1
z
)
*
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
Rea
z
)
)
)
)
+
(
(
Im2
z
)
*
(
Im3
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
z
*'
)
)
)
)
)
-
(
(
Im3
z
)
*
(
Im2
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
z
*'
)
)
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K108
(
(
(
(
(
Rea
z
)
*
(
-
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
Im1
z
)
)
)
)
+
(
(
Im1
z
)
*
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
Rea
z
)
)
)
)
+
(
(
Im2
z
)
*
(
Im3
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
z
*'
)
)
)
)
)
,
K110
(
(
(
Im3
z
)
*
(
Im2
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
z
*'
)
)
)
)
)) is
set
[*
(
(
(
(
(
Rea
z
)
*
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
Rea
z
)
)
)
-
(
(
Im1
z
)
*
(
-
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
Im1
z
)
)
)
)
)
-
(
(
Im2
z
)
*
(
-
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
Im2
z
)
)
)
)
)
-
(
(
Im3
z
)
*
(
-
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
Im3
z
)
)
)
)
)
,
(
(
(
(
(
Rea
z
)
*
(
-
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
Im1
z
)
)
)
)
+
(
(
Im1
z
)
*
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
Rea
z
)
)
)
)
+
(
(
Im2
z
)
*
(
Im3
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
z
*'
)
)
)
)
)
-
(
(
Im3
z
)
*
(
Im2
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
z
*'
)
)
)
)
)
,
(
(
(
(
(
Rea
z
)
*
(
Im2
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
z
*'
)
)
)
)
+
(
(
Im2
z
)
*
(
Rea
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
z
*'
)
)
)
)
)
+
(
(
Im3
z
)
*
(
Im1
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
z
*'
)
)
)
)
)
-
(
(
Im1
z
)
*
(
Im3
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
z
*'
)
)
)
)
)
,
(
(
(
(
(
Rea
z
)
*
(
Im3
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
z
*'
)
)
)
)
+
(
(
Im3
z
)
*
(
Rea
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
z
*'
)
)
)
)
)
+
(
(
Im1
z
)
*
(
Im2
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
z
*'
)
)
)
)
)
-
(
(
Im2
z
)
*
(
Im1
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
z
*'
)
)
)
)
)
*]
is
quaternion
Element
of
QUATERNION
(
Im2
z
)
*
(
-
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
Im3
z
)
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
(
Rea
z
)
*
(
-
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
Im1
z
)
)
)
)
+
(
(
Im1
z
)
*
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
Rea
z
)
)
)
)
+
(
(
Im2
z
)
*
(
-
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
Im3
z
)
)
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
(
(
Rea
z
)
*
(
-
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
Im1
z
)
)
)
)
+
(
(
Im1
z
)
*
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
Rea
z
)
)
)
)
+
(
(
Im2
z
)
*
(
-
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
Im3
z
)
)
)
)
)
-
(
(
Im3
z
)
*
(
Im2
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
z
*'
)
)
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K108
(
(
(
(
(
Rea
z
)
*
(
-
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
Im1
z
)
)
)
)
+
(
(
Im1
z
)
*
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
Rea
z
)
)
)
)
+
(
(
Im2
z
)
*
(
-
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
Im3
z
)
)
)
)
)
,
K110
(
(
(
Im3
z
)
*
(
Im2
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
z
*'
)
)
)
)
)) is
set
[*
(
(
(
(
(
Rea
z
)
*
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
Rea
z
)
)
)
-
(
(
Im1
z
)
*
(
-
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
Im1
z
)
)
)
)
)
-
(
(
Im2
z
)
*
(
-
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
Im2
z
)
)
)
)
)
-
(
(
Im3
z
)
*
(
-
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
Im3
z
)
)
)
)
)
,
(
(
(
(
(
Rea
z
)
*
(
-
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
Im1
z
)
)
)
)
+
(
(
Im1
z
)
*
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
Rea
z
)
)
)
)
+
(
(
Im2
z
)
*
(
-
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
Im3
z
)
)
)
)
)
-
(
(
Im3
z
)
*
(
Im2
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
z
*'
)
)
)
)
)
,
(
(
(
(
(
Rea
z
)
*
(
Im2
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
z
*'
)
)
)
)
+
(
(
Im2
z
)
*
(
Rea
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
z
*'
)
)
)
)
)
+
(
(
Im3
z
)
*
(
Im1
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
z
*'
)
)
)
)
)
-
(
(
Im1
z
)
*
(
Im3
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
z
*'
)
)
)
)
)
,
(
(
(
(
(
Rea
z
)
*
(
Im3
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
z
*'
)
)
)
)
+
(
(
Im3
z
)
*
(
Rea
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
z
*'
)
)
)
)
)
+
(
(
Im1
z
)
*
(
Im2
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
z
*'
)
)
)
)
)
-
(
(
Im2
z
)
*
(
Im1
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
z
*'
)
)
)
)
)
*]
is
quaternion
Element
of
QUATERNION
(
Im3
z
)
*
(
-
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
Im2
z
)
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
(
(
Rea
z
)
*
(
-
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
Im1
z
)
)
)
)
+
(
(
Im1
z
)
*
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
Rea
z
)
)
)
)
+
(
(
Im2
z
)
*
(
-
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
Im3
z
)
)
)
)
)
-
(
(
Im3
z
)
*
(
-
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
Im2
z
)
)
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K110
(
(
(
Im3
z
)
*
(
-
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
Im2
z
)
)
)
)
) is
V28
()
set
K108
(
(
(
(
(
Rea
z
)
*
(
-
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
Im1
z
)
)
)
)
+
(
(
Im1
z
)
*
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
Rea
z
)
)
)
)
+
(
(
Im2
z
)
*
(
-
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
Im3
z
)
)
)
)
)
,
K110
(
(
(
Im3
z
)
*
(
-
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
Im2
z
)
)
)
)
)) is
set
[*
(
(
(
(
(
Rea
z
)
*
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
Rea
z
)
)
)
-
(
(
Im1
z
)
*
(
-
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
Im1
z
)
)
)
)
)
-
(
(
Im2
z
)
*
(
-
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
Im2
z
)
)
)
)
)
-
(
(
Im3
z
)
*
(
-
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
Im3
z
)
)
)
)
)
,
(
(
(
(
(
Rea
z
)
*
(
-
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
Im1
z
)
)
)
)
+
(
(
Im1
z
)
*
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
Rea
z
)
)
)
)
+
(
(
Im2
z
)
*
(
-
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
Im3
z
)
)
)
)
)
-
(
(
Im3
z
)
*
(
-
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
Im2
z
)
)
)
)
)
,
(
(
(
(
(
Rea
z
)
*
(
Im2
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
z
*'
)
)
)
)
+
(
(
Im2
z
)
*
(
Rea
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
z
*'
)
)
)
)
)
+
(
(
Im3
z
)
*
(
Im1
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
z
*'
)
)
)
)
)
-
(
(
Im1
z
)
*
(
Im3
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
z
*'
)
)
)
)
)
,
(
(
(
(
(
Rea
z
)
*
(
Im3
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
z
*'
)
)
)
)
+
(
(
Im3
z
)
*
(
Rea
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
z
*'
)
)
)
)
)
+
(
(
Im1
z
)
*
(
Im2
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
z
*'
)
)
)
)
)
-
(
(
Im2
z
)
*
(
Im1
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
z
*'
)
)
)
)
)
*]
is
quaternion
Element
of
QUATERNION
(
Rea
z
)
*
(
-
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
Im2
z
)
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
Rea
z
)
*
(
-
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
Im2
z
)
)
)
)
+
(
(
Im2
z
)
*
(
Rea
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
z
*'
)
)
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
(
Rea
z
)
*
(
-
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
Im2
z
)
)
)
)
+
(
(
Im2
z
)
*
(
Rea
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
z
*'
)
)
)
)
)
+
(
(
Im3
z
)
*
(
Im1
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
z
*'
)
)
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
(
(
Rea
z
)
*
(
-
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
Im2
z
)
)
)
)
+
(
(
Im2
z
)
*
(
Rea
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
z
*'
)
)
)
)
)
+
(
(
Im3
z
)
*
(
Im1
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
z
*'
)
)
)
)
)
-
(
(
Im1
z
)
*
(
Im3
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
z
*'
)
)
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K108
(
(
(
(
(
Rea
z
)
*
(
-
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
Im2
z
)
)
)
)
+
(
(
Im2
z
)
*
(
Rea
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
z
*'
)
)
)
)
)
+
(
(
Im3
z
)
*
(
Im1
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
z
*'
)
)
)
)
)
,
K110
(
(
(
Im1
z
)
*
(
Im3
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
z
*'
)
)
)
)
)) is
set
[*
(
(
(
(
(
Rea
z
)
*
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
Rea
z
)
)
)
-
(
(
Im1
z
)
*
(
-
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
Im1
z
)
)
)
)
)
-
(
(
Im2
z
)
*
(
-
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
Im2
z
)
)
)
)
)
-
(
(
Im3
z
)
*
(
-
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
Im3
z
)
)
)
)
)
,
(
(
(
(
(
Rea
z
)
*
(
-
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
Im1
z
)
)
)
)
+
(
(
Im1
z
)
*
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
Rea
z
)
)
)
)
+
(
(
Im2
z
)
*
(
-
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
Im3
z
)
)
)
)
)
-
(
(
Im3
z
)
*
(
-
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
Im2
z
)
)
)
)
)
,
(
(
(
(
(
Rea
z
)
*
(
-
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
Im2
z
)
)
)
)
+
(
(
Im2
z
)
*
(
Rea
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
z
*'
)
)
)
)
)
+
(
(
Im3
z
)
*
(
Im1
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
z
*'
)
)
)
)
)
-
(
(
Im1
z
)
*
(
Im3
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
z
*'
)
)
)
)
)
,
(
(
(
(
(
Rea
z
)
*
(
Im3
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
z
*'
)
)
)
)
+
(
(
Im3
z
)
*
(
Rea
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
z
*'
)
)
)
)
)
+
(
(
Im1
z
)
*
(
Im2
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
z
*'
)
)
)
)
)
-
(
(
Im2
z
)
*
(
Im1
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
z
*'
)
)
)
)
)
*]
is
quaternion
Element
of
QUATERNION
(
Im2
z
)
*
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
Rea
z
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
Rea
z
)
*
(
-
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
Im2
z
)
)
)
)
+
(
(
Im2
z
)
*
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
Rea
z
)
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
(
Rea
z
)
*
(
-
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
Im2
z
)
)
)
)
+
(
(
Im2
z
)
*
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
Rea
z
)
)
)
)
+
(
(
Im3
z
)
*
(
Im1
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
z
*'
)
)
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
(
(
Rea
z
)
*
(
-
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
Im2
z
)
)
)
)
+
(
(
Im2
z
)
*
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
Rea
z
)
)
)
)
+
(
(
Im3
z
)
*
(
Im1
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
z
*'
)
)
)
)
)
-
(
(
Im1
z
)
*
(
Im3
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
z
*'
)
)
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K108
(
(
(
(
(
Rea
z
)
*
(
-
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
Im2
z
)
)
)
)
+
(
(
Im2
z
)
*
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
Rea
z
)
)
)
)
+
(
(
Im3
z
)
*
(
Im1
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
z
*'
)
)
)
)
)
,
K110
(
(
(
Im1
z
)
*
(
Im3
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
z
*'
)
)
)
)
)) is
set
[*
(
(
(
(
(
Rea
z
)
*
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
Rea
z
)
)
)
-
(
(
Im1
z
)
*
(
-
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
Im1
z
)
)
)
)
)
-
(
(
Im2
z
)
*
(
-
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
Im2
z
)
)
)
)
)
-
(
(
Im3
z
)
*
(
-
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
Im3
z
)
)
)
)
)
,
(
(
(
(
(
Rea
z
)
*
(
-
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
Im1
z
)
)
)
)
+
(
(
Im1
z
)
*
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
Rea
z
)
)
)
)
+
(
(
Im2
z
)
*
(
-
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
Im3
z
)
)
)
)
)
-
(
(
Im3
z
)
*
(
-
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
Im2
z
)
)
)
)
)
,
(
(
(
(
(
Rea
z
)
*
(
-
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
Im2
z
)
)
)
)
+
(
(
Im2
z
)
*
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
Rea
z
)
)
)
)
+
(
(
Im3
z
)
*
(
Im1
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
z
*'
)
)
)
)
)
-
(
(
Im1
z
)
*
(
Im3
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
z
*'
)
)
)
)
)
,
(
(
(
(
(
Rea
z
)
*
(
Im3
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
z
*'
)
)
)
)
+
(
(
Im3
z
)
*
(
Rea
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
z
*'
)
)
)
)
)
+
(
(
Im1
z
)
*
(
Im2
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
z
*'
)
)
)
)
)
-
(
(
Im2
z
)
*
(
Im1
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
z
*'
)
)
)
)
)
*]
is
quaternion
Element
of
QUATERNION
(
Im3
z
)
*
(
-
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
Im1
z
)
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
(
Rea
z
)
*
(
-
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
Im2
z
)
)
)
)
+
(
(
Im2
z
)
*
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
Rea
z
)
)
)
)
+
(
(
Im3
z
)
*
(
-
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
Im1
z
)
)
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
(
(
Rea
z
)
*
(
-
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
Im2
z
)
)
)
)
+
(
(
Im2
z
)
*
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
Rea
z
)
)
)
)
+
(
(
Im3
z
)
*
(
-
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
Im1
z
)
)
)
)
)
-
(
(
Im1
z
)
*
(
Im3
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
z
*'
)
)
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K108
(
(
(
(
(
Rea
z
)
*
(
-
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
Im2
z
)
)
)
)
+
(
(
Im2
z
)
*
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
Rea
z
)
)
)
)
+
(
(
Im3
z
)
*
(
-
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
Im1
z
)
)
)
)
)
,
K110
(
(
(
Im1
z
)
*
(
Im3
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
z
*'
)
)
)
)
)) is
set
[*
(
(
(
(
(
Rea
z
)
*
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
Rea
z
)
)
)
-
(
(
Im1
z
)
*
(
-
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
Im1
z
)
)
)
)
)
-
(
(
Im2
z
)
*
(
-
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
Im2
z
)
)
)
)
)
-
(
(
Im3
z
)
*
(
-
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
Im3
z
)
)
)
)
)
,
(
(
(
(
(
Rea
z
)
*
(
-
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
Im1
z
)
)
)
)
+
(
(
Im1
z
)
*
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
Rea
z
)
)
)
)
+
(
(
Im2
z
)
*
(
-
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
Im3
z
)
)
)
)
)
-
(
(
Im3
z
)
*
(
-
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
Im2
z
)
)
)
)
)
,
(
(
(
(
(
Rea
z
)
*
(
-
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
Im2
z
)
)
)
)
+
(
(
Im2
z
)
*
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
Rea
z
)
)
)
)
+
(
(
Im3
z
)
*
(
-
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
Im1
z
)
)
)
)
)
-
(
(
Im1
z
)
*
(
Im3
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
z
*'
)
)
)
)
)
,
(
(
(
(
(
Rea
z
)
*
(
Im3
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
z
*'
)
)
)
)
+
(
(
Im3
z
)
*
(
Rea
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
z
*'
)
)
)
)
)
+
(
(
Im1
z
)
*
(
Im2
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
z
*'
)
)
)
)
)
-
(
(
Im2
z
)
*
(
Im1
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
z
*'
)
)
)
)
)
*]
is
quaternion
Element
of
QUATERNION
(
Im1
z
)
*
(
-
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
Im3
z
)
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
(
(
Rea
z
)
*
(
-
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
Im2
z
)
)
)
)
+
(
(
Im2
z
)
*
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
Rea
z
)
)
)
)
+
(
(
Im3
z
)
*
(
-
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
Im1
z
)
)
)
)
)
-
(
(
Im1
z
)
*
(
-
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
Im3
z
)
)
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K110
(
(
(
Im1
z
)
*
(
-
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
Im3
z
)
)
)
)
) is
V28
()
set
K108
(
(
(
(
(
Rea
z
)
*
(
-
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
Im2
z
)
)
)
)
+
(
(
Im2
z
)
*
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
Rea
z
)
)
)
)
+
(
(
Im3
z
)
*
(
-
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
Im1
z
)
)
)
)
)
,
K110
(
(
(
Im1
z
)
*
(
-
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
Im3
z
)
)
)
)
)) is
set
[*
(
(
(
(
(
Rea
z
)
*
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
Rea
z
)
)
)
-
(
(
Im1
z
)
*
(
-
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
Im1
z
)
)
)
)
)
-
(
(
Im2
z
)
*
(
-
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
Im2
z
)
)
)
)
)
-
(
(
Im3
z
)
*
(
-
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
Im3
z
)
)
)
)
)
,
(
(
(
(
(
Rea
z
)
*
(
-
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
Im1
z
)
)
)
)
+
(
(
Im1
z
)
*
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
Rea
z
)
)
)
)
+
(
(
Im2
z
)
*
(
-
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
Im3
z
)
)
)
)
)
-
(
(
Im3
z
)
*
(
-
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
Im2
z
)
)
)
)
)
,
(
(
(
(
(
Rea
z
)
*
(
-
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
Im2
z
)
)
)
)
+
(
(
Im2
z
)
*
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
Rea
z
)
)
)
)
+
(
(
Im3
z
)
*
(
-
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
Im1
z
)
)
)
)
)
-
(
(
Im1
z
)
*
(
-
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
Im3
z
)
)
)
)
)
,
(
(
(
(
(
Rea
z
)
*
(
Im3
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
z
*'
)
)
)
)
+
(
(
Im3
z
)
*
(
Rea
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
z
*'
)
)
)
)
)
+
(
(
Im1
z
)
*
(
Im2
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
z
*'
)
)
)
)
)
-
(
(
Im2
z
)
*
(
Im1
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
z
*'
)
)
)
)
)
*]
is
quaternion
Element
of
QUATERNION
(
Rea
z
)
*
(
-
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
Im3
z
)
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
Rea
z
)
*
(
-
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
Im3
z
)
)
)
)
+
(
(
Im3
z
)
*
(
Rea
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
z
*'
)
)
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
(
Rea
z
)
*
(
-
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
Im3
z
)
)
)
)
+
(
(
Im3
z
)
*
(
Rea
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
z
*'
)
)
)
)
)
+
(
(
Im1
z
)
*
(
Im2
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
z
*'
)
)
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
(
(
Rea
z
)
*
(
-
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
Im3
z
)
)
)
)
+
(
(
Im3
z
)
*
(
Rea
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
z
*'
)
)
)
)
)
+
(
(
Im1
z
)
*
(
Im2
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
z
*'
)
)
)
)
)
-
(
(
Im2
z
)
*
(
Im1
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
z
*'
)
)
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K108
(
(
(
(
(
Rea
z
)
*
(
-
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
Im3
z
)
)
)
)
+
(
(
Im3
z
)
*
(
Rea
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
z
*'
)
)
)
)
)
+
(
(
Im1
z
)
*
(
Im2
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
z
*'
)
)
)
)
)
,
K110
(
(
(
Im2
z
)
*
(
Im1
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
z
*'
)
)
)
)
)) is
set
[*
(
(
(
(
(
Rea
z
)
*
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
Rea
z
)
)
)
-
(
(
Im1
z
)
*
(
-
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
Im1
z
)
)
)
)
)
-
(
(
Im2
z
)
*
(
-
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
Im2
z
)
)
)
)
)
-
(
(
Im3
z
)
*
(
-
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
Im3
z
)
)
)
)
)
,
(
(
(
(
(
Rea
z
)
*
(
-
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
Im1
z
)
)
)
)
+
(
(
Im1
z
)
*
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
Rea
z
)
)
)
)
+
(
(
Im2
z
)
*
(
-
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
Im3
z
)
)
)
)
)
-
(
(
Im3
z
)
*
(
-
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
Im2
z
)
)
)
)
)
,
(
(
(
(
(
Rea
z
)
*
(
-
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
Im2
z
)
)
)
)
+
(
(
Im2
z
)
*
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
Rea
z
)
)
)
)
+
(
(
Im3
z
)
*
(
-
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
Im1
z
)
)
)
)
)
-
(
(
Im1
z
)
*
(
-
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
Im3
z
)
)
)
)
)
,
(
(
(
(
(
Rea
z
)
*
(
-
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
Im3
z
)
)
)
)
+
(
(
Im3
z
)
*
(
Rea
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
z
*'
)
)
)
)
)
+
(
(
Im1
z
)
*
(
Im2
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
z
*'
)
)
)
)
)
-
(
(
Im2
z
)
*
(
Im1
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
z
*'
)
)
)
)
)
*]
is
quaternion
Element
of
QUATERNION
(
Im3
z
)
*
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
Rea
z
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
Rea
z
)
*
(
-
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
Im3
z
)
)
)
)
+
(
(
Im3
z
)
*
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
Rea
z
)
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
(
Rea
z
)
*
(
-
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
Im3
z
)
)
)
)
+
(
(
Im3
z
)
*
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
Rea
z
)
)
)
)
+
(
(
Im1
z
)
*
(
Im2
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
z
*'
)
)
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
(
(
Rea
z
)
*
(
-
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
Im3
z
)
)
)
)
+
(
(
Im3
z
)
*
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
Rea
z
)
)
)
)
+
(
(
Im1
z
)
*
(
Im2
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
z
*'
)
)
)
)
)
-
(
(
Im2
z
)
*
(
Im1
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
z
*'
)
)
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K108
(
(
(
(
(
Rea
z
)
*
(
-
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
Im3
z
)
)
)
)
+
(
(
Im3
z
)
*
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
Rea
z
)
)
)
)
+
(
(
Im1
z
)
*
(
Im2
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
z
*'
)
)
)
)
)
,
K110
(
(
(
Im2
z
)
*
(
Im1
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
z
*'
)
)
)
)
)) is
set
[*
(
(
(
(
(
Rea
z
)
*
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
Rea
z
)
)
)
-
(
(
Im1
z
)
*
(
-
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
Im1
z
)
)
)
)
)
-
(
(
Im2
z
)
*
(
-
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
Im2
z
)
)
)
)
)
-
(
(
Im3
z
)
*
(
-
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
Im3
z
)
)
)
)
)
,
(
(
(
(
(
Rea
z
)
*
(
-
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
Im1
z
)
)
)
)
+
(
(
Im1
z
)
*
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
Rea
z
)
)
)
)
+
(
(
Im2
z
)
*
(
-
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
Im3
z
)
)
)
)
)
-
(
(
Im3
z
)
*
(
-
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
Im2
z
)
)
)
)
)
,
(
(
(
(
(
Rea
z
)
*
(
-
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
Im2
z
)
)
)
)
+
(
(
Im2
z
)
*
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
Rea
z
)
)
)
)
+
(
(
Im3
z
)
*
(
-
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
Im1
z
)
)
)
)
)
-
(
(
Im1
z
)
*
(
-
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
Im3
z
)
)
)
)
)
,
(
(
(
(
(
Rea
z
)
*
(
-
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
Im3
z
)
)
)
)
+
(
(
Im3
z
)
*
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
Rea
z
)
)
)
)
+
(
(
Im1
z
)
*
(
Im2
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
z
*'
)
)
)
)
)
-
(
(
Im2
z
)
*
(
Im1
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
z
*'
)
)
)
)
)
*]
is
quaternion
Element
of
QUATERNION
(
Im1
z
)
*
(
-
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
Im2
z
)
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
(
Rea
z
)
*
(
-
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
Im3
z
)
)
)
)
+
(
(
Im3
z
)
*
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
Rea
z
)
)
)
)
+
(
(
Im1
z
)
*
(
-
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
Im2
z
)
)
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
(
(
Rea
z
)
*
(
-
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
Im3
z
)
)
)
)
+
(
(
Im3
z
)
*
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
Rea
z
)
)
)
)
+
(
(
Im1
z
)
*
(
-
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
Im2
z
)
)
)
)
)
-
(
(
Im2
z
)
*
(
Im1
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
z
*'
)
)
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K108
(
(
(
(
(
Rea
z
)
*
(
-
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
Im3
z
)
)
)
)
+
(
(
Im3
z
)
*
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
Rea
z
)
)
)
)
+
(
(
Im1
z
)
*
(
-
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
Im2
z
)
)
)
)
)
,
K110
(
(
(
Im2
z
)
*
(
Im1
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
z
*'
)
)
)
)
)) is
set
[*
(
(
(
(
(
Rea
z
)
*
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
Rea
z
)
)
)
-
(
(
Im1
z
)
*
(
-
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
Im1
z
)
)
)
)
)
-
(
(
Im2
z
)
*
(
-
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
Im2
z
)
)
)
)
)
-
(
(
Im3
z
)
*
(
-
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
Im3
z
)
)
)
)
)
,
(
(
(
(
(
Rea
z
)
*
(
-
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
Im1
z
)
)
)
)
+
(
(
Im1
z
)
*
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
Rea
z
)
)
)
)
+
(
(
Im2
z
)
*
(
-
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
Im3
z
)
)
)
)
)
-
(
(
Im3
z
)
*
(
-
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
Im2
z
)
)
)
)
)
,
(
(
(
(
(
Rea
z
)
*
(
-
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
Im2
z
)
)
)
)
+
(
(
Im2
z
)
*
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
Rea
z
)
)
)
)
+
(
(
Im3
z
)
*
(
-
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
Im1
z
)
)
)
)
)
-
(
(
Im1
z
)
*
(
-
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
Im3
z
)
)
)
)
)
,
(
(
(
(
(
Rea
z
)
*
(
-
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
Im3
z
)
)
)
)
+
(
(
Im3
z
)
*
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
Rea
z
)
)
)
)
+
(
(
Im1
z
)
*
(
-
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
Im2
z
)
)
)
)
)
-
(
(
Im2
z
)
*
(
Im1
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
z
*'
)
)
)
)
)
*]
is
quaternion
Element
of
QUATERNION
(
Im2
z
)
*
(
-
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
Im1
z
)
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
(
(
Rea
z
)
*
(
-
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
Im3
z
)
)
)
)
+
(
(
Im3
z
)
*
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
Rea
z
)
)
)
)
+
(
(
Im1
z
)
*
(
-
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
Im2
z
)
)
)
)
)
-
(
(
Im2
z
)
*
(
-
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
Im1
z
)
)
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K110
(
(
(
Im2
z
)
*
(
-
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
Im1
z
)
)
)
)
) is
V28
()
set
K108
(
(
(
(
(
Rea
z
)
*
(
-
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
Im3
z
)
)
)
)
+
(
(
Im3
z
)
*
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
Rea
z
)
)
)
)
+
(
(
Im1
z
)
*
(
-
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
Im2
z
)
)
)
)
)
,
K110
(
(
(
Im2
z
)
*
(
-
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
Im1
z
)
)
)
)
)) is
set
[*
(
(
(
(
(
Rea
z
)
*
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
Rea
z
)
)
)
-
(
(
Im1
z
)
*
(
-
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
Im1
z
)
)
)
)
)
-
(
(
Im2
z
)
*
(
-
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
Im2
z
)
)
)
)
)
-
(
(
Im3
z
)
*
(
-
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
Im3
z
)
)
)
)
)
,
(
(
(
(
(
Rea
z
)
*
(
-
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
Im1
z
)
)
)
)
+
(
(
Im1
z
)
*
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
Rea
z
)
)
)
)
+
(
(
Im2
z
)
*
(
-
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
Im3
z
)
)
)
)
)
-
(
(
Im3
z
)
*
(
-
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
Im2
z
)
)
)
)
)
,
(
(
(
(
(
Rea
z
)
*
(
-
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
Im2
z
)
)
)
)
+
(
(
Im2
z
)
*
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
Rea
z
)
)
)
)
+
(
(
Im3
z
)
*
(
-
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
Im1
z
)
)
)
)
)
-
(
(
Im1
z
)
*
(
-
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
Im3
z
)
)
)
)
)
,
(
(
(
(
(
Rea
z
)
*
(
-
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
Im3
z
)
)
)
)
+
(
(
Im3
z
)
*
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
Rea
z
)
)
)
)
+
(
(
Im1
z
)
*
(
-
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
Im2
z
)
)
)
)
)
-
(
(
Im2
z
)
*
(
-
(
(
1
/
(
|.
z
.|
^2
)
)
*
(
Im1
z
)
)
)
)
)
*]
is
quaternion
Element
of
QUATERNION
(
(
(
(
(
Rea
z
)
^2
)
+
(
(
Im1
z
)
^2
)
)
+
(
(
Im2
z
)
^2
)
)
+
(
(
Im3
z
)
^2
)
)
/
(
|.
z
.|
^2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
(
(
(
(
Rea
z
)
^2
)
+
(
(
Im1
z
)
^2
)
)
+
(
(
Im2
z
)
^2
)
)
+
(
(
Im3
z
)
^2
)
)
,
K111
(
(
|.
z
.|
^2
)
)) is
set
[*
(
(
(
(
(
(
Rea
z
)
^2
)
+
(
(
Im1
z
)
^2
)
)
+
(
(
Im2
z
)
^2
)
)
+
(
(
Im3
z
)
^2
)
)
/
(
|.
z
.|
^2
)
)
,
0
,
0
,
0
*]
is
quaternion
Element
of
QUATERNION
z
is
quaternion
set
|.
z
.|
is
V28
()
V29
()
ext-real
Element
of
REAL
Rea
z
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Rea
z
)
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Rea
z
)
,
(
Rea
z
)
) is
set
Im1
z
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im1
z
)
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Im1
z
)
,
(
Im1
z
)
) is
set
(
(
Rea
z
)
^2
)
+
(
(
Im1
z
)
^2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
Im2
z
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im2
z
)
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Im2
z
)
,
(
Im2
z
)
) is
set
(
(
(
Rea
z
)
^2
)
+
(
(
Im1
z
)
^2
)
)
+
(
(
Im2
z
)
^2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
Im3
z
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im3
z
)
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Im3
z
)
,
(
Im3
z
)
) is
set
(
(
(
(
Rea
z
)
^2
)
+
(
(
Im1
z
)
^2
)
)
+
(
(
Im2
z
)
^2
)
)
+
(
(
Im3
z
)
^2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
sqrt
(
(
(
(
(
Rea
z
)
^2
)
+
(
(
Im1
z
)
^2
)
)
+
(
(
Im2
z
)
^2
)
)
+
(
(
Im3
z
)
^2
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
|.
z
.|
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
|.
z
.|
,
|.
z
.|
) is
set
z2
is
quaternion
set
z
*
z2
is
quaternion
Element
of
QUATERNION
|.
z2
.|
is
V28
()
V29
()
ext-real
Element
of
REAL
Rea
z2
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Rea
z2
)
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Rea
z2
)
,
(
Rea
z2
)
) is
set
Im1
z2
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im1
z2
)
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Im1
z2
)
,
(
Im1
z2
)
) is
set
(
(
Rea
z2
)
^2
)
+
(
(
Im1
z2
)
^2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
Im2
z2
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im2
z2
)
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Im2
z2
)
,
(
Im2
z2
)
) is
set
(
(
(
Rea
z2
)
^2
)
+
(
(
Im1
z2
)
^2
)
)
+
(
(
Im2
z2
)
^2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
Im3
z2
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im3
z2
)
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Im3
z2
)
,
(
Im3
z2
)
) is
set
(
(
(
(
Rea
z2
)
^2
)
+
(
(
Im1
z2
)
^2
)
)
+
(
(
Im2
z2
)
^2
)
)
+
(
(
Im3
z2
)
^2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
sqrt
(
(
(
(
(
Rea
z2
)
^2
)
+
(
(
Im1
z2
)
^2
)
)
+
(
(
Im2
z2
)
^2
)
)
+
(
(
Im3
z2
)
^2
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
|.
z2
.|
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
|.
z2
.|
,
|.
z2
.|
) is
set
(
|.
z
.|
^2
)
*
(
|.
z2
.|
^2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
z2
is
quaternion
set
(
z
*
z2
)
*
z2
is
quaternion
Element
of
QUATERNION
|.
(
(
z
*
z2
)
*
z2
)
.|
is
V28
()
V29
()
ext-real
Element
of
REAL
Rea
(
(
z
*
z2
)
*
z2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Rea
(
(
z
*
z2
)
*
z2
)
)
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Rea
(
(
z
*
z2
)
*
z2
)
)
,
(
Rea
(
(
z
*
z2
)
*
z2
)
)
) is
set
Im1
(
(
z
*
z2
)
*
z2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im1
(
(
z
*
z2
)
*
z2
)
)
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Im1
(
(
z
*
z2
)
*
z2
)
)
,
(
Im1
(
(
z
*
z2
)
*
z2
)
)
) is
set
(
(
Rea
(
(
z
*
z2
)
*
z2
)
)
^2
)
+
(
(
Im1
(
(
z
*
z2
)
*
z2
)
)
^2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
Im2
(
(
z
*
z2
)
*
z2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im2
(
(
z
*
z2
)
*
z2
)
)
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Im2
(
(
z
*
z2
)
*
z2
)
)
,
(
Im2
(
(
z
*
z2
)
*
z2
)
)
) is
set
(
(
(
Rea
(
(
z
*
z2
)
*
z2
)
)
^2
)
+
(
(
Im1
(
(
z
*
z2
)
*
z2
)
)
^2
)
)
+
(
(
Im2
(
(
z
*
z2
)
*
z2
)
)
^2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
Im3
(
(
z
*
z2
)
*
z2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im3
(
(
z
*
z2
)
*
z2
)
)
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Im3
(
(
z
*
z2
)
*
z2
)
)
,
(
Im3
(
(
z
*
z2
)
*
z2
)
)
) is
set
(
(
(
(
Rea
(
(
z
*
z2
)
*
z2
)
)
^2
)
+
(
(
Im1
(
(
z
*
z2
)
*
z2
)
)
^2
)
)
+
(
(
Im2
(
(
z
*
z2
)
*
z2
)
)
^2
)
)
+
(
(
Im3
(
(
z
*
z2
)
*
z2
)
)
^2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
sqrt
(
(
(
(
(
Rea
(
(
z
*
z2
)
*
z2
)
)
^2
)
+
(
(
Im1
(
(
z
*
z2
)
*
z2
)
)
^2
)
)
+
(
(
Im2
(
(
z
*
z2
)
*
z2
)
)
^2
)
)
+
(
(
Im3
(
(
z
*
z2
)
*
z2
)
)
^2
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
|.
(
(
z
*
z2
)
*
z2
)
.|
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
|.
(
(
z
*
z2
)
*
z2
)
.|
,
|.
(
(
z
*
z2
)
*
z2
)
.|
) is
set
|.
z2
.|
is
V28
()
V29
()
ext-real
Element
of
REAL
Rea
z2
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Rea
z2
)
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Rea
z2
)
,
(
Rea
z2
)
) is
set
Im1
z2
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im1
z2
)
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Im1
z2
)
,
(
Im1
z2
)
) is
set
(
(
Rea
z2
)
^2
)
+
(
(
Im1
z2
)
^2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
Im2
z2
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im2
z2
)
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Im2
z2
)
,
(
Im2
z2
)
) is
set
(
(
(
Rea
z2
)
^2
)
+
(
(
Im1
z2
)
^2
)
)
+
(
(
Im2
z2
)
^2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
Im3
z2
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im3
z2
)
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Im3
z2
)
,
(
Im3
z2
)
) is
set
(
(
(
(
Rea
z2
)
^2
)
+
(
(
Im1
z2
)
^2
)
)
+
(
(
Im2
z2
)
^2
)
)
+
(
(
Im3
z2
)
^2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
sqrt
(
(
(
(
(
Rea
z2
)
^2
)
+
(
(
Im1
z2
)
^2
)
)
+
(
(
Im2
z2
)
^2
)
)
+
(
(
Im3
z2
)
^2
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
|.
z2
.|
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
|.
z2
.|
,
|.
z2
.|
) is
set
(
(
|.
z
.|
^2
)
*
(
|.
z2
.|
^2
)
)
*
(
|.
z2
.|
^2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
z2
*
z2
is
quaternion
Element
of
QUATERNION
z
*
(
z2
*
z2
)
is
quaternion
Element
of
QUATERNION
|.
(
z
*
(
z2
*
z2
)
)
.|
is
V28
()
V29
()
ext-real
Element
of
REAL
Rea
(
z
*
(
z2
*
z2
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Rea
(
z
*
(
z2
*
z2
)
)
)
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Rea
(
z
*
(
z2
*
z2
)
)
)
,
(
Rea
(
z
*
(
z2
*
z2
)
)
)
) is
set
Im1
(
z
*
(
z2
*
z2
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im1
(
z
*
(
z2
*
z2
)
)
)
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Im1
(
z
*
(
z2
*
z2
)
)
)
,
(
Im1
(
z
*
(
z2
*
z2
)
)
)
) is
set
(
(
Rea
(
z
*
(
z2
*
z2
)
)
)
^2
)
+
(
(
Im1
(
z
*
(
z2
*
z2
)
)
)
^2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
Im2
(
z
*
(
z2
*
z2
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im2
(
z
*
(
z2
*
z2
)
)
)
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Im2
(
z
*
(
z2
*
z2
)
)
)
,
(
Im2
(
z
*
(
z2
*
z2
)
)
)
) is
set
(
(
(
Rea
(
z
*
(
z2
*
z2
)
)
)
^2
)
+
(
(
Im1
(
z
*
(
z2
*
z2
)
)
)
^2
)
)
+
(
(
Im2
(
z
*
(
z2
*
z2
)
)
)
^2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
Im3
(
z
*
(
z2
*
z2
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im3
(
z
*
(
z2
*
z2
)
)
)
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Im3
(
z
*
(
z2
*
z2
)
)
)
,
(
Im3
(
z
*
(
z2
*
z2
)
)
)
) is
set
(
(
(
(
Rea
(
z
*
(
z2
*
z2
)
)
)
^2
)
+
(
(
Im1
(
z
*
(
z2
*
z2
)
)
)
^2
)
)
+
(
(
Im2
(
z
*
(
z2
*
z2
)
)
)
^2
)
)
+
(
(
Im3
(
z
*
(
z2
*
z2
)
)
)
^2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
sqrt
(
(
(
(
(
Rea
(
z
*
(
z2
*
z2
)
)
)
^2
)
+
(
(
Im1
(
z
*
(
z2
*
z2
)
)
)
^2
)
)
+
(
(
Im2
(
z
*
(
z2
*
z2
)
)
)
^2
)
)
+
(
(
Im3
(
z
*
(
z2
*
z2
)
)
)
^2
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
|.
(
z
*
(
z2
*
z2
)
)
.|
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
|.
(
z
*
(
z2
*
z2
)
)
.|
,
|.
(
z
*
(
z2
*
z2
)
)
.|
) is
set
|.
(
z2
*
z2
)
.|
is
V28
()
V29
()
ext-real
Element
of
REAL
Rea
(
z2
*
z2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Rea
(
z2
*
z2
)
)
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Rea
(
z2
*
z2
)
)
,
(
Rea
(
z2
*
z2
)
)
) is
set
Im1
(
z2
*
z2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im1
(
z2
*
z2
)
)
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Im1
(
z2
*
z2
)
)
,
(
Im1
(
z2
*
z2
)
)
) is
set
(
(
Rea
(
z2
*
z2
)
)
^2
)
+
(
(
Im1
(
z2
*
z2
)
)
^2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
Im2
(
z2
*
z2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im2
(
z2
*
z2
)
)
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Im2
(
z2
*
z2
)
)
,
(
Im2
(
z2
*
z2
)
)
) is
set
(
(
(
Rea
(
z2
*
z2
)
)
^2
)
+
(
(
Im1
(
z2
*
z2
)
)
^2
)
)
+
(
(
Im2
(
z2
*
z2
)
)
^2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
Im3
(
z2
*
z2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im3
(
z2
*
z2
)
)
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Im3
(
z2
*
z2
)
)
,
(
Im3
(
z2
*
z2
)
)
) is
set
(
(
(
(
Rea
(
z2
*
z2
)
)
^2
)
+
(
(
Im1
(
z2
*
z2
)
)
^2
)
)
+
(
(
Im2
(
z2
*
z2
)
)
^2
)
)
+
(
(
Im3
(
z2
*
z2
)
)
^2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
sqrt
(
(
(
(
(
Rea
(
z2
*
z2
)
)
^2
)
+
(
(
Im1
(
z2
*
z2
)
)
^2
)
)
+
(
(
Im2
(
z2
*
z2
)
)
^2
)
)
+
(
(
Im3
(
z2
*
z2
)
)
^2
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
|.
(
z2
*
z2
)
.|
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
|.
(
z2
*
z2
)
.|
,
|.
(
z2
*
z2
)
.|
) is
set
(
|.
z
.|
^2
)
*
(
|.
(
z2
*
z2
)
.|
^2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
|.
z2
.|
^2
)
*
(
|.
z2
.|
^2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
|.
z
.|
^2
)
*
(
(
|.
z2
.|
^2
)
*
(
|.
z2
.|
^2
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
z
is
quaternion
set
z2
is
quaternion
set
z
*
z2
is
quaternion
Element
of
QUATERNION
z2
is
quaternion
set
(
z
*
z2
)
*
z2
is
quaternion
Element
of
QUATERNION
Rea
(
(
z
*
z2
)
*
z2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
z2
*
z
is
quaternion
Element
of
QUATERNION
(
z2
*
z
)
*
z2
is
quaternion
Element
of
QUATERNION
Rea
(
(
z2
*
z
)
*
z2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
z2
*
z2
is
quaternion
Element
of
QUATERNION
z
*
(
z2
*
z2
)
is
quaternion
Element
of
QUATERNION
Rea
(
z
*
(
z2
*
z2
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
z2
*
z2
)
*
z
is
quaternion
Element
of
QUATERNION
Rea
(
(
z2
*
z2
)
*
z
)
is
V28
()
V29
()
ext-real
Element
of
REAL
z2
*
(
z2
*
z
)
is
quaternion
Element
of
QUATERNION
Rea
(
z2
*
(
z2
*
z
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
z
is
quaternion
set
z
*
z
is
quaternion
Element
of
QUATERNION
|.
(
z
*
z
)
.|
is
V28
()
V29
()
ext-real
Element
of
REAL
Rea
(
z
*
z
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Rea
(
z
*
z
)
)
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Rea
(
z
*
z
)
)
,
(
Rea
(
z
*
z
)
)
) is
set
Im1
(
z
*
z
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im1
(
z
*
z
)
)
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Im1
(
z
*
z
)
)
,
(
Im1
(
z
*
z
)
)
) is
set
(
(
Rea
(
z
*
z
)
)
^2
)
+
(
(
Im1
(
z
*
z
)
)
^2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
Im2
(
z
*
z
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im2
(
z
*
z
)
)
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Im2
(
z
*
z
)
)
,
(
Im2
(
z
*
z
)
)
) is
set
(
(
(
Rea
(
z
*
z
)
)
^2
)
+
(
(
Im1
(
z
*
z
)
)
^2
)
)
+
(
(
Im2
(
z
*
z
)
)
^2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
Im3
(
z
*
z
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im3
(
z
*
z
)
)
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Im3
(
z
*
z
)
)
,
(
Im3
(
z
*
z
)
)
) is
set
(
(
(
(
Rea
(
z
*
z
)
)
^2
)
+
(
(
Im1
(
z
*
z
)
)
^2
)
)
+
(
(
Im2
(
z
*
z
)
)
^2
)
)
+
(
(
Im3
(
z
*
z
)
)
^2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
sqrt
(
(
(
(
(
Rea
(
z
*
z
)
)
^2
)
+
(
(
Im1
(
z
*
z
)
)
^2
)
)
+
(
(
Im2
(
z
*
z
)
)
^2
)
)
+
(
(
Im3
(
z
*
z
)
)
^2
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
z
*'
is
quaternion
Element
of
QUATERNION
Rea
z
is
V28
()
V29
()
ext-real
Element
of
REAL
Im1
z
is
V28
()
V29
()
ext-real
Element
of
REAL
-
(
Im1
z
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
-
(
Im1
z
)
)
*
K107
() is
quaternion
set
(
Rea
z
)
+
(
(
-
(
Im1
z
)
)
*
K107
()
)
is
quaternion
set
Im2
z
is
V28
()
V29
()
ext-real
Element
of
REAL
-
(
Im2
z
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
-
(
Im2
z
)
)
*
<j>
is
quaternion
set
(
(
Rea
z
)
+
(
(
-
(
Im1
z
)
)
*
K107
()
)
)
+
(
(
-
(
Im2
z
)
)
*
<j>
)
is
quaternion
Element
of
QUATERNION
Im3
z
is
V28
()
V29
()
ext-real
Element
of
REAL
-
(
Im3
z
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
-
(
Im3
z
)
)
*
<k>
is
quaternion
set
(
(
(
Rea
z
)
+
(
(
-
(
Im1
z
)
)
*
K107
()
)
)
+
(
(
-
(
Im2
z
)
)
*
<j>
)
)
+
(
(
-
(
Im3
z
)
)
*
<k>
)
is
quaternion
Element
of
QUATERNION
(
z
*'
)
*
(
z
*'
)
is
quaternion
Element
of
QUATERNION
|.
(
(
z
*'
)
*
(
z
*'
)
)
.|
is
V28
()
V29
()
ext-real
Element
of
REAL
Rea
(
(
z
*'
)
*
(
z
*'
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Rea
(
(
z
*'
)
*
(
z
*'
)
)
)
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Rea
(
(
z
*'
)
*
(
z
*'
)
)
)
,
(
Rea
(
(
z
*'
)
*
(
z
*'
)
)
)
) is
set
Im1
(
(
z
*'
)
*
(
z
*'
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im1
(
(
z
*'
)
*
(
z
*'
)
)
)
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Im1
(
(
z
*'
)
*
(
z
*'
)
)
)
,
(
Im1
(
(
z
*'
)
*
(
z
*'
)
)
)
) is
set
(
(
Rea
(
(
z
*'
)
*
(
z
*'
)
)
)
^2
)
+
(
(
Im1
(
(
z
*'
)
*
(
z
*'
)
)
)
^2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
Im2
(
(
z
*'
)
*
(
z
*'
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im2
(
(
z
*'
)
*
(
z
*'
)
)
)
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Im2
(
(
z
*'
)
*
(
z
*'
)
)
)
,
(
Im2
(
(
z
*'
)
*
(
z
*'
)
)
)
) is
set
(
(
(
Rea
(
(
z
*'
)
*
(
z
*'
)
)
)
^2
)
+
(
(
Im1
(
(
z
*'
)
*
(
z
*'
)
)
)
^2
)
)
+
(
(
Im2
(
(
z
*'
)
*
(
z
*'
)
)
)
^2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
Im3
(
(
z
*'
)
*
(
z
*'
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im3
(
(
z
*'
)
*
(
z
*'
)
)
)
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Im3
(
(
z
*'
)
*
(
z
*'
)
)
)
,
(
Im3
(
(
z
*'
)
*
(
z
*'
)
)
)
) is
set
(
(
(
(
Rea
(
(
z
*'
)
*
(
z
*'
)
)
)
^2
)
+
(
(
Im1
(
(
z
*'
)
*
(
z
*'
)
)
)
^2
)
)
+
(
(
Im2
(
(
z
*'
)
*
(
z
*'
)
)
)
^2
)
)
+
(
(
Im3
(
(
z
*'
)
*
(
z
*'
)
)
)
^2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
sqrt
(
(
(
(
(
Rea
(
(
z
*'
)
*
(
z
*'
)
)
)
^2
)
+
(
(
Im1
(
(
z
*'
)
*
(
z
*'
)
)
)
^2
)
)
+
(
(
Im2
(
(
z
*'
)
*
(
z
*'
)
)
)
^2
)
)
+
(
(
Im3
(
(
z
*'
)
*
(
z
*'
)
)
)
^2
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
|.
(
z
*'
)
.|
is
V28
()
V29
()
ext-real
Element
of
REAL
Rea
(
z
*'
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Rea
(
z
*'
)
)
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Rea
(
z
*'
)
)
,
(
Rea
(
z
*'
)
)
) is
set
Im1
(
z
*'
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im1
(
z
*'
)
)
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Im1
(
z
*'
)
)
,
(
Im1
(
z
*'
)
)
) is
set
(
(
Rea
(
z
*'
)
)
^2
)
+
(
(
Im1
(
z
*'
)
)
^2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
Im2
(
z
*'
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im2
(
z
*'
)
)
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Im2
(
z
*'
)
)
,
(
Im2
(
z
*'
)
)
) is
set
(
(
(
Rea
(
z
*'
)
)
^2
)
+
(
(
Im1
(
z
*'
)
)
^2
)
)
+
(
(
Im2
(
z
*'
)
)
^2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
Im3
(
z
*'
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im3
(
z
*'
)
)
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Im3
(
z
*'
)
)
,
(
Im3
(
z
*'
)
)
) is
set
(
(
(
(
Rea
(
z
*'
)
)
^2
)
+
(
(
Im1
(
z
*'
)
)
^2
)
)
+
(
(
Im2
(
z
*'
)
)
^2
)
)
+
(
(
Im3
(
z
*'
)
)
^2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
sqrt
(
(
(
(
(
Rea
(
z
*'
)
)
^2
)
+
(
(
Im1
(
z
*'
)
)
^2
)
)
+
(
(
Im2
(
z
*'
)
)
^2
)
)
+
(
(
Im3
(
z
*'
)
)
^2
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
|.
(
z
*'
)
.|
*
|.
(
z
*'
)
.|
is
V28
()
V29
()
ext-real
Element
of
REAL
|.
z
.|
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Rea
z
)
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Rea
z
)
,
(
Rea
z
)
) is
set
(
Im1
z
)
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Im1
z
)
,
(
Im1
z
)
) is
set
(
(
Rea
z
)
^2
)
+
(
(
Im1
z
)
^2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im2
z
)
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Im2
z
)
,
(
Im2
z
)
) is
set
(
(
(
Rea
z
)
^2
)
+
(
(
Im1
z
)
^2
)
)
+
(
(
Im2
z
)
^2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im3
z
)
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Im3
z
)
,
(
Im3
z
)
) is
set
(
(
(
(
Rea
z
)
^2
)
+
(
(
Im1
z
)
^2
)
)
+
(
(
Im2
z
)
^2
)
)
+
(
(
Im3
z
)
^2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
sqrt
(
(
(
(
(
Rea
z
)
^2
)
+
(
(
Im1
z
)
^2
)
)
+
(
(
Im2
z
)
^2
)
)
+
(
(
Im3
z
)
^2
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
|.
z
.|
*
|.
(
z
*'
)
.|
is
V28
()
V29
()
ext-real
Element
of
REAL
|.
z
.|
*
|.
z
.|
is
V28
()
V29
()
ext-real
Element
of
REAL
z
is
quaternion
set
z
*'
is
quaternion
Element
of
QUATERNION
Rea
z
is
V28
()
V29
()
ext-real
Element
of
REAL
Im1
z
is
V28
()
V29
()
ext-real
Element
of
REAL
-
(
Im1
z
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
-
(
Im1
z
)
)
*
K107
() is
quaternion
set
(
Rea
z
)
+
(
(
-
(
Im1
z
)
)
*
K107
()
)
is
quaternion
set
Im2
z
is
V28
()
V29
()
ext-real
Element
of
REAL
-
(
Im2
z
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
-
(
Im2
z
)
)
*
<j>
is
quaternion
set
(
(
Rea
z
)
+
(
(
-
(
Im1
z
)
)
*
K107
()
)
)
+
(
(
-
(
Im2
z
)
)
*
<j>
)
is
quaternion
Element
of
QUATERNION
Im3
z
is
V28
()
V29
()
ext-real
Element
of
REAL
-
(
Im3
z
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
-
(
Im3
z
)
)
*
<k>
is
quaternion
set
(
(
(
Rea
z
)
+
(
(
-
(
Im1
z
)
)
*
K107
()
)
)
+
(
(
-
(
Im2
z
)
)
*
<j>
)
)
+
(
(
-
(
Im3
z
)
)
*
<k>
)
is
quaternion
Element
of
QUATERNION
(
z
*'
)
*
(
z
*'
)
is
quaternion
Element
of
QUATERNION
|.
(
(
z
*'
)
*
(
z
*'
)
)
.|
is
V28
()
V29
()
ext-real
Element
of
REAL
Rea
(
(
z
*'
)
*
(
z
*'
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Rea
(
(
z
*'
)
*
(
z
*'
)
)
)
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Rea
(
(
z
*'
)
*
(
z
*'
)
)
)
,
(
Rea
(
(
z
*'
)
*
(
z
*'
)
)
)
) is
set
Im1
(
(
z
*'
)
*
(
z
*'
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im1
(
(
z
*'
)
*
(
z
*'
)
)
)
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Im1
(
(
z
*'
)
*
(
z
*'
)
)
)
,
(
Im1
(
(
z
*'
)
*
(
z
*'
)
)
)
) is
set
(
(
Rea
(
(
z
*'
)
*
(
z
*'
)
)
)
^2
)
+
(
(
Im1
(
(
z
*'
)
*
(
z
*'
)
)
)
^2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
Im2
(
(
z
*'
)
*
(
z
*'
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im2
(
(
z
*'
)
*
(
z
*'
)
)
)
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Im2
(
(
z
*'
)
*
(
z
*'
)
)
)
,
(
Im2
(
(
z
*'
)
*
(
z
*'
)
)
)
) is
set
(
(
(
Rea
(
(
z
*'
)
*
(
z
*'
)
)
)
^2
)
+
(
(
Im1
(
(
z
*'
)
*
(
z
*'
)
)
)
^2
)
)
+
(
(
Im2
(
(
z
*'
)
*
(
z
*'
)
)
)
^2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
Im3
(
(
z
*'
)
*
(
z
*'
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im3
(
(
z
*'
)
*
(
z
*'
)
)
)
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Im3
(
(
z
*'
)
*
(
z
*'
)
)
)
,
(
Im3
(
(
z
*'
)
*
(
z
*'
)
)
)
) is
set
(
(
(
(
Rea
(
(
z
*'
)
*
(
z
*'
)
)
)
^2
)
+
(
(
Im1
(
(
z
*'
)
*
(
z
*'
)
)
)
^2
)
)
+
(
(
Im2
(
(
z
*'
)
*
(
z
*'
)
)
)
^2
)
)
+
(
(
Im3
(
(
z
*'
)
*
(
z
*'
)
)
)
^2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
sqrt
(
(
(
(
(
Rea
(
(
z
*'
)
*
(
z
*'
)
)
)
^2
)
+
(
(
Im1
(
(
z
*'
)
*
(
z
*'
)
)
)
^2
)
)
+
(
(
Im2
(
(
z
*'
)
*
(
z
*'
)
)
)
^2
)
)
+
(
(
Im3
(
(
z
*'
)
*
(
z
*'
)
)
)
^2
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
|.
z
.|
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Rea
z
)
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Rea
z
)
,
(
Rea
z
)
) is
set
(
Im1
z
)
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Im1
z
)
,
(
Im1
z
)
) is
set
(
(
Rea
z
)
^2
)
+
(
(
Im1
z
)
^2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im2
z
)
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Im2
z
)
,
(
Im2
z
)
) is
set
(
(
(
Rea
z
)
^2
)
+
(
(
Im1
z
)
^2
)
)
+
(
(
Im2
z
)
^2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im3
z
)
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Im3
z
)
,
(
Im3
z
)
) is
set
(
(
(
(
Rea
z
)
^2
)
+
(
(
Im1
z
)
^2
)
)
+
(
(
Im2
z
)
^2
)
)
+
(
(
Im3
z
)
^2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
sqrt
(
(
(
(
(
Rea
z
)
^2
)
+
(
(
Im1
z
)
^2
)
)
+
(
(
Im2
z
)
^2
)
)
+
(
(
Im3
z
)
^2
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
|.
z
.|
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
|.
z
.|
,
|.
z
.|
) is
set
z
*
z
is
quaternion
Element
of
QUATERNION
|.
(
z
*
z
)
.|
is
V28
()
V29
()
ext-real
Element
of
REAL
Rea
(
z
*
z
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Rea
(
z
*
z
)
)
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Rea
(
z
*
z
)
)
,
(
Rea
(
z
*
z
)
)
) is
set
Im1
(
z
*
z
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im1
(
z
*
z
)
)
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Im1
(
z
*
z
)
)
,
(
Im1
(
z
*
z
)
)
) is
set
(
(
Rea
(
z
*
z
)
)
^2
)
+
(
(
Im1
(
z
*
z
)
)
^2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
Im2
(
z
*
z
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im2
(
z
*
z
)
)
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Im2
(
z
*
z
)
)
,
(
Im2
(
z
*
z
)
)
) is
set
(
(
(
Rea
(
z
*
z
)
)
^2
)
+
(
(
Im1
(
z
*
z
)
)
^2
)
)
+
(
(
Im2
(
z
*
z
)
)
^2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
Im3
(
z
*
z
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im3
(
z
*
z
)
)
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Im3
(
z
*
z
)
)
,
(
Im3
(
z
*
z
)
)
) is
set
(
(
(
(
Rea
(
z
*
z
)
)
^2
)
+
(
(
Im1
(
z
*
z
)
)
^2
)
)
+
(
(
Im2
(
z
*
z
)
)
^2
)
)
+
(
(
Im3
(
z
*
z
)
)
^2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
sqrt
(
(
(
(
(
Rea
(
z
*
z
)
)
^2
)
+
(
(
Im1
(
z
*
z
)
)
^2
)
)
+
(
(
Im2
(
z
*
z
)
)
^2
)
)
+
(
(
Im3
(
z
*
z
)
)
^2
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
z
is
quaternion
set
|.
z
.|
is
V28
()
V29
()
ext-real
Element
of
REAL
Rea
z
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Rea
z
)
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Rea
z
)
,
(
Rea
z
)
) is
set
Im1
z
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im1
z
)
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Im1
z
)
,
(
Im1
z
)
) is
set
(
(
Rea
z
)
^2
)
+
(
(
Im1
z
)
^2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
Im2
z
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im2
z
)
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Im2
z
)
,
(
Im2
z
)
) is
set
(
(
(
Rea
z
)
^2
)
+
(
(
Im1
z
)
^2
)
)
+
(
(
Im2
z
)
^2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
Im3
z
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im3
z
)
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Im3
z
)
,
(
Im3
z
)
) is
set
(
(
(
(
Rea
z
)
^2
)
+
(
(
Im1
z
)
^2
)
)
+
(
(
Im2
z
)
^2
)
)
+
(
(
Im3
z
)
^2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
sqrt
(
(
(
(
(
Rea
z
)
^2
)
+
(
(
Im1
z
)
^2
)
)
+
(
(
Im2
z
)
^2
)
)
+
(
(
Im3
z
)
^2
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
z2
is
quaternion
set
z
*
z2
is
quaternion
Element
of
QUATERNION
|.
z2
.|
is
V28
()
V29
()
ext-real
Element
of
REAL
Rea
z2
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Rea
z2
)
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Rea
z2
)
,
(
Rea
z2
)
) is
set
Im1
z2
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im1
z2
)
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Im1
z2
)
,
(
Im1
z2
)
) is
set
(
(
Rea
z2
)
^2
)
+
(
(
Im1
z2
)
^2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
Im2
z2
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im2
z2
)
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Im2
z2
)
,
(
Im2
z2
)
) is
set
(
(
(
Rea
z2
)
^2
)
+
(
(
Im1
z2
)
^2
)
)
+
(
(
Im2
z2
)
^2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
Im3
z2
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im3
z2
)
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Im3
z2
)
,
(
Im3
z2
)
) is
set
(
(
(
(
Rea
z2
)
^2
)
+
(
(
Im1
z2
)
^2
)
)
+
(
(
Im2
z2
)
^2
)
)
+
(
(
Im3
z2
)
^2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
sqrt
(
(
(
(
(
Rea
z2
)
^2
)
+
(
(
Im1
z2
)
^2
)
)
+
(
(
Im2
z2
)
^2
)
)
+
(
(
Im3
z2
)
^2
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
|.
z
.|
*
|.
z2
.|
is
V28
()
V29
()
ext-real
Element
of
REAL
z2
is
quaternion
set
(
z
*
z2
)
*
z2
is
quaternion
Element
of
QUATERNION
|.
(
(
z
*
z2
)
*
z2
)
.|
is
V28
()
V29
()
ext-real
Element
of
REAL
Rea
(
(
z
*
z2
)
*
z2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Rea
(
(
z
*
z2
)
*
z2
)
)
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Rea
(
(
z
*
z2
)
*
z2
)
)
,
(
Rea
(
(
z
*
z2
)
*
z2
)
)
) is
set
Im1
(
(
z
*
z2
)
*
z2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im1
(
(
z
*
z2
)
*
z2
)
)
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Im1
(
(
z
*
z2
)
*
z2
)
)
,
(
Im1
(
(
z
*
z2
)
*
z2
)
)
) is
set
(
(
Rea
(
(
z
*
z2
)
*
z2
)
)
^2
)
+
(
(
Im1
(
(
z
*
z2
)
*
z2
)
)
^2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
Im2
(
(
z
*
z2
)
*
z2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im2
(
(
z
*
z2
)
*
z2
)
)
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Im2
(
(
z
*
z2
)
*
z2
)
)
,
(
Im2
(
(
z
*
z2
)
*
z2
)
)
) is
set
(
(
(
Rea
(
(
z
*
z2
)
*
z2
)
)
^2
)
+
(
(
Im1
(
(
z
*
z2
)
*
z2
)
)
^2
)
)
+
(
(
Im2
(
(
z
*
z2
)
*
z2
)
)
^2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
Im3
(
(
z
*
z2
)
*
z2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im3
(
(
z
*
z2
)
*
z2
)
)
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Im3
(
(
z
*
z2
)
*
z2
)
)
,
(
Im3
(
(
z
*
z2
)
*
z2
)
)
) is
set
(
(
(
(
Rea
(
(
z
*
z2
)
*
z2
)
)
^2
)
+
(
(
Im1
(
(
z
*
z2
)
*
z2
)
)
^2
)
)
+
(
(
Im2
(
(
z
*
z2
)
*
z2
)
)
^2
)
)
+
(
(
Im3
(
(
z
*
z2
)
*
z2
)
)
^2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
sqrt
(
(
(
(
(
Rea
(
(
z
*
z2
)
*
z2
)
)
^2
)
+
(
(
Im1
(
(
z
*
z2
)
*
z2
)
)
^2
)
)
+
(
(
Im2
(
(
z
*
z2
)
*
z2
)
)
^2
)
)
+
(
(
Im3
(
(
z
*
z2
)
*
z2
)
)
^2
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
|.
z2
.|
is
V28
()
V29
()
ext-real
Element
of
REAL
Rea
z2
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Rea
z2
)
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Rea
z2
)
,
(
Rea
z2
)
) is
set
Im1
z2
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im1
z2
)
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Im1
z2
)
,
(
Im1
z2
)
) is
set
(
(
Rea
z2
)
^2
)
+
(
(
Im1
z2
)
^2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
Im2
z2
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im2
z2
)
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Im2
z2
)
,
(
Im2
z2
)
) is
set
(
(
(
Rea
z2
)
^2
)
+
(
(
Im1
z2
)
^2
)
)
+
(
(
Im2
z2
)
^2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
Im3
z2
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im3
z2
)
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Im3
z2
)
,
(
Im3
z2
)
) is
set
(
(
(
(
Rea
z2
)
^2
)
+
(
(
Im1
z2
)
^2
)
)
+
(
(
Im2
z2
)
^2
)
)
+
(
(
Im3
z2
)
^2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
sqrt
(
(
(
(
(
Rea
z2
)
^2
)
+
(
(
Im1
z2
)
^2
)
)
+
(
(
Im2
z2
)
^2
)
)
+
(
(
Im3
z2
)
^2
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
|.
z
.|
*
|.
z2
.|
)
*
|.
z2
.|
is
V28
()
V29
()
ext-real
Element
of
REAL
z2
*
z2
is
quaternion
Element
of
QUATERNION
z
*
(
z2
*
z2
)
is
quaternion
Element
of
QUATERNION
|.
(
z
*
(
z2
*
z2
)
)
.|
is
V28
()
V29
()
ext-real
Element
of
REAL
Rea
(
z
*
(
z2
*
z2
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Rea
(
z
*
(
z2
*
z2
)
)
)
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Rea
(
z
*
(
z2
*
z2
)
)
)
,
(
Rea
(
z
*
(
z2
*
z2
)
)
)
) is
set
Im1
(
z
*
(
z2
*
z2
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im1
(
z
*
(
z2
*
z2
)
)
)
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Im1
(
z
*
(
z2
*
z2
)
)
)
,
(
Im1
(
z
*
(
z2
*
z2
)
)
)
) is
set
(
(
Rea
(
z
*
(
z2
*
z2
)
)
)
^2
)
+
(
(
Im1
(
z
*
(
z2
*
z2
)
)
)
^2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
Im2
(
z
*
(
z2
*
z2
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im2
(
z
*
(
z2
*
z2
)
)
)
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Im2
(
z
*
(
z2
*
z2
)
)
)
,
(
Im2
(
z
*
(
z2
*
z2
)
)
)
) is
set
(
(
(
Rea
(
z
*
(
z2
*
z2
)
)
)
^2
)
+
(
(
Im1
(
z
*
(
z2
*
z2
)
)
)
^2
)
)
+
(
(
Im2
(
z
*
(
z2
*
z2
)
)
)
^2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
Im3
(
z
*
(
z2
*
z2
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im3
(
z
*
(
z2
*
z2
)
)
)
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Im3
(
z
*
(
z2
*
z2
)
)
)
,
(
Im3
(
z
*
(
z2
*
z2
)
)
)
) is
set
(
(
(
(
Rea
(
z
*
(
z2
*
z2
)
)
)
^2
)
+
(
(
Im1
(
z
*
(
z2
*
z2
)
)
)
^2
)
)
+
(
(
Im2
(
z
*
(
z2
*
z2
)
)
)
^2
)
)
+
(
(
Im3
(
z
*
(
z2
*
z2
)
)
)
^2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
sqrt
(
(
(
(
(
Rea
(
z
*
(
z2
*
z2
)
)
)
^2
)
+
(
(
Im1
(
z
*
(
z2
*
z2
)
)
)
^2
)
)
+
(
(
Im2
(
z
*
(
z2
*
z2
)
)
)
^2
)
)
+
(
(
Im3
(
z
*
(
z2
*
z2
)
)
)
^2
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
|.
(
z2
*
z2
)
.|
is
V28
()
V29
()
ext-real
Element
of
REAL
Rea
(
z2
*
z2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Rea
(
z2
*
z2
)
)
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Rea
(
z2
*
z2
)
)
,
(
Rea
(
z2
*
z2
)
)
) is
set
Im1
(
z2
*
z2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im1
(
z2
*
z2
)
)
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Im1
(
z2
*
z2
)
)
,
(
Im1
(
z2
*
z2
)
)
) is
set
(
(
Rea
(
z2
*
z2
)
)
^2
)
+
(
(
Im1
(
z2
*
z2
)
)
^2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
Im2
(
z2
*
z2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im2
(
z2
*
z2
)
)
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Im2
(
z2
*
z2
)
)
,
(
Im2
(
z2
*
z2
)
)
) is
set
(
(
(
Rea
(
z2
*
z2
)
)
^2
)
+
(
(
Im1
(
z2
*
z2
)
)
^2
)
)
+
(
(
Im2
(
z2
*
z2
)
)
^2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
Im3
(
z2
*
z2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im3
(
z2
*
z2
)
)
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Im3
(
z2
*
z2
)
)
,
(
Im3
(
z2
*
z2
)
)
) is
set
(
(
(
(
Rea
(
z2
*
z2
)
)
^2
)
+
(
(
Im1
(
z2
*
z2
)
)
^2
)
)
+
(
(
Im2
(
z2
*
z2
)
)
^2
)
)
+
(
(
Im3
(
z2
*
z2
)
)
^2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
sqrt
(
(
(
(
(
Rea
(
z2
*
z2
)
)
^2
)
+
(
(
Im1
(
z2
*
z2
)
)
^2
)
)
+
(
(
Im2
(
z2
*
z2
)
)
^2
)
)
+
(
(
Im3
(
z2
*
z2
)
)
^2
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
|.
z
.|
*
|.
