REAL  is   non  empty  V46() V47() V48() V52() V73() V84() V85() V87()  set 
 
 NAT  is  V46() V47() V48() V49() V50() V51() V52() V84()  Element of K6(REAL)
 
K6(REAL) is    set 
 
 COMPLEX  is   non  empty  V46() V52() V73()  set 
 
 0  is    set 
 
1 is   non  empty   natural  V11()  real   ext-real   positive   non  negative  V46() V47() V48() V49() V50() V51() V63() V64() V82() V84()  Element of  NAT 
 
{0,1} is    set 
 
K7(REAL,REAL) is  V36() V37() V38()  set 
 
K6(K7(REAL,REAL)) is    set 
 
K7(NAT,REAL) is  V36() V37() V38()  set 
 
K6(K7(NAT,REAL)) is    set 
 
K7(NAT,COMPLEX) is  V36()  set 
 
K6(K7(NAT,COMPLEX)) is    set 
 
K7(COMPLEX,COMPLEX) is  V36()  set 
 
K6(K7(COMPLEX,COMPLEX)) is    set 
 
 PFuncs (REAL,REAL) is    set 
 
K7(NAT,(PFuncs (REAL,REAL))) is    set 
 
K6(K7(NAT,(PFuncs (REAL,REAL)))) is    set 
 
 RAT  is   non  empty  V46() V47() V48() V49() V52() V73()  set 
 
 INT  is   non  empty  V46() V47() V48() V49() V50() V52() V73()  set 
 
 0  is   natural  V11()  real   ext-real  V46() V47() V48() V49() V50() V51() V63() V64() V84()  Element of  NAT 
 
 sin  is  V19() V22( REAL ) V23( REAL )  Function-like  V33( REAL , REAL ) V36() V37() V38()  continuous   Element of K6(K7(REAL,REAL))
 
 dom sin is  V46() V47() V48()  Element of K6(REAL)
 
 cos  is  V19() V22( REAL ) V23( REAL )  Function-like  V33( REAL , REAL ) V36() V37() V38()  continuous   Element of K6(K7(REAL,REAL))
 
 dom cos is  V46() V47() V48()  Element of K6(REAL)
 
cos . 0 is  V11()  real   ext-real   Element of  REAL 
 
sin . 0 is  V11()  real   ext-real   Element of  REAL 
 
 cos 0 is  V11()  real   ext-real   Element of  REAL 
 
 sin 0 is  V11()  real   ext-real   Element of  REAL 
 
 exp_R  is  V19() V22( REAL ) V23( REAL )  Function-like  V33( REAL , REAL ) V36() V37() V38()  continuous   Element of K6(K7(REAL,REAL))
 
 dom exp_R is  V46() V47() V48()  Element of K6(REAL)
 
 PI  is   non  empty  V11()  real   ext-real   positive   non  negative   set 
 
 tan  is  V19() V22( REAL ) V23( REAL )  Function-like  V36() V37() V38()  Element of K6(K7(REAL,REAL))
 
sin / cos is  V19() V22( REAL ) V23( REAL )  Function-like  V36() V37() V38()  Element of K6(K7(REAL,REAL))
 
4 is   non  empty   natural  V11()  real   ext-real   positive   non  negative  V46() V47() V48() V49() V50() V51() V63() V64() V82() V84()  Element of  NAT 
 
].0,4.[ is   open  V46() V47() V48() V82() V83() V87()  Element of K6(REAL)
 
 PI  is   non  empty  V11()  real   ext-real   positive   non  negative   Element of  REAL 
 
PI / 4 is   non  empty  V11()  real   ext-real   positive   non  negative   Element of  REAL 
 
4 "  is   non  empty  V11()  real   ext-real   positive   non  negative   set 
 
PI * (4 ") is   non  empty  V11()  real   ext-real   positive   non  negative   set 
 
sin . (PI / 4) is  V11()  real   ext-real   Element of  REAL 
 
cos . (PI / 4) is  V11()  real   ext-real   Element of  REAL 
 
2 is   non  empty   natural  V11()  real   ext-real   positive   non  negative  V46() V47() V48() V49() V50() V51() V63() V64() V82() V84()  Element of  NAT 
 
PI / 2 is   non  empty  V11()  real   ext-real   positive   non  negative   Element of  REAL 
 
2 "  is   non  empty  V11()  real   ext-real   positive   non  negative   set 
 
PI * (2 ") is   non  empty  V11()  real   ext-real   positive   non  negative   set 
 
cos . (PI / 2) is  V11()  real   ext-real   Element of  REAL 
 
sin . (PI / 2) is  V11()  real   ext-real   Element of  REAL 
 
cos . PI is  V11()  real   ext-real   Element of  REAL 
 
 - 1 is   non  empty  V11()  real   ext-real   non  positive   negative  V63()  Element of  REAL 
 
sin . PI is  V11()  real   ext-real   Element of  REAL 
 
PI + (PI / 2) is   non  empty  V11()  real   ext-real   positive   non  negative   Element of  REAL 
 
cos . (PI + (PI / 2)) is  V11()  real   ext-real   Element of  REAL 
 
sin . (PI + (PI / 2)) is  V11()  real   ext-real   Element of  REAL 
 
2 * PI is   non  empty  V11()  real   ext-real   positive   non  negative   Element of  REAL 
 
cos . (2 * PI) is  V11()  real   ext-real   Element of  REAL 
 
sin . (2 * PI) is  V11()  real   ext-real   Element of  REAL 
 
].0,PI.[ is   open  V46() V47() V48() V82() V83() V87()  Element of K6(REAL)
 
 - (PI / 2) is   non  empty  V11()  real   ext-real   non  positive   negative   Element of  REAL 
 
].(- (PI / 2)),(PI / 2).[ is   open  V46() V47() V48() V82() V83() V87()  Element of K6(REAL)
 
cos / sin is  V19() V22( REAL ) V23( REAL )  Function-like  V36() V37() V38()  Element of K6(K7(REAL,REAL))
 
{0} is  V46() V47() V48() V49() V50() V51() V84()  set 
 
 ln  is  V19() V22( REAL ) V23( REAL )  Function-like  V36() V37() V38()  Element of K6(K7(REAL,REAL))
 
exp_R "  is  V19() V22( REAL ) V23( REAL )  Function-like  V36() V37() V38()  Element of K6(K7(REAL,REAL))
 
 dom ln is  V46() V47() V48()  Element of K6(REAL)
 
 right_open_halfline 0 is  V46() V47() V48()  Element of K6(REAL)
 
 +infty  is   non  empty   non  real   ext-real   positive   non  negative   set 
 
K68(0,+infty) is  V82() V83() V87()  set 
 
 rng ln is  V46() V47() V48()  Element of K6(REAL)
 
 #Z 2 is  V19() V22( REAL ) V23( REAL )  Function-like  V33( REAL , REAL ) V36() V37() V38()  Element of K6(K7(REAL,REAL))
 
 dom tan is  V46() V47() V48()  Element of K6(REAL)
 
cos " {0} is  V46() V47() V48()  Element of K6(REAL)
 
].(- (PI / 2)),(PI / 2).[ /\ (cos " {0}) is  V46() V47() V48()  set 
 
Z is    set 
 
cos . Z is  V11()  real   ext-real   Element of  REAL 
 
].(- (PI / 2)),(PI / 2).[ \ (cos " {0}) is  V46() V47() V48()  set 
 
(dom cos) \ (cos " {0}) is  V46() V47() V48()  set 
 
(dom sin) /\ ((dom cos) \ (cos " {0})) is  V46() V47() V48()  set 
 
 cot  is  V19() V22( REAL ) V23( REAL )  Function-like  V36() V37() V38()  Element of K6(K7(REAL,REAL))
 
 dom cot is  V46() V47() V48()  Element of K6(REAL)
 
sin " {0} is  V46() V47() V48()  Element of K6(REAL)
 
].0,PI.[ /\ (sin " {0}) is  V46() V47() V48()  set 
 
Z is    set 
 
sin . Z is  V11()  real   ext-real   Element of  REAL 
 
].0,PI.[ \ (sin " {0}) is  V46() V47() V48()  set 
 
(dom sin) \ (sin " {0}) is  V46() V47() V48()  set 
 
(dom cos) /\ ((dom sin) \ (sin " {0})) is  V46() V47() V48()  set 
 
Z is  V11()  real   ext-real   Element of  REAL 
 
cos . Z is  V11()  real   ext-real   Element of  REAL 
 
Z is  V11()  real   ext-real   Element of  REAL 
 
sin . Z is  V11()  real   ext-real   Element of  REAL 
 
Z is  V11()  real   ext-real   Element of  REAL 
 
 diff (tan,Z) is  V11()  real   ext-real   Element of  REAL 
 
cos . Z is  V11()  real   ext-real   Element of  REAL 
 
(cos . Z) ^2  is  V11()  real   ext-real   Element of  REAL 
 
(cos . Z) * (cos . Z) is  V11()  real   ext-real   set 
 
1 / ((cos . Z) ^2) is  V11()  real   ext-real   Element of  REAL 
 
((cos . Z) ^2) "  is  V11()  real   ext-real   set 
 
1 * (((cos . Z) ^2) ") is  V11()  real   ext-real   set 
 
Z is  V11()  real   ext-real   Element of  REAL 
 
 diff (cot,Z) is  V11()  real   ext-real   Element of  REAL 
 
sin . Z is  V11()  real   ext-real   Element of  REAL 
 
(sin . Z) ^2  is  V11()  real   ext-real   Element of  REAL 
 
(sin . Z) * (sin . Z) is  V11()  real   ext-real   set 
 
1 / ((sin . Z) ^2) is  V11()  real   ext-real   Element of  REAL 
 
((sin . Z) ^2) "  is  V11()  real   ext-real   set 
 
1 * (((sin . Z) ^2) ") is  V11()  real   ext-real   set 
 
 - (1 / ((sin . Z) ^2)) is  V11()  real   ext-real   Element of  REAL 
 
Z is  V11()  real   ext-real   Element of  REAL 
 
 diff (tan,Z) is  V11()  real   ext-real   Element of  REAL 
 
cos . Z is  V11()  real   ext-real   Element of  REAL 
 
(cos . Z) ^2  is  V11()  real   ext-real   Element of  REAL 
 
(cos . Z) * (cos . Z) is  V11()  real   ext-real   set 
 
1 / ((cos . Z) ^2) is  V11()  real   ext-real   Element of  REAL 
 
((cos . Z) ^2) "  is  V11()  real   ext-real   set 
 
1 * (((cos . Z) ^2) ") is  V11()  real   ext-real   set 
 
Z is  V11()  real   ext-real   Element of  REAL 
 
 diff (cot,Z) is  V11()  real   ext-real   Element of  REAL 
 
sin . Z is  V11()  real   ext-real   Element of  REAL 
 
(sin . Z) ^2  is  V11()  real   ext-real   Element of  REAL 
 
(sin . Z) * (sin . Z) is  V11()  real   ext-real   set 
 
1 / ((sin . Z) ^2) is  V11()  real   ext-real   Element of  REAL 
 
((sin . Z) ^2) "  is  V11()  real   ext-real   set 
 
1 * (((sin . Z) ^2) ") is  V11()  real   ext-real   set 
 
 - (1 / ((sin . Z) ^2)) is  V11()  real   ext-real   Element of  REAL 
 
tan | ].(- (PI / 2)),(PI / 2).[ is  V19() V22( REAL ) V23( REAL )  Function-like  V36() V37() V38()  Element of K6(K7(REAL,REAL))
 
cot | ].0,PI.[ is  V19() V22( REAL ) V23( REAL )  Function-like  V36() V37() V38()  Element of K6(K7(REAL,REAL))
 
Z is  V11()  real   ext-real   Element of  REAL 
 
 diff (tan,Z) is  V11()  real   ext-real   Element of  REAL 
 
cos . Z is  V11()  real   ext-real   Element of  REAL 
 
(cos . Z) ^2  is  V11()  real   ext-real   Element of  REAL 
 
(cos . Z) * (cos . Z) is  V11()  real   ext-real   set 
 
1 / ((cos . Z) ^2) is  V11()  real   ext-real   Element of  REAL 
 
((cos . Z) ^2) "  is  V11()  real   ext-real   set 
 
1 * (((cos . Z) ^2) ") is  V11()  real   ext-real   set 
 
0 / ((cos . Z) ^2) is  V11()  real   ext-real   Element of  REAL 
 
0 * (((cos . Z) ^2) ") is  V11()  real   ext-real   set 
 
Z is  V11()  real   ext-real   Element of  REAL 
 
 diff (cot,Z) is  V11()  real   ext-real   Element of  REAL 
 
sin . Z is  V11()  real   ext-real   Element of  REAL 
 
(sin . Z) ^2  is  V11()  real   ext-real   Element of  REAL 
 
(sin . Z) * (sin . Z) is  V11()  real   ext-real   set 
 
1 / ((sin . Z) ^2) is  V11()  real   ext-real   Element of  REAL 
 
((sin . Z) ^2) "  is  V11()  real   ext-real   set 
 
1 * (((sin . Z) ^2) ") is  V11()  real   ext-real   set 
 
0 / ((sin . Z) ^2) is  V11()  real   ext-real   Element of  REAL 
 
0 * (((sin . Z) ^2) ") is  V11()  real   ext-real   set 
 
 - 0 is  V11()  real   ext-real  V63()  Element of  REAL 
 
 - (1 / ((sin . Z) ^2)) is  V11()  real   ext-real   Element of  REAL 
 
(tan | ].(- (PI / 2)),(PI / 2).[) "  is  V19() V22( REAL ) V23( REAL )  Function-like   one-to-one  V36() V37() V38()  Element of K6(K7(REAL,REAL))
 
(cot | ].0,PI.[) "  is  V19() V22( REAL ) V23( REAL )  Function-like   one-to-one  V36() V37() V38()  Element of K6(K7(REAL,REAL))
 
() is  V19() V22( REAL ) V23( REAL )  Function-like  V36() V37() V38()  Element of K6(K7(REAL,REAL))
 
() is  V19() V22( REAL ) V23( REAL )  Function-like  V36() V37() V38()  Element of K6(K7(REAL,REAL))
 
Z is  V11()  real   ext-real   Element of  REAL 
 
() . Z is  V11()  real   ext-real   Element of  REAL 
 
() . Z is  V11()  real   ext-real   Element of  REAL 
 
Z is  V11()  real   ext-real   Element of  REAL 
 
(Z) is    set 
 
() . Z is  V11()  real   ext-real   Element of  REAL 
 
(Z) is    set 
 
() . Z is  V11()  real   ext-real   Element of  REAL 
 
() "  is  V19()  Function-like   set 
 
() "  is  V19()  Function-like   set 
 
 rng () is  V46() V47() V48()  Element of K6(REAL)
 
 dom (tan | ].(- (PI / 2)),(PI / 2).[) is  V46() V47() V48()  Element of K6(REAL)
 
 rng () is  V46() V47() V48()  Element of K6(REAL)
 
 dom (cot | ].0,PI.[) is  V46() V47() V48()  Element of K6(REAL)
 
 - (PI / 4) is   non  empty  V11()  real   ext-real   non  positive   negative   Element of  REAL 
 
 - 4 is   non  empty  V11()  real   ext-real   non  positive   negative  V63()  Element of  REAL 
 
PI / (- 4) is   non  empty  V11()  real   ext-real   non  positive   negative   Element of  REAL 
 
(- 4) "  is   non  empty  V11()  real   ext-real   non  positive   negative   set 
 
PI * ((- 4) ") is   non  empty  V11()  real   ext-real   non  positive   negative   set 
 
 - 2 is   non  empty  V11()  real   ext-real   non  positive   negative  V63()  Element of  REAL 
 
PI / (- 2) is   non  empty  V11()  real   ext-real   non  positive   negative   Element of  REAL 
 
(- 2) "  is   non  empty  V11()  real   ext-real   non  positive   negative   set 
 
PI * ((- 2) ") is   non  empty  V11()  real   ext-real   non  positive   negative   set 
 
 {  b1 where b1 is  V11()  real   ext-real   Element of  REAL  : (  not b1 <=  - (PI / 2) &  not PI / 2 <= b1 )  }   is    set 
 
 {  b1 where b1 is  V11()  real   ext-real   Element of  REAL  : (  not b1 <=  - (PI / 2) &  not PI / 2 <= b1 )  }   is    set 
 
PI / 1 is   non  empty  V11()  real   ext-real   positive   non  negative   Element of  REAL 
 
1 "  is   non  empty  V11()  real   ext-real   positive   non  negative   set 
 
PI * (1 ") is   non  empty  V11()  real   ext-real   positive   non  negative   set 
 
0 / 4 is  V11()  real   ext-real   Element of  REAL 
 
0 * (4 ") is  V11()  real   ext-real   set 
 
3 is   non  empty   natural  V11()  real   ext-real   positive   non  negative  V46() V47() V48() V49() V50() V51() V63() V64() V82() V84()  Element of  NAT 
 
3 / 4 is   non  empty  V11()  real   ext-real   positive   non  negative   Element of  REAL 
 
3 * (4 ") is   non  empty  V11()  real   ext-real   positive   non  negative   set 
 
(3 / 4) * PI is   non  empty  V11()  real   ext-real   positive   non  negative   Element of  REAL 
 
(3 / 4) * 0 is  V11()  real   ext-real   Element of  REAL 
 
[.(- (PI / 4)),(PI / 4).] is   closed  V46() V47() V48() V87()  Element of K6(REAL)
 
tan | [.(- (PI / 4)),(PI / 4).] is  V19() V22( REAL ) V23( REAL )  Function-like  V36() V37() V38()  Element of K6(K7(REAL,REAL))
 
 dom (tan | [.(- (PI / 4)),(PI / 4).]) is  V46() V47() V48()  Element of K6(REAL)
 
[.(PI / 4),((3 / 4) * PI).] is   closed  V46() V47() V48() V87()  Element of K6(REAL)
 
cot | [.(PI / 4),((3 / 4) * PI).] is  V19() V22( REAL ) V23( REAL )  Function-like  V36() V37() V38()  Element of K6(K7(REAL,REAL))
 
 dom (cot | [.(PI / 4),((3 / 4) * PI).]) is  V46() V47() V48()  Element of K6(REAL)
 
Z is  V11()  real   ext-real   set 
 
tan . Z is  V11()  real   ext-real   Element of  REAL 
 
 tan Z is  V11()  real   ext-real   Element of  REAL 
 
 sin Z is  V11()  real   ext-real   set 
 
sin . Z is  V11()  real   ext-real   Element of  REAL 
 
 cos Z is  V11()  real   ext-real   set 
 
cos . Z is  V11()  real   ext-real   Element of  REAL 
 
(sin Z) / (cos Z) is  V11()  real   ext-real   set 
 
(cos Z) "  is  V11()  real   ext-real   set 
 
(sin Z) * ((cos Z) ") is  V11()  real   ext-real   set 
 
Z is  V11()  real   ext-real   set 
 
cot . Z is  V11()  real   ext-real   Element of  REAL 
 
 cot Z is  V11()  real   ext-real   Element of  REAL 
 
 cos Z is  V11()  real   ext-real   set 
 
cos . Z is  V11()  real   ext-real   Element of  REAL 
 
 sin Z is  V11()  real   ext-real   set 
 
sin . Z is  V11()  real   ext-real   Element of  REAL 
 
(cos Z) / (sin Z) is  V11()  real   ext-real   set 
 
(sin Z) "  is  V11()  real   ext-real   set 
 
(cos Z) * ((sin Z) ") is  V11()  real   ext-real   set 
 
Z is  V11()  real   ext-real   Element of  REAL 
 
cos . Z is  V11()  real   ext-real   Element of  REAL 
 
tan . Z is  V11()  real   ext-real   Element of  REAL 
 
 tan Z is  V11()  real   ext-real   Element of  REAL 
 
cos " {0} is  V46() V47() V48()  Element of K6(REAL)
 