(
z2
*
z2
)
.|
is
V28
()
V29
()
ext-real
Element
of
REAL
|.
z2
.|
*
|.
z2
.|
is
V28
()
V29
()
ext-real
Element
of
REAL
|.
z
.|
*
(
|.
z2
.|
*
|.
z2
.|
)
is
V28
()
V29
()
ext-real
Element
of
REAL
z
is
quaternion
set
|.
z
.|
is
V28
()
V29
()
ext-real
Element
of
REAL
Rea
z
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Rea
z
)
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Rea
z
)
,
(
Rea
z
)
) is
set
Im1
z
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im1
z
)
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Im1
z
)
,
(
Im1
z
)
) is
set
(
(
Rea
z
)
^2
)
+
(
(
Im1
z
)
^2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
Im2
z
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im2
z
)
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Im2
z
)
,
(
Im2
z
)
) is
set
(
(
(
Rea
z
)
^2
)
+
(
(
Im1
z
)
^2
)
)
+
(
(
Im2
z
)
^2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
Im3
z
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im3
z
)
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Im3
z
)
,
(
Im3
z
)
) is
set
(
(
(
(
Rea
z
)
^2
)
+
(
(
Im1
z
)
^2
)
)
+
(
(
Im2
z
)
^2
)
)
+
(
(
Im3
z
)
^2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
sqrt
(
(
(
(
(
Rea
z
)
^2
)
+
(
(
Im1
z
)
^2
)
)
+
(
(
Im2
z
)
^2
)
)
+
(
(
Im3
z
)
^2
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
z2
is
quaternion
set
z
+
z2
is
quaternion
Element
of
QUATERNION
|.
z2
.|
is
V28
()
V29
()
ext-real
Element
of
REAL
Rea
z2
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Rea
z2
)
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Rea
z2
)
,
(
Rea
z2
)
) is
set
Im1
z2
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im1
z2
)
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Im1
z2
)
,
(
Im1
z2
)
) is
set
(
(
Rea
z2
)
^2
)
+
(
(
Im1
z2
)
^2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
Im2
z2
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im2
z2
)
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Im2
z2
)
,
(
Im2
z2
)
) is
set
(
(
(
Rea
z2
)
^2
)
+
(
(
Im1
z2
)
^2
)
)
+
(
(
Im2
z2
)
^2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
Im3
z2
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im3
z2
)
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Im3
z2
)
,
(
Im3
z2
)
) is
set
(
(
(
(
Rea
z2
)
^2
)
+
(
(
Im1
z2
)
^2
)
)
+
(
(
Im2
z2
)
^2
)
)
+
(
(
Im3
z2
)
^2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
sqrt
(
(
(
(
(
Rea
z2
)
^2
)
+
(
(
Im1
z2
)
^2
)
)
+
(
(
Im2
z2
)
^2
)
)
+
(
(
Im3
z2
)
^2
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
|.
z
.|
+
|.
z2
.|
is
V28
()
V29
()
ext-real
Element
of
REAL
z2
is
quaternion
set
(
z
+
z2
)
+
z2
is
quaternion
Element
of
QUATERNION
|.
(
(
z
+
z2
)
+
z2
)
.|
is
V28
()
V29
()
ext-real
Element
of
REAL
Rea
(
(
z
+
z2
)
+
z2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Rea
(
(
z
+
z2
)
+
z2
)
)
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Rea
(
(
z
+
z2
)
+
z2
)
)
,
(
Rea
(
(
z
+
z2
)
+
z2
)
)
) is
set
Im1
(
(
z
+
z2
)
+
z2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im1
(
(
z
+
z2
)
+
z2
)
)
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Im1
(
(
z
+
z2
)
+
z2
)
)
,
(
Im1
(
(
z
+
z2
)
+
z2
)
)
) is
set
(
(
Rea
(
(
z
+
z2
)
+
z2
)
)
^2
)
+
(
(
Im1
(
(
z
+
z2
)
+
z2
)
)
^2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
Im2
(
(
z
+
z2
)
+
z2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im2
(
(
z
+
z2
)
+
z2
)
)
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Im2
(
(
z
+
z2
)
+
z2
)
)
,
(
Im2
(
(
z
+
z2
)
+
z2
)
)
) is
set
(
(
(
Rea
(
(
z
+
z2
)
+
z2
)
)
^2
)
+
(
(
Im1
(
(
z
+
z2
)
+
z2
)
)
^2
)
)
+
(
(
Im2
(
(
z
+
z2
)
+
z2
)
)
^2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
Im3
(
(
z
+
z2
)
+
z2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im3
(
(
z
+
z2
)
+
z2
)
)
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Im3
(
(
z
+
z2
)
+
z2
)
)
,
(
Im3
(
(
z
+
z2
)
+
z2
)
)
) is
set
(
(
(
(
Rea
(
(
z
+
z2
)
+
z2
)
)
^2
)
+
(
(
Im1
(
(
z
+
z2
)
+
z2
)
)
^2
)
)
+
(
(
Im2
(
(
z
+
z2
)
+
z2
)
)
^2
)
)
+
(
(
Im3
(
(
z
+
z2
)
+
z2
)
)
^2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
sqrt
(
(
(
(
(
Rea
(
(
z
+
z2
)
+
z2
)
)
^2
)
+
(
(
Im1
(
(
z
+
z2
)
+
z2
)
)
^2
)
)
+
(
(
Im2
(
(
z
+
z2
)
+
z2
)
)
^2
)
)
+
(
(
Im3
(
(
z
+
z2
)
+
z2
)
)
^2
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
|.
z2
.|
is
V28
()
V29
()
ext-real
Element
of
REAL
Rea
z2
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Rea
z2
)
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Rea
z2
)
,
(
Rea
z2
)
) is
set
Im1
z2
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im1
z2
)
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Im1
z2
)
,
(
Im1
z2
)
) is
set
(
(
Rea
z2
)
^2
)
+
(
(
Im1
z2
)
^2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
Im2
z2
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im2
z2
)
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Im2
z2
)
,
(
Im2
z2
)
) is
set
(
(
(
Rea
z2
)
^2
)
+
(
(
Im1
z2
)
^2
)
)
+
(
(
Im2
z2
)
^2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
Im3
z2
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im3
z2
)
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Im3
z2
)
,
(
Im3
z2
)
) is
set
(
(
(
(
Rea
z2
)
^2
)
+
(
(
Im1
z2
)
^2
)
)
+
(
(
Im2
z2
)
^2
)
)
+
(
(
Im3
z2
)
^2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
sqrt
(
(
(
(
(
Rea
z2
)
^2
)
+
(
(
Im1
z2
)
^2
)
)
+
(
(
Im2
z2
)
^2
)
)
+
(
(
Im3
z2
)
^2
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
|.
z
.|
+
|.
z2
.|
)
+
|.
z2
.|
is
V28
()
V29
()
ext-real
Element
of
REAL
z2
+
z2
is
quaternion
Element
of
QUATERNION
z
+
(
z2
+
z2
)
is
quaternion
Element
of
QUATERNION
|.
(
z
+
(
z2
+
z2
)
)
.|
is
V28
()
V29
()
ext-real
Element
of
REAL
Rea
(
z
+
(
z2
+
z2
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Rea
(
z
+
(
z2
+
z2
)
)
)
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Rea
(
z
+
(
z2
+
z2
)
)
)
,
(
Rea
(
z
+
(
z2
+
z2
)
)
)
) is
set
Im1
(
z
+
(
z2
+
z2
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im1
(
z
+
(
z2
+
z2
)
)
)
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Im1
(
z
+
(
z2
+
z2
)
)
)
,
(
Im1
(
z
+
(
z2
+
z2
)
)
)
) is
set
(
(
Rea
(
z
+
(
z2
+
z2
)
)
)
^2
)
+
(
(
Im1
(
z
+
(
z2
+
z2
)
)
)
^2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
Im2
(
z
+
(
z2
+
z2
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im2
(
z
+
(
z2
+
z2
)
)
)
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Im2
(
z
+
(
z2
+
z2
)
)
)
,
(
Im2
(
z
+
(
z2
+
z2
)
)
)
) is
set
(
(
(
Rea
(
z
+
(
z2
+
z2
)
)
)
^2
)
+
(
(
Im1
(
z
+
(
z2
+
z2
)
)
)
^2
)
)
+
(
(
Im2
(
z
+
(
z2
+
z2
)
)
)
^2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
Im3
(
z
+
(
z2
+
z2
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im3
(
z
+
(
z2
+
z2
)
)
)
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Im3
(
z
+
(
z2
+
z2
)
)
)
,
(
Im3
(
z
+
(
z2
+
z2
)
)
)
) is
set
(
(
(
(
Rea
(
z
+
(
z2
+
z2
)
)
)
^2
)
+
(
(
Im1
(
z
+
(
z2
+
z2
)
)
)
^2
)
)
+
(
(
Im2
(
z
+
(
z2
+
z2
)
)
)
^2
)
)
+
(
(
Im3
(
z
+
(
z2
+
z2
)
)
)
^2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
sqrt
(
(
(
(
(
Rea
(
z
+
(
z2
+
z2
)
)
)
^2
)
+
(
(
Im1
(
z
+
(
z2
+
z2
)
)
)
^2
)
)
+
(
(
Im2
(
z
+
(
z2
+
z2
)
)
)
^2
)
)
+
(
(
Im3
(
z
+
(
z2
+
z2
)
)
)
^2
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
|.
(
z2
+
z2
)
.|
is
V28
()
V29
()
ext-real
Element
of
REAL
Rea
(
z2
+
z2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Rea
(
z2
+
z2
)
)
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Rea
(
z2
+
z2
)
)
,
(
Rea
(
z2
+
z2
)
)
) is
set
Im1
(
z2
+
z2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im1
(
z2
+
z2
)
)
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Im1
(
z2
+
z2
)
)
,
(
Im1
(
z2
+
z2
)
)
) is
set
(
(
Rea
(
z2
+
z2
)
)
^2
)
+
(
(
Im1
(
z2
+
z2
)
)
^2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
Im2
(
z2
+
z2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im2
(
z2
+
z2
)
)
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Im2
(
z2
+
z2
)
)
,
(
Im2
(
z2
+
z2
)
)
) is
set
(
(
(
Rea
(
z2
+
z2
)
)
^2
)
+
(
(
Im1
(
z2
+
z2
)
)
^2
)
)
+
(
(
Im2
(
z2
+
z2
)
)
^2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
Im3
(
z2
+
z2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im3
(
z2
+
z2
)
)
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Im3
(
z2
+
z2
)
)
,
(
Im3
(
z2
+
z2
)
)
) is
set
(
(
(
(
Rea
(
z2
+
z2
)
)
^2
)
+
(
(
Im1
(
z2
+
z2
)
)
^2
)
)
+
(
(
Im2
(
z2
+
z2
)
)
^2
)
)
+
(
(
Im3
(
z2
+
z2
)
)
^2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
sqrt
(
(
(
(
(
Rea
(
z2
+
z2
)
)
^2
)
+
(
(
Im1
(
z2
+
z2
)
)
^2
)
)
+
(
(
Im2
(
z2
+
z2
)
)
^2
)
)
+
(
(
Im3
(
z2
+
z2
)
)
^2
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
|.
z
.|
+
|.
(
z2
+
z2
)
.|
is
V28
()
V29
()
ext-real
Element
of
REAL
|.
(
(
z
+
z2
)
+
z2
)
.|
-
|.
z
.|
is
V28
()
V29
()
ext-real
Element
of
REAL
K110
(
|.
z
.|
) is
V28
()
set
K108
(
|.
(
(
z
+
z2
)
+
z2
)
.|
,
K110
(
|.
z
.|
)) is
set
|.
z2
.|
+
|.
z2
.|
is
V28
()
V29
()
ext-real
Element
of
REAL
(
|.
(
(
z
+
z2
)
+
z2
)
.|
-
|.
z
.|
)
+
|.
(
z2
+
z2
)
.|
is
V28
()
V29
()
ext-real
Element
of
REAL
|.
(
z2
+
z2
)
.|
+
(
|.
z2
.|
+
|.
z2
.|
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
|.
(
z2
+
z2
)
.|
+
(
|.
z2
.|
+
|.
z2
.|
)
)
-
|.
(
z2
+
z2
)
.|
is
V28
()
V29
()
ext-real
Element
of
REAL
K110
(
|.
(
z2
+
z2
)
.|
) is
V28
()
set
K108
(
(
|.
(
z2
+
z2
)
.|
+
(
|.
z2
.|
+
|.
z2
.|
)
)
,
K110
(
|.
(
z2
+
z2
)
.|
)) is
set
(
|.
z2
.|
+
|.
z2
.|
)
+
|.
z
.|
is
V28
()
V29
()
ext-real
Element
of
REAL
z
is
quaternion
set
|.
z
.|
is
V28
()
V29
()
ext-real
Element
of
REAL
Rea
z
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Rea
z
)
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Rea
z
)
,
(
Rea
z
)
) is
set
Im1
z
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im1
z
)
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Im1
z
)
,
(
Im1
z
)
) is
set
(
(
Rea
z
)
^2
)
+
(
(
Im1
z
)
^2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
Im2
z
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im2
z
)
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Im2
z
)
,
(
Im2
z
)
) is
set
(
(
(
Rea
z
)
^2
)
+
(
(
Im1
z
)
^2
)
)
+
(
(
Im2
z
)
^2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
Im3
z
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im3
z
)
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Im3
z
)
,
(
Im3
z
)
) is
set
(
(
(
(
Rea
z
)
^2
)
+
(
(
Im1
z
)
^2
)
)
+
(
(
Im2
z
)
^2
)
)
+
(
(
Im3
z
)
^2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
sqrt
(
(
(
(
(
Rea
z
)
^2
)
+
(
(
Im1
z
)
^2
)
)
+
(
(
Im2
z
)
^2
)
)
+
(
(
Im3
z
)
^2
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
z2
is
quaternion
set
z
+
z2
is
quaternion
Element
of
QUATERNION
|.
z2
.|
is
V28
()
V29
()
ext-real
Element
of
REAL
Rea
z2
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Rea
z2
)
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Rea
z2
)
,
(
Rea
z2
)
) is
set
Im1
z2
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im1
z2
)
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Im1
z2
)
,
(
Im1
z2
)
) is
set
(
(
Rea
z2
)
^2
)
+
(
(
Im1
z2
)
^2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
Im2
z2
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im2
z2
)
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Im2
z2
)
,
(
Im2
z2
)
) is
set
(
(
(
Rea
z2
)
^2
)
+
(
(
Im1
z2
)
^2
)
)
+
(
(
Im2
z2
)
^2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
Im3
z2
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im3
z2
)
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Im3
z2
)
,
(
Im3
z2
)
) is
set
(
(
(
(
Rea
z2
)
^2
)
+
(
(
Im1
z2
)
^2
)
)
+
(
(
Im2
z2
)
^2
)
)
+
(
(
Im3
z2
)
^2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
sqrt
(
(
(
(
(
Rea
z2
)
^2
)
+
(
(
Im1
z2
)
^2
)
)
+
(
(
Im2
z2
)
^2
)
)
+
(
(
Im3
z2
)
^2
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
|.
z
.|
+
|.
z2
.|
is
V28
()
V29
()
ext-real
Element
of
REAL
z2
is
quaternion
set
(
z
+
z2
)
-
z2
is
quaternion
Element
of
QUATERNION
-
z2
is
quaternion
set
(
z
+
z2
)
+
(
-
z2
)
is
quaternion
set
|.
(
(
z
+
z2
)
-
z2
)
.|
is
V28
()
V29
()
ext-real
Element
of
REAL
Rea
(
(
z
+
z2
)
-
z2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Rea
(
(
z
+
z2
)
-
z2
)
)
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Rea
(
(
z
+
z2
)
-
z2
)
)
,
(
Rea
(
(
z
+
z2
)
-
z2
)
)
) is
set
Im1
(
(
z
+
z2
)
-
z2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im1
(
(
z
+
z2
)
-
z2
)
)
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Im1
(
(
z
+
z2
)
-
z2
)
)
,
(
Im1
(
(
z
+
z2
)
-
z2
)
)
) is
set
(
(
Rea
(
(
z
+
z2
)
-
z2
)
)
^2
)
+
(
(
Im1
(
(
z
+
z2
)
-
z2
)
)
^2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
Im2
(
(
z
+
z2
)
-
z2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im2
(
(
z
+
z2
)
-
z2
)
)
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Im2
(
(
z
+
z2
)
-
z2
)
)
,
(
Im2
(
(
z
+
z2
)
-
z2
)
)
) is
set
(
(
(
Rea
(
(
z
+
z2
)
-
z2
)
)
^2
)
+
(
(
Im1
(
(
z
+
z2
)
-
z2
)
)
^2
)
)
+
(
(
Im2
(
(
z
+
z2
)
-
z2
)
)
^2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
Im3
(
(
z
+
z2
)
-
z2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im3
(
(
z
+
z2
)
-
z2
)
)
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Im3
(
(
z
+
z2
)
-
z2
)
)
,
(
Im3
(
(
z
+
z2
)
-
z2
)
)
) is
set
(
(
(
(
Rea
(
(
z
+
z2
)
-
z2
)
)
^2
)
+
(
(
Im1
(
(
z
+
z2
)
-
z2
)
)
^2
)
)
+
(
(
Im2
(
(
z
+
z2
)
-
z2
)
)
^2
)
)
+
(
(
Im3
(
(
z
+
z2
)
-
z2
)
)
^2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
sqrt
(
(
(
(
(
Rea
(
(
z
+
z2
)
-
z2
)
)
^2
)
+
(
(
Im1
(
(
z
+
z2
)
-
z2
)
)
^2
)
)
+
(
(
Im2
(
(
z
+
z2
)
-
z2
)
)
^2
)
)
+
(
(
Im3
(
(
z
+
z2
)
-
z2
)
)
^2
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
|.
z2
.|
is
V28
()
V29
()
ext-real
Element
of
REAL
Rea
z2
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Rea
z2
)
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Rea
z2
)
,
(
Rea
z2
)
) is
set
Im1
z2
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im1
z2
)
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Im1
z2
)
,
(
Im1
z2
)
) is
set
(
(
Rea
z2
)
^2
)
+
(
(
Im1
z2
)
^2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
Im2
z2
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im2
z2
)
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Im2
z2
)
,
(
Im2
z2
)
) is
set
(
(
(
Rea
z2
)
^2
)
+
(
(
Im1
z2
)
^2
)
)
+
(
(
Im2
z2
)
^2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
Im3
z2
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im3
z2
)
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Im3
z2
)
,
(
Im3
z2
)
) is
set
(
(
(
(
Rea
z2
)
^2
)
+
(
(
Im1
z2
)
^2
)
)
+
(
(
Im2
z2
)
^2
)
)
+
(
(
Im3
z2
)
^2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
sqrt
(
(
(
(
(
Rea
z2
)
^2
)
+
(
(
Im1
z2
)
^2
)
)
+
(
(
Im2
z2
)
^2
)
)
+
(
(
Im3
z2
)
^2
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
|.
z
.|
+
|.
z2
.|
)
+
|.
z2
.|
is
V28
()
V29
()
ext-real
Element
of
REAL
z2
-
z2
is
quaternion
Element
of
QUATERNION
z2
+
(
-
z2
)
is
quaternion
set
z
+
(
z2
-
z2
)
is
quaternion
Element
of
QUATERNION
|.
(
z
+
(
z2
-
z2
)
)
.|
is
V28
()
V29
()
ext-real
Element
of
REAL
Rea
(
z
+
(
z2
-
z2
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Rea
(
z
+
(
z2
-
z2
)
)
)
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Rea
(
z
+
(
z2
-
z2
)
)
)
,
(
Rea
(
z
+
(
z2
-
z2
)
)
)
) is
set
Im1
(
z
+
(
z2
-
z2
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im1
(
z
+
(
z2
-
z2
)
)
)
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Im1
(
z
+
(
z2
-
z2
)
)
)
,
(
Im1
(
z
+
(
z2
-
z2
)
)
)
) is
set
(
(
Rea
(
z
+
(
z2
-
z2
)
)
)
^2
)
+
(
(
Im1
(
z
+
(
z2
-
z2
)
)
)
^2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
Im2
(
z
+
(
z2
-
z2
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im2
(
z
+
(
z2
-
z2
)
)
)
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Im2
(
z
+
(
z2
-
z2
)
)
)
,
(
Im2
(
z
+
(
z2
-
z2
)
)
)
) is
set
(
(
(
Rea
(
z
+
(
z2
-
z2
)
)
)
^2
)
+
(
(
Im1
(
z
+
(
z2
-
z2
)
)
)
^2
)
)
+
(
(
Im2
(
z
+
(
z2
-
z2
)
)
)
^2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
Im3
(
z
+
(
z2
-
z2
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im3
(
z
+
(
z2
-
z2
)
)
)
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Im3
(
z
+
(
z2
-
z2
)
)
)
,
(
Im3
(
z
+
(
z2
-
z2
)
)
)
) is
set
(
(
(
(
Rea
(
z
+
(
z2
-
z2
)
)
)
^2
)
+
(
(
Im1
(
z
+
(
z2
-
z2
)
)
)
^2
)
)
+
(
(
Im2
(
z
+
(
z2
-
z2
)
)
)
^2
)
)
+
(
(
Im3
(
z
+
(
z2
-
z2
)
)
)
^2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
sqrt
(
(
(
(
(
Rea
(
z
+
(
z2
-
z2
)
)
)
^2
)
+
(
(
Im1
(
z
+
(
z2
-
z2
)
)
)
^2
)
)
+
(
(
Im2
(
z
+
(
z2
-
z2
)
)
)
^2
)
)
+
(
(
Im3
(
z
+
(
z2
-
z2
)
)
)
^2
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
|.
(
z2
-
z2
)
.|
is
V28
()
V29
()
ext-real
Element
of
REAL
Rea
(
z2
-
z2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Rea
(
z2
-
z2
)
)
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Rea
(
z2
-
z2
)
)
,
(
Rea
(
z2
-
z2
)
)
) is
set
Im1
(
z2
-
z2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im1
(
z2
-
z2
)
)
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Im1
(
z2
-
z2
)
)
,
(
Im1
(
z2
-
z2
)
)
) is
set
(
(
Rea
(
z2
-
z2
)
)
^2
)
+
(
(
Im1
(
z2
-
z2
)
)
^2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
Im2
(
z2
-
z2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im2
(
z2
-
z2
)
)
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Im2
(
z2
-
z2
)
)
,
(
Im2
(
z2
-
z2
)
)
) is
set
(
(
(
Rea
(
z2
-
z2
)
)
^2
)
+
(
(
Im1
(
z2
-
z2
)
)
^2
)
)
+
(
(
Im2
(
z2
-
z2
)
)
^2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
Im3
(
z2
-
z2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im3
(
z2
-
z2
)
)
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Im3
(
z2
-
z2
)
)
,
(
Im3
(
z2
-
z2
)
)
) is
set
(
(
(
(
Rea
(
z2
-
z2
)
)
^2
)
+
(
(
Im1
(
z2
-
z2
)
)
^2
)
)
+
(
(
Im2
(
z2
-
z2
)
)
^2
)
)
+
(
(
Im3
(
z2
-
z2
)
)
^2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
sqrt
(
(
(
(
(
Rea
(
z2
-
z2
)
)
^2
)
+
(
(
Im1
(
z2
-
z2
)
)
^2
)
)
+
(
(
Im2
(
z2
-
z2
)
)
^2
)
)
+
(
(
Im3
(
z2
-
z2
)
)
^2
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
|.
z
.|
+
|.
(
z2
-
z2
)
.|
is
V28
()
V29
()
ext-real
Element
of
REAL
|.
(
(
z
+
z2
)
-
z2
)
.|
-
|.
z
.|
is
V28
()
V29
()
ext-real
Element
of
REAL
K110
(
|.
z
.|
) is
V28
()
set
K108
(
|.
(
(
z
+
z2
)
-
z2
)
.|
,
K110
(
|.
z
.|
)) is
set
|.
z2
.|
+
|.
z2
.|
is
V28
()
V29
()
ext-real
Element
of
REAL
(
|.
(
(
z
+
z2
)
-
z2
)
.|
-
|.
z
.|
)
+
|.
(
z2
-
z2
)
.|
is
V28
()
V29
()
ext-real
Element
of
REAL
|.
(
z2
-
z2
)
.|
+
(
|.
z2
.|
+
|.
z2
.|
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
|.
(
z2
-
z2
)
.|
+
(
|.
z2
.|
+
|.
z2
.|
)
)
-
|.
(
z2
-
z2
)
.|
is
V28
()
V29
()
ext-real
Element
of
REAL
K110
(
|.
(
z2
-
z2
)
.|
) is
V28
()
set
K108
(
(
|.
(
z2
-
z2
)
.|
+
(
|.
z2
.|
+
|.
z2
.|
)
)
,
K110
(
|.
(
z2
-
z2
)
.|
)) is
set
(
|.
z2
.|
+
|.
z2
.|
)
+
|.
z
.|
is
V28
()
V29
()
ext-real
Element
of
REAL
z
is
quaternion
set
|.
z
.|
is
V28
()
V29
()
ext-real
Element
of
REAL
Rea
z
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Rea
z
)
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Rea
z
)
,
(
Rea
z
)
) is
set
Im1
z
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im1
z
)
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Im1
z
)
,
(
Im1
z
)
) is
set
(
(
Rea
z
)
^2
)
+
(
(
Im1
z
)
^2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
Im2
z
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im2
z
)
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Im2
z
)
,
(
Im2
z
)
) is
set
(
(
(
Rea
z
)
^2
)
+
(
(
Im1
z
)
^2
)
)
+
(
(
Im2
z
)
^2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
Im3
z
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im3
z
)
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Im3
z
)
,
(
Im3
z
)
) is
set
(
(
(
(
Rea
z
)
^2
)
+
(
(
Im1
z
)
^2
)
)
+
(
(
Im2
z
)
^2
)
)
+
(
(
Im3
z
)
^2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
sqrt
(
(
(
(
(
Rea
z
)
^2
)
+
(
(
Im1
z
)
^2
)
)
+
(
(
Im2
z
)
^2
)
)
+
(
(
Im3
z
)
^2
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
z2
is
quaternion
set
z
-
z2
is
quaternion
Element
of
QUATERNION
-
z2
is
quaternion
set
z
+
(
-
z2
)
is
quaternion
set
|.
z2
.|
is
V28
()
V29
()
ext-real
Element
of
REAL
Rea
z2
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Rea
z2
)
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Rea
z2
)
,
(
Rea
z2
)
) is
set
Im1
z2
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im1
z2
)
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Im1
z2
)
,
(
Im1
z2
)
) is
set
(
(
Rea
z2
)
^2
)
+
(
(
Im1
z2
)
^2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
Im2
z2
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im2
z2
)
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Im2
z2
)
,
(
Im2
z2
)
) is
set
(
(
(
Rea
z2
)
^2
)
+
(
(
Im1
z2
)
^2
)
)
+
(
(
Im2
z2
)
^2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
Im3
z2
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im3
z2
)
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Im3
z2
)
,
(
Im3
z2
)
) is
set
(
(
(
(
Rea
z2
)
^2
)
+
(
(
Im1
z2
)
^2
)
)
+
(
(
Im2
z2
)
^2
)
)
+
(
(
Im3
z2
)
^2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
sqrt
(
(
(
(
(
Rea
z2
)
^2
)
+
(
(
Im1
z2
)
^2
)
)
+
(
(
Im2
z2
)
^2
)
)
+
(
(
Im3
z2
)
^2
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
|.
z
.|
+
|.
z2
.|
is
V28
()
V29
()
ext-real
Element
of
REAL
z2
is
quaternion
set
(
z
-
z2
)
-
z2
is
quaternion
Element
of
QUATERNION
-
z2
is
quaternion
set
(
z
-
z2
)
+
(
-
z2
)
is
quaternion
set
|.
(
(
z
-
z2
)
-
z2
)
.|
is
V28
()
V29
()
ext-real
Element
of
REAL
Rea
(
(
z
-
z2
)
-
z2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Rea
(
(
z
-
z2
)
-
z2
)
)
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Rea
(
(
z
-
z2
)
-
z2
)
)
,
(
Rea
(
(
z
-
z2
)
-
z2
)
)
) is
set
Im1
(
(
z
-
z2
)
-
z2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im1
(
(
z
-
z2
)
-
z2
)
)
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Im1
(
(
z
-
z2
)
-
z2
)
)
,
(
Im1
(
(
z
-
z2
)
-
z2
)
)
) is
set
(
(
Rea
(
(
z
-
z2
)
-
z2
)
)
^2
)
+
(
(
Im1
(
(
z
-
z2
)
-
z2
)
)
^2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
Im2
(
(
z
-
z2
)
-
z2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im2
(
(
z
-
z2
)
-
z2
)
)
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Im2
(
(
z
-
z2
)
-
z2
)
)
,
(
Im2
(
(
z
-
z2
)
-
z2
)
)
) is
set
(
(
(
Rea
(
(
z
-
z2
)
-
z2
)
)
^2
)
+
(
(
Im1
(
(
z
-
z2
)
-
z2
)
)
^2
)
)
+
(
(
Im2
(
(
z
-
z2
)
-
z2
)
)
^2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
Im3
(
(
z
-
z2
)
-
z2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im3
(
(
z
-
z2
)
-
z2
)
)
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Im3
(
(
z
-
z2
)
-
z2
)
)
,
(
Im3
(
(
z
-
z2
)
-
z2
)
)
) is
set
(
(
(
(
Rea
(
(
z
-
z2
)
-
z2
)
)
^2
)
+
(
(
Im1
(
(
z
-
z2
)
-
z2
)
)
^2
)
)
+
(
(
Im2
(
(
z
-
z2
)
-
z2
)
)
^2
)
)
+
(
(
Im3
(
(
z
-
z2
)
-
z2
)
)
^2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
sqrt
(
(
(
(
(
Rea
(
(
z
-
z2
)
-
z2
)
)
^2
)
+
(
(
Im1
(
(
z
-
z2
)
-
z2
)
)
^2
)
)
+
(
(
Im2
(
(
z
-
z2
)
-
z2
)
)
^2
)
)
+
(
(
Im3
(
(
z
-
z2
)
-
z2
)
)
^2
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
|.
z2
.|
is
V28
()
V29
()
ext-real
Element
of
REAL
Rea
z2
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Rea
z2
)
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Rea
z2
)
,
(
Rea
z2
)
) is
set
Im1
z2
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im1
z2
)
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Im1
z2
)
,
(
Im1
z2
)
) is
set
(
(
Rea
z2
)
^2
)
+
(
(
Im1
z2
)
^2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
Im2
z2
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im2
z2
)
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Im2
z2
)
,
(
Im2
z2
)
) is
set
(
(
(
Rea
z2
)
^2
)
+
(
(
Im1
z2
)
^2
)
)
+
(
(
Im2
z2
)
^2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
Im3
z2
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im3
z2
)
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Im3
z2
)
,
(
Im3
z2
)
) is
set
(
(
(
(
Rea
z2
)
^2
)
+
(
(
Im1
z2
)
^2
)
)
+
(
(
Im2
z2
)
^2
)
)
+
(
(
Im3
z2
)
^2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
sqrt
(
(
(
(
(
Rea
z2
)
^2
)
+
(
(
Im1
z2
)
^2
)
)
+
(
(
Im2
z2
)
^2
)
)
+
(
(
Im3
z2
)
^2
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
|.
z
.|
+
|.
z2
.|
)
+
|.
z2
.|
is
V28
()
V29
()
ext-real
Element
of
REAL
|.
(
z
-
z2
)
.|
is
V28
()
V29
()
ext-real
Element
of
REAL
Rea
(
z
-
z2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Rea
(
z
-
z2
)
)
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Rea
(
z
-
z2
)
)
,
(
Rea
(
z
-
z2
)
)
) is
set
Im1
(
z
-
z2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im1
(
z
-
z2
)
)
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Im1
(
z
-
z2
)
)
,
(
Im1
(
z
-
z2
)
)
) is
set
(
(
Rea
(
z
-
z2
)
)
^2
)
+
(
(
Im1
(
z
-
z2
)
)
^2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
Im2
(
z
-
z2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im2
(
z
-
z2
)
)
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Im2
(
z
-
z2
)
)
,
(
Im2
(
z
-
z2
)
)
) is
set
(
(
(
Rea
(
z
-
z2
)
)
^2
)
+
(
(
Im1
(
z
-
z2
)
)
^2
)
)
+
(
(
Im2
(
z
-
z2
)
)
^2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
Im3
(
z
-
z2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im3
(
z
-
z2
)
)
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Im3
(
z
-
z2
)
)
,
(
Im3
(
z
-
z2
)
)
) is
set
(
(
(
(
Rea
(
z
-
z2
)
)
^2
)
+
(
(
Im1
(
z
-
z2
)
)
^2
)
)
+
(
(
Im2
(
z
-
z2
)
)
^2
)
)
+
(
(
Im3
(
z
-
z2
)
)
^2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
sqrt
(
(
(
(
(
Rea
(
z
-
z2
)
)
^2
)
+
(
(
Im1
(
z
-
z2
)
)
^2
)
)
+
(
(
Im2
(
z
-
z2
)
)
^2
)
)
+
(
(
Im3
(
z
-
z2
)
)
^2
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
|.
(
z
-
z2
)
.|
+
|.
z2
.|
is
V28
()
V29
()
ext-real
Element
of
REAL
|.
(
(
z
-
z2
)
-
z2
)
.|
+
|.
(
z
-
z2
)
.|
is
V28
()
V29
()
ext-real
Element
of
REAL
(
|.
(
z
-
z2
)
.|
+
|.
z2
.|
)
+
(
|.
z
.|
+
|.
z2
.|
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
|.
(
z
-
z2
)
.|
+
|.
z2
.|
)
+
(
|.
z
.|
+
|.
z2
.|
)
)
-
|.
(
z
-
z2
)
.|
is
V28
()
V29
()
ext-real
Element
of
REAL
K110
(
|.
(
z
-
z2
)
.|
) is
V28
()
set
K108
(
(
(
|.
(
z
-
z2
)
.|
+
|.
z2
.|
)
+
(
|.
z
.|
+
|.
z2
.|
)
)
,
K110
(
|.
(
z
-
z2
)
.|
)) is
set
z
is
quaternion
set
|.
z
.|
is
V28
()
V29
()
ext-real
Element
of
REAL
Rea
z
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Rea
z
)
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Rea
z
)
,
(
Rea
z
)
) is
set
Im1
z
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im1
z
)
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Im1
z
)
,
(
Im1
z
)
) is
set
(
(
Rea
z
)
^2
)
+
(
(
Im1
z
)
^2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
Im2
z
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im2
z
)
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Im2
z
)
,
(
Im2
z
)
) is
set
(
(
(
Rea
z
)
^2
)
+
(
(
Im1
z
)
^2
)
)
+
(
(
Im2
z
)
^2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
Im3
z
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im3
z
)
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Im3
z
)
,
(
Im3
z
)
) is
set
(
(
(
(
Rea
z
)
^2
)
+
(
(
Im1
z
)
^2
)
)
+
(
(
Im2
z
)
^2
)
)
+
(
(
Im3
z
)
^2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
sqrt
(
(
(
(
(
Rea
z
)
^2
)
+
(
(
Im1
z
)
^2
)
)
+
(
(
Im2
z
)
^2
)
)
+
(
(
Im3
z
)
^2
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
z2
is
quaternion
set
|.
z2
.|
is
V28
()
V29
()
ext-real
Element
of
REAL
Rea
z2
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Rea
z2
)
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Rea
z2
)
,
(
Rea
z2
)
) is
set
Im1
z2
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im1
z2
)
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Im1
z2
)
,
(
Im1
z2
)
) is
set
(
(
Rea
z2
)
^2
)
+
(
(
Im1
z2
)
^2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
Im2
z2
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im2
z2
)
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Im2
z2
)
,
(
Im2
z2
)
) is
set
(
(
(
Rea
z2
)
^2
)
+
(
(
Im1
z2
)
^2
)
)
+
(
(
Im2
z2
)
^2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
Im3
z2
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im3
z2
)
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Im3
z2
)
,
(
Im3
z2
)
) is
set
(
(
(
(
Rea
z2
)
^2
)
+
(
(
Im1
z2
)
^2
)
)
+
(
(
Im2
z2
)
^2
)
)
+
(
(
Im3
z2
)
^2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
sqrt
(
(
(
(
(
Rea
z2
)
^2
)
+
(
(
Im1
z2
)
^2
)
)
+
(
(
Im2
z2
)
^2
)
)
+
(
(
Im3
z2
)
^2
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
|.
z
.|
-
|.
z2
.|
is
V28
()
V29
()
ext-real
Element
of
REAL
K110
(
|.
z2
.|
) is
V28
()
set
K108
(
|.
z
.|
,
K110
(
|.
z2
.|
)) is
set
z
+
z2
is
quaternion
Element
of
QUATERNION
|.
(
z
+
z2
)
.|
is
V28
()
V29
()
ext-real
Element
of
REAL
Rea
(
z
+
z2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Rea
(
z
+
z2
)
)
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Rea
(
z
+
z2
)
)
,
(
Rea
(
z
+
z2
)
)
) is
set
Im1
(
z
+
z2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im1
(
z
+
z2
)
)
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Im1
(
z
+
z2
)
)
,
(
Im1
(
z
+
z2
)
)
) is
set
(
(
Rea
(
z
+
z2
)
)
^2
)
+
(
(
Im1
(
z
+
z2
)
)
^2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
Im2
(
z
+
z2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im2
(
z
+
z2
)
)
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Im2
(
z
+
z2
)
)
,
(
Im2
(
z
+
z2
)
)
) is
set
(
(
(
Rea
(
z
+
z2
)
)
^2
)
+
(
(
Im1
(
z
+
z2
)
)
^2
)
)
+
(
(
Im2
(
z
+
z2
)
)
^2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
Im3
(
z
+
z2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im3
(
z
+
z2
)
)
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Im3
(
z
+
z2
)
)
,
(
Im3
(
z
+
z2
)
)
) is
set
(
(
(
(
Rea
(
z
+
z2
)
)
^2
)
+
(
(
Im1
(
z
+
z2
)
)
^2
)
)
+
(
(
Im2
(
z
+
z2
)
)
^2
)
)
+
(
(
Im3
(
z
+
z2
)
)
^2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
sqrt
(
(
(
(
(
Rea
(
z
+
z2
)
)
^2
)
+
(
(
Im1
(
z
+
z2
)
)
^2
)
)
+
(
(
Im2
(
z
+
z2
)
)
^2
)
)
+
(
(
Im3
(
z
+
z2
)
)
^2
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
z
-
z2
is
quaternion
Element
of
QUATERNION
-
z2
is
quaternion
set
z
+
(
-
z2
)
is
quaternion
set
|.
(
z
-
z2
)
.|
is
V28
()
V29
()
ext-real
Element
of
REAL
Rea
(
z
-
z2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Rea
(
z
-
z2
)
)
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Rea
(
z
-
z2
)
)
,
(
Rea
(
z
-
z2
)
)
) is
set
Im1
(
z
-
z2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im1
(
z
-
z2
)
)
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Im1
(
z
-
z2
)
)
,
(
Im1
(
z
-
z2
)
)
) is
set
(
(
Rea
(
z
-
z2
)
)
^2
)
+
(
(
Im1
(
z
-
z2
)
)
^2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
Im2
(
z
-
z2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im2
(
z
-
z2
)
)
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Im2
(
z
-
z2
)
)
,
(
Im2
(
z
-
z2
)
)
) is
set
(
(
(
Rea
(
z
-
z2
)
)
^2
)
+
(
(
Im1
(
z
-
z2
)
)
^2
)
)
+
(
(
Im2
(
z
-
z2
)
)
^2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
Im3
(
z
-
z2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im3
(
z
-
z2
)
)
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Im3
(
z
-
z2
)
)
,
(
Im3
(
z
-
z2
)
)
) is
set
(
(
(
(
Rea
(
z
-
z2
)
)
^2
)
+
(
(
Im1
(
z
-
z2
)
)
^2
)
)
+
(
(
Im2
(
z
-
z2
)
)
^2
)
)
+
(
(
Im3
(
z
-
z2
)
)
^2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
sqrt
(
(
(
(
(
Rea
(
z
-
z2
)
)
^2
)
+
(
(
Im1
(
z
-
z2
)
)
^2
)
)
+
(
(
Im2
(
z
-
z2
)
)
^2
)
)
+
(
(
Im3
(
z
-
z2
)
)
^2
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
|.
(
z
+
z2
)
.|
+
|.
(
z
-
z2
)
.|
is
V28
()
V29
()
ext-real
Element
of
REAL
(
|.
(
z
+
z2
)
.|
+
|.
(
z
-
z2
)
.|
)
/
2 is
V28
()
V29
()
ext-real
Element
of
REAL
K111
(2) is
V28
()
set
K109
(
(
|.
(
z
+
z2
)
.|
+
|.
(
z
-
z2
)
.|
)
,
K111
(2)) is
set
(
|.
z
.|
-
|.
z2
.|
)
+
(
|.
z
.|
-
|.
z2
.|
)
is
V28
()
V29
()
ext-real
Element
of
REAL
2
*
(
|.
z
.|
-
|.
z2
.|
)
is
V28
()
V29
()
ext-real
Element
of
REAL
z
is
quaternion
set
|.
z
.|
is
V28
()
V29
()
ext-real
Element
of
REAL
Rea
z
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Rea
z
)
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Rea
z
)
,
(
Rea
z
)
) is
set
Im1
z
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im1
z
)
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Im1
z
)
,
(
Im1
z
)
) is
set
(
(
Rea
z
)
^2
)
+
(
(
Im1
z
)
^2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
Im2
z
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im2
z
)
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Im2
z
)
,
(
Im2
z
)
) is
set
(
(
(
Rea
z
)
^2
)
+
(
(
Im1
z
)
^2
)
)
+
(
(
Im2
z
)
^2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
Im3
z
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im3
z
)
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Im3
z
)
,
(
Im3
z
)
) is
set
(
(
(
(
Rea
z
)
^2
)
+
(
(
Im1
z
)
^2
)
)
+
(
(
Im2
z
)
^2
)
)
+
(
(
Im3
z
)
^2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
sqrt
(
(
(
(
(
Rea
z
)
^2
)
+
(
(
Im1
z
)
^2
)
)
+
(
(
Im2
z
)
^2
)
)
+
(
(
Im3
z
)
^2
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
z2
is
quaternion
set
|.
z2
.|
is
V28
()
V29
()
ext-real
Element
of
REAL
Rea
z2
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Rea
z2
)
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Rea
z2
)
,
(
Rea
z2
)
) is
set
Im1
z2
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im1
z2
)
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Im1
z2
)
,
(
Im1
z2
)
) is
set
(
(
Rea
z2
)
^2
)
+
(
(
Im1
z2
)
^2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
Im2
z2
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im2
z2
)
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Im2
z2
)
,
(
Im2
z2
)
) is
set
(
(
(
Rea
z2
)
^2
)
+
(
(
Im1
z2
)
^2
)
)
+
(
(
Im2
z2
)
^2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
Im3
z2
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im3
z2
)
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Im3
z2
)
,
(
Im3
z2
)
) is
set
(
(
(
(
Rea
z2
)
^2
)
+
(
(
Im1
z2
)
^2
)
)
+
(
(
Im2
z2
)
^2
)
)
+
(
(
Im3
z2
)
^2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
sqrt
(
(
(
(
(
Rea
z2
)
^2
)
+
(
(
Im1
z2
)
^2
)
)
+
(
(
Im2
z2
)
^2
)
)
+
(
(
Im3
z2
)
^2
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
|.
z
.|
-
|.
z2
.|
is
V28
()
V29
()
ext-real
Element
of
REAL
K110
(
|.
z2
.|
) is
V28
()
set
K108
(
|.
z
.|
,
K110
(
|.
z2
.|
)) is
set
z
+
z2
is
quaternion
Element
of
QUATERNION
|.
(
z
+
z2
)
.|
is
V28
()
V29
()
ext-real
Element
of
REAL
Rea
(
z
+
z2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Rea
(
z
+
z2
)
)
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Rea
(
z
+
z2
)
)
,
(
Rea
(
z
+
z2
)
)
) is
set
Im1
(
z
+
z2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im1
(
z
+
z2
)
)
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Im1
(
z
+
z2
)
)
,
(
Im1
(
z
+
z2
)
)
) is
set
(
(
Rea
(
z
+
z2
)
)
^2
)
+
(
(
Im1
(
z
+
z2
)
)
^2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
Im2
(
z
+
z2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im2
(
z
+
z2
)
)
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Im2
(
z
+
z2
)
)
,
(
Im2
(
z
+
z2
)
)
) is
set
(
(
(
Rea
(
z
+
z2
)
)
^2
)
+
(
(
Im1
(
z
+
z2
)
)
^2
)
)
+
(
(
Im2
(
z
+
z2
)
)
^2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
Im3
(
z
+
z2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im3
(
z
+
z2
)
)
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Im3
(
z
+
z2
)
)
,
(
Im3
(
z
+
z2
)
)
) is
set
(
(
(
(
Rea
(
z
+
z2
)
)
^2
)
+
(
(
Im1
(
z
+
z2
)
)
^2
)
)
+
(
(
Im2
(
z
+
z2
)
)
^2
)
)
+
(
(
Im3
(
z
+
z2
)
)
^2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
sqrt
(
(
(
(
(
Rea
(
z
+
z2
)
)
^2
)
+
(
(
Im1
(
z
+
z2
)
)
^2
)
)
+
(
(
Im2
(
z
+
z2
)
)
^2
)
)
+
(
(
Im3
(
z
+
z2
)
)
^2
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
z2
-
z
is
quaternion
Element
of
QUATERNION
-
z
is
quaternion
set
z2
+
(
-
z
)
is
quaternion
set
|.
(
z2
-
z
)
.|
is
V28
()
V29
()
ext-real
Element
of
REAL
Rea
(
z2
-
z
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Rea
(
z2
-
z
)
)
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Rea
(
z2
-
z
)
)
,
(
Rea
(
z2
-
z
)
)
) is
set
Im1
(
z2
-
z
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im1
(
z2
-
z
)
)
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Im1
(
z2
-
z
)
)
,
(
Im1
(
z2
-
z
)
)
) is
set
(
(
Rea
(
z2
-
z
)
)
^2
)
+
(
(
Im1
(
z2
-
z
)
)
^2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
Im2
(
z2
-
z
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im2
(
z2
-
z
)
)
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Im2
(
z2
-
z
)
)
,
(
Im2
(
z2
-
z
)
)
) is
set
(
(
(
Rea
(
z2
-
z
)
)
^2
)
+
(
(
Im1
(
z2
-
z
)
)
^2
)
)
+
(
(
Im2
(
z2
-
z
)
)
^2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
Im3
(
z2
-
z
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im3
(
z2
-
z
)
)
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Im3
(
z2
-
z
)
)
,
(
Im3
(
z2
-
z
)
)
) is
set
(
(
(
(
Rea
(
z2
-
z
)
)
^2
)
+
(
(
Im1
(
z2
-
z
)
)
^2
)
)
+
(
(
Im2
(
z2
-
z
)
)
^2
)
)
+
(
(
Im3
(
z2
-
z
)
)
^2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
sqrt
(
(
(
(
(
Rea
(
z2
-
z
)
)
^2
)
+
(
(
Im1
(
z2
-
z
)
)
^2
)
)
+
(
(
Im2
(
z2
-
z
)
)
^2
)
)
+
(
(
Im3
(
z2
-
z
)
)
^2
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
|.
(
z
+
z2
)
.|
+
|.
(
z2
-
z
)
.|
is
V28
()
V29
()
ext-real
Element
of
REAL
(
|.
(
z
+
z2
)
.|
+
|.
(
z2
-
z
)
.|
)
/
2 is
V28
()
V29
()
ext-real
Element
of
REAL
K111
(2) is
V28
()
set
K109
(
(
|.
(
z
+
z2
)
.|
+
|.
(
z2
-
z
)
.|
)
,
K111
(2)) is
set
z
-
z2
is
quaternion
Element
of
QUATERNION
-
z2
is
quaternion
set
z
+
(
-
z2
)
is
quaternion
set
|.
(
z
-
z2
)
.|
is
V28
()
V29
()
ext-real
Element
of
REAL
Rea
(
z
-
z2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Rea
(
z
-
z2
)
)
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Rea
(
z
-
z2
)
)
,
(
Rea
(
z
-
z2
)
)
) is
set
Im1
(
z
-
z2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im1
(
z
-
z2
)
)
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Im1
(
z
-
z2
)
)
,
(
Im1
(
z
-
z2
)
)
) is
set
(
(
Rea
(
z
-
z2
)
)
^2
)
+
(
(
Im1
(
z
-
z2
)
)
^2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
Im2
(
z
-
z2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im2
(
z
-
z2
)
)
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Im2
(
z
-
z2
)
)
,
(
Im2
(
z
-
z2
)
)
) is
set
(
(
(
Rea
(
z
-
z2
)
)
^2
)
+
(
(
Im1
(
z
-
z2
)
)
^2
)
)
+
(
(
Im2
(
z
-
z2
)
)
^2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
Im3
(
z
-
z2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im3
(
z
-
z2
)
)
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Im3
(
z
-
z2
)
)
,
(
Im3
(
z
-
z2
)
)
) is
set
(
(
(
(
Rea
(
z
-
z2
)
)
^2
)
+
(
(
Im1
(
z
-
z2
)
)
^2
)
)
+
(
(
Im2
(
z
-
z2
)
)
^2
)
)
+
(
(
Im3
(
z
-
z2
)
)
^2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
sqrt
(
(
(
(
(
Rea
(
z
-
z2
)
)
^2
)
+
(
(
Im1
(
z
-
z2
)
)
^2
)
)
+
(
(
Im2
(
z
-
z2
)
)
^2
)
)
+
(
(
Im3
(
z
-
z2
)
)
^2
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
|.
z
.|
-
|.
z2
.|
)
+
(
|.
z
.|
-
|.
z2
.|
)
is
V28
()
V29
()
ext-real
Element
of
REAL
|.
(
z
+
z2
)
.|
+
|.
(
z
-
z2
)
.|
is
V28
()
V29
()
ext-real
Element
of
REAL
2
*
(
|.
z
.|
-
|.
z2
.|
)
is
V28
()
V29
()
ext-real
Element
of
REAL
z
is
quaternion
set
|.
z
.|
is
V28
()
V29
()
ext-real
Element
of
REAL
Rea
z
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Rea
z
)
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Rea
z
)
,
(
Rea
z
)
) is
set
Im1
z
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im1
z
)
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Im1
z
)
,
(
Im1
z
)
) is
set
(
(
Rea
z
)
^2
)
+
(
(
Im1
z
)
^2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
Im2
z
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im2
z
)
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Im2
z
)
,
(
Im2
z
)
) is
set
(
(
(
Rea
z
)
^2
)
+
(
(
Im1
z
)
^2
)
)
+
(
(
Im2
z
)
^2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
Im3
z
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im3
z
)
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Im3
z
)
,
(
Im3
z
)
) is
set
(
(
(
(
Rea
z
)
^2
)
+
(
(
Im1
z
)
^2
)
)
+
(
(
Im2
z
)
^2
)
)
+
(
(
Im3
z
)
^2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
sqrt
(
(
(
(
(
Rea
z
)
^2
)
+
(
(
Im1
z
)
^2
)
)
+
(
(
Im2
z
)
^2
)
)
+
(
(
Im3
z
)
^2
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
z2
is
quaternion
set
|.
z2
.|
is
V28
()
V29
()
ext-real
Element
of
REAL
Rea
z2
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Rea
z2
)
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Rea
z2
)
,
(
Rea
z2
)
) is
set
Im1
z2
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im1
z2
)
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Im1
z2
)
,
(
Im1
z2
)
) is
set
(
(
Rea
z2
)
^2
)
+
(
(
Im1
z2
)
^2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
Im2
z2
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im2
z2
)
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Im2
z2
)
,
(
Im2
z2
)
) is
set
(
(
(
Rea
z2
)
^2
)
+
(
(
Im1
z2
)
^2
)
)
+
(
(
Im2
z2
)
^2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
Im3
z2
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im3
z2
)
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Im3
z2
)
,
(
Im3
z2
)
) is
set
(
(
(
(
Rea
z2
)
^2
)
+
(
(
Im1
z2
)
^2
)
)
+
(
(
Im2
z2
)
^2
)
)
+
(
(
Im3
z2
)
^2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
sqrt
(
(
(
(
(
Rea
z2
)
^2
)
+
(
(
Im1
z2
)
^2
)
)
+
(
(
Im2
z2
)
^2
)
)
+
(
(
Im3
z2
)
^2
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
|.
z
.|
-
|.
z2
.|
is
V28
()
V29
()
ext-real
Element
of
REAL
K110
(
|.
z2
.|
) is
V28
()
set
K108
(
|.
z
.|
,
K110
(
|.
z2
.|
)) is
set
|.
(
|.
z
.|
-
|.
z2
.|
)
.|
is
V28
()
V29
()
ext-real
Element
of
REAL
z2
-
z
is
quaternion
Element
of
QUATERNION
-
z
is
quaternion
set
z2
+
(
-
z
)
is
quaternion
set
|.
(
z2
-
z
)
.|
is
V28
()
V29
()
ext-real
Element
of
REAL
Rea
(
z2
-
z
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Rea
(
z2
-
z
)
)
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Rea
(
z2
-
z
)
)
,
(
Rea
(
z2
-
z
)
)
) is
set
Im1
(
z2
-
z
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im1
(
z2
-
z
)
)
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Im1
(
z2
-
z
)
)
,
(
Im1
(
z2
-
z
)
)
) is
set
(
(
Rea
(
z2
-
z
)
)
^2
)
+
(
(
Im1
(
z2
-
z
)
)
^2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
Im2
(
z2
-
z
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im2
(
z2
-
z
)
)
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Im2
(
z2
-
z
)
)
,
(
Im2
(
z2
-
z
)
)
) is
set
(
(
(
Rea
(
z2
-
z
)
)
^2
)
+
(
(
Im1
(
z2
-
z
)
)
^2
)
)
+
(
(
Im2
(
z2
-
z
)
)
^2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
Im3
(
z2
-
z
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im3
(
z2
-
z
)
)
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Im3
(
z2
-
z
)
)
,
(
Im3
(
z2
-
z
)
)
) is
set
(
(
(
(
Rea
(
z2
-
z
)
)
^2
)
+
(
(
Im1
(
z2
-
z
)
)
^2
)
)
+
(
(
Im2
(
z2
-
z
)
)
^2
)
)
+
(
(
Im3
(
z2
-
z
)
)
^2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
sqrt
(
(
(
(
(
Rea
(
z2
-
z
)
)
^2
)
+
(
(
Im1
(
z2
-
z
)
)
^2
)
)
+
(
(
Im2
(
z2
-
z
)
)
^2
)
)
+
(
(
Im3
(
z2
-
z
)
)
^2
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
z
-
z2
is
quaternion
Element
of
QUATERNION
-
z2
is
quaternion
set
z
+
(
-
z2
)
is
quaternion
set
|.
(
z
-
z2
)
.|
is
V28
()
V29
()
ext-real
Element
of
REAL
Rea
(
z
-
z2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Rea
(
z
-
z2
)
)
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Rea
(
z
-
z2
)
)
,
(
Rea
(
z
-
z2
)
)
) is
set
Im1
(
z
-
z2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im1
(
z
-
z2
)
)
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Im1
(
z
-
z2
)
)
,
(
Im1
(
z
-
z2
)
)
) is
set
(
(
Rea
(
z
-
z2
)
)
^2
)
+
(
(
Im1
(
z
-
z2
)
)
^2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
Im2
(
z
-
z2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im2
(
z
-
z2
)
)
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Im2
(
z
-
z2
)
)
,
(
Im2
(
z
-
z2
)
)
) is
set
(
(
(
Rea
(
z
-
z2
)
)
^2
)
+
(
(
Im1
(
z
-
z2
)
)
^2
)
)
+
(
(
Im2
(
z
-
z2
)
)
^2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
Im3
(
z
-
z2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im3
(
z
-
z2
)
)
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Im3
(
z
-
z2
)
)
,
(
Im3
(
z
-
z2
)
)
) is
set
(
(
(
(
Rea
(
z
-
z2
)
)
^2
)
+
(
(
Im1
(
z
-
z2
)
)
^2
)
)
+
(
(
Im2
(
z
-
z2
)
)
^2
)
)
+
(
(
Im3
(
z
-
z2
)
)
^2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
sqrt
(
(
(
(
(
Rea
(
z
-
z2
)
)
^2
)
+
(
(
Im1
(
z
-
z2
)
)
^2
)
)
+
(
(
Im2
(
z
-
z2
)
)
^2
)
)
+
(
(
Im3
(
z
-
z2
)
)
^2
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
z
is
quaternion
set
|.
z
.|
is
V28
()
V29
()
ext-real
Element
of
REAL
Rea
z
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Rea
z
)
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Rea
z
)
,
(
Rea
z
)
) is
set
Im1
z
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im1
z
)
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Im1
z
)
,
(
Im1
z
)
) is
set
(
(
Rea
z
)
^2
)
+
(
(
Im1
z
)
^2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
Im2
z
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im2
z
)
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Im2
z
)
,
(
Im2
z
)
) is
set
(
(
(
Rea
z
)
^2
)
+
(
(
Im1
z
)
^2
)
)
+
(
(
Im2
z
)
^2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
Im3
z
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im3
z
)
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Im3
z
)
,
(
Im3
z
)
) is
set
(
(
(
(
Rea
z
)
^2
)
+
(
(
Im1
z
)
^2
)
)
+
(
(
Im2
z
)
^2
)
)
+
(
(
Im3
z
)
^2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
sqrt
(
(
(
(
(
Rea
z
)
^2
)
+
(
(
Im1
z
)
^2
)
)
+
(
(
Im2
z
)
^2
)
)
+
(
(
Im3
z
)
^2
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
z2
is
quaternion
set
|.
z2
.|
is
V28
()
V29
()
ext-real
Element
of
REAL
Rea
z2
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Rea
z2
)
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Rea
z2
)
,
(
Rea
z2
)
) is
set
Im1
z2
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im1
z2
)
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Im1
z2
)
,
(
Im1
z2
)
) is
set
(
(
Rea
z2
)
^2
)
+
(
(
Im1
z2
)
^2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
Im2
z2
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im2
z2
)
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Im2
z2
)
,
(
Im2
z2
)
) is
set
(
(
(
Rea
z2
)
^2
)
+
(
(
Im1
z2
)
^2
)
)
+
(
(
Im2
z2
)
^2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
Im3
z2
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im3
z2
)
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Im3
z2
)
,
(
Im3
z2
)
) is
set
(
(
(
(
Rea
z2
)
^2
)
+
(
(
Im1
z2
)
^2
)
)
+
(
(
Im2
z2
)
^2
)
)
+
(
(
Im3
z2
)
^2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
sqrt
(
(
(
(
(
Rea
z2
)
^2
)
+
(
(
Im1
z2
)
^2
)
)
+
(
(
Im2
z2
)
^2
)
)
+
(
(
Im3
z2
)
^2
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
|.
z
.|
-
|.
z2
.|
is
V28
()
V29
()
ext-real
Element
of
REAL
K110
(
|.
z2
.|
) is
V28
()
set
K108
(
|.
z
.|
,
K110
(
|.
z2
.|
)) is
set
|.
(
|.
z
.|
-
|.
z2
.|
)
.|
is
V28
()
V29
()
ext-real
Element
of
REAL
|.
z
.|
+
|.
z2
.|
is
V28
()
V29
()
ext-real
Element
of
REAL
z
-
z2
is
quaternion
Element
of
QUATERNION
-
z2
is
quaternion
set
z
+
(
-
z2
)
is
quaternion
set
|.
(
z
-
z2
)
.|
is
V28
()
V29
()
ext-real
Element
of
REAL
Rea
(
z
-
z2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Rea
(
z
-
z2
)
)
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Rea
(
z
-
z2
)
)
,
(
Rea
(
z
-
z2
)
)
) is
set
Im1
(
z
-
z2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im1
(
z
-
z2
)
)
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Im1
(
z
-
z2
)
)
,
(
Im1
(
z
-
z2
)
)
) is
set
(
(
Rea
(
z
-
z2
)
)
^2
)
+
(
(
Im1
(
z
-
z2
)
)
^2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
Im2
(
z
-
z2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im2
(
z
-
z2
)
)
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Im2
(
z
-
z2
)
)
,
(
Im2
(
z
-
z2
)
)
) is
set
(
(
(
Rea
(
z
-
z2
)
)
^2
)
+
(
(
Im1
(
z
-
z2
)
)
^2
)
)
+
(
(
Im2
(
z
-
z2
)
)
^2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
Im3
(
z
-
z2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im3
(
z
-
z2
)
)
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Im3
(
z
-
z2
)
)
,
(
Im3
(
z
-
z2
)
)
) is
set
(
(
(
(
Rea
(
z
-
z2
)
)
^2
)
+
(
(
Im1
(
z
-
z2
)
)
^2
)
)
+
(
(
Im2
(
z
-
z2
)
)
^2
)
)
+
(
(
Im3
(
z
-
z2
)
)
^2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
sqrt
(
(
(
(
(
Rea
(
z
-
z2
)
)
^2
)
+
(
(
Im1
(
z
-
z2
)
)
^2
)
)
+
(
(
Im2
(
z
-
z2
)
)
^2
)
)
+
(
(
Im3
(
z
-
z2
)
)
^2
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
|.
(
|.
z
.|
-
|.
z2
.|
)
.|
+
|.
(
z
-
z2
)
.|
is
V28
()
V29
()
ext-real
Element
of
REAL
|.
(
z
-
z2
)
.|
+
(
|.
z
.|
+
|.
z2
.|
)
is
V28
()
V29
()
ext-real
Element
of
REAL
|.
(
z
-
z2
)
.|
+
|.
z
.|
is
V28
()
V29
()
ext-real
Element
of
REAL
(
|.
(
z
-
z2
)
.|
+
|.
z
.|
)
+
|.
z2
.|
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
|.
(
z
-
z2
)
.|
+
|.
z
.|
)
+
|.
z2
.|
)
-
|.
(
z
-
z2
)
.|
is
V28
()
V29
()
ext-real
Element
of
REAL
K110
(
|.
(
z
-
z2
)
.|
) is
V28
()
set
K108
(
(
(
|.
(
z
-
z2
)
.|
+
|.
z
.|
)
+
|.
z2
.|
)
,
K110
(
|.
(
z
-
z2
)
.|
)) is
set
z
is
quaternion
set
|.
z
.|
is
V28
()
V29
()
ext-real
Element
of
REAL
Rea
z
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Rea
z
)
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Rea
z
)
,
(
Rea
z
)
) is
set
Im1
z
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im1
z
)
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Im1
z
)
,
(
Im1
z
)
) is
set
(
(
Rea
z
)
^2
)
+
(
(
Im1
z
)
^2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
Im2
z
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im2
z
)
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Im2
z
)
,
(
Im2
z
)
) is
set
(
(
(
Rea
z
)
^2
)
+
(
(
Im1
z
)
^2
)
)
+
(
(
Im2
z
)
^2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
Im3
z
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im3
z
)
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Im3
z
)
,
(
Im3
z
)
) is
set
(
(
(
(
Rea
z
)
^2
)
+
(
(
Im1
z
)
^2
)
)
+
(
(
Im2
z
)
^2
)
)
+
(
(
Im3
z
)
^2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
sqrt
(
(
(
(
(
Rea
z
)
^2
)
+
(
(
Im1
z
)
^2
)
)
+
(
(
Im2
z
)
^2
)
)
+
(
(
Im3
z
)
^2
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
z2
is
quaternion
set
|.
z2
.|
is
V28
()
V29
()
ext-real
Element
of
REAL
Rea
z2
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Rea
z2
)
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Rea
z2
)
,
(
Rea
z2
)
) is
set
Im1
z2
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im1
z2
)
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Im1
z2
)
,
(
Im1
z2
)
) is
set
(
(
Rea
z2
)
^2
)
+
(
(
Im1
z2
)
^2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
Im2
z2
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im2
z2
)
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Im2
z2
)
,
(
Im2
z2
)
) is
set
(
(
(
Rea
z2
)
^2
)
+
(
(
Im1
z2
)
^2
)
)
+
(
(
Im2
z2
)
^2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
Im3
z2
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im3
z2
)
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Im3
z2
)
,
(
Im3
z2
)
) is
set
(
(
(
(
Rea
z2
)
^2
)
+
(
(
Im1
z2
)
^2
)
)
+
(
(
Im2
z2
)
^2
)
)
+
(
(
Im3
z2
)
^2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
sqrt
(
(
(
(
(
Rea
z2
)
^2
)
+
(
(
Im1
z2
)
^2
)
)
+
(
(
Im2
z2
)
^2
)
)
+
(
(
Im3
z2
)
^2
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
|.
z
.|
-
|.
z2
.|
is
V28
()
V29
()
ext-real
Element
of
REAL
K110
(
|.
z2
.|
) is
V28
()
set
K108
(
|.
z
.|
,
K110
(
|.
z2
.|
)) is
set
z2
is
quaternion
set
z
-
z2
is
quaternion
Element
of
QUATERNION
-
z2
is
quaternion
set
z
+
(
-
z2
)
is
quaternion
set
|.
(
z
-
z2
)
.|
is
V28
()
V29
()
ext-real
Element
of
REAL
Rea
(
z
-
z2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Rea
(
z
-
z2
)
)
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Rea
(
z
-
z2
)
)
,
(
Rea
(
z
-
z2
)
)
) is
set
Im1
(
z
-
z2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im1
(
z
-
z2
)
)
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Im1
(
z
-
z2
)
)
,
(
Im1
(
z
-
z2
)
)
) is
set
(
(
Rea
(
z
-
z2
)
)
^2
)
+
(
(
Im1
(
z
-
z2
)
)
^2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
Im2
(
z
-
z2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im2
(
z
-
z2
)
)
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Im2
(
z
-
z2
)
)
,
(
Im2
(
z
-
z2
)
)
) is
set
(
(
(
Rea
(
z
-
z2
)
)
^2
)
+
(
(
Im1
(
z
-
z2
)
)
^2
)
)
+
(
(
Im2
(
z
-
z2
)
)
^2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
Im3
(
z
-
z2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im3
(
z
-
z2
)
)
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Im3
(
z
-
z2
)
)
,
(
Im3
(
z
-
z2
)
)
) is
set
(
(
(
(
Rea
(
z
-
z2
)
)
^2
)
+
(
(
Im1
(
z
-
z2
)
)
^2
)
)
+
(
(
Im2
(
z
-
z2
)
)
^2
)
)
+
(
(
Im3
(
z
-
z2
)
)
^2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
sqrt
(
(
(
(
(
Rea
(
z
-
z2
)
)
^2
)
+
(
(
Im1
(
z
-
z2
)
)
^2
)
)
+
(
(
Im2
(
z
-
z2
)
)
^2
)
)
+
(
(
Im3
(
z
-
z2
)
)
^2
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
z2
-
z2
is
quaternion
Element
of
QUATERNION
-
z2
is
quaternion
set
z2
+
(
-
z2
)
is
quaternion
set
|.
(
z2
-
z2
)
.|
is
V28
()
V29
()
ext-real
Element
of
REAL
Rea
(
z2
-
z2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Rea
(
z2
-
z2
)
)
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Rea
(
z2
-
z2
)
)
,
(
Rea
(
z2
-
z2
)
)
) is
set
Im1
(
z2
-
z2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im1
(
z2
-
z2
)
)
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Im1
(
z2
-
z2
)
)
,
(
Im1
(
z2
-
z2
)
)
) is
set
(
(
Rea
(
z2
-
z2
)
)
^2
)
+
(
(
Im1
(
z2
-
z2
)
)
^2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
Im2
(
z2
-
z2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im2
(
z2
-
z2
)
)
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Im2
(
z2
-
z2
)
)
,
(
Im2
(
z2
-
z2
)
)
) is
set
(
(
(
Rea
(
z2
-
z2
)
)
^2
)
+
(
(
Im1
(
z2
-
z2
)
)
^2
)
)
+
(
(
Im2
(
z2
-
z2
)
)
^2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
Im3
(
z2
-
z2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im3
(
z2
-
z2
)
)
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Im3
(
z2
-
z2
)
)
,
(
Im3
(
z2
-
z2
)
)
) is
set
(
(
(
(
Rea
(
z2
-
z2
)
)
^2
)
+
(
(
Im1
(
z2
-
z2
)
)
^2
)
)
+
(
(
Im2
(
z2
-
z2
)
)
^2
)
)
+
(
(
Im3
(
z2
-
z2
)
)
^2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
sqrt
(
(
(
(
(
Rea
(
z2
-
z2
)
)
^2
)
+
(
(
Im1
(
z2
-
z2
)
)
^2
)
)
+
(
(
Im2
(
z2
-
z2
)
)
^2
)
)
+
(
(
Im3
(
z2
-
z2
)
)
^2
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
|.
(
z
-
z2
)
.|
+
|.
(
z2
-
z2
)
.|
is
V28
()
V29
()
ext-real
Element
of
REAL
z
-
z2
is
quaternion
Element
of
QUATERNION
z
+
(
-
z2
)
is
quaternion
set
|.
(
z
-
z2
)
.|
is
V28
()
V29
()
ext-real
Element
of
REAL
Rea
(
z
-
z2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Rea
(
z
-
z2
)
)
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Rea
(
z
-
z2
)
)
,
(
Rea
(
z
-
z2
)
)
) is
set
Im1
(
z
-
z2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im1
(
z
-
z2
)
)
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Im1
(
z
-
z2
)
)
,
(
Im1
(
z
-
z2
)
)
) is
set
(
(
Rea
(
z
-
z2
)
)
^2
)
+
(
(
Im1
(
z
-
z2
)
)
^2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
Im2
(
z
-
z2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im2
(
z
-
z2
)
)
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Im2
(
z
-
z2
)
)
,
(
Im2
(
z
-
z2
)
)
) is
set
(
(
(
Rea
(
z
-
z2
)
)
^2
)
+
(
(
Im1
(
z
-
z2
)
)
^2
)
)
+
(
(
Im2
(
z
-
z2
)
)
^2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
Im3
(
z
-
z2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im3
(
z
-
z2
)
)
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Im3
(
z
-
z2
)
)
,
(
Im3
(
z
-
z2
)
)
) is
set
(
(
(
(
Rea
(
z
-
z2
)
)
^2
)
+
(
(
Im1
(
z
-
z2
)
)
^2
)
)
+
(
(
Im2
(
z
-
z2
)
)
^2
)
)
+
(
(
Im3
(
z
-
z2
)
)
^2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
sqrt
(
(
(
(
(
Rea
(
z
-
z2
)
)
^2
)
+
(
(
Im1
(
z
-
z2
)
)
^2
)
)
+
(
(
Im2
(
z
-
z2
)
)
^2
)
)
+
(
(
Im3
(
z
-
z2
)
)
^2
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
|.
z
.|
-
|.
z2
.|
)
+
|.