(dom cos) \ (cos " {0}) is  V46() V47() V48()  set 
 
(dom sin) /\ ((dom cos) \ (cos " {0})) is  V46() V47() V48()  set 
 
 dom (sin / cos) is  V46() V47() V48()  Element of K6(REAL)
 
 sin Z is  V11()  real   ext-real   Element of  REAL 
 
sin . Z is  V11()  real   ext-real   Element of  REAL 
 
 cos Z is  V11()  real   ext-real   Element of  REAL 
 
(sin Z) / (cos Z) is  V11()  real   ext-real   Element of  REAL 
 
(cos Z) "  is  V11()  real   ext-real   set 
 
(sin Z) * ((cos Z) ") is  V11()  real   ext-real   set 
 
Z is  V11()  real   ext-real   Element of  REAL 
 
sin . Z is  V11()  real   ext-real   Element of  REAL 
 
cot . Z is  V11()  real   ext-real   Element of  REAL 
 
 cot Z is  V11()  real   ext-real   Element of  REAL 
 
sin " {0} is  V46() V47() V48()  Element of K6(REAL)
 
(dom sin) \ (sin " {0}) is  V46() V47() V48()  set 
 
(dom cos) /\ ((dom sin) \ (sin " {0})) is  V46() V47() V48()  set 
 
 dom (cos / sin) is  V46() V47() V48()  Element of K6(REAL)
 
 cos Z is  V11()  real   ext-real   Element of  REAL 
 
cos . Z is  V11()  real   ext-real   Element of  REAL 
 
 sin Z is  V11()  real   ext-real   Element of  REAL 
 
(cos Z) / (sin Z) is  V11()  real   ext-real   Element of  REAL 
 
(sin Z) "  is  V11()  real   ext-real   set 
 
(cos Z) * ((sin Z) ") is  V11()  real   ext-real   set 
 
tan . (- (PI / 4)) is  V11()  real   ext-real   Element of  REAL 
 
 tan (- (PI / 4)) is  V11()  real   ext-real   Element of  REAL 
 
(sin . (PI / 4)) / (cos . (PI / 4)) is  V11()  real   ext-real   Element of  REAL 
 
(cos . (PI / 4)) "  is  V11()  real   ext-real   set 
 
(sin . (PI / 4)) * ((cos . (PI / 4)) ") is  V11()  real   ext-real   set 
 
sin . (- (PI / 4)) is  V11()  real   ext-real   Element of  REAL 
 
cos . (- (PI / 4)) is  V11()  real   ext-real   Element of  REAL 
 
(sin . (- (PI / 4))) / (cos . (- (PI / 4))) is  V11()  real   ext-real   Element of  REAL 
 
(cos . (- (PI / 4))) "  is  V11()  real   ext-real   set 
 
(sin . (- (PI / 4))) * ((cos . (- (PI / 4))) ") is  V11()  real   ext-real   set 
 
 - (sin . (PI / 4)) is  V11()  real   ext-real   Element of  REAL 
 
(- (sin . (PI / 4))) / (cos . (- (PI / 4))) is  V11()  real   ext-real   Element of  REAL 
 
(- (sin . (PI / 4))) * ((cos . (- (PI / 4))) ") is  V11()  real   ext-real   set 
 
(- (sin . (PI / 4))) / (cos . (PI / 4)) is  V11()  real   ext-real   Element of  REAL 
 
(- (sin . (PI / 4))) * ((cos . (PI / 4)) ") is  V11()  real   ext-real   set 
 
cot . (PI / 4) is  V11()  real   ext-real   Element of  REAL 
 
 cot (PI / 4) is  V11()  real   ext-real   Element of  REAL 
 
cot . ((3 / 4) * PI) is  V11()  real   ext-real   Element of  REAL 
 
 cot ((3 / 4) * PI) is  V11()  real   ext-real   Element of  REAL 
 
cos . ((3 / 4) * PI) is  V11()  real   ext-real   Element of  REAL 
 
sin . ((3 / 4) * PI) is  V11()  real   ext-real   Element of  REAL 
 
(sin . ((3 / 4) * PI)) "  is  V11()  real   ext-real   Element of  REAL 
 
(cos . ((3 / 4) * PI)) * ((sin . ((3 / 4) * PI)) ") is  V11()  real   ext-real   Element of  REAL 
 
 - (sin . (PI / 4)) is  V11()  real   ext-real   Element of  REAL 
 
(PI / 2) + (PI / 4) is   non  empty  V11()  real   ext-real   positive   non  negative   Element of  REAL 
 
sin . ((PI / 2) + (PI / 4)) is  V11()  real   ext-real   Element of  REAL 
 
(- (sin . (PI / 4))) / (sin . ((PI / 2) + (PI / 4))) is  V11()  real   ext-real   Element of  REAL 
 
(sin . ((PI / 2) + (PI / 4))) "  is  V11()  real   ext-real   set 
 
(- (sin . (PI / 4))) * ((sin . ((PI / 2) + (PI / 4))) ") is  V11()  real   ext-real   set 
 
(- (sin . (PI / 4))) / (cos . (PI / 4)) is  V11()  real   ext-real   Element of  REAL 
 
(cos . (PI / 4)) "  is  V11()  real   ext-real   set 
 
(- (sin . (PI / 4))) * ((cos . (PI / 4)) ") is  V11()  real   ext-real   set 
 
(sin . (PI / 4)) / (cos . (PI / 4)) is  V11()  real   ext-real   Element of  REAL 
 
(sin . (PI / 4)) * ((cos . (PI / 4)) ") is  V11()  real   ext-real   set 
 
 - ((sin . (PI / 4)) / (cos . (PI / 4))) is  V11()  real   ext-real   Element of  REAL 
 
(cos . (PI / 4)) / (sin . (PI / 4)) is  V11()  real   ext-real   Element of  REAL 
 
(sin . (PI / 4)) "  is  V11()  real   ext-real   set 
 
(cos . (PI / 4)) * ((sin . (PI / 4)) ") is  V11()  real   ext-real   set 
 
[.(- 1),1.] is   closed  V46() V47() V48() V87()  Element of K6(REAL)
 
Z is    set 
 
tan . Z is  V11()  real   ext-real   Element of  REAL 
 
].(- (PI / 4)),(PI / 4).[ is   open  V46() V47() V48() V82() V83() V87()  Element of K6(REAL)
 
{(- (PI / 4)),(PI / 4)} is  V46() V47() V48()  set 
 
].(- (PI / 4)),(PI / 4).[ \/ {(- (PI / 4)),(PI / 4)} is  V46() V47() V48()  set 
 
 {  b1 where b1 is  V11()  real   ext-real   Element of  REAL  : (  not b1 <=  - (PI / 4) &  not PI / 4 <= b1 )  }   is    set 
 
 {  b1 where b1 is  V11()  real   ext-real   Element of  REAL  : (  - (PI / 4) <= b1 & b1 <= PI / 4 )  }   is    set 
 
[.(- (PI / 4)),(PI / 4).] /\ (dom tan) is  V46() V47() V48()  set 
 
tan . (PI / 4) is  V11()  real   ext-real   Element of  REAL 
 
f is  V11()  real   ext-real   Element of  REAL 
 
f is  V11()  real   ext-real   Element of  REAL 
 
 {  b1 where b1 is  V11()  real   ext-real   Element of  REAL  : (  not b1 <=  - 1 &  not 1 <= b1 )  }   is    set 
 
].(- 1),1.[ is   open  V46() V47() V48() V82() V83() V87()  Element of K6(REAL)
 
 {  b1 where b1 is  V11()  real   ext-real   Element of  REAL  : (  - 1 <= b1 & b1 <= 1 )  }   is    set 
 
 {  b1 where b1 is  V11()  real   ext-real   Element of  REAL  : (  - 1 <= b1 & b1 <= 1 )  }   is    set 
 
Z is    set 
 
cot . Z is  V11()  real   ext-real   Element of  REAL 
 
0 / 4 is  V11()  real   ext-real   Element of  REAL 
 
0 * (4 ") is  V11()  real   ext-real   set 
 
(PI / 4) * 3 is   non  empty  V11()  real   ext-real   positive   non  negative   Element of  REAL 
 
].(PI / 4),((3 / 4) * PI).[ is   open  V46() V47() V48() V82() V83() V87()  Element of K6(REAL)
 
{(PI / 4),((3 / 4) * PI)} is  V46() V47() V48()  set 
 
].(PI / 4),((3 / 4) * PI).[ \/ {(PI / 4),((3 / 4) * PI)} is  V46() V47() V48()  set 
 
 {  b1 where b1 is  V11()  real   ext-real   Element of  REAL  : (  not b1 <= PI / 4 &  not (3 / 4) * PI <= b1 )  }   is    set 
 
[.(PI / 4),((3 / 4) * PI).] /\ (dom cot) is  V46() V47() V48()  set 
 
 {  b1 where b1 is  V11()  real   ext-real   Element of  REAL  : ( PI / 4 <= b1 & b1 <= (3 / 4) * PI )  }   is    set 
 
f is  V11()  real   ext-real   Element of  REAL 
 
f is  V11()  real   ext-real   Element of  REAL 
 
 {  b1 where b1 is  V11()  real   ext-real   Element of  REAL  : (  not b1 <=  - 1 &  not 1 <= b1 )  }   is    set 
 
].(- 1),1.[ is   open  V46() V47() V48() V82() V83() V87()  Element of K6(REAL)
 
 {  b1 where b1 is  V11()  real   ext-real   Element of  REAL  : (  - 1 <= b1 & b1 <= 1 )  }   is    set 
 
 {  b1 where b1 is  V11()  real   ext-real   Element of  REAL  : (  - 1 <= b1 & b1 <= 1 )  }   is    set 
 
 rng (tan | [.(- (PI / 4)),(PI / 4).]) is  V46() V47() V48()  Element of K6(REAL)
 
Z is    set 
 
f is  V11()  real   ext-real   Element of  REAL 
 
tan . (PI / 4) is  V11()  real   ext-real   Element of  REAL 
 
[.(tan . (- (PI / 4))),(tan . (PI / 4)).] is   closed  V46() V47() V48() V87()  Element of K6(REAL)
 
[.(tan . (PI / 4)),(tan . (- (PI / 4))).] is   closed  V46() V47() V48() V87()  Element of K6(REAL)
 
[.(tan . (- (PI / 4))),(tan . (PI / 4)).] \/ [.(tan . (PI / 4)),(tan . (- (PI / 4))).] is  V46() V47() V48()  set 
 
x is  V11()  real   ext-real   Element of  REAL 
 
tan . x is  V11()  real   ext-real   Element of  REAL 
 
(tan | [.(- (PI / 4)),(PI / 4).]) . x is  V11()  real   ext-real   Element of  REAL 
 
f is    set 
 
(tan | [.(- (PI / 4)),(PI / 4).]) . f is  V11()  real   ext-real   Element of  REAL 
 
x is  V11()  real   ext-real   Element of  REAL 
 
tan . x is  V11()  real   ext-real   Element of  REAL 
 
 rng (cot | [.(PI / 4),((3 / 4) * PI).]) is  V46() V47() V48()  Element of K6(REAL)
 
Z is    set 
 
0 / 4 is  V11()  real   ext-real   Element of  REAL 
 
0 * (4 ") is  V11()  real   ext-real   set 
 
(PI / 4) * 3 is   non  empty  V11()  real   ext-real   positive   non  negative   Element of  REAL 
 
f is  V11()  real   ext-real   Element of  REAL 
 
[.(cot . ((3 / 4) * PI)),(cot . (PI / 4)).] is   closed  V46() V47() V48() V87()  Element of K6(REAL)
 
[.(cot . (PI / 4)),(cot . ((3 / 4) * PI)).] is   closed  V46() V47() V48() V87()  Element of K6(REAL)
 
[.(cot . ((3 / 4) * PI)),(cot . (PI / 4)).] \/ [.(cot . (PI / 4)),(cot . ((3 / 4) * PI)).] is  V46() V47() V48()  set 
 
x is  V11()  real   ext-real   Element of  REAL 
 
cot . x is  V11()  real   ext-real   Element of  REAL 
 
(cot | [.(PI / 4),((3 / 4) * PI).]) . x is  V11()  real   ext-real   Element of  REAL 
 
f is    set 
 
(cot | [.(PI / 4),((3 / 4) * PI).]) . f is  V11()  real   ext-real   Element of  REAL 
 
x is  V11()  real   ext-real   Element of  REAL 
 
cot . x is  V11()  real   ext-real   Element of  REAL 
 
 dom () is  V46() V47() V48()  Element of K6(REAL)
 
 rng (tan | ].(- (PI / 2)),(PI / 2).[) is  V46() V47() V48()  Element of K6(REAL)
 
Z is    set 
 
tan .: [.(- (PI / 4)),(PI / 4).] is  V46() V47() V48()  Element of K6(REAL)
 
tan .: ].(- (PI / 2)),(PI / 2).[ is  V46() V47() V48()  Element of K6(REAL)
 
f is    set 
 
tan . f is  V11()  real   ext-real   Element of  REAL 
 
 dom () is  V46() V47() V48()  Element of K6(REAL)
 
 rng (cot | ].0,PI.[) is  V46() V47() V48()  Element of K6(REAL)
 
Z is    set 
 
cot .: [.(PI / 4),((3 / 4) * PI).] is  V46() V47() V48()  Element of K6(REAL)
 
cot .: ].0,PI.[ is  V46() V47() V48()  Element of K6(REAL)
 
f is    set 
 
cot . f is  V11()  real   ext-real   Element of  REAL 
 
(tan | [.(- (PI / 4)),(PI / 4).]) | [.(- (PI / 4)),(PI / 4).] is  V19() V22( REAL ) V23( REAL )  Function-like  V36() V37() V38()  Element of K6(K7(REAL,REAL))
 
(cot | [.(PI / 4),((3 / 4) * PI).]) | [.(PI / 4),((3 / 4) * PI).] is  V19() V22( REAL ) V23( REAL )  Function-like  V36() V37() V38()  Element of K6(K7(REAL,REAL))
 
(tan | ].(- (PI / 2)),(PI / 2).[) | [.(- (PI / 4)),(PI / 4).] is  V19() V22( REAL ) V23( REAL )  Function-like   one-to-one  V36() V37() V38()  Element of K6(K7(REAL,REAL))
 
(cot | ].0,PI.[) | [.(PI / 4),((3 / 4) * PI).] is  V19() V22( REAL ) V23( REAL )  Function-like   one-to-one  V36() V37() V38()  Element of K6(K7(REAL,REAL))
 
() | [.(- 1),1.] is  V19() V22( REAL ) V23( REAL )  Function-like   one-to-one  V36() V37() V38()  Element of K6(K7(REAL,REAL))
 
(tan | [.(- (PI / 4)),(PI / 4).]) "  is  V19() V22( REAL ) V23( REAL )  Function-like   one-to-one  V36() V37() V38()  Element of K6(K7(REAL,REAL))
 
(tan | ].(- (PI / 2)),(PI / 2).[) | [.(- (PI / 4)),(PI / 4).] is  V19() V22( REAL ) V23( REAL )  Function-like   one-to-one  V36() V37() V38()  Element of K6(K7(REAL,REAL))
 
((tan | ].(- (PI / 2)),(PI / 2).[) | [.(- (PI / 4)),(PI / 4).]) "  is  V19() V22( REAL ) V23( REAL )  Function-like   one-to-one  V36() V37() V38()  Element of K6(K7(REAL,REAL))
 
(tan | ].(- (PI / 2)),(PI / 2).[) .: [.(- (PI / 4)),(PI / 4).] is  V46() V47() V48()  Element of K6(REAL)
 
((tan | ].(- (PI / 2)),(PI / 2).[) ") | ((tan | ].(- (PI / 2)),(PI / 2).[) .: [.(- (PI / 4)),(PI / 4).]) is  V19() V22( REAL ) V23( REAL )  Function-like   one-to-one  V36() V37() V38()  Element of K6(K7(REAL,REAL))
 
 rng ((tan | ].(- (PI / 2)),(PI / 2).[) | [.(- (PI / 4)),(PI / 4).]) is  V46() V47() V48()  Element of K6(REAL)
 
((tan | ].(- (PI / 2)),(PI / 2).[) ") | (rng ((tan | ].(- (PI / 2)),(PI / 2).[) | [.(- (PI / 4)),(PI / 4).])) is  V19() V22( REAL ) V23( REAL )  Function-like   one-to-one  V36() V37() V38()  Element of K6(K7(REAL,REAL))
 
((tan | ].(- (PI / 2)),(PI / 2).[) ") | [.(- 1),1.] is  V19() V22( REAL ) V23( REAL )  Function-like   one-to-one  V36() V37() V38()  Element of K6(K7(REAL,REAL))
 
() | [.(- 1),1.] is  V19() V22( REAL ) V23( REAL )  Function-like   one-to-one  V36() V37() V38()  Element of K6(K7(REAL,REAL))
 
(cot | [.(PI / 4),((3 / 4) * PI).]) "  is  V19() V22( REAL ) V23( REAL )  Function-like   one-to-one  V36() V37() V38()  Element of K6(K7(REAL,REAL))
 
(cot | ].0,PI.[) | [.(PI / 4),((3 / 4) * PI).] is  V19() V22( REAL ) V23( REAL )  Function-like   one-to-one  V36() V37() V38()  Element of K6(K7(REAL,REAL))
 
((cot | ].0,PI.[) | [.(PI / 4),((3 / 4) * PI).]) "  is  V19() V22( REAL ) V23( REAL )  Function-like   one-to-one  V36() V37() V38()  Element of K6(K7(REAL,REAL))
 
(cot | ].0,PI.[) .: [.(PI / 4),((3 / 4) * PI).] is  V46() V47() V48()  Element of K6(REAL)
 
((cot | ].0,PI.[) ") | ((cot | ].0,PI.[) .: [.(PI / 4),((3 / 4) * PI).]) is  V19() V22( REAL ) V23( REAL )  Function-like   one-to-one  V36() V37() V38()  Element of K6(K7(REAL,REAL))
 
 rng ((cot | ].0,PI.[) | [.(PI / 4),((3 / 4) * PI).]) is  V46() V47() V48()  Element of K6(REAL)
 
((cot | ].0,PI.[) ") | (rng ((cot | ].0,PI.[) | [.(PI / 4),((3 / 4) * PI).])) is  V19() V22( REAL ) V23( REAL )  Function-like   one-to-one  V36() V37() V38()  Element of K6(K7(REAL,REAL))
 
((cot | ].0,PI.[) ") | [.(- 1),1.] is  V19() V22( REAL ) V23( REAL )  Function-like   one-to-one  V36() V37() V38()  Element of K6(K7(REAL,REAL))
 
(tan | [.(- (PI / 4)),(PI / 4).]) * (() | [.(- 1),1.]) is  V19()  Function-like   one-to-one  V36() V37() V38()  set 
 
 id [.(- 1),1.] is  V19() V22( REAL ) V23( REAL )  Function-like   one-to-one  V36() V37() V38()  Element of K6(K7(REAL,REAL))
 
(cot | [.(PI / 4),((3 / 4) * PI).]) * (() | [.(- 1),1.]) is  V19()  Function-like   one-to-one  V36() V37() V38()  set 
 
(tan | [.(- (PI / 4)),(PI / 4).]) * (() | [.(- 1),1.]) is  V19() V22( REAL ) V23( REAL )  Function-like   one-to-one  V36() V37() V38()  Element of K6(K7(REAL,REAL))
 
(cot | [.(PI / 4),((3 / 4) * PI).]) * (() | [.(- 1),1.]) is  V19() V22( REAL ) V23( REAL )  Function-like   one-to-one  V36() V37() V38()  Element of K6(K7(REAL,REAL))
 