(
z
-
z2
)
.|
is
V28
()
V29
()
ext-real
Element
of
REAL
|.
(
z
-
z2
)
.|
+
(
|.
(
z
-
z2
)
.|
+
|.
(
z2
-
z2
)
.|
)
is
V28
()
V29
()
ext-real
Element
of
REAL
|.
(
z
-
z2
)
.|
+
|.
(
z
-
z2
)
.|
is
V28
()
V29
()
ext-real
Element
of
REAL
(
|.
(
z
-
z2
)
.|
+
|.
(
z
-
z2
)
.|
)
+
|.
(
z2
-
z2
)
.|
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
|.
(
z
-
z2
)
.|
+
|.
(
z
-
z2
)
.|
)
+
|.
(
z2
-
z2
)
.|
)
-
|.
(
z
-
z2
)
.|
is
V28
()
V29
()
ext-real
Element
of
REAL
K110
(
|.
(
z
-
z2
)
.|
) is
V28
()
set
K108
(
(
(
|.
(
z
-
z2
)
.|
+
|.
(
z
-
z2
)
.|
)
+
|.
(
z2
-
z2
)
.|
)
,
K110
(
|.
(
z
-
z2
)
.|
)) is
set
z
is
quaternion
set
|.
z
.|
is
V28
()
V29
()
ext-real
Element
of
REAL
Rea
z
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Rea
z
)
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Rea
z
)
,
(
Rea
z
)
) is
set
Im1
z
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im1
z
)
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Im1
z
)
,
(
Im1
z
)
) is
set
(
(
Rea
z
)
^2
)
+
(
(
Im1
z
)
^2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
Im2
z
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im2
z
)
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Im2
z
)
,
(
Im2
z
)
) is
set
(
(
(
Rea
z
)
^2
)
+
(
(
Im1
z
)
^2
)
)
+
(
(
Im2
z
)
^2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
Im3
z
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im3
z
)
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Im3
z
)
,
(
Im3
z
)
) is
set
(
(
(
(
Rea
z
)
^2
)
+
(
(
Im1
z
)
^2
)
)
+
(
(
Im2
z
)
^2
)
)
+
(
(
Im3
z
)
^2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
sqrt
(
(
(
(
(
Rea
z
)
^2
)
+
(
(
Im1
z
)
^2
)
)
+
(
(
Im2
z
)
^2
)
)
+
(
(
Im3
z
)
^2
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
|.
z
.|
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
|.
z
.|
,
|.
z
.|
) is
set
2
*
|.
z
.|
is
V28
()
V29
()
ext-real
Element
of
REAL
z2
is
quaternion
set
|.
z2
.|
is
V28
()
V29
()
ext-real
Element
of
REAL
Rea
z2
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Rea
z2
)
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Rea
z2
)
,
(
Rea
z2
)
) is
set
Im1
z2
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im1
z2
)
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Im1
z2
)
,
(
Im1
z2
)
) is
set
(
(
Rea
z2
)
^2
)
+
(
(
Im1
z2
)
^2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
Im2
z2
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im2
z2
)
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Im2
z2
)
,
(
Im2
z2
)
) is
set
(
(
(
Rea
z2
)
^2
)
+
(
(
Im1
z2
)
^2
)
)
+
(
(
Im2
z2
)
^2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
Im3
z2
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im3
z2
)
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Im3
z2
)
,
(
Im3
z2
)
) is
set
(
(
(
(
Rea
z2
)
^2
)
+
(
(
Im1
z2
)
^2
)
)
+
(
(
Im2
z2
)
^2
)
)
+
(
(
Im3
z2
)
^2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
sqrt
(
(
(
(
(
Rea
z2
)
^2
)
+
(
(
Im1
z2
)
^2
)
)
+
(
(
Im2
z2
)
^2
)
)
+
(
(
Im3
z2
)
^2
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
|.
z
.|
-
|.
z2
.|
is
V28
()
V29
()
ext-real
Element
of
REAL
K110
(
|.
z2
.|
) is
V28
()
set
K108
(
|.
z
.|
,
K110
(
|.
z2
.|
)) is
set
|.
z2
.|
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
|.
z2
.|
,
|.
z2
.|
) is
set
(
|.
z
.|
^2
)
+
(
|.
z2
.|
^2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
2
*
|.
z
.|
)
*
|.
z2
.|
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
|.
z
.|
^2
)
+
(
|.
z2
.|
^2
)
)
-
(
(
2
*
|.
z
.|
)
*
|.
z2
.|
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K110
(
(
(
2
*
|.
z
.|
)
*
|.
z2
.|
)
) is
V28
()
set
K108
(
(
(
|.
z
.|
^2
)
+
(
|.
z2
.|
^2
)
)
,
K110
(
(
(
2
*
|.
z
.|
)
*
|.
z2
.|
)
)) is
set
(
|.
z
.|
-
|.
z2
.|
)
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
|.
z
.|
-
|.
z2
.|
)
,
(
|.
z
.|
-
|.
z2
.|
)
) is
set
z
is
quaternion
set
|.
z
.|
is
V28
()
V29
()
ext-real
Element
of
REAL
Rea
z
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Rea
z
)
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Rea
z
)
,
(
Rea
z
)
) is
set
Im1
z
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im1
z
)
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Im1
z
)
,
(
Im1
z
)
) is
set
(
(
Rea
z
)
^2
)
+
(
(
Im1
z
)
^2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
Im2
z
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im2
z
)
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Im2
z
)
,
(
Im2
z
)
) is
set
(
(
(
Rea
z
)
^2
)
+
(
(
Im1
z
)
^2
)
)
+
(
(
Im2
z
)
^2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
Im3
z
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im3
z
)
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Im3
z
)
,
(
Im3
z
)
) is
set
(
(
(
(
Rea
z
)
^2
)
+
(
(
Im1
z
)
^2
)
)
+
(
(
Im2
z
)
^2
)
)
+
(
(
Im3
z
)
^2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
sqrt
(
(
(
(
(
Rea
z
)
^2
)
+
(
(
Im1
z
)
^2
)
)
+
(
(
Im2
z
)
^2
)
)
+
(
(
Im3
z
)
^2
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
z2
is
quaternion
set
z
+
z2
is
quaternion
Element
of
QUATERNION
|.
(
z
+
z2
)
.|
is
V28
()
V29
()
ext-real
Element
of
REAL
Rea
(
z
+
z2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Rea
(
z
+
z2
)
)
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Rea
(
z
+
z2
)
)
,
(
Rea
(
z
+
z2
)
)
) is
set
Im1
(
z
+
z2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im1
(
z
+
z2
)
)
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Im1
(
z
+
z2
)
)
,
(
Im1
(
z
+
z2
)
)
) is
set
(
(
Rea
(
z
+
z2
)
)
^2
)
+
(
(
Im1
(
z
+
z2
)
)
^2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
Im2
(
z
+
z2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im2
(
z
+
z2
)
)
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Im2
(
z
+
z2
)
)
,
(
Im2
(
z
+
z2
)
)
) is
set
(
(
(
Rea
(
z
+
z2
)
)
^2
)
+
(
(
Im1
(
z
+
z2
)
)
^2
)
)
+
(
(
Im2
(
z
+
z2
)
)
^2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
Im3
(
z
+
z2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im3
(
z
+
z2
)
)
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Im3
(
z
+
z2
)
)
,
(
Im3
(
z
+
z2
)
)
) is
set
(
(
(
(
Rea
(
z
+
z2
)
)
^2
)
+
(
(
Im1
(
z
+
z2
)
)
^2
)
)
+
(
(
Im2
(
z
+
z2
)
)
^2
)
)
+
(
(
Im3
(
z
+
z2
)
)
^2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
sqrt
(
(
(
(
(
Rea
(
z
+
z2
)
)
^2
)
+
(
(
Im1
(
z
+
z2
)
)
^2
)
)
+
(
(
Im2
(
z
+
z2
)
)
^2
)
)
+
(
(
Im3
(
z
+
z2
)
)
^2
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
z2
-
z
is
quaternion
Element
of
QUATERNION
-
z
is
quaternion
set
z2
+
(
-
z
)
is
quaternion
set
|.
(
z2
-
z
)
.|
is
V28
()
V29
()
ext-real
Element
of
REAL
Rea
(
z2
-
z
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Rea
(
z2
-
z
)
)
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Rea
(
z2
-
z
)
)
,
(
Rea
(
z2
-
z
)
)
) is
set
Im1
(
z2
-
z
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im1
(
z2
-
z
)
)
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Im1
(
z2
-
z
)
)
,
(
Im1
(
z2
-
z
)
)
) is
set
(
(
Rea
(
z2
-
z
)
)
^2
)
+
(
(
Im1
(
z2
-
z
)
)
^2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
Im2
(
z2
-
z
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im2
(
z2
-
z
)
)
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Im2
(
z2
-
z
)
)
,
(
Im2
(
z2
-
z
)
)
) is
set
(
(
(
Rea
(
z2
-
z
)
)
^2
)
+
(
(
Im1
(
z2
-
z
)
)
^2
)
)
+
(
(
Im2
(
z2
-
z
)
)
^2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
Im3
(
z2
-
z
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im3
(
z2
-
z
)
)
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Im3
(
z2
-
z
)
)
,
(
Im3
(
z2
-
z
)
)
) is
set
(
(
(
(
Rea
(
z2
-
z
)
)
^2
)
+
(
(
Im1
(
z2
-
z
)
)
^2
)
)
+
(
(
Im2
(
z2
-
z
)
)
^2
)
)
+
(
(
Im3
(
z2
-
z
)
)
^2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
sqrt
(
(
(
(
(
Rea
(
z2
-
z
)
)
^2
)
+
(
(
Im1
(
z2
-
z
)
)
^2
)
)
+
(
(
Im2
(
z2
-
z
)
)
^2
)
)
+
(
(
Im3
(
z2
-
z
)
)
^2
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
|.
(
z
+
z2
)
.|
+
|.
(
z2
-
z
)
.|
is
V28
()
V29
()
ext-real
Element
of
REAL
(
|.
(
z
+
z2
)
.|
+
|.
(
z2
-
z
)
.|
)
/
2 is
V28
()
V29
()
ext-real
Element
of
REAL
K111
(2) is
V28
()
set
K109
(
(
|.
(
z
+
z2
)
.|
+
|.
(
z2
-
z
)
.|
)
,
K111
(2)) is
set
|.
z2
.|
is
V28
()
V29
()
ext-real
Element
of
REAL
Rea
z2
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Rea
z2
)
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Rea
z2
)
,
(
Rea
z2
)
) is
set
Im1
z2
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im1
z2
)
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Im1
z2
)
,
(
Im1
z2
)
) is
set
(
(
Rea
z2
)
^2
)
+
(
(
Im1
z2
)
^2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
Im2
z2
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im2
z2
)
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Im2
z2
)
,
(
Im2
z2
)
) is
set
(
(
(
Rea
z2
)
^2
)
+
(
(
Im1
z2
)
^2
)
)
+
(
(
Im2
z2
)
^2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
Im3
z2
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im3
z2
)
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Im3
z2
)
,
(
Im3
z2
)
) is
set
(
(
(
(
Rea
z2
)
^2
)
+
(
(
Im1
z2
)
^2
)
)
+
(
(
Im2
z2
)
^2
)
)
+
(
(
Im3
z2
)
^2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
sqrt
(
(
(
(
(
Rea
z2
)
^2
)
+
(
(
Im1
z2
)
^2
)
)
+
(
(
Im2
z2
)
^2
)
)
+
(
(
Im3
z2
)
^2
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
|.
z
.|
+
|.
z2
.|
is
V28
()
V29
()
ext-real
Element
of
REAL
z
-
z2
is
quaternion
Element
of
QUATERNION
-
z2
is
quaternion
set
z
+
(
-
z2
)
is
quaternion
set
|.
(
z
-
z2
)
.|
is
V28
()
V29
()
ext-real
Element
of
REAL
Rea
(
z
-
z2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Rea
(
z
-
z2
)
)
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Rea
(
z
-
z2
)
)
,
(
Rea
(
z
-
z2
)
)
) is
set
Im1
(
z
-
z2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im1
(
z
-
z2
)
)
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Im1
(
z
-
z2
)
)
,
(
Im1
(
z
-
z2
)
)
) is
set
(
(
Rea
(
z
-
z2
)
)
^2
)
+
(
(
Im1
(
z
-
z2
)
)
^2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
Im2
(
z
-
z2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im2
(
z
-
z2
)
)
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Im2
(
z
-
z2
)
)
,
(
Im2
(
z
-
z2
)
)
) is
set
(
(
(
Rea
(
z
-
z2
)
)
^2
)
+
(
(
Im1
(
z
-
z2
)
)
^2
)
)
+
(
(
Im2
(
z
-
z2
)
)
^2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
Im3
(
z
-
z2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im3
(
z
-
z2
)
)
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Im3
(
z
-
z2
)
)
,
(
Im3
(
z
-
z2
)
)
) is
set
(
(
(
(
Rea
(
z
-
z2
)
)
^2
)
+
(
(
Im1
(
z
-
z2
)
)
^2
)
)
+
(
(
Im2
(
z
-
z2
)
)
^2
)
)
+
(
(
Im3
(
z
-
z2
)
)
^2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
sqrt
(
(
(
(
(
Rea
(
z
-
z2
)
)
^2
)
+
(
(
Im1
(
z
-
z2
)
)
^2
)
)
+
(
(
Im2
(
z
-
z2
)
)
^2
)
)
+
(
(
Im3
(
z
-
z2
)
)
^2
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
|.
(
z
+
z2
)
.|
+
|.
(
z
-
z2
)
.|
is
V28
()
V29
()
ext-real
Element
of
REAL
(
|.
z
.|
+
|.
z2
.|
)
+
(
|.
z
.|
+
|.
z2
.|
)
is
V28
()
V29
()
ext-real
Element
of
REAL
2
*
(
|.
z
.|
+
|.
z2
.|
)
is
V28
()
V29
()
ext-real
Element
of
REAL
z
is
quaternion
set
|.
z
.|
is
V28
()
V29
()
ext-real
Element
of
REAL
Rea
z
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Rea
z
)
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Rea
z
)
,
(
Rea
z
)
) is
set
Im1
z
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im1
z
)
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Im1
z
)
,
(
Im1
z
)
) is
set
(
(
Rea
z
)
^2
)
+
(
(
Im1
z
)
^2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
Im2
z
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im2
z
)
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Im2
z
)
,
(
Im2
z
)
) is
set
(
(
(
Rea
z
)
^2
)
+
(
(
Im1
z
)
^2
)
)
+
(
(
Im2
z
)
^2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
Im3
z
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im3
z
)
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Im3
z
)
,
(
Im3
z
)
) is
set
(
(
(
(
Rea
z
)
^2
)
+
(
(
Im1
z
)
^2
)
)
+
(
(
Im2
z
)
^2
)
)
+
(
(
Im3
z
)
^2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
sqrt
(
(
(
(
(
Rea
z
)
^2
)
+
(
(
Im1
z
)
^2
)
)
+
(
(
Im2
z
)
^2
)
)
+
(
(
Im3
z
)
^2
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
z2
is
quaternion
set
z
+
z2
is
quaternion
Element
of
QUATERNION
|.
(
z
+
z2
)
.|
is
V28
()
V29
()
ext-real
Element
of
REAL
Rea
(
z
+
z2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Rea
(
z
+
z2
)
)
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Rea
(
z
+
z2
)
)
,
(
Rea
(
z
+
z2
)
)
) is
set
Im1
(
z
+
z2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im1
(
z
+
z2
)
)
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Im1
(
z
+
z2
)
)
,
(
Im1
(
z
+
z2
)
)
) is
set
(
(
Rea
(
z
+
z2
)
)
^2
)
+
(
(
Im1
(
z
+
z2
)
)
^2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
Im2
(
z
+
z2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im2
(
z
+
z2
)
)
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Im2
(
z
+
z2
)
)
,
(
Im2
(
z
+
z2
)
)
) is
set
(
(
(
Rea
(
z
+
z2
)
)
^2
)
+
(
(
Im1
(
z
+
z2
)
)
^2
)
)
+
(
(
Im2
(
z
+
z2
)
)
^2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
Im3
(
z
+
z2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im3
(
z
+
z2
)
)
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Im3
(
z
+
z2
)
)
,
(
Im3
(
z
+
z2
)
)
) is
set
(
(
(
(
Rea
(
z
+
z2
)
)
^2
)
+
(
(
Im1
(
z
+
z2
)
)
^2
)
)
+
(
(
Im2
(
z
+
z2
)
)
^2
)
)
+
(
(
Im3
(
z
+
z2
)
)
^2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
sqrt
(
(
(
(
(
Rea
(
z
+
z2
)
)
^2
)
+
(
(
Im1
(
z
+
z2
)
)
^2
)
)
+
(
(
Im2
(
z
+
z2
)
)
^2
)
)
+
(
(
Im3
(
z
+
z2
)
)
^2
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
z
-
z2
is
quaternion
Element
of
QUATERNION
-
z2
is
quaternion
set
z
+
(
-
z2
)
is
quaternion
set
|.
(
z
-
z2
)
.|
is
V28
()
V29
()
ext-real
Element
of
REAL
Rea
(
z
-
z2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Rea
(
z
-
z2
)
)
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Rea
(
z
-
z2
)
)
,
(
Rea
(
z
-
z2
)
)
) is
set
Im1
(
z
-
z2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im1
(
z
-
z2
)
)
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Im1
(
z
-
z2
)
)
,
(
Im1
(
z
-
z2
)
)
) is
set
(
(
Rea
(
z
-
z2
)
)
^2
)
+
(
(
Im1
(
z
-
z2
)
)
^2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
Im2
(
z
-
z2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im2
(
z
-
z2
)
)
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Im2
(
z
-
z2
)
)
,
(
Im2
(
z
-
z2
)
)
) is
set
(
(
(
Rea
(
z
-
z2
)
)
^2
)
+
(
(
Im1
(
z
-
z2
)
)
^2
)
)
+
(
(
Im2
(
z
-
z2
)
)
^2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
Im3
(
z
-
z2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im3
(
z
-
z2
)
)
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Im3
(
z
-
z2
)
)
,
(
Im3
(
z
-
z2
)
)
) is
set
(
(
(
(
Rea
(
z
-
z2
)
)
^2
)
+
(
(
Im1
(
z
-
z2
)
)
^2
)
)
+
(
(
Im2
(
z
-
z2
)
)
^2
)
)
+
(
(
Im3
(
z
-
z2
)
)
^2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
sqrt
(
(
(
(
(
Rea
(
z
-
z2
)
)
^2
)
+
(
(
Im1
(
z
-
z2
)
)
^2
)
)
+
(
(
Im2
(
z
-
z2
)
)
^2
)
)
+
(
(
Im3
(
z
-
z2
)
)
^2
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
|.
(
z
+
z2
)
.|
+
|.
(
z
-
z2
)
.|
is
V28
()
V29
()
ext-real
Element
of
REAL
(
|.
(
z
+
z2
)
.|
+
|.
(
z
-
z2
)
.|
)
/
2 is
V28
()
V29
()
ext-real
Element
of
REAL
K111
(2) is
V28
()
set
K109
(
(
|.
(
z
+
z2
)
.|
+
|.
(
z
-
z2
)
.|
)
,
K111
(2)) is
set
|.
z2
.|
is
V28
()
V29
()
ext-real
Element
of
REAL
Rea
z2
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Rea
z2
)
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Rea
z2
)
,
(
Rea
z2
)
) is
set
Im1
z2
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im1
z2
)
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Im1
z2
)
,
(
Im1
z2
)
) is
set
(
(
Rea
z2
)
^2
)
+
(
(
Im1
z2
)
^2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
Im2
z2
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im2
z2
)
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Im2
z2
)
,
(
Im2
z2
)
) is
set
(
(
(
Rea
z2
)
^2
)
+
(
(
Im1
z2
)
^2
)
)
+
(
(
Im2
z2
)
^2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
Im3
z2
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im3
z2
)
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Im3
z2
)
,
(
Im3
z2
)
) is
set
(
(
(
(
Rea
z2
)
^2
)
+
(
(
Im1
z2
)
^2
)
)
+
(
(
Im2
z2
)
^2
)
)
+
(
(
Im3
z2
)
^2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
sqrt
(
(
(
(
(
Rea
z2
)
^2
)
+
(
(
Im1
z2
)
^2
)
)
+
(
(
Im2
z2
)
^2
)
)
+
(
(
Im3
z2
)
^2
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
|.
z
.|
+
|.
z2
.|
is
V28
()
V29
()
ext-real
Element
of
REAL
(
|.
z
.|
+
|.
z2
.|
)
+
(
|.
z
.|
+
|.
z2
.|
)
is
V28
()
V29
()
ext-real
Element
of
REAL
2
*
(
|.
z
.|
+
|.
z2
.|
)
is
V28
()
V29
()
ext-real
Element
of
REAL
z
is
quaternion
set
z
"
is
quaternion
Element
of
QUATERNION
z2
is
quaternion
set
z
*
z2
is
quaternion
Element
of
QUATERNION
(
z
*
z2
)
"
is
quaternion
Element
of
QUATERNION
z2
"
is
quaternion
Element
of
QUATERNION
(
z2
"
)
*
(
z
"
)
is
quaternion
Element
of
QUATERNION
Rea
(
z2
"
)
is
V28
()
V29
()
ext-real
Element
of
REAL
Im1
(
z
"
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Rea
(
z2
"
)
)
*
(
Im1
(
z
"
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
Im1
(
z2
"
)
is
V28
()
V29
()
ext-real
Element
of
REAL
Rea
(
z
"
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im1
(
z2
"
)
)
*
(
Rea
(
z
"
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
Rea
(
z2
"
)
)
*
(
Im1
(
z
"
)
)
)
+
(
(
Im1
(
z2
"
)
)
*
(
Rea
(
z
"
)
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
Im2
(
z2
"
)
is
V28
()
V29
()
ext-real
Element
of
REAL
Im3
(
z
"
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im2
(
z2
"
)
)
*
(
Im3
(
z
"
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
(
Rea
(
z2
"
)
)
*
(
Im1
(
z
"
)
)
)
+
(
(
Im1
(
z2
"
)
)
*
(
Rea
(
z
"
)
)
)
)
+
(
(
Im2
(
z2
"
)
)
*
(
Im3
(
z
"
)
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
Im3
(
z2
"
)
is
V28
()
V29
()
ext-real
Element
of
REAL
Im2
(
z
"
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im3
(
z2
"
)
)
*
(
Im2
(
z
"
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
(
(
Rea
(
z2
"
)
)
*
(
Im1
(
z
"
)
)
)
+
(
(
Im1
(
z2
"
)
)
*
(
Rea
(
z
"
)
)
)
)
+
(
(
Im2
(
z2
"
)
)
*
(
Im3
(
z
"
)
)
)
)
-
(
(
Im3
(
z2
"
)
)
*
(
Im2
(
z
"
)
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K110
(
(
(
Im3
(
z2
"
)
)
*
(
Im2
(
z
"
)
)
)
) is
V28
()
set
K108
(
(
(
(
(
Rea
(
z2
"
)
)
*
(
Im1
(
z
"
)
)
)
+
(
(
Im1
(
z2
"
)
)
*
(
Rea
(
z
"
)
)
)
)
+
(
(
Im2
(
z2
"
)
)
*
(
Im3
(
z
"
)
)
)
)
,
K110
(
(
(
Im3
(
z2
"
)
)
*
(
Im2
(
z
"
)
)
)
)) is
set
Rea
z2
is
V28
()
V29
()
ext-real
Element
of
REAL
|.
z2
.|
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Rea
z2
)
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Rea
z2
)
,
(
Rea
z2
)
) is
set
Im1
z2
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im1
z2
)
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Im1
z2
)
,
(
Im1
z2
)
) is
set
(
(
Rea
z2
)
^2
)
+
(
(
Im1
z2
)
^2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
Im2
z2
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im2
z2
)
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Im2
z2
)
,
(
Im2
z2
)
) is
set
(
(
(
Rea
z2
)
^2
)
+
(
(
Im1
z2
)
^2
)
)
+
(
(
Im2
z2
)
^2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
Im3
z2
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im3
z2
)
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Im3
z2
)
,
(
Im3
z2
)
) is
set
(
(
(
(
Rea
z2
)
^2
)
+
(
(
Im1
z2
)
^2
)
)
+
(
(
Im2
z2
)
^2
)
)
+
(
(
Im3
z2
)
^2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
sqrt
(
(
(
(
(
Rea
z2
)
^2
)
+
(
(
Im1
z2
)
^2
)
)
+
(
(
Im2
z2
)
^2
)
)
+
(
(
Im3
z2
)
^2
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
|.
z2
.|
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
|.
z2
.|
,
|.
z2
.|
) is
set
(
Rea
z2
)
/
(
|.
z2
.|
^2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K111
(
(
|.
z2
.|
^2
)
) is
V28
()
set
K109
(
(
Rea
z2
)
,
K111
(
(
|.
z2
.|
^2
)
)) is
set
(
(
Rea
z2
)
/
(
|.
z2
.|
^2
)
)
*
(
Im1
(
z
"
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
(
Rea
z2
)
/
(
|.
z2
.|
^2
)
)
*
(
Im1
(
z
"
)
)
)
+
(
(
Im1
(
z2
"
)
)
*
(
Rea
(
z
"
)
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
(
(
Rea
z2
)
/
(
|.
z2
.|
^2
)
)
*
(
Im1
(
z
"
)
)
)
+
(
(
Im1
(
z2
"
)
)
*
(
Rea
(
z
"
)
)
)
)
+
(
(
Im2
(
z2
"
)
)
*
(
Im3
(
z
"
)
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
(
(
(
Rea
z2
)
/
(
|.
z2
.|
^2
)
)
*
(
Im1
(
z
"
)
)
)
+
(
(
Im1
(
z2
"
)
)
*
(
Rea
(
z
"
)
)
)
)
+
(
(
Im2
(
z2
"
)
)
*
(
Im3
(
z
"
)
)
)
)
-
(
(
Im3
(
z2
"
)
)
*
(
Im2
(
z
"
)
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K108
(
(
(
(
(
(
Rea
z2
)
/
(
|.
z2
.|
^2
)
)
*
(
Im1
(
z
"
)
)
)
+
(
(
Im1
(
z2
"
)
)
*
(
Rea
(
z
"
)
)
)
)
+
(
(
Im2
(
z2
"
)
)
*
(
Im3
(
z
"
)
)
)
)
,
K110
(
(
(
Im3
(
z2
"
)
)
*
(
Im2
(
z
"
)
)
)
)) is
set
Im1
z
is
V28
()
V29
()
ext-real
Element
of
REAL
|.
z
.|
is
V28
()
V29
()
ext-real
Element
of
REAL
Rea
z
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Rea
z
)
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Rea
z
)
,
(
Rea
z
)
) is
set
(
Im1
z
)
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Im1
z
)
,
(
Im1
z
)
) is
set
(
(
Rea
z
)
^2
)
+
(
(
Im1
z
)
^2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
Im2
z
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im2
z
)
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Im2
z
)
,
(
Im2
z
)
) is
set
(
(
(
Rea
z
)
^2
)
+
(
(
Im1
z
)
^2
)
)
+
(
(
Im2
z
)
^2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
Im3
z
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im3
z
)
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Im3
z
)
,
(
Im3
z
)
) is
set
(
(
(
(
Rea
z
)
^2
)
+
(
(
Im1
z
)
^2
)
)
+
(
(
Im2
z
)
^2
)
)
+
(
(
Im3
z
)
^2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
sqrt
(
(
(
(
(
Rea
z
)
^2
)
+
(
(
Im1
z
)
^2
)
)
+
(
(
Im2
z
)
^2
)
)
+
(
(
Im3
z
)
^2
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
|.
z
.|
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
|.
z
.|
,
|.
z
.|
) is
set
(
Im1
z
)
/
(
|.
z
.|
^2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K111
(
(
|.
z
.|
^2
)
) is
V28
()
set
K109
(
(
Im1
z
)
,
K111
(
(
|.
z
.|
^2
)
)) is
set
-
(
(
Im1
z
)
/
(
|.
z
.|
^2
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
Rea
z2
)
/
(
|.
z2
.|
^2
)
)
*
(
-
(
(
Im1
z
)
/
(
|.
z
.|
^2
)
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
(
Rea
z2
)
/
(
|.
z2
.|
^2
)
)
*
(
-
(
(
Im1
z
)
/
(
|.
z
.|
^2
)
)
)
)
+
(
(
Im1
(
z2
"
)
)
*
(
Rea
(
z
"
)
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
(
(
Rea
z2
)
/
(
|.
z2
.|
^2
)
)
*
(
-
(
(
Im1
z
)
/
(
|.
z
.|
^2
)
)
)
)
+
(
(
Im1
(
z2
"
)
)
*
(
Rea
(
z
"
)
)
)
)
+
(
(
Im2
(
z2
"
)
)
*
(
Im3
(
z
"
)
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
(
(
(
Rea
z2
)
/
(
|.
z2
.|
^2
)
)
*
(
-
(
(
Im1
z
)
/
(
|.
z
.|
^2
)
)
)
)
+
(
(
Im1
(
z2
"
)
)
*
(
Rea
(
z
"
)
)
)
)
+
(
(
Im2
(
z2
"
)
)
*
(
Im3
(
z
"
)
)
)
)
-
(
(
Im3
(
z2
"
)
)
*
(
Im2
(
z
"
)
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K108
(
(
(
(
(
(
Rea
z2
)
/
(
|.
z2
.|
^2
)
)
*
(
-
(
(
Im1
z
)
/
(
|.
z
.|
^2
)
)
)
)
+
(
(
Im1
(
z2
"
)
)
*
(
Rea
(
z
"
)
)
)
)
+
(
(
Im2
(
z2
"
)
)
*
(
Im3
(
z
"
)
)
)
)
,
K110
(
(
(
Im3
(
z2
"
)
)
*
(
Im2
(
z
"
)
)
)
)) is
set
(
Im1
z2
)
/
(
|.
z2
.|
^2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Im1
z2
)
,
K111
(
(
|.
z2
.|
^2
)
)) is
set
-
(
(
Im1
z2
)
/
(
|.
z2
.|
^2
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
-
(
(
Im1
z2
)
/
(
|.
z2
.|
^2
)
)
)
*
(
Rea
(
z
"
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
(
Rea
z2
)
/
(
|.
z2
.|
^2
)
)
*
(
-
(
(
Im1
z
)
/
(
|.
z
.|
^2
)
)
)
)
+
(
(
-
(
(
Im1
z2
)
/
(
|.
z2
.|
^2
)
)
)
*
(
Rea
(
z
"
)
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
(
(
Rea
z2
)
/
(
|.
z2
.|
^2
)
)
*
(
-
(
(
Im1
z
)
/
(
|.
z
.|
^2
)
)
)
)
+
(
(
-
(
(
Im1
z2
)
/
(
|.
z2
.|
^2
)
)
)
*
(
Rea
(
z
"
)
)
)
)
+
(
(
Im2
(
z2
"
)
)
*
(
Im3
(
z
"
)
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
(
(
(
Rea
z2
)
/
(
|.
z2
.|
^2
)
)
*
(
-
(
(
Im1
z
)
/
(
|.
z
.|
^2
)
)
)
)
+
(
(
-
(
(
Im1
z2
)
/
(
|.
z2
.|
^2
)
)
)
*
(
Rea
(
z
"
)
)
)
)
+
(
(
Im2
(
z2
"
)
)
*
(
Im3
(
z
"
)
)
)
)
-
(
(
Im3
(
z2
"
)
)
*
(
Im2
(
z
"
)
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K108
(
(
(
(
(
(
Rea
z2
)
/
(
|.
z2
.|
^2
)
)
*
(
-
(
(
Im1
z
)
/
(
|.
z
.|
^2
)
)
)
)
+
(
(
-
(
(
Im1
z2
)
/
(
|.
z2
.|
^2
)
)
)
*
(
Rea
(
z
"
)
)
)
)
+
(
(
Im2
(
z2
"
)
)
*
(
Im3
(
z
"
)
)
)
)
,
K110
(
(
(
Im3
(
z2
"
)
)
*
(
Im2
(
z
"
)
)
)
)) is
set
(
Rea
z
)
/
(
|.
z
.|
^2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Rea
z
)
,
K111
(
(
|.
z
.|
^2
)
)) is
set
(
-
(
(
Im1
z2
)
/
(
|.
z2
.|
^2
)
)
)
*
(
(
Rea
z
)
/
(
|.
z
.|
^2
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
(
Rea
z2
)
/
(
|.
z2
.|
^2
)
)
*
(
-
(
(
Im1
z
)
/
(
|.
z
.|
^2
)
)
)
)
+
(
(
-
(
(
Im1
z2
)
/
(
|.
z2
.|
^2
)
)
)
*
(
(
Rea
z
)
/
(
|.
z
.|
^2
)
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
(
(
Rea
z2
)
/
(
|.
z2
.|
^2
)
)
*
(
-
(
(
Im1
z
)
/
(
|.
z
.|
^2
)
)
)
)
+
(
(
-
(
(
Im1
z2
)
/
(
|.
z2
.|
^2
)
)
)
*
(
(
Rea
z
)
/
(
|.
z
.|
^2
)
)
)
)
+
(
(
Im2
(
z2
"
)
)
*
(
Im3
(
z
"
)
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
(
(
(
Rea
z2
)
/
(
|.
z2
.|
^2
)
)
*
(
-
(
(
Im1
z
)
/
(
|.
z
.|
^2
)
)
)
)
+
(
(
-
(
(
Im1
z2
)
/
(
|.
z2
.|
^2
)
)
)
*
(
(
Rea
z
)
/
(
|.
z
.|
^2
)
)
)
)
+
(
(
Im2
(
z2
"
)
)
*
(
Im3
(
z
"
)
)
)
)
-
(
(
Im3
(
z2
"
)
)
*
(
Im2
(
z
"
)
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K108
(
(
(
(
(
(
Rea
z2
)
/
(
|.
z2
.|
^2
)
)
*
(
-
(
(
Im1
z
)
/
(
|.
z
.|
^2
)
)
)
)
+
(
(
-
(
(
Im1
z2
)
/
(
|.
z2
.|
^2
)
)
)
*
(
(
Rea
z
)
/
(
|.
z
.|
^2
)
)
)
)
+
(
(
Im2
(
z2
"
)
)
*
(
Im3
(
z
"
)
)
)
)
,
K110
(
(
(
Im3
(
z2
"
)
)
*
(
Im2
(
z
"
)
)
)
)) is
set
(
Im2
z2
)
/
(
|.
z2
.|
^2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Im2
z2
)
,
K111
(
(
|.
z2
.|
^2
)
)) is
set
-
(
(
Im2
z2
)
/
(
|.
z2
.|
^2
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
-
(
(
Im2
z2
)
/
(
|.
z2
.|
^2
)
)
)
*
(
Im3
(
z
"
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
(
(
Rea
z2
)
/
(
|.
z2
.|
^2
)
)
*
(
-
(
(
Im1
z
)
/
(
|.
z
.|
^2
)
)
)
)
+
(
(
-
(
(
Im1
z2
)
/
(
|.
z2
.|
^2
)
)
)
*
(
(
Rea
z
)
/
(
|.
z
.|
^2
)
)
)
)
+
(
(
-
(
(
Im2
z2
)
/
(
|.
z2
.|
^2
)
)
)
*
(
Im3
(
z
"
)
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
(
(
(
Rea
z2
)
/
(
|.
z2
.|
^2
)
)
*
(
-
(
(
Im1
z
)
/
(
|.
z
.|
^2
)
)
)
)
+
(
(
-
(
(
Im1
z2
)
/
(
|.
z2
.|
^2
)
)
)
*
(
(
Rea
z
)
/
(
|.
z
.|
^2
)
)
)
)
+
(
(
-
(
(
Im2
z2
)
/
(
|.
z2
.|
^2
)
)
)
*
(
Im3
(
z
"
)
)
)
)
-
(
(
Im3
(
z2
"
)
)
*
(
Im2
(
z
"
)
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K108
(
(
(
(
(
(
Rea
z2
)
/
(
|.
z2
.|
^2
)
)
*
(
-
(
(
Im1
z
)
/
(
|.
z
.|
^2
)
)
)
)
+
(
(
-
(
(
Im1
z2
)
/
(
|.
z2
.|
^2
)
)
)
*
(
(
Rea
z
)
/
(
|.
z
.|
^2
)
)
)
)
+
(
(
-
(
(
Im2
z2
)
/
(
|.
z2
.|
^2
)
)
)
*
(
Im3
(
z
"
)
)
)
)
,
K110
(
(
(
Im3
(
z2
"
)
)
*
(
Im2
(
z
"
)
)
)
)) is
set
(
Im3
z
)
/
(
|.
z
.|
^2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Im3
z
)
,
K111
(
(
|.
z
.|
^2
)
)) is
set
-
(
(
Im3
z
)
/
(
|.
z
.|
^2
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
-
(
(
Im2
z2
)
/
(
|.
z2
.|
^2
)
)
)
*
(
-
(
(
Im3
z
)
/
(
|.
z
.|
^2
)
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
(
(
Rea
z2
)
/
(
|.
z2
.|
^2
)
)
*
(
-
(
(
Im1
z
)
/
(
|.
z
.|
^2
)
)
)
)
+
(
(
-
(
(
Im1
z2
)
/
(
|.
z2
.|
^2
)
)
)
*
(
(
Rea
z
)
/
(
|.
z
.|
^2
)
)
)
)
+
(
(
-
(
(
Im2
z2
)
/
(
|.
z2
.|
^2
)
)
)
*
(
-
(
(
Im3
z
)
/
(
|.
z
.|
^2
)
)
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
(
(
(
Rea
z2
)
/
(
|.
z2
.|
^2
)
)
*
(
-
(
(
Im1
z
)
/
(
|.
z
.|
^2
)
)
)
)
+
(
(
-
(
(
Im1
z2
)
/
(
|.
z2
.|
^2
)
)
)
*
(
(
Rea
z
)
/
(
|.
z
.|
^2
)
)
)
)
+
(
(
-
(
(
Im2
z2
)
/
(
|.
z2
.|
^2
)
)
)
*
(
-
(
(
Im3
z
)
/
(
|.
z
.|
^2
)
)
)
)
)
-
(
(
Im3
(
z2
"
)
)
*
(
Im2
(
z
"
)
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K108
(
(
(
(
(
(
Rea
z2
)
/
(
|.
z2
.|
^2
)
)
*
(
-
(
(
Im1
z
)
/
(
|.
z
.|
^2
)
)
)
)
+
(
(
-
(
(
Im1
z2
)
/
(
|.
z2
.|
^2
)
)
)
*
(
(
Rea
z
)
/
(
|.
z
.|
^2
)
)
)
)
+
(
(
-
(
(
Im2
z2
)
/
(
|.
z2
.|
^2
)
)
)
*
(
-
(
(
Im3
z
)
/
(
|.
z
.|
^2
)
)
)
)
)
,
K110
(
(
(
Im3
(
z2
"
)
)
*
(
Im2
(
z
"
)
)
)
)) is
set
(
Im3
z2
)
/
(
|.
z2
.|
^2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Im3
z2
)
,
K111
(
(
|.
z2
.|
^2
)
)) is
set
-
(
(
Im3
z2
)
/
(
|.
z2
.|
^2
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
-
(
(
Im3
z2
)
/
(
|.
z2
.|
^2
)
)
)
*
(
Im2
(
z
"
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
(
(
(
Rea
z2
)
/
(
|.
z2
.|
^2
)
)
*
(
-
(
(
Im1
z
)
/
(
|.
z
.|
^2
)
)
)
)
+
(
(
-
(
(
Im1
z2
)
/
(
|.
z2
.|
^2
)
)
)
*
(
(
Rea
z
)
/
(
|.
z
.|
^2
)
)
)
)
+
(
(
-
(
(
Im2
z2
)
/
(
|.
z2
.|
^2
)
)
)
*
(
-
(
(
Im3
z
)
/
(
|.
z
.|
^2
)
)
)
)
)
-
(
(
-
(
(
Im3
z2
)
/
(
|.
z2
.|
^2
)
)
)
*
(
Im2
(
z
"
)
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K110
(
(
(
-
(
(
Im3
z2
)
/
(
|.
z2
.|
^2
)
)
)
*
(
Im2
(
z
"
)
)
)
) is
V28
()
set
K108
(
(
(
(
(
(
Rea
z2
)
/
(
|.
z2
.|
^2
)
)
*
(
-
(
(
Im1
z
)
/
(
|.
z
.|
^2
)
)
)
)
+
(
(
-
(
(
Im1
z2
)
/
(
|.
z2
.|
^2
)
)
)
*
(
(
Rea
z
)
/
(
|.
z
.|
^2
)
)
)
)
+
(
(
-
(
(
Im2
z2
)
/
(
|.
z2
.|
^2
)
)
)
*
(
-
(
(
Im3
z
)
/
(
|.
z
.|
^2
)
)
)
)
)
,
K110
(
(
(
-
(
(
Im3
z2
)
/
(
|.
z2
.|
^2
)
)
)
*
(
Im2
(
z
"
)
)
)
)) is
set
-
(
Im1
z
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
-
(
Im1
z
)
)
/
(
|.
z
.|
^2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
-
(
Im1
z
)
)
,
K111
(
(
|.
z
.|
^2
)
)) is
set
(
(
Rea
z2
)
/
(
|.
z2
.|
^2
)
)
*
(
(
-
(
Im1
z
)
)
/
(
|.
z
.|
^2
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
(
Rea
z2
)
/
(
|.
z2
.|
^2
)
)
*
(
(
-
(
Im1
z
)
)
/
(
|.
z
.|
^2
)
)
)
+
(
(
-
(
(
Im1
z2
)
/
(
|.
z2
.|
^2
)
)
)
*
(
(
Rea
z
)
/
(
|.
z
.|
^2
)
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
(
(
Rea
z2
)
/
(
|.
z2
.|
^2
)
)
*
(
(
-
(
Im1
z
)
)
/
(
|.
z
.|
^2
)
)
)
+
(
(
-
(
(
Im1
z2
)
/
(
|.
z2
.|
^2
)
)
)
*
(
(
Rea
z
)
/
(
|.
z
.|
^2
)
)
)
)
+
(
(
-
(
(
Im2
z2
)
/
(
|.
z2
.|
^2
)
)
)
*
(
-
(
(
Im3
z
)
/
(
|.
z
.|
^2
)
)
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im2
z
)
/
(
|.
z
.|
^2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Im2
z
)
,
K111
(
(
|.
z
.|
^2
)
)) is
set
-
(
(
Im2
z
)
/
(
|.
z
.|
^2
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
-
(
(
Im3
z2
)
/
(
|.
z2
.|
^2
)
)
)
*
(
-
(
(
Im2
z
)
/
(
|.
z
.|
^2
)
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
(
(
(
Rea
z2
)
/
(
|.
z2
.|
^2
)
)
*
(
(
-
(
Im1
z
)
)
/
(
|.
z
.|
^2
)
)
)
+
(
(
-
(
(
Im1
z2
)
/
(
|.
z2
.|
^2
)
)
)
*
(
(
Rea
z
)
/
(
|.
z
.|
^2
)
)
)
)
+
(
(
-
(
(
Im2
z2
)
/
(
|.
z2
.|
^2
)
)
)
*
(
-
(
(
Im3
z
)
/
(
|.
z
.|
^2
)
)
)
)
)
-
(
(
-
(
(
Im3
z2
)
/
(
|.
z2
.|
^2
)
)
)
*
(
-
(
(
Im2
z
)
/
(
|.
z
.|
^2
)
)
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K110
(
(
(
-
(
(
Im3
z2
)
/
(
|.
z2
.|
^2
)
)
)
*
(
-
(
(
Im2
z
)
/
(
|.
z
.|
^2
)
)
)
)
) is
V28
()
set
K108
(
(
(
(
(
(
Rea
z2
)
/
(
|.
z2
.|
^2
)
)
*
(
(
-
(
Im1
z
)
)
/
(
|.
z
.|
^2
)
)
)
+
(
(
-
(
(
Im1
z2
)
/
(
|.
z2
.|
^2
)
)
)
*
(
(
Rea
z
)
/
(
|.
z
.|
^2
)
)
)
)
+
(
(
-
(
(
Im2
z2
)
/
(
|.
z2
.|
^2
)
)
)
*
(
-
(
(
Im3
z
)
/
(
|.
z
.|
^2
)
)
)
)
)
,
K110
(
(
(
-
(
(
Im3
z2
)
/
(
|.
z2
.|
^2
)
)
)
*
(
-
(
(
Im2
z
)
/
(
|.
z
.|
^2
)
)
)
)
)) is
set
(
Rea
z2
)
*
(
-
(
Im1
z
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
|.
z2
.|
^2
)
*
(
|.
z
.|
^2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
Rea
z2
)
*
(
-
(
Im1
z
)
)
)
/
(
(
|.
z2
.|
^2
)
*
(
|.
z
.|
^2
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K111
(
(
(
|.
z2
.|
^2
)
*
(
|.
z
.|
^2
)
)
) is
V28
()
set
K109
(
(
(
Rea
z2
)
*
(
-
(
Im1
z
)
)
)
,
K111
(
(
(
|.
z2
.|
^2
)
*
(
|.
z
.|
^2
)
)
)) is
set
-
(
Im1
z2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
-
(
Im1
z2
)
)
/
(
|.
z2
.|
^2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
-
(
Im1
z2
)
)
,
K111
(
(
|.
z2
.|
^2
)
)) is
set
(
(
-
(
Im1
z2
)
)
/
(
|.
z2
.|
^2
)
)
*
(
(
Rea
z
)
/
(
|.
z
.|
^2
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
(
Rea
z2
)
*
(
-
(
Im1
z
)
)
)
/
(
(
|.
z2
.|
^2
)
*
(
|.
z
.|
^2
)
)
)
+
(
(
(
-
(
Im1
z2
)
)
/
(
|.
z2
.|
^2
)
)
*
(
(
Rea
z
)
/
(
|.
z
.|
^2
)
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
(
(
Rea
z2
)
*
(
-
(
Im1
z
)
)
)
/
(
(
|.
z2
.|
^2
)
*
(
|.
z
.|
^2
)
)
)
+
(
(
(
-
(
Im1
z2
)
)
/
(
|.
z2
.|
^2
)
)
*
(
(
Rea
z
)
/
(
|.
z
.|
^2
)
)
)
)
+
(
(
-
(
(
Im2
z2
)
/
(
|.
z2
.|
^2
)
)
)
*
(
-
(
(
Im3
z
)
/
(
|.
z
.|
^2
)
)
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
(
(
(
Rea
z2
)
*
(
-
(
Im1
z
)
)
)
/
(
(
|.
z2
.|
^2
)
*
(
|.
z
.|
^2
)
)
)
+
(
(
(
-
(
Im1
z2
)
)
/
(
|.
z2
.|
^2
)
)
*
(
(
Rea
z
)
/
(
|.
z
.|
^2
)
)
)
)
+
(
(
-
(
(
Im2
z2
)
/
(
|.
z2
.|
^2
)
)
)
*
(
-
(
(
Im3
z
)
/
(
|.
z
.|
^2
)
)
)
)
)
-
(
(
-
(
(
Im3
z2
)
/
(
|.
z2
.|
^2
)
)
)
*
(
-
(
(
Im2
z
)
/
(
|.
z
.|
^2
)
)
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K108
(
(
(
(
(
(
Rea
z2
)
*
(
-
(
Im1
z
)
)
)
/
(
(
|.
z2
.|
^2
)
*
(
|.
z
.|
^2
)
)
)
+
(
(
(
-
(
Im1
z2
)
)
/
(
|.
z2
.|
^2
)
)
*
(
(
Rea
z
)
/
(
|.
z
.|
^2
)
)
)
)
+
(
(
-
(
(
Im2
z2
)
/
(
|.
z2
.|
^2
)
)
)
*
(
-
(
(
Im3
z
)
/
(
|.
z
.|
^2
)
)
)
)
)
,
K110
(
(
(
-
(
(
Im3
z2
)
/
(
|.
z2
.|
^2
)
)
)
*
(
-
(
(
Im2
z
)
/
(
|.
z
.|
^2
)
)
)
)
)) is
set
(
-
(
Im1
z2
)
)
*
(
Rea
z
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
-
(
Im1
z2
)
)
*
(
Rea
z
)
)
/
(
(
|.
z2
.|
^2
)
*
(
|.
z
.|
^2
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
(
-
(
Im1
z2
)
)
*
(
Rea
z
)
)
,
K111
(
(
(
|.
z2
.|
^2
)
*
(
|.
z
.|
^2
)
)
)) is
set
(
(
(
Rea
z2
)
*
(
-
(
Im1
z
)
)
)
/
(
(
|.
z2
.|
^2
)
*
(
|.
z
.|
^2
)
)
)
+
(
(
(
-
(
Im1
z2
)
)
*
(
Rea
z
)
)
/
(
(
|.
z2
.|
^2
)
*
(
|.
z
.|
^2
)
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
Im2
z2
)
/
(
|.
z2
.|
^2
)
)
*
(
(
Im3
z
)
/
(
|.
z
.|
^2
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
(
(
Rea
z2
)
*
(
-
(
Im1
z
)
)
)
/
(
(
|.
z2
.|
^2
)
*
(
|.
z
.|
^2
)
)
)
+
(
(
(
-
(
Im1
z2
)
)
*
(
Rea
z
)
)
/
(
(
|.
z2
.|
^2
)
*
(
|.
z
.|
^2
)
)
)
)
+
(
(
(
Im2
z2
)
/
(
|.
z2
.|
^2
)
)
*
(
(
Im3
z
)
/
(
|.
z
.|
^2
)
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
(
(
(
Rea
z2
)
*
(
-
(
Im1
z
)
)
)
/
(
(
|.
z2
.|
^2
)
*
(
|.
z
.|
^2
)
)
)
+
(
(
(
-
(
Im1
z2
)
)
*
(
Rea
z
)
)
/
(
(
|.
z2
.|
^2
)
*
(
|.
z
.|
^2
)
)
)
)
+
(
(
(
Im2
z2
)
/
(
|.
z2
.|
^2
)
)
*
(
(
Im3
z
)
/
(
|.
z
.|
^2
)
)
)
)
-
(
(
-
(
(
Im3
z2
)
/
(
|.
z2
.|
^2
)
)
)
*
(
-
(
(
Im2
z
)
/
(
|.
z
.|
^2
)
)
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K108
(
(
(
(
(
(
Rea
z2
)
*
(
-
(
Im1
z
)
)
)
/
(
(
|.
z2
.|
^2
)
*
(
|.
z
.|
^2
)
)
)
+
(
(
(
-
(
Im1
z2
)
)
*
(
Rea
z
)
)
/
(
(
|.
z2
.|
^2
)
*
(
|.
z
.|
^2
)
)
)
)
+
(
(
(
Im2
z2
)
/
(
|.
z2
.|
^2
)
)
*
(
(
Im3
z
)
/
(
|.
z
.|
^2
)
)
)
)
,
K110
(
(
(
-
(
(
Im3
z2
)
/
(
|.
z2
.|
^2
)
)
)
*
(
-
(
(
Im2
z
)
/
(
|.
z
.|
^2
)
)
)
)
)) is
set
(
Im2
z2
)
*
(
Im3
z
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
Im2
z2
)
*
(
Im3
z
)
)
/
(
(
|.
z2
.|
^2
)
*
(
|.
z
.|
^2
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
(
Im2
z2
)
*
(
Im3
z
)
)
,
K111
(
(
(
|.
z2
.|
^2
)
*
(
|.
z
.|
^2
)
)
)) is
set
(
(
(
(
Rea
z2
)
*
(
-
(
Im1
z
)
)
)
/
(
(
|.
z2
.|
^2
)
*
(
|.
z
.|
^2
)
)
)
+
(
(
(
-
(
Im1
z2
)
)
*
(
Rea
z
)
)
/
(
(
|.
z2
.|
^2
)
*
(
|.
z
.|
^2
)
)
)
)
+
(
(
(
Im2
z2
)
*
(
Im3
z
)
)
/
(
(
|.
z2
.|
^2
)
*
(
|.
z
.|
^2
)
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
Im3
z2
)
/
(
|.
z2
.|
^2
)
)
*
(
(
Im2
z
)
/
(
|.
z
.|
^2
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
(
(
(
Rea
z2
)
*
(
-
(
Im1
z
)
)
)
/
(
(
|.
z2
.|
^2
)
*
(
|.
z
.|
^2
)
)
)
+
(
(
(
-
(
Im1
z2
)
)
*
(
Rea
z
)
)
/
(
(
|.
z2
.|
^2
)
*
(
|.
z
.|
^2
)
)
)
)
+
(
(
(
Im2
z2
)
*
(
Im3
z
)
)
/
(
(
|.
z2
.|
^2
)
*
(
|.
z
.|
^2
)
)
)
)
-
(
(
(
Im3
z2
)
/
(
|.
z2
.|
^2
)
)
*
(
(
Im2
z
)
/
(
|.
z
.|
^2
)
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K110
(
(
(
(
Im3
z2
)
/
(
|.
z2
.|
^2
)
)
*
(
(
Im2
z
)
/
(
|.
z
.|
^2
)
)
)
) is
V28
()
set
K108
(
(
(
(
(
(
Rea
z2
)
*
(
-
(
Im1
z
)
)
)
/
(
(
|.
z2
.|
^2
)
*
(
|.
z
.|
^2
)
)
)
+
(
(
(
-
(
Im1
z2
)
)
*
(
Rea
z
)
)
/
(
(
|.
z2
.|
^2
)
*
(
|.
z
.|
^2
)
)
)
)
+
(
(
(
Im2
z2
)
*
(
Im3
z
)
)
/
(
(
|.
z2
.|
^2
)
*
(
|.
z
.|
^2
)
)
)
)
,
K110
(
(
(
(
Im3
z2
)
/
(
|.
z2
.|
^2
)
)
*
(
(
Im2
z
)
/
(
|.
z
.|
^2
)
)
)
)) is
set
(
(
Rea
z2
)
*
(
-
(
Im1
z
)
)
)
+
(
(
-
(
Im1
z2
)
)
*
(
Rea
z
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
(
Rea
z2
)
*
(
-
(
Im1
z
)
)
)
+
(
(
-
(
Im1
z2
)
)
*
(
Rea
z
)
)
)
+
(
(
Im2
z2
)
*
(
Im3
z
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
(
(
Rea
z2
)
*
(
-
(
Im1
z
)
)
)
+
(
(
-
(
Im1
z2
)
)
*
(
Rea
z
)
)
)
+
(
(
Im2
z2
)
*
(
Im3
z
)
)
)
/
(
(
|.
z2
.|
^2
)
*
(
|.
z
.|
^2
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
(
(
(
Rea
z2
)
*
(
-
(
Im1
z
)
)
)
+
(
(
-
(
Im1
z2
)
)
*
(
Rea
z
)
)
)
+
(
(
Im2
z2
)
*
(
Im3
z
)
)
)
,
K111
(
(
(
|.
z2
.|
^2
)
*
(
|.
z
.|
^2
)
)
)) is
set
(
Im3
z2
)
*
(
Im2
z
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
Im3
z2
)
*
(
Im2
z
)
)
/
(
(
|.
z2
.|
^2
)
*
(
|.
z
.|
^2
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
(
Im3
z2
)
*
(
Im2
z
)
)
,
K111
(
(
(
|.
z2
.|
^2
)
*
(
|.
z
.|
^2
)
)
)) is
set
(
(
(
(
(
Rea
z2
)
*
(
-
(
Im1
z
)
)
)
+
(
(
-
(
Im1
z2
)
)
*
(
Rea
z
)
)
)
+
(
(
Im2
z2
)
*
(
Im3
z
)
)
)
/
(
(
|.
z2
.|
^2
)
*
(
|.
z
.|
^2
)
)
)
-
(
(
(
Im3
z2
)
*
(
Im2
z
)
)
/
(
(
|.
z2
.|
^2
)
*
(
|.
z
.|
^2
)
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K110
(
(
(
(
Im3
z2
)
*
(
Im2
z
)
)
/
(
(
|.
z2
.|
^2
)
*
(
|.
z
.|
^2
)
)
)
) is
V28
()
set
K108
(
(
(
(
(
(
Rea
z2
)
*
(
-
(
Im1
z
)
)
)
+
(
(
-
(
Im1
z2
)
)
*
(
Rea
z
)
)
)
+
(
(
Im2
z2
)
*
(
Im3
z
)
)
)
/
(
(
|.
z2
.|
^2
)
*
(
|.
z
.|
^2
)
)
)
,
K110
(
(
(
(
Im3
z2
)
*
(
Im2
z
)
)
/
(
(
|.
z2
.|
^2
)
*
(
|.
z
.|
^2
)
)
)
)) is
set
(
(
(
(
Rea
z2
)
*
(
-
(
Im1
z
)
)
)
+
(
(
-
(
Im1
z2
)
)
*
(
Rea
z
)
)
)
+
(
(
Im2
z2
)
*
(
Im3
z
)
)
)
-
(
(
Im3
z2
)
*
(
Im2
z
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K110
(
(
(
Im3
z2
)
*
(
Im2
z
)
)
) is
V28
()
set
K108
(
(
(
(
(
Rea
z2
)
*
(
-
(
Im1
z
)
)
)
+
(
(
-
(
Im1
z2
)
)
*
(
Rea
z
)
)
)
+
(
(
Im2
z2
)
*
(
Im3
z
)
)
)
,
K110
(
(
(
Im3
z2
)
*
(
Im2
z
)
)
)) is
set
|.
z2
.|
*
|.
z
.|
is
V28
()
V29
()
ext-real
Element
of
REAL
(
|.
z2
.|
*
|.
z
.|
)
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
|.
z2
.|
*
|.
z
.|
)
,
(
|.
z2
.|
*
|.
z
.|
)
) is
set
(
(
(
(
(
Rea
z2
)
*
(
-
(
Im1
z
)
)
)
+
(
(
-
(
Im1
z2
)
)
*
(
Rea
z
)
)
)
+
(
(
Im2
z2
)
*
(
Im3
z
)
)
)
-
(
(
Im3
z2
)
*
(
Im2
z
)
)
)
/
(
(
|.
z2
.|
*
|.
z
.|
)
^2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K111
(
(
(
|.
z2
.|
*
|.
z
.|
)
^2
)
) is
V28
()
set
K109
(
(
(
(
(
(
Rea
z2
)
*
(
-
(
Im1
z
)
)
)
+
(
(
-
(
Im1
z2
)
)
*
(
Rea
z
)
)
)
+
(
(
Im2
z2
)
*
(
Im3
z
)
)
)
-
(
(
Im3
z2
)
*
(
Im2
z
)
)
)
,
K111
(
(
(
|.
z2
.|
*
|.
z
.|
)
^2
)
)) is
set
(
Rea
(
z2
"
)
)
*
(
Im2
(
z
"
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im2
(
z2
"
)
)
*
(
Rea
(
z
"
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
Rea
(
z2
"
)
)
*
(
Im2
(
z
"
)
)
)
+
(
(
Im2
(
z2
"
)
)
*
(
Rea
(
z
"
)
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im3
(
z2
"
)
)
*
(
Im1
(
z
"
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
(
Rea
(
z2
"
)
)
*
(
Im2
(
z
"
)
)
)
+
(
(
Im2
(
z2
"
)
)
*
(
Rea
(
z
"
)
)
)
)
+
(
(
Im3
(
z2
"
)
)
*
(
Im1
(
z
"
)
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im1
(
z2
"
)
)
*
(
Im3
(
z
"
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
(
(
Rea
(
z2
"
)
)
*
(
Im2
(
z
"
)
)
)
+
(
(
Im2
(
z2
"
)
)
*
(
Rea
(
z
"
)
)
)
)
+
(
(
Im3
(
z2
"
)
)
*
(
Im1
(
z
"
)
)
)
)
-
(
(
Im1
(
z2
"
)
)
*
(
Im3
(
z
"
)
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K110
(
(
(
Im1
(
z2
"
)
)
*
(
Im3
(
z
"
)
)
)
) is
V28
()
set
K108
(
(
(
(
(
Rea
(
z2
"
)
)
*
(
Im2
(
z
"
)
)
)
+
(
(
Im2
(
z2
"
)
)
*
(
Rea
(
z
"
)
)
)
)
+
(
(
Im3
(
z2
"
)
)
*
(
Im1
(
z
"
)
)
)
)
,
K110
(
(
(
Im1
(
z2
"
)
)
*
(
Im3
(
z
"
)
)
)
)) is
set
(
(
Rea
z2
)
/
(
|.
z2
.|
^2
)
)
*
(
Im2
(
z
"
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
(
Rea
z2
)
/
(
|.
z2
.|
^2
)
)
*
(
Im2
(
z
"
)
)
)
+
(
(
Im2
(
z2
"
)
)
*
(
Rea
(
z
"
)
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
(
(
Rea
z2
)
/
(
|.
z2
.|
^2
)
)
*
(
Im2
(
z
"
)
)
)
+
(
(
Im2
(
z2
"
)
)
*
(
Rea
(
z
"
)
)
)
)
+
(
(
Im3
(
z2
"
)
)
*
(
Im1
(
z
"
)
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
(
(
(
Rea
z2
)
/
(
|.
z2
.|
^2
)
)
*
(
Im2
(
z
"
)
)
)
+
(
(
Im2
(
z2
"
)
)
*
(
Rea
(
z
"
)
)
)
)
+
(
(
Im3
(
z2
"
)
)
*
(
Im1
(
z
"
)
)
)
)
-
(
(
Im1
(
z2
"
)
)
*
(
Im3
(
z
"
)
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K108
(
(
(
(
(
(
Rea
z2
)
/
(
|.
z2
.|
^2
)
)
*
(
Im2
(
z
"
)
)
)
+
(
(
Im2
(
z2
"
)
)
*
(
Rea
(
z
"
)
)
)
)
+
(
(
Im3
(
z2
"
)
)
*
(
Im1
(
z
"
)
)
)
)
,
K110
(
(
(
Im1
(
z2
"
)
)
*
(
Im3
(
z
"
)
)
)
)) is
set
(
(
Rea
z2
)
/
(
|.
z2
.|
^2
)
)
*
(
-
(
(
Im2
z
)
/
(
|.
z
.|
^2
)
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
(
Rea
z2
)
/
(
|.
z2
.|
^2
)
)
*
(
-
(
(
Im2
z
)
/
(
|.
z
.|
^2
)
)
)
)
+
(
(
Im2
(
z2
"
)
)
*
(
Rea
(
z
"
)
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
(
(
Rea
z2
)
/
(
|.
z2
.|
^2
)
)
*
(
-
(
(
Im2
z
)
/
(
|.
z
.|
^2
)
)
)
)
+
(
(
Im2
(
z2
"
)
)
*
(
Rea
(
z
"
)
)
)
)
+
(
(
Im3
(
z2
"
)
)
*
(
Im1
(
z
"
)
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
(
(
(
Rea
z2
)
/
(
|.
z2
.|
^2
)
)
*
(
-
(
(
Im2
z
)
/
(
|.
z
.|
^2
)
)
)
)
+
(
(
Im2
(
z2
"
)
)
*
(
Rea
(
z
"
)
)
)
)
+
(
(
Im3
(
z2
"
)
)
*
(
Im1
(
z
"
)
)
)
)
-
(
(
Im1
(
z2
"
)
)
*
(
Im3
(
z
"
)
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K108
(
(
(
(
(
(
Rea
z2
)
/
(
|.
z2
.|
^2
)
)
*
(
-
(
(
Im2
z
)
/
(
|.
z
.|
^2
)
)
)
)
+
(
(
Im2
(
z2
"
)
)
*
(
Rea
(
z
"
)
)
)
)
+
(
(
Im3
(
z2
"
)
)
*
(
Im1
(
z
"
)
)
)
)
,
K110
(
(
(
Im1
(
z2
"
)
)
*
(
Im3
(
z
"
)
)
)
)) is
set
(
-
(
(
Im2
z2
)
/
(
|.
z2
.|
^2
)
)
)
*
(
Rea
(
z
"
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
(
Rea
z2
)
/
(
|.
z2
.|
^2
)
)
*
(
-
(
(
Im2
z
)
/
(
|.
z
.|
^2
)
)
)
)
+
(
(
-
(
(
Im2
z2
)
/
(
|.
z2
.|
^2
)
)
)
*
(
Rea
(
z
"
)
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
(
(
Rea
z2
)
/
(
|.
z2
.|
^2
)
)
*
(
-
(
(
Im2
z
)
/
(
|.
z
.|
^2
)
)
)
)
+
(
(
-
(
(
Im2
z2
)
/
(
|.
z2
.|
^2
)
)
)
*
(
Rea
(
z
"
)
)
)
)
+
(
(
Im3
(
z2
"
)
)
*
(
Im1
(
z
"
)
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
(
(
(
Rea
z2
)
/
(
|.
z2
.|
^2
)
)
*
(
-
(
(
Im2
z
)
/
(
|.
z
.|
^2
)
)
)
)
+
(
(
-
(
(
Im2
z2
)
/
(
|.
z2
.|
^2
)
)
)
*
(
Rea
(
z
"
)
)
)
)
+
(
(
Im3
(
z2
"
)
)
*
(
Im1
(
z
"
)
)
)
)
-
(
(
Im1
(
z2
"
)
)
*
(
Im3
(
z
"
)
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K108
(
(
(
(
(
(
Rea
z2
)
/
(
|.
z2
.|
^2
)
)
*
(
-
(
(
Im2
z
)
/
(
|.
z
.|
^2
)
)
)
)
+
(
(
-
(
(
Im2
z2
)
/
(
|.
z2
.|
^2
)
)
)
*
(
Rea
(
z
"
)
)
)
)
+
(
(
Im3
(
z2
"
)
)
*
(
Im1
(
z
"
)
)
)
)
,
K110
(
(
(
Im1
(
z2
"
)
)
*
(
Im3
(
z
"
)
)
)
)) is
set
(
-
(
(
Im2
z2
)
/
(
|.
z2
.|
^2
)
)
)
*
(
(
Rea
z
)
/
(
|.
z
.|
^2
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
(
Rea
z2
)
/
(
|.
z2
.|
^2
)
)
*
(
-
(
(
Im2
z
)
/
(
|.
z
.|
^2
)
)
)
)
+
(
(
-
(
(
Im2
z2
)
/
(
|.
z2
.|
^2
)
)
)
*
(
(
Rea
z
)
/
(
|.
z
.|
^2
)
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
(
(
Rea
z2
)
/
(
|.
z2
.|
^2
)
)
*
(
-
(
(
Im2
z
)
/
(
|.
z
.|
^2
)
)
)
)
+
(
(
-
(
(
Im2
z2
)
/
(
|.
z2
.|
^2
)
)
)
*
(
(
Rea
z
)
/
(
|.
z
.|
^2
)
)
)
)
+
(
(
Im3
(
z2
"
)
)
*
(
Im1
(
z
"
)
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
(
(
(
Rea
z2
)
/
(
|.
z2
.|
^2
)
)
*
(
-
(
(
Im2
z
)
/
(
|.
z
.|
^2
)
)
)
)
+
(
(
-
(
(
Im2
z2
)
/
(
|.
z2
.|
^2
)
)
)
*
(
(
Rea
z
)
/
(
|.
z
.|
^2
)
)
)
)
+
(
(
Im3
(
z2
"
)
)
*
(
Im1
(
z
"
)
)
)
)
-
(
(
Im1
(
z2
"
)
)
*
(
Im3
(
z
"
)
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K108
(
(
(
(
(
(
Rea
z2
)
/
(
|.
z2
.|
^2
)
)
*
(
-
(
(
Im2
z
)
/
(
|.
z
.|
^2
)
)
)
)
+
(
(
-
(
(
Im2
z2
)
/
(
|.
z2
.|
^2
)
)
)
*
(
(
Rea
z
)
/
(
|.
z
.|
^2
)
)
)
)
+
(
(
Im3
(
z2
"
)
)
*
(
Im1
(
z
"
)
)
)
)
,
K110
(
(
(
Im1
(
z2
"
)
)
*
(
Im3
(
z
"
)
)
)
)) is
set
(
-
(
(
Im3
z2
)
/
(
|.
z2
.|
^2
)
)
)
*
(
Im1
(
z
"
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
(
(
Rea
z2
)
/
(
|.
z2
.|
^2
)
)
*
(
-
(
(
Im2
z
)
/
(
|.
z
.|
^2
)
)
)
)
+
(
(
-
(
(
Im2
z2
)
/
(
|.
z2
.|
^2
)
)
)
*
(
(
Rea
z
)
/
(
|.
z
.|
^2
)
)
)
)
+
(
(
-
(
(
Im3
z2
)
/
(
|.
z2
.|
^2
)
)
)
*
(
Im1
(
z
"
)
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
(
(
(
Rea
z2
)
/
(
|.
z2
.|
^2
)
)
*
(
-
(
(
Im2
z
)
/
(
|.
z
.|
^2
)
)
)
)
+
(
(
-
(
(
Im2
z2
)
/
(
|.
z2
.|
^2
)
)
)
*
(
(
Rea
z
)
/
(
|.
z
.|
^2
)
)
)
)
+
(
(
-
(
(
Im3
z2
)
/
(
|.
z2
.|
^2
)
)
)
*
(
Im1
(
z
"
)
)
)
)
-
(
(
Im1
(
z2
"
)
)
*
(
Im3
(
z
"
)
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K108
(
(
(
(
(
(
Rea
z2
)
/
(
|.
z2
.|
^2
)
)
*
(
-
(
(
Im2
z
)
/
(
|.
z
.|
^2
)
)
)
)
+
(
(
-
(
(
Im2
z2
)
/
(
|.
z2
.|
^2
)
)
)
*
(
(
Rea
z
)
/
(
|.
z
.|
^2
)
)
)
)
+
(
(
-
(
(
Im3
z2
)
/
(
|.
z2
.|
^2
)
)
)
*
(
Im1
(
z
"
)
)
)
)
,
K110
(
(
(
Im1
(
z2
"
)
)
*
(
Im3
(
z
"
)
)
)
)) is
set
(
-
(
(
Im3
z2
)
/
(
|.
z2
.|
^2
)
)
)
*
(
-
(
(
Im1
z
)
/
(
|.
z
.|
^2
)
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
(
(
Rea
z2
)
/
(
|.
z2
.|
^2
)
)
*
(
-
(
(
Im2
z
)
/
(
|.
z
.|
^2
)
)
)
)
+
(
(
-
(
(
Im2
z2
)
/
(
|.
z2
.|
^2
)
)
)
*
(
(
Rea
z
)
/
(
|.
z
.|
^2
)
)
)
)
+
(
(
-
(
(
Im3
z2
)
/
(
|.
z2
.|
^2
)
)
)
*
(
-
(
(
Im1
z
)
/
(
|.
z
.|
^2
)
)
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
(
(
(
Rea
z2
)
/
(
|.
z2
.|
^2
)
)
*
(
-
(
(
Im2
z
)
/
(
|.
z
.|
^2
)
)
)
)
+
(
(
-
(
(
Im2
z2
)
/
(
|.
z2
.|
^2
)
)
)
*
(
(
Rea
z
)
/
(
|.
z
.|
^2
)
)
)
)
+
(
(
-
(
(
Im3
z2
)
/
(
|.
z2
.|
^2
)
)
)
*
(
-
(
(
Im1
z
)
/
(
|.
z
.|
^2
)
)
)
)
)
-
(
(
Im1
(
z2
"
)
)
*
(
Im3
(
z
"
)
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K108
(
(
(
(
(
(
Rea
z2
)
/
(
|.
z2
.|
^2
)
)
*
(
-
(
(
Im2
z
)
/
(
|.
z
.|
^2
)
)
)
)
+
(
(
-
(
(
Im2
z2
)
/
(
|.
z2
.|
^2
)
)
)
*
(
(
Rea
z
)
/
(
|.
z
.|
^2
)
)
)
)
+
(
(
-
(
(
Im3
z2
)
/
(
|.
z2
.|
^2
)
)
)
*
(
-
(
(
Im1
z
)
/
(
|.
z
.|
^2
)
)
)
)
)
,
K110
(
(
(
Im1
(
z2
"
)
)
*
(
Im3
(
z
"
)
)
)
)) is
set
(
-
(
(
Im1
z2
)
/
(
|.
z2
.|
^2
)
)
)
*
(
Im3
(
z
"
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
(
(
(
Rea
z2
)
/
(
|.
z2
.|
^2
)
)
*
(
-
(
(
Im2
z
)
/
(
|.
z
.|
^2
)
)
)
)
+
(
(
-
(
(
Im2
z2
)
/
(
|.
z2
.|
^2
)
)
)
*
(
(
Rea
z
)
/
(
|.
z
.|
^2
)
)
)
)
+
(
(
-
(
(
Im3
z2
)
/
(
|.
z2
.|
^2
)
)
)
*
(
-
(
(
Im1
z
)
/
(
|.
z
.|
^2
)
)
)
)
)
-
(
(
-
(
(
Im1
z2
)
/
(
|.
z2
.|
^2
)
)
)
*
(
Im3
(
z
"
)
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K110
(
(
(
-
(
(
Im1
z2
)
/
(
|.
z2
.|
^2
)
)
)
*
(
Im3
(
z
"
)
)
)
) is
V28
()
set
K108
(
(
(
(
(
(
Rea
z2
)
/
(
|.
z2
.|
^2
)
)
*
(
-
(
(
Im2
z
)
/
(
|.
z
.|
^2
)
)
)
)
+
(
(
-
(
(
Im2
z2
)
/
(
|.
z2
.|
^2
)
)
)
*
(
(
Rea
z
)
/
(
|.
z
.|
^2
)
)
)
)
+
(
(
-
(
(
Im3
z2
)
/
(
|.
z2
.|
^2
)
)
)
*
(
-
(
(
Im1
z
)
/
(
|.
z
.|
^2
)
)
)
)
)
,
K110
(
(
(
-
(
(
Im1
z2
)
/
(
|.
z2
.|
^2
)
)
)
*
(
Im3
(
z
"
)
)
)
)) is
set
(
-
(
(
Im1
z2
)
/
(
|.
z2
.|
^2
)
)
)
*
(
-
(
(
Im3
z
)
/
(
|.
z
.|
^2
)
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
(
(
(
Rea
z2
)
/
(
|.
z2
.|
^2
)
)
*
(
-
(
(
Im2
z
)
/
(
|.
z
.|
^2
)
)
)
)
+
(
(
-
(
(
Im2
z2
)
/
(
|.
z2
.|
^2
)
)
)
*
(
(
Rea
z
)
/
(
|.
z
.|
^2
)
)
)
)
+
(
(
-
(
(
Im3
z2
)
/
(
|.
z2
.|
^2
)
)
)
*
(
-
(
(
Im1
z
)
/
(
|.
z
.|
^2
)
)
)
)
)
-
(
(
-
(
(
Im1
z2
)
/
(
|.
z2
.|
^2
)
)
)
*
(
-
(
(
Im3
z
)
/
(
|.
z
.|
^2
)
)
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K110
(
(
(
-
(
(
Im1
z2
)
/
(
|.
z2
.|
^2
)
)
)
*
(
-
(
(
Im3
z
)
/
(
|.
z
.|
^2
)
)
)
)
) is
V28
()
set
K108
(
(
(
(
(
(
Rea
z2
)
/
(
|.
z2
.|
^2
)
)
*
(
-
(
(
Im2
z
)
/
(
|.
z
.|
^2
)
)
)
)
+
(
(
-
(
(
Im2
z2
)
/
(
|.
z2
.|
^2
)
)
)
*
(
(
Rea
z
)
/
(
|.
z
.|
^2
)
)
)
)
+
(
(
-
(
(
Im3
z2
)
/
(
|.
z2
.|
^2
)
)
)
*
(
-
(
(
Im1
z
)
/
(
|.
z
.|
^2
)
)
)
)
)
,
K110
(
(
(
-
(
(
Im1
z2
)
/
(
|.
z2
.|
^2
)
)
)
*
(
-
(
(
Im3
z
)
/
(
|.
z
.|
^2
)
)
)
)
)) is
set
-
(
Im2
z
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
-
(
Im2
z
)
)
/
(
|.
z
.|
^2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
-
(
Im2
z
)
)
,
K111
(
(
|.
z
.|
^2
)
)) is
set
(
(
Rea
z2
)
/
(
|.
z2
.|
^2
)
)
*
(
(
-
(
Im2
z
)
)
/
(
|.
z
.|
^2
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
-
(
Im2
z2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
-
(
Im2
z2
)
)
/
(
|.
z2
.|
^2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
-
(
Im2
z2
)
)
,
K111
(
(
|.
z2
.|
^2
)
)) is
set
(
(
-
(
Im2
z2
)
)
/
(
|.
z2
.|
^2
)
)
*
(
(
Rea
z
)
/
(
|.
z
.|
^2
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
(
Rea
z2
)
/
(
|.
z2
.|
^2
)
)
*
(
(
-
(
Im2
z
)
)
/
(
|.
z
.|
^2
)
)
)
+
(
(
(
-
(
Im2
z2
)
)
/
(
|.
z2
.|
^2
)
)
*
(
(
Rea
z
)
/
(
|.
z
.|
^2
)
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
Im3
z2
)
/
(
|.
z2
.|
^2
)
)
*
(
(
Im1
z
)
/
(
|.
z
.|
^2
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
(
(
Rea
z2
)
/
(
|.
z2
.|
^2
)
)
*
(
(
-
(
Im2
z
)
)
/
(
|.
z
.|
^2
)
)
)
+
(
(
(
-
(
Im2
z2
)
)
/
(
|.
z2
.|
^2
)
)
*
(
(
Rea
z
)
/
(
|.
z
.|
^2
)
)
)
)
+
(
(
(
Im3
z2
)
/
(
|.
z2
.|
^2
)
)
*
(
(
Im1
z
)
/
(
|.
z
.|
^2
)
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
Im1
z2
)
/
(
|.
z2
.|
^2
)
)
*
(
(
Im3
z
)
/
(
|.
z
.|
^2
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
(
(
(
Rea
z2
)
/
(
|.
z2
.|
^2
)
)
*
(
(
-
(
Im2
z
)
)
/
(
|.
z
.|
^2
)
)
)
+
(
(
(
-
(
Im2
z2
)
)
/
(
|.
z2
.|
^2
)
)
*
(
(
Rea
z
)
/
(
|.
z
.|
^2
)
)
)
)
+
(
(
(
Im3
z2
)
/
(
|.
z2
.|
^2
)
)
*
(
(
Im1
z
)
/
(
|.
z
.|
^2
)
)
)
)
-
(
(
(
Im1
z2
)
/
(
|.
z2
.|
^2
)
)
*
(
(
Im3
z
)
/
(
|.
z
.|
^2
)
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K110
(
(
(
(
Im1
z2
)
/
(
|.
z2
.|
^2
)
)
*
(
(
Im3
z
)
/
(
|.
z
.|
^2
)
)
)
) is
V28
()
set
K108
(
(
(
(
(
(
Rea
z2
)
/
(
|.
z2
.|
^2
)
)
*
(
(
-
(
Im2
z
)
)
/
(
|.
z
.|
^2
)
)
)
+
(
(
(
-
(
Im2
z2
)
)
/
(
|.
z2
.|
^2
)
)
*
(
(
Rea
z
)
/
(
|.
z
.|
^2
)
)
)
)
+
(
(
(
Im3
z2
)
/
(
|.
z2
.|
^2
)
)
*
(
(
Im1
z
)
/
(
|.
z
.|
^2
)
)
)
)
,
K110
(
(
(
(
Im1
z2
)
/
(
|.
z2
.|
^2
)
)
*
(
(
Im3
z
)
/
(
|.
z
.|
^2
)
)
)
)) is
set
(
Rea
z2
)
*
(
-
(
Im2
z
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
Rea
z2
)
*
(
-
(
Im2
z
)
)
)
/
(
(
|.
z2
.|
^2
)
*
(
|.
z
.|
^2
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
(
Rea
z2
)
*
(
-
(
Im2
z
)
)
)
,
K111
(
(
(
|.
z2
.|
^2
)
*
(
|.
z
.|
^2
)
)
)) is
set
(
(
(
Rea
z2
)
*
(
-
(
Im2
z
)
)
)
/
(
(
|.
z2
.|
^2
)
*
(
|.
z
.|
^2
)
)
)
+
(
(
(
-
(
Im2
z2
)
)
/
(
|.
z2
.|
^2
)
)
*
(
(
Rea
z
)
/
(
|.
z
.|
^2
)
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
(
(
Rea
z2
)
*
(
-
(
Im2
z
)
)
)
/
(
(
|.
z2
.|
^2
)
*
(
|.
z
.|
^2
)
)
)
+
(
(
(
-
(
Im2
z2
)
)
/
(
|.
z2
.|
^2
)
)
*
(
(
Rea
z
)
/
(
|.
z
.|
^2
)
)
)
)
+
(
(
(
Im3
z2
)
/
(
|.
z2
.|
^2
)
)
*
(
(
Im1
z
)
/
(
|.
z
.|
^2
)
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
(
(
(
Rea
z2
)
*
(
-
(
Im2
z
)
)
)
/
(
(
|.
z2
.|
^2
)
*
(
|.
z
.|
^2
)
)
)
+
(
(
(
-
(
Im2
z2
)
)
/
(
|.
z2
.|
^2
)
)
*
(
(
Rea
z
)
/
(
|.
z
.|
^2
)
)
)
)
+
(
(
(
Im3
z2
)
/
(
|.
z2
.|
^2
)
)
*
(
(
Im1
z
)
/
(
|.
z
.|
^2
)
)
)
)
-
(
(
(
Im1
z2
)
/
(
|.
z2
.|
^2
)
)
*
(
(
Im3
z
)
/
(
|.
z
.|
^2
)
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K108
(
(
(
(
(
(
Rea
z2
)
*
(
-
(
Im2
z
)
)
)
/
(
(
|.
z2
.|
^2
)
*
(
|.
z
.|
^2
)
)
)
+
(
(
(
-
(
Im2
z2
)
)
/
(
|.
z2
.|
^2
)
)
*
(
(
Rea
z
)
/
(
|.
z
.|
^2
)
)
)
)
+
(
(
(
Im3
z2
)
/
(
|.
z2
.|
^2
)
)
*
(
(
Im1
z
)
/
(
|.
z
.|
^2
)
)
)
)
,
K110
(
(
(
(
Im1
z2
)
/
(
|.
z2
.|
^2
)
)
*
(
(
Im3
z
)
/
(
|.
z
.|
^2
)
)
)
)) is
set
(
-
(
Im2
z2
)
)
*
(
Rea
z
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
-
(
Im2
z2
)
)
*
(
Rea
z
)
)
/
(
(
|.
z2
.|
^2
)
*
(
|.
z
.|
^2
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
(
-
(
Im2
z2
)
)
*
(
Rea
z
)
)
,
K111
(
(
(
|.
z2
.|
^2
)
*
(
|.
z
.|
^2
)
)
)) is
set
(
(
(
Rea
z2
)
*
(
-
(
Im2
z
)
)
)
/
(
(
|.
z2
.|
^2
)
*
(
|.
z
.|
^2
)
)
)
+
(
(
(
-
(
Im2
z2
)
)
*
(
Rea
z
)
)
/
(
(
|.
z2
.|
^2
)
*
(
|.
z
.|
^2
)
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
(
(
Rea
z2
)
*
(
-
(
Im2
z
)
)
)
/
(
(
|.
z2
.|
^2
)
*
(
|.
z
.|
^2
)
)
)
+
(
(
(
-
(
Im2
z2
)
)
*
(
Rea
z
)
)
/
(
(
|.
z2
.|
^2
)
*
(
|.
z
.|
^2
)
)
)
)
+
(
(
(
Im3
z2
)
/
(
|.
z2
.|
^2
)
)
*
(
(
Im1
z
)
/
(
|.
z
.|
^2
)
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
(
(
(
Rea
z2
)
*
(
-
(
Im2
z
)
)
)
/
(
(
|.
z2
.|
^2
)
*
(
|.
z
.|
^2
)
)
)
+
(
(
(
-
(
Im2
z2
)
)
*
(
Rea
z
)
)
/
(
(
|.
z2
.|
^2
)
*
(
|.
z
.|
^2
)
)
)
)
+
(
(
(
Im3
z2
)
/
(
|.
z2
.|
^2
)
)
*
(
(
Im1
z
)
/
(
|.
z
.|
^2
)
)
)
)
-
(
(
(
Im1
z2
)
/
(
|.
z2
.|
^2
)
)
*
(
(
Im3
z
)
/
(
|.
z
.|
^2
)
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K108
(
(
(
(
(
(
Rea
z2
)
*
(
-
(
Im2
z
)
)
)
/
(
(
|.
z2
.|
^2
)
*
(
|.
z
.|
^2
)
)
)
+
(
(
(
-
(
Im2
z2
)
)
*
(
Rea
z
)
)
/
(
(
|.
z2
.|
^2
)
*
(
|.
z
.|
^2
)
)
)
)
+
(
(
(
Im3
z2
)
/
(
|.
z2
.|
^2
)
)
*
(
(
Im1
z
)
/
(
|.
z
.|
^2
)
)
)
)
,
K110
(
(
(
(
Im1
z2
)
/
(
|.
z2
.|
^2
)
)
*
(
(
Im3
z
)
/
(
|.
z
.|
^2
)
)
)
)) is
set
(
Im3
z2
)
*
(
Im1
z
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
Im3
z2
)
*
(
Im1
z
)
)
/
(
(
|.
z2
.|
^2
)
*
(
|.
z
.|
^2
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
(
Im3
z2
)
*
(
Im1
z
)
)
,
K111
(
(
(
|.
z2
.|
^2
)
*
(
|.
z
.|
^2
)
)
)) is
set
(
(
(
(
Rea
z2
)
*
(
-
(
Im2
z
)
)
)
/
(
(
|.
z2
.|
^2
)
*
(
|.
z
.|
^2
)
)
)
+
(
(
(
-
(
Im2
z2
)
)
*
(
Rea
z
)
)
/
(
(
|.
z2
.|
^2
)
*
(
|.
z
.|
^2
)
)
)
)
+
(
(
(
Im3
z2
)
*
(
Im1
z
)
)
/
(
(
|.
z2
.|
^2
)
*
(
|.
z
.|
^2
)
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
(
(
(
Rea
z2
)
*
(
-
(
Im2
z
)
)
)
/
(
(
|.
z2
.|
^2
)
*
(
|.
z
.|
^2
)
)
)
+
(
(
(
-
(
Im2
z2
)
)
*
(
Rea
z
)
)
/
(
(
|.
z2
.|
^2
)
*
(
|.
z
.|
^2
)
)
)
)
+
(
(
(
Im3
z2
)
*
(
Im1
z
)
)
/
(
(
|.
z2
.|
^2
)
*
(
|.
z
.|
^2
)
)
)
)
-
(
(
(
Im1
z2
)
/
(
|.
z2
.|
^2
)
)
*
(
(
Im3
z
)
/
(
|.
z
.|
^2
)
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K108
(
(
(
(
(
(
Rea
z2
)
*
(
-
(
Im2
z
)
)
)
/
(
(
|.
z2
.|
^2
)
*
(
|.
z
.|
^2
)
)
)
+
(
(
(
-
(
Im2
z2
)
)
*
(
Rea
z
)
)
/
(
(
|.
z2
.|
^2
)
*
(
|.
z
.|
^2
)
)
)
)
+
(
(
(
Im3
z2
)
*
(
Im1
z
)
)
/
(
(
|.
z2
.|
^2
)
*
(
|.
z
.|
^2
)
)
)
)
,
K110
(
(
(
(
Im1
z2
)
/
(
|.
z2
.|
^2
)
)
*
(
(
Im3
z
)
/
(
|.
z
.|
^2
)
)
)
)) is
set
(
(
Rea
z2
)
*
(
-
(
Im2
z
)
)
)
+
(
(
-
(
Im2
z2
)
)
*
(
Rea
z
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
(
Rea
z2
)
*
(
-
(
Im2
z
)
)
)
+
(
(
-
(
Im2
z2
)
)
*
(
Rea
z
)
)
)
+
(
(
Im3
z2
)
*
(
Im1
z
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
(
(
Rea
z2
)
*
(
-
(
Im2
z
)
)
)
+
(
(
-
(
Im2
z2
)
)
*
(
Rea
z
)
)
)
+
(
(
Im3
z2
)
*
(
Im1
z
)
)
)
/
(
(
|.
z2
.|
^2
)
*
(
|.
z
.|
^2
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
(
(
(
Rea
z2
)
*
(
-
(
Im2
z
)
)
)
+
(
(
-
(
Im2
z2
)
)
*
(
Rea
z
)
)
)
+
(
(
Im3
z2
)
*
(
Im1
z
)
)
)
,
K111
(
(
(
|.
z2
.|
^2
)
*
(
|.
z
.|
^2
)
)
)) is
set
(
Im1
z2
)
*
(
Im3
z
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
Im1
z2
)
*
(
Im3
z
)
)
/
(
(
|.
z2
.|
^2
)
*
(
|.
z
.|
^2
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
(
Im1
z2
)
*
(
Im3
z
)
)
,
K111
(
(
(
|.
z2
.|
^2
)
*
(
|.
z
.|
^2
)
)
)) is
set
(
(
(
(
(
Rea
z2
)
*
(
-
(
Im2
z
)
)
)
+
(
(
-
(
Im2
z2
)
)
*
(
Rea
z
)
)
)
+
(
(
Im3
z2
)
*
(
Im1
z
)
)
)
/
(
(
|.
z2
.|
^2
)
*
(
|.
z
.|
^2
)
)
)
-
(
(
(
Im1
z2
)
*
(
Im3
z
)
)
/
(
(
|.
z2
.|
^2
)
*
(
|.
z
.|
^2
)
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K110
(
(
(
(
Im1
z2
)
*
(
Im3
z
)
)
/
(
(
|.
z2
.|
^2
)
*
(
|.
z
.|
^2
)
)
)
) is
V28
()
set
K108
(
(
(
(
(
(
Rea
z2
)
*
(
-
(
Im2
z
)
)
)
+
(
(
-
(
Im2
z2
)
)
*
(
Rea
z
)
)
)
+
(
(
Im3
z2
)
*
(
Im1
z
)
)
)
/
(
(
|.
z2
.|
^2
)
*
(
|.
z
.|
^2
)
)
)
,
K110
(
(
(
(
Im1
z2
)
*
(
Im3
z
)
)
/
(
(
|.
z2
.|
^2
)
*
(
|.
z
.|
^2
)
)
)
)) is
set
(
(
(
(
Rea
z2
)
*
(
-
(
Im2
z
)
)
)
+
(
(
-
(
Im2
z2
)
)
*
(
Rea
z
)
)
)
+
(
(
Im3
z2
)
*
(
Im1
z
)
)
)
-
(
(
Im1
z2
)
*
(
Im3
z
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K110
(
(
(
Im1
z2
)
*
(
Im3
z
)
)
) is
V28
()
set
K108
(
(
(
(
(
Rea
z2
)
*
(
-
(
Im2
z
)
)
)
+
(
(
-
(
Im2
z2
)
)
*
(
Rea
z
)
)
)
+
(
(
Im3
z2
)
*
(
Im1
z
)
)
)
,
K110
(
(
(
Im1
z2
)
*
(
Im3
z
)
)
)) is
set
(
(
(
(
(
Rea
z2
)
*
(
-
(
Im2
z
)
)
)
+
(
(
-
(
Im2
z2
)
)
*
(
Rea
z
)
)
)
+
(
(
Im3
z2
)
*
(
Im1
z
)
)
)
-
(
(
Im1
z2
)
*
(
Im3
z
)
)
)
/
(
(
|.
z2
.|
*
|.
z
.|
)
^2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
(
(
(
(
Rea
z2
)
*
(
-
(
Im2
z
)
)
)
+
(
(
-
(
Im2
z2
)
)
*
(
Rea
z
)
)
)
+
(
(
Im3
z2
)
*
(
Im1
z
)
)
)
-
(
(
Im1
z2
)
*
(
Im3
z
)
)
)
,
K111
(
(
(
|.
z2
.|
*
|.
z
.|
)
^2
)
)) is
set
(
Rea
(
z2
"
)
)
*
(
Im3
(
z
"
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im3
(
z2
"
)
)
*
(
Rea
(
z
"
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
Rea
(
z2
"
)
)
*
(
Im3
(
z
"
)
)
)
+
(
(
Im3
(
z2
"
)
)
*
(
Rea
(
z
"
)
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im1
(
z2
"
)
)
*
(
Im2
(
z
"
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
(
Rea
(
z2
"
)
)
*
(
Im3
(
z
"
)
)
)
+
(
(
Im3
(
z2
"
)
)
*
(
Rea
(
z
"
)
)
)
)
+
(
(
Im1
(
z2
"
)
)
*
(
Im2
(
z
"
)
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im2
(
z2
"
)
)
*
(
Im1
(
z
"
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
(
(
Rea
(
z2
"
)
)
*
(
Im3
(
z
"
)
)
)
+
(
(
Im3
(
z2
"
)
)
*
(
Rea
(
z
"
)
)
)
)
+
(
(
Im1
(
z2
"
)
)
*
(
Im2
(
z
"
)
)
)
)
-
(
(
Im2
(
z2
"
)
)
*
(
Im1
(
z
"
)
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K110
(
(
(
Im2
(
z2
"
)
)
*
(
Im1
(
z
"
)
)
)
) is
V28
()
set
K108
(
(
(
(
(
Rea
(
z2
"
)
)
*
(
Im3
(
z
"
)
)
)
+
(
(
Im3
(
z2
"
)
)
*
(
Rea
(
z
"
)
)
)
)
+
(
(
Im1
(
z2
"
)
)
*
(
Im2
(
z
"
)
)
)
)
,
K110
(
(
(
Im2
(
z2
"
)
)
*
(
Im1
(
z
"
)
)
)
)) is
set
(
(
Rea
z2
)
/
(
|.
z2
.|
^2
)
)
*
(
Im3
(
z
"
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
(
Rea
z2
)
/
(
|.
z2
.|
^2
)
)
*
(
Im3
(
z
"
)
)
)
+
(
(
Im3
(
z2
"
)
)
*
(
Rea
(
z
"
)
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
(
(
Rea
z2
)
/
(
|.
z2
.|
^2
)
)
*
(
Im3
(
z
"
)
)
)
+
(
(
Im3
(
z2
"
)
)
*
(
Rea
(
z
"
)
)
)
)
+
(
(
Im1
(
z2
"
)
)
*
(
Im2
(
z
"
)
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
(
(
(
Rea
z2
)
/
(
|.
z2
.|
^2
)
)
*
(
Im3
(
z
"
)
)
)
+
(
(
Im3
(
z2
"
)
)
*
(
Rea
(
z
"
)
)
)
)
+
(
(
Im1
(
z2
"
)
)
*
(
Im2
(
z
"
)
)
)
)
-
(
(
Im2
(
z2
"
)
)
*
(
Im1
(
z
"
)
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K108
(
(
(
(
(
(
Rea
z2
)
/
(
|.
z2
.|
^2
)
)
*
(
Im3
(
z
"
)
)
)
+
(
(
Im3
(
z2
"
)
)
*
(
Rea
(
z
"
)
)
)
)
+
(
(
Im1
(
z2
"
)
)
*
(
Im2
(
z
"
)
)
)
)
,
K110
(
(
(
Im2
(
z2
"
)
)
*
(
Im1
(
z
"
)
)
)
)) is
set
(
(
Rea
z2
)
/
(
|.
z2
.|
^2
)
)
*
(
-
(
(
Im3
z
)
/
(
|.
z
.|
^2
)
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
(
Rea
z2
)
/
(
|.
z2
.|
^2
)
)
*
(
-
(
(
Im3
z
)
/
(
|.
z
.|
^2
)
)
)
)
+
(
(
Im3
(
z2
"
)
)
*
(
Rea
(
z
"
)
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
(
(
Rea
z2
)
/
(
|.
z2
.|
^2
)
)
*
(
-
(
(
Im3
z
)
/
(
|.
z
.|
^2
)
)
)
)
+
(
(
Im3
(
z2
"
)
)
*
(
Rea
(
z
"
)
)
)
)
+
(
(
Im1
(
z2
"
)
)
*
(
Im2
(
z
"
)
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
(
(
(
Rea
z2
)
/
(
|.
z2
.|
^2
)
)
*
(
-
(
(
Im3
z
)
/
(
|.
z
.|
^2
)
)
)
)
+
(
(
Im3
(
z2
"
)
)
*
(
Rea
(
z
"
)
)
)
)
+
(
(
Im1
(
z2
"
)
)
*
(
Im2
(
z
"
)
)
)
)
-
(
(
Im2
(
z2
"
)
)
*
(
Im1
(
z
"
)
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K108
(
(
(
(
(
(
Rea
z2
)
/
(
|.
z2
.|
^2
)
)
*
(
-
(
(
Im3
z
)
/
(
|.
z
.|
^2
)
)
)
)
+
(
(
Im3
(
z2
"
)
)
*
(
Rea
(
z
"
)
)
)
)
+
(
(
Im1
(
z2
"
)
)
*
(
Im2
(
z
"
)
)
)
)
,
K110
(
(
(
Im2
(
z2
"
)
)
*
(
Im1
(
z
"
)
)
)
)) is
set
(
-
(
(
Im3
z2
)
/
(
|.
z2
.|
^2
)
)
)
*
(
Rea
(
z
"
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
(
Rea
z2
)
/
(
|.
z2
.|
^2
)
)
*
(
-
(
(
Im3
z
)
/
(
|.
z
.|
^2
)
)
)
)
+
(
(
-
(
(
Im3
z2
)
/
(
|.
z2
.|
^2
)
)
)
*
(
Rea
(
z
"
)
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
(
(
Rea
z2
)
/
(
|.
z2
.|
^2
)
)
*
(
-
(
(
Im3
z
)
/
(
|.
z
.|
^2
)
)
)
)
+
(
(
-
(
(
Im3
z2
)
/
(
|.
z2
.|
^2
)
)
)
*
(
Rea
(
z
"
)
)
)
)
+
(
(
Im1
(
z2
"
)
)
*
(
Im2
(
z
"
)
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
(
(
(
Rea
z2
)
/
(
|.
z2
.|
^2
)
)
*
(
-
(
(
Im3
z
)
/
(
|.
z
.|
^2
)
)
)
)
+
(
(
-
(
(
Im3
z2
)
/
(
|.
z2
.|
^2
)
)
)
*
(
Rea
(
z
"
)
)
)
)
+
(
(
Im1
(
z2
"
)
)
*
(
Im2
(
z
"
)
)
)
)
-
(
(
Im2
(
z2
"
)
)
*
(
Im1
(
z
"
)
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K108
(
(
(
(
(
(
Rea
z2
)
/
(
|.
z2
.|
^2
)
)
*
(
-
(
(
Im3
z
)
/
(
|.
z
.|
^2
)
)
)
)
+
(
(
-
(
(
Im3
z2
)
/
(
|.
z2
.|
^2
)
)
)
*
(
Rea
(
z
"
)
)
)
)
+
(
(
Im1
(
z2
"
)
)
*
(
Im2
(
z
"
)
)
)
)
,
K110
(
(
(
Im2
(
z2
"
)
)
*
(
Im1
(
z
"
)
)
)
)) is
set
(
-
(
(
Im3
z2
)
/
(
|.
z2
.|
^2
)
)
)
*
(
(
Rea
z
)
/
(
|.
z
.|
^2
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
(
Rea
z2
)
/
(
|.
z2
.|
^2
)
)
*
(
-
(
(
Im3
z
)
/
(
|.
z
.|
^2
)
)
)
)
+
(
(
-
(
(
Im3
z2
)
/
(
|.
z2
.|
^2
)
)
)
*
(
(
Rea
z
)
/
(
|.
z
.|
^2
)
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
(
(
Rea
z2
)
/
(
|.
z2
.|
^2
)
)
*
(
-
(
(
Im3
z
)
/
(
|.
z
.|
^2
)
)
)
)
+
(
(
-
(
(
Im3
z2
)
/
(
|.
z2
.|
^2
)
)
)
*
(
(
Rea
z
)
/
(
|.
z
.|
^2
)
)
)
)
+
(
(
Im1
(
z2
"
)
)
*
(
Im2
(
z
"
)
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
(
(
(
Rea
z2
)
/
(
|.
z2
.|
^2
)
)
*
(
-
(
(
Im3
z
)
/
(
|.
z
.|
^2
)
)
)
)
+
(
(
-
(
(
Im3
z2
)
/
(
|.
z2
.|
^2
)
)
)
*
(
(
Rea
z
)
/
(
|.
z
.|
^2
)
)
)
)
+
(
(
Im1
(
z2
"
)
)
*
(
Im2
(
z
"
)
)
)
)
-
(
(
Im2
(
z2
"
)
)
*
(
Im1
(
z
"
)
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K108
(
(
(
(
(
(
Rea
z2
)
/
(
|.
z2
.|
^2
)
)
*
(
-
(
(
Im3
z
)
/
(
|.
z
.|
^2
)
)
)
)
+
(
(
-
(
(
Im3
z2
)
/
(
|.
z2
.|
^2
)
)
)
*
(
(
Rea
z
)
/
(
|.
z
.|
^2
)
)
)
)
+
(
(
Im1
(
z2
"
)
)
*
(
Im2
(
z
"
)
)
)
)
,
K110
(
(
(
Im2
(
z2
"
)
)
*
(
Im1
(
z
"
)
)
)
)) is
set
(
-
(
(
Im1
z2
)
/
(
|.
z2
.|
^2
)
)
)
*
(
Im2
(
z
"
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
(
(
Rea
z2
)
/
(
|.
z2
.|
^2
)
)
*
(
-
(
(
Im3
z
)
/
(
|.
z
.|
^2
)
)
)
)
+
(
(
-
(
(
Im3
z2
)
/
(
|.
z2
.|
^2
)
)
)
*
(
(
Rea
z
)
/
(
|.
z
.|
^2
)
)
)
)
+
(
(
-
(
(
Im1
z2
)
/
(
|.
z2
.|
^2
)
)
)
*
(
Im2
(
z
"
)
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
(
(
(
Rea
z2
)
/
(
|.
z2
.|
^2
)
)
*
(
-
(
(
Im3
z
)
/
(
|.
z
.|
^2
)
)
)
)
+
(
(
-
(
(
Im3
z2
)
/
(
|.
z2
.|
^2
)
)
)
*
(
(
Rea
z
)
/
(
|.
z
.|
^2
)
)
)
)
+
(
(
-
(
(
Im1
z2
)
/
(
|.
z2
.|
^2
)
)
)
*
(
Im2
(
z
"
)
)
)
)
-
(
(
Im2
(
z2
"
)
)
*
(
Im1
(
z
"
)
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K108
(
(
(
(
(
(
Rea
z2
)
/
(
|.
z2
.|
^2
)
)
*
(
-
(
(
Im3
z
)
/
(
|.
z
.|
^2
)
)
)
)
+
(
(
-
(
(
Im3
z2
)
/
(
|.
z2
.|
^2
)
)
)
*
(
(
Rea
z
)
/
(
|.
z
.|
^2
)
)
)
)
+
(
(
-
(
(
Im1
z2
)
/
(
|.
z2
.|
^2
)
)
)
*
(
Im2
(
z
"
)
)
)
)
,
K110
(
(
(
Im2
(
z2
"
)
)
*
(
Im1
(
z
"
)
)
)
)) is
set
(
-
(
(
Im1
z2
)
/
(
|.
z2
.|
^2
)
)
)
*
(
-
(
(
Im2
z
)
/
(
|.
z
.|
^2
)
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
(
(
Rea
z2
)
/
(
|.
z2
.|
^2
)
)
*
(
-
(
(
Im3
z
)
/
(
|.
z
.|
^2
)
)
)
)
+
(
(
-
(
(
Im3
z2
)
/
(
|.
z2
.|
^2
)
)
)
*
(
(
Rea
z
)
/
(
|.
z
.|
^2
)
)
)
)
+
(
(
-
(
(
Im1
z2
)
/
(
|.
z2
.|
^2
)
)
)
*
(
-
(
(
Im2
z
)
/
(
|.
z
.|
^2
)
)
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
(
(
(
Rea
z2
)
/
(
|.
z2
.|
^2
)
)
*
(
-
(
(
Im3
z
)
/
(
|.
z
.|
^2
)
)
)
)
+
(
(
-
(
(
Im3
z2
)
/
(
|.
z2
.|
^2
)
)
)
*
(
(
Rea
z
)
/
(
|.
z
.|
^2
)
)
)
)
+
(
(
-
(
(
Im1
z2
)
/
(
|.
z2
.|
^2
)
)
)
*
(
-
(
(
Im2
z
)
/
(
|.
z
.|
^2
)
)
)
)
)
-
(
(
Im2
(
z2
"
)
)
*
(
Im1
(
z
"
)
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K108
(
(
(
(
(
(
Rea
z2
)
/
(
|.
z2
.|
^2
)
)
*
(
-
(
(
Im3
z
)
/
(
|.
z
.|
^2
)
)
)
)
+
(
(
-
(
(
Im3
z2
)
/
(
|.
z2
.|
^2
)
)
)
*
(
(
Rea
z
)
/
(
|.
z
.|
^2
)
)
)
)
+
(
(
-
(
(
Im1
z2
)
/
(
|.
z2
.|
^2
)
)
)
*
(
-
(
(
Im2
z
)
/
(
|.
z
.|
^2
)
)
)
)
)
,
K110
(
(
(
Im2
(
z2
"
)
)
*
(
Im1
(
z
"
)
)
)
)) is
set
(
-
(
(
Im2
z2
)
/
(
|.
z2
.|
^2
)
)
)
*
(
Im1
(
z
"
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
(
(
(
Rea
z2
)
/
(
|.
z2
.|
^2
)
)
*
(
-
(
(
Im3
z
)
/
(
|.
z
.|
^2
)
)
)
)
+
(
(
-
(
(
Im3
z2
)
/
(
|.
z2
.|
^2
)
)
)
*
(
(
Rea
z
)
/
(
|.
z
.|
^2
)
)
)
)
+
(
(
-
(
(
Im1
z2
)
/
(
|.
z2
.|
^2
)
)
)
*
(
-
(
(
Im2
z
)
/
(
|.
z
.|
^2
)
)
)
)
)
-
(
(
-
(
(
Im2
z2
)
/
(
|.
z2
.|
^2
)
)
)
*
(
Im1
(
z
"
)
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K110
(
(
(
-
(
(
Im2
z2
)
/
(
|.
z2
.|
^2
)
)
)
*
(
Im1
(
z
"
)
)
)
) is
V28
()
set
K108
(
(
(
(
(
(
Rea
z2
)
/
(
|.
z2
.|
^2
)
)
*
(
-
(
(
Im3
z
)
/
(
|.
z
.|
^2
)
)
)
)
+
(
(
-
(
(
Im3
z2
)
/
(
|.
z2
.|
^2
)
)
)
*
(
(
Rea
z
)
/
(
|.
z
.|
^2
)
)
)
)
+
(
(
-
(
(
Im1
z2
)
/
(
|.
z2
.|
^2
)
)
)
*
(
-
(
(
Im2
z
)
/
(
|.
z
.|
^2
)
)
)
)
)
,
K110
(
(
(
-
(
(
Im2
z2
)
/
(
|.
z2
.|
^2
)
)
)
*
(
Im1
(
z
"
)
)
)
)) is
set
(
-
(
(
Im2
z2
)
/
(
|.
z2
.|
^2
)
)
)
*
(
-
(
(
Im1
z
)
/
(
|.
z
.|
^2
)
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
(
(
(
Rea
z2
)
/
(
|.
z2
.|
^2
)
)
*
(
-
(
(
Im3
z
)
/
(
|.
z
.|
^2
)
)
)
)
+
(
(
-
(
(
Im3
z2
)
/
(
|.
z2
.|
^2
)
)
)
*
(
(
Rea
z
)
/
(
|.
z
.|
^2
)
)
)
)
+
(
(
-
(
(
Im1
z2
)
/
(
|.
z2
.|
^2
)
)
)
*
(
-
(
(
Im2
z
)
/
(
|.
z
.|
^2
)
)
)
)
)
-
(
(
-
(
(
Im2
z2
)
/
(
|.
z2
.|
^2
)
)
)
*
(
-
(
(
Im1
z
)
/
(
|.
z
.|
^2
)
)
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K110
(
(
(
-
(
(
Im2
z2
)
/
(
|.
z2
.|
^2
)
)
)
*
(
-
(
(
Im1
z
)
/
(
|.
z
.|
^2
)
)
)
)
) is
V28
()
set
K108
(
(
(
(
(
(
Rea
z2
)
/
(
|.
z2
.|
^2
)
)
*
(
-
(
(
Im3
z
)
/
(
|.
z
.|
^2
)
)
)
)
+
(
(
-
(
(
Im3
z2
)
/
(
|.
z2
.|
^2
)
)
)
*
(
(
Rea
z
)
/
(
|.
z
.|
^2
)
)
)
)
+
(
(
-
(
(
Im1
z2
)
/
(
|.
z2
.|
^2
)
)
)
*
(
-
(
(
Im2
z
)
/
(
|.
z
.|
^2
)
)
)
)
)
,
K110
(
(
(
-
(
(
Im2
z2
)
/
(
|.
z2
.|
^2
)
)
)
*
(
-
(
(
Im1
z
)
/
(
|.
z
.|
^2
)
)
)
)
)) is
set
-
(
Im3
z
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
-
(
Im3
z
)
)
/
(
|.
z
.|
^2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
-
(
Im3
z
)
)
,
K111
(
(
|.
z
.|
^2
)
)) is
set
(
(
Rea
z2
)
/
(
|.
z2
.|
^2
)
)
*
(
(
-
(
Im3
z
)
)
/
(
|.
z
.|
^2
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
Im3
z2
)
/
(
|.
z2
.|
^2
)
)
*
(
(
Rea
z
)
/
(
|.
z
.|
^2
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
(
Rea
z2
)
/
(
|.
z2
.|
^2
)
)
*
(
(
-
(
Im3
z
)
)
/
(
|.
z
.|
^2
)
)
)
-
(
(
(
Im3
z2
)
/
(
|.
z2
.|
^2
)
)
*
(
(
Rea
z
)
/
(
|.
z
.|
^2
)
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K110
(
(
(
(
Im3
z2
)
/
(
|.
z2
.|
^2
)
)
*
(
(
Rea
z
)
/
(
|.
z
.|
^2
)
)
)
) is
V28
()
set
K108
(
(
(
(
Rea
z2
)
/
(
|.
z2
.|
^2
)
)
*
(
(
-
(
Im3
z
)
)
/
(
|.
z
.|
^2
)
)
)
,
K110
(
(
(
(
Im3
z2
)
/
(
|.
z2
.|
^2
)
)
*
(
(
Rea
z
)
/
(
|.
z
.|
^2
)
)
)
)) is
set
(
(
Im1
z2
)
/
(
|.
z2
.|
^2
)
)
*
(
(
Im2
z
)
/
(
|.
z
.|
^2
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
(
(
Rea
z2
)
/
(
|.
z2
.|
^2
)
)
*
(
(
-
(
Im3
z
)
)
/
(
|.
z
.|
^2
)
)
)
-
(
(
(
Im3
z2
)
/
(
|.
z2
.|
^2
)
)
*
(
(
Rea
z
)
/
(
|.
z
.|
^2
)
)
)
)
+
(
(
(
Im1
z2
)
/
(
|.
z2
.|
^2
)
)
*
(
(
Im2
z
)
/
(
|.
z
.|
^2
)
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
Im2
z2
)
/
(
|.
z2
.|
^2
)
)
*
(
(
Im1
z
)
/
(
|.
z
.|
^2
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
(
(
(
Rea
z2
)
/
(
|.
z2
.|
^2
)
)
*
(
(
-
(
Im3
z
)
)
/
(
|.
z
.|
^2
)
)
)
-
(
(
(
Im3
z2
)
/
(
|.
z2
.|
^2
)
)
*
(
(
Rea
z
)
/
(
|.
z
.|
^2
)
)
)
)
+
(
(
(
Im1
z2
)
/
(
|.
z2
.|
^2
)
)
*
(
(
Im2
z
)
/
(
|.
z
.|
^2
)
)
)
)
-
(
(
(
Im2
z2
)
/
(
|.
z2
.|
^2
)
)
*
(
(
Im1
z
)
/
(
|.
z
.|
^2
)
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K110
(
(
(
(
Im2
z2
)
/
(
|.
z2
.|
^2
)
)
*
(
(
Im1
z
)
/
(
|.
z
.|
^2
)
)
)
) is
V28
()
set
K108
(
(
(
(
(
(
Rea
z2
)
/
(
|.
z2
.|
^2
)
)
*
(
(
-
(
Im3
z
)
)
/
(
|.
z
.|
^2
)
)
)
-
(
(
(
Im3
z2
)
/
(
|.
z2
.|
^2
)
)
*
(
(
Rea
z
)
/
(
|.
z
.|
^2
)
)
)
)
+
(
(
(
Im1
z2
)
/
(
|.
z2
.|
^2
)
)
*
(
(
Im2
z
)
/
(
|.
z
.|
^2
)
)
)
)
,
K110
(
(
(
(
Im2
z2
)
/
(
|.
z2
.|
^2
)
)
*
(
(
Im1
z
)
/
(
|.
z
.|
^2
)
)
)
)) is
set
(
Rea
z2
)
*
(
-
(
Im3
z
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
Rea
z2
)
*
(
-
(
Im3
z
)
)
)
/
(
(
|.
z2
.|
^2
)
*
(
|.
z
.|
^2
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
(
Rea
z2
)
*
(
-
(
Im3
z
)
)
)
,
K111
(
(
(
|.
z2
.|
^2
)
*
(
|.
z
.|
^2
)
)
)) is
set
(
(
(
Rea
z2
)
*
(
-
(
Im3
z
)
)
)
/
(
(
|.
z2
.|
^2
)
*
(
|.
z
.|
^2
)
)
)
-
(
(
(
Im3
z2
)
/
(
|.
z2
.|
^2
)
)
*
(
(
Rea
z
)
/
(
|.
z
.|
^2
)
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K108
(
(
(
(
Rea
z2
)
*
(
-
(
Im3
z
)
)
)
/
(
(
|.
z2
.|
^2
)
*
(
|.
z
.|
^2
)
)
)
,
K110
(
(
(
(
Im3
z2
)
/
(
|.
z2
.|
^2
)
)
*
(
(
Rea
z
)
/
(
|.
z
.|
^2
)
)
)
)) is
set
(
(
(
(
Rea
z2
)
*
(
-
(
Im3
z
)
)
)
/
(
(
|.
z2
.|
^2
)
*
(
|.
z
.|
^2
)
)
)
-
(
(
(
Im3
z2
)
/
(
|.
z2
.|
^2
)
)
*
(
(
Rea
z
)
/
(
|.
z
.|
^2
)
)
)
)
+
(
(
(
Im1
z2
)
/
(
|.
z2
.|
^2
)
)
*
(
(
Im2
z
)
/
(
|.
z
.|
^2
)
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
(
(
(
Rea
z2
)
*
(
-
(
Im3
z
)
)
)
/
(
(
|.
z2
.|
^2
)
*
(
|.
z
.|
^2
)
)
)
-
(
(
(
Im3
z2
)
/
(
|.
z2
.|
^2
)
)
*
(
(
Rea
z
)
/
(
|.
z
.|
^2
)
)
)
)
+
(
(
(
Im1
z2
)
/
(
|.
z2
.|
^2
)
)
*
(
(
Im2
z
)
/
(
|.
z
.|
^2
)
)
)
)
-
(
(
(
Im2
z2
)
/
(
|.
z2
.|
^2
)
)
*
(
(
Im1
z
)
/
(
|.
z
.|
^2
)
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K108
(
(
(
(
(
(
Rea
z2
)
*
(
-
(
Im3
z
)
)
)
/
(
(
|.
z2
.|
^2
)
*
(
|.
z
.|
^2
)
)
)
-
(
(
(
Im3
z2
)
/
(
|.
z2
.|
^2
)
)
*
(
(
Rea
z
)
/
(
|.
z
.|
^2
)
)
)
)
+
(
(
(
Im1
z2
)
/
(
|.
z2
.|
^2
)
)
*
(
(
Im2
z
)
/
(
|.
z
.|
^2
)
)
)
)
,
K110
(
(
(
(
Im2
z2
)
/
(
|.
z2
.|
^2
)
)
*
(
(
Im1
z
)
/
(
|.
z
.|
^2
)
)
)
)) is
set
(
Im3
z2
)
*
(
Rea
z
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
Im3
z2
)
*
(
Rea
z
)
)
/
(
(
|.
z2
.|
^2
)
*
(
|.
z
.|
^2
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
(
Im3
z2
)
*
(
Rea
z
)
)
,
K111
(
(
(
|.
z2
.|
^2
)
*
(
|.
z
.|
^2
)
)
)) is
set
(
(
(
Rea
z2
)
*
(
-
(
Im3
z
)
)
)
/
(
(
|.
z2
.|
^2
)
*
(
|.
z
.|
^2
)
)
)
-
(
(
(
Im3
z2
)
*
(
Rea
z
)
)
/
(
(
|.
z2
.|
^2
)
*
(
|.
z
.|
^2
)
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K110
(
(
(
(
Im3
z2
)
*
(
Rea
z
)
)
/
(
(
|.
z2
.|
^2
)
*
(
|.
z
.|
^2
)
)
)
) is
V28
()
set
K108
(
(
(
(
Rea
z2
)
*
(
-
(
Im3
z
)
)
)
/
(
(
|.
z2
.|
^2
)
*
(
|.
z
.|
^2
)
)
)
,
K110
(
(
(
(
Im3
z2
)
*
(
Rea
z
)
)
/
(
(
|.
z2
.|
^2
)
*
(
|.
z
.|
^2
)
)
)
)) is
set
(
(
(
(
Rea
z2
)
*
(
-
(
Im3
z
)
)
)
/
(
(
|.
z2
.|
^2
)
*
(
|.
z
.|
^2
)
)
)
-
(
(
(
Im3
z2
)
*
(
Rea
z
)
)
/
(
(
|.
z2
.|
^2
)
*
(
|.
z
.|
^2
)
)
)
)
+
(
(
(
Im1
z2
)
/
(
|.
z2
.|
^2
)
)
*
(
(
Im2
z
)
/
(
|.
z
.|
^2
)
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
(
(
(
Rea
z2
)
*
(
-
(
Im3
z
)
)
)
/
(
(
|.
z2
.|
^2
)
*
(
|.
z
.|
^2
)
)
)
-
(
(
(
Im3
z2
)
*
(
Rea
z
)
)
/
(
(
|.
z2
.|
^2
)
*
(
|.
z
.|
^2
)
)
)
)
+
(
(
(
Im1
z2
)
/
(
|.
z2
.|
^2
)
)
*
(
(
Im2
z
)
/
(
|.
z
.|
^2
)
)
)
)
-
(
(
(
Im2
z2
)
/
(
|.
z2
.|
^2
)
)
*
(
(
Im1
z
)
/
(
|.
z
.|
^2
)
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K108
(
(
(
(
(
(
Rea
z2
)
*
(
-
(
Im3
z
)
)
)
/
(
(
|.
z2
.|
^2
)
*
(
|.
z
.|
^2
)
)
)
-
(
(
(
Im3
z2
)
*
(
Rea
z
)
)
/
(
(
|.
z2
.|
^2
)
*
(
|.
z
.|
^2
)
)
)
)
+
(
(
(
Im1
z2
)
/
(
|.
z2
.|
^2
)
)
*
(
(
Im2
z
)
/
(
|.
z
.|
^2
)
)
)
)
,
K110
(
(
(
(
Im2
z2
)
/
(
|.
z2
.|
^2
)
)
*
(
(
Im1
z
)
/
(
|.
z
.|
^2
)
)
)
)) is
set
(
Im1
z2
)
*
(
Im2
z
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
Im1
z2
)
*
(
Im2
z
)
)
/
(
(
|.
z2
.|
^2
)
*
(
|.
z
.|
^2
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
(
Im1
z2
)
*
(
Im2
z
)
)
,
K111
(
(
(
|.
z2
.|
^2
)
*
(
|.
z
.|
^2
)
)
)) is
set
(
(
(
(
Rea
z2
)
*
(
-
(
Im3
z
)
)
)
/
(
(
|.
z2
.|
^2
)
*
(
|.
z
.|
^2
)
)
)
-
(
(
(
Im3
z2
)
*
(
Rea
z
)
)
/
(
(
|.
z2
.|
^2
)
*
(
|.
z
.|
^2
)
)
)
)
+
(
(
(
Im1
z2
)
*
(
Im2
z
)
)
/
(
(
|.
z2
.|
^2
)
*
(
|.
z
.|
^2
)
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
(
(
(
Rea
z2
)
*
(
-
(
Im3
z
)
)
)
/
(
(
|.
z2
.|
^2
)
*
(
|.
z
.|
^2
)
)
)
-
(
(
(
Im3
z2
)
*
(
Rea
z
)
)
/
(
(
|.
z2
.|
^2
)
*
(
|.
z
.|
^2
)
)
)
)
+
(
(
(
Im1
z2
)
*
(
Im2
z
)
)
/
(
(
|.
z2
.|
^2
)
*
(
|.
z
.|
^2
)
)
)
)
-
(
(
(
Im2
z2
)
/
(
|.
z2
.|
^2
)
)
*
(
(
Im1
z
)
/
(
|.
z
.|
^2
)
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K108
(
(
(
(
(
(
Rea
z2
)
*
(
-
(
Im3
z
)
)
)
/
(
(
|.
z2
.|
^2
)
*
(
|.
z
.|
^2
)
)
)
-
(
(
(
Im3
z2
)
*
(
Rea
z
)
)
/
(
(
|.
z2
.|
^2
)
*
(
|.
z
.|
^2
)
)
)
)
+
(
(
(
Im1
z2
)
*
(
Im2
z
)
)
/
(
(
|.
z2
.|
^2
)
*
(
|.
z
.|
^2
)
)
)
)
,
K110
(
(
(
(
Im2
z2
)
/
(
|.
z2
.|
^2
)
)
*
(
(
Im1
z
)
/
(
|.
z
.|
^2
)
)
)
)) is
set
(
(
Rea
z2
)
*
(
-
(
Im3
z
)
)
)
-
(
(
Im3
z2
)
*
(
Rea
z
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K110
(
(
(
Im3
z2
)
*
(
Rea
z
)
)
) is
V28
()
set
K108
(
(
(
Rea
z2
)
*
(
-
(
Im3
z
)
)
)
,
K110
(
(
(
Im3
z2
)
*
(
Rea
z
)
)
)) is
set
(
(
(
Rea
z2
)
*
(
-
(
Im3
z
)
)
)
-
(
(
Im3
z2
)
*
(
Rea
z
)
)
)
+
(
(
Im1
z2
)
*
(
Im2
z
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
(
(
Rea
z2
)
*
(
-
(
Im3
z
)
)
)
-
(
(
Im3
z2
)
*
(
Rea
z
)
)
)
+
(
(
Im1
z2
)
*
(
Im2
z
)
)
)
/
(
(
|.
z2
.|
^2
)
*
(
|.
z
.|
^2
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
(
(
(
Rea
z2
)
*
(
-
(
Im3
z
)
)
)
-
(
(
Im3
z2
)
*
(
Rea
z
)
)
)
+
(
(
Im1
z2
)
*
(
Im2
z
)
)
)
,
K111
(
(
(
|.
z2
.|
^2
)
*
(
|.
z
.|
^2
)
)
)) is
set
(
Im2
z2
)
*
(
Im1
z
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
Im2
z2
)
*
(
Im1
z
)
)
/
(
(
|.
z2
.|
^2
)
*
(
|.
z
.|
^2
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
(
Im2
z2
)
*
(
Im1
z
)
)
,
K111
(
(
(
|.
z2
.|
^2
)
*
(
|.
z
.|
^2
)
)
)) is
set
(
(
(
(
(
Rea
z2
)
*
(
-
(
Im3
z
)
)
)
-
(
(
Im3
z2
)
*
(
Rea
z
)
)
)
+
(
(
Im1
z2
)
*
(
Im2
z
)
)
)
/
(
(
|.
z2
.|
^2
)
*
(
|.
z
.|
^2
)
)
)
-
(
(
(
Im2
z2
)
*
(
Im1
z
)
)
/
(
(
|.
z2
.|
^2
)
*
(
|.
z
.|
^2
)
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K110
(
(
(
(
Im2
z2
)
*
(
Im1
z
)
)
/
(
(
|.
z2
.|
^2
)
*
(
|.
z
.|
^2
)
)
)
) is
V28
()
set
K108
(
(
(
(
(
(
Rea
z2
)
*
(
-
(
Im3
z
)
)
)
-
(
(
Im3
z2
)
*
(
Rea
z
)
)
)
+
(
(
Im1
z2
)
*
(
Im2
z
)
)
)
/
(
(
|.
z2
.|
^2
)
*
(
|.
z
.|
^2
)
)
)
,
K110
(
(
(
(
Im2
z2
)
*
(
Im1
z
)
)
/
(
(
|.
z2
.|
^2
)
*
(
|.
z
.|
^2
)
)
)
)) is
set
(
(
(
(
Rea
z2
)
*
(
-
(
Im3
z
)
)
)
-
(
(
Im3
z2
)
*
(
Rea
z
)
)
)
+
(
(
Im1
z2
)
*
(
Im2
z
)
)
)
-
(
(
Im2
z2
)
*
(
Im1
z
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K110
(
(
(
Im2
z2
)
*
(
Im1
z
)
)
) is
V28
()
set
K108
(
(
(
(
(
Rea
z2
)
*
(
-
(
Im3
z
)
)
)
-
(
(
Im3
z2
)
*
(
Rea
z
)
)
)
+
(
(
Im1
z2
)
*
(
Im2
z
)
)
)
,
K110
(
(
(
Im2
z2
)
*
(
Im1
z
)
)
)) is
set
(
(
(
(
(
Rea
z2
)
*
(
-
(
Im3
z
)
)
)
-
(
(
Im3
z2
)
*
(
Rea
z
)
)
)
+
(
(
Im1
z2
)
*
(
Im2
z
)
)
)
-
(
(
Im2
z2
)
*
(
Im1
z
)
)
)
/
(
(
|.
z2
.|
*
|.
z
.|
)
^2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
(
(
(
(
Rea
z2
)
*
(
-
(
Im3
z
)
)
)
-
(
(
Im3
z2
)
*
(
Rea
z
)
)
)
+
(
(
Im1
z2
)
*
(
Im2
z
)
)
)
-
(
(
Im2
z2
)
*
(
Im1
z
)
)
)
,
K111
(
(
(
|.
z2
.|
*
|.
z
.|
)
^2
)
)) is
set
(
Rea
(
z2
"
)
)
*
(
Rea
(
z
"
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im1
(
z2
"
)
)
*
(
Im1
(
z
"
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
Rea
(
z2
"
)
)
*
(
Rea
(
z
"
)
)
)
-
(
(
Im1
(
z2
"
)
)
*
(
Im1
(
z
"
)
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K110
(
(
(
Im1
(
z2
"
)
)
*
(
Im1
(
z
"
)
)
)
) is
V28
()
set
K108
(
(
(
Rea
(
z2
"
)
)
*
(
Rea
(
z
"
)
)
)
,
K110
(
(
(
Im1
(
z2
"
)
)
*
(
Im1
(
z
"
)
)
)
)) is
set
(
Im2
(
z2
"
)
)
*
(
Im2
(
z
"
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
(
Rea
(
z2
"
)
)
*
(
Rea
(
z
"
)
)
)
-
(
(
Im1
(
z2
"
)
)
*
(
Im1
(
z
"
)
)
)
)
-
(
(
Im2
(
z2
"
)
)
*
(
Im2
(
z
"
)
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K110
(
(
(
Im2
(
z2
"
)
)
*
(
Im2
(
z
"
)
)
)
) is
V28
()
set
K108
(
(
(
(
Rea
(
z2
"
)
)
*
(
Rea
(
z
"
)
)
)
-
(
(
Im1
(
z2
"
)
)
*
(
Im1
(
z
"
)
)
)
)
,
K110
(
(
(
Im2
(
z2
"
)
)
*
(
Im2
(
z
"
)
)
)
)) is
set
(
Im3
(
z2
"
)
)
*
(
Im3
(
z
"
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
(
(
Rea
(
z2
"
)
)
*
(
Rea
(
z
"
)
)
)
-
(
(
Im1
(
z2
"
)
)
*
(
Im1
(
z
"
)
)
)
)
-
(
(
Im2
(
z2
"
)
)
*
(
Im2
(
z
"
)
)
)
)
-
(
(
Im3
(
z2
"
)
)
*
(
Im3
(
z
"
)
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K110
(
(
(
Im3
(
z2
"
)
)
*
(
Im3
(
z
"
)
)
)
) is
V28
()
set
K108
(
(
(
(
(
Rea
(
z2
"
)
)
*
(
Rea
(
z
"
)
)
)
-
(
(
Im1
(
z2
"
)
)
*
(
Im1
(
z
"
)
)
)
)
-
(
(
Im2
(
z2
"
)
)
*
(
Im2
(
z
"
)
)
)
)
,
K110
(
(
(
Im3
(
z2
"
)
)
*
(
Im3
(
z
"
)
)
)
)) is
set
(
(
Rea
z2
)
/
(
|.
z2
.|
^2
)
)
*
(
Rea
(
z
"
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
(
Rea
z2
)
/
(
|.
z2
.|
^2
)
)
*
(
Rea
(
z
"
)
)
)
-
(
(
Im1
(
z2
"
)
)
*
(
Im1
(
z
"
)
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K108
(
(
(
(
Rea
z2
)
/
(
|.
z2
.|
^2
)
)
*
(
Rea
(
z
"
)
)
)
,
K110
(
(
(
Im1
(
z2
"
)
)
*
(
Im1
(
z
"
)
)
)
)) is
set
(
(
(
(
Rea
z2
)
/
(
|.
z2
.|
^2
)
)
*
(
Rea
(
z
"
)
)
)
-
(
(
Im1
(
z2
"
)
)
*
(
Im1
(
z
"
)
)
)
)
-
(
(
Im2
(
z2
"
)
)
*
(
Im2
(
z
"
)
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K108
(
(
(
(
(
Rea
z2
)
/
(
|.
z2
.|
^2
)
)
*
(
Rea
(
z
"
)
)
)
-
(
(
Im1
(
z2
"
)
)
*
(
Im1
(
z
"
)
)
)
)
,
K110
(
(
(
Im2
(
z2
"
)
)
*
(
Im2
(
z
"
)
)
)
)) is
set
(
(
(
(
(
Rea
z2
)
/
(
|.
z2
.|
^2
)
)
*
(
Rea
(
z
"
)
)
)
-
(
(
Im1
(
z2
"
)
)
*
(
Im1
(
z
"
)
)
)
)
-
(
(
Im2
(
z2
"
)
)
*
(
Im2
(
z
"
)
)
)
)
-
(
(
Im3
(
z2
"
)
)
*
(
Im3
(
z
"
)
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K108
(
(
(
(
(
(
Rea
z2
)
/
(
|.
z2
.|
^2
)
)
*
(
Rea
(
z
"
)
)
)
-
(
(
Im1
(
z2
"
)
)
*
(
Im1
(
z
"
)
)
)
)
-
(
(
Im2
(
z2
"
)
)
*
(
Im2
(
z
"
)
)
)
)
,
K110
(
(
(
Im3
(
z2
"
)
)
*
(
Im3
(
z
"
)
)
)
)) is
set
(
(
Rea
z2
)
/
(
|.
z2
.|
^2
)
)
*
(
(
Rea
z
)
/
(
|.
z
.|
^2
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
(
Rea
z2
)
/
(
|.
z2
.|
^2
)
)
*
(
(
Rea
z
)
/
(
|.
z
.|
^2
)
)
)
-
(
(
Im1
(
z2
"
)
)
*
(
Im1
(
z
"
)
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K108
(
(
(
(
Rea
z2
)
/
(
|.
z2
.|
^2
)
)
*
(
(
Rea
z
)
/
(
|.
z
.|
^2
)
)
)
,
K110
(
(
(
Im1
(
z2
"
)
)
*
(
Im1
(
z
"
)
)
)
)) is
set
(
(
(
(
Rea
z2
)
/
(
|.
z2
.|
^2
)
)
*
(
(
Rea
z
)
/
(
|.
z
.|
^2
)
)
)
-
(
(
Im1
(
z2
"
)
)
*
(
Im1
(
z
"
)
)
)
)
-
(
(
Im2
(
z2
"
)
)
*
(
Im2
(
z
"
)
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K108
(
(
(
(
(
Rea
z2
)
/
(
|.
z2
.|
^2
)
)
*
(
(
Rea
z
)
/
(
|.
z
.|
^2
)
)
)
-
(
(
Im1
(
z2
"
)
)
*
(
Im1
(
z
"
)
)
)
)
,
K110
(
(
(
Im2
(
z2
"
)
)
*
(
Im2
(
z
"
)
)
)
)) is
set
(
(
(
(
(
Rea
z2
)
/
(
|.
z2
.|
^2
)
)
*
(
(
Rea
z
)
/
(
|.
z
.|
^2
)
)
)
-
(
(
Im1
(
z2
"
)
)
*
(
Im1
(
z
"
)
)
)
)
-
(
(
Im2
(
z2
"
)
)
*
(
Im2
(
z
"
)
)
)
)
-
(
(
Im3
(
z2
"
)
)
*
(
Im3
(
z
"
)
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K108
(
(
(
(
(
(
Rea
z2
)
/
(
|.
z2
.|
^2
)
)
*
(
(
Rea
z
)
/
(
|.
z
.|
^2
)
)
)
-
(
(
Im1
(
z2
"
)
)
*
(
Im1
(
z
"
)
)
)
)
-
(
(
Im2
(
z2
"
)
)
*
(
Im2
(
z
"
)
)
)
)
,
K110
(
(
(
Im3
(
z2
"
)
)
*
(
Im3
(
z
"
)
)
)
)) is
set
(
-
(
(
Im1
z2
)
/
(
|.
z2
.|
^2
)
)
)
*
(
Im1
(
z
"
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
(
Rea
z2
)
/
(
|.
z2
.|
^2
)
)
*
(
(
Rea
z
)
/
(
|.
z
.|
^2
)
)
)
-
(
(
-
(
(
Im1
z2
)
/
(
|.
z2
.|
^2
)
)
)
*
(
Im1
(
z
"
)
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K110
(
(
(
-
(
(
Im1
z2
)
/
(
|.
z2
.|
^2
)
)
)
*
(
Im1
(
z
"
)
)
)
) is
V28
()
set
K108
(
(
(
(
Rea
z2
)
/
(
|.
z2
.|
^2
)
)
*
(
(
Rea
z
)
/
(
|.
z
.|
^2
)
)
)
,
K110
(
(
(
-
(
(
Im1
z2
)
/
(
|.
z2
.|
^2
)
)
)
*
(
Im1
(
z
"
)
)
)
)) is
set
(
(
(
(
Rea
z2
)
/
(
|.
z2
.|
^2
)
)
*
(
(
Rea
z
)
/
(
|.
z
.|
^2
)
)
)
-
(
(
-
(
(
Im1
z2
)
/
(
|.
z2
.|
^2
)
)
)
*
(
Im1
(
z
"
)
)
)
)
-
(
(
Im2
(
z2
"
)
)
*
(
Im2
(
z
"
)
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K108
(
(
(
(
(
Rea
z2
)
/
(
|.
z2
.|
^2
)
)
*
(
(
Rea
z
)
/
(
|.
z
.|
^2
)
)
)
-
(
(
-
(
(
Im1
z2
)
/
(
|.
z2
.|
^2
)
)
)
*
(
Im1
(
z
"
)
)
)
)
,
K110
(
(
(
Im2
(
z2
"
)
)
*
(
Im2
(
z
"
)
)
)
)) is
set
(
(
(
(
(
Rea
z2
)
/
(
|.
z2
.|
^2
)
)
*
(
(
Rea
z
)
/
(
|.
z
.|
^2
)
)
)
-
(
(
-
(
(
Im1
z2
)
/
(
|.
z2
.|
^2
)
)
)
*
(
Im1
(
z
"
)
)
)
)
-
(
(
Im2
(
z2
"
)
)
*
(
Im2
(
z
"
)
)
)
)
-
(
(
Im3
(
z2
"
)
)
*
(
Im3
(
z
"
)
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K108
(
(
(
(
(
(
Rea
z2
)
/
(
|.
z2
.|
^2
)
)
*
(
(
Rea
z
)
/
(
|.
z
.|
^2
)
)
)
-
(
(
-
(
(
Im1
z2
)
/
(
|.
z2
.|
^2
)
)
)
*
(
Im1
(
z
"
)
)
)
)
-
(
(
Im2
(
z2
"
)
)
*
(
Im2
(
z
"
)
)
)
)
,
K110
(
(
(
Im3
(
z2
"
)
)
*
(
Im3
(
z
"
)
)
)
)) is
set
(
-
(
(
Im1
z2
)
/
(
|.
z2
.|
^2
)
)
)
*
(
-
(
(
Im1
z
)
/
(
|.
z
.|
^2
)
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
(
Rea
z2
)
/
(
|.
z2
.|
^2
)
)
*
(
(
Rea
z
)
/
(
|.
z
.|
^2
)
)
)
-
(
(
-
(
(
Im1
z2
)
/
(
|.
z2
.|
^2
)
)
)
*
(
-
(
(
Im1
z
)
/
(
|.
z
.|
^2
)
)
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K110
(
(
(
-
(
(
Im1
z2
)
/
(
|.
z2
.|
^2
)
)
)
*
(
-
(
(
Im1
z
)
/
(
|.
z
.|
^2
)
)
)
)
) is
V28
()
set
K108
(
(
(
(
Rea
z2
)
/
(
|.
z2
.|
^2
)
)
*
(
(
Rea
z
)
/
(
|.
z
.|
^2
)
)
)
,
K110
(
(
(
-
(
(
Im1
z2
)
/
(
|.