() * (tan | ].(- (PI / 2)),(PI / 2).[) is  V19()  Function-like   one-to-one  V36() V37() V38()  set 
 
 id ].(- (PI / 2)),(PI / 2).[ is  V19() V22( REAL ) V23( REAL )  Function-like   one-to-one  V36() V37() V38()  Element of K6(K7(REAL,REAL))
 
() * (cot | ].0,PI.[) is  V19() V22( REAL ) V23( REAL )  Function-like   one-to-one  V36() V37() V38()  Element of K6(K7(REAL,REAL))
 
 id ].0,PI.[ is  V19() V22( REAL ) V23( REAL )  Function-like   one-to-one  V36() V37() V38()  Element of K6(K7(REAL,REAL))
 
() * (cot | ].0,PI.[) is  V19()  Function-like   one-to-one  V36() V37() V38()  set 
 
Z is  V11()  real   ext-real   Element of  REAL 
 
tan . Z is  V11()  real   ext-real   Element of  REAL 
 
((tan . Z)) is  V11()  real   ext-real   Element of  REAL 
 
() . (tan . Z) is  V11()  real   ext-real   Element of  REAL 
 
 tan Z is  V11()  real   ext-real   Element of  REAL 
 
((tan Z)) is  V11()  real   ext-real   Element of  REAL 
 
() . (tan Z) is  V11()  real   ext-real   Element of  REAL 
 
 dom (tan | ].(- (PI / 2)),(PI / 2).[) is  V46() V47() V48()  Element of K6(REAL)
 
(tan | ].(- (PI / 2)),(PI / 2).[) . Z is  V11()  real   ext-real   Element of  REAL 
 
() . ((tan | ].(- (PI / 2)),(PI / 2).[) . Z) is  V11()  real   ext-real   Element of  REAL 
 
(id ].(- (PI / 2)),(PI / 2).[) . Z is  V11()  real   ext-real   Element of  REAL 
 
Z is  V11()  real   ext-real   Element of  REAL 
 
cot . Z is  V11()  real   ext-real   Element of  REAL 
 
((cot . Z)) is  V11()  real   ext-real   Element of  REAL 
 
() . (cot . Z) is  V11()  real   ext-real   Element of  REAL 
 
 cot Z is  V11()  real   ext-real   Element of  REAL 
 
((cot Z)) is  V11()  real   ext-real   Element of  REAL 
 
() . (cot Z) is  V11()  real   ext-real   Element of  REAL 
 
 dom (cot | ].0,PI.[) is  V46() V47() V48()  Element of K6(REAL)
 
(cot | ].0,PI.[) . Z is  V11()  real   ext-real   Element of  REAL 
 
() . ((cot | ].0,PI.[) . Z) is  V11()  real   ext-real   Element of  REAL 
 
(id ].0,PI.[) . Z is  V11()  real   ext-real   Element of  REAL 
 
((- 1)) is  V11()  real   ext-real   Element of  REAL 
 
() . (- 1) is  V11()  real   ext-real   Element of  REAL 
 
((- 1)) is  V11()  real   ext-real   Element of  REAL 
 
() . (- 1) is  V11()  real   ext-real   Element of  REAL 
 
(1) is  V11()  real   ext-real   Element of  REAL 
 
() . 1 is  V11()  real   ext-real   Element of  REAL 
 
tan . (PI / 4) is  V11()  real   ext-real   Element of  REAL 
 
((tan . (PI / 4))) is  V11()  real   ext-real   Element of  REAL 
 
() . (tan . (PI / 4)) is  V11()  real   ext-real   Element of  REAL 
 
(1) is  V11()  real   ext-real   Element of  REAL 
 
() . 1 is  V11()  real   ext-real   Element of  REAL 
 
tan . 0 is  V11()  real   ext-real   Element of  REAL 
 
 tan 0 is  V11()  real   ext-real   Element of  REAL 
 
0 / 2 is  V11()  real   ext-real   Element of  REAL 
 
0 * (2 ") is  V11()  real   ext-real   set 
 
0 - (PI / 2) is  V11()  real   ext-real   Element of  REAL 
 
 - (PI / 2) is   non  empty  V11()  real   ext-real   non  positive   negative   set 
 
0 + (- (PI / 2)) is  V11()  real   ext-real   set 
 
0 / (cos . 0) is  V11()  real   ext-real   Element of  REAL 
 
(cos . 0) "  is  V11()  real   ext-real   set 
 
0 * ((cos . 0) ") is  V11()  real   ext-real   set 
 
cot . (PI / 2) is  V11()  real   ext-real   Element of  REAL 
 
 cot (PI / 2) is  V11()  real   ext-real   Element of  REAL 
 
PI / 1 is   non  empty  V11()  real   ext-real   positive   non  negative   Element of  REAL 
 
1 "  is   non  empty  V11()  real   ext-real   positive   non  negative   set 
 
PI * (1 ") is   non  empty  V11()  real   ext-real   positive   non  negative   set 
 
0 / 2 is  V11()  real   ext-real   Element of  REAL 
 
0 * (2 ") is  V11()  real   ext-real   set 
 
0 / (sin . (PI / 2)) is  V11()  real   ext-real   Element of  REAL 
 
(sin . (PI / 2)) "  is  V11()  real   ext-real   set 
 
0 * ((sin . (PI / 2)) ") is  V11()  real   ext-real   set 
 
(0) is  V11()  real   ext-real   Element of  REAL 
 
() . 0 is  V11()  real   ext-real   Element of  REAL 
 
0 / 2 is  V11()  real   ext-real   Element of  REAL 
 
0 * (2 ") is  V11()  real   ext-real   set 
 
0 - (PI / 2) is  V11()  real   ext-real   Element of  REAL 
 
 - (PI / 2) is   non  empty  V11()  real   ext-real   non  positive   negative   set 
 
0 + (- (PI / 2)) is  V11()  real   ext-real   set 
 
(0) is  V11()  real   ext-real   Element of  REAL 
 
() . 0 is  V11()  real   ext-real   Element of  REAL 
 
PI / 1 is   non  empty  V11()  real   ext-real   positive   non  negative   Element of  REAL 
 
1 "  is   non  empty  V11()  real   ext-real   positive   non  negative   set 
 
PI * (1 ") is   non  empty  V11()  real   ext-real   positive   non  negative   set 
 
0 / 2 is  V11()  real   ext-real   Element of  REAL 
 
0 * (2 ") is  V11()  real   ext-real   set 
 
tan .: ].(- (PI / 2)),(PI / 2).[ is  V46() V47() V48()  Element of K6(REAL)
 
() | (tan .: ].(- (PI / 2)),(PI / 2).[) is  V19() V22( REAL ) V23( REAL )  Function-like   one-to-one  V36() V37() V38()  Element of K6(K7(REAL,REAL))
 
(tan | ].(- (PI / 2)),(PI / 2).[) .: ].(- (PI / 2)),(PI / 2).[ is  V46() V47() V48()  Element of K6(REAL)
 
(tan | ].(- (PI / 2)),(PI / 2).[) | ].(- (PI / 2)),(PI / 2).[ is  V19() V22( REAL ) V23( REAL )  Function-like   one-to-one  V36() V37() V38()  Element of K6(K7(REAL,REAL))
 
 rng ((tan | ].(- (PI / 2)),(PI / 2).[) | ].(- (PI / 2)),(PI / 2).[) is  V46() V47() V48()  Element of K6(REAL)
 
 rng (tan | ].(- (PI / 2)),(PI / 2).[) is  V46() V47() V48()  Element of K6(REAL)
 
cot .: ].0,PI.[ is  V46() V47() V48()  Element of K6(REAL)
 
() | (cot .: ].0,PI.[) is  V19() V22( REAL ) V23( REAL )  Function-like   one-to-one  V36() V37() V38()  Element of K6(K7(REAL,REAL))
 
(cot | ].0,PI.[) .: ].0,PI.[ is  V46() V47() V48()  Element of K6(REAL)
 
(cot | ].0,PI.[) | ].0,PI.[ is  V19() V22( REAL ) V23( REAL )  Function-like   one-to-one  V36() V37() V38()  Element of K6(K7(REAL,REAL))
 
 rng ((cot | ].0,PI.[) | ].0,PI.[) is  V46() V47() V48()  Element of K6(REAL)
 
 rng (cot | ].0,PI.[) is  V46() V47() V48()  Element of K6(REAL)
 
tan .: [.(- (PI / 4)),(PI / 4).] is  V46() V47() V48()  Element of K6(REAL)
 
cot .: [.(PI / 4),((3 / 4) * PI).] is  V46() V47() V48()  Element of K6(REAL)
 
Z is    set 
 
() . Z is  V11()  real   ext-real   Element of  REAL 
 
].(- 1),1.[ is   open  V46() V47() V48() V82() V83() V87()  Element of K6(REAL)
 
{(- 1),1} is  V46() V47() V48() V49() V50()  set 
 
].(- 1),1.[ \/ {(- 1),1} is  V46() V47() V48()  set 
 
 {  b1 where b1 is  V11()  real   ext-real   Element of  REAL  : (  not b1 <=  - 1 &  not 1 <= b1 )  }   is    set 
 
[.(- 1),1.] /\ (dom ()) is  V46() V47() V48()  set 
 
f is  V11()  real   ext-real   Element of  REAL 
 
f is  V11()  real   ext-real   Element of  REAL 
 
Z is    set 
 
() . Z is  V11()  real   ext-real   Element of  REAL 
 
].(- 1),1.[ is   open  V46() V47() V48() V82() V83() V87()  Element of K6(REAL)
 
{(- 1),1} is  V46() V47() V48() V49() V50()  set 
 
].(- 1),1.[ \/ {(- 1),1} is  V46() V47() V48()  set 
 
 {  b1 where b1 is  V11()  real   ext-real   Element of  REAL  : (  not b1 <=  - 1 &  not 1 <= b1 )  }   is    set 
 
[.(- 1),1.] /\ (dom ()) is  V46() V47() V48()  set 
 
f is  V11()  real   ext-real   Element of  REAL 
 
f is  V11()  real   ext-real   Element of  REAL 
 
0 / 4 is  V11()  real   ext-real   Element of  REAL 
 
0 * (4 ") is  V11()  real   ext-real   set 
 
(PI / 4) * 3 is   non  empty  V11()  real   ext-real   positive   non  negative   Element of  REAL 
 
0 / 4 is  V11()  real   ext-real   Element of  REAL 
 
0 * (4 ") is  V11()  real   ext-real   set 
 
(PI / 4) * 3 is   non  empty  V11()  real   ext-real   positive   non  negative   Element of  REAL 
 
Z is  V11()  real   ext-real   Element of  REAL 
 
(Z) is  V11()  real   ext-real   Element of  REAL 
 
() . Z is  V11()  real   ext-real   Element of  REAL 
 
 tan (Z) is  V11()  real   ext-real   Element of  REAL 
 
 dom (() | [.(- 1),1.]) is  V46() V47() V48()  Element of K6(REAL)
 
tan . (() . Z) is  V11()  real   ext-real   Element of  REAL 
 
(tan | [.(- (PI / 4)),(PI / 4).]) . (() . Z) is  V11()  real   ext-real   set 
 
(() | [.(- 1),1.]) . Z is  V11()  real   ext-real   Element of  REAL 
 
(tan | [.(- (PI / 4)),(PI / 4).]) . ((() | [.(- 1),1.]) . Z) is  V11()  real   ext-real   set 
 
((tan | [.(- (PI / 4)),(PI / 4).]) * (() | [.(- 1),1.])) . Z is  V11()  real   ext-real   Element of  REAL 
 
(id [.(- 1),1.]) . Z is  V11()  real   ext-real   Element of  REAL 
 
Z is  V11()  real   ext-real   Element of  REAL 
 
(Z) is  V11()  real   ext-real   Element of  REAL 
 
() . Z is  V11()  real   ext-real   Element of  REAL 
 
 cot (Z) is  V11()  real   ext-real   Element of  REAL 
 
 dom (() | [.(- 1),1.]) is  V46() V47() V48()  Element of K6(REAL)
 
cot . (() . Z) is  V11()  real   ext-real   Element of  REAL 
 
(cot | [.(PI / 4),((3 / 4) * PI).]) . (() . Z) is  V11()  real   ext-real   set 
 
(() | [.(- 1),1.]) . Z is  V11()  real   ext-real   Element of  REAL 
 
(cot | [.(PI / 4),((3 / 4) * PI).]) . ((() | [.(- 1),1.]) . Z) is  V11()  real   ext-real   set 
 
((cot | [.(PI / 4),((3 / 4) * PI).]) * (() | [.(- 1),1.])) . Z is  V11()  real   ext-real   Element of  REAL 
 
(id [.(- 1),1.]) . Z is  V11()  real   ext-real   Element of  REAL 
 
((tan | [.(- (PI / 4)),(PI / 4).]) | [.(- (PI / 4)),(PI / 4).]) "  is  V19() V22( REAL ) V23( REAL )  Function-like   one-to-one  V36() V37() V38()  Element of K6(K7(REAL,REAL))
 
(tan | [.(- (PI / 4)),(PI / 4).]) .: [.(- (PI / 4)),(PI / 4).] is  V46() V47() V48()  Element of K6(REAL)
 
(((tan | [.(- (PI / 4)),(PI / 4).]) | [.(- (PI / 4)),(PI / 4).]) ") | ((tan | [.(- (PI / 4)),(PI / 4).]) .: [.(- (PI / 4)),(PI / 4).]) is  V19() V22( REAL ) V23( REAL )  Function-like   one-to-one  V36() V37() V38()  Element of K6(K7(REAL,REAL))
 
(() | [.(- 1),1.]) | [.(- 1),1.] is  V19() V22( REAL ) V23( REAL )  Function-like   one-to-one  V36() V37() V38()  Element of K6(K7(REAL,REAL))
 
0 / 4 is  V11()  real   ext-real   Element of  REAL 
 
0 * (4 ") is  V11()  real   ext-real   set 
 
(PI / 4) * 3 is   non  empty  V11()  real   ext-real   positive   non  negative   Element of  REAL 
 
((cot | [.(PI / 4),((3 / 4) * PI).]) | [.(PI / 4),((3 / 4) * PI).]) "  is  V19() V22( REAL ) V23( REAL )  Function-like   one-to-one  V36() V37() V38()  Element of K6(K7(REAL,REAL))
 
(cot | [.(PI / 4),((3 / 4) * PI).]) .: [.(PI / 4),((3 / 4) * PI).] is  V46() V47() V48()  Element of K6(REAL)
 
(((cot | [.(PI / 4),((3 / 4) * PI).]) | [.(PI / 4),((3 / 4) * PI).]) ") | ((cot | [.(PI / 4),((3 / 4) * PI).]) .: [.(PI / 4),((3 / 4) * PI).]) is  V19() V22( REAL ) V23( REAL )  Function-like   one-to-one  V36() V37() V38()  Element of K6(K7(REAL,REAL))
 
(() | [.(- 1),1.]) | [.(- 1),1.] is  V19() V22( REAL ) V23( REAL )  Function-like   one-to-one  V36() V37() V38()  Element of K6(K7(REAL,REAL))
 
 rng (() | [.(- 1),1.]) is  V46() V47() V48()  Element of K6(REAL)
 
Z is    set 
 
 dom (() | [.(- 1),1.]) is  V46() V47() V48()  Element of K6(REAL)
 
f is  V11()  real   ext-real   Element of  REAL 
 
[.(() . (- 1)),(() . 1).] is   closed  V46() V47() V48() V87()  Element of K6(REAL)
 
[.(() . 1),(() . (- 1)).] is   closed  V46() V47() V48() V87()  Element of K6(REAL)
 
[.(() . (- 1)),(() . 1).] \/ [.(() . 1),(() . (- 1)).] is  V46() V47() V48()  set 
 
x is  V11()  real   ext-real   Element of  REAL 
 
() . x is  V11()  real   ext-real   Element of  REAL 
 
(() | [.(- 1),1.]) . x is  V11()  real   ext-real   Element of  REAL 
 
f is    set 
 
(() | [.(- 1),1.]) . f is  V11()  real   ext-real   Element of  REAL 
 
() . f is  V11()  real   ext-real   Element of  REAL 
 
 rng (() | [.(- 1),1.]) is  V46() V47() V48()  Element of K6(REAL)
 
Z is    set 
 
 dom (() | [.(- 1),1.]) is  V46() V47() V48()  Element of K6(REAL)
 
f is  V11()  real   ext-real   Element of  REAL 
 
[.(() . 1),(() . (- 1)).] is   closed  V46() V47() V48() V87()  Element of K6(REAL)
 
[.(() . (- 1)),(() . 1).] is   closed  V46() V47() V48() V87()  Element of K6(REAL)
 
[.(() . 1),(() . (- 1)).] \/ [.(() . (- 1)),(() . 1).] is  V46() V47() V48()  set 
 
x is  V11()  real   ext-real   Element of  REAL 
 
() . x is  V11()  real   ext-real   Element of  REAL 
 
(() | [.(- 1),1.]) . x is  V11()  real   ext-real   Element of  REAL 
 
f is    set 
 
(() | [.(- 1),1.]) . f is  V11()  real   ext-real   Element of  REAL 
 
() . f is  V11()  real   ext-real   Element of  REAL 
 
Z is  V11()  real   ext-real   Element of  REAL 
 
(Z) is  V11()  real   ext-real   Element of  REAL 
 
() . Z is  V11()  real   ext-real   Element of  REAL 
 
Z is  V11()  real   ext-real   Element of  REAL 
 
(Z) is  V11()  real   ext-real   Element of  REAL 
 
() . Z is  V11()  real   ext-real   Element of  REAL 
 
Z is  V11()  real   ext-real   Element of  REAL 
 
(Z) is  V11()  real   ext-real   Element of  REAL 
 
() . Z is  V11()  real   ext-real   Element of  REAL 
 
Z is  V11()  real   ext-real   Element of  REAL 
 
(Z) is  V11()  real   ext-real   Element of  REAL 
 
() . Z is  V11()  real   ext-real   Element of  REAL 
 
Z is  V11()  real   ext-real   Element of  REAL 
 
(Z) is  V11()  real   ext-real   Element of  REAL 
 
() . Z is  V11()  real   ext-real   Element of  REAL 
 
 tan (PI / 4) is  V11()  real   ext-real   Element of  REAL 
 
tan . (PI / 4) is  V11()  real   ext-real   Element of  REAL 
 
Z is  V11()  real   ext-real   Element of  REAL 
 
(Z) is  V11()  real   ext-real   Element of  REAL 
 
() . Z is  V11()  real   ext-real   Element of  REAL 
 
Z is  V11()  real   ext-real   Element of  REAL 
 
(Z) is  V11()  real   ext-real   Element of  REAL 
 
() . Z is  V11()  real   ext-real   Element of  REAL 
 
 dom (() | [.(- 1),1.]) is  V46() V47() V48()  Element of K6(REAL)
 
(() | [.(- 1),1.]) . Z is  V11()  real   ext-real   Element of  REAL 
 
Z is  V11()  real   ext-real   Element of  REAL 
 
(Z) is  V11()  real   ext-real   Element of  REAL 
 
() . Z is  V11()  real   ext-real   Element of  REAL 
 
 dom (() | [.(- 1),1.]) is  V46() V47() V48()  Element of K6(REAL)
 