z2
.|
^2
)
)
)
*
(
-
(
(
Im1
z
)
/
(
|.
z
.|
^2
)
)
)
)
)) is
set
(
(
(
(
Rea
z2
)
/
(
|.
z2
.|
^2
)
)
*
(
(
Rea
z
)
/
(
|.
z
.|
^2
)
)
)
-
(
(
-
(
(
Im1
z2
)
/
(
|.
z2
.|
^2
)
)
)
*
(
-
(
(
Im1
z
)
/
(
|.
z
.|
^2
)
)
)
)
)
-
(
(
Im2
(
z2
"
)
)
*
(
Im2
(
z
"
)
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K108
(
(
(
(
(
Rea
z2
)
/
(
|.
z2
.|
^2
)
)
*
(
(
Rea
z
)
/
(
|.
z
.|
^2
)
)
)
-
(
(
-
(
(
Im1
z2
)
/
(
|.
z2
.|
^2
)
)
)
*
(
-
(
(
Im1
z
)
/
(
|.
z
.|
^2
)
)
)
)
)
,
K110
(
(
(
Im2
(
z2
"
)
)
*
(
Im2
(
z
"
)
)
)
)) is
set
(
(
(
(
(
Rea
z2
)
/
(
|.
z2
.|
^2
)
)
*
(
(
Rea
z
)
/
(
|.
z
.|
^2
)
)
)
-
(
(
-
(
(
Im1
z2
)
/
(
|.
z2
.|
^2
)
)
)
*
(
-
(
(
Im1
z
)
/
(
|.
z
.|
^2
)
)
)
)
)
-
(
(
Im2
(
z2
"
)
)
*
(
Im2
(
z
"
)
)
)
)
-
(
(
Im3
(
z2
"
)
)
*
(
Im3
(
z
"
)
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K108
(
(
(
(
(
(
Rea
z2
)
/
(
|.
z2
.|
^2
)
)
*
(
(
Rea
z
)
/
(
|.
z
.|
^2
)
)
)
-
(
(
-
(
(
Im1
z2
)
/
(
|.
z2
.|
^2
)
)
)
*
(
-
(
(
Im1
z
)
/
(
|.
z
.|
^2
)
)
)
)
)
-
(
(
Im2
(
z2
"
)
)
*
(
Im2
(
z
"
)
)
)
)
,
K110
(
(
(
Im3
(
z2
"
)
)
*
(
Im3
(
z
"
)
)
)
)) is
set
(
-
(
(
Im2
z2
)
/
(
|.
z2
.|
^2
)
)
)
*
(
Im2
(
z
"
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
(
(
Rea
z2
)
/
(
|.
z2
.|
^2
)
)
*
(
(
Rea
z
)
/
(
|.
z
.|
^2
)
)
)
-
(
(
-
(
(
Im1
z2
)
/
(
|.
z2
.|
^2
)
)
)
*
(
-
(
(
Im1
z
)
/
(
|.
z
.|
^2
)
)
)
)
)
-
(
(
-
(
(
Im2
z2
)
/
(
|.
z2
.|
^2
)
)
)
*
(
Im2
(
z
"
)
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K110
(
(
(
-
(
(
Im2
z2
)
/
(
|.
z2
.|
^2
)
)
)
*
(
Im2
(
z
"
)
)
)
) is
V28
()
set
K108
(
(
(
(
(
Rea
z2
)
/
(
|.
z2
.|
^2
)
)
*
(
(
Rea
z
)
/
(
|.
z
.|
^2
)
)
)
-
(
(
-
(
(
Im1
z2
)
/
(
|.
z2
.|
^2
)
)
)
*
(
-
(
(
Im1
z
)
/
(
|.
z
.|
^2
)
)
)
)
)
,
K110
(
(
(
-
(
(
Im2
z2
)
/
(
|.
z2
.|
^2
)
)
)
*
(
Im2
(
z
"
)
)
)
)) is
set
(
(
(
(
(
Rea
z2
)
/
(
|.
z2
.|
^2
)
)
*
(
(
Rea
z
)
/
(
|.
z
.|
^2
)
)
)
-
(
(
-
(
(
Im1
z2
)
/
(
|.
z2
.|
^2
)
)
)
*
(
-
(
(
Im1
z
)
/
(
|.
z
.|
^2
)
)
)
)
)
-
(
(
-
(
(
Im2
z2
)
/
(
|.
z2
.|
^2
)
)
)
*
(
Im2
(
z
"
)
)
)
)
-
(
(
Im3
(
z2
"
)
)
*
(
Im3
(
z
"
)
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K108
(
(
(
(
(
(
Rea
z2
)
/
(
|.
z2
.|
^2
)
)
*
(
(
Rea
z
)
/
(
|.
z
.|
^2
)
)
)
-
(
(
-
(
(
Im1
z2
)
/
(
|.
z2
.|
^2
)
)
)
*
(
-
(
(
Im1
z
)
/
(
|.
z
.|
^2
)
)
)
)
)
-
(
(
-
(
(
Im2
z2
)
/
(
|.
z2
.|
^2
)
)
)
*
(
Im2
(
z
"
)
)
)
)
,
K110
(
(
(
Im3
(
z2
"
)
)
*
(
Im3
(
z
"
)
)
)
)) is
set
(
-
(
(
Im2
z2
)
/
(
|.
z2
.|
^2
)
)
)
*
(
-
(
(
Im2
z
)
/
(
|.
z
.|
^2
)
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
(
(
Rea
z2
)
/
(
|.
z2
.|
^2
)
)
*
(
(
Rea
z
)
/
(
|.
z
.|
^2
)
)
)
-
(
(
-
(
(
Im1
z2
)
/
(
|.
z2
.|
^2
)
)
)
*
(
-
(
(
Im1
z
)
/
(
|.
z
.|
^2
)
)
)
)
)
-
(
(
-
(
(
Im2
z2
)
/
(
|.
z2
.|
^2
)
)
)
*
(
-
(
(
Im2
z
)
/
(
|.
z
.|
^2
)
)
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K110
(
(
(
-
(
(
Im2
z2
)
/
(
|.
z2
.|
^2
)
)
)
*
(
-
(
(
Im2
z
)
/
(
|.
z
.|
^2
)
)
)
)
) is
V28
()
set
K108
(
(
(
(
(
Rea
z2
)
/
(
|.
z2
.|
^2
)
)
*
(
(
Rea
z
)
/
(
|.
z
.|
^2
)
)
)
-
(
(
-
(
(
Im1
z2
)
/
(
|.
z2
.|
^2
)
)
)
*
(
-
(
(
Im1
z
)
/
(
|.
z
.|
^2
)
)
)
)
)
,
K110
(
(
(
-
(
(
Im2
z2
)
/
(
|.
z2
.|
^2
)
)
)
*
(
-
(
(
Im2
z
)
/
(
|.
z
.|
^2
)
)
)
)
)) is
set
(
(
(
(
(
Rea
z2
)
/
(
|.
z2
.|
^2
)
)
*
(
(
Rea
z
)
/
(
|.
z
.|
^2
)
)
)
-
(
(
-
(
(
Im1
z2
)
/
(
|.
z2
.|
^2
)
)
)
*
(
-
(
(
Im1
z
)
/
(
|.
z
.|
^2
)
)
)
)
)
-
(
(
-
(
(
Im2
z2
)
/
(
|.
z2
.|
^2
)
)
)
*
(
-
(
(
Im2
z
)
/
(
|.
z
.|
^2
)
)
)
)
)
-
(
(
Im3
(
z2
"
)
)
*
(
Im3
(
z
"
)
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K108
(
(
(
(
(
(
Rea
z2
)
/
(
|.
z2
.|
^2
)
)
*
(
(
Rea
z
)
/
(
|.
z
.|
^2
)
)
)
-
(
(
-
(
(
Im1
z2
)
/
(
|.
z2
.|
^2
)
)
)
*
(
-
(
(
Im1
z
)
/
(
|.
z
.|
^2
)
)
)
)
)
-
(
(
-
(
(
Im2
z2
)
/
(
|.
z2
.|
^2
)
)
)
*
(
-
(
(
Im2
z
)
/
(
|.
z
.|
^2
)
)
)
)
)
,
K110
(
(
(
Im3
(
z2
"
)
)
*
(
Im3
(
z
"
)
)
)
)) is
set
(
-
(
(
Im3
z2
)
/
(
|.
z2
.|
^2
)
)
)
*
(
Im3
(
z
"
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
(
(
(
Rea
z2
)
/
(
|.
z2
.|
^2
)
)
*
(
(
Rea
z
)
/
(
|.
z
.|
^2
)
)
)
-
(
(
-
(
(
Im1
z2
)
/
(
|.
z2
.|
^2
)
)
)
*
(
-
(
(
Im1
z
)
/
(
|.
z
.|
^2
)
)
)
)
)
-
(
(
-
(
(
Im2
z2
)
/
(
|.
z2
.|
^2
)
)
)
*
(
-
(
(
Im2
z
)
/
(
|.
z
.|
^2
)
)
)
)
)
-
(
(
-
(
(
Im3
z2
)
/
(
|.
z2
.|
^2
)
)
)
*
(
Im3
(
z
"
)
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K110
(
(
(
-
(
(
Im3
z2
)
/
(
|.
z2
.|
^2
)
)
)
*
(
Im3
(
z
"
)
)
)
) is
V28
()
set
K108
(
(
(
(
(
(
Rea
z2
)
/
(
|.
z2
.|
^2
)
)
*
(
(
Rea
z
)
/
(
|.
z
.|
^2
)
)
)
-
(
(
-
(
(
Im1
z2
)
/
(
|.
z2
.|
^2
)
)
)
*
(
-
(
(
Im1
z
)
/
(
|.
z
.|
^2
)
)
)
)
)
-
(
(
-
(
(
Im2
z2
)
/
(
|.
z2
.|
^2
)
)
)
*
(
-
(
(
Im2
z
)
/
(
|.
z
.|
^2
)
)
)
)
)
,
K110
(
(
(
-
(
(
Im3
z2
)
/
(
|.
z2
.|
^2
)
)
)
*
(
Im3
(
z
"
)
)
)
)) is
set
(
-
(
(
Im3
z2
)
/
(
|.
z2
.|
^2
)
)
)
*
(
-
(
(
Im3
z
)
/
(
|.
z
.|
^2
)
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
(
(
(
Rea
z2
)
/
(
|.
z2
.|
^2
)
)
*
(
(
Rea
z
)
/
(
|.
z
.|
^2
)
)
)
-
(
(
-
(
(
Im1
z2
)
/
(
|.
z2
.|
^2
)
)
)
*
(
-
(
(
Im1
z
)
/
(
|.
z
.|
^2
)
)
)
)
)
-
(
(
-
(
(
Im2
z2
)
/
(
|.
z2
.|
^2
)
)
)
*
(
-
(
(
Im2
z
)
/
(
|.
z
.|
^2
)
)
)
)
)
-
(
(
-
(
(
Im3
z2
)
/
(
|.
z2
.|
^2
)
)
)
*
(
-
(
(
Im3
z
)
/
(
|.
z
.|
^2
)
)
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K110
(
(
(
-
(
(
Im3
z2
)
/
(
|.
z2
.|
^2
)
)
)
*
(
-
(
(
Im3
z
)
/
(
|.
z
.|
^2
)
)
)
)
) is
V28
()
set
K108
(
(
(
(
(
(
Rea
z2
)
/
(
|.
z2
.|
^2
)
)
*
(
(
Rea
z
)
/
(
|.
z
.|
^2
)
)
)
-
(
(
-
(
(
Im1
z2
)
/
(
|.
z2
.|
^2
)
)
)
*
(
-
(
(
Im1
z
)
/
(
|.
z
.|
^2
)
)
)
)
)
-
(
(
-
(
(
Im2
z2
)
/
(
|.
z2
.|
^2
)
)
)
*
(
-
(
(
Im2
z
)
/
(
|.
z
.|
^2
)
)
)
)
)
,
K110
(
(
(
-
(
(
Im3
z2
)
/
(
|.
z2
.|
^2
)
)
)
*
(
-
(
(
Im3
z
)
/
(
|.
z
.|
^2
)
)
)
)
)) is
set
(
Rea
z2
)
*
(
Rea
z
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
Rea
z2
)
*
(
Rea
z
)
)
/
(
(
|.
z2
.|
^2
)
*
(
|.
z
.|
^2
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
(
Rea
z2
)
*
(
Rea
z
)
)
,
K111
(
(
(
|.
z2
.|
^2
)
*
(
|.
z
.|
^2
)
)
)) is
set
(
(
Im1
z2
)
/
(
|.
z2
.|
^2
)
)
*
(
(
Im1
z
)
/
(
|.
z
.|
^2
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
(
Rea
z2
)
*
(
Rea
z
)
)
/
(
(
|.
z2
.|
^2
)
*
(
|.
z
.|
^2
)
)
)
-
(
(
(
Im1
z2
)
/
(
|.
z2
.|
^2
)
)
*
(
(
Im1
z
)
/
(
|.
z
.|
^2
)
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K110
(
(
(
(
Im1
z2
)
/
(
|.
z2
.|
^2
)
)
*
(
(
Im1
z
)
/
(
|.
z
.|
^2
)
)
)
) is
V28
()
set
K108
(
(
(
(
Rea
z2
)
*
(
Rea
z
)
)
/
(
(
|.
z2
.|
^2
)
*
(
|.
z
.|
^2
)
)
)
,
K110
(
(
(
(
Im1
z2
)
/
(
|.
z2
.|
^2
)
)
*
(
(
Im1
z
)
/
(
|.
z
.|
^2
)
)
)
)) is
set
(
(
Im2
z2
)
/
(
|.
z2
.|
^2
)
)
*
(
(
Im2
z
)
/
(
|.
z
.|
^2
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
(
(
Rea
z2
)
*
(
Rea
z
)
)
/
(
(
|.
z2
.|
^2
)
*
(
|.
z
.|
^2
)
)
)
-
(
(
(
Im1
z2
)
/
(
|.
z2
.|
^2
)
)
*
(
(
Im1
z
)
/
(
|.
z
.|
^2
)
)
)
)
-
(
(
(
Im2
z2
)
/
(
|.
z2
.|
^2
)
)
*
(
(
Im2
z
)
/
(
|.
z
.|
^2
)
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K110
(
(
(
(
Im2
z2
)
/
(
|.
z2
.|
^2
)
)
*
(
(
Im2
z
)
/
(
|.
z
.|
^2
)
)
)
) is
V28
()
set
K108
(
(
(
(
(
Rea
z2
)
*
(
Rea
z
)
)
/
(
(
|.
z2
.|
^2
)
*
(
|.
z
.|
^2
)
)
)
-
(
(
(
Im1
z2
)
/
(
|.
z2
.|
^2
)
)
*
(
(
Im1
z
)
/
(
|.
z
.|
^2
)
)
)
)
,
K110
(
(
(
(
Im2
z2
)
/
(
|.
z2
.|
^2
)
)
*
(
(
Im2
z
)
/
(
|.
z
.|
^2
)
)
)
)) is
set
(
(
Im3
z2
)
/
(
|.
z2
.|
^2
)
)
*
(
(
Im3
z
)
/
(
|.
z
.|
^2
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
(
(
(
Rea
z2
)
*
(
Rea
z
)
)
/
(
(
|.
z2
.|
^2
)
*
(
|.
z
.|
^2
)
)
)
-
(
(
(
Im1
z2
)
/
(
|.
z2
.|
^2
)
)
*
(
(
Im1
z
)
/
(
|.
z
.|
^2
)
)
)
)
-
(
(
(
Im2
z2
)
/
(
|.
z2
.|
^2
)
)
*
(
(
Im2
z
)
/
(
|.
z
.|
^2
)
)
)
)
-
(
(
(
Im3
z2
)
/
(
|.
z2
.|
^2
)
)
*
(
(
Im3
z
)
/
(
|.
z
.|
^2
)
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K110
(
(
(
(
Im3
z2
)
/
(
|.
z2
.|
^2
)
)
*
(
(
Im3
z
)
/
(
|.
z
.|
^2
)
)
)
) is
V28
()
set
K108
(
(
(
(
(
(
Rea
z2
)
*
(
Rea
z
)
)
/
(
(
|.
z2
.|
^2
)
*
(
|.
z
.|
^2
)
)
)
-
(
(
(
Im1
z2
)
/
(
|.
z2
.|
^2
)
)
*
(
(
Im1
z
)
/
(
|.
z
.|
^2
)
)
)
)
-
(
(
(
Im2
z2
)
/
(
|.
z2
.|
^2
)
)
*
(
(
Im2
z
)
/
(
|.
z
.|
^2
)
)
)
)
,
K110
(
(
(
(
Im3
z2
)
/
(
|.
z2
.|
^2
)
)
*
(
(
Im3
z
)
/
(
|.
z
.|
^2
)
)
)
)) is
set
(
Im1
z2
)
*
(
Im1
z
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
Im1
z2
)
*
(
Im1
z
)
)
/
(
(
|.
z2
.|
^2
)
*
(
|.
z
.|
^2
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
(
Im1
z2
)
*
(
Im1
z
)
)
,
K111
(
(
(
|.
z2
.|
^2
)
*
(
|.
z
.|
^2
)
)
)) is
set
(
(
(
Rea
z2
)
*
(
Rea
z
)
)
/
(
(
|.
z2
.|
^2
)
*
(
|.
z
.|
^2
)
)
)
-
(
(
(
Im1
z2
)
*
(
Im1
z
)
)
/
(
(
|.
z2
.|
^2
)
*
(
|.
z
.|
^2
)
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K110
(
(
(
(
Im1
z2
)
*
(
Im1
z
)
)
/
(
(
|.
z2
.|
^2
)
*
(
|.
z
.|
^2
)
)
)
) is
V28
()
set
K108
(
(
(
(
Rea
z2
)
*
(
Rea
z
)
)
/
(
(
|.
z2
.|
^2
)
*
(
|.
z
.|
^2
)
)
)
,
K110
(
(
(
(
Im1
z2
)
*
(
Im1
z
)
)
/
(
(
|.
z2
.|
^2
)
*
(
|.
z
.|
^2
)
)
)
)) is
set
(
(
(
(
Rea
z2
)
*
(
Rea
z
)
)
/
(
(
|.
z2
.|
^2
)
*
(
|.
z
.|
^2
)
)
)
-
(
(
(
Im1
z2
)
*
(
Im1
z
)
)
/
(
(
|.
z2
.|
^2
)
*
(
|.
z
.|
^2
)
)
)
)
-
(
(
(
Im2
z2
)
/
(
|.
z2
.|
^2
)
)
*
(
(
Im2
z
)
/
(
|.
z
.|
^2
)
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K108
(
(
(
(
(
Rea
z2
)
*
(
Rea
z
)
)
/
(
(
|.
z2
.|
^2
)
*
(
|.
z
.|
^2
)
)
)
-
(
(
(
Im1
z2
)
*
(
Im1
z
)
)
/
(
(
|.
z2
.|
^2
)
*
(
|.
z
.|
^2
)
)
)
)
,
K110
(
(
(
(
Im2
z2
)
/
(
|.
z2
.|
^2
)
)
*
(
(
Im2
z
)
/
(
|.
z
.|
^2
)
)
)
)) is
set
(
(
(
(
(
Rea
z2
)
*
(
Rea
z
)
)
/
(
(
|.
z2
.|
^2
)
*
(
|.
z
.|
^2
)
)
)
-
(
(
(
Im1
z2
)
*
(
Im1
z
)
)
/
(
(
|.
z2
.|
^2
)
*
(
|.
z
.|
^2
)
)
)
)
-
(
(
(
Im2
z2
)
/
(
|.
z2
.|
^2
)
)
*
(
(
Im2
z
)
/
(
|.
z
.|
^2
)
)
)
)
-
(
(
(
Im3
z2
)
/
(
|.
z2
.|
^2
)
)
*
(
(
Im3
z
)
/
(
|.
z
.|
^2
)
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K108
(
(
(
(
(
(
Rea
z2
)
*
(
Rea
z
)
)
/
(
(
|.
z2
.|
^2
)
*
(
|.
z
.|
^2
)
)
)
-
(
(
(
Im1
z2
)
*
(
Im1
z
)
)
/
(
(
|.
z2
.|
^2
)
*
(
|.
z
.|
^2
)
)
)
)
-
(
(
(
Im2
z2
)
/
(
|.
z2
.|
^2
)
)
*
(
(
Im2
z
)
/
(
|.
z
.|
^2
)
)
)
)
,
K110
(
(
(
(
Im3
z2
)
/
(
|.
z2
.|
^2
)
)
*
(
(
Im3
z
)
/
(
|.
z
.|
^2
)
)
)
)) is
set
(
Im2
z2
)
*
(
Im2
z
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
Im2
z2
)
*
(
Im2
z
)
)
/
(
(
|.
z2
.|
^2
)
*
(
|.
z
.|
^2
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
(
Im2
z2
)
*
(
Im2
z
)
)
,
K111
(
(
(
|.
z2
.|
^2
)
*
(
|.
z
.|
^2
)
)
)) is
set
(
(
(
(
Rea
z2
)
*
(
Rea
z
)
)
/
(
(
|.
z2
.|
^2
)
*
(
|.
z
.|
^2
)
)
)
-
(
(
(
Im1
z2
)
*
(
Im1
z
)
)
/
(
(
|.
z2
.|
^2
)
*
(
|.
z
.|
^2
)
)
)
)
-
(
(
(
Im2
z2
)
*
(
Im2
z
)
)
/
(
(
|.
z2
.|
^2
)
*
(
|.
z
.|
^2
)
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K110
(
(
(
(
Im2
z2
)
*
(
Im2
z
)
)
/
(
(
|.
z2
.|
^2
)
*
(
|.
z
.|
^2
)
)
)
) is
V28
()
set
K108
(
(
(
(
(
Rea
z2
)
*
(
Rea
z
)
)
/
(
(
|.
z2
.|
^2
)
*
(
|.
z
.|
^2
)
)
)
-
(
(
(
Im1
z2
)
*
(
Im1
z
)
)
/
(
(
|.
z2
.|
^2
)
*
(
|.
z
.|
^2
)
)
)
)
,
K110
(
(
(
(
Im2
z2
)
*
(
Im2
z
)
)
/
(
(
|.
z2
.|
^2
)
*
(
|.
z
.|
^2
)
)
)
)) is
set
(
(
(
(
(
Rea
z2
)
*
(
Rea
z
)
)
/
(
(
|.
z2
.|
^2
)
*
(
|.
z
.|
^2
)
)
)
-
(
(
(
Im1
z2
)
*
(
Im1
z
)
)
/
(
(
|.
z2
.|
^2
)
*
(
|.
z
.|
^2
)
)
)
)
-
(
(
(
Im2
z2
)
*
(
Im2
z
)
)
/
(
(
|.
z2
.|
^2
)
*
(
|.
z
.|
^2
)
)
)
)
-
(
(
(
Im3
z2
)
/
(
|.
z2
.|
^2
)
)
*
(
(
Im3
z
)
/
(
|.
z
.|
^2
)
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K108
(
(
(
(
(
(
Rea
z2
)
*
(
Rea
z
)
)
/
(
(
|.
z2
.|
^2
)
*
(
|.
z
.|
^2
)
)
)
-
(
(
(
Im1
z2
)
*
(
Im1
z
)
)
/
(
(
|.
z2
.|
^2
)
*
(
|.
z
.|
^2
)
)
)
)
-
(
(
(
Im2
z2
)
*
(
Im2
z
)
)
/
(
(
|.
z2
.|
^2
)
*
(
|.
z
.|
^2
)
)
)
)
,
K110
(
(
(
(
Im3
z2
)
/
(
|.
z2
.|
^2
)
)
*
(
(
Im3
z
)
/
(
|.
z
.|
^2
)
)
)
)) is
set
(
(
Rea
z2
)
*
(
Rea
z
)
)
-
(
(
Im1
z2
)
*
(
Im1
z
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K110
(
(
(
Im1
z2
)
*
(
Im1
z
)
)
) is
V28
()
set
K108
(
(
(
Rea
z2
)
*
(
Rea
z
)
)
,
K110
(
(
(
Im1
z2
)
*
(
Im1
z
)
)
)) is
set
(
(
(
Rea
z2
)
*
(
Rea
z
)
)
-
(
(
Im1
z2
)
*
(
Im1
z
)
)
)
-
(
(
Im2
z2
)
*
(
Im2
z
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K110
(
(
(
Im2
z2
)
*
(
Im2
z
)
)
) is
V28
()
set
K108
(
(
(
(
Rea
z2
)
*
(
Rea
z
)
)
-
(
(
Im1
z2
)
*
(
Im1
z
)
)
)
,
K110
(
(
(
Im2
z2
)
*
(
Im2
z
)
)
)) is
set
(
(
(
(
Rea
z2
)
*
(
Rea
z
)
)
-
(
(
Im1
z2
)
*
(
Im1
z
)
)
)
-
(
(
Im2
z2
)
*
(
Im2
z
)
)
)
/
(
(
|.
z2
.|
^2
)
*
(
|.
z
.|
^2
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
(
(
(
Rea
z2
)
*
(
Rea
z
)
)
-
(
(
Im1
z2
)
*
(
Im1
z
)
)
)
-
(
(
Im2
z2
)
*
(
Im2
z
)
)
)
,
K111
(
(
(
|.
z2
.|
^2
)
*
(
|.
z
.|
^2
)
)
)) is
set
(
Im3
z2
)
*
(
Im3
z
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
Im3
z2
)
*
(
Im3
z
)
)
/
(
(
|.
z2
.|
^2
)
*
(
|.
z
.|
^2
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
(
Im3
z2
)
*
(
Im3
z
)
)
,
K111
(
(
(
|.
z2
.|
^2
)
*
(
|.
z
.|
^2
)
)
)) is
set
(
(
(
(
(
Rea
z2
)
*
(
Rea
z
)
)
-
(
(
Im1
z2
)
*
(
Im1
z
)
)
)
-
(
(
Im2
z2
)
*
(
Im2
z
)
)
)
/
(
(
|.
z2
.|
^2
)
*
(
|.
z
.|
^2
)
)
)
-
(
(
(
Im3
z2
)
*
(
Im3
z
)
)
/
(
(
|.
z2
.|
^2
)
*
(
|.
z
.|
^2
)
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K110
(
(
(
(
Im3
z2
)
*
(
Im3
z
)
)
/
(
(
|.
z2
.|
^2
)
*
(
|.
z
.|
^2
)
)
)
) is
V28
()
set
K108
(
(
(
(
(
(
Rea
z2
)
*
(
Rea
z
)
)
-
(
(
Im1
z2
)
*
(
Im1
z
)
)
)
-
(
(
Im2
z2
)
*
(
Im2
z
)
)
)
/
(
(
|.
z2
.|
^2
)
*
(
|.
z
.|
^2
)
)
)
,
K110
(
(
(
(
Im3
z2
)
*
(
Im3
z
)
)
/
(
(
|.
z2
.|
^2
)
*
(
|.
z
.|
^2
)
)
)
)) is
set
(
(
(
(
Rea
z2
)
*
(
Rea
z
)
)
-
(
(
Im1
z2
)
*
(
Im1
z
)
)
)
-
(
(
Im2
z2
)
*
(
Im2
z
)
)
)
-
(
(
Im3
z2
)
*
(
Im3
z
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K110
(
(
(
Im3
z2
)
*
(
Im3
z
)
)
) is
V28
()
set
K108
(
(
(
(
(
Rea
z2
)
*
(
Rea
z
)
)
-
(
(
Im1
z2
)
*
(
Im1
z
)
)
)
-
(
(
Im2
z2
)
*
(
Im2
z
)
)
)
,
K110
(
(
(
Im3
z2
)
*
(
Im3
z
)
)
)) is
set
(
(
(
(
(
Rea
z2
)
*
(
Rea
z
)
)
-
(
(
Im1
z2
)
*
(
Im1
z
)
)
)
-
(
(
Im2
z2
)
*
(
Im2
z
)
)
)
-
(
(
Im3
z2
)
*
(
Im3
z
)
)
)
/
(
(
|.
z2
.|
*
|.
z
.|
)
^2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
(
(
(
(
Rea
z2
)
*
(
Rea
z
)
)
-
(
(
Im1
z2
)
*
(
Im1
z
)
)
)
-
(
(
Im2
z2
)
*
(
Im2
z
)
)
)
-
(
(
Im3
z2
)
*
(
Im3
z
)
)
)
,
K111
(
(
(
|.
z2
.|
*
|.
z
.|
)
^2
)
)) is
set
(
Rea
z2
)
*
(
Im1
z
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im1
z2
)
*
(
Rea
z
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
Rea
z2
)
*
(
Im1
z
)
)
+
(
(
Im1
z2
)
*
(
Rea
z
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
(
Rea
z2
)
*
(
Im1
z
)
)
+
(
(
Im1
z2
)
*
(
Rea
z
)
)
)
-
(
(
Im2
z2
)
*
(
Im3
z
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K110
(
(
(
Im2
z2
)
*
(
Im3
z
)
)
) is
V28
()
set
K108
(
(
(
(
Rea
z2
)
*
(
Im1
z
)
)
+
(
(
Im1
z2
)
*
(
Rea
z
)
)
)
,
K110
(
(
(
Im2
z2
)
*
(
Im3
z
)
)
)) is
set
(
(
(
(
Rea
z2
)
*
(
Im1
z
)
)
+
(
(
Im1
z2
)
*
(
Rea
z
)
)
)
-
(
(
Im2
z2
)
*
(
Im3
z
)
)
)
+
(
(
Im3
z2
)
*
(
Im2
z
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
(
(
(
Rea
z2
)
*
(
Im1
z
)
)
+
(
(
Im1
z2
)
*
(
Rea
z
)
)
)
-
(
(
Im2
z2
)
*
(
Im3
z
)
)
)
+
(
(
Im3
z2
)
*
(
Im2
z
)
)
)
/
(
(
|.
z2
.|
*
|.
z
.|
)
^2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
(
(
(
(
Rea
z2
)
*
(
Im1
z
)
)
+
(
(
Im1
z2
)
*
(
Rea
z
)
)
)
-
(
(
Im2
z2
)
*
(
Im3
z
)
)
)
+
(
(
Im3
z2
)
*
(
Im2
z
)
)
)
,
K111
(
(
(
|.
z2
.|
*
|.
z
.|
)
^2
)
)) is
set
-
(
(
(
(
(
(
Rea
z2
)
*
(
Im1
z
)
)
+
(
(
Im1
z2
)
*
(
Rea
z
)
)
)
-
(
(
Im2
z2
)
*
(
Im3
z
)
)
)
+
(
(
Im3
z2
)
*
(
Im2
z
)
)
)
/
(
(
|.
z2
.|
*
|.
z
.|
)
^2
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
-
(
(
(
(
(
(
Rea
z2
)
*
(
Im1
z
)
)
+
(
(
Im1
z2
)
*
(
Rea
z
)
)
)
-
(
(
Im2
z2
)
*
(
Im3
z
)
)
)
+
(
(
Im3
z2
)
*
(
Im2
z
)
)
)
/
(
(
|.
z2
.|
*
|.
z
.|
)
^2
)
)
)
*
<i>
is
quaternion
set
(
(
(
(
(
(
Rea
z2
)
*
(
Rea
z
)
)
-
(
(
Im1
z2
)
*
(
Im1
z
)
)
)
-
(
(
Im2
z2
)
*
(
Im2
z
)
)
)
-
(
(
Im3
z2
)
*
(
Im3
z
)
)
)
/
(
(
|.
z2
.|
*
|.
z
.|
)
^2
)
)
+
(
(
-
(
(
(
(
(
(
Rea
z2
)
*
(
Im1
z
)
)
+
(
(
Im1
z2
)
*
(
Rea
z
)
)
)
-
(
(
Im2
z2
)
*
(
Im3
z
)
)
)
+
(
(
Im3
z2
)
*
(
Im2
z
)
)
)
/
(
(
|.
z2
.|
*
|.
z
.|
)
^2
)
)
)
*
<i>
)
is
quaternion
set
(
Rea
z2
)
*
(
Im2
z
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im2
z2
)
*
(
Rea
z
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
Rea
z2
)
*
(
Im2
z
)
)
+
(
(
Im2
z2
)
*
(
Rea
z
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
(
Rea
z2
)
*
(
Im2
z
)
)
+
(
(
Im2
z2
)
*
(
Rea
z
)
)
)
-
(
(
Im3
z2
)
*
(
Im1
z
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K110
(
(
(
Im3
z2
)
*
(
Im1
z
)
)
) is
V28
()
set
K108
(
(
(
(
Rea
z2
)
*
(
Im2
z
)
)
+
(
(
Im2
z2
)
*
(
Rea
z
)
)
)
,
K110
(
(
(
Im3
z2
)
*
(
Im1
z
)
)
)) is
set
(
(
(
(
Rea
z2
)
*
(
Im2
z
)
)
+
(
(
Im2
z2
)
*
(
Rea
z
)
)
)
-
(
(
Im3
z2
)
*
(
Im1
z
)
)
)
+
(
(
Im1
z2
)
*
(
Im3
z
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
(
(
(
Rea
z2
)
*
(
Im2
z
)
)
+
(
(
Im2
z2
)
*
(
Rea
z
)
)
)
-
(
(
Im3
z2
)
*
(
Im1
z
)
)
)
+
(
(
Im1
z2
)
*
(
Im3
z
)
)
)
/
(
(
|.
z2
.|
*
|.
z
.|
)
^2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
(
(
(
(
Rea
z2
)
*
(
Im2
z
)
)
+
(
(
Im2
z2
)
*
(
Rea
z
)
)
)
-
(
(
Im3
z2
)
*
(
Im1
z
)
)
)
+
(
(
Im1
z2
)
*
(
Im3
z
)
)
)
,
K111
(
(
(
|.
z2
.|
*
|.
z
.|
)
^2
)
)) is
set
-
(
(
(
(
(
(
Rea
z2
)
*
(
Im2
z
)
)
+
(
(
Im2
z2
)
*
(
Rea
z
)
)
)
-
(
(
Im3
z2
)
*
(
Im1
z
)
)
)
+
(
(
Im1
z2
)
*
(
Im3
z
)
)
)
/
(
(
|.
z2
.|
*
|.
z
.|
)
^2
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
-
(
(
(
(
(
(
Rea
z2
)
*
(
Im2
z
)
)
+
(
(
Im2
z2
)
*
(
Rea
z
)
)
)
-
(
(
Im3
z2
)
*
(
Im1
z
)
)
)
+
(
(
Im1
z2
)
*
(
Im3
z
)
)
)
/
(
(
|.
z2
.|
*
|.
z
.|
)
^2
)
)
)
*
<j>
is
quaternion
set
(
(
(
(
(
(
(
Rea
z2
)
*
(
Rea
z
)
)
-
(
(
Im1
z2
)
*
(
Im1
z
)
)
)
-
(
(
Im2
z2
)
*
(
Im2
z
)
)
)
-
(
(
Im3
z2
)
*
(
Im3
z
)
)
)
/
(
(
|.
z2
.|
*
|.
z
.|
)
^2
)
)
+
(
(
-
(
(
(
(
(
(
Rea
z2
)
*
(
Im1
z
)
)
+
(
(
Im1
z2
)
*
(
Rea
z
)
)
)
-
(
(
Im2
z2
)
*
(
Im3
z
)
)
)
+
(
(
Im3
z2
)
*
(
Im2
z
)
)
)
/
(
(
|.
z2
.|
*
|.
z
.|
)
^2
)
)
)
*
<i>
)
)
+
(
(
-
(
(
(
(
(
(
Rea
z2
)
*
(
Im2
z
)
)
+
(
(
Im2
z2
)
*
(
Rea
z
)
)
)
-
(
(
Im3
z2
)
*
(
Im1
z
)
)
)
+
(
(
Im1
z2
)
*
(
Im3
z
)
)
)
/
(
(
|.
z2
.|
*
|.
z
.|
)
^2
)
)
)
*
<j>
)
is
quaternion
Element
of
QUATERNION
(
Rea
z2
)
*
(
Im3
z
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
Rea
z2
)
*
(
Im3
z
)
)
+
(
(
Im3
z2
)
*
(
Rea
z
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
(
Rea
z2
)
*
(
Im3
z
)
)
+
(
(
Im3
z2
)
*
(
Rea
z
)
)
)
-
(
(
Im1
z2
)
*
(
Im2
z
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K110
(
(
(
Im1
z2
)
*
(
Im2
z
)
)
) is
V28
()
set
K108
(
(
(
(
Rea
z2
)
*
(
Im3
z
)
)
+
(
(
Im3
z2
)
*
(
Rea
z
)
)
)
,
K110
(
(
(
Im1
z2
)
*
(
Im2
z
)
)
)) is
set
(
(
(
(
Rea
z2
)
*
(
Im3
z
)
)
+
(
(
Im3
z2
)
*
(
Rea
z
)
)
)
-
(
(
Im1
z2
)
*
(
Im2
z
)
)
)
+
(
(
Im2
z2
)
*
(
Im1
z
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
(
(
(
Rea
z2
)
*
(
Im3
z
)
)
+
(
(
Im3
z2
)
*
(
Rea
z
)
)
)
-
(
(
Im1
z2
)
*
(
Im2
z
)
)
)
+
(
(
Im2
z2
)
*
(
Im1
z
)
)
)
/
(
(
|.
z2
.|
*
|.
z
.|
)
^2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
(
(
(
(
Rea
z2
)
*
(
Im3
z
)
)
+
(
(
Im3
z2
)
*
(
Rea
z
)
)
)
-
(
(
Im1
z2
)
*
(
Im2
z
)
)
)
+
(
(
Im2
z2
)
*
(
Im1
z
)
)
)
,
K111
(
(
(
|.
z2
.|
*
|.
z
.|
)
^2
)
)) is
set
-
(
(
(
(
(
(
Rea
z2
)
*
(
Im3
z
)
)
+
(
(
Im3
z2
)
*
(
Rea
z
)
)
)
-
(
(
Im1
z2
)
*
(
Im2
z
)
)
)
+
(
(
Im2
z2
)
*
(
Im1
z
)
)
)
/
(
(
|.
z2
.|
*
|.
z
.|
)
^2
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
-
(
(
(
(
(
(
Rea
z2
)
*
(
Im3
z
)
)
+
(
(
Im3
z2
)
*
(
Rea
z
)
)
)
-
(
(
Im1
z2
)
*
(
Im2
z
)
)
)
+
(
(
Im2
z2
)
*
(
Im1
z
)
)
)
/
(
(
|.
z2
.|
*
|.
z
.|
)
^2
)
)
)
*
<k>
is
quaternion
set
(
(
(
(
(
(
(
(
Rea
z2
)
*
(
Rea
z
)
)
-
(
(
Im1
z2
)
*
(
Im1
z
)
)
)
-
(
(
Im2
z2
)
*
(
Im2
z
)
)
)
-
(
(
Im3
z2
)
*
(
Im3
z
)
)
)
/
(
(
|.
z2
.|
*
|.
z
.|
)
^2
)
)
+
(
(
-
(
(
(
(
(
(
Rea
z2
)
*
(
Im1
z
)
)
+
(
(
Im1
z2
)
*
(
Rea
z
)
)
)
-
(
(
Im2
z2
)
*
(
Im3
z
)
)
)
+
(
(
Im3
z2
)
*
(
Im2
z
)
)
)
/
(
(
|.
z2
.|
*
|.
z
.|
)
^2
)
)
)
*
<i>
)
)
+
(
(
-
(
(
(
(
(
(
Rea
z2
)
*
(
Im2
z
)
)
+
(
(
Im2
z2
)
*
(
Rea
z
)
)
)
-
(
(
Im3
z2
)
*
(
Im1
z
)
)
)
+
(
(
Im1
z2
)
*
(
Im3
z
)
)
)
/
(
(
|.
z2
.|
*
|.
z
.|
)
^2
)
)
)
*
<j>
)
)
+
(
(
-
(
(
(
(
(
(
Rea
z2
)
*
(
Im3
z
)
)
+
(
(
Im3
z2
)
*
(
Rea
z
)
)
)
-
(
(
Im1
z2
)
*
(
Im2
z
)
)
)
+
(
(
Im2
z2
)
*
(
Im1
z
)
)
)
/
(
(
|.
z2
.|
*
|.
z
.|
)
^2
)
)
)
*
<k>
)
is
quaternion
Element
of
QUATERNION
(
(
(
(
(
(
Rea
z2
)
*
(
Im1
z
)
)
+
(
(
Im1
z2
)
*
(
Rea
z
)
)
)
-
(
(
Im2
z2
)
*
(
Im3
z
)
)
)
+
(
(
Im3
z2
)
*
(
Im2
z
)
)
)
/
(
(
|.
z2
.|
*
|.
z
.|
)
^2
)
)
*
<i>
is
quaternion
set
-
(
(
(
(
(
(
(
Rea
z2
)
*
(
Im1
z
)
)
+
(
(
Im1
z2
)
*
(
Rea
z
)
)
)
-
(
(
Im2
z2
)
*
(
Im3
z
)
)
)
+
(
(
Im3
z2
)
*
(
Im2
z
)
)
)
/
(
(
|.
z2
.|
*
|.
z
.|
)
^2
)
)
*
<i>
)
is
quaternion
Element
of
QUATERNION
(
(
(
(
(
(
Rea
z2
)
*
(
Rea
z
)
)
-
(
(
Im1
z2
)
*
(
Im1
z
)
)
)
-
(
(
Im2
z2
)
*
(
Im2
z
)
)
)
-
(
(
Im3
z2
)
*
(
Im3
z
)
)
)
/
(
(
|.
z2
.|
*
|.
z
.|
)
^2
)
)
+
(
-
(
(
(
(
(
(
(
Rea
z2
)
*
(
Im1
z
)
)
+
(
(
Im1
z2
)
*
(
Rea
z
)
)
)
-
(
(
Im2
z2
)
*
(
Im3
z
)
)
)
+
(
(
Im3
z2
)
*
(
Im2
z
)
)
)
/
(
(
|.
z2
.|
*
|.
z
.|
)
^2
)
)
*
<i>
)
)
is
quaternion
set
(
(
(
(
(
(
(
Rea
z2
)
*
(
Rea
z
)
)
-
(
(
Im1
z2
)
*
(
Im1
z
)
)
)
-
(
(
Im2
z2
)
*
(
Im2
z
)
)
)
-
(
(
Im3
z2
)
*
(
Im3
z
)
)
)
/
(
(
|.
z2
.|
*
|.
z
.|
)
^2
)
)
+
(
-
(
(
(
(
(
(
(
Rea
z2
)
*
(
Im1
z
)
)
+
(
(
Im1
z2
)
*
(
Rea
z
)
)
)
-
(
(
Im2
z2
)
*
(
Im3
z
)
)
)
+
(
(
Im3
z2
)
*
(
Im2
z
)
)
)
/
(
(
|.
z2
.|
*
|.
z
.|
)
^2
)
)
*
<i>
)
)
)
+
(
(
-
(
(
(
(
(
(
Rea
z2
)
*
(
Im2
z
)
)
+
(
(
Im2
z2
)
*
(
Rea
z
)
)
)
-
(
(
Im3
z2
)
*
(
Im1
z
)
)
)
+
(
(
Im1
z2
)
*
(
Im3
z
)
)
)
/
(
(
|.
z2
.|
*
|.
z
.|
)
^2
)
)
)
*
<j>
)
is
quaternion
Element
of
QUATERNION
(
(
(
(
(
(
(
(
Rea
z2
)
*
(
Rea
z
)
)
-
(
(
Im1
z2
)
*
(
Im1
z
)
)
)
-
(
(
Im2
z2
)
*
(
Im2
z
)
)
)
-
(
(
Im3
z2
)
*
(
Im3
z
)
)
)
/
(
(
|.
z2
.|
*
|.
z
.|
)
^2
)
)
+
(
-
(
(
(
(
(
(
(
Rea
z2
)
*
(
Im1
z
)
)
+
(
(
Im1
z2
)
*
(
Rea
z
)
)
)
-
(
(
Im2
z2
)
*
(
Im3
z
)
)
)
+
(
(
Im3
z2
)
*
(
Im2
z
)
)
)
/
(
(
|.
z2
.|
*
|.
z
.|
)
^2
)
)
*
<i>
)
)
)
+
(
(
-
(
(
(
(
(
(
Rea
z2
)
*
(
Im2
z
)
)
+
(
(
Im2
z2
)
*
(
Rea
z
)
)
)
-
(
(
Im3
z2
)
*
(
Im1
z
)
)
)
+
(
(
Im1
z2
)
*
(
Im3
z
)
)
)
/
(
(
|.
z2
.|
*
|.
z
.|
)
^2
)
)
)
*
<j>
)
)
+
(
(
-
(
(
(
(
(
(
Rea
z2
)
*
(
Im3
z
)
)
+
(
(
Im3
z2
)
*
(
Rea
z
)
)
)
-
(
(
Im1
z2
)
*
(
Im2
z
)
)
)
+
(
(
Im2
z2
)
*
(
Im1
z
)
)
)
/
(
(
|.
z2
.|
*
|.
z
.|
)
^2
)
)
)
*
<k>
)
is
quaternion
Element
of
QUATERNION
(
(
(
(
(
(
Rea
z2
)
*
(
Im2
z
)
)
+
(
(
Im2
z2
)
*
(
Rea
z
)
)
)
-
(
(
Im3
z2
)
*
(
Im1
z
)
)
)
+
(
(
Im1
z2
)
*
(
Im3
z
)
)
)
/
(
(
|.
z2
.|
*
|.
z
.|
)
^2
)
)
*
<j>
is
quaternion
set
-
(
(
(
(
(
(
(
Rea
z2
)
*
(
Im2
z
)
)
+
(
(
Im2
z2
)
*
(
Rea
z
)
)
)
-
(
(
Im3
z2
)
*
(
Im1
z
)
)
)
+
(
(
Im1
z2
)
*
(
Im3
z
)
)
)
/
(
(
|.
z2
.|
*
|.
z
.|
)
^2
)
)
*
<j>
)
is
quaternion
Element
of
QUATERNION
(
(
(
(
(
(
(
Rea
z2
)
*
(
Rea
z
)
)
-
(
(
Im1
z2
)
*
(
Im1
z
)
)
)
-
(
(
Im2
z2
)
*
(
Im2
z
)
)
)
-
(
(
Im3
z2
)
*
(
Im3
z
)
)
)
/
(
(
|.
z2
.|
*
|.
z
.|
)
^2
)
)
+
(
-
(
(
(
(
(
(
(
Rea
z2
)
*
(
Im1
z
)
)
+
(
(
Im1
z2
)
*
(
Rea
z
)
)
)
-
(
(
Im2
z2
)
*
(
Im3
z
)
)
)
+
(
(
Im3
z2
)
*
(
Im2
z
)
)
)
/
(
(
|.
z2
.|
*
|.
z
.|
)
^2
)
)
*
<i>
)
)
)
+
(
-
(
(
(
(
(
(
(
Rea
z2
)
*
(
Im2
z
)
)
+
(
(
Im2
z2
)
*
(
Rea
z
)
)
)
-
(
(
Im3
z2
)
*
(
Im1
z
)
)
)
+
(
(
Im1
z2
)
*
(
Im3
z
)
)
)
/
(
(
|.
z2
.|
*
|.
z
.|
)
^2
)
)
*
<j>
)
)
is
quaternion
Element
of
QUATERNION
(
(
(
(
(
(
(
(
Rea
z2
)
*
(
Rea
z
)
)
-
(
(
Im1
z2
)
*
(
Im1
z
)
)
)
-
(
(
Im2
z2
)
*
(
Im2
z
)
)
)
-
(
(
Im3
z2
)
*
(
Im3
z
)
)
)
/
(
(
|.
z2
.|
*
|.
z
.|
)
^2
)
)
+
(
-
(
(
(
(
(
(
(
Rea
z2
)
*
(
Im1
z
)
)
+
(
(
Im1
z2
)
*
(
Rea
z
)
)
)
-
(
(
Im2
z2
)
*
(
Im3
z
)
)
)
+
(
(
Im3
z2
)
*
(
Im2
z
)
)
)
/
(
(
|.
z2
.|
*
|.
z
.|
)
^2
)
)
*
<i>
)
)
)
+
(
-
(
(
(
(
(
(
(
Rea
z2
)
*
(
Im2
z
)
)
+
(
(
Im2
z2
)
*
(
Rea
z
)
)
)
-
(
(
Im3
z2
)
*
(
Im1
z
)
)
)
+
(
(
Im1
z2
)
*
(
Im3
z
)
)
)
/
(
(
|.
z2
.|
*
|.
z
.|
)
^2
)
)
*
<j>
)
)
)
+
(
(
-
(
(
(
(
(
(
Rea
z2
)
*
(
Im3
z
)
)
+
(
(
Im3
z2
)
*
(
Rea
z
)
)
)
-
(
(
Im1
z2
)
*
(
Im2
z
)
)
)
+
(
(
Im2
z2
)
*
(
Im1
z
)
)
)
/
(
(
|.
z2
.|
*
|.
z
.|
)
^2
)
)
)
*
<k>
)
is
quaternion
Element
of
QUATERNION
(
(
(
(
(
(
Rea
z2
)
*
(
Rea
z
)
)
-
(
(
Im1
z2
)
*
(
Im1
z
)
)
)
-
(
(
Im2
z2
)
*
(
Im2
z
)
)
)
-
(
(
Im3
z2
)
*
(
Im3
z
)
)
)
/
(
(
|.
z2
.|
*
|.
z
.|
)
^2
)
)
-
(
(
(
(
(
(
(
Rea
z2
)
*
(
Im1
z
)
)
+
(
(
Im1
z2
)
*
(
Rea
z
)
)
)
-
(
(
Im2
z2
)
*
(
Im3
z
)
)
)
+
(
(
Im3
z2
)
*
(
Im2
z
)
)
)
/
(
(
|.
z2
.|
*
|.
z
.|
)
^2
)
)
*
<i>
)
is
quaternion
set
-
(
(
(
(
(
(
(
Rea
z2
)
*
(
Im1
z
)
)
+
(
(
Im1
z2
)
*
(
Rea
z
)
)
)
-
(
(
Im2
z2
)
*
(
Im3
z
)
)
)
+
(
(
Im3
z2
)
*
(
Im2
z
)
)
)
/
(
(
|.
z2
.|
*
|.
z
.|
)
^2
)
)
*
<i>
)
is
quaternion
set
(
(
(
(
(
(
Rea
z2
)
*
(
Rea
z
)
)
-
(
(
Im1
z2
)
*
(
Im1
z
)
)
)
-
(
(
Im2
z2
)
*
(
Im2
z
)
)
)
-
(
(
Im3
z2
)
*
(
Im3
z
)
)
)
/
(
(
|.
z2
.|
*
|.
z
.|
)
^2
)
)
+
(
-
(
(
(
(
(
(
(
Rea
z2
)
*
(
Im1
z
)
)
+
(
(
Im1
z2
)
*
(
Rea
z
)
)
)
-
(
(
Im2
z2
)
*
(
Im3
z
)
)
)
+
(
(
Im3
z2
)
*
(
Im2
z
)
)
)
/
(
(
|.
z2
.|
*
|.
z
.|
)
^2
)
)
*
<i>
)
)
is
quaternion
set
(
(
(
(
(
(
(
Rea
z2
)
*
(
Rea
z
)
)
-
(
(
Im1
z2
)
*
(
Im1
z
)
)
)
-
(
(
Im2
z2
)
*
(
Im2
z
)
)
)
-
(
(
Im3
z2
)
*
(
Im3
z
)
)
)
/
(
(
|.
z2
.|
*
|.
z
.|
)
^2
)
)
-
(
(
(
(
(
(
(
Rea
z2
)
*
(
Im1
z
)
)
+
(
(
Im1
z2
)
*
(
Rea
z
)
)
)
-
(
(
Im2
z2
)
*
(
Im3
z
)
)
)
+
(
(
Im3
z2
)
*
(
Im2
z
)
)
)
/
(
(
|.
z2
.|
*
|.
z
.|
)
^2
)
)
*
<i>
)
)
-
(
(
(
(
(
(
(
Rea
z2
)
*
(
Im2
z
)
)
+
(
(
Im2
z2
)
*
(
Rea
z
)
)
)
-
(
(
Im3
z2
)
*
(
Im1
z
)
)
)
+
(
(
Im1
z2
)
*
(
Im3
z
)
)
)
/
(
(
|.
z2
.|
*
|.
z
.|
)
^2
)
)
*
<j>
)
is
quaternion
Element
of
QUATERNION
-
(
(
(
(
(
(
(
Rea
z2
)
*
(
Im2
z
)
)
+
(
(
Im2
z2
)
*
(
Rea
z
)
)
)
-
(
(
Im3
z2
)
*
(
Im1
z
)
)
)
+
(
(
Im1
z2
)
*
(
Im3
z
)
)
)
/
(
(
|.
z2
.|
*
|.
z
.|
)
^2
)
)
*
<j>
)
is
quaternion
set
(
(
(
(
(
(
(
Rea
z2
)
*
(
Rea
z
)
)
-
(
(
Im1
z2
)
*
(
Im1
z
)
)
)
-
(
(
Im2
z2
)
*
(
Im2
z
)
)
)
-
(
(
Im3
z2
)
*
(
Im3
z
)
)
)
/
(
(
|.
z2
.|
*
|.
z
.|
)
^2
)
)
-
(
(
(
(
(
(
(
Rea
z2
)
*
(
Im1
z
)
)
+
(
(
Im1
z2
)
*
(
Rea
z
)
)
)
-
(
(
Im2
z2
)
*
(
Im3
z
)
)
)
+
(
(
Im3
z2
)
*
(
Im2
z
)
)
)
/
(
(
|.
z2
.|
*
|.
z
.|
)
^2
)
)
*
<i>
)
)
+
(
-
(
(
(
(
(
(
(
Rea
z2
)
*
(
Im2
z
)
)
+
(
(
Im2
z2
)
*
(
Rea
z
)
)
)
-
(
(
Im3
z2
)
*
(
Im1
z
)
)
)
+
(
(
Im1
z2
)
*
(
Im3
z
)
)
)
/
(
(
|.
z2
.|
*
|.
z
.|
)
^2
)
)
*
<j>
)
)
is
quaternion
set
(
(
(
(
(
(
Rea
z2
)
*
(
Im3
z
)
)
+
(
(
Im3
z2
)
*
(
Rea
z
)
)
)
-
(
(
Im1
z2
)
*
(
Im2
z
)
)
)
+
(
(
Im2
z2
)
*
(
Im1
z
)
)
)
/
(
(
|.
z2
.|
*
|.
z
.|
)
^2
)
)
*
<k>
is
quaternion
set
(
(
(
(
(
(
(
(
Rea
z2
)
*
(
Rea
z
)
)
-
(
(
Im1
z2
)
*
(
Im1
z
)
)
)
-
(
(
Im2
z2
)
*
(
Im2
z
)
)
)
-
(
(
Im3
z2
)
*
(
Im3
z
)
)
)
/
(
(
|.
z2
.|
*
|.
z
.|
)
^2
)
)
-
(
(
(
(
(
(
(
Rea
z2
)
*
(
Im1
z
)
)
+
(
(
Im1
z2
)
*
(
Rea
z
)
)
)
-
(
(
Im2
z2
)
*
(
Im3
z
)
)
)
+
(
(
Im3
z2
)
*
(
Im2
z
)
)
)
/
(
(
|.
z2
.|
*
|.
z
.|
)
^2
)
)
*
<i>
)
)
-
(
(
(
(
(
(
(
Rea
z2
)
*
(
Im2
z
)
)
+
(
(
Im2
z2
)
*
(
Rea
z
)
)
)
-
(
(
Im3
z2
)
*
(
Im1
z
)
)
)
+
(
(
Im1
z2
)
*
(
Im3
z
)
)
)
/
(
(
|.
z2
.|
*
|.
z
.|
)
^2
)
)
*
<j>
)
)
-
(
(
(
(
(
(
(
Rea
z2
)
*
(
Im3
z
)
)
+
(
(
Im3
z2
)
*
(
Rea
z
)
)
)
-
(
(
Im1
z2
)
*
(
Im2
z
)
)
)
+
(
(
Im2
z2
)
*
(
Im1
z
)
)
)
/
(
(
|.
z2
.|
*
|.
z
.|
)
^2
)
)
*
<k>
)
is
quaternion
Element
of
QUATERNION
-
(
(
(
(
(
(
(
Rea
z2
)
*
(
Im3
z
)
)
+
(
(
Im3
z2
)
*
(
Rea
z
)
)
)
-
(
(
Im1
z2
)
*
(
Im2
z
)
)
)
+
(
(
Im2
z2
)
*
(
Im1
z
)
)
)
/
(
(
|.
z2
.|
*
|.
z
.|
)
^2
)
)
*
<k>
)
is
quaternion
set
(
(
(
(
(
(
(
(
Rea
z2
)
*
(
Rea
z
)
)
-
(
(
Im1
z2
)
*
(
Im1
z
)
)
)
-
(
(
Im2
z2
)
*
(
Im2
z
)
)
)
-
(
(
Im3
z2
)
*
(
Im3
z
)
)
)
/
(
(
|.
z2
.|
*
|.
z
.|
)
^2
)
)
-
(
(
(
(
(
(
(
Rea
z2
)
*
(
Im1
z
)
)
+
(
(
Im1
z2
)
*
(
Rea
z
)
)
)
-
(
(
Im2
z2
)
*
(
Im3
z
)
)
)
+
(
(
Im3
z2
)
*
(
Im2
z
)
)
)
/
(
(
|.
z2
.|
*
|.
z
.|
)
^2
)
)
*
<i>
)
)
-
(
(
(
(
(
(
(
Rea
z2
)
*
(
Im2
z
)
)
+
(
(
Im2
z2
)
*
(
Rea
z
)
)
)
-
(
(
Im3
z2
)
*
(
Im1
z
)
)
)
+
(
(
Im1
z2
)
*
(
Im3
z
)
)
)
/
(
(
|.
z2
.|
*
|.
z
.|
)
^2
)
)
*
<j>
)
)
+
(
-
(
(
(
(
(
(
(
Rea
z2
)
*
(
Im3
z
)
)
+
(
(
Im3
z2
)
*
(
Rea
z
)
)
)
-
(
(
Im1
z2
)
*
(
Im2
z
)
)
)
+
(
(
Im2
z2
)
*
(
Im1
z
)
)
)
/
(
(
|.
z2
.|
*
|.
z
.|
)
^2
)
)
*
<k>
)
)
is
quaternion
set
Rea
(
z
*
z2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
|.
(
z
*
z2
)
.|
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Rea
(
z
*
z2
)
)
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Rea
(
z
*
z2
)
)
,
(
Rea
(
z
*
z2
)
)
) is
set
Im1
(
z
*
z2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im1
(
z
*
z2
)
)
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Im1
(
z
*
z2
)
)
,
(
Im1
(
z
*
z2
)
)
) is
set
(
(
Rea
(
z
*
z2
)
)
^2
)
+
(
(
Im1
(
z
*
z2
)
)
^2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
Im2
(
z
*
z2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im2
(
z
*
z2
)
)
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Im2
(
z
*
z2
)
)
,
(
Im2
(
z
*
z2
)
)
) is
set
(
(
(
Rea
(
z
*
z2
)
)
^2
)
+
(
(
Im1
(
z
*
z2
)
)
^2
)
)
+
(
(
Im2
(
z
*
z2
)
)
^2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
Im3
(
z
*
z2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im3
(
z
*
z2
)
)
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Im3
(
z
*
z2
)
)
,
(
Im3
(
z
*
z2
)
)
) is
set
(
(
(
(
Rea
(
z
*
z2
)
)
^2
)
+
(
(
Im1
(
z
*
z2
)
)
^2
)
)
+
(
(
Im2
(
z
*
z2
)
)
^2
)
)
+
(
(
Im3
(
z
*
z2
)
)
^2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
sqrt
(
(
(
(
(
Rea
(
z
*
z2
)
)
^2
)
+
(
(
Im1
(
z
*
z2
)
)
^2
)
)
+
(
(
Im2
(
z
*
z2
)
)
^2
)
)
+
(
(
Im3
(
z
*
z2
)
)
^2
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
|.
(
z
*
z2
)
.|
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
|.
(
z
*
z2
)
.|
,
|.
(
z
*
z2
)
.|
) is
set
(
Rea
(
z
*
z2
)
)
/
(
|.
(
z
*
z2
)
.|
^2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K111
(
(
|.
(
z
*
z2
)
.|
^2
)
) is
V28
()
set
K109
(
(
Rea
(
z
*
z2
)
)
,
K111
(
(
|.
(
z
*
z2
)
.|
^2
)
)) is
set
(
Im1
(
z
*
z2
)
)
/
(
|.
(
z
*
z2
)
.|
^2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Im1
(
z
*
z2
)
)
,
K111
(
(
|.
(
z
*
z2
)
.|
^2
)
)) is
set
(
(
Im1
(
z
*
z2
)
)
/
(
|.
(
z
*
z2
)
.|
^2
)
)
*
<i>
is
quaternion
set
(
(
Rea
(
z
*
z2
)
)
/
(
|.
(
z
*
z2
)
.|
^2
)
)
-
(
(
(
Im1
(
z
*
z2
)
)
/
(
|.
(
z
*
z2
)
.|
^2
)
)
*
<i>
)
is
quaternion
set
-
(
(
(
Im1
(
z
*
z2
)
)
/
(
|.
(
z
*
z2
)
.|
^2
)
)
*
<i>
)
is
quaternion
set
(
(
Rea
(
z
*
z2
)
)
/
(
|.
(
z
*
z2
)
.|
^2
)
)
+
(
-
(
(
(
Im1
(
z
*
z2
)
)
/
(
|.
(
z
*
z2
)
.|
^2
)
)
*
<i>
)
)
is
quaternion
set
(
Im2
(
z
*
z2
)
)
/
(
|.
(
z
*
z2
)
.|
^2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Im2
(
z
*
z2
)
)
,
K111
(
(
|.
(
z
*
z2
)
.|
^2
)
)) is
set
(
(
Im2
(
z
*
z2
)
)
/
(
|.
(
z
*
z2
)
.|
^2
)
)
*
<j>
is
quaternion
set
(
(
(
Rea
(
z
*
z2
)
)
/
(
|.
(
z
*
z2
)
.|
^2
)
)
-
(
(
(
Im1
(
z
*
z2
)
)
/
(
|.
(
z
*
z2
)
.|
^2
)
)
*
<i>
)
)
-
(
(
(
Im2
(
z
*
z2
)
)
/
(
|.
(
z
*
z2
)
.|
^2
)
)
*
<j>
)
is
quaternion
Element
of
QUATERNION
-
(
(
(
Im2
(
z
*
z2
)
)
/
(
|.
(
z
*
z2
)
.|
^2
)
)
*
<j>
)
is
quaternion
set
(
(
(
Rea
(
z
*
z2
)
)
/
(
|.
(
z
*
z2
)
.|
^2
)
)
-
(
(
(
Im1
(
z
*
z2
)
)
/
(
|.
(
z
*
z2
)
.|
^2
)
)
*
<i>
)
)
+
(
-
(
(
(
Im2
(
z
*
z2
)
)
/
(
|.
(
z
*
z2
)
.|
^2
)
)
*
<j>
)
)
is
quaternion
set
(
Im3
(
z
*
z2
)
)
/
(
|.
(
z
*
z2
)
.|
^2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Im3
(
z
*
z2
)
)
,
K111
(
(
|.
(
z
*
z2
)
.|
^2
)
)) is
set
(
(
Im3
(
z
*
z2
)
)
/
(
|.
(
z
*
z2
)
.|
^2
)
)
*
<k>
is
quaternion
set
(
(
(
(
Rea
(
z
*
z2
)
)
/
(
|.
(
z
*
z2
)
.|
^2
)
)
-
(
(
(
Im1
(
z
*
z2
)
)
/
(
|.
(
z
*
z2
)
.|
^2
)
)
*
<i>
)
)
-
(
(
(
Im2
(
z
*
z2
)
)
/
(
|.
(
z
*
z2
)
.|
^2
)
)
*
<j>
)
)
-
(
(
(
Im3
(
z
*
z2
)
)
/
(
|.
(
z
*
z2
)
.|
^2
)
)
*
<k>
)
is
quaternion
Element
of
QUATERNION
-
(
(
(
Im3
(
z
*
z2
)
)
/
(
|.
(
z
*
z2
)
.|
^2
)
)
*
<k>
)
is
quaternion
set
(
(
(
(
Rea
(
z
*
z2
)
)
/
(
|.
(
z
*
z2
)
.|
^2
)
)
-
(
(
(
Im1
(
z
*
z2
)
)
/
(
|.
(
z
*
z2
)
.|
^2
)
)
*
<i>
)
)
-
(
(
(
Im2
(
z
*
z2
)
)
/
(
|.
(
z
*
z2
)
.|
^2
)
)
*
<j>
)
)
+
(
-
(
(
(
Im3
(
z
*
z2
)
)
/
(
|.
(
z
*
z2
)
.|
^2
)
)
*
<k>
)
)
is
quaternion
set
|.
z
.|
*
|.
z2
.|
is
V28
()
V29
()
ext-real
Element
of
REAL
(
|.
z
.|
*
|.
z2
.|
)
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
|.
z
.|
*
|.
z2
.|
)
,
(
|.
z
.|
*
|.
z2
.|
)
) is
set
(
Rea
(
z
*
z2
)
)
/
(
(
|.
z
.|
*
|.
z2
.|
)
^2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K111
(
(
(
|.
z
.|
*
|.
z2
.|
)
^2
)
) is
V28
()
set
K109
(
(
Rea
(
z
*
z2
)
)
,
K111
(
(
(
|.
z
.|
*
|.
z2
.|
)
^2
)
)) is
set
(
(
Rea
(
z
*
z2
)
)
/
(
(
|.
z
.|
*
|.
z2
.|
)
^2
)
)
-
(
(
(
Im1
(
z
*
z2
)
)
/
(
|.
(
z
*
z2
)
.|
^2
)
)
*
<i>
)
is
quaternion
set
(
(
Rea
(
z
*
z2
)
)
/
(
(
|.
z
.|
*
|.
z2
.|
)
^2
)
)
+
(
-
(
(
(
Im1
(
z
*
z2
)
)
/
(
|.
(
z
*
z2
)
.|
^2
)
)
*
<i>
)
)
is
quaternion
set
(
(
(
Rea
(
z
*
z2
)
)
/
(
(
|.
z
.|
*
|.
z2
.|
)
^2
)
)
-
(
(
(
Im1
(
z
*
z2
)
)
/
(
|.
(
z
*
z2
)
.|
^2
)
)
*
<i>
)
)
-
(
(
(
Im2
(
z
*
z2
)
)
/
(
|.
(
z
*
z2
)
.|
^2
)
)
*
<j>
)
is
quaternion
Element
of
QUATERNION
(
(
(
Rea
(
z
*
z2
)
)
/
(
(
|.
z
.|
*
|.
z2
.|
)
^2
)
)
-
(
(
(
Im1
(
z
*
z2
)
)
/
(
|.
(
z
*
z2
)
.|
^2
)
)
*
<i>
)
)
+
(
-
(
(
(
Im2
(
z
*
z2
)
)
/
(
|.
(
z
*
z2
)
.|
^2
)
)
*
<j>
)
)
is
quaternion
set
(
(
(
(
Rea
(
z
*
z2
)
)
/
(
(
|.
z
.|
*
|.
z2
.|
)
^2
)
)
-
(
(
(
Im1
(
z
*
z2
)
)
/
(
|.
(
z
*
z2
)
.|
^2
)
)
*
<i>
)
)
-
(
(
(
Im2
(
z
*
z2
)
)
/
(
|.
(
z
*
z2
)
.|
^2
)
)
*
<j>
)
)
-
(
(
(
Im3
(
z
*
z2
)
)
/
(
|.
(
z
*
z2
)
.|
^2
)
)
*
<k>
)
is
quaternion
Element
of
QUATERNION
(
(
(
(
Rea
(
z
*
z2
)
)
/
(
(
|.
z
.|
*
|.
z2
.|
)
^2
)
)
-
(
(
(
Im1
(
z
*
z2
)
)
/
(
|.
(
z
*
z2
)
.|
^2
)
)
*
<i>
)
)
-
(
(
(
Im2
(
z
*
z2
)
)
/
(
|.
(
z
*
z2
)
.|
^2
)
)
*
<j>
)
)
+
(
-
(
(
(
Im3
(
z
*
z2
)
)
/
(
|.
(
z
*
z2
)
.|
^2
)
)
*
<k>
)
)
is
quaternion
set
(
Im1
(
z
*
z2
)
)
/
(
(
|.
z
.|
*
|.
z2
.|
)
^2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Im1
(
z
*
z2
)
)
,
K111
(
(
(
|.
z
.|
*
|.
z2
.|
)
^2
)
)) is
set
(
(
Im1
(
z
*
z2
)
)
/
(
(
|.
z
.|
*
|.
z2
.|
)
^2
)
)
*
<i>
is
quaternion
set
(
(
Rea
(
z
*
z2
)
)
/
(
(
|.
z
.|
*
|.
z2
.|
)
^2
)
)
-
(
(
(
Im1
(
z
*
z2
)
)
/
(
(
|.
z
.|
*
|.
z2
.|
)
^2
)
)
*
<i>
)
is
quaternion
set
-
(
(
(
Im1
(
z
*
z2
)
)
/
(
(
|.
z
.|
*
|.
z2
.|
)
^2
)
)
*
<i>
)
is
quaternion
set
(
(
Rea
(
z
*
z2
)
)
/
(
(
|.
z
.|
*
|.
z2
.|
)
^2
)
)
+
(
-
(
(
(
Im1
(
z
*
z2
)
)
/
(
(
|.
z
.|
*
|.
z2
.|
)
^2
)
)
*
<i>
)
)
is
quaternion
set
(
(
(
Rea
(
z
*
z2
)
)
/
(
(
|.
z
.|
*
|.
z2
.|
)
^2
)
)
-
(
(
(
Im1
(
z
*
z2
)
)
/
(
(
|.
z
.|
*
|.
z2
.|
)
^2
)
)
*
<i>
)
)
-
(
(
(
Im2
(
z
*
z2
)
)
/
(
|.
(
z
*
z2
)
.|
^2
)
)
*
<j>
)
is
quaternion
Element
of
QUATERNION
(
(
(
Rea
(
z
*
z2
)
)
/
(
(
|.
z
.|
*
|.
z2
.|
)
^2
)
)
-
(
(
(
Im1
(
z
*
z2
)
)
/
(
(
|.
z
.|
*
|.
z2
.|
)
^2
)
)
*
<i>
)
)
+
(
-
(
(
(
Im2
(
z
*
z2
)
)
/
(
|.
(
z
*
z2
)
.|
^2
)
)
*
<j>
)
)
is
quaternion
set
(
(
(
(
Rea
(
z
*
z2
)
)
/
(
(
|.
z
.|
*
|.
z2
.|
)
^2
)
)
-
(
(
(
Im1
(
z
*
z2
)
)
/
(
(
|.
z
.|
*
|.
z2
.|
)
^2
)
)
*
<i>
)
)
-
(
(
(
Im2
(
z
*
z2
)
)
/
(
|.
(
z
*
z2
)
.|
^2
)
)
*
<j>
)
)
-
(
(
(
Im3
(
z
*
z2
)
)
/
(
|.
(
z
*
z2
)
.|
^2
)
)
*
<k>
)
is
quaternion
Element
of
QUATERNION
(
(
(
(
Rea
(
z
*
z2
)
)
/
(
(
|.
z
.|
*
|.
z2
.|
)
^2
)
)
-
(
(
(
Im1
(
z
*
z2
)
)
/
(
(
|.
z
.|
*
|.
z2
.|
)
^2
)
)
*
<i>
)
)
-
(
(
(
Im2
(
z
*
z2
)
)
/
(
|.
(
z
*
z2
)
.|
^2
)
)
*
<j>
)
)
+
(
-
(
(
(
Im3
(
z
*
z2
)
)
/
(
|.
(
z
*
z2
)
.|
^2
)
)
*
<k>
)
)
is
quaternion
set
(
Im2
(
z
*
z2
)
)
/
(
(
|.
z
.|
*
|.
z2
.|
)
^2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Im2
(
z
*
z2
)
)
,
K111
(
(
(
|.
z
.|
*
|.
z2
.|
)
^2
)
)) is
set
(
(
Im2
(
z
*
z2
)
)
/
(
(
|.
z
.|
*
|.
z2
.|
)
^2
)
)
*
<j>
is
quaternion
set
(
(
(
Rea
(
z
*
z2
)
)
/
(
(
|.
z
.|
*
|.
z2
.|
)
^2
)
)
-
(
(
(
Im1
(
z
*
z2
)
)
/
(
(
|.
z
.|
*
|.
z2
.|
)
^2
)
)
*
<i>
)
)
-
(
(
(
Im2
(
z
*
z2
)
)
/
(
(
|.
z
.|
*
|.
z2
.|
)
^2
)
)
*
<j>
)
is
quaternion
Element
of
QUATERNION
-
(
(
(
Im2
(
z
*
z2
)
)
/
(
(
|.
z
.|
*
|.
z2
.|
)
^2
)
)
*
<j>
)
is
quaternion
set
(
(
(
Rea
(
z
*
z2
)
)
/
(
(
|.
z
.|
*
|.
z2
.|
)
^2
)
)
-
(
(
(
Im1
(
z
*
z2
)
)
/
(
(
|.
z
.|
*
|.
z2
.|
)
^2
)
)
*
<i>
)
)
+
(
-
(
(
(
Im2
(
z
*
z2
)
)
/
(
(
|.
z
.|
*
|.
z2
.|
)
^2
)
)
*
<j>
)
)
is
quaternion
set
(
(
(
(
Rea
(
z
*
z2
)
)
/
(
(
|.
z
.|
*
|.
z2
.|
)
^2
)
)
-
(
(
(
Im1
(
z
*
z2
)
)
/
(
(
|.
z
.|
*
|.
z2
.|
)
^2
)
)
*
<i>
)
)
-
(
(
(
Im2
(
z
*
z2
)
)
/
(
(
|.
z
.|
*
|.
z2
.|
)
^2
)
)
*
<j>
)
)
-
(
(
(
Im3
(
z
*
z2
)
)
/
(
|.
(
z
*
z2
)
.|
^2
)
)
*
<k>
)
is
quaternion
Element
of
QUATERNION
(
(
(
(
Rea
(
z
*
z2
)
)
/
(
(
|.
z
.|
*
|.
z2
.|
)
^2
)
)
-
(
(
(
Im1
(
z
*
z2
)
)
/
(
(
|.
z
.|
*
|.
z2
.|
)
^2
)
)
*
<i>
)
)
-
(
(
(
Im2
(
z
*
z2
)
)
/
(
(
|.
z
.|
*
|.
z2
.|
)
^2
)
)
*
<j>
)
)
+
(
-
(
(
(
Im3
(
z
*
z2
)
)
/
(
|.
(
z
*
z2
)
.|
^2
)
)
*
<k>
)
)
is
quaternion
set
(
Im3
(
z
*
z2
)
)
/
(
(
|.
z
.|
*
|.
z2
.|
)
^2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Im3
(
z
*
z2
)
)
,
K111
(
(
(
|.
z
.|
*
|.
z2
.|
)
^2
)
)) is
set
(
(
Im3
(
z
*
z2
)
)
/
(
(
|.
z
.|
*
|.
z2
.|
)
^2
)
)
*
<k>
is
quaternion
set
(
(
(
(
Rea
(
z
*
z2
)
)
/
(
(
|.
z
.|
*
|.
z2
.|
)
^2
)
)
-
(
(
(
Im1
(
z
*
z2
)
)
/
(
(
|.
z
.|
*
|.
z2
.|
)
^2
)
)
*
<i>
)
)
-
(
(
(
Im2
(
z
*
z2
)
)
/
(
(
|.
z
.|
*
|.
z2
.|
)
^2
)
)
*
<j>
)
)
-
(
(
(
Im3
(
z
*
z2
)
)
/
(
(
|.
z
.|
*
|.
z2
.|
)
^2
)
)
*
<k>
)
is
quaternion
Element
of
QUATERNION
-
(
(
(
Im3
(
z
*
z2
)
)
/
(
(
|.
z
.|
*
|.
z2
.|
)
^2
)
)
*
<k>
)
is
quaternion
set
(
(
(
(
Rea
(
z
*
z2
)
)
/
(
(
|.
z
.|
*
|.
z2
.|
)
^2
)
)
-
(
(
(
Im1
(
z
*
z2
)
)
/
(
(
|.
z
.|
*
|.
z2
.|
)
^2
)
)
*
<i>
)
)
-
(
(
(
Im2
(
z
*
z2
)
)
/
(
(
|.
z
.|
*
|.
z2
.|
)
^2
)
)
*
<j>
)
)
+
(
-
(
(
(
Im3
(
z
*
z2
)
)
/
(
(
|.
z
.|
*
|.
z2
.|
)
^2
)
)
*
<k>
)
)
is
quaternion
set
(
Rea
z
)
*
(
Rea
z2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im1
z
)
*
(
Im1
z2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
Rea
z
)
*
(
Rea
z2
)
)
-
(
(
Im1
z
)
*
(
Im1
z2
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K110
(
(
(
Im1
z
)
*
(
Im1
z2
)
)
) is
V28
()
set
K108
(
(
(
Rea
z
)
*
(
Rea
z2
)
)
,
K110
(
(
(
Im1
z
)
*
(
Im1
z2
)
)
)) is
set
(
Im2
z
)
*
(
Im2
z2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
(
Rea
z
)
*
(
Rea
z2
)
)
-
(
(
Im1
z
)
*
(
Im1
z2
)
)
)
-
(
(
Im2
z
)
*
(
Im2
z2
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K110
(
(
(
Im2
z
)
*
(
Im2
z2
)
)
) is
V28
()
set
K108
(
(
(
(
Rea
z
)
*
(
Rea
z2
)
)
-
(
(
Im1
z
)
*
(
Im1
z2
)
)
)
,
K110
(
(
(
Im2
z
)
*
(
Im2
z2
)
)
)) is
set
(
Im3
z
)
*
(
Im3
z2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
(
(
Rea
z
)
*
(
Rea
z2
)
)
-
(
(
Im1
z
)
*
(
Im1
z2
)
)
)
-
(
(
Im2
z
)
*
(
Im2
z2
)
)
)
-
(
(
Im3
z
)
*
(
Im3
z2
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K110
(
(
(
Im3
z
)
*
(
Im3
z2
)
)
) is
V28
()
set
K108
(
(
(
(
(
Rea
z
)
*
(
Rea
z2
)
)
-
(
(
Im1
z
)
*
(
Im1
z2
)
)
)
-
(
(
Im2
z
)
*
(
Im2
z2
)
)
)
,
K110
(
(
(
Im3
z
)
*
(
Im3
z2
)
)
)) is
set
(
(
(
(
(
Rea
z
)
*
(
Rea
z2
)
)
-
(
(
Im1
z
)
*
(
Im1
z2
)
)
)
-
(
(
Im2
z
)
*
(
Im2
z2
)
)
)
-
(
(
Im3
z
)
*
(
Im3
z2
)
)
)
/
(
(
|.
z
.|
*
|.
z2
.|
)
^2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
(
(
(
(
Rea
z
)
*
(
Rea
z2
)
)
-
(
(
Im1
z
)
*
(
Im1
z2
)
)
)
-
(
(
Im2
z
)
*
(
Im2
z2
)
)
)
-
(
(
Im3
z
)
*
(
Im3
z2
)
)
)
,
K111
(
(
(
|.
z
.|
*
|.
z2
.|
)
^2
)
)) is
set
(
(
(
(
(
(
Rea
z
)
*
(
Rea
z2
)
)
-
(
(
Im1
z
)
*
(
Im1
z2
)
)
)
-
(
(
Im2
z
)
*
(
Im2
z2
)
)
)
-
(
(
Im3
z
)
*
(
Im3
z2
)
)
)
/
(
(
|.
z
.|
*
|.
z2
.|
)
^2
)
)
-
(
(
(
Im1
(
z
*
z2
)
)
/
(
(
|.
z
.|
*
|.
z2
.|
)
^2
)
)
*
<i>
)
is
quaternion
set
(
(
(
(
(
(
Rea
z
)
*
(
Rea
z2
)
)
-
(
(
Im1
z
)
*
(
Im1
z2
)
)
)
-
(
(
Im2
z
)
*
(
Im2
z2
)
)
)
-
(
(
Im3
z
)
*
(
Im3
z2
)
)
)
/
(
(
|.
z
.|
*
|.
z2
.|
)
^2
)
)
+
(
-
(
(
(
Im1
(
z
*
z2
)
)
/
(
(
|.
z
.|
*
|.
z2
.|
)
^2
)
)
*
<i>
)
)
is
quaternion
set
(
(
(
(
(
(
(
Rea
z
)
*
(
Rea
z2
)
)
-
(
(
Im1
z
)
*
(
Im1
z2
)
)
)
-
(
(
Im2
z
)
*
(
Im2
z2
)
)
)
-
(
(
Im3
z
)
*
(
Im3
z2
)
)
)
/
(
(
|.
z
.|
*
|.
z2
.|
)
^2
)
)
-
(
(
(
Im1
(
z
*
z2
)
)
/
(
(
|.
z
.|
*
|.
z2
.|
)
^2
)
)
*
<i>
)
)
-
(
(
(
Im2
(
z
*
z2
)
)
/
(
(
|.
z
.|
*
|.
z2
.|
)
^2
)
)
*
<j>
)
is
quaternion
Element
of
QUATERNION
(
(
(
(
(
(
(
Rea
z
)
*
(
Rea
z2
)
)
-
(
(
Im1
z
)
*
(
Im1
z2
)
)
)
-
(
(
Im2
z
)
*
(
Im2
z2
)
)
)
-
(
(
Im3
z
)
*
(
Im3
z2
)
)
)
/
(
(
|.
z
.|
*
|.
z2
.|
)
^2
)
)
-
(
(
(
Im1
(
z
*
z2
)
)
/
(
(
|.
z
.|
*
|.
z2
.|
)
^2
)
)
*
<i>
)
)
+
(
-
(
(
(
Im2
(
z
*
z2
)
)
/
(
(
|.
z
.|
*
|.
z2
.|
)
^2
)
)
*
<j>
)
)
is
quaternion
set
(
(
(
(
(
(
(
(
Rea
z
)
*
(
Rea
z2
)
)
-
(
(
Im1
z
)
*
(
Im1
z2
)
)
)
-
(
(
Im2
z
)
*
(
Im2
z2
)
)
)
-
(
(
Im3
z
)
*
(
Im3
z2
)
)
)
/
(
(
|.
z
.|
*
|.
z2
.|
)
^2
)
)
-
(
(
(
Im1
(
z
*
z2
)
)
/
(
(
|.
z
.|
*
|.
z2
.|
)
^2
)
)
*
<i>
)
)
-
(
(
(
Im2
(
z
*
z2
)
)
/
(
(
|.
z
.|
*
|.
z2
.|
)
^2
)
)
*
<j>
)
)
-
(
(
(
Im3
(
z
*
z2
)
)
/
(
(
|.
z
.|
*
|.
z2
.|
)
^2
)
)
*
<k>
)
is
quaternion
Element
of
QUATERNION
(
(
(
(
(
(
(
(
Rea
z
)
*
(
Rea
z2
)
)
-
(
(
Im1
z
)
*
(
Im1
z2
)
)
)
-
(
(
Im2
z
)
*
(
Im2
z2
)
)
)
-
(
(
Im3
z
)
*
(
Im3
z2
)
)
)
/
(
(
|.
z
.|
*
|.
z2
.|
)
^2
)
)
-
(
(
(
Im1
(
z
*
z2
)
)
/
(
(
|.
z
.|
*
|.
z2
.|
)
^2
)
)
*
<i>
)
)
-
(
(
(
Im2
(
z
*
z2
)
)
/
(
(
|.
z
.|
*
|.
z2
.|
)
^2
)
)
*
<j>
)
)
+
(
-
(
(
(
Im3
(
z
*
z2
)
)
/
(
(
|.
z
.|
*
|.
z2
.|
)
^2
)
)
*
<k>
)
)
is
quaternion
set
(
Rea
z
)
*
(
Im1
z2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im1
z
)
*
(
Rea
z2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
Rea
z
)
*
(
Im1
z2
)
)
+
(
(
Im1
z
)
*
(
Rea
z2
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im2
z
)
*
(
Im3
z2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
(
Rea
z
)
*
(
Im1
z2
)
)
+
(
(
Im1
z
)
*
(
Rea
z2
)
)
)
+
(
(
Im2
z
)
*
(
Im3
z2
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im3
z
)
*
(
Im2
z2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
(
(
Rea
z
)
*
(
Im1
z2
)
)
+
(
(
Im1
z
)
*
(
Rea
z2
)
)
)
+
(
(
Im2
z
)
*
(
Im3
z2
)
)
)
-
(
(
Im3
z
)
*
(
Im2
z2
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K110
(
(
(
Im3
z
)
*
(
Im2
z2
)
)
) is
V28
()
set
K108
(
(
(
(
(
Rea
z
)
*
(
Im1
z2
)
)
+
(
(
Im1
z
)
*
(
Rea
z2
)
)
)
+
(
(
Im2
z
)
*
(
Im3
z2
)
)
)
,
K110
(
(
(
Im3
z
)
*
(
Im2
z2
)
)
)) is
set
(
(
(
(
(
Rea
z
)
*
(
Im1
z2
)
)
+
(
(
Im1
z
)
*
(
Rea
z2
)
)
)
+
(
(
Im2
z
)
*
(
Im3
z2
)
)
)
-
(
(
Im3
z
)
*
(
Im2
z2
)
)
)
/
(
(
|.
z
.|
*
|.
z2
.|
)
^2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
(
(
(
(
Rea
z
)
*
(
Im1
z2
)
)
+
(
(
Im1
z
)
*
(
Rea
z2
)
)
)
+
(
(
Im2
z
)
*
(
Im3
z2
)
)
)
-
(
(
Im3
z
)
*
(
Im2
z2
)
)
)
,
K111
(
(
(
|.
z
.|
*
|.
z2
.|
)
^2
)
)) is
set
(
(
(
(
(
(
Rea
z
)
*
(
Im1
z2
)
)
+
(
(
Im1
z
)
*
(
Rea
z2
)
)
)
+
(
(
Im2
z
)
*
(
Im3
z2
)
)
)
-
(
(
Im3
z
)
*
(
Im2
z2
)
)
)
/
(
(
|.
z
.|
*
|.
z2
.|
)
^2
)
)
*
<i>
is
quaternion
set
(
(
(
(
(
(
Rea
z
)
*
(
Rea
z2
)
)
-
(
(
Im1
z
)
*
(
Im1
z2
)
)
)
-
(
(
Im2
z
)
*
(
Im2
z2
)
)
)
-
(
(
Im3
z
)
*
(
Im3
z2
)
)
)
/
(
(
|.
z
.|
*
|.
z2
.|
)
^2
)
)
-
(
(
(
(
(
(
(
Rea
z
)
*
(
Im1
z2
)
)
+
(
(
Im1
z
)
*
(
Rea
z2
)
)
)
+
(
(
Im2
z
)
*
(
Im3
z2
)
)
)
-
(
(
Im3
z
)
*
(
Im2
z2
)
)
)
/
(
(
|.
z
.|
*
|.
z2
.|
)
^2
)
)
*
<i>
)
is
quaternion
set
-
(
(
(
(
(
(
(
Rea
z
)
*
(
Im1
z2
)
)
+
(
(
Im1
z
)
*
(
Rea
z2
)
)
)
+
(
(
Im2
z
)
*
(
Im3
z2
)
)
)
-
(
(
Im3
z
)
*
(
Im2
z2
)
)
)
/
(
(
|.
z
.|
*
|.
z2
.|
)
^2
)
)
*
<i>
)
is
quaternion
set
(
(
(
(
(
(
Rea
z
)
*
(
Rea
z2
)
)
-
(
(
Im1
z
)
*
(
Im1
z2
)
)
)
-
(
(
Im2
z
)
*
(
Im2
z2
)
)
)
-
(
(
Im3
z
)
*
(
Im3
z2
)
)
)
/
(
(
|.
z
.|
*
|.
z2
.|
)
^2
)
)
+
(
-
(
(
(
(
(
(
(
Rea
z
)
*
(
Im1
z2
)
)
+
(
(
Im1
z
)
*
(
Rea
z2
)
)
)
+
(
(
Im2
z
)
*
(
Im3
z2
)
)
)
-
(
(
Im3
z
)
*
(
Im2
z2
)
)
)
/
(
(
|.
z
.|
*
|.
z2
.|
)
^2
)
)
*
<i>
)
)
is
quaternion
set
(
(
(
(
(
(
(
Rea
z
)
*
(
Rea
z2
)
)
-
(
(
Im1
z
)
*
(
Im1
z2
)
)
)
-
(
(
Im2
z
)
*
(
Im2
z2
)
)
)
-
(
(
Im3
z
)
*
(
Im3
z2
)
)
)
/
(
(
|.
z
.|
*
|.
z2
.|
)
^2
)
)
-
(
(
(
(
(
(
(
Rea
z
)
*
(
Im1
z2
)
)
+
(
(
Im1
z
)
*
(
Rea
z2
)
)
)
+
(
(
Im2
z
)
*
(
Im3
z2
)
)
)
-
(
(
Im3
z
)
*
(
Im2
z2
)
)
)
/
(
(
|.
z
.|
*
|.
z2
.|
)
^2
)
)
*
<i>
)
)
-
(
(
(
Im2
(
z
*
z2
)
)
/
(
(
|.
z
.|
*
|.
z2
.|
)
^2
)
)
*
<j>
)
is
quaternion
Element
of
QUATERNION
(
(
(
(
(
(
(
Rea
z
)
*
(
Rea
z2
)
)
-
(
(
Im1
z
)
*
(
Im1
z2
)
)
)
-
(
(
Im2
z
)
*
(
Im2
z2
)
)
)
-
(
(
Im3
z
)
*
(
Im3
z2
)
)
)
/
(
(
|.
z
.|
*
|.
z2
.|
)
^2
)
)
-
(
(
(
(
(
(
(
Rea
z
)
*
(
Im1
z2
)
)
+
(
(
Im1
z
)
*
(
Rea
z2
)
)
)
+
(
(
Im2
z
)
*
(
Im3
z2
)
)
)
-
(
(
Im3
z
)
*
(
Im2
z2
)
)
)
/
(
(
|.
z
.|
*
|.
z2
.|
)
^2
)
)
*
<i>
)
)
+
(
-
(
(
(
Im2
(
z
*
z2
)
)
/
(
(
|.
z
.|
*
|.
z2
.|
)
^2
)
)
*
<j>
)
)
is
quaternion
set
(
(
(
(
(
(
(
(
Rea
z
)
*
(
Rea
z2
)
)
-
(
(
Im1
z
)
*
(
Im1
z2
)
)
)
-
(
(
Im2
z
)
*
(
Im2
z2
)
)
)
-
(
(
Im3
z
)
*
(
Im3
z2
)
)
)
/
(
(
|.
z
.|
*
|.
z2
.|
)
^2
)
)
-
(
(
(
(
(
(
(
Rea
z
)
*
(
Im1
z2
)
)
+
(
(
Im1
z
)
*
(
Rea
z2
)
)
)
+
(
(
Im2
z
)
*
(
Im3
z2
)
)
)
-
(
(
Im3
z
)
*
(
Im2
z2
)
)
)
/
(
(
|.
z
.|
*
|.
z2
.|
)
^2
)
)
*
<i>
)
)
-
(
(
(
Im2
(
z
*
z2
)
)
/
(
(
|.
z
.|
*
|.
z2
.|
)
^2
)
)
*
<j>
)
)
-
(
(
(
Im3
(
z
*
z2
)
)
/
(
(
|.
z
.|
*
|.
z2
.|
)
^2
)
)
*
<k>
)
is
quaternion
Element
of
QUATERNION
(
(
(
(
(
(
(
(
Rea
z
)
*
(
Rea
z2
)
)
-
(
(
Im1
z
)
*
(
Im1
z2
)
)
)
-
(
(
Im2
z
)
*
(
Im2
z2
)
)
)
-
(
(
Im3
z
)
*
(
Im3
z2
)
)
)
/
(
(
|.
z
.|
*
|.
z2
.|
)
^2
)
)
-
(
(
(
(
(
(
(
Rea
z
)
*
(
Im1
z2
)
)
+
(
(
Im1
z
)
*
(
Rea
z2
)
)
)
+
(
(
Im2
z
)
*
(
Im3
z2
)
)
)
-
(
(
Im3
z
)
*
(
Im2
z2
)
)
)
/
(
(
|.
z
.|
*
|.
z2
.|
)
^2
)
)
*
<i>
)
)
-
(
(
(
Im2
(
z
*
z2
)
)
/
(
(
|.
z
.|
*
|.
z2
.|
)
^2
)
)
*
<j>
)
)
+
(
-
(
(
(
Im3
(
z
*
z2
)
)
/
(
(
|.
z
.|
*
|.
z2
.|
)
^2
)
)
*
<k>
)
)
is
quaternion
set
(
Rea
z
)
*
(
Im2
z2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im2
z
)
*
(
Rea
z2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
Rea
z
)
*
(
Im2
z2
)
)
+
(
(
Im2
z
)
*
(
Rea
z2
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im3
z
)
*
(
Im1
z2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
(
Rea
z
)
*
(
Im2
z2
)
)
+
(
(
Im2
z
)
*
(
Rea
z2
)
)
)
+
(
(
Im3
z
)
*
(
Im1
z2
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im1
z
)
*
(
Im3
z2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
(
(
Rea
z
)
*
(
Im2
z2
)
)
+
(
(
Im2
z
)
*
(
Rea
z2
)
)
)
+
(
(
Im3
z
)
*
(
Im1
z2
)
)
)
-
(
(
Im1
z
)
*
(
Im3
z2
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K110
(
(
(
Im1
z
)
*
(
Im3
z2
)
)
) is
V28
()
set
K108
(
(
(
(
(
Rea
z
)
*
(
Im2
z2
)
)
+
(
(
Im2
z
)
*
(
Rea
z2
)
)
)
+
(
(
Im3
z
)
*
(
Im1
z2
)
)
)
,
K110
(
(
(
Im1
z
)
*
(
Im3
z2
)
)
)) is
set
(
(
(
(
(
Rea
z
)
*
(
Im2
z2
)
)
+
(
(
Im2
z
)
*
(
Rea
z2
)
)
)
+
(
(
Im3
z
)
*
(
Im1
z2
)
)
)
-
(
(
Im1
z
)
*
(
Im3
z2
)
)
)
/
(
(
|.
z
.|
*
|.
z2
.|
)
^2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
(
(
(
(
Rea
z
)
*
(
Im2
z2
)
)
+
(
(
Im2
z
)
*
(
Rea
z2
)
)
)
+
(
(
Im3
z
)
*
(
Im1
z2
)
)
)
-
(
(
Im1
z
)
*
(
Im3
z2
)
)
)
,
K111
(
(
(
|.
z
.|
*
|.
z2
.|
)
^2
)
)) is
set
(
(
(
(
(
(
Rea
z
)
*
(
Im2
z2
)
)
+
(
(
Im2
z
)
*
(
Rea
z2
)
)
)
+
(
(
Im3
z
)
*
(
Im1
z2
)
)
)
-
(
(
Im1
z
)
*
(
Im3
z2
)
)
)
/
(
(
|.
z
.|
*
|.
z2
.|
)
^2
)
)
*
<j>
is
quaternion
set
(
(
(
(
(
(
(
Rea
z
)
*
(
Rea
z2
)
)
-
(
(
Im1
z
)
*
(
Im1
z2
)
)
)
-
(
(
Im2
z
)
*
(
Im2
z2
)
)
)
-
(
(
Im3
z
)
*
(
Im3
z2
)
)
)
/
(
(
|.
z
.|
*
|.
z2
.|
)
^2
)
)
-
(
(
(
(
(
(
(
Rea
z
)
*
(
Im1
z2
)
)
+
(
(
Im1
z
)
*
(
Rea
z2
)
)
)
+
(
(
Im2
z
)
*
(
Im3
z2
)
)
)
-
(
(
Im3
z
)
*
(
Im2
z2
)
)
)
/
(
(
|.
z
.|
*
|.
z2
.|
)
^2
)
)
*
<i>
)
)
-
(
(
(
(
(
(
(
Rea
z
)
*
(
Im2
z2
)
)
+
(
(
Im2
z
)
*
(
Rea
z2
)
)
)
+
(
(
Im3
z
)
*
(
Im1
z2
)
)
)
-
(
(
Im1
z
)
*
(
Im3
z2
)
)
)
/
(
(
|.
z
.|
*
|.
z2
.|
)
^2
)
)
*
<j>
)
is
quaternion
Element
of
QUATERNION
-
(
(
(
(
(
(
(
Rea
z
)
*
(
Im2
z2
)
)
+
(
(
Im2
z
)
*
(
Rea
z2
)
)
)
+
(
(
Im3
z
)
*
(
Im1
z2
)
)
)
-
(
(
Im1
z
)
*
(
Im3
z2
)
)
)
/
(
(
|.
z
.|
*
|.
z2
.|
)
^2
)
)
*
<j>
)
is
quaternion
set
(
(
(
(
(
(
(
Rea
z
)
*
(
Rea
z2
)
)
-
(
(
Im1
z
)
*
(
Im1
z2
)
)
)
-
(
(
Im2
z
)
*
(
Im2
z2
)
)
)
-
(
(
Im3
z
)
*
(
Im3
z2
)
)
)
/
(
(
|.
z
.|
*
|.
z2
.|
)
^2
)
)
-
(
(
(
(
(
(
(
Rea
z
)
*
(
Im1
z2
)
)
+
(
(
Im1
z
)
*
(
Rea
z2
)
)
)
+
(
(
Im2
z
)
*
(
Im3
z2
)
)
)
-
(
(
Im3
z
)
*
(
Im2
z2
)
)
)
/
(
(
|.
z
.|
*
|.
z2
.|
)
^2
)
)
*
<i>
)
)
+
(
-
(
(
(
(
(
(
(
Rea
z
)
*
(
Im2
z2
)
)
+
(
(
Im2
z
)
*
(
Rea
z2
)
)
)
+
(
(
Im3
z
)
*
(
Im1
z2
)
)
)
-
(
(
Im1
z
)
*
(
Im3
z2
)
)
)
/
(
(
|.
z
.|
*
|.
z2
.|
)
^2
)
)
*
<j>
)
)
is
quaternion
set
(
(
(
(
(
(
(
(
Rea
z
)
*
(
Rea
z2
)
)
-
(
(
Im1
z
)
*
(
Im1
z2
)
)
)
-
(
(
Im2
z
)
*
(
Im2
z2
)
)
)
-
(
(
Im3
z
)
*
(
Im3
z2
)
)
)
/
(
(
|.
z
.|
*
|.
z2
.|
)
^2
)
)
-
(
(
(
(
(
(
(
Rea
z
)
*
(
Im1
z2
)
)
+
(
(
Im1
z
)
*
(
Rea
z2
)
)
)
+
(
(
Im2
z
)
*
(
Im3
z2
)
)
)
-
(
(
Im3
z
)
*
(
Im2
z2
)
)
)
/
(
(
|.
z
.|
*
|.
z2
.|
)
^2
)
)
*
<i>
)
)
-
(
(
(
(
(
(
(
Rea
z
)
*
(
Im2
z2
)
)
+
(
(
Im2
z
)
*
(
Rea
z2
)
)
)
+
(
(
Im3
z
)
*
(
Im1
z2
)
)
)
-
(
(
Im1
z
)
*
(
Im3
z2
)
)
)
/
(
(
|.
z
.|
*
|.
z2
.|
)
^2
)
)
*
<j>
)
)
-
(
(
(
Im3
(
z
*
z2
)
)
/
(
(
|.
z
.|
*
|.
z2
.|
)
^2
)
)
*
<k>
)
is
quaternion
Element
of
QUATERNION
(
(
(
(
(
(
(
(
Rea
z
)
*
(
Rea
z2
)
)
-
(
(
Im1
z
)
*
(
Im1
z2
)
)
)
-
(
(
Im2
z
)
*
(
Im2
z2
)
)
)
-
(
(
Im3
z
)
*
(
Im3
z2
)
)
)
/
(
(
|.
z
.|
*
|.
z2
.|
)
^2
)
)
-
(
(
(
(
(
(
(
Rea
z
)
*
(
Im1
z2
)
)
+
(
(
Im1
z
)
*
(
Rea
z2
)
)
)
+
(
(
Im2
z
)
*
(
Im3
z2
)
)
)
-
(
(
Im3
z
)
*
(
Im2
z2
)
)
)
/
(
(
|.
z
.|
*
|.
z2
.|
)
^2
)
)
*
<i>
)
)
-
(
(
(
(
(
(
(
Rea
z
)
*
(
Im2
z2
)
)
+
(
(
Im2
z
)
*
(
Rea
z2
)
)
)
+
(
(
Im3
z
)
*
(
Im1
z2
)
)
)
-
(
(
Im1
z
)
*
(
Im3
z2
)
)
)
/
(
(
|.
z
.|
*
|.
z2
.|
)
^2
)
)
*
<j>
)
)
+
(
-
(
(
(
Im3
(
z
*
z2
)
)
/
(
(
|.
z
.|
*
|.
z2
.|
)
^2
)
)
*
<k>
)
)
is
quaternion
set
(
Rea
z
)
*
(
Im3
z2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im3
z
)
*
(
Rea
z2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
Rea
z
)
*
(
Im3
z2
)
)
+
(
(
Im3
z
)
*
(
Rea
z2
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im1
z
)
*
(
Im2
z2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
(
Rea
z
)
*
(
Im3
z2
)
)
+
(
(
Im3
z
)
*
(
Rea
z2
)
)
)
+
(
(
Im1
z
)
*
(
Im2
z2
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im2
z
)
*
(
Im1
z2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
(
(
Rea
z
)
*
(
Im3
z2
)
)
+
(
(
Im3
z
)
*
(
Rea
z2
)
)
)
+
(
(
Im1
z
)
*
(
Im2
z2
)
)
)
-
(
(
Im2
z
)
*
(
Im1
z2
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K110
(
(
(
Im2
z
)
*
(
Im1
z2
)
)
) is
V28
()
set
K108
(
(
(
(
(
Rea
z
)
*
(
Im3
z2
)
)
+
(
(
Im3
z
)
*
(
Rea
z2
)
)
)
+
(
(
Im1
z
)
*
(
Im2
z2
)
)
)
,
K110
(
(
(
Im2
z
)
*
(
Im1
z2
)
)
)) is
set
(
(
(
(
(
Rea
z
)
*
(
Im3
z2
)
)
+
(
(
Im3
z
)
*
(
Rea
z2
)
)
)
+
(
(
Im1
z
)
*
(
Im2
z2
)
)
)
-
(
(
Im2
z
)
*
(
Im1
z2
)
)
)
/
(
(
|.
z
.|
*
|.
z2
.|
)
^2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
(
(
(
(
Rea
z
)
*
(
Im3
z2
)
)
+
(
(
Im3
z
)
*
(
Rea
z2
)
)
)
+
(
(
Im1
z
)
*
(
Im2
z2
)
)
)
-
(
(
Im2
z
)
*
(
Im1
z2
)
)
)
,
K111
(
(
(
|.
z
.|
*
|.
z2
.|
)
^2
)
)) is
set
(
(
(
(
(
(
Rea
z
)
*
(
Im3
z2
)
)
+
(
(
Im3
z
)
*
(
Rea
z2
)
)
)
+
(
(
Im1
z
)
*
(
Im2
z2
)
)
)
-
(
(
Im2
z
)
*
(
Im1
z2
)
)
)
/
(
(
|.
z
.|
*
|.
z2
.|
)
^2
)
)
*
<k>
is
quaternion
set
(
(
(
(
(
(
(
(
Rea
z
)
*
(
Rea
z2
)
)
-
(
(
Im1
z
)
*
(
Im1
z2
)
)
)
-
(
(
Im2
z
)
*
(
Im2
z2
)
)
)
-
(
(
Im3
z
)
*
(
Im3
z2
)
)
)
/
(
(
|.
z
.|
*
|.
z2
.|
)
^2
)
)
-
(
(
(
(
(
(
(
Rea
z
)
*
(
Im1
z2
)
)
+
(
(
Im1
z
)
*
(
Rea
z2
)
)
)
+
(
(
Im2
z
)
*
(
Im3
z2
)
)
)
-
(
(
Im3
z
)
*
(
Im2
z2
)
)
)
/
(
(
|.
z
.|
*
|.
z2
.|
)
^2
)
)
*
<i>
)
)
-
(
(
(
(
(
(
(
Rea
z
)
*
(
Im2
z2
)
)
+
(
(
Im2
z
)
*
(
Rea
z2
)
)
)
+
(
(
Im3
z
)
*
(
Im1
z2
)
)
)
-
(
(
Im1
z
)
*
(
Im3
z2
)
)
)
/
(
(
|.
z
.|
*
|.
z2
.|
)
^2
)
)
*
<j>
)
)
-
(
(
(
(
(
(
(
Rea
z
)
*
(
Im3
z2
)
)
+
(
(
Im3
z
)
*
(
Rea
z2
)
)
)
+
(
(
Im1
z
)
*
(
Im2
z2
)
)
)
-
(
(
Im2
z
)
*
(
Im1
z2
)
)
)
/
(
(
|.
z
.|
*
|.
z2
.|
)
^2
)
)
*
<k>
)
is
quaternion
Element
of
QUATERNION
-
(
(
(
(
(
(
(
Rea
z
)
*
(
Im3
z2
)
)
+
(
(
Im3
z
)
*
(
Rea
z2
)
)
)
+
(
(
Im1
z
)
*
(
Im2
z2
)
)
)
-
(
(
Im2
z
)
*
(
Im1
z2
)
)
)
/
(
(
|.
z
.|
*
|.
z2
.|
)
^2
)
)
*
<k>
)
is
quaternion
set
(
(
(
(
(
(
(
(
Rea
z
)
*
(
Rea
z2
)
)
-
(
(
Im1
z
)
*
(
Im1
z2
)
)
)
-
(
(
Im2
z
)
*
(
Im2
z2
)
)
)
-
(
(
Im3
z
)
*
(
Im3
z2
)
)
)
/
(
(
|.
z
.|
*
|.
z2
.|
)
^2
)
)
-
(
(
(
(
(
(
(
Rea
z
)
*
(
Im1
z2
)
)
+
(
(
Im1
z
)
*
(
Rea
z2
)
)
)
+
(
(
Im2
z
)
*
(
Im3
z2
)
)
)
-
(
(
Im3
z
)
*
(
Im2
z2
)
)
)
/
(
(
|.
z
.|
*
|.
z2
.|
)
^2
)
)
*
<i>
)
)
-
(
(
(
(
(
(
(
Rea
z
)
*
(
Im2
z2
)
)
+
(
(
Im2
z
)
*
(
Rea
z2
)
)
)
+
(
(
Im3
z
)
*
(
Im1
z2
)
)
)
-
(
(
Im1
z
)
*
(
Im3
z2
)
)
)
/
(
(
|.
z
.|
*
|.
z2
.|
)
^2
)
)
*
<j>
)
)
+
(
-
(
(
(
(
(
(
(
Rea
z
)
*
(
Im3
z2
)
)
+
(
(
Im3
z
)
*
(
Rea
z2
)
)
)
+
(
(
Im1
z
)
*
(
Im2
z2
)
)
)
-
(
(
Im2
z
)
*
(
Im1
z2
)
)
)
/
(
(
|.
z
.|
*
|.
z2
.|
)
^2
)
)
*
<k>
)
)
is
quaternion
set
z
is
quaternion
set
z
*'
is
quaternion
Element
of
QUATERNION
Rea
z
is
V28
()
V29
()
ext-real
Element
of
REAL
Im1
z
is
V28
()
V29
()
ext-real
Element
of
REAL
-
(
Im1
z
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
-
(
Im1
z
)
)
*
K107
() is
quaternion
set
(
Rea
z
)
+
(
(
-
(
Im1
z
)
)
*
K107
()
)
is
quaternion
set
Im2
z
is
V28
()
V29
()
ext-real
Element
of
REAL
-
(
Im2
z
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
-
(
Im2
z
)
)
*
<j>
is
quaternion
set
(
(
Rea
z
)
+
(
(
-
(
Im1
z
)
)
*
K107
()
)
)
+
(
(
-
(
Im2
z
)
)
*
<j>
)
is
quaternion
Element
of
QUATERNION
Im3
z
is
V28
()
V29
()
ext-real
Element
of
REAL
-
(
Im3
z
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
-
(
Im3
z
)
)
*
<k>
is
quaternion
set
(
(
(
Rea
z
)
+
(
(
-
(
Im1
z
)
)
*
K107
()
)
)
+
(
(
-
(
Im2
z
)
)
*
<j>
)
)
+
(
(
-
(
Im3
z
)
)
*
<k>
)
is
quaternion
Element
of
QUATERNION
(
z
*'
)
"
is
quaternion
Element
of
QUATERNION
z
"
is
quaternion
Element
of
QUATERNION
(
z
"
)
*'
is
quaternion
Element
of
QUATERNION
Rea
(
z
"
)
is
V28
()
V29
()
ext-real
Element
of
REAL
Im1
(
z
"
)
is
V28
()
V29
()
ext-real
Element
of
REAL
-
(
Im1
(
z
"
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
-
(
Im1
(
z
"
)
)
)
*
K107
() is
quaternion
set
(
Rea
(
z
"
)
)
+
(
(
-
(
Im1
(
z
"
)
)
)
*
K107
()
)
is
quaternion
set
Im2
(
z
"
)
is
V28
()
V29
()
ext-real
Element
of
REAL
-
(
Im2
(
z
"
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
-
(
Im2
(
z
"
)
)
)
*
<j>
is
quaternion
set
(
(
Rea
(
z
"
)
)
+
(
(
-
(
Im1
(
z
"
)
)
)
*
K107
()
)
)
+
(
(
-
(
Im2
(
z
"
)
)
)
*
<j>
)
is
quaternion
Element
of
QUATERNION
Im3
(
z
"
)
is
V28
()
V29
()
ext-real
Element
of
REAL
-
(
Im3
(
z
"
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
-
(
Im3
(
z
"
)
)
)
*
<k>
is
quaternion
set
(
(
(
Rea
(
z
"
)
)
+
(
(
-
(
Im1
(
z
"
)
)
)
*
K107
()
)
)
+
(
(
-
(
Im2
(
z
"
)
)
)
*
<j>
)
)
+
(
(
-
(
Im3
(
z
"
)
)
)
*
<k>
)
is
quaternion
Element
of
QUATERNION
Im1
(
(
z
*'
)
"
)
is
V28
()
V29
()
ext-real
Element
of
REAL
Im1
(
z
*'
)
is
V28
()
V29
()
ext-real
Element
of
REAL
|.
(
z
*'
)
.|
is
V28
()
V29
()
ext-real
Element
of
REAL
Rea
(
z
*'
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Rea
(
z
*'
)
)
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Rea
(
z
*'
)
)
,
(
Rea
(
z
*'
)
)
) is
set
(
Im1
(
z
*'
)
)
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Im1
(
z
*'
)
)
,
(
Im1
(
z
*'
)
)
) is
set
(
(
Rea
(
z
*'
)
)
^2
)
+
(
(
Im1
(
z
*'
)
)
^2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
Im2
(
z
*'
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im2
(
z
*'
)
)
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Im2
(
z
*'
)
)
,
(
Im2
(
z
*'
)
)
) is
set
(
(
(
Rea
(
z
*'
)
)
^2
)
+
(
(
Im1
(
z
*'
)
)
^2
)
)
+
(
(
Im2
(
z
*'
)
)
^2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
Im3
(
z
*'
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im3
(
z
*'
)
)
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Im3
(
z
*'
)
)
,
(
Im3
(
z
*'
)
)
) is
set
(
(
(
(
Rea
(
z
*'
)
)
^2
)
+
(
(
Im1
(
z
*'
)
)
^2
)
)
+
(
(
Im2
(
z
*'
)
)
^2
)
)
+
(
(
Im3
(
z
*'
)
)
^2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
sqrt
(
(
(
(
(
Rea
(
z
*'
)
)
^2
)
+
(
(
Im1
(
z
*'
)
)
^2
)
)
+
(
(
Im2
(
z
*'
)
)
^2
)
)
+
(
(
Im3
(
z
*'
)
)
^2
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
|.
(
z
*'
)
.|
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
|.
(
z
*'
)
.|
,
|.
(
z
*'
)
.|
) is
set
(
Im1
(
z
*'
)
)
/
(
|.
(
z
*'
)
.|
^2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K111
(
(
|.
(
z
*'
)
.|
^2
)
) is
V28
()
set
K109
(
(
Im1
(
z
*'
)
)
,
K111
(
(
|.
(
z
*'
)
.|
^2
)
)) is
set
-
(
(
Im1
(
z
*'
)
)
/
(
|.
(
z
*'
)
.|
^2
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
-
(
Im1
z
)
)
/
(
|.
(
z
*'
)
.|
^2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
-
(
Im1
z
)
)
,
K111
(
(
|.
(
z
*'
)
.|
^2
)
)) is
set
-
(
(
-
(
Im1
z
)
)
/
(
|.
(
z
*'
)
.|
^2
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
Im2
(
(
z
*'
)
"
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im2
(
z
*'
)
)
/
(
|.
(
z
*'
)
.|
^2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Im2
(
z
*'
)
)
,
K111
(
(
|.
(
z
*'
)
.|
^2
)
)) is
set
-
(
(
Im2
(
z
*'
)
)
/
(
|.
(
z
*'
)
.|
^2
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
-
(
Im2
z
)
)
/
(
|.
(
z
*'
)
.|
^2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
-
(
Im2
z
)
)
,
K111
(
(
|.
(
z
*'
)
.|
^2
)
)) is
set
-
(
(
-
(
Im2
z
)
)
/
(
|.
(
z
*'
)
.|
^2
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
Im2
(
(
z
"
)
*'
)
is
V28
()
V29
()
ext-real
Element
of
REAL
|.
z
.|
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Rea
z
)
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Rea
z
)
,
(
Rea
z
)
) is
set
(
Im1
z
)
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Im1
z
)
,
(
Im1
z
)
) is
set
(
(
Rea
z
)
^2
)
+
(
(
Im1
z
)
^2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im2
z
)
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Im2
z
)
,
(
Im2
z
)
) is
set
(
(
(
Rea
z
)
^2
)
+
(
(
Im1
z
)
^2
)
)
+
(
(
Im2
z
)
^2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im3
z
)
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Im3
z
)
,
(
Im3
z
)
) is
set
(
(
(
(
Rea
z
)
^2
)
+
(
(
Im1
z
)
^2
)
)
+
(
(
Im2
z
)
^2
)
)
+
(
(
Im3
z
)
^2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
sqrt
(
(
(
(
(
Rea
z
)
^2
)
+
(
(
Im1
z
)
^2
)
)
+
(
(
Im2
z
)
^2
)
)
+
(
(
Im3
z
)
^2
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
|.
z
.|
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
|.
z
.|
,
|.
z
.|
) is
set
(
Im2
z
)
/
(
|.
z
.|
^2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K111
(
(
|.
z
.|
^2
)
) is
V28
()
set
K109
(
(
Im2
z
)
,
K111
(
(
|.
z
.|
^2
)
)) is
set
-
(
(
Im2
z
)
/
(
|.
z
.|
^2
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
-
(
-
(
(
Im2
z
)
/
(
|.
z
.|
^2
)
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im2
z
)
/
(
|.
(
z
*'
)
.|
^2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Im2
z
)
,
K111
(
(
|.
(
z
*'
)
.|
^2
)
)) is
set
-
(
(
Im2
z
)
/
(
|.
(
z
*'
)
.|
^2
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
-
(
-
(
(
Im2
z
)
/
(
|.
(
z
*'
)
.|
^2
)
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
Im1
(
(
z
"
)
*'
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im1
z
)
/
(
|.
z
.|
^2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Im1
z
)
,
K111
(
(
|.
z
.|
^2
)
)) is
set
-
(
(
Im1
z
)
/
(
|.
z
.|
^2
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
-
(
-
(
(
Im1
z
)
/
(
|.
z
.|
^2
)
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im1
z
)
/
(
|.
(
z
*'
)
.|
^2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Im1
z
)
,
K111
(
(
|.
(
z
*'
)
.|
^2
)
)) is
set
-
(
(
Im1
z
)
/
(
|.
(
z
*'
)
.|
^2
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
-
(
-
(
(
Im1
z
)
/
(
|.
(
z
*'
)
.|
^2
)
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
Im3
(
(
z
"
)
*'
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im3
z
)
/
(
|.
z
.|
^2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Im3
z
)
,
K111
(
(
|.
z
.|
^2
)
)) is
set
-
(
(
Im3
z
)
/
(
|.
z
.|
^2
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
-
(
-
(
(
Im3
z
)
/
(
|.
z
.|
^2
)
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im3
z
)
/
(
|.
(
z
*'
)
.|
^2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Im3
z
)
,
K111
(
(
|.
(
z
*'
)
.|
^2
)
)) is
set
-
(
(
Im3
z
)
/
(
|.
(
z
*'
)
.|
^2
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
-
(
-
(
(
Im3
z
)
/
(
|.
(
z
*'
)
.|
^2
)
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
Rea
(
(
z
"
)
*'
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Rea
z
)
/
(
|.
z
.|
^2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Rea
z
)
,
K111
(
(
|.
z
.|
^2
)
)) is
set
(
Rea
z
)
/
(
|.
(
z
*'
)
.|
^2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Rea
z
)
,
K111
(
(
|.
(
z
*'
)
.|
^2
)
)) is
set
Im3
(
(
z
*'
)
"
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im3
(
z
*'
)
)
/
(
|.
(
z
*'
)
.|
^2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Im3
(
z
*'
)
)
,
K111
(
(
|.
(
z
*'
)
.|
^2
)
)) is
set
-
(
(
Im3
(
z
*'
)
)
/
(
|.
(
z
*'
)
.|
^2
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
-
(
Im3
z
)
)
/
(
|.
(
z
*'
)
.|
^2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
-
(
Im3
z
)
)
,
K111
(
(
|.
(
z
*'
)
.|
^2
)
)) is
set
-
(
(
-
(
Im3
z
)
)
/
(
|.
(
z
*'
)
.|
^2
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
Rea
(
(
z
*'
)
"
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Rea
(
z
*'
)
)
/
(
|.
(
z
*'
)
.|
^2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Rea
(
z
*'
)
)
,
K111
(
(
|.
(
z
*'
)
.|
^2
)
)) is
set
1q
"
is
quaternion
Element
of
QUATERNION
Im3
(
1q
"
)
is
V28
()
V29
()
ext-real
Element
of
REAL
Im3
1q
is
V28
()
V29
()
ext-real
Element
of
REAL
|.
1q
.|
is
V28
()
V29
()
ext-real
Element
of
REAL
Rea
1q
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Rea
1q
)
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Rea
1q
)
,
(
Rea
1q
)
) is
set
Im1
1q
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im1
1q
)
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Im1
1q
)
,
(
Im1
1q
)
) is
set
(
(
Rea
1q
)
^2
)
+
(
(
Im1
1q
)
^2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
Im2
1q
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im2
1q
)
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Im2
1q
)
,
(
Im2
1q
)
) is
set
(
(
(
Rea
1q
)
^2
)
+
(
(
Im1
1q
)
^2
)
)
+
(
(
Im2
1q
)
^2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im3
1q
)
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Im3
1q
)
,
(
Im3
1q
)
) is
set
(
(
(
(
Rea
1q
)
^2
)
+
(
(
Im1
1q
)
^2
)
)
+
(
(
Im2
1q
)
^2
)
)
+
(
(
Im3
1q
)
^2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
sqrt
(
(
(
(
(
Rea
1q
)
^2
)
+
(
(
Im1
1q
)
^2
)
)
+
(
(
Im2
1q
)
^2
)
)
+
(
(
Im3
1q
)
^2
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
|.
1q
.|
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
|.
1q
.|
,
|.
1q
.|
) is
set
(
Im3
1q
)
/
(
|.
1q
.|
^2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K111
(
(
|.
1q
.|
^2
)
) is
V28
()
set
K109
(
(
Im3
1q
)
,
K111
(
(
|.
1q
.|
^2
)
)) is
set
-
(
(
Im3
1q
)
/
(
|.
1q
.|
^2
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
Im2
(
1q
"
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im2
1q
)
/
(
|.
1q
.|
^2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Im2
1q
)
,
K111
(
(
|.
1q
.|
^2
)
)) is
set
-
(
(
Im2
1q
)
/
(
|.
1q
.|
^2
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
Im1
(
1q
"
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im1
1q
)
/
(
|.
1q
.|
^2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Im1
1q
)
,
K111
(
(
|.
1q
.|
^2
)
)) is
set
-
(
(
Im1
1q
)
/
(
|.
1q
.|
^2
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
Rea
(
1q
"
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Rea
1q
)
/
(
|.
1q
.|
^2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Rea
1q
)
,
K111
(
(
|.
1q
.|
^2
)
)) is
set
[*
1,
0
,
0
,
0
*]
is
quaternion
Element
of
QUATERNION
z
is
quaternion
set
|.
z
.|
is
V28
()
V29
()
ext-real
Element
of
REAL
Rea
z
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Rea
z
)
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Rea
z
)
,
(
Rea
z
)
) is
set
Im1
z
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im1
z
)
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Im1
z
)
,
(
Im1
z
)
) is
set
(
(
Rea
z
)
^2
)
+
(
(
Im1
z
)
^2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
Im2
z
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im2
z
)
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Im2
z
)
,
(
Im2
z
)
) is
set
(
(
(
Rea
z
)
^2
)
+
(
(
Im1
z
)
^2
)
)
+
(
(
Im2
z
)
^2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
Im3
z
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im3
z
)
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Im3
z
)
,
(
Im3
z
)
) is
set
(
(
(
(
Rea
z
)
^2
)
+
(
(
Im1
z
)
^2
)
)
+
(
(
Im2
z
)
^2
)
)
+
(
(
Im3
z
)
^2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
sqrt
(
(
(
(
(
Rea
z
)
^2
)
+
(
(
Im1
z
)
^2
)
)
+
(
(
Im2
z
)
^2
)
)
+
(
(
Im3
z
)
^2
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
z
"
is
quaternion
Element
of
QUATERNION
z2
is
quaternion
set
|.
z2
.|
is
V28
()
V29
()
ext-real
Element
of
REAL
Rea
z2
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Rea
z2
)
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Rea
z2
)
,
(
Rea
z2
)
) is
set
Im1
z2
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im1
z2
)
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Im1
z2
)
,
(
Im1
z2
)
) is
set
(
(
Rea
z2
)
^2
)
+
(
(
Im1
z2
)
^2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
Im2
z2
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im2
z2
)
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Im2
z2
)
,
(
Im2
z2
)
) is
set
(
(
(
Rea
z2
)
^2
)
+
(
(
Im1
z2
)
^2
)
)
+
(
(
Im2
z2
)
^2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
Im3
z2
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im3
z2
)
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Im3
z2
)
,
(
Im3
z2
)
) is
set
(
(
(
(
Rea
z2
)
^2
)
+
(
(
Im1
z2
)
^2
)
)
+
(
(
Im2
z2
)
^2
)
)
+
(
(
Im3
z2
)
^2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
sqrt
(
(
(
(
(
Rea
z2
)
^2
)
+
(
(
Im1
z2
)
^2
)
)
+
(
(
Im2
z2
)
^2
)
)
+
(
(
Im3
z2
)
^2
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
z2
"
is
quaternion
Element
of
QUATERNION
|.
z
.|
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
|.
z
.|
,
|.
z
.|
) is
set
Im3
(
z
"
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im3
z
)
/
(
|.
z
.|
^2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K111
(
(
|.
z
.|
^2
)
) is
V28
()
set
K109
(
(
Im3
z
)
,
K111
(
(
|.
z
.|
^2
)
)) is
set
-
(
(
Im3
z
)
/
(
|.
z
.|
^2
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
|.
z2
.|
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
|.
z2
.|
,
|.
z2
.|
) is
set
(
Im3
z2
)
/
(
|.
z2
.|
^2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K111
(
(
|.
z2
.|
^2
)
) is
V28
()
set
K109
(
(
Im3
z2
)
,
K111
(
(
|.
z2
.|
^2
)
)) is
set
-
(
(
Im3
z2
)
/
(
|.
z2
.|
^2
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
Im2
(
z
"
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im2
z
)
/
(
|.
z
.|
^2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Im2
z
)
,
K111
(
(
|.
z
.|
^2
)
)) is
set
-
(
(
Im2
z
)
/
(
|.
z
.|
^2
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im2
z2
)
/
(
|.
z2
.|
^2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Im2
z2
)
,
K111
(
(
|.
z2
.|
^2
)
)) is
set
-
(
(
Im2
z2
)
/
(
|.
z2
.|
^2
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
Im1
(
z
"
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im1
z
)
/
(
|.
z
.|
^2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Im1
z
)
,
K111
(
(
|.
z
.|
^2
)
)) is
set
-
(
(
Im1
z
)
/
(
|.
z
.|
^2
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im1
z2
)
/
(
|.
z2
.|
^2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Im1
z2
)
,
K111
(
(
|.
z2
.|
^2
)
)) is
set
-
(
(
Im1
z2
)
/
(
|.
z2
.|
^2
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
Rea
(
z
"
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Rea
z
)
/
(
|.
z
.|
^2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Rea
z
)
,
K111
(
(
|.
z
.|
^2
)
)) is
set
(
Rea
z2
)
/
(
|.
z2
.|
^2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Rea
z2
)
,
K111
(
(
|.