(() | [.(- 1),1.]) . Z is  V11()  real   ext-real   Element of  REAL 
 
Z is  V11()  real   ext-real   Element of  REAL 
 
(Z) is  V11()  real   ext-real   Element of  REAL 
 
() . Z is  V11()  real   ext-real   Element of  REAL 
 
 tan (PI / 4) is  V11()  real   ext-real   Element of  REAL 
 
tan . (PI / 4) is  V11()  real   ext-real   Element of  REAL 
 
Z is  V11()  real   ext-real   Element of  REAL 
 
(Z) is  V11()  real   ext-real   Element of  REAL 
 
() . Z is  V11()  real   ext-real   Element of  REAL 
 
Z is  V11()  real   ext-real   Element of  REAL 
 
(Z) is  V11()  real   ext-real   Element of  REAL 
 
() . Z is  V11()  real   ext-real   Element of  REAL 
 
 - Z is  V11()  real   ext-real   Element of  REAL 
 
((- Z)) is  V11()  real   ext-real   Element of  REAL 
 
() . (- Z) is  V11()  real   ext-real   Element of  REAL 
 
 - ((- Z)) is  V11()  real   ext-real   Element of  REAL 
 
 - (- 1) is   non  empty  V11()  real   ext-real   positive   non  negative  V63()  Element of  REAL 
 
 - (- (PI / 4)) is   non  empty  V11()  real   ext-real   positive   non  negative   Element of  REAL 
 
 cos ((- Z)) is  V11()  real   ext-real   Element of  REAL 
 
cos . ((- Z)) is  V11()  real   ext-real   Element of  REAL 
 
 tan ((- Z)) is  V11()  real   ext-real   Element of  REAL 
 
(tan 0) - (tan ((- Z))) is  V11()  real   ext-real   Element of  REAL 
 
 - (tan ((- Z))) is  V11()  real   ext-real   set 
 
(tan 0) + (- (tan ((- Z)))) is  V11()  real   ext-real   set 
 
(tan 0) * (tan ((- Z))) is  V11()  real   ext-real   Element of  REAL 
 
1 + ((tan 0) * (tan ((- Z)))) is  V11()  real   ext-real   Element of  REAL 
 
((tan 0) - (tan ((- Z)))) / (1 + ((tan 0) * (tan ((- Z))))) is  V11()  real   ext-real   Element of  REAL 
 
(1 + ((tan 0) * (tan ((- Z))))) "  is  V11()  real   ext-real   set 
 
((tan 0) - (tan ((- Z)))) * ((1 + ((tan 0) * (tan ((- Z))))) ") is  V11()  real   ext-real   set 
 
0 - ((- Z)) is  V11()  real   ext-real   Element of  REAL 
 
 - ((- Z)) is  V11()  real   ext-real   set 
 
0 + (- ((- Z))) is  V11()  real   ext-real   set 
 
 tan (0 - ((- Z))) is  V11()  real   ext-real   Element of  REAL 
 
Z is  V11()  real   ext-real   Element of  REAL 
 
(Z) is  V11()  real   ext-real   Element of  REAL 
 
() . Z is  V11()  real   ext-real   Element of  REAL 
 
 - Z is  V11()  real   ext-real   Element of  REAL 
 
((- Z)) is  V11()  real   ext-real   Element of  REAL 
 
() . (- Z) is  V11()  real   ext-real   Element of  REAL 
 
PI - ((- Z)) is  V11()  real   ext-real   Element of  REAL 
 
 - ((- Z)) is  V11()  real   ext-real   set 
 
PI + (- ((- Z))) is  V11()  real   ext-real   set 
 
 - (- 1) is   non  empty  V11()  real   ext-real   positive   non  negative  V63()  Element of  REAL 
 
 cot ((- Z)) is  V11()  real   ext-real   Element of  REAL 
 
 - (cot ((- Z))) is  V11()  real   ext-real   Element of  REAL 
 
 cos ((- Z)) is  V11()  real   ext-real   Element of  REAL 
 
cos . ((- Z)) is  V11()  real   ext-real   Element of  REAL 
 
 sin ((- Z)) is  V11()  real   ext-real   Element of  REAL 
 
sin . ((- Z)) is  V11()  real   ext-real   Element of  REAL 
 
(cos ((- Z))) / (sin ((- Z))) is  V11()  real   ext-real   Element of  REAL 
 
(sin ((- Z))) "  is  V11()  real   ext-real   set 
 
(cos ((- Z))) * ((sin ((- Z))) ") is  V11()  real   ext-real   set 
 
 - ((cos ((- Z))) / (sin ((- Z)))) is  V11()  real   ext-real   Element of  REAL 
 
 - (sin ((- Z))) is  V11()  real   ext-real   Element of  REAL 
 
(cos ((- Z))) / (- (sin ((- Z)))) is  V11()  real   ext-real   Element of  REAL 
 
(- (sin ((- Z)))) "  is  V11()  real   ext-real   set 
 
(cos ((- Z))) * ((- (sin ((- Z)))) ") is  V11()  real   ext-real   set 
 
 - ((- Z)) is  V11()  real   ext-real   Element of  REAL 
 
 sin (- ((- Z))) is  V11()  real   ext-real   Element of  REAL 
 
sin . (- ((- Z))) is  V11()  real   ext-real   Element of  REAL 
 
(cos ((- Z))) / (sin (- ((- Z)))) is  V11()  real   ext-real   Element of  REAL 
 
(sin (- ((- Z)))) "  is  V11()  real   ext-real   set 
 
(cos ((- Z))) * ((sin (- ((- Z)))) ") is  V11()  real   ext-real   set 
 
 cos (- ((- Z))) is  V11()  real   ext-real   Element of  REAL 
 
cos . (- ((- Z))) is  V11()  real   ext-real   Element of  REAL 
 
(cos (- ((- Z)))) / (sin (- ((- Z)))) is  V11()  real   ext-real   Element of  REAL 
 
(cos (- ((- Z)))) * ((sin (- ((- Z)))) ") is  V11()  real   ext-real   set 
 
 cot (- ((- Z))) is  V11()  real   ext-real   Element of  REAL 
 
 - ((3 / 4) * PI) is   non  empty  V11()  real   ext-real   non  positive   negative   Element of  REAL 
 
PI + (- ((3 / 4) * PI)) is  V11()  real   ext-real   Element of  REAL 
 
PI + (- ((- Z))) is  V11()  real   ext-real   Element of  REAL 
 
PI + (- (PI / 4)) is  V11()  real   ext-real   Element of  REAL 
 
 cot (PI + (- ((- Z)))) is  V11()  real   ext-real   Element of  REAL 
 
 cos (PI + (- ((- Z)))) is  V11()  real   ext-real   Element of  REAL 
 
cos . (PI + (- ((- Z)))) is  V11()  real   ext-real   Element of  REAL 
 
 sin (PI + (- ((- Z)))) is  V11()  real   ext-real   Element of  REAL 
 
sin . (PI + (- ((- Z)))) is  V11()  real   ext-real   Element of  REAL 
 
(cos (PI + (- ((- Z))))) / (sin (PI + (- ((- Z))))) is  V11()  real   ext-real   Element of  REAL 
 
(sin (PI + (- ((- Z))))) "  is  V11()  real   ext-real   set 
 
(cos (PI + (- ((- Z))))) * ((sin (PI + (- ((- Z))))) ") is  V11()  real   ext-real   set 
 
 - (cos (- ((- Z)))) is  V11()  real   ext-real   Element of  REAL 
 
(- (cos (- ((- Z))))) / (sin (PI + (- ((- Z))))) is  V11()  real   ext-real   Element of  REAL 
 
(- (cos (- ((- Z))))) * ((sin (PI + (- ((- Z))))) ") is  V11()  real   ext-real   set 
 
 - (sin (- ((- Z)))) is  V11()  real   ext-real   Element of  REAL 
 
(- (cos (- ((- Z))))) / (- (sin (- ((- Z))))) is  V11()  real   ext-real   Element of  REAL 
 
(- (sin (- ((- Z))))) "  is  V11()  real   ext-real   set 
 
(- (cos (- ((- Z))))) * ((- (sin (- ((- Z))))) ") is  V11()  real   ext-real   set 
 
Z is  V11()  real   ext-real   Element of  REAL 
 
(Z) is  V11()  real   ext-real   Element of  REAL 
 
() . Z is  V11()  real   ext-real   Element of  REAL 
 
 cot (Z) is  V11()  real   ext-real   Element of  REAL 
 
1 / Z is  V11()  real   ext-real   Element of  REAL 
 
Z "  is  V11()  real   ext-real   set 
 
1 * (Z ") is  V11()  real   ext-real   set 
 
 sin (Z) is  V11()  real   ext-real   Element of  REAL 
 
sin . (Z) is  V11()  real   ext-real   Element of  REAL 
 
 cos (Z) is  V11()  real   ext-real   Element of  REAL 
 
cos . (Z) is  V11()  real   ext-real   Element of  REAL 
 
(sin (Z)) / (cos (Z)) is  V11()  real   ext-real   Element of  REAL 
 
(cos (Z)) "  is  V11()  real   ext-real   set 
 
(sin (Z)) * ((cos (Z)) ") is  V11()  real   ext-real   set 
 
 tan (Z) is  V11()  real   ext-real   Element of  REAL 
 
(cos (Z)) / (sin (Z)) is  V11()  real   ext-real   Element of  REAL 
 
(sin (Z)) "  is  V11()  real   ext-real   set 
 
(cos (Z)) * ((sin (Z)) ") is  V11()  real   ext-real   set 
 
Z is  V11()  real   ext-real   Element of  REAL 
 
(Z) is  V11()  real   ext-real   Element of  REAL 
 
() . Z is  V11()  real   ext-real   Element of  REAL 
 
 tan (Z) is  V11()  real   ext-real   Element of  REAL 
 
1 / Z is  V11()  real   ext-real   Element of  REAL 
 
Z "  is  V11()  real   ext-real   set 
 
1 * (Z ") is  V11()  real   ext-real   set 
 
 cos (Z) is  V11()  real   ext-real   Element of  REAL 
 
cos . (Z) is  V11()  real   ext-real   Element of  REAL 
 
 sin (Z) is  V11()  real   ext-real   Element of  REAL 
 
sin . (Z) is  V11()  real   ext-real   Element of  REAL 
 
(cos (Z)) / (sin (Z)) is  V11()  real   ext-real   Element of  REAL 
 
(sin (Z)) "  is  V11()  real   ext-real   set 
 
(cos (Z)) * ((sin (Z)) ") is  V11()  real   ext-real   set 
 
 cot (Z) is  V11()  real   ext-real   Element of  REAL 
 
(sin (Z)) / (cos (Z)) is  V11()  real   ext-real   Element of  REAL 
 
(cos (Z)) "  is  V11()  real   ext-real   set 
 
(sin (Z)) * ((cos (Z)) ") is  V11()  real   ext-real   set 
 
 dom ((tan | ].(- (PI / 2)),(PI / 2).[) ") is  V46() V47() V48()  Element of K6(REAL)
 
 rng (tan | ].(- (PI / 2)),(PI / 2).[) is  V46() V47() V48()  Element of K6(REAL)
 
 dom (tan | ].(- (PI / 2)),(PI / 2).[) is  V46() V47() V48()  Element of K6(REAL)
 