z2
.|
^2
)
)) is
set
z
is
quaternion
set
z2
is
quaternion
set
z
-
z2
is
quaternion
Element
of
QUATERNION
-
z2
is
quaternion
set
z
+
(
-
z2
)
is
quaternion
set
z2
is
quaternion
set
z
*
z2
is
quaternion
Element
of
QUATERNION
z2
*
z2
is
quaternion
Element
of
QUATERNION
(
z
*
z2
)
-
(
z2
*
z2
)
is
quaternion
Element
of
QUATERNION
-
(
z2
*
z2
)
is
quaternion
set
(
z
*
z2
)
+
(
-
(
z2
*
z2
)
)
is
quaternion
set
z4
is
quaternion
set
z2
+
z4
is
quaternion
Element
of
QUATERNION
(
z
-
z2
)
*
(
z2
+
z4
)
is
quaternion
Element
of
QUATERNION
z
*
z4
is
quaternion
Element
of
QUATERNION
(
(
z
*
z2
)
-
(
z2
*
z2
)
)
+
(
z
*
z4
)
is
quaternion
Element
of
QUATERNION
z2
*
z4
is
quaternion
Element
of
QUATERNION
(
(
(
z
*
z2
)
-
(
z2
*
z2
)
)
+
(
z
*
z4
)
)
-
(
z2
*
z4
)
is
quaternion
Element
of
QUATERNION
-
(
z2
*
z4
)
is
quaternion
set
(
(
(
z
*
z2
)
-
(
z2
*
z2
)
)
+
(
z
*
z4
)
)
+
(
-
(
z2
*
z4
)
)
is
quaternion
set
(
z
-
z2
)
*
z2
is
quaternion
Element
of
QUATERNION
(
z
-
z2
)
*
z4
is
quaternion
Element
of
QUATERNION
(
(
z
-
z2
)
*
z2
)
+
(
(
z
-
z2
)
*
z4
)
is
quaternion
Element
of
QUATERNION
(
(
z
*
z2
)
-
(
z2
*
z2
)
)
+
(
(
z
-
z2
)
*
z4
)
is
quaternion
Element
of
QUATERNION
(
z
*
z4
)
-
(
z2
*
z4
)
is
quaternion
Element
of
QUATERNION
(
z
*
z4
)
+
(
-
(
z2
*
z4
)
)
is
quaternion
set
(
(
z
*
z2
)
-
(
z2
*
z2
)
)
+
(
(
z
*
z4
)
-
(
z2
*
z4
)
)
is
quaternion
Element
of
QUATERNION
z
is
quaternion
set
z2
is
quaternion
set
z
+
z2
is
quaternion
Element
of
QUATERNION
z2
is
quaternion
set
z
*
z2
is
quaternion
Element
of
QUATERNION
z2
*
z2
is
quaternion
Element
of
QUATERNION
(
z
*
z2
)
+
(
z2
*
z2
)
is
quaternion
Element
of
QUATERNION
z4
is
quaternion
set
z2
+
z4
is
quaternion
Element
of
QUATERNION
(
z
+
z2
)
*
(
z2
+
z4
)
is
quaternion
Element
of
QUATERNION
z
*
z4
is
quaternion
Element
of
QUATERNION
(
(
z
*
z2
)
+
(
z2
*
z2
)
)
+
(
z
*
z4
)
is
quaternion
Element
of
QUATERNION
z2
*
z4
is
quaternion
Element
of
QUATERNION
(
(
(
z
*
z2
)
+
(
z2
*
z2
)
)
+
(
z
*
z4
)
)
+
(
z2
*
z4
)
is
quaternion
Element
of
QUATERNION
(
z
+
z2
)
*
z2
is
quaternion
Element
of
QUATERNION
(
z
+
z2
)
*
z4
is
quaternion
Element
of
QUATERNION
(
(
z
+
z2
)
*
z2
)
+
(
(
z
+
z2
)
*
z4
)
is
quaternion
Element
of
QUATERNION
(
(
z
*
z2
)
+
(
z2
*
z2
)
)
+
(
(
z
+
z2
)
*
z4
)
is
quaternion
Element
of
QUATERNION
(
z
*
z4
)
+
(
z2
*
z4
)
is
quaternion
Element
of
QUATERNION
(
(
z
*
z2
)
+
(
z2
*
z2
)
)
+
(
(
z
*
z4
)
+
(
z2
*
z4
)
)
is
quaternion
Element
of
QUATERNION
z
is
quaternion
set
-
z
is
quaternion
Element
of
QUATERNION
z2
is
quaternion
set
z
+
z2
is
quaternion
Element
of
QUATERNION
-
(
z
+
z2
)
is
quaternion
Element
of
QUATERNION
(
-
z
)
-
z2
is
quaternion
Element
of
QUATERNION
-
z2
is
quaternion
set
(
-
z
)
+
(
-
z2
)
is
quaternion
set
(
-
1q
)
*
z
is
quaternion
Element
of
QUATERNION
(
(
-
1q
)
*
z
)
-
z2
is
quaternion
Element
of
QUATERNION
(
(
-
1q
)
*
z
)
+
(
-
z2
)
is
quaternion
set
(
-
1q
)
*
z2
is
quaternion
Element
of
QUATERNION
(
(
-
1q
)
*
z
)
+
(
(
-
1q
)
*
z2
)
is
quaternion
Element
of
QUATERNION
(
-
1q
)
*
(
z
+
z2
)
is
quaternion
Element
of
QUATERNION
z
is
quaternion
set
-
z
is
quaternion
Element
of
QUATERNION
z2
is
quaternion
set
z
-
z2
is
quaternion
Element
of
QUATERNION
-
z2
is
quaternion
set
z
+
(
-
z2
)
is
quaternion
set
-
(
z
-
z2
)
is
quaternion
Element
of
QUATERNION
(
-
z
)
+
z2
is
quaternion
Element
of
QUATERNION
(
-
1q
)
*
(
z
-
z2
)
is
quaternion
Element
of
QUATERNION
(
-
1q
)
*
z
is
quaternion
Element
of
QUATERNION
(
-
1q
)
*
z2
is
quaternion
Element
of
QUATERNION
(
(
-
1q
)
*
z
)
-
(
(
-
1q
)
*
z2
)
is
quaternion
Element
of
QUATERNION
-
(
(
-
1q
)
*
z2
)
is
quaternion
set
(
(
-
1q
)
*
z
)
+
(
-
(
(
-
1q
)
*
z2
)
)
is
quaternion
set
-
z2
is
quaternion
Element
of
QUATERNION
(
(
-
1q
)
*
z
)
-
(
-
z2
)
is
quaternion
Element
of
QUATERNION
-
(
-
z2
)
is
quaternion
set
(
(
-
1q
)
*
z
)
+
(
-
(
-
z2
)
)
is
quaternion
set
z
is
quaternion
set
z2
is
quaternion
set
z
-
z2
is
quaternion
Element
of
QUATERNION
-
z2
is
quaternion
set
z
+
(
-
z2
)
is
quaternion
set
z2
is
quaternion
set
z2
+
z2
is
quaternion
Element
of
QUATERNION
z
-
(
z2
+
z2
)
is
quaternion
Element
of
QUATERNION
-
(
z2
+
z2
)
is
quaternion
set
z
+
(
-
(
z2
+
z2
)
)
is
quaternion
set
(
z
-
z2
)
-
z2
is
quaternion
Element
of
QUATERNION
-
z2
is
quaternion
set
(
z
-
z2
)
+
(
-
z2
)
is
quaternion
set
(
-
1q
)
*
z2
is
quaternion
Element
of
QUATERNION
z
+
(
(
-
1q
)
*
z2
)
is
quaternion
Element
of
QUATERNION
-
z2
is
quaternion
Element
of
QUATERNION
(
z
+
(
(
-
1q
)
*
z2
)
)
+
(
-
z2
)
is
quaternion
Element
of
QUATERNION
(
-
1q
)
*
z2
is
quaternion
Element
of
QUATERNION
(
z
+
(
(
-
1q
)
*
z2
)
)
+
(
(
-
1q
)
*
z2
)
is
quaternion
Element
of
QUATERNION
-
(
z2
+
z2
)
is
quaternion
Element
of
QUATERNION
(
-
1q
)
*
(
z2
+
z2
)
is
quaternion
Element
of
QUATERNION
(
(
-
1q
)
*
z2
)
+
(
(
-
1q
)
*
z2
)
is
quaternion
Element
of
QUATERNION
z
is
quaternion
set
z2
is
quaternion
set
z
-
z2
is
quaternion
Element
of
QUATERNION
-
z2
is
quaternion
set
z
+
(
-
z2
)
is
quaternion
set
z2
is
quaternion
set
z2
-
z2
is
quaternion
Element
of
QUATERNION
-
z2
is
quaternion
set
z2
+
(
-
z2
)
is
quaternion
set
z
-
(
z2
-
z2
)
is
quaternion
Element
of
QUATERNION
-
(
z2
-
z2
)
is
quaternion
set
z
+
(
-
(
z2
-
z2
)
)
is
quaternion
set
(
z
-
z2
)
+
z2
is
quaternion
Element
of
QUATERNION
-
(
z2
-
z2
)
is
quaternion
Element
of
QUATERNION
(
-
1q
)
*
(
z2
-
z2
)
is
quaternion
Element
of
QUATERNION
(
-
1q
)
*
z2
is
quaternion
Element
of
QUATERNION
(
-
1q
)
*
z2
is
quaternion
Element
of
QUATERNION
(
(
-
1q
)
*
z2
)
-
(
(
-
1q
)
*
z2
)
is
quaternion
Element
of
QUATERNION
-
(
(
-
1q
)
*
z2
)
is
quaternion
set
(
(
-
1q
)
*
z2
)
+
(
-
(
(
-
1q
)
*
z2
)
)
is
quaternion
set
-
z2
is
quaternion
Element
of
QUATERNION
(
(
-
1q
)
*
z2
)
-
(
-
z2
)
is
quaternion
Element
of
QUATERNION
-
(
-
z2
)
is
quaternion
set
(
(
-
1q
)
*
z2
)
+
(
-
(
-
z2
)
)
is
quaternion
set
z
+
(
(
(
-
1q
)
*
z2
)
-
(
-
z2
)
)
is
quaternion
Element
of
QUATERNION
z
+
(
(
-
1q
)
*
z2
)
is
quaternion
Element
of
QUATERNION
(
z
+
(
(
-
1q
)
*
z2
)
)
+
z2
is
quaternion
Element
of
QUATERNION
z
is
quaternion
set
z2
is
quaternion
set
z
+
z2
is
quaternion
Element
of
QUATERNION
z2
is
quaternion
set
z
*
z2
is
quaternion
Element
of
QUATERNION
z2
*
z2
is
quaternion
Element
of
QUATERNION
(
z
*
z2
)
+
(
z2
*
z2
)
is
quaternion
Element
of
QUATERNION
z4
is
quaternion
set
z2
-
z4
is
quaternion
Element
of
QUATERNION
-
z4
is
quaternion
set
z2
+
(
-
z4
)
is
quaternion
set
(
z
+
z2
)
*
(
z2
-
z4
)
is
quaternion
Element
of
QUATERNION
z
*
z4
is
quaternion
Element
of
QUATERNION
(
(
z
*
z2
)
+
(
z2
*
z2
)
)
-
(
z
*
z4
)
is
quaternion
Element
of
QUATERNION
-
(
z
*
z4
)
is
quaternion
set
(
(
z
*
z2
)
+
(
z2
*
z2
)
)
+
(
-
(
z
*
z4
)
)
is
quaternion
set
z2
*
z4
is
quaternion
Element
of
QUATERNION
(
(
(
z
*
z2
)
+
(
z2
*
z2
)
)
-
(
z
*
z4
)
)
-
(
z2
*
z4
)
is
quaternion
Element
of
QUATERNION
-
(
z2
*
z4
)
is
quaternion
set
(
(
(
z
*
z2
)
+
(
z2
*
z2
)
)
-
(
z
*
z4
)
)
+
(
-
(
z2
*
z4
)
)
is
quaternion
set
(
z
+
z2
)
*
z2
is
quaternion
Element
of
QUATERNION
(
z
+
z2
)
*
z4
is
quaternion
Element
of
QUATERNION
(
(
z
+
z2
)
*
z2
)
-
(
(
z
+
z2
)
*
z4
)
is
quaternion
Element
of
QUATERNION
-
(
(
z
+
z2
)
*
z4
)
is
quaternion
set
(
(
z
+
z2
)
*
z2
)
+
(
-
(
(
z
+
z2
)
*
z4
)
)
is
quaternion
set
(
(
z
*
z2
)
+
(
z2
*
z2
)
)
-
(
(
z
+
z2
)
*
z4
)
is
quaternion
Element
of
QUATERNION
(
(
z
*
z2
)
+
(
z2
*
z2
)
)
+
(
-
(
(
z
+
z2
)
*
z4
)
)
is
quaternion
set
(
z
*
z4
)
+
(
z2
*
z4
)
is
quaternion
Element
of
QUATERNION
(
(
z
*
z2
)
+
(
z2
*
z2
)
)
-
(
(
z
*
z4
)
+
(
z2
*
z4
)
)
is
quaternion
Element
of
QUATERNION
-
(
(
z
*
z4
)
+
(
z2
*
z4
)
)
is
quaternion
set
(
(
z
*
z2
)
+
(
z2
*
z2
)
)
+
(
-
(
(
z
*
z4
)
+
(
z2
*
z4
)
)
)
is
quaternion
set
z
is
quaternion
set
z2
is
quaternion
set
z
-
z2
is
quaternion
Element
of
QUATERNION
-
z2
is
quaternion
set
z
+
(
-
z2
)
is
quaternion
set
z2
is
quaternion
set
z
*
z2
is
quaternion
Element
of
QUATERNION
z2
*
z2
is
quaternion
Element
of
QUATERNION
(
z
*
z2
)
-
(
z2
*
z2
)
is
quaternion
Element
of
QUATERNION
-
(
z2
*
z2
)
is
quaternion
set
(
z
*
z2
)
+
(
-
(
z2
*
z2
)
)
is
quaternion
set
z4
is
quaternion
set
z2
-
z4
is
quaternion
Element
of
QUATERNION
-
z4
is
quaternion
set
z2
+
(
-
z4
)
is
quaternion
set
(
z
-
z2
)
*
(
z2
-
z4
)
is
quaternion
Element
of
QUATERNION
z
*
z4
is
quaternion
Element
of
QUATERNION
(
(
z
*
z2
)
-
(
z2
*
z2
)
)
-
(
z
*
z4
)
is
quaternion
Element
of
QUATERNION
-
(
z
*
z4
)
is
quaternion
set
(
(
z
*
z2
)
-
(
z2
*
z2
)
)
+
(
-
(
z
*
z4
)
)
is
quaternion
set
z2
*
z4
is
quaternion
Element
of
QUATERNION
(
(
(
z
*
z2
)
-
(
z2
*
z2
)
)
-
(
z
*
z4
)
)
+
(
z2
*
z4
)
is
quaternion
Element
of
QUATERNION
(
z
-
z2
)
*
z2
is
quaternion
Element
of
QUATERNION
(
z
-
z2
)
*
z4
is
quaternion
Element
of
QUATERNION
(
(
z
-
z2
)
*
z2
)
-
(
(
z
-
z2
)
*
z4
)
is
quaternion
Element
of
QUATERNION
-
(
(
z
-
z2
)
*
z4
)
is
quaternion
set
(
(
z
-
z2
)
*
z2
)
+
(
-
(
(
z
-
z2
)
*
z4
)
)
is
quaternion
set
(
(
z
*
z2
)
-
(
z2
*
z2
)
)
-
(
(
z
-
z2
)
*
z4
)
is
quaternion
Element
of
QUATERNION
(
(
z
*
z2
)
-
(
z2
*
z2
)
)
+
(
-
(
(
z
-
z2
)
*
z4
)
)
is
quaternion
set
(
z
*
z4
)
-
(
z2
*
z4
)
is
quaternion
Element
of
QUATERNION
-
(
z2
*
z4
)
is
quaternion
set
(
z
*
z4
)
+
(
-
(
z2
*
z4
)
)
is
quaternion
set
(
(
z
*
z2
)
-
(
z2
*
z2
)
)
-
(
(
z
*
z4
)
-
(
z2
*
z4
)
)
is
quaternion
Element
of
QUATERNION
-
(
(
z
*
z4
)
-
(
z2
*
z4
)
)
is
quaternion
set
(
(
z
*
z2
)
-
(
z2
*
z2
)
)
+
(
-
(
(
z
*
z4
)
-
(
z2
*
z4
)
)
)
is
quaternion
set
z
is
quaternion
set
-
z
is
quaternion
Element
of
QUATERNION
z2
is
quaternion
set
z
+
z2
is
quaternion
Element
of
QUATERNION
(
-
z
)
-
z2
is
quaternion
Element
of
QUATERNION
-
z2
is
quaternion
set
(
-
z
)
+
(
-
z2
)
is
quaternion
set
z2
is
quaternion
set
(
z
+
z2
)
+
z2
is
quaternion
Element
of
QUATERNION
-
(
(
z
+
z2
)
+
z2
)
is
quaternion
Element
of
QUATERNION
(
(
-
z
)
-
z2
)
-
z2
is
quaternion
Element
of
QUATERNION
-
z2
is
quaternion
set
(
(
-
z
)
-
z2
)
+
(
-
z2
)
is
quaternion
set
z2
+
z2
is
quaternion
Element
of
QUATERNION
z
+
(
z2
+
z2
)
is
quaternion
Element
of
QUATERNION
-
(
z
+
(
z2
+
z2
)
)
is
quaternion
Element
of
QUATERNION
(
-
z
)
-
(
z2
+
z2
)
is
quaternion
Element
of
QUATERNION
-
(
z2
+
z2
)
is
quaternion
set
(
-
z
)
+
(
-
(
z2
+
z2
)
)
is
quaternion
set
z
is
quaternion
set
-
z
is
quaternion
Element
of
QUATERNION
z2
is
quaternion
set
z
-
z2
is
quaternion
Element
of
QUATERNION
-
z2
is
quaternion
set
z
+
(
-
z2
)
is
quaternion
set
(
-
z
)
+
z2
is
quaternion
Element
of
QUATERNION
z2
is
quaternion
set
(
z
-
z2
)
-
z2
is
quaternion
Element
of
QUATERNION
-
z2
is
quaternion
set
(
z
-
z2
)
+
(
-
z2
)
is
quaternion
set
-
(
(
z
-
z2
)
-
z2
)
is
quaternion
Element
of
QUATERNION
(
(
-
z
)
+
z2
)
+
z2
is
quaternion
Element
of
QUATERNION
-
(
z
-
z2
)
is
quaternion
Element
of
QUATERNION
(
-
(
z
-
z2
)
)
+
z2
is
quaternion
Element
of
QUATERNION
z
is
quaternion
set
-
z
is
quaternion
Element
of
QUATERNION
z2
is
quaternion
set
z
-
z2
is
quaternion
Element
of
QUATERNION
-
z2
is
quaternion
set
z
+
(
-
z2
)
is
quaternion
set
(
-
z
)
+
z2
is
quaternion
Element
of
QUATERNION
z2
is
quaternion
set
(
z
-
z2
)
+
z2
is
quaternion
Element
of
QUATERNION
-
(
(
z
-
z2
)
+
z2
)
is
quaternion
Element
of
QUATERNION
(
(
-
z
)
+
z2
)
-
z2
is
quaternion
Element
of
QUATERNION
-
z2
is
quaternion
set
(
(
-
z
)
+
z2
)
+
(
-
z2
)
is
quaternion
set
-
(
z
-
z2
)
is
quaternion
Element
of
QUATERNION
(
-
(
z
-
z2
)
)
-
z2
is
quaternion
Element
of
QUATERNION
(
-
(
z
-
z2
)
)
+
(
-
z2
)
is
quaternion
set
z
is
quaternion
set
-
z
is
quaternion
Element
of
QUATERNION
z2
is
quaternion
set
z
+
z2
is
quaternion
Element
of
QUATERNION
(
-
z
)
-
z2
is
quaternion
Element
of
QUATERNION
-
z2
is
quaternion
set
(
-
z
)
+
(
-
z2
)
is
quaternion
set
z2
is
quaternion
set
(
z
+
z2
)
-
z2
is
quaternion
Element
of
QUATERNION
-
z2
is
quaternion
set
(
z
+
z2
)
+
(
-
z2
)
is
quaternion
set
-
(
(
z
+
z2
)
-
z2
)
is
quaternion
Element
of
QUATERNION
(
(
-
z
)
-
z2
)
+
z2
is
quaternion
Element
of
QUATERNION
-
(
z
+
z2
)
is
quaternion
Element
of
QUATERNION
(
-
(
z
+
z2
)
)
+
z2
is
quaternion
Element
of
QUATERNION
z
is
quaternion
set
z2
is
quaternion
set
z
+
z2
is
quaternion
Element
of
QUATERNION
z2
is
quaternion
set
z2
+
z2
is
quaternion
Element
of
QUATERNION
Rea
(
z
+
z2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
Rea
z
is
V28
()
V29
()
ext-real
Element
of
REAL
Rea
z2
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Rea
z
)
+
(
Rea
z2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
Im1
(
z
+
z2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
Im1
z
is
V28
()
V29
()
ext-real
Element
of
REAL
Im1
z2
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im1
z
)
+
(
Im1
z2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
Im2
(
z
+
z2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
Im2
z
is
V28
()
V29
()
ext-real
Element
of
REAL
Im2
z2
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im2
z
)
+
(
Im2
z2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
Im3
(
z
+
z2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
Im3
z
is
V28
()
V29
()
ext-real
Element
of
REAL
Im3
z2
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im3
z
)
+
(
Im3
z2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
Im2
(
z2
+
z2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
Im2
z2
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im2
z2
)
+
(
Im2
z2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
Im3
(
z2
+
z2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
Im3
z2
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im3
z2
)
+
(
Im3
z2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
Rea
(
z2
+
z2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
Rea
z2
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Rea
z2
)
+
(
Rea
z2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
Im1
(
z2
+
z2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
Im1
z2
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im1
z2
)
+
(
Im1
z2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
z
is
quaternion
set
z2
is
quaternion
set
z
-
z2
is
quaternion
Element
of
QUATERNION
-
z2
is
quaternion
set
z
+
(
-
z2
)
is
quaternion
set
z2
is
quaternion
set
z2
-
z2
is
quaternion
Element
of
QUATERNION
z2
+
(
-
z2
)
is
quaternion
set
Rea
(
z
-
z2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
Rea
z
is
V28
()
V29
()
ext-real
Element
of
REAL
Rea
z2
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Rea
z
)
-
(
Rea
z2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K110
(
(
Rea
z2
)
) is
V28
()
set
K108
(
(
Rea
z
)
,
K110
(
(
Rea
z2
)
)) is
set
Im1
(
z
-
z2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
Im1
z
is
V28
()
V29
()
ext-real
Element
of
REAL
Im1
z2
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im1
z
)
-
(
Im1
z2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K110
(
(
Im1
z2
)
) is
V28
()
set
K108
(
(
Im1
z
)
,
K110
(
(
Im1
z2
)
)) is
set
Im2
(
z
-
z2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
Im2
z
is
V28
()
V29
()
ext-real
Element
of
REAL
Im2
z2
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im2
z
)
-
(
Im2
z2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K110
(
(
Im2
z2
)
) is
V28
()
set
K108
(
(
Im2
z
)
,
K110
(
(
Im2
z2
)
)) is
set
Im3
(
z
-
z2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
Im3
z
is
V28
()
V29
()
ext-real
Element
of
REAL
Im3
z2
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im3
z
)
-
(
Im3
z2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K110
(
(
Im3
z2
)
) is
V28
()
set
K108
(
(
Im3
z
)
,
K110
(
(
Im3
z2
)
)) is
set
Im2
(
z2
-
z2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
Im2
z2
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im2
z2
)
-
(
Im2
z2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K108
(
(
Im2
z2
)
,
K110
(
(
Im2
z2
)
)) is
set
Im3
(
z2
-
z2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
Im3
z2
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im3
z2
)
-
(
Im3
z2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K108
(
(
Im3
z2
)
,
K110
(
(
Im3
z2
)
)) is
set
Rea
(
z2
-
z2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
Rea
z2
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Rea
z2
)
-
(
Rea
z2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K108
(
(
Rea
z2
)
,
K110
(
(
Rea
z2
)
)) is
set
Im1
(
z2
-
z2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
Im1
z2
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im1
z2
)
-
(
Im1
z2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K108
(
(
Im1
z2
)
,
K110
(
(
Im1
z2
)
)) is
set
z
is
quaternion
set
z2
is
quaternion
set
z
+
z2
is
quaternion
Element
of
QUATERNION
z2
is
quaternion
set
(
z
+
z2
)
-
z2
is
quaternion
Element
of
QUATERNION
-
z2
is
quaternion
set
(
z
+
z2
)
+
(
-
z2
)
is
quaternion
set
z4
is
quaternion
set
(
(
z
+
z2
)
-
z2
)
*
z4
is
quaternion
Element
of
QUATERNION
z
*
z4
is
quaternion
Element
of
QUATERNION
z2
*
z4
is
quaternion
Element
of
QUATERNION
(
z
*
z4
)
+
(
z2
*
z4
)
is
quaternion
Element
of
QUATERNION
z2
*
z4
is
quaternion
Element
of
QUATERNION
(
(
z
*
z4
)
+
(
z2
*
z4
)
)
-
(
z2
*
z4
)
is
quaternion
Element
of
QUATERNION
-
(
z2
*
z4
)
is
quaternion
set
(
(
z
*
z4
)
+
(
z2
*
z4
)
)
+
(
-
(
z2
*
z4
)
)
is
quaternion
set
(
z
+
z2
)
*
z4
is
quaternion
Element
of
QUATERNION
(
(
z
+
z2
)
*
z4
)
-
(
z2
*
z4
)
is
quaternion
Element
of
QUATERNION
(
(
z
+
z2
)
*
z4
)
+
(
-
(
z2
*
z4
)
)
is
quaternion
set
z
is
quaternion
set
z2
is
quaternion
set
z
-
z2
is
quaternion
Element
of
QUATERNION
-
z2
is
quaternion
set
z
+
(
-
z2
)
is
quaternion
set
z2
is
quaternion
set
(
z
-
z2
)
+
z2
is
quaternion
Element
of
QUATERNION
z4
is
quaternion
set
(
(
z
-
z2
)
+
z2
)
*
z4
is
quaternion
Element
of
QUATERNION
z
*
z4
is
quaternion
Element
of
QUATERNION
z2
*
z4
is
quaternion
Element
of
QUATERNION
(
z
*
z4
)
-
(
z2
*
z4
)
is
quaternion
Element
of
QUATERNION
-
(
z2
*
z4
)
is
quaternion
set
(
z
*
z4
)
+
(
-
(
z2
*
z4
)
)
is
quaternion
set
z2
*
z4
is
quaternion
Element
of
QUATERNION
(
(
z
*
z4
)
-
(
z2
*
z4
)
)
+
(
z2
*
z4
)
is
quaternion
Element
of
QUATERNION
(
z
-
z2
)
*
z4
is
quaternion
Element
of
QUATERNION
(
(
z
-
z2
)
*
z4
)
+
(
z2
*
z4
)
is
quaternion
Element
of
QUATERNION
z
is
quaternion
set
z2
is
quaternion
set
z
-
z2
is
quaternion
Element
of
QUATERNION
-
z2
is
quaternion
set
z
+
(
-
z2
)
is
quaternion
set
z2
is
quaternion
set
(
z
-
z2
)
-
z2
is
quaternion
Element
of
QUATERNION
-
z2
is
quaternion
set
(
z
-
z2
)
+
(
-
z2
)
is
quaternion
set
z4
is
quaternion
set
(
(
z
-
z2
)
-
z2
)
*
z4
is
quaternion
Element
of
QUATERNION
z
*
z4
is
quaternion
Element
of
QUATERNION
z2
*
z4
is
quaternion
Element
of
QUATERNION
(
z
*
z4
)
-
(
z2
*
z4
)
is
quaternion
Element
of
QUATERNION
-
(
z2
*
z4
)
is
quaternion
set
(
z
*
z4
)
+
(
-
(
z2
*
z4
)
)
is
quaternion
set
z2
*
z4
is
quaternion
Element
of
QUATERNION
(
(
z
*
z4
)
-
(
z2
*
z4
)
)
-
(
z2
*
z4
)
is
quaternion
Element
of
QUATERNION
-
(
z2
*
z4
)
is
quaternion
set
(
(
z
*
z4
)
-
(
z2
*
z4
)
)
+
(
-
(
z2
*
z4
)
)
is
quaternion
set
(
z
-
z2
)
*
z4
is
quaternion
Element
of
QUATERNION
(
(
z
-
z2
)
*
z4
)
-
(
z2
*
z4
)
is
quaternion
Element
of
QUATERNION
(
(
z
-
z2
)
*
z4
)
+
(
-
(
z2
*
z4
)
)
is
quaternion
set
z
is
quaternion
set
z2
is
quaternion
set
z
+
z2
is
quaternion
Element
of
QUATERNION
z2
is
quaternion
set
(
z
+
z2
)
+
z2
is
quaternion
Element
of
QUATERNION
z4
is
quaternion
set
(
(
z
+
z2
)
+
z2
)
*
z4
is
quaternion
Element
of
QUATERNION
z
*
z4
is
quaternion
Element
of
QUATERNION
z2
*
z4
is
quaternion
Element
of
QUATERNION
(
z
*
z4
)
+
(
z2
*
z4
)
is
quaternion
Element
of
QUATERNION
z2
*
z4
is
quaternion
Element
of
QUATERNION
(
(
z
*
z4
)
+
(
z2
*
z4
)
)
+
(
z2
*
z4
)
is
quaternion
Element
of
QUATERNION
(
z
+
z2
)
*
z4
is
quaternion
Element
of
QUATERNION
(
(
z
+
z2
)
*
z4
)
+
(
z2
*
z4
)
is
quaternion
Element
of
QUATERNION
z
is
quaternion
set
z2
is
quaternion
set
z
-
z2
is
quaternion
Element
of
QUATERNION
-
z2
is
quaternion
set
z
+
(
-
z2
)
is
quaternion
set
z2
-
z
is
quaternion
Element
of
QUATERNION
-
z
is
quaternion
set
z2
+
(
-
z
)
is
quaternion
set
z2
is
quaternion
set
(
z
-
z2
)
*
z2
is
quaternion
Element
of
QUATERNION
-
z2
is
quaternion
Element
of
QUATERNION
(
z2
-
z
)
*
(
-
z2
)
is
quaternion
Element
of
QUATERNION
z2
*
(
-
z2
)
is
quaternion
Element
of
QUATERNION
z
*
(
-
z2
)
is
quaternion
Element
of
QUATERNION
(
z2
*
(
-
z2
)
)
-
(
z
*
(
-
z2
)
)
is
quaternion
Element
of
QUATERNION
-
(
z
*
(
-
z2
)
)
is
quaternion
set
(
z2
*
(
-
z2
)
)
+
(
-
(
z
*
(
-
z2
)
)
)
is
quaternion
set
z2
*
z2
is
quaternion
Element
of
QUATERNION
-
(
z2
*
z2
)
is
quaternion
Element
of
QUATERNION
(
-
(
z2
*
z2
)
)
-
(
z
*
(
-
z2
)
)
is
quaternion
Element
of
QUATERNION
(
-
(
z2
*
z2
)
)
+
(
-
(
z
*
(
-
z2
)
)
)
is
quaternion
set
z
*
z2
is
quaternion
Element
of
QUATERNION
-
(
z
*
z2
)
is
quaternion
Element
of
QUATERNION
(
-
(
z2
*
z2
)
)
-
(
-
(
z
*
z2
)
)
is
quaternion
Element
of
QUATERNION
-
(
-
(
z
*
z2
)
)
is
quaternion
set
(
-
(
z2
*
z2
)
)
+
(
-
(
-
(
z
*
z2
)
)
)
is
quaternion
set
(
z
*
z2
)
-
(
z2
*
z2
)
is
quaternion
Element
of
QUATERNION
-
(
z2
*
z2
)
is
quaternion
set
(
z
*
z2
)
+
(
-
(
z2
*
z2
)
)
is
quaternion
set
z
is
quaternion
set
-
z
is
quaternion
Element
of
QUATERNION
z2
is
quaternion
set
z2
is
quaternion
set
z2
-
z2
is
quaternion
Element
of
QUATERNION
-
z2
is
quaternion
set
z2
+
(
-
z2
)
is
quaternion
set
z
*
(
z2
-
z2
)
is
quaternion
Element
of
QUATERNION
z2
-
z2
is
quaternion
Element
of
QUATERNION
-
z2
is
quaternion
set
z2
+
(
-
z2
)
is
quaternion
set
(
-
z
)
*
(
z2
-
z2
)
is
quaternion
Element
of
QUATERNION
(
-
z
)
*
z2
is
quaternion
Element
of
QUATERNION
(
-
z
)
*
z2
is
quaternion
Element
of
QUATERNION
(
(
-
z
)
*
z2
)
-
(
(
-
z
)
*
z2
)
is
quaternion
Element
of
QUATERNION
-
(
(
-
z
)
*
z2
)
is
quaternion
set
(
(
-
z
)
*
z2
)
+
(
-
(
(
-
z
)
*
z2
)
)
is
quaternion
set
z
*
z2
is
quaternion
Element
of
QUATERNION
-
(
z
*
z2
)
is
quaternion
Element
of
QUATERNION
(
-
(
z
*
z2
)
)
-
(
(
-
z
)
*
z2
)
is
quaternion
Element
of
QUATERNION
(
-
(
z
*
z2
)
)
+
(
-
(
(
-
z
)
*
z2
)
)
is
quaternion
set
z
*
z2
is
quaternion
Element
of
QUATERNION
-
(
z
*
z2
)
is
quaternion
Element
of
QUATERNION
(
-
(
z
*
z2
)
)
-
(
-
(
z
*
z2
)
)
is
quaternion
Element
of
QUATERNION
-
(
-
(
z
*
z2
)
)
is
quaternion
set
(
-
(
z
*
z2
)
)
+
(
-
(
-
(
z
*
z2
)
)
)
is
quaternion
set
(
z
*
z2
)
-
(
z
*
z2
)
is
quaternion
Element
of
QUATERNION
-
(
z
*
z2
)
is
quaternion
set
(
z
*
z2
)
+
(
-
(
z
*
z2
)
)
is
quaternion
set
z
is
quaternion
set
z2
is
quaternion
set
z
-
z2
is
quaternion
Element
of
QUATERNION
-
z2
is
quaternion
set
z
+
(
-
z2
)
is
quaternion
set
z2
is
quaternion
set
(
z
-
z2
)
-
z2
is
quaternion
Element
of
QUATERNION
-
z2
is
quaternion
set
(
z
-
z2
)
+
(
-
z2
)
is
quaternion
set
z4
is
quaternion
set
(
(
z
-
z2
)
-
z2
)
+
z4
is
quaternion
Element
of
QUATERNION
z4
-
z2
is
quaternion
Element
of
QUATERNION
z4
+
(
-
z2
)
is
quaternion
set
(
z4
-
z2
)
-
z2
is
quaternion
Element
of
QUATERNION
(
z4
-
z2
)
+
(
-
z2
)
is
quaternion
set
(
(
z4
-
z2
)
-
z2
)
+
z
is
quaternion
Element
of
QUATERNION
Im1
(
(
(
z
-
z2
)
-
z2
)
+
z4
)
is
V28
()
V29
()
ext-real
Element
of
REAL
Im1
(
(
z
-
z2
)
-
z2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
Im1
z4
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im1
(
(
z
-
z2
)
-
z2
)
)
+
(
Im1
z4
)
is
V28
()
V29
()
ext-real
Element
of
REAL
Im1
(
z
-
z2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
Im1
z2
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im1
(
z
-
z2
)
)
-
(
Im1
z2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K110
(
(
Im1
z2
)
) is
V28
()
set
K108
(
(
Im1
(
z
-
z2
)
)
,
K110
(
(
Im1
z2
)
)) is
set
(
(
Im1
(
z
-
z2
)
)
-
(
Im1
z2
)
)
+
(
Im1
z4
)
is
V28
()
V29
()
ext-real
Element
of
REAL
Im1
z
is
V28
()
V29
()
ext-real
Element
of
REAL
Im1
z2
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im1
z
)
-
(
Im1
z2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K110
(
(
Im1
z2
)
) is
V28
()
set
K108
(
(
Im1
z
)
,
K110
(
(
Im1
z2
)
)) is
set
(
(
Im1
z
)
-
(
Im1
z2
)
)
-
(
Im1
z2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K108
(
(
(
Im1
z
)
-
(
Im1
z2
)
)
,
K110
(
(
Im1
z2
)
)) is
set
(
(
(
Im1
z
)
-
(
Im1
z2
)
)
-
(
Im1
z2
)
)
+
(
Im1
z4
)
is
V28
()
V29
()
ext-real
Element
of
REAL
Im2
(
(
(
z
-
z2
)
-
z2
)
+
z4
)
is
V28
()
V29
()
ext-real
Element
of
REAL
Im2
(
(
z
-
z2
)
-
z2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
Im2
z4
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im2
(
(
z
-
z2
)
-
z2
)
)
+
(
Im2
z4
)
is
V28
()
V29
()
ext-real
Element
of
REAL
Im2
(
z
-
z2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
Im2
z2
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im2
(
z
-
z2
)
)
-
(
Im2
z2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K110
(
(
Im2
z2
)
) is
V28
()
set
K108
(
(
Im2
(
z
-
z2
)
)
,
K110
(
(
Im2
z2
)
)) is
set
(
(
Im2
(
z
-
z2
)
)
-
(
Im2
z2
)
)
+
(
Im2
z4
)
is
V28
()
V29
()
ext-real
Element
of
REAL
Im2
z
is
V28
()
V29
()
ext-real
Element
of
REAL
Im2
z2
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im2
z
)
-
(
Im2
z2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K110
(
(
Im2
z2
)
) is
V28
()
set
K108
(
(
Im2
z
)
,
K110
(
(
Im2
z2
)
)) is
set
(
(
Im2
z
)
-
(
Im2
z2
)
)
-
(
Im2
z2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K108
(
(
(
Im2
z
)
-
(
Im2
z2
)
)
,
K110
(
(
Im2
z2
)
)) is
set
(
(
(
Im2
z
)
-
(
Im2
z2
)
)
-
(
Im2
z2
)
)
+
(
Im2
z4
)
is
V28
()
V29
()
ext-real
Element
of
REAL
Im2
(
(
(
z4
-
z2
)
-
z2
)
+
z
)
is
V28
()
V29
()
ext-real
Element
of
REAL
Im2
(
(
z4
-
z2
)
-
z2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im2
(
(
z4
-
z2
)
-
z2
)
)
+
(
Im2
z
)
is
V28
()
V29
()
ext-real
Element
of
REAL
Im2
(
z4
-
z2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im2
(
z4
-
z2
)
)
-
(
Im2
z2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K108
(
(
Im2
(
z4
-
z2
)
)
,
K110
(
(
Im2
z2
)
)) is
set
(
(
Im2
(
z4
-
z2
)
)
-
(
Im2
z2
)
)
+
(
Im2
z
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im2
z4
)
-
(
Im2
z2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K108
(
(
Im2
z4
)
,
K110
(
(
Im2
z2
)
)) is
set
(
(
Im2
z4
)
-
(
Im2
z2
)
)
-
(
Im2
z2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K108
(
(
(
Im2
z4
)
-
(
Im2
z2
)
)
,
K110
(
(
Im2
z2
)
)) is
set
(
(
(
Im2
z4
)
-
(
Im2
z2
)
)
-
(
Im2
z2
)
)
+
(
Im2
z
)
is
V28
()
V29
()
ext-real
Element
of
REAL
Im1
(
(
(
z4
-
z2
)
-
z2
)
+
z
)
is
V28
()
V29
()
ext-real
Element
of
REAL
Im1
(
(
z4
-
z2
)
-
z2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im1
(
(
z4
-
z2
)
-
z2
)
)
+
(
Im1
z
)
is
V28
()
V29
()
ext-real
Element
of
REAL
Im1
(
z4
-
z2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im1
(
z4
-
z2
)
)
-
(
Im1
z2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K108
(
(
Im1
(
z4
-
z2
)
)
,
K110
(
(
Im1
z2
)
)) is
set
(
(
Im1
(
z4
-
z2
)
)
-
(
Im1
z2
)
)
+
(
Im1
z
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im1
z4
)
-
(
Im1
z2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K108
(
(
Im1
z4
)
,
K110
(
(
Im1
z2
)
)) is
set
(
(
Im1
z4
)
-
(
Im1
z2
)
)
-
(
Im1
z2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K108
(
(
(
Im1
z4
)
-
(
Im1
z2
)
)
,
K110
(
(
Im1
z2
)
)) is
set
(
(
(
Im1
z4
)
-
(
Im1
z2
)
)
-
(
Im1
z2
)
)
+
(
Im1
z
)
is
V28
()
V29
()
ext-real
Element
of
REAL
Im3
(
(
(
z4
-
z2
)
-
z2
)
+
z
)
is
V28
()
V29
()
ext-real
Element
of
REAL
Im3
(
(
z4
-
z2
)
-
z2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
Im3
z
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im3
(
(
z4
-
z2
)
-
z2
)
)
+
(
Im3
z
)
is
V28
()
V29
()
ext-real
Element
of
REAL
Im3
(
z4
-
z2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
Im3
z2
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im3
(
z4
-
z2
)
)
-
(
Im3
z2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K110
(
(
Im3
z2
)
) is
V28
()
set
K108
(
(
Im3
(
z4
-
z2
)
)
,
K110
(
(
Im3
z2
)
)) is
set
(
(
Im3
(
z4
-
z2
)
)
-
(
Im3
z2
)
)
+
(
Im3
z
)
is
V28
()
V29
()
ext-real
Element
of
REAL
Im3
z4
is
V28
()
V29
()
ext-real
Element
of
REAL
Im3
z2
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im3
z4
)
-
(
Im3
z2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K110
(
(
Im3
z2
)
) is
V28
()
set
K108
(
(
Im3
z4
)
,
K110
(
(
Im3
z2
)
)) is
set
(
(
Im3
z4
)
-
(
Im3
z2
)
)
-
(
Im3
z2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K108
(
(
(
Im3
z4
)
-
(
Im3
z2
)
)
,
K110
(
(
Im3
z2
)
)) is
set
(
(
(
Im3
z4
)
-
(
Im3
z2
)
)
-
(
Im3
z2
)
)
+
(
Im3
z
)
is
V28
()
V29
()
ext-real
Element
of
REAL
Rea
(
(
(
z4
-
z2
)
-
z2
)
+
z
)
is
V28
()
V29
()
ext-real
Element
of
REAL
Rea
(
(
z4
-
z2
)
-
z2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
Rea
z
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Rea
(
(
z4
-
z2
)
-
z2
)
)
+
(
Rea
z
)
is
V28
()
V29
()
ext-real
Element
of
REAL
Rea
(
z4
-
z2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
Rea
z2
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Rea
(
z4
-
z2
)
)
-
(
Rea
z2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K110
(
(
Rea
z2
)
) is
V28
()
set
K108
(
(
Rea
(
z4
-
z2
)
)
,
K110
(
(
Rea
z2
)
)) is
set
(
(
Rea
(
z4
-
z2
)
)
-
(
Rea
z2
)
)
+
(
Rea
z
)
is
V28
()
V29
()
ext-real
Element
of
REAL
Rea
z4
is
V28
()
V29
()
ext-real
Element
of
REAL
Rea
z2
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Rea
z4
)
-
(
Rea
z2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K110
(
(
Rea
z2
)
) is
V28
()
set
K108
(
(
Rea
z4
)
,
K110
(
(
Rea
z2
)
)) is
set
(
(
Rea
z4
)
-
(
Rea
z2
)
)
-
(
Rea
z2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K108
(
(
(
Rea
z4
)
-
(
Rea
z2
)
)
,
K110
(
(
Rea
z2
)
)) is
set
(
(
(
Rea
z4
)
-
(
Rea
z2
)
)
-
(
Rea
z2
)
)
+
(
Rea
z
)
is
V28
()
V29
()
ext-real
Element
of
REAL
Im3
(
(
(
z
-
z2
)
-
z2
)
+
z4
)
is
V28
()
V29
()
ext-real
Element
of
REAL
Im3
(
(
z
-
z2
)
-
z2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im3
(
(
z
-
z2
)
-
z2
)
)
+
(
Im3
z4
)
is
V28
()
V29
()
ext-real
Element
of
REAL
Im3
(
z
-
z2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im3
(
z
-
z2
)
)
-
(
Im3
z2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K108
(
(
Im3
(
z
-
z2
)
)
,
K110
(
(
Im3
z2
)
)) is
set
(
(
Im3
(
z
-
z2
)
)
-
(
Im3
z2
)
)
+
(
Im3
z4
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im3
z
)
-
(
Im3
z2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K108
(
(
Im3
z
)
,
K110
(
(
Im3
z2
)
)) is
set
(
(
Im3
z
)
-
(
Im3
z2
)
)
-
(
Im3
z2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K108
(
(
(
Im3
z
)
-
(
Im3
z2
)
)
,
K110
(
(
Im3
z2
)
)) is
set
(
(
(
Im3
z
)
-
(
Im3
z2
)
)
-
(
Im3
z2
)
)
+
(
Im3
z4
)
is
V28
()
V29
()
ext-real
Element
of
REAL
Rea
(
(
(
z
-
z2
)
-
z2
)
+
z4
)
is
V28
()
V29
()
ext-real
Element
of
REAL
Rea
(
(
z
-
z2
)
-
z2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Rea
(
(
z
-
z2
)
-
z2
)
)
+
(
Rea
z4
)
is
V28
()
V29
()
ext-real
Element
of
REAL
Rea
(
z
-
z2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Rea
(
z
-
z2
)
)
-
(
Rea
z2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K108
(
(
Rea
(
z
-
z2
)
)
,
K110
(
(
Rea
z2
)
)) is
set
(
(
Rea
(
z
-
z2
)
)
-
(
Rea
z2
)
)
+
(
Rea
z4
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Rea
z
)
-
(
Rea
z2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K108
(
(
Rea
z
)
,
K110
(
(
Rea
z2
)
)) is
set
(
(
Rea
z
)
-
(
Rea
z2
)
)
-
(
Rea
z2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K108
(
(
(
Rea
z
)
-
(
Rea
z2
)
)
,
K110
(
(
Rea
z2
)
)) is
set
(
(
(
Rea
z
)
-
(
Rea
z2
)
)
-
(
Rea
z2
)
)
+
(
Rea
z4
)
is
V28
()
V29
()
ext-real
Element
of
REAL
z
is
quaternion
set
z2
is
quaternion
set
z
-
z2
is
quaternion
Element
of
QUATERNION
-
z2
is
quaternion
set
z
+
(
-
z2
)
is
quaternion
set
z2
-
z
is
quaternion
Element
of
QUATERNION
-
z
is
quaternion
set
z2
+
(
-
z
)
is
quaternion
set
z2
is
quaternion
set
z4
is
quaternion
set
z2
-
z4
is
quaternion
Element
of
QUATERNION
-
z4
is
quaternion
set
z2
+
(
-
z4
)
is
quaternion
set
(
z
-
z2
)
*
(
z2
-
z4
)
is
quaternion
Element
of
QUATERNION
z4
-
z2
is
quaternion
Element
of
QUATERNION
-
z2
is
quaternion
set
z4
+
(
-
z2
)
is
quaternion
set
(
z2
-
z
)
*
(
z4
-
z2
)
is
quaternion
Element
of
QUATERNION
(
z2
-
z
)
*
z4
is
quaternion
Element
of
QUATERNION
(
z2
-
z
)
*
z2
is
quaternion
Element
of
QUATERNION
(
(
z2
-
z
)
*
z4
)
-
(
(
z2
-
z
)
*
z2
)
is
quaternion
Element
of
QUATERNION
-
(
(
z2
-
z
)
*
z2
)
is
quaternion
set
(
(
z2
-
z
)
*
z4
)
+
(
-
(
(
z2
-
z
)
*
z2
)
)
is
quaternion
set
z2
*
z4
is
quaternion
Element
of
QUATERNION
z
*
z4
is
quaternion
Element
of
QUATERNION
(
z2
*
z4
)
-
(
z
*
z4
)
is
quaternion
Element
of
QUATERNION
-
(
z
*
z4
)
is
quaternion
set
(
z2
*
z4
)
+
(
-
(
z
*
z4
)
)
is
quaternion
set
(
(
z2
*
z4
)
-
(
z
*
z4
)
)
-
(
(
z2
-
z
)
*
z2
)
is
quaternion
Element
of
QUATERNION
(
(
z2
*
z4
)
-
(
z
*
z4
)
)
+
(
-
(
(
z2
-
z
)
*
z2
)
)
is
quaternion
set
z2
*
z2
is
quaternion
Element
of
QUATERNION
z
*
z2
is
quaternion
Element
of
QUATERNION
(
z2
*
z2
)
-
(
z
*
z2
)
is
quaternion
Element
of
QUATERNION
-
(
z
*
z2
)
is
quaternion
set
(
z2
*
z2
)
+
(
-
(
z
*
z2
)
)
is
quaternion
set
(
(
z2
*
z4
)
-
(
z
*
z4
)
)
-
(
(
z2
*
z2
)
-
(
z
*
z2
)
)
is
quaternion
Element
of
QUATERNION
-
(
(
z2
*
z2
)
-
(
z
*
z2
)
)
is
quaternion
set
(
(
z2
*
z4
)
-
(
z
*
z4
)
)
+
(
-
(
(
z2
*
z2
)
-
(
z
*
z2
)
)
)
is
quaternion
set
(
(
z2
*
z4
)
-
(
z
*
z4
)
)
-
(
z2
*
z2
)
is
quaternion
Element
of
QUATERNION
-
(
z2
*
z2
)
is
quaternion
set
(
(
z2
*
z4
)
-
(
z
*
z4
)
)
+
(
-
(
z2
*
z2
)
)
is
quaternion
set
(
(
(
z2
*
z4
)
-
(
z
*
z4
)
)
-
(
z2
*
z2
)
)
+
(
z
*
z2
)
is
quaternion
Element
of
QUATERNION
(
z
*
z2
)
-
(
z2
*
z2
)
is
quaternion
Element
of
QUATERNION
(
z
*
z2
)
+
(
-
(
z2
*
z2
)
)
is
quaternion
set
(
(
z
*
z2
)
-
(
z2
*
z2
)
)
-
(
z
*
z4
)
is
quaternion
Element
of
QUATERNION
(
(
z
*
z2
)
-
(
z2
*
z2
)
)
+
(
-
(
z
*
z4
)
)
is
quaternion
set
(
(
(
z
*
z2
)
-
(
z2
*
z2
)
)
-
(
z
*
z4
)
)
+
(
z2
*
z4
)
is
quaternion
Element
of
QUATERNION
z
is
quaternion
set
z2
is
quaternion
set
z
-
z2
is
quaternion
Element
of
QUATERNION
-
z2
is
quaternion
set
z
+
(
-
z2
)
is
quaternion
set
z2
is
quaternion
set
(
z
-
z2
)
-
z2
is
quaternion
Element
of
QUATERNION
-
z2
is
quaternion
set
(
z
-
z2
)
+
(
-
z2
)
is
quaternion
set
z
-
z2
is
quaternion
Element
of
QUATERNION
z
+
(
-
z2
)
is
quaternion
set
(
z
-
z2
)
-
z2
is
quaternion
Element
of
QUATERNION
(
z
-
z2
)
+
(
-
z2
)
is
quaternion
set
Im1
(
(
z
-
z2
)
-
z2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
Im1
(
z
-
z2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
Im1
z2
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im1
(
z
-
z2
)
)
-
(
Im1
z2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K110
(
(
Im1
z2
)
) is
V28
()
set
K108
(
(
Im1
(
z
-
z2
)
)
,
K110
(
(
Im1
z2
)
)) is
set
Im1
z
is
V28
()
V29
()
ext-real
Element
of
REAL
Im1
z2
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im1
z
)
-
(
Im1
z2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K110
(
(
Im1
z2
)
) is
V28
()
set
K108
(
(
Im1
z
)
,
K110
(
(
Im1
z2
)
)) is
set
(
(
Im1
z
)
-
(
Im1
z2
)
)
-
(
Im1
z2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K108
(
(
(
Im1
z
)
-
(
Im1
z2
)
)
,
K110
(
(
Im1
z2
)
)) is
set
Im2
(
(
z
-
z2
)
-
z2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
Im2
(
z
-
z2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
Im2
z2
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im2
(
z
-
z2
)
)
-
(
Im2
z2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K110
(
(
Im2
z2
)
) is
V28
()
set
K108
(
(
Im2
(
z
-
z2
)
)
,
K110
(
(
Im2
z2
)
)) is
set
Im2
z
is
V28
()
V29
()
ext-real
Element
of
REAL
Im2
z2
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im2
z
)
-
(
Im2
z2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K110
(
(
Im2
z2
)
) is
V28
()
set
K108
(
(
Im2
z
)
,
K110
(
(
Im2
z2
)
)) is
set
(
(
Im2
z
)
-
(
Im2
z2
)
)
-
(
Im2
z2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K108
(
(
(
Im2
z
)
-
(
Im2
z2
)
)
,
K110
(
(
Im2
z2
)
)) is
set
Im2
(
(
z
-
z2
)
-
z2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
Im2
(
z
-
z2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im2
(
z
-
z2
)
)
-
(
Im2
z2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K108
(
(
Im2
(
z
-
z2
)
)
,
K110
(
(
Im2
z2
)
)) is
set
(
Im2
z
)
-
(
Im2
z2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K108
(
(
Im2
z
)
,
K110
(
(
Im2
z2
)
)) is
set
(
(
Im2
z
)
-
(
Im2
z2
)
)
-
(
Im2
z2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K108
(
(
(
Im2
z
)
-
(
Im2
z2
)
)
,
K110
(
(
Im2
z2
)
)) is
set
Im1
(
(
z
-
z2
)
-
z2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
Im1
(
z
-
z2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im1
(
z
-
z2
)
)
-
(
Im1
z2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K108
(
(
Im1
(
z
-
z2
)
)
,
K110
(
(
Im1
z2
)
)) is
set
(
Im1
z
)
-
(
Im1
z2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K108
(
(
Im1
z
)
,
K110
(
(
Im1
z2
)
)) is
set
(
(
Im1
z
)
-
(
Im1
z2
)
)
-
(
Im1
z2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K108
(
(
(
Im1
z
)
-
(
Im1
z2
)
)
,
K110
(
(
Im1
z2
)
)) is
set
Im3
(
(
z
-
z2
)
-
z2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
Im3
(
z
-
z2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
Im3
z2
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im3
(
z
-
z2
)
)
-
(
Im3
z2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K110
(
(
Im3
z2
)
) is
V28
()
set
K108
(
(
Im3
(
z
-
z2
)
)
,
K110
(
(
Im3
z2
)
)) is
set
Im3
z
is
V28
()
V29
()
ext-real
Element
of
REAL
Im3
z2
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im3
z
)
-
(
Im3
z2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K110
(
(
Im3
z2
)
) is
V28
()
set
K108
(
(
Im3
z
)
,
K110
(
(
Im3
z2
)
)) is
set
(
(
Im3
z
)
-
(
Im3
z2
)
)
-
(
Im3
z2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K108
(
(
(
Im3
z
)
-
(
Im3
z2
)
)
,
K110
(
(
Im3
z2
)
)) is
set
Rea
(
(
z
-
z2
)
-
z2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
Rea
(
z
-
z2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
Rea
z2
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Rea
(
z
-
z2
)
)
-
(
Rea
z2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K110
(
(
Rea
z2
)
) is
V28
()
set
K108
(
(
Rea
(
z
-
z2
)
)
,
K110
(
(
Rea
z2
)
)) is
set
Rea
z
is
V28
()
V29
()
ext-real
Element
of
REAL
Rea
z2
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Rea
z
)
-
(
Rea
z2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K110
(
(
Rea
z2
)
) is
V28
()
set
K108
(
(
Rea
z
)
,
K110
(
(
Rea
z2
)
)) is
set
(
(
Rea
z
)
-
(
Rea
z2
)
)
-
(
Rea
z2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K108
(
(
(
Rea
z
)
-
(
Rea
z2
)
)
,
K110
(
(
Rea
z2
)
)) is
set
Im3
(
(
z
-
z2
)
-
z2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
Im3
(
z
-
z2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im3
(
z
-
z2
)
)
-
(
Im3
z2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K108
(
(
Im3
(
z
-
z2
)
)
,
K110
(
(
Im3
z2
)
)) is
set
(
Im3
z
)
-
(
Im3
z2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K108
(
(
Im3
z
)
,
K110
(
(
Im3
z2
)
)) is
set
(
(
Im3
z
)
-
(
Im3
z2
)
)
-
(
Im3
z2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K108
(
(
(
Im3
z
)
-
(
Im3
z2
)
)
,
K110
(
(
Im3
z2
)
)) is
set
Rea
(
(
z
-
z2
)
-
z2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
Rea
(
z
-
z2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Rea
(
z
-
z2
)
)
-
(
Rea
z2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K108
(
(
Rea
(
z
-
z2
)
)
,
K110
(
(
Rea
z2
)
)) is
set
(
Rea
z
)
-
(
Rea
z2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K108
(
(
Rea
z
)
,
K110
(
(
Rea
z2
)
)) is
set
(
(
Rea
z
)
-
(
Rea
z2
)
)
-
(
Rea
z2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K108
(
(
(
Rea
z
)
-
(
Rea
z2
)
)
,
K110
(
(
Rea
z2
)
)) is
set
z
is
quaternion
set
z
"
is
quaternion
Element
of
QUATERNION
Rea
z
is
V28
()
V29
()
ext-real
Element
of
REAL
|.
z
.|
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Rea
z
)
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Rea
z
)
,
(
Rea
z
)
) is
set
Im1
z
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im1
z
)
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Im1
z
)
,
(
Im1
z
)
) is
set
(
(
Rea
z
)
^2
)
+
(
(
Im1
z
)
^2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
Im2
z
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im2
z
)
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Im2
z
)
,
(
Im2
z
)
) is
set
(
(
(
Rea
z
)
^2
)
+
(
(
Im1
z
)
^2
)
)
+
(
(
Im2
z
)
^2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
Im3
z
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im3
z
)
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Im3
z
)
,
(
Im3
z
)
) is
set
(
(
(
(
Rea
z
)
^2
)
+
(
(
Im1
z
)
^2
)
)
+
(
(
Im2
z
)
^2
)
)
+
(
(
Im3
z
)
^2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
sqrt
(
(
(
(
(
Rea
z
)
^2
)
+
(
(
Im1
z
)
^2
)
)
+
(
(
Im2
z
)
^2
)
)
+
(
(
Im3
z
)
^2
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
|.
z
.|
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
|.
z
.|
,
|.
z
.|
) is
set
(
Rea
z
)
/
(
|.
z
.|
^2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K111
(
(
|.
z
.|
^2
)
) is
V28
()
set
K109
(
(
Rea
z
)
,
K111
(
(
|.
z
.|
^2
)
)) is
set
(
Im1
z
)
/
(
|.
z
.|
^2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Im1
z
)
,
K111
(
(
|.
z
.|
^2
)
)) is
set
-
(
(
Im1
z
)
/
(
|.
z
.|
^2
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im2
z
)
/
(
|.
z
.|
^2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Im2
z
)
,
K111
(
(
|.
z
.|
^2
)
)) is
set
-
(
(
Im2
z
)
/
(
|.
z
.|
^2
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im3
z
)
/
(
|.
z
.|
^2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Im3
z
)
,
K111
(
(
|.
z
.|
^2
)
)) is
set
-
(
(
Im3
z
)
/
(
|.
z
.|
^2
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
[*
(
(
Rea
z
)
/
(
|.
z
.|
^2
)
)
,
(
-
(
(
Im1
z
)
/
(
|.
z
.|
^2
)
)
)
,
(
-
(
(
Im2
z
)
/
(
|.
z
.|
^2
)
)
)
,
(
-
(
(
Im3
z
)
/
(
|.
z
.|
^2
)
)
)
*]
is
quaternion
Element
of
QUATERNION
Rea
(
z
"
)
is
V28
()
V29
()
ext-real
Element
of
REAL
Im1
(
z
"
)
is
V28
()
V29
()
ext-real
Element
of
REAL
Im2
(
z
"
)
is
V28
()
V29
()
ext-real
Element
of
REAL
Im3
(
z
"
)
is
V28
()
V29
()
ext-real
Element
of
REAL
[*
(
Rea
(
z
"
)
)
,
(
Im1
(
z
"
)
)
,
(
Im2
(
z
"
)
)
,
(
Im3
(
z
"
)
)
*]
is
quaternion
Element
of
QUATERNION
[*
(
(
Rea
z
)
/
(
|.
z
.|
^2
)
)
,
(
Im1
(
z
"
)
)
,
(
Im2
(
z
"
)
)
,
(
Im3
(
z
"
)
)
*]
is
quaternion
Element
of
QUATERNION
[*
(
(
Rea
z
)
/
(
|.
z
.|
^2
)
)
,
(
-
(
(
Im1
z
)
/
(
|.
z
.|
^2
)
)
)
,
(
Im2
(
z
"
)
)
,
(
Im3
(
z
"
)
)
*]
is
quaternion
Element
of
QUATERNION
[*
(
(
Rea
z
)
/
(
|.
z
.|
^2
)
)
,
(
-
(
(
Im1
z
)
/
(
|.
z
.|
^2
)
)
)
,
(
-
(
(
Im2
z
)
/
(
|.
z
.|
^2
)
)
)
,
(
Im3
(
z
"
)
)
*]
is
quaternion
Element
of
QUATERNION
z
is
quaternion
set
Rea
z
is
V28
()
V29
()
ext-real
Element
of
REAL
Im1
z
is
V28
()
V29
()
ext-real
Element
of
REAL
Im2
z
is
V28
()
V29
()
ext-real
Element
of
REAL
Im3
z
is
V28
()
V29
()
ext-real
Element
of
REAL
z2
is
quaternion
set
z
/
z2
is
quaternion
Element
of
QUATERNION
Rea
z2
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Rea
z2
)
*
(
Rea
z
)
is
V28
()
V29
()
ext-real
Element
of
REAL
Im1
z2
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im1
z
)
*
(
Im1
z2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
Rea
z2
)
*
(
Rea
z
)
)
+
(
(
Im1
z
)
*
(
Im1
z2
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
Im2
z2
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im2
z2
)
*
(
Im2
z
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
(
Rea
z2
)
*
(
Rea
z
)
)
+
(
(
Im1
z
)
*
(
Im1
z2
)
)
)
+
(
(
Im2
z2
)
*
(
Im2
z
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
Im3
z2
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im3
z2
)
*
(
Im3
z
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
(
(
Rea
z2
)
*
(
Rea
z
)
)
+
(
(
Im1
z
)
*
(
Im1
z2
)
)
)
+
(
(
Im2
z2
)
*
(
Im2
z
)
)
)
+
(
(
Im3
z2
)
*
(
Im3
z
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
|.
z2
.|
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Rea
z2
)
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Rea
z2
)
,
(
Rea
z2
)
) is
set
(
Im1
z2
)
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Im1
z2
)
,
(
Im1
z2
)
) is
set
(
(
Rea
z2
)
^2
)
+
(
(
Im1
z2
)
^2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im2
z2
)
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Im2
z2
)
,
(
Im2
z2
)
) is
set
(
(
(
Rea
z2
)
^2
)
+
(
(
Im1
z2
)
^2
)
)
+
(
(
Im2
z2
)
^2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im3
z2
)
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Im3
z2
)
,
(
Im3
z2
)
) is
set
(
(
(
(
Rea
z2
)
^2
)
+
(
(
Im1
z2
)
^2
)
)
+
(
(
Im2
z2
)
^2
)
)
+
(
(
Im3
z2
)
^2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
sqrt
(
(
(
(
(
Rea
z2
)
^2
)
+
(
(
Im1
z2
)
^2
)
)
+
(
(
Im2
z2
)
^2
)
)
+
(
(
Im3
z2
)
^2
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
|.
z2
.|
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
|.
z2
.|
,
|.
z2
.|
) is
set
(
(
(
(
(
Rea
z2
)
*
(
Rea
z
)
)
+
(
(
Im1
z
)
*
(
Im1
z2
)
)
)
+
(
(
Im2
z2
)
*
(
Im2
z
)
)
)
+
(
(
Im3
z2
)
*
(
Im3
z
)
)
)
/
(
|.
z2
.|
^2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K111
(
(
|.
z2
.|
^2
)
) is
V28
()
set
K109
(
(
(
(
(
(
Rea
z2
)
*
(
Rea
z
)
)
+
(
(
Im1
z
)
*
(
Im1
z2
)
)
)
+
(
(
Im2
z2
)
*
(
Im2
z
)
)
)
+
(
(
Im3
z2
)
*
(
Im3
z
)
)
)
,
K111
(
(
|.
z2
.|
^2
)
)) is
set
(
Rea
z2
)
*
(
Im1
z
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im1
z2
)
*
(
Rea
z
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
Rea
z2
)
*
(
Im1
z
)
)
-
(
(
Im1
z2
)
*
(
Rea
z
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K110
(
(
(
Im1
z2
)
*
(
Rea
z
)
)
) is
V28
()
set
K108
(
(
(
Rea
z2
)
*
(
Im1
z
)
)
,
K110
(
(
(
Im1
z2
)
*
(
Rea
z
)
)
)) is
set
(
Im2
z2
)
*
(
Im3
z
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
(
Rea
z2
)
*
(
Im1
z
)
)
-
(
(
Im1
z2
)
*
(
Rea
z
)
)
)
-
(
(
Im2
z2
)
*
(
Im3
z
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K110
(
(
(
Im2
z2
)
*
(
Im3
z
)
)
) is
V28
()
set
K108
(
(
(
(
Rea
z2
)
*
(
Im1
z
)
)
-
(
(
Im1
z2
)
*
(
Rea
z
)
)
)
,
K110
(
(
(
Im2
z2
)
*
(
Im3
z
)
)
)) is
set
(
Im3
z2
)
*
(
Im2
z
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
(
(
Rea
z2
)
*
(
Im1
z
)
)
-
(
(
Im1
z2
)
*
(
Rea
z
)
)
)
-
(
(
Im2
z2
)
*
(
Im3
z
)
)
)
+
(
(
Im3
z2
)
*
(
Im2
z
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
(
(
(
Rea
z2
)
*
(
Im1
z
)
)
-
(
(
Im1
z2
)
*
(
Rea
z
)
)
)
-
(
(
Im2
z2
)
*
(
Im3
z
)
)
)
+
(
(
Im3
z2
)
*
(
Im2
z
)
)
)
/
(
|.
z2
.|
^2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
(
(
(
(
Rea
z2
)
*
(
Im1
z
)
)
-
(
(
Im1
z2
)
*
(
Rea
z
)
)
)
-
(
(
Im2
z2
)
*
(
Im3
z
)
)
)
+
(
(
Im3
z2
)
*
(
Im2
z
)
)
)
,
K111
(
(
|.
z2
.|
^2
)
)) is
set
(
Rea
z2
)
*
(
Im2
z
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im1
z2
)
*
(
Im3
z
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
Rea
z2
)
*
(
Im2
z
)
)
+
(
(
Im1
z2
)
*
(
Im3
z
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im2
z2
)
*
(
Rea
z
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
(
Rea
z2
)
*
(
Im2
z
)
)
+
(
(
Im1
z2
)
*
(
Im3
z
)
)
)
-
(
(
Im2
z2
)
*
(
Rea
z
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K110
(
(
(
Im2
z2
)
*
(
Rea
z
)
)
) is
V28
()
set
K108
(
(
(
(
Rea
z2
)
*
(
Im2
z
)
)
+
(
(
Im1
z2
)
*
(
Im3
z
)
)
)
,
K110
(
(
(
Im2
z2
)
*
(
Rea
z
)
)
)) is
set
(
Im3
z2
)
*
(
Im1
z
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
(
(
Rea
z2
)
*
(
Im2
z
)
)
+
(
(
Im1
z2
)
*
(
Im3
z
)
)
)
-
(
(
Im2
z2
)
*
(
Rea
z
)
)
)
-
(
(
Im3
z2
)
*
(
Im1
z
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K110
(
(
(
Im3
z2
)
*
(
Im1
z
)
)
) is
V28
()
set
K108
(
(
(
(
(
Rea
z2
)
*
(
Im2
z
)
)
+
(
(
Im1
z2
)
*
(
Im3
z
)
)
)
-
(
(
Im2
z2
)
*
(
Rea
z
)
)
)
,
K110
(
(
(
Im3
z2
)
*
(
Im1
z
)
)
)) is
set
(
(
(
(
(
Rea
z2
)
*
(
Im2
z
)
)
+
(
(
Im1
z2
)
*
(
Im3
z
)
)
)
-
(
(
Im2
z2
)
*
(
Rea
z
)
)
)
-
(
(
Im3
z2
)
*
(
Im1
z
)
)
)
/
(
|.
z2
.|
^2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
(
(
(
(
Rea
z2
)
*
(
Im2
z
)
)
+
(
(
Im1
z2
)
*
(
Im3
z
)
)
)
-
(
(
Im2
z2
)
*
(
Rea
z
)
)
)
-
(
(
Im3
z2
)
*
(
Im1
z
)
)
)
,
K111
(
(
|.
z2
.|
^2
)
)) is
set
(
Rea
z2
)
*
(
Im3
z
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im1
z2
)
*
(
Im2
z
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
Rea
z2
)
*
(
Im3
z
)
)
-
(
(
Im1
z2
)
*
(
Im2
z
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K110
(
(
(
Im1
z2
)
*
(
Im2
z
)
)
) is
V28
()
set
K108
(
(
(
Rea
z2
)
*
(
Im3
z
)
)
,
K110
(
(
(
Im1
z2
)
*
(
Im2
z
)
)
)) is
set
(
Im2
z2
)
*
(
Im1
z
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
(
Rea
z2
)
*
(
Im3
z
)
)
-
(
(
Im1
z2
)
*
(
Im2
z
)
)
)
+
(
(
Im2
z2
)
*
(
Im1
z
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im3
z2
)
*
(
Rea
z
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
(
(
Rea
z2
)
*
(
Im3
z
)
)
-
(
(
Im1
z2
)
*
(
Im2
z
)
)
)
+
(
(
Im2
z2
)
*
(
Im1
z
)
)
)
-
(
(
Im3
z2
)
*
(
Rea
z
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K110
(
(
(
Im3
z2
)
*
(
Rea
z
)
)
) is
V28
()
set
K108
(
(
(
(
(
Rea
z2
)
*
(
Im3
z
)
)
-
(
(
Im1
z2
)
*
(
Im2
z
)
)
)
+
(
(
Im2
z2
)
*
(
Im1
z
)
)
)
,
K110
(
(
(
Im3
z2
)
*
(
Rea
z
)
)
)) is
set
(
(
(
(
(
Rea
z2
)
*
(
Im3
z
)
)
-
(
(
Im1
z2
)
*
(
Im2
z
)
)
)
+
(
(
Im2
z2
)
*
(
Im1
z
)
)
)
-
(
(
Im3
z2
)
*
(
Rea
z
)
)
)
/
(
|.
z2
.|
^2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
(
(
(
(
Rea
z2
)
*
(
Im3
z
)
)
-
(
(
Im1
z2
)
*
(
Im2
z
)
)
)
+
(
(
Im2
z2
)
*
(
Im1
z
)
)
)
-
(
(
Im3
z2
)
*
(
Rea
z
)
)
)
,
K111
(
(
|.
z2
.|
^2
)
)) is
set
[*
(
(
(
(
(
(
Rea
z2
)
*
(
Rea
z
)
)
+
(
(
Im1
z
)
*
(
Im1
z2
)
)
)
+
(
(
Im2
z2
)
*
(
Im2
z
)
)
)
+
(
(
Im3
z2
)
*
(
Im3
z
)
)
)
/
(
|.
z2
.|
^2
)
)
,
(
(
(
(
(
(
Rea
z2
)
*
(
Im1
z
)
)
-
(
(
Im1
z2
)
*
(
Rea
z
)
)
)
-
(
(
Im2
z2
)
*
(
Im3
z
)
)
)
+
(
(
Im3
z2
)
*
(
Im2
z
)
)
)
/
(
|.
z2
.|
^2
)
)
,
(
(
(
(
(
(
Rea
z2
)
*
(
Im2
z
)
)
+
(
(
Im1
z2
)
*
(
Im3
z
)
)
)
-
(
(
Im2
z2
)
*
(
Rea
z
)
)
)
-
(
(
Im3
z2
)
*
(
Im1
z
)
)
)
/
(
|.
z2
.|
^2
)
)
,
(
(
(
(
(
(
Rea
z2
)
*
(
Im3
z
)
)
-
(
(
Im1
z2
)
*
(
Im2
z
)
)
)
+
(
(
Im2
z2
)
*
(
Im1
z
)
)
)
-
(
(
Im3
z2
)
*
(
Rea
z
)
)
)
/
(
|.
z2
.|
^2
)
)
*]
is
quaternion
Element
of
QUATERNION
Rea
(
z
/
z2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
Im1
(
z
/
z2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
Im2
(
z
/
z2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
Im3
(
z
/
z2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
[*
(
Rea
(
z
/
z2
)
)
,
(
Im1
(
z
/
z2
)
)
,
(
Im2
(
z
/
z2
)
)
,
(
Im3
(
z
/
z2
)
)
*]
is
quaternion
Element
of
QUATERNION
[*
(
(
(
(
(
(
Rea
z2
)
*
(
Rea
z
)
)
+
(
(
Im1
z
)
*
(
Im1
z2
)
)
)
+
(
(
Im2
z2
)
*
(
Im2
z
)
)
)
+
(
(
Im3
z2
)
*
(
Im3
z
)
)
)
/
(
|.
z2
.|
^2
)
)
,
(
Im1
(
z
/
z2
)
)
,
(
Im2
(
z
/
z2
)
)
,
(
Im3
(
z
/
z2
)
)
*]
is
quaternion
Element
of
QUATERNION
[*
(
(
(
(
(
(
Rea
z2
)
*
(
Rea
z
)
)
+
(
(
Im1
z
)
*
(
Im1
z2
)
)
)
+
(
(
Im2
z2
)
*
(
Im2
z
)
)
)
+
(
(
Im3
z2
)
*
(
Im3
z
)
)
)
/
(
|.
z2
.|
^2
)
)
,
(
(
(
(
(
(
Rea
z2
)
*
(
Im1
z
)
)
-
(
(
Im1
z2
)
*
(
Rea
z
)
)
)
-
(
(
Im2
z2
)
*
(
Im3
z
)
)
)
+
(
(
Im3
z2
)
*
(
Im2
z
)
)
)
/
(
|.
z2
.|
^2
)
)
,
(
Im2
(
z
/
z2
)
)
,
(
Im3
(
z
/
z2
)
)
*]
is
quaternion
Element
of
QUATERNION
[*
(
(
(
(
(
(
Rea
z2
)
*
(
Rea
z
)
)
+
(
(
Im1
z
)
*
(
Im1
z2
)
)
)
+
(
(
Im2
z2
)
*
(
Im2
z
)
)
)
+
(
(
Im3
z2
)
*
(
Im3
z
)
)
)
/
(
|.
z2
.|
^2
)
)
,
(
(
(
(
(
(
Rea
z2
)
*
(
Im1
z
)
)
-
(
(
Im1
z2
)
*
(
Rea
z
)
)
)
-
(
(
Im2
z2
)
*
(
Im3
z
)
)
)
+
(
(
Im3
z2
)
*
(
Im2
z
)
)
)
/
(
|.
z2
.|
^2
)
)
,
(
(
(
(
(
(
Rea
z2
)
*
(
Im2
z
)
)
+
(
(
Im1
z2
)
*
(
Im3
z
)
)
)
-
(
(
Im2
z2
)
*
(
Rea
z
)
)
)
-
(
(
Im3
z2
)
*
(
Im1
z
)
)
)
/
(
|.
z2
.|
^2
)
)
,
(
Im3
(
z
/
z2
)
)
*]
is
quaternion
Element
of
QUATERNION
[*
0
,1
*]
is
V28
()
Element
of
COMPLEX
<i>
"
is
quaternion
Element
of
QUATERNION
-
<i>
is
quaternion
Element
of
QUATERNION
Im3
(
<i>
"
)
is
V28
()
V29
()
ext-real
Element
of
REAL
Im3
<i>
is
V28
()
V29
()
ext-real
Element
of
REAL
|.
<i>
.|
is
V28
()
V29
()
ext-real
Element
of
REAL
Rea
<i>
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Rea
<i>
)
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Rea
<i>
)
,
(
Rea
<i>
)
) is
set
Im1
<i>
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im1
<i>
)
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Im1
<i>
)
,
(
Im1
<i>
)
) is
set
(
(
Rea
<i>
)
^2
)
+
(
(
Im1
<i>
)
^2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
Im2
<i>
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im2
<i>
)
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Im2
<i>
)
,
(
Im2
<i>
)
) is
set
(
(
(
Rea
<i>
)
^2
)
+
(
(
Im1
<i>
)
^2
)
)
+
(
(
Im2
<i>
)
^2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im3
<i>
)
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Im3
<i>
)
,
(
Im3
<i>
)
) is
set
(
(
(
(
Rea
<i>
)
^2
)
+
(
(
Im1
<i>
)
^2
)
)
+
(
(
Im2
<i>
)
^2
)
)
+
(
(
Im3
<i>
)
^2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
sqrt
(
(
(
(
(
Rea
<i>
)
^2
)
+
(
(
Im1
<i>
)
^2
)
)
+
(
(
Im2
<i>
)
^2
)
)
+
(
(
Im3
<i>
)
^2
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
|.
<i>
.|
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
|.
<i>
.|
,
|.
<i>
.|
) is
set
(
Im3
<i>
)
/
(
|.
<i>
.|
^2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K111
(
(
|.
<i>
.|
^2
)
) is
V28
()
set
K109
(
(
Im3
<i>
)
,
K111
(
(
|.
<i>
.|
^2
)
)) is
set
-
(
(
Im3
<i>
)
/
(
|.
<i>
.|
^2
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
Im2
(
<i>
"
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im2
<i>
)
/
(
|.
<i>
.|
^2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Im2
<i>
)
,
K111
(
(
|.
<i>
.|
^2
)
)) is
set
-
(
(
Im2
<i>
)
/
(
|.
<i>
.|
^2
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
Im1
(
<i>
"
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im1
<i>
)
/
(
|.
<i>
.|
^2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Im1
<i>
)
,
K111
(
(
|.
<i>
.|
^2
)
)) is
set
-
(
(
Im1
<i>
)
/
(
|.
<i>
.|
^2
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
-
1 is
V28
()
V29
()
ext-real
Element
of
REAL
Rea
(
<i>
"
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Rea
<i>
)
/
(
|.
<i>
.|
^2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Rea
<i>
)
,
K111
(
(
|.
<i>
.|
^2
)
)) is
set
-
0
is
V28
()
V29
()
ext-real
Element
of
REAL
[*
(
-
0
)
,
(
-
1
)
,
(
-
0
)
,
(
-
0
)
*]
is
quaternion
Element
of
QUATERNION
[*
0
,1,
0
,
0
*]
is
quaternion
Element
of
QUATERNION
-
[*
0
,1,
0
,
0
*]
is
quaternion
Element
of
QUATERNION
<j>
"
is
quaternion
Element
of
QUATERNION
-
<j>
is
quaternion
Element
of
QUATERNION
Im3
(
<j>
"
)
is
V28
()
V29
()
ext-real
Element
of
REAL
|.
<j>
.|
is
V28
()
V29
()
ext-real
Element
of
REAL
|.
<j>
.|
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
|.
<j>
.|
,
|.
<j>
.|
) is
set
(
Im3
<j>
)
/
(
|.
<j>
.|
^2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K111
(
(
|.
<j>
.|
^2
)
) is
V28
()
set
K109
(
(
Im3
<j>
)
,
K111
(
(
|.
<j>
.|
^2
)
)) is
set
-
(
(
Im3
<j>
)
/
(
|.
<j>
.|
^2
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
Im2
(
<j>
"
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im2
<j>
)
/
(
|.
<j>
.|
^2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Im2
<j>
)
,
K111
(
(
|.
<j>
.|
^2
)
)) is
set
-
(
(
Im2
<j>
)
/
(
|.
<j>
.|
^2
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
-
1 is
V28
()
V29
()
ext-real
Element
of
REAL
Im1
(
<j>
"
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im1
<j>
)
/
(
|.
<j>
.|
^2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Im1
<j>
)
,
K111
(
(
|.
<j>
.|
^2
)
)) is
set
-
(
(
Im1
<j>
)
/
(
|.
<j>
.|
^2
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
Rea
(
<j>
"
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Rea
<j>
)
/
(
|.
<j>
.|
^2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Rea
<j>
)
,
K111
(
(
|.
<j>
.|
^2
)
)) is
set
-
0
is
V28
()
V29
()
ext-real
Element
of
REAL
[*
(
-
0
)
,
(
-
0
)
,
(
-
1
)
,
(
-
0
)
*]
is
quaternion
Element
of
QUATERNION
<k>
"
is
quaternion
Element
of
QUATERNION
-
<k>
is
quaternion
Element
of
QUATERNION
Im3
(
<k>
"
)
is
V28
()
V29
()
ext-real
Element
of
REAL
|.
<k>
.|
is
V28
()
V29
()
ext-real
Element
of
REAL
|.
<k>
.|
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
|.
<k>
.|
,
|.
<k>
.|
) is
set
(
Im3
<k>
)
/
(
|.
<k>
.|
^2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K111
(
(
|.
<k>
.|
^2
)
) is
V28
()
set
K109
(
(
Im3
<k>
)
,
K111
(
(
|.
<k>
.|
^2
)
)) is
set
-
(
(
Im3
<k>
)
/
(
|.
<k>
.|
^2
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
-
1 is
V28
()
V29
()
ext-real
Element
of
REAL
Im2
(
<k>
"
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im2
<k>
)
/
(
|.
<k>
.|
^2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Im2
<k>
)
,
K111
(
(
|.
<k>
.|
^2
)
)) is
set
-
(
(
Im2
<k>
)
/
(
|.
<k>
.|
^2
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
Im1
(
<k>
"
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im1
<k>
)
/
(
|.
<k>
.|
^2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Im1
<k>
)
,
K111
(
(
|.
<k>
.|
^2
)
)) is
set
-
(
(
Im1
<k>
)
/
(
|.
<k>
.|
^2
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
Rea
(
<k>
"
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Rea
<k>
)
/
(
|.
<k>
.|
^2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Rea
<k>
)
,
K111
(
(
|.
<k>
.|
^2
)
)) is
set
-
0
is
V28
()
V29
()
ext-real
Element
of
REAL
[*
(
-
0
)
,
(
-
0
)
,
(
-
0
)
,
(
-
1
)
*]
is
quaternion
Element
of
QUATERNION
z
is
quaternion
set
z
*
z
is
quaternion
Element
of
QUATERNION
z
is
quaternion
set
(
z
) is
set
z
*
z
is
quaternion
Element
of
QUATERNION
z
is
quaternion
Element
of
QUATERNION
(
z
) is
quaternion
set
z
*
z
is
quaternion
Element
of
QUATERNION
z
is
quaternion
set
(
z
) is
quaternion
set
z
*
z
is
quaternion
Element
of
QUATERNION
Rea
z
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Rea
z
)
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Rea
z
)
,
(
Rea
z
)
) is
set
Im1
z
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im1
z
)
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Im1
z
)
,
(
Im1
z
)
) is
set
(
(
Rea
z
)
^2
)
-
(
(
Im1
z
)
^2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K110
(
(
(
Im1
z
)
^2
)
) is
V28
()
set
K108
(
(
(
Rea
z
)
^2
)
,
K110
(
(
(
Im1
z
)
^2
)
)) is
set
Im2
z
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im2
z
)
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Im2
z
)
,
(
Im2
z
)
) is
set
(
(
(
Rea
z
)
^2
)
-
(
(
Im1
z
)
^2
)
)
-
(
(
Im2
z
)
^2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K110
(
(
(
Im2
z
)
^2
)
) is
V28
()
set
K108
(
(
(
(
Rea
z
)
^2
)
-
(
(
Im1
z
)
^2
)
)
,
K110
(
(
(
Im2
z
)
^2
)
)) is
set
Im3
z
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im3
z
)
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Im3
z
)
,
(
Im3
z
)
) is
set
(
(
(
(
Rea
z
)
^2
)
-
(
(
Im1
z
)
^2
)
)
-
(
(
Im2
z
)
^2
)
)
-
(
(
Im3
z
)
^2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K110
(
(
(
Im3
z
)
^2
)
) is
V28
()
set
K108
(
(
(
(
(
Rea
z
)
^2
)
-
(
(
Im1
z
)
^2
)
)
-
(
(
Im2
z
)
^2
)
)
,
K110
(
(
(
Im3
z
)
^2
)
)) is
set
(
Rea
z
)
*
(
Im1
z
)
is
V28
()
V29
()
ext-real
Element
of
REAL
2
*
(
(
Rea
z
)
*
(
Im1
z
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Rea
z
)
*
(
Im2
z
)
is
V28
()
V29
()
ext-real
Element
of
REAL
2
*
(
(
Rea
z
)
*
(
Im2
z
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Rea
z
)
*
(
Im3
z
)
is
V28
()
V29
()
ext-real
Element
of
REAL
2
*
(
(
Rea
z
)
*
(
Im3
z
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
[*
(
(
(
(
(
Rea
z
)
^2
)
-
(
(
Im1
z
)
^2
)
)
-
(
(
Im2
z
)
^2
)
)
-
(
(
Im3
z
)
^2
)
)
,
(
2
*
(
(
Rea
z
)
*
(
Im1
z
)
)
)
,
(
2
*
(
(
Rea
z
)
*
(
Im2
z
)
)
)
,
(
2
*
(
(
Rea
z
)
*
(
Im3
z
)
)
)
*]
is
quaternion
Element
of
QUATERNION
Rea
(
z
) is
V28
()
V29
()
ext-real
Element
of
REAL
Im1
(
z
) is
V28
()
V29
()
ext-real
Element
of
REAL
Im2
(
z
) is
V28
()
V29
()
ext-real
Element
of
REAL
Im3
(
z
) is
V28
()
V29
()
ext-real
Element
of
REAL
[*
(
Rea
(
z
)
)
,
(
Im1
(
z
)
)
,
(
Im2
(
z
)
)
,
(
Im3
(
z
)
)
*]
is
quaternion
Element
of
QUATERNION
[*
(
(
(
(
(
Rea
z
)
^2
)
-
(
(
Im1
z
)
^2
)
)
-
(
(
Im2
z
)
^2
)
)
-
(
(
Im3
z
)
^2
)
)
,
(
Im1
(
z
)
)
,
(
Im2
(
z
)
)
,
(
Im3
(
z
)
)
*]
is
quaternion
Element
of
QUATERNION
[*
(
(
(
(
(
Rea
z
)
^2
)
-
(
(
Im1
z
)
^2
)
)
-
(
(
Im2
z
)
^2
)
)
-
(
(
Im3
z
)
^2
)
)
,
(
2
*
(
(
Rea
z
)
*
(
Im1
z
)
)
)
,
(
Im2
(
z
)
)
,
(
Im3
(
z
)
)
*]
is
quaternion
Element
of
QUATERNION
[*
(
(
(
(
(
Rea
z
)
^2
)
-
(
(
Im1
z
)
^2
)
)
-
(
(
Im2
z
)
^2
)
)
-
(
(
Im3
z
)
^2
)
)
,
(
2
*
(
(
Rea
z
)
*
(
Im1
z
)
)
)
,
(
2
*
(
(
Rea
z
)
*
(
Im2
z
)
)
)
,
(
Im3
(
z
)
)
*]
is
quaternion
Element
of
QUATERNION
(
0q
) is
quaternion
Element
of
QUATERNION
0q
*
0q
is
quaternion
Element
of
QUATERNION
[*
0
,
0
*]
is
V28
()
Element
of
COMPLEX
[*
0
,
0
,
0
,
0
*]
is
quaternion
Element
of
QUATERNION
Rea
0q
is
V28
()
V29
()
ext-real
Element
of
REAL
Im1
0q
is
V28
()
V29
()
ext-real
Element
of
REAL
Im2
0q
is
V28
()
V29
()
ext-real
Element
of
REAL
Im3
0q
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Rea
0q
)
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Rea
0q
)
,
(
Rea
0q
)
) is
set
(
Im1
0q
)
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Im1
0q
)
,
(
Im1
0q
)
) is
set
(
(
Rea
0q
)
^2
)
-
(
(
Im1
0q
)
^2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K110
(
(
(
Im1
0q
)
^2
)
) is
V28
()
set
K108
(
(
(
Rea
0q
)
^2
)
,
K110
(
(
(
Im1
0q
)
^2
)
)) is
set
(
Im2
0q
)
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Im2
0q
)
,
(
Im2
0q
)
) is
set
(
(
(
Rea
0q
)
^2
)
-
(
(
Im1
0q
)
^2
)
)
-
(
(
Im2
0q
)
^2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K110
(
(
(
Im2
0q
)
^2
)
) is
V28
()
set
K108
(
(
(
(
Rea
0q
)
^2
)
-
(
(
Im1
0q
)
^2
)
)
,
K110
(
(
(
Im2
0q
)
^2
)
)) is
set
(
Im3
0q
)
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Im3
0q
)
,
(
Im3
0q
)
) is
set
(
(
(
(
Rea
0q
)
^2
)
-
(
(
Im1
0q
)
^2
)
)
-
(
(
Im2
0q
)
^2
)
)
-
(
(
Im3
0q
)
^2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K110
(
(
(
Im3
0q
)
^2
)
) is
V28
()
set
K108
(
(
(
(
(
Rea
0q
)
^2
)
-
(
(
Im1
0q
)
^2
)
)
-
(
(
Im2
0q
)
^2
)
)
,
K110
(
(
(
Im3
0q
)
^2
)
)) is
set
(
Rea
0q
)
*
(
Im1
0q
)
is
V28
()
V29
()
ext-real
Element
of
REAL
2
*
(
(
Rea
0q
)
*
(
Im1
0q
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Rea
0q
)
*
(
Im2
0q
)
is
V28
()
V29
()
ext-real
Element
of
REAL
2
*
(
(
Rea
0q
)
*
(
Im2
0q
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Rea
0q
)
*
(
Im3
0q
)
is
V28
()
V29
()
ext-real
Element
of
REAL
2
*
(
(
Rea
0q
)
*
(
Im3
0q
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
[*
(
(
(
(
(
Rea
0q
)
^2
)
-
(
(
Im1
0q
)
^2
)
)
-
(
(
Im2
0q
)
^2
)
)
-
(
(
Im3
0q
)
^2
)
)
,
(
2
*
(
(
Rea
0q
)
*
(
Im1
0q
)
)
)
,
(
2
*
(
(
Rea
0q
)
*
(
Im2
0q
)
)
)
,
(
2
*
(
(
Rea
0q
)
*
(
Im3
0q
)
)
)
*]
is
quaternion
Element
of
QUATERNION
(
1q
) is
quaternion
Element
of
QUATERNION
1q
*
1q
is
quaternion
Element
of
QUATERNION
[*
1,
0
*]
is
V28
()
Element
of
COMPLEX
[*
1,
0
,
0
,
0
*]
is
quaternion
Element
of
QUATERNION
Rea
1q
is
V28
()
V29
()
ext-real
Element
of
REAL
Im1
1q
is
V28
()
V29
()
ext-real
Element
of
REAL
Im2
1q
is
V28
()
V29
()
ext-real
Element
of
REAL
Im3
1q
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Rea
1q
)
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Rea
1q
)
,
(
Rea
1q
)
) is
set
(
Im1
1q
)
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Im1
1q
)
,
(
Im1
1q
)
) is
set
(
(
Rea
1q
)
^2
)
-
(
(
Im1
1q
)
^2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K110
(
(
(
Im1
1q
)
^2
)
) is
V28
()
set
K108
(
(
(
Rea
1q
)
^2
)
,
K110
(
(
(
Im1
1q
)
^2
)
)) is
set
(
Im2
1q
)
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Im2
1q
)
,
(
Im2
1q
)
) is
set
(
(
(
Rea
1q
)
^2
)
-
(
(
Im1
1q
)
^2
)
)
-
(
(
Im2
1q
)
^2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K110
(
(
(
Im2
1q
)
^2
)
) is
V28
()
set
K108
(
(
(
(
Rea
1q
)
^2
)
-
(
(
Im1
1q
)
^2
)
)
,
K110
(
(
(
Im2
1q
)
^2
)
)) is
set
(
Im3
1q
)
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Im3
1q
)
,
(
Im3
1q
)
) is
set
(
(
(
(
Rea
1q
)
^2
)
-
(
(
Im1
1q
)
^2
)
)
-
(
(
Im2
1q
)
^2
)
)
-
(
(
Im3
1q
)
^2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K110
(
(
(
Im3
1q
)
^2
)
) is
V28
()
set
K108
(
(
(
(
(
Rea
1q
)
^2
)
-
(
(
Im1
1q
)
^2
)
)
-
(
(
Im2
1q
)
^2
)
)
,
K110
(
(
(
Im3
1q
)
^2
)
)) is
set
(
Rea
1q
)
*
(
Im1
1q
)
is
V28
()
V29
()
ext-real
Element
of
REAL
2
*
(
(
Rea
1q
)
*
(
Im1
1q
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Rea
1q
)
*
(
Im2
1q
)
is
V28
()
V29
()
ext-real
Element
of
REAL
2
*
(
(
Rea
1q
)
*
(
Im2
1q
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Rea
1q
)
*
(
Im3
1q
)
is
V28
()
V29
()
ext-real
Element
of
REAL
2
*
(
(
Rea
1q
)
*
(
Im3
1q
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
[*
(
(
(
(
(
Rea
1q
)
^2
)
-
(
(
Im1
1q
)
^2
)
)
-
(
(
Im2
1q
)
^2
)
)
-
(
(
Im3
1q
)
^2
)
)
,
(
2
*
(
(
Rea
1q
)
*
(
Im1
1q
)
)
)
,
(
2
*
(
(
Rea
1q
)
*
(
Im2
1q
)
)
)
,
(
2
*
(
(
Rea
1q
)
*
(
Im3
1q
)
)
)
*]
is
quaternion
Element
of
QUATERNION
z
is
quaternion
set
(
z
) is
quaternion
set
z
*
z
is
quaternion
Element
of
QUATERNION
-
z
is
quaternion
Element
of
QUATERNION
(
(
-
z
)
) is
quaternion
Element
of
QUATERNION
(
-
z
)
*
(
-
z
)
is
quaternion
Element
of
QUATERNION
Rea
(
-
z
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Rea
(
-
z
)
)
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Rea
(
-
z
)
)
,
(
Rea
(
-
z
)
)
) is
set
Im1
(
-
z
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im1
(
-
z
)
)
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Im1
(
-
z
)
)
,
(
Im1
(
-
z
)
)
) is
set
(
(
Rea
(
-
z
)
)
^2
)
-
(
(
Im1
(
-
z
)
)
^2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K110
(
(
(
Im1
(
-
z
)
)
^2
)
) is
V28
()
set
K108
(
(
(
Rea
(
-
z
)
)
^2
)
,
K110
(
(
(
Im1
(
-
z
)
)
^2
)
)) is
set
Im2
(
-
z
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im2
(
-
z
)
)
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Im2
(
-
z
)
)
,
(
Im2
(
-
z
)
)
) is
set
(
(
(
Rea
(
-
z
)
)
^2
)
-
(
(
Im1
(
-
z
)
)
^2
)
)
-
(
(
Im2
(
-
z
)
)
^2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K110
(
(
(
Im2
(
-
z
)
)
^2
)
) is
V28
()
set
K108
(
(
(
(
Rea
(
-
z
)
)
^2
)
-
(
(
Im1
(
-
z
)
)
^2
)
)
,
K110
(
(
(
Im2
(
-
z
)
)
^2
)
)) is
set
Im3
(
-
z
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Im3
(
-
z
)
)
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Im3
(
-
z
)
)
,
(
Im3
(
-
z
)
)
) is
set
(
(
(
(
Rea
(
-
z
)
)
^2
)
-
(
(
Im1
(
-
z
)
)
^2
)
)
-
(
(
Im2
(
-
z
)
)
^2
)
)
-
(
(
Im3
(
-
z
)
)
^2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K110
(
(
(
Im3
(
-
z
)
)
^2
)
) is
V28
()
set
K108
(
(
(
(
(
Rea
(
-
z
)
)
^2
)
-
(
(
Im1
(
-
z
)
)
^2
)
)
-
(
(
Im2
(
-
z
)
)
^2
)
)
,
K110
(
(
(
Im3
(
-
z
)
)
^2
)
)) is
set
(
Rea
(
-
z
)
)
*
(
Im1
(
-
z
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
2
*
(
(
Rea
(
-
z
)
)
*
(
Im1
(
-
z
)
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Rea
(
-
z
)
)
*
(
Im2
(
-
z
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
2
*
(
(
Rea
(
-
z
)
)
*
(
Im2
(
-
z
)
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Rea
(
-
z
)
)
*
(
Im3
(
-
z
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
2
*
(
(
Rea
(
-
z
)
)
*
(
Im3
(
-
z
)
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
[*
(
(
(
(
(
Rea
(
-
z
)
)
^2
)
-
(
(
Im1
(
-
z
)
)
^2
)
)
-
(
(
Im2
(
-
z
)
)
^2
)
)
-
(
(
Im3
(
-
z
)
)
^2
)
)
,
(
2
*
(
(
Rea
(
-
z
)
)
*
(
Im1
(
-
z
)
)
)
)
,
(
2
*
(
(
Rea
(
-
z
)
)
*
(
Im2
(
-
z
)
)
)
)
,
(
2
*
(
(
Rea
(
-
z
)
)
*
(
Im3
(
-
z
)
)
)
)
*]
is
quaternion
Element
of
QUATERNION
Rea
z
is
V28
()
V29
()
ext-real
Element
of
REAL
-
(
Rea
z
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
-
(
Rea
z
)
)
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
-
(
Rea
z
)
)
,
(
-
(
Rea
z
)
)
) is
set
(
(
-
(
Rea
z
)
)
^2
)
-
(
(
Im1
(
-
z
)
)
^2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K108
(
(
(
-
(
Rea
z
)
)
^2
)
,
K110
(
(
(
Im1
(
-
z
)
)
^2
)
)) is
set
(
(
(
-
(
Rea
z
)
)
^2
)
-
(
(
Im1
(
-
z
)
)
^2
)
)
-
(
(
Im2
(
-
z
)
)
^2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K108
(
(
(
(
-
(
Rea
z
)
)
^2
)
-
(
(
Im1
(
-
z
)
)
^2
)
)
,
K110
(
(
(
Im2
(
-
z
)
)
^2
)
)) is
set
(
(
(
(
-
(
Rea
z
)
)
^2
)
-
(
(
Im1
(
-
z
)
)
^2
)
)
-
(
(
Im2
(
-
z
)
)
^2
)
)
-
(
(
Im3
(
-
z
)
)
^2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K108
(
(
(
(
(
-
(
Rea
z
)
)
^2
)
-
(
(
Im1
(
-
z
)
)
^2
)
)
-
(
(
Im2
(
-
z
)
)
^2
)
)
,
K110
(
(
(
Im3
(
-
z
)
)
^2
)
)) is
set
[*
(
(
(
(
(
-
(
Rea
z
)
)
^2
)
-
(
(
Im1
(
-
z
)
)
^2
)
)
-
(
(
Im2
(
-
z
)
)
^2
)
)
-
(
(
Im3
(
-
z
)
)
^2
)
)
,
(
2
*
(
(
Rea
(
-
z
)
)
*
(
Im1
(
-
z
)
)
)
)
,
(
2
*
(
(
Rea
(
-
z
)
)
*
(
Im2
(
-
z
)
)
)
)
,
(
2
*
(
(
Rea
(
-
z
)
)
*
(
Im3
(
-
z
)
)
)
)
*]
is
quaternion
Element
of
QUATERNION
Im1
z
is
V28
()
V29
()
ext-real
Element
of
REAL
-
(
Im1
z
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
-
(
Im1
z
)
)
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
-
(
Im1
z
)
)
,
(
-
(
Im1
z
)
)
) is
set
(
(
-
(
Rea
z
)
)
^2
)
-
(
(
-
(
Im1
z
)
)
^2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K110
(
(
(
-
(
Im1
z
)
)
^2
)
) is
V28
()
set
K108
(
(
(
-
(
Rea
z
)
)
^2
)
,
K110
(
(
(
-
(
Im1
z
)
)
^2
)
)) is
set
(
(
(
-
(
Rea
z
)
)
^2
)
-
(
(
-
(
Im1
z
)
)
^2
)
)
-
(
(
Im2
(
-
z
)
)
^2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K108
(
(
(
(
-
(
Rea
z
)
)
^2
)
-
(
(
-
(
Im1
z
)
)
^2
)
)
,
K110
(
(
(
Im2
(
-
z
)
)
^2
)
)) is
set
(
(
(
(
-
(
Rea
z
)
)
^2
)
-
(
(
-
(
Im1
z
)
)
^2
)
)
-
(
(
Im2
(
-
z
)
)
^2
)
)
-
(
(
Im3
(
-
z
)
)
^2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K108
(
(
(
(
(
-
(
Rea
z
)
)
^2
)
-
(
(
-
(
Im1
z
)
)
^2
)
)
-
(
(
Im2
(
-
z
)
)
^2
)
)
,
K110
(
(
(
Im3
(
-
z
)
)
^2
)
)) is
set
[*
(
(
(
(
(
-
(
Rea
z
)
)
^2
)
-
(
(
-
(
Im1
z
)
)
^2
)
)
-
(
(
Im2
(
-
z
)
)
^2
)
)
-
(
(
Im3
(
-
z
)
)
^2
)
)
,
(
2
*
(
(
Rea
(
-
z
)
)
*
(
Im1
(
-
z
)
)
)
)
,
(
2
*
(
(
Rea
(
-
z
)
)
*
(
Im2
(
-
z
)
)
)
)
,
(
2
*
(
(
Rea
(
-
z
)
)
*
(
Im3
(
-
z
)
)
)
)
*]
is
quaternion
Element
of
QUATERNION
Im2
z
is
V28
()
V29
()
ext-real
Element
of
REAL
-
(
Im2
z
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
-
(
Im2
z
)
)
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
-
(
Im2
z
)
)
,
(
-
(
Im2
z
)
)
) is
set
(
(
(
-
(
Rea
z
)
)
^2
)
-
(
(
-
(
Im1
z
)
)
^2
)
)
-
(
(
-
(
Im2
z
)
)
^2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K110
(
(
(
-
(
Im2
z
)
)
^2
)
) is
V28
()
set
K108
(
(
(
(
-
(
Rea
z
)
)
^2
)
-
(
(
-
(
Im1
z
)
)
^2
)
)
,
K110
(
(
(
-
(
Im2
z
)
)
^2
)
)) is
set
(
(
(
(
-
(
Rea
z
)
)
^2
)
-
(
(
-
(
Im1
z
)
)
^2
)
)
-
(
(
-
(
Im2
z
)
)
^2
)
)
-
(
(
Im3
(
-
z
)
)
^2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K108
(
(
(
(
(
-
(
Rea
z
)
)
^2
)
-
(
(
-
(
Im1
z
)
)
^2
)
)
-
(
(
-
(
Im2
z
)
)
^2
)
)
,
K110
(
(
(
Im3
(
-
z
)
)
^2
)
)) is
set
[*
(
(
(
(
(
-
(
Rea
z
)
)
^2
)
-
(
(
-
(
Im1
z
)
)
^2
)
)
-
(
(
-
(
Im2
z
)
)
^2
)
)
-
(
(
Im3
(
-
z
)
)
^2
)
)
,
(
2
*
(
(
Rea
(
-
z
)
)
*
(
Im1
(
-
z
)
)
)
)
,
(
2
*
(
(
Rea
(
-
z
)
)
*
(
Im2
(
-
z
)
)
)
)
,
(
2
*
(
(
Rea
(
-
z
)
)
*
(
Im3
(
-
z
)
)
)
)
*]
is
quaternion
Element
of
QUATERNION
Im3
z
is
V28
()
V29
()
ext-real
Element
of
REAL
-
(
Im3
z
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
-
(
Im3
z
)
)
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
-
(
Im3
z
)
)
,
(
-
(
Im3
z
)
)
) is
set
(
(
(
(
-
(
Rea
z
)
)
^2
)
-
(
(
-
(
Im1
z
)
)
^2
)
)
-
(
(
-
(
Im2
z
)
)
^2
)
)
-
(
(
-
(
Im3
z
)
)
^2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K110
(
(
(
-
(
Im3
z
)
)
^2
)
) is
V28
()
set
K108
(
(
(
(
(
-
(
Rea
z
)
)
^2
)
-
(
(
-
(
Im1
z
)
)
^2
)
)
-
(
(
-
(
Im2
z
)
)
^2
)
)
,
K110
(
(
(
-
(
Im3
z
)
)
^2
)
)) is
set
[*
(
(
(
(
(
-
(
Rea
z
)
)
^2
)
-
(
(
-
(
Im1
z
)
)
^2
)
)
-
(
(
-
(
Im2
z
)
)
^2
)
)
-
(
(
-
(
Im3
z
)
)
^2
)
)
,
(
2
*
(
(
Rea
(
-
z
)
)
*
(
Im1
(
-
z
)
)
)
)
,
(
2
*
(
(
Rea
(
-
z
)
)
*
(
Im2
(
-
z
)
)
)
)
,
(
2
*
(
(
Rea
(
-
z
)
)
*
(
Im3
(
-
z
)
)
)
)
*]
is
quaternion
Element
of
QUATERNION
(
-
(
Rea
z
)
)
*
(
Im1
(
-
z
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
2
*
(
(
-
(
Rea
z
)
)
*
(
Im1
(
-
z
)
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
[*
(
(
(
(
(
-
(
Rea
z
)
)
^2
)
-
(
(
-
(
Im1
z
)
)
^2
)
)
-
(
(
-
(
Im2
z
)
)
^2
)
)
-
(
(
-
(
Im3
z
)
)
^2
)
)
,
(
2
*
(
(
-
(
Rea
z
)
)
*
(
Im1
(
-
z
)
)
)
)
,
(
2
*
(
(
Rea
(
-
z
)
)
*
(
Im2
(
-
z
)
)
)
)
,
(
2
*
(
(
Rea
(
-
z
)
)
*
(
Im3
(
-
z
)
)
)
)
*]
is
quaternion
Element
of
QUATERNION
(
-
(
Rea
z
)
)
*
(
-
(
Im1
z
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
2
*
(
(
-
(
Rea
z
)
)
*
(
-
(
Im1
z
)
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
[*
(
(
(
(
(
-
(
Rea
z
)
)
^2
)
-
(
(
-
(
Im1
z
)
)
^2
)
)
-
(
(
-
(
Im2
z
)
)
^2
)
)
-
(
(
-
(
Im3
z
)
)
^2
)
)
,
(
2
*
(
(
-
(
Rea
z
)
)
*
(
-
(
Im1
z
)
)
)
)
,
(
2
*
(
(
Rea
(
-
z
)
)
*
(
Im2
(
-
z
)
)
)
)
,
(
2
*
(
(
Rea
(
-
z
)
)
*
(
Im3
(
-
z
)
)
)
)
*]
is
quaternion
Element
of
QUATERNION
(
-
(
Rea
z
)
)
*
(
Im2
(
-
z
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
2
*
(
(
-
(
Rea
z
)
)
*
(
Im2
(
-
z
)
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
[*
(
(
(
(
(
-
(
Rea
z
)
)
^2
)
-
(
(
-
(
Im1
z
)
)
^2
)
)
-
(
(
-
(
Im2
z
)
)
^2
)
)
-
(
(
-
(
Im3
z
)
)
^2
)
)
,
(
2
*
(
(
-
(
Rea
z
)
)
*
(
-
(
Im1
z
)
)
)
)
,
(
2
*
(
(
-
(
Rea
z
)
)
*
(
Im2
(
-
z
)
)
)
)
,
(
2
*
(
(
Rea
(
-
z
)
)
*
(
Im3
(
-
z
)
)
)
)
*]
is
quaternion
Element
of
QUATERNION
(
-
(
Rea
z
)
)
*
(
-
(
Im2
z
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
2
*
(
(
-
(
Rea
z
)
)
*
(
-
(
Im2
z
)
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
[*
(
(
(
(
(
-
(
Rea
z
)
)
^2
)
-
(
(
-
(
Im1
z
)
)
^2
)
)
-
(
(
-
(
Im2
z
)
)
^2
)
)
-
(
(
-
(
Im3
z
)
)
^2
)
)
,
(
2
*
(
(
-
(
Rea
z
)
)
*
(
-
(
Im1
z
)
)
)
)
,
(
2
*
(
(
-
(
Rea
z
)
)
*
(
-
(
Im2
z
)
)
)
)
,
(
2
*
(
(
Rea
(
-
z
)
)
*
(
Im3
(
-
z
)
)
)
)
*]
is
quaternion
Element
of
QUATERNION
(
-
(
Rea
z
)
)
*
(
Im3
(
-
z
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
2
*
(
(
-
(
Rea
z
)
)
*
(
Im3
(
-
z
)
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
[*
(
(
(
(
(
-
(
Rea
z
)
)
^2
)
-
(
(
-
(
Im1
z
)
)
^2
)
)
-
(
(
-
(
Im2
z
)
)
^2
)
)
-
(
(
-
(
Im3
z
)
)
^2
)
)
,
(
2
*
(
(
-
(
Rea
z
)
)
*
(
-
(
Im1
z
)
)
)
)
,
(
2
*
(
(
-
(
Rea
z
)
)
*
(
-
(
Im2
z
)
)
)
)
,
(
2
*
(
(
-
(
Rea
z
)
)
*
(
Im3
(
-
z
)
)
)
)
*]
is
quaternion
Element
of
QUATERNION
(
-
(
Rea
z
)
)
*
(
-
(
Im3
z
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
2
*
(
(
-
(
Rea
z
)
)
*
(
-
(
Im3
z
)
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
[*
(
(
(
(
(
-
(
Rea
z
)
)
^2
)
-
(
(
-
(
Im1
z
)
)
^2
)
)
-
(
(
-
(
Im2
z
)
)
^2
)
)
-
(
(
-
(
Im3
z
)
)
^2
)
)
,
(
2
*
(
(
-
(
Rea
z
)
)
*
(
-
(
Im1
z
)
)
)
)
,
(
2
*
(
(
-
(
Rea
z
)
)
*
(
-
(
Im2
z
)
)
)
)
,
(
2
*
(
(
-
(
Rea
z
)
)
*
(
-
(
Im3
z
)
)
)
)
*]
is
quaternion
Element
of
QUATERNION
(
Rea
z
)
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Rea
z
)
,
(
Rea
z
)
) is
set
(
Im1
z
)
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Im1
z
)
,
(
Im1
z
)
) is
set
(
(
Rea
z
)
^2
)
-
(
(
Im1
z
)
^2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K110
(
(
(
Im1
z
)
^2
)
) is
V28
()
set
K108
(
(
(
Rea
z
)
^2
)
,
K110
(
(
(
Im1
z
)
^2
)
)) is
set
(
Im2
z
)
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Im2
z
)
,
(
Im2
z
)
) is
set
(
(
(
Rea
z
)
^2
)
-
(
(
Im1
z
)
^2
)
)
-
(
(
Im2
z
)
^2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K110
(
(
(
Im2
z
)
^2
)
) is
V28
()
set
K108
(
(
(
(
Rea
z
)
^2
)
-
(
(
Im1
z
)
^2
)
)
,
K110
(
(
(
Im2
z
)
^2
)
)) is
set
(
Im3
z
)
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Im3
z
)
,
(
Im3
z
)
) is
set
(
(
(
(
Rea
z
)
^2
)
-
(
(
Im1
z
)
^2
)
)
-
(
(
Im2
z
)
^2
)
)
-
(
(
Im3
z
)
^2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K110
(
(
(
Im3
z
)
^2
)
) is
V28
()
set
K108
(
(
(
(
(
Rea
z
)
^2
)
-
(
(
Im1
z
)
^2
)
)
-
(
(
Im2
z
)
^2
)
)
,
K110
(
(
(
Im3
z
)
^2
)
)) is
set
(
Rea
z
)
*
(
Im1
z
)
is
V28
()
V29
()
ext-real
Element
of
REAL
2
*
(
(
Rea
z
)
*
(
Im1
z
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Rea
z
)
*
(
Im2
z
)
is
V28
()
V29
()
ext-real
Element
of
REAL
2
*
(
(
Rea
z
)
*
(
Im2
z
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Rea
z
)
*
(
Im3
z
)
is
V28
()
V29
()
ext-real
Element
of
REAL
2
*
(
(
Rea
z
)
*
(
Im3
z
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
[*
(
(
(
(
(
Rea
z
)
^2
)
-
(
(
Im1
z
)
^2
)
)
-
(
(
Im2
z
)
^2
)
)
-
(
(
Im3
z
)
^2
)
)
,
(
2
*
(
(
Rea
z
)
*
(
Im1
z
)
)
)
,
(
2
*
(
(
Rea
z
)
*
(
Im2
z
)
)
)
,
(
2
*
(
(
Rea
z
)
*
(
Im3
z
)
)
)
*]
is
quaternion
Element
of
QUATERNION
z
is
quaternion
set
z
*
z
is
quaternion
Element
of
QUATERNION
(
z
*
z
)
*
z
is
quaternion
Element
of
QUATERNION
z
is
quaternion
set
(
z
) is
set
z
*
z
is
quaternion
Element
of
QUATERNION
(
z
*
z
)
*
z
is
quaternion
Element
of
QUATERNION
z
is
quaternion
Element
of
QUATERNION
(
z
) is
quaternion
set
z
*
z
is
quaternion
Element
of
QUATERNION
(
z
*
z
)
*
z
is
quaternion
Element
of
QUATERNION
(
0q
) is
quaternion
Element
of
QUATERNION
(
0q
*
0q
)
*
0q
is
quaternion
Element
of
QUATERNION
[*
0
,
0
*]
is
V28
()
Element
of
COMPLEX
[*
0
,
0
,
0
,
0
*]
is
quaternion
Element
of
QUATERNION
Rea
0q
is
V28
()
V29
()
ext-real
Element
of
REAL
Im1
0q
is
V28
()
V29
()
ext-real
Element
of
REAL
Im2
0q
is
V28
()
V29
()
ext-real
Element
of
REAL
Im3
0q
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Rea
0q
)
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Rea
0q
)
,
(
Rea
0q
)
) is
set
(
Im1
0q
)
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Im1
0q
)
,
(
Im1
0q
)
) is
set
(
(
Rea
0q
)
^2
)
-
(
(
Im1
0q
)
^2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K110
(
(
(
Im1
0q
)
^2
)
) is
V28
()
set
K108
(
(
(
Rea
0q
)
^2
)
,
K110
(
(
(
Im1
0q
)
^2
)
)) is
set
(
Im2
0q
)
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Im2
0q
)
,
(
Im2
0q
)
) is
set
(
(
(
Rea
0q
)
^2
)
-
(
(
Im1
0q
)
^2
)
)
-
(
(
Im2
0q
)
^2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K110
(
(
(
Im2
0q
)
^2
)
) is
V28
()
set
K108
(
(
(
(
Rea
0q
)
^2
)
-
(
(
Im1
0q
)
^2
)
)
,
K110
(
(
(
Im2
0q
)
^2
)
)) is
set
(
Im3
0q
)
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Im3
0q
)
,
(
Im3
0q
)
) is
set
(
(
(
(
Rea
0q
)
^2
)
-
(
(
Im1
0q
)
^2
)
)
-
(
(
Im2
0q
)
^2
)
)
-
(
(
Im3
0q
)
^2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K110
(
(
(
Im3
0q
)
^2
)
) is
V28
()
set
K108
(
(
(
(
(
Rea
0q
)
^2
)
-
(
(
Im1
0q
)
^2
)
)
-
(
(
Im2
0q
)
^2
)
)
,
K110
(
(
(
Im3
0q
)
^2
)
)) is
set
(
Rea
0q
)
*
(
Im1
0q
)
is
V28
()
V29
()
ext-real
Element
of
REAL
2
*
(
(
Rea
0q
)
*
(
Im1
0q
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Rea
0q
)
*
(
Im2
0q
)
is
V28
()
V29
()
ext-real
Element
of
REAL
2
*
(
(
Rea
0q
)
*
(
Im2
0q
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Rea
0q
)
*
(
Im3
0q
)
is
V28
()
V29
()
ext-real
Element
of
REAL
2
*
(
(
Rea
0q
)
*
(
Im3
0q
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
[*
(
(
(
(
(
Rea
0q
)
^2
)
-
(
(
Im1
0q
)
^2
)
)
-
(
(
Im2
0q
)
^2
)
)
-
(
(
Im3
0q
)
^2
)
)
,
(
2
*
(
(
Rea
0q
)
*
(
Im1
0q
)
)
)
,
(
2
*
(
(
Rea
0q
)
*
(
Im2
0q
)
)
)
,
(
2
*
(
(
Rea
0q
)
*
(
Im3
0q
)
)
)
*]
is
quaternion
Element
of
QUATERNION
(
1q
) is
quaternion
Element
of
QUATERNION
(
1q
*
1q
)
*
1q
is
quaternion
Element
of
QUATERNION
[*
1,
0
*]
is
V28
()
Element
of
COMPLEX
[*
1,
0
,
0
,
0
*]
is
quaternion
Element
of
QUATERNION
Rea
1q
is
V28
()
V29
()
ext-real
Element
of
REAL
Im1
1q
is
V28
()
V29
()
ext-real
Element
of
REAL
Im2
1q
is
V28
()
V29
()
ext-real
Element
of
REAL
Im3
1q
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Rea
1q
)
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Rea
1q
)
,
(
Rea
1q
)
) is
set
(
Im1
1q
)
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Im1
1q
)
,
(
Im1
1q
)
) is
set
(
(
Rea
1q
)
^2
)
-
(
(
Im1
1q
)
^2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K110
(
(
(
Im1
1q
)
^2
)
) is
V28
()
set
K108
(
(
(
Rea
1q
)
^2
)
,
K110
(
(
(
Im1
1q
)
^2
)
)) is
set
(
Im2
1q
)
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Im2
1q
)
,
(
Im2
1q
)
) is
set
(
(
(
Rea
1q
)
^2
)
-
(
(
Im1
1q
)
^2
)
)
-
(
(
Im2
1q
)
^2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K110
(
(
(
Im2
1q
)
^2
)
) is
V28
()
set
K108
(
(
(
(
Rea
1q
)
^2
)
-
(
(
Im1
1q
)
^2
)
)
,
K110
(
(
(
Im2
1q
)
^2
)
)) is
set
(
Im3
1q
)
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Im3
1q
)
,
(
Im3
1q
)
) is
set
(
(
(
(
Rea
1q
)
^2
)
-
(
(
Im1
1q
)
^2
)
)
-
(
(
Im2
1q
)
^2
)
)
-
(
(
Im3
1q
)
^2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K110
(
(
(
Im3
1q
)
^2
)
) is
V28
()
set
K108
(
(
(
(
(
Rea
1q
)
^2
)
-
(
(
Im1
1q
)
^2
)
)
-
(
(
Im2
1q
)
^2
)
)
,
K110
(
(
(
Im3
1q
)
^2
)
)) is
set
(
Rea
1q
)
*
(
Im1
1q
)
is
V28
()
V29
()
ext-real
Element
of
REAL
2
*
(
(
Rea
1q
)
*
(
Im1
1q
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Rea
1q
)
*
(
Im2
1q
)
is
V28
()
V29
()
ext-real
Element
of
REAL
2
*
(
(
Rea
1q
)
*
(
Im2
1q
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Rea
1q
)
*
(
Im3
1q
)
is
V28
()
V29
()
ext-real
Element
of
REAL
2
*
(
(
Rea
1q
)
*
(
Im3
1q
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
[*
(
(
(
(
(
Rea
1q
)
^2
)
-
(
(
Im1
1q
)
^2
)
)
-
(
(
Im2
1q
)
^2
)
)
-
(
(
Im3
1q
)
^2
)
)
,
(
2
*
(
(
Rea
1q
)
*
(
Im1
1q
)
)
)
,
(
2
*
(
(
Rea
1q
)
*
(
Im2
1q
)
)
)
,
(
2
*
(
(
Rea
1q
)
*
(
Im3
1q
)
)
)
*]
is
quaternion
Element
of
QUATERNION
(
<i>
) is
quaternion
Element
of
QUATERNION
<i>
*
<i>
is
quaternion
Element
of
QUATERNION
(
<i>
*
<i>
)
*
<i>
is
quaternion
Element
of
QUATERNION
[*
0
,1,
0
,
0
*]
is
quaternion
Element
of
QUATERNION
0
*
0
is
V28
()
V29
()
ext-real
Element
of
REAL
1
*
1 is
V28
()
V29
()
ext-real
Element
of
REAL
(
0
*
0
)
-
(
1
*
1
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K110
(
(
1
*
1
)
) is
V28
()
set
K108
(
(
0
*
0
)
,
K110
(
(
1
*
1
)
)) is
set
(
(
0
*
0
)
-
(
1
*
1
)
)
-
(
0
*
0
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K110
(
(
0
*
0
)
) is
V28
()
set
K108
(
(
(
0
*
0
)
-
(
1
*
1
)
)
,
K110
(
(
0
*
0
)
)) is
set
(
(
(
0
*
0
)
-
(
1
*
1
)
)
-
(
0
*
0
)
)
-
(
0
*
0
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K108
(
(
(
(
0
*
0
)
-
(
1
*
1
)
)
-
(
0
*
0
)
)
,
K110
(
(
0
*
0
)
)) is
set
0
*
1 is
V28
()
V29
()
ext-real
Element
of
REAL
1
*
0
is
V28
()
V29
()
ext-real
Element
of
REAL
(
0
*
1
)
+
(
1
*
0
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
0
*
1
)
+
(
1
*
0
)
)
+
(
0
*
0
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
(
0
*
1
)
+
(
1
*
0
)
)
+
(
0
*
0
)
)
-
(
0
*
0
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K108
(
(
(
(
0
*
1
)
+
(
1
*
0
)
)
+
(
0
*
0
)
)
,
K110
(
(
0
*
0
)
)) is
set
(
0
*
0
)
+
(
0
*
0
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
0
*
0
)
+
(
0
*
0
)
)
+
(
1
*
0
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
(
0
*
0
)
+
(
0
*
0
)
)
+
(
1
*
0
)
)
-
(
0
*
1
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K110
(
(
0
*
1
)
) is
V28
()
set
K108
(
(
(
(
0
*
0
)
+
(
0
*
0
)
)
+
(
1
*
0
)
)
,
K110
(
(
0
*
1
)
)) is
set
[*
(
(
(
(
0
*
0
)
-
(
1
*
1
)
)
-
(
0
*
0
)
)
-
(
0
*
0
)
)
,
(
(
(
(
0
*
1
)
+
(
1
*
0
)
)
+
(
0
*
0
)
)
-
(
0
*
0
)
)
,
(
(
(
(
0
*
0
)
+
(
0
*
0
)
)
+
(
1
*
0
)
)
-
(
0
*
1
)
)
,
(
(
(
(
0
*
0
)
+
(
0
*
0
)
)
+
(
1
*
0
)
)
-
(
0
*
1
)
)
*]
is
quaternion
Element
of
QUATERNION
[*
(
(
(
(
0
*
0
)
-
(
1
*
1
)
)
-
(
0
*
0
)
)
-
(
0
*
0
)
)
,
(
(
(
(
0
*
1
)
+
(
1
*
0
)
)
+
(
0
*
0
)
)
-
(
0
*
0
)
)
,
(
(
(
(
0
*
0
)
+
(
0
*
0
)
)
+
(
1
*
0
)
)
-
(
0
*
1
)
)
,
(
(
(
(
0
*
0
)
+
(
0
*
0
)
)
+
(
1
*
0
)
)
-
(
0
*
1
)
)
*]
*
[*
0
,1,
0
,
0
*]
is
quaternion
Element
of
QUATERNION
-
1 is
V28
()
V29
()
ext-real
Element
of
REAL
(
-
1
)
*
0
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
-
1
)
*
0
)
-
(
0
*
1
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K108
(
(
(
-
1
)
*
0
)
,
K110
(
(
0
*
1
)
)) is
set
(
(
(
-
1
)
*
0
)
-
(
0
*
1
)
)
-
(
0
*
0
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K108
(
(
(
(
-
1
)
*
0
)
-
(
0
*
1
)
)
,
K110
(
(
0
*
0
)
)) is
set
(
(
(
(
-
1
)
*
0
)
-
(
0
*
1
)
)
-
(
0
*
0
)
)
-
(
0
*
0
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K108
(
(
(
(
(
-
1
)
*
0
)
-
(
0
*
1
)
)
-
(
0
*
0
)
)
,
K110
(
(
0
*
0
)
)) is
set
(
-
1
)
*
1 is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
-
1
)
*
1
)
+
(
0
*
0
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
(
-
1
)
*
1
)
+
(
0
*
0
)
)
+
(
0
*
0
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
(
(
-
1
)
*
1
)
+
(
0
*
0
)
)
+
(
0
*
0
)
)
-
(
0
*
0
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K108
(
(
(
(
(
-
1
)
*
1
)
+
(
0
*
0
)
)
+
(
0
*
0
)
)
,
K110
(
(
0
*
0
)
)) is
set
(
(
-
1
)
*
0
)
+
(
0
*
0
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
(
-
1
)
*
0
)
+
(
0
*
0
)
)
+
(
1
*
0
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
(
(
-
1
)
*
0
)
+
(
0
*
0
)
)
+
(
1
*
0
)
)
-
(
0
*
0
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K108
(
(
(
(
(
-
1
)
*
0
)
+
(
0
*
0
)
)
+
(
1
*
0
)
)
,
K110
(
(
0
*
0
)
)) is
set
(
(
(
-
1
)
*
0
)
+
(
0
*
0
)
)
+
(
0
*
0
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
(
(
-
1
)
*
0
)
+
(
0
*
0
)
)
+
(
0
*
0
)
)
-
(
0
*
1
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K108
(
(
(
(
(
-
1
)
*
0
)
+
(
0
*
0
)
)
+
(
0
*
0
)
)
,
K110
(
(
0
*
1
)
)) is
set
[*
(
(
(
(
(
-
1
)
*
0
)
-
(
0
*
1
)
)
-
(
0
*
0
)
)
-
(
0
*
0
)
)
,
(
(
(
(
(
-
1
)
*
1
)
+
(
0
*
0
)
)
+
(
0
*
0
)
)
-
(
0
*
0
)
)
,
(
(
(
(
(
-
1
)
*
0
)
+
(
0
*
0
)
)
+
(
1
*
0
)
)
-
(
0
*
0
)
)
,
(
(
(
(
(
-
1
)
*
0
)
+
(
0
*
0
)
)
+
(
0
*
0
)
)
-
(
0
*
1
)
)
*]
is
quaternion
Element
of
QUATERNION
-
[*
0
,1,
0
,
0
*]
is
quaternion
Element
of
QUATERNION
(
<j>
) is
quaternion
Element
of
QUATERNION
<j>
*
<j>
is
quaternion
Element
of
QUATERNION
(
<j>
*
<j>
)
*
<j>
is
quaternion
Element
of
QUATERNION
0
*
0
is
V28
()
V29
()
ext-real
Element
of
REAL
(
0
*
0
)
-
(
0
*
0
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K110
(
(
0
*
0
)
) is
V28
()
set
K108
(
(
0
*
0
)
,
K110
(
(
0
*
0
)
)) is
set
1
*
1 is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
0
*
0
)
-
(
0
*
0
)
)
-
(
1
*
1
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K110
(
(
1
*
1
)
) is
V28
()
set
K108
(
(
(
0
*
0
)
-
(
0
*
0
)
)
,
K110
(
(
1
*
1
)
)) is
set
(
(
(
0
*
0
)
-
(
0
*
0
)
)
-
(
1
*
1
)
)
-
(
0
*
0
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K108
(
(
(
(
0
*
0
)
-
(
0
*
0
)
)
-
(
1
*
1
)
)
,
K110
(
(
0
*
0
)
)) is
set
(
0
*
0
)
+
(
0
*
0
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
0
*
0
)
+
(
0
*
0
)
)
+
(
0
*
0
)
is
V28
()
V29
()
ext-real
Element
of
REAL
0
*
1 is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
(
0
*
0
)
+
(
0
*
0
)
)
+
(
0
*
0
)
)
-
(
0
*
1
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K110
(
(
0
*
1
)
) is
V28
()
set
K108
(
(
(
(
0
*
0
)
+
(
0
*
0
)
)
+
(
0
*
0
)
)
,
K110
(
(
0
*
1
)
)) is
set
(
0
*
1
)
+
(
0
*
1
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
0
*
1
)
+
(
0
*
1
)
)
+
(
0
*
0
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
(
0
*
1
)
+
(
0
*
1
)
)
+
(
0
*
0
)
)
-
(
0
*
0
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K108
(
(
(
(
0
*
1
)
+
(
0
*
1
)
)
+
(
0
*
0
)
)
,
K110
(
(
0
*
0
)
)) is
set
(
(
0
*
0
)
+
(
0
*
0
)
)
+
(
0
*
1
)
is
V28
()
V29
()
ext-real
Element
of
REAL
1
*
0
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
(
0
*
0
)
+
(
0
*
0
)
)
+
(
0
*
1
)
)
-
(
1
*
0
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K110
(
(
1
*
0
)
) is
V28
()
set
K108
(
(
(
(
0
*
0
)
+
(
0
*
0
)
)
+
(
0
*
1
)
)
,
K110
(
(
1
*
0
)
)) is
set
[*
(
(
(
(
0
*
0
)
-
(
0
*
0
)
)
-
(
1
*
1
)
)
-
(
0
*
0
)
)
,
(
(
(
(
0
*
0
)
+
(
0
*
0
)
)
+
(
0
*
0
)
)
-
(
0
*
1
)
)
,
(
(
(
(
0
*
1
)
+
(
0
*
1
)
)
+
(
0
*
0
)
)
-
(
0
*
0
)
)
,
(
(
(
(
0
*
0
)
+
(
0
*
0
)
)
+
(
0
*
1
)
)
-
(
1
*
0
)
)
*]
is
quaternion
Element
of
QUATERNION
[*
(
(
(
(
0
*
0
)
-
(
0
*
0
)
)
-
(
1
*
1
)
)
-
(
0
*
0
)
)
,
(
(
(
(
0
*
0
)
+
(
0
*
0
)
)
+
(
0
*
0
)
)
-
(
0
*
1
)
)
,
(
(
(
(
0
*
1
)
+
(
0
*
1
)
)
+
(
0
*
0
)
)
-
(
0
*
0
)
)
,
(
(
(
(
0
*
0
)
+
(
0
*
0
)
)
+
(
0
*
1
)
)
-
(
1
*
0
)
)
*]
*
[*
0
,
0
,1,
0
*]
is
quaternion
Element
of
QUATERNION
-
1 is
V28
()
V29
()
ext-real
Element
of
REAL
(
-
1
)
*
0
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
-
1
)
*
0
)
-
(
0
*
0
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K108
(
(
(
-
1
)
*
0
)
,
K110
(
(
0
*
0
)
)) is
set
(
(
(
-
1
)
*
0
)
-
(
0
*
0
)
)
-
(
0
*
1
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K108
(
(
(
(
-
1
)
*
0
)
-
(
0
*
0
)
)
,
K110
(
(
0
*
1
)
)) is
set
(
(
(
(
-
1
)
*
0
)
-
(
0
*
0
)
)
-
(
0
*
1
)
)
-
(
0
*
0
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K108
(
(
(
(
(
-
1
)
*
0
)
-
(
0
*
0
)
)
-
(
0
*
1
)
)
,
K110
(
(
0
*
0
)
)) is
set
(
(
-
1
)
*
0
)
+
(
0
*
0
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
(
-
1
)
*
0
)
+
(
0
*
0
)
)
+
(
0
*
0
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
(
(
-
1
)
*
0
)
+
(
0
*
0
)
)
+
(
0
*
0
)
)
-
(
0
*
1
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K108
(
(
(
(
(
-
1
)
*
0
)
+
(
0
*
0
)
)
+
(
0
*
0
)
)
,
K110
(
(
0
*
1
)
)) is
set
(
-
1
)
*
1 is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
-
1
)
*
1
)
+
(
0
*
0
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
(
-
1
)
*
1
)
+
(
0
*
0
)
)
+
(
0
*
0
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
(
(
-
1
)
*
1
)
+
(
0
*
0
)
)
+
(
0
*
0
)
)
-
(
0
*
0
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K108
(
(
(
(
(
-
1
)
*
1
)
+
(
0
*
0
)
)
+
(
0
*
0
)
)
,
K110
(
(
0
*
0
)
)) is
set
(
(
(
-
1
)
*
0
)
+
(
0
*
0
)
)
+
(
0
*
1
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
(
(
-
1
)
*
0
)
+
(
0
*
0
)
)
+
(
0
*
1
)
)
-
(
0
*
0
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K108
(
(
(
(
(
-
1
)
*
0
)
+
(
0
*
0
)
)
+
(
0
*
1
)
)
,
K110
(
(
0
*
0
)
)) is
set
[*
(
(
(
(
(
-
1
)
*
0
)
-
(
0
*
0
)
)
-
(
0
*
1
)
)
-
(
0
*
0
)
)
,
(
(
(
(
(
-
1
)
*
0
)
+
(
0
*
0
)
)
+
(
0
*
0
)
)
-
(
0
*
1
)
)
,
(
(
(
(
(
-
1
)
*
1
)
+
(
0
*
0
)
)
+
(
0
*
0
)
)
-
(
0
*
0
)
)
,
(
(
(
(
(
-
1
)
*
0
)
+
(
0
*
0
)
)
+
(
0
*
1
)
)
-
(
0
*
0
)
)
*]
is
quaternion
Element
of
QUATERNION
-
[*
0
,
0
,1,
0
*]
is
quaternion
Element
of
QUATERNION
(
<k>
) is
quaternion
Element
of
QUATERNION
<k>
*
<k>
is
quaternion
Element
of
QUATERNION
(
<k>
*
<k>
)
*
<k>
is
quaternion
Element
of
QUATERNION
0
*
0
is
V28
()
V29
()
ext-real
Element
of
REAL
(
0
*
0
)
-
(
0
*
0
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K110
(
(
0
*
0
)
) is
V28
()
set
K108
(
(
0
*
0
)
,
K110
(
(
0
*
0
)
)) is
set
(
(
0
*
0
)
-
(
0
*
0
)
)
-
(
0
*
0
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K108
(
(
(
0
*
0
)
-
(
0
*
0
)
)
,
K110
(
(
0
*
0
)
)) is
set
1
*
1 is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
(
0
*
0
)
-
(
0
*
0
)
)
-
(
0
*
0
)
)
-
(
1
*
1
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K110
(
(
1
*
1
)
) is
V28
()
set
K108
(
(
(
(
0
*
0
)
-
(
0
*
0
)
)
-
(
0
*
0
)
)
,
K110
(
(
1
*
1
)
)) is
set
(
0
*
0
)
+
(
0
*
0
)
is
V28
()
V29
()
ext-real
Element
of
REAL
0
*
1 is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
0
*
0
)
+
(
0
*
0
)
)
+
(
0
*
1
)
is
V28
()
V29
()
ext-real
Element
of
REAL
1
*
0
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
(
0
*
0
)
+
(
0
*
0
)
)
+
(
0
*
1
)
)
-
(
1
*
0
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K110
(
(
1
*
0
)
) is
V28
()
set
K108
(
(
(
(
0
*
0
)
+
(
0
*
0
)
)
+
(
0
*
1
)
)
,
K110
(
(
1
*
0
)
)) is
set
(
0
*
1
)
+
(
1
*
0
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
0
*
1
)
+
(
1
*
0
)
)
+
(
0
*
0
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
(
0
*
1
)
+
(
1
*
0
)
)
+
(
0
*
0
)
)
-
(
0
*
0
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K108
(
(
(
(
0
*
1
)
+
(
1
*
0
)
)
+
(
0
*
0
)
)
,
K110
(
(
0
*
0
)
)) is
set
[*
(
(
(
(
0
*
0
)
-
(
0
*
0
)
)
-
(
0
*
0
)
)
-
(
1
*
1
)
)
,
(
(
(
(
0
*
0
)
+
(
0
*
0
)
)
+
(
0
*
1
)
)
-
(
1
*
0
)
)
,
(
(
(
(
0
*
0
)
+
(
0
*
0
)
)
+
(
0
*
1
)
)
-
(
1
*
0
)
)
,
(
(
(
(
0
*
1
)
+
(
1
*
0
)
)
+
(
0
*
0
)
)
-
(
0
*
0
)
)
*]
is
quaternion
Element
of
QUATERNION
[*
(
(
(
(
0
*
0
)
-
(
0
*
0
)
)
-
(
0
*
0
)
)
-
(
1
*
1
)
)
,
(
(
(
(
0
*
0
)
+
(
0
*
0
)
)
+
(
0
*
1
)
)
-
(
1
*
0
)
)
,
(
(
(
(
0
*
0
)
+
(
0
*
0
)
)
+
(
0
*
1
)
)
-
(
1
*
0
)
)
,
(
(
(
(
0
*
1
)
+
(
1
*
0
)
)
+
(
0
*
0
)
)
-
(
0
*
0
)
)
*]
*
[*
0
,
0
,
0
,1
*]
is
quaternion
Element
of
QUATERNION
-
1 is
V28
()
V29
()
ext-real
Element
of
REAL
(
-
1
)
*
0
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
-
1
)
*
0
)
-
(
0
*
0
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K108
(
(
(
-
1
)
*
0
)
,
K110
(
(
0
*
0
)
)) is
set
(
(
(
-
1
)
*
0
)
-
(
0
*
0
)
)
-
(
0
*
0
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K108
(
(
(
(
-
1
)
*
0
)
-
(
0
*
0
)
)
,
K110
(
(
0
*
0
)
)) is
set
(
(
(
(
-
1
)
*
0
)
-
(
0
*
0
)
)
-
(
0
*
0
)
)
-
(
0
*
1
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K110
(
(
0
*
1
)
) is
V28
()
set
K108
(
(
(
(
(
-
1
)
*
0
)
-
(
0
*
0
)
)
-
(
0
*
0
)
)
,
K110
(
(
0
*
1
)
)) is
set
(
(
-
1
)
*
0
)
+
(
0
*
0
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
(
-
1
)
*
0
)
+
(
0
*
0
)
)
+
(
0
*
1
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
(
(
-
1
)
*
0
)
+
(
0
*
0
)
)
+
(
0
*
1
)
)
-
(
0
*
0
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K108
(
(
(
(
(
-
1
)
*
0
)
+
(
0
*
0
)
)
+
(
0
*
1
)
)
,
K110
(
(
0
*
0
)
)) is
set
(
(
(
-
1
)
*
0
)
+
(
0
*
0
)
)
+
(
0
*
0
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
(
(
-
1
)
*
0
)
+
(
0
*
0
)
)
+
(
0
*
0
)
)
-
(
1
*
0
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K108
(
(
(
(
(
-
1
)
*
0
)
+
(
0
*
0
)
)
+
(
0
*
0
)
)
,
K110
(
(
1
*
0
)
)) is
set
(
-
1
)
*
1 is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
-
1
)
*
1
)
+
(
0
*
0
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
(
-
1
)
*
1
)
+
(
0
*
0
)
)
+
(
0
*
0
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
(
(
(
-
1
)
*
1
)
+
(
0
*
0
)
)
+
(
0
*
0
)
)
-
(
0
*
0
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K108
(
(
(
(
(
-
1
)
*
1
)
+
(
0
*
0
)
)
+
(
0
*
0
)
)
,
K110
(
(
0
*
0
)
)) is
set
[*
(
(
(
(
(
-
1
)
*
0
)
-
(
0
*
0
)
)
-
(
0
*
0
)
)
-
(
0
*
1
)
)
,
(
(
(
(
(
-
1
)
*
0
)
+
(
0
*
0
)
)
+
(
0
*
1
)
)
-
(
0
*
0
)
)
,
(
(
(
(
(
-
1
)
*
0
)
+
(
0
*
0
)
)
+
(
0
*
0
)
)
-
(
1
*
0
)
)
,
(
(
(
(
(
-
1
)
*
1
)
+
(
0
*
0
)
)
+
(
0
*
0
)
)
-
(
0
*
0
)
)
*]
is
quaternion
Element
of
QUATERNION
-
[*
0
,
0
,
0
,1
*]
is
quaternion
Element
of
QUATERNION
(
(
-
1q
)
) is
quaternion
Element
of
QUATERNION
(
-
1q
)
*
(
-
1q
)
is
quaternion
Element
of
QUATERNION
[*
1,
0
*]
is
V28
()
Element
of
COMPLEX
[*
1,
0
,
0
,
0
*]
is
quaternion
Element
of
QUATERNION
-
1 is
V28
()
V29
()
ext-real
Element
of
REAL
-
0
is
V28
()
V29
()
ext-real
Element
of
REAL
[*
(
-
1
)
,
(
-
0
)
,
(
-
0
)
,
(
-
0
)
*]
is
quaternion
Element
of
QUATERNION
Rea
(
-
1q
)
is
V28
()
V29
()
ext-real
Element
of
REAL
Im1
(
-
1q
)
is
V28
()
V29
()
ext-real
Element
of
REAL
Im2
(
-
1q
)
is
V28
()
V29
()
ext-real
Element
of
REAL
Im3
(
-
1q
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Rea
(
-
1q
)
)
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Rea
(
-
1q
)
)
,
(
Rea
(
-
1q
)
)
) is
set
(
Im1
(
-
1q
)
)
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Im1
(
-
1q
)
)
,
(
Im1
(
-
1q
)
)
) is
set
(
(
Rea
(
-
1q
)
)
^2
)
-
(
(
Im1
(
-
1q
)
)
^2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K110
(
(
(
Im1
(
-
1q
)
)
^2
)
) is
V28
()
set
K108
(
(
(
Rea
(
-
1q
)
)
^2
)
,
K110
(
(
(
Im1
(
-
1q
)
)
^2
)
)) is
set
(
Im2
(
-
1q
)
)
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Im2
(
-
1q
)
)
,
(
Im2
(
-
1q
)
)
) is
set
(
(
(
Rea
(
-
1q
)
)
^2
)
-
(
(
Im1
(
-
1q
)
)
^2
)
)
-
(
(
Im2
(
-
1q
)
)
^2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K110
(
(
(
Im2
(
-
1q
)
)
^2
)
) is
V28
()
set
K108
(
(
(
(
Rea
(
-
1q
)
)
^2
)
-
(
(
Im1
(
-
1q
)
)
^2
)
)
,
K110
(
(
(
Im2
(
-
1q
)
)
^2
)
)) is
set
(
Im3
(
-
1q
)
)
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Im3
(
-
1q
)
)
,
(
Im3
(
-
1q
)
)
) is
set
(
(
(
(
Rea
(
-
1q
)
)
^2
)
-
(
(
Im1
(
-
1q
)
)
^2
)
)
-
(
(
Im2
(
-
1q
)
)
^2
)
)
-
(
(
Im3
(
-
1q
)
)
^2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K110
(
(
(
Im3
(
-
1q
)
)
^2
)
) is
V28
()
set
K108
(
(
(
(
(
Rea
(
-
1q
)
)
^2
)
-
(
(
Im1
(
-
1q
)
)
^2
)
)
-
(
(
Im2
(
-
1q
)
)
^2
)
)
,
K110
(
(
(
Im3
(
-
1q
)
)
^2
)
)) is
set
(
Rea
(
-
1q
)
)
*
(
Im1
(
-
1q
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
2
*
(
(
Rea
(
-
1q
)
)
*
(
Im1
(
-
1q
)
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Rea
(
-
1q
)
)
*
(
Im2
(
-
1q
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
2
*
(
(
Rea
(
-
1q
)
)
*
(
Im2
(
-
1q
)
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Rea
(
-
1q
)
)
*
(
Im3
(
-
1q
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
2
*
(
(
Rea
(
-
1q
)
)
*
(
Im3
(
-
1q
)
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
[*
(
(
(
(
(
Rea
(
-
1q
)
)
^2
)
-
(
(
Im1
(
-
1q
)
)
^2
)
)
-
(
(
Im2
(
-
1q
)
)
^2
)
)
-
(
(
Im3
(
-
1q
)
)
^2
)
)
,
(
2
*
(
(
Rea
(
-
1q
)
)
*
(
Im1
(
-
1q
)
)
)
)
,
(
2
*
(
(
Rea
(
-
1q
)
)
*
(
Im2
(
-
1q
)
)
)
)
,
(
2
*
(
(
Rea
(
-
1q
)
)
*
(
Im3
(
-
1q
)
)
)
)
*]
is
quaternion
Element
of
QUATERNION
(
(
-
1q
)
) is
quaternion
Element
of
QUATERNION
(
(
-
1q
)
*
(
-
1q
)
)
*
(
-
1q
)
is
quaternion
Element
of
QUATERNION
-
1 is
V28
()
V29
()
ext-real
Element
of
REAL
[*
1,
0
*]
is
V28
()
Element
of
COMPLEX
[*
1,
0
,
0
,
0
*]
is
quaternion
Element
of
QUATERNION
-
0
is
V28
()
V29
()
ext-real
Element
of
REAL
[*
(
-
1
)
,
(
-
0
)
,
(
-
0
)
,
(
-
0
)
*]
is
quaternion
Element
of
QUATERNION
Rea
(
-
1q
)
is
V28
()
V29
()
ext-real
Element
of
REAL
Im1
(
-
1q
)
is
V28
()
V29
()
ext-real
Element
of
REAL
Im2
(
-
1q
)
is
V28
()
V29
()
ext-real
Element
of
REAL
Im3
(
-
1q
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Rea
(
-
1q
)
)
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Rea
(
-
1q
)
)
,
(
Rea
(
-
1q
)
)
) is
set
(
Im1
(
-
1q
)
)
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Im1
(
-
1q
)
)
,
(
Im1
(
-
1q
)
)
) is
set
(
(
Rea
(
-
1q
)
)
^2
)
-
(
(
Im1
(
-
1q
)
)
^2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K110
(
(
(
Im1
(
-
1q
)
)
^2
)
) is
V28
()
set
K108
(
(
(
Rea
(
-
1q
)
)
^2
)
,
K110
(
(
(
Im1
(
-
1q
)
)
^2
)
)) is
set
(
Im2
(
-
1q
)
)
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Im2
(
-
1q
)
)
,
(
Im2
(
-
1q
)
)
) is
set
(
(
(
Rea
(
-
1q
)
)
^2
)
-
(
(
Im1
(
-
1q
)
)
^2
)
)
-
(
(
Im2
(
-
1q
)
)
^2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K110
(
(
(
Im2
(
-
1q
)
)
^2
)
) is
V28
()
set
K108
(
(
(
(
Rea
(
-
1q
)
)
^2
)
-
(
(
Im1
(
-
1q
)
)
^2
)
)
,
K110
(
(
(
Im2
(
-
1q
)
)
^2
)
)) is
set
(
Im3
(
-
1q
)
)
^2
is
V28
()
V29
()
ext-real
Element
of
REAL
K109
(
(
Im3
(
-
1q
)
)
,
(
Im3
(
-
1q
)
)
) is
set
(
(
(
(
Rea
(
-
1q
)
)
^2
)
-
(
(
Im1
(
-
1q
)
)
^2
)
)
-
(
(
Im2
(
-
1q
)
)
^2
)
)
-
(
(
Im3
(
-
1q
)
)
^2
)
is
V28
()
V29
()
ext-real
Element
of
REAL
K110
(
(
(
Im3
(
-
1q
)
)
^2
)
) is
V28
()
set
K108
(
(
(
(
(
Rea
(
-
1q
)
)
^2
)
-
(
(
Im1
(
-
1q
)
)
^2
)
)
-
(
(
Im2
(
-
1q
)
)
^2
)
)
,
K110
(
(
(
Im3
(
-
1q
)
)
^2
)
)) is
set
(
Rea
(
-
1q
)
)
*
(
Im1
(
-
1q
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
2
*
(
(
Rea
(
-
1q
)
)
*
(
Im1
(
-
1q
)
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Rea
(
-
1q
)
)
*
(
Im2
(
-
1q
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
2
*
(
(
Rea
(
-
1q
)
)
*
(
Im2
(
-
1q
)
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
(
Rea
(
-
1q
)
)
*
(
Im3
(
-
1q
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
2
*
(
(
Rea
(
-
1q
)
)
*
(
Im3
(
-
1q
)
)
)
is
V28
()
V29
()
ext-real
Element
of
REAL
[*
(
(
(
(
(
Rea
(
-
1q
)
)
^2
)
-
(
(
Im1
(
-
1q
)
)
^2
)
)
-
(
(
Im2
(
-
1q
)
)
^2
)
)
-
(
(
Im3
(
-
1q
)
)
^2
)
)
,
(
2
*
(
(
Rea
(
-
1q
)
)
*
(
Im1
(
-
1q
)
)
)
)
,
(
2
*
(
(
Rea
(
-
1q
)
)
*
(
Im2
(
-
1q
)
)
)
)
,
(
2
*
(
(
Rea
(
-
1q
)
)
*
(
Im3
(
-
1q
)
)
)
)
*]
is
quaternion
Element
of
QUATERNION
[*
(
-
1
)
,
(
-
0
)
*]
is
V28
()
Element
of
COMPLEX
z
is
quaternion
set
(
z
) is
quaternion
set
z
*
z
is
quaternion
Element
of
QUATERNION
(
z
*
z
)
*
z
is
quaternion
Element
of
QUATERNION
-
z
is
quaternion
Element
of
QUATERNION
(
(
-
z
)
) is
quaternion
Element
of
QUATERNION
(
-
z
)
*
(
-
z
)
is
quaternion
Element
of
QUATERNION
(
(
-
z
)
*
(
-
z
)
)
*
(
-
z
)
is
quaternion
Element
of
QUATERNION
-
(
(
-
z
)
) is
quaternion
Element
of
QUATERNION
(
z
) is
quaternion
set
z
*
(
z
) is
quaternion
Element
of
QUATERNION
(
(
-
z
)
) is
quaternion
Element
of
QUATERNION
(
-
z
)
*
(
(
-
z
)
) is
quaternion
Element
of
QUATERNION
(
-
z
)
*
(
z
) is
quaternion
Element
of
QUATERNION
(
-
1q
)
*
z
is
quaternion
Element
of
QUATERNION
(
(
-
1q
)
*
z
)
*
(
z
) is
quaternion
Element
of
QUATERNION
(
-
1q
)
*
(
z
*
(
z
)
)
is
quaternion
Element
of
QUATERNION
-
(
z
) is
quaternion
Element
of
QUATERNION