(dom tan) /\ ].(- (PI / 2)),(PI / 2).[ is  V46() V47() V48()  set 
 
f is  V11()  real   ext-real   Element of  REAL 
 
cos . f is  V11()  real   ext-real   Element of  REAL 
 
(cos . f) ^2  is  V11()  real   ext-real   Element of  REAL 
 
(cos . f) * (cos . f) is  V11()  real   ext-real   set 
 
1 / ((cos . f) ^2) is  V11()  real   ext-real   Element of  REAL 
 
((cos . f) ^2) "  is  V11()  real   ext-real   set 
 
1 * (((cos . f) ^2) ") is  V11()  real   ext-real   set 
 
0 / ((cos . f) ^2) is  V11()  real   ext-real   Element of  REAL 
 
0 * (((cos . f) ^2) ") is  V11()  real   ext-real   set 
 
f is  V11()  real   ext-real   Element of  REAL 
 
 diff ((tan | ].(- (PI / 2)),(PI / 2).[),f) is  V11()  real   ext-real   Element of  REAL 
 
(tan | ].(- (PI / 2)),(PI / 2).[) `| ].(- (PI / 2)),(PI / 2).[ is  V19() V22( REAL ) V23( REAL )  Function-like  V36() V37() V38()  Element of K6(K7(REAL,REAL))
 
((tan | ].(- (PI / 2)),(PI / 2).[) `| ].(- (PI / 2)),(PI / 2).[) . f is  V11()  real   ext-real   Element of  REAL 
 
tan `| ].(- (PI / 2)),(PI / 2).[ is  V19() V22( REAL ) V23( REAL )  Function-like  V36() V37() V38()  Element of K6(K7(REAL,REAL))
 
(tan `| ].(- (PI / 2)),(PI / 2).[) . f is  V11()  real   ext-real   Element of  REAL 
 
 diff (tan,f) is  V11()  real   ext-real   Element of  REAL 
 
cos . f is  V11()  real   ext-real   Element of  REAL 
 
(cos . f) ^2  is  V11()  real   ext-real   Element of  REAL 
 
(cos . f) * (cos . f) is  V11()  real   ext-real   set 
 
1 / ((cos . f) ^2) is  V11()  real   ext-real   Element of  REAL 
 
((cos . f) ^2) "  is  V11()  real   ext-real   set 
 
1 * (((cos . f) ^2) ") is  V11()  real   ext-real   set 
 
(tan | ].(- (PI / 2)),(PI / 2).[) | ].(- (PI / 2)),(PI / 2).[ is  V19() V22( REAL ) V23( REAL )  Function-like   one-to-one  V36() V37() V38()  Element of K6(K7(REAL,REAL))
 
 dom ((cot | ].0,PI.[) ") is  V46() V47() V48()  Element of K6(REAL)
 
 rng (cot | ].0,PI.[) is  V46() V47() V48()  Element of K6(REAL)
 
 dom (cot | ].0,PI.[) is  V46() V47() V48()  Element of K6(REAL)
 
(dom cot) /\ ].0,PI.[ is  V46() V47() V48()  set 
 
f is  V11()  real   ext-real   Element of  REAL 
 
sin . f is  V11()  real   ext-real   Element of  REAL 
 
(sin . f) ^2  is  V11()  real   ext-real   Element of  REAL 
 
(sin . f) * (sin . f) is  V11()  real   ext-real   set 
 
1 / ((sin . f) ^2) is  V11()  real   ext-real   Element of  REAL 
 
((sin . f) ^2) "  is  V11()  real   ext-real   set 
 
1 * (((sin . f) ^2) ") is  V11()  real   ext-real   set 
 
 - (1 / ((sin . f) ^2)) is  V11()  real   ext-real   Element of  REAL 
 
0 / ((sin . f) ^2) is  V11()  real   ext-real   Element of  REAL 
 
0 * (((sin . f) ^2) ") is  V11()  real   ext-real   set 
 
 - 0 is  V11()  real   ext-real  V63()  Element of  REAL 
 
f is  V11()  real   ext-real   Element of  REAL 
 
 diff ((cot | ].0,PI.[),f) is  V11()  real   ext-real   Element of  REAL 
 
(cot | ].0,PI.[) `| ].0,PI.[ is  V19() V22( REAL ) V23( REAL )  Function-like  V36() V37() V38()  Element of K6(K7(REAL,REAL))
 
((cot | ].0,PI.[) `| ].0,PI.[) . f is  V11()  real   ext-real   Element of  REAL 
 
cot `| ].0,PI.[ is  V19() V22( REAL ) V23( REAL )  Function-like  V36() V37() V38()  Element of K6(K7(REAL,REAL))
 
(cot `| ].0,PI.[) . f is  V11()  real   ext-real   Element of  REAL 
 
 diff (cot,f) is  V11()  real   ext-real   Element of  REAL 
 
sin . f is  V11()  real   ext-real   Element of  REAL 
 
(sin . f) ^2  is  V11()  real   ext-real   Element of  REAL 
 
(sin . f) * (sin . f) is  V11()  real   ext-real   set 
 
1 / ((sin . f) ^2) is  V11()  real   ext-real   Element of  REAL 
 
((sin . f) ^2) "  is  V11()  real   ext-real   set 
 
1 * (((sin . f) ^2) ") is  V11()  real   ext-real   set 
 
 - (1 / ((sin . f) ^2)) is  V11()  real   ext-real   Element of  REAL 
 
(cot | ].0,PI.[) | ].0,PI.[ is  V19() V22( REAL ) V23( REAL )  Function-like   one-to-one  V36() V37() V38()  Element of K6(K7(REAL,REAL))
 
].(- 1),1.[ is   open  V46() V47() V48() V82() V83() V87()  Element of K6(REAL)
 
Z is  V11()  real   ext-real   Element of  REAL 
 
 rng (tan | ].(- (PI / 2)),(PI / 2).[) is  V46() V47() V48()  Element of K6(REAL)
 
() | (dom ()) is  V19() V22( REAL ) V23( REAL )  Function-like   one-to-one  V36() V37() V38()  Element of K6(K7(REAL,REAL))
 
Z is  V11()  real   ext-real   Element of  REAL 
 
 rng (cot | ].0,PI.[) is  V46() V47() V48()  Element of K6(REAL)
 
() | (dom ()) is  V19() V22( REAL ) V23( REAL )  Function-like   one-to-one  V36() V37() V38()  Element of K6(K7(REAL,REAL))
 
Z is  V11()  real   ext-real   Element of  REAL 
 
 diff ((),Z) is  V11()  real   ext-real   Element of  REAL 
 
Z ^2  is  V11()  real   ext-real   Element of  REAL 
 
Z * Z is  V11()  real   ext-real   set 
 
1 + (Z ^2) is  V11()  real   ext-real   Element of  REAL 
 
1 / (1 + (Z ^2)) is  V11()  real   ext-real   Element of  REAL 
 
(1 + (Z ^2)) "  is  V11()  real   ext-real   set 
 
1 * ((1 + (Z ^2)) ") is  V11()  real   ext-real   set 
 
() . Z is  V11()  real   ext-real   Element of  REAL 
 
sin . (() . Z) is  V11()  real   ext-real   Element of  REAL 
 
(sin . (() . Z)) ^2  is  V11()  real   ext-real   Element of  REAL 
 
(sin . (() . Z)) * (sin . (() . Z)) is  V11()  real   ext-real   set 
 
cos . (() . Z) is  V11()  real   ext-real   Element of  REAL 
 
(cos . (() . Z)) ^2  is  V11()  real   ext-real   Element of  REAL 
 
(cos . (() . Z)) * (cos . (() . Z)) is  V11()  real   ext-real   set 
 
((sin . (() . Z)) ^2) + ((cos . (() . Z)) ^2) is  V11()  real   ext-real   Element of  REAL 
 
x is  V11()  real   ext-real   Element of  REAL 
 
cos . x is  V11()  real   ext-real   Element of  REAL 
 
(cos . x) ^2  is  V11()  real   ext-real   Element of  REAL 
 
(cos . x) * (cos . x) is  V11()  real   ext-real   set 
 
1 / ((cos . x) ^2) is  V11()  real   ext-real   Element of  REAL 
 
((cos . x) ^2) "  is  V11()  real   ext-real   set 
 
1 * (((cos . x) ^2) ") is  V11()  real   ext-real   set 
 
0 / ((cos . x) ^2) is  V11()  real   ext-real   Element of  REAL 
 
0 * (((cos . x) ^2) ") is  V11()  real   ext-real   set 
 
x is  V11()  real   ext-real   Element of  REAL 
 
 diff ((tan | ].(- (PI / 2)),(PI / 2).[),x) is  V11()  real   ext-real   Element of  REAL 
 
(tan | ].(- (PI / 2)),(PI / 2).[) `| ].(- (PI / 2)),(PI / 2).[ is  V19() V22( REAL ) V23( REAL )  Function-like  V36() V37() V38()  Element of K6(K7(REAL,REAL))
 
((tan | ].(- (PI / 2)),(PI / 2).[) `| ].(- (PI / 2)),(PI / 2).[) . x is  V11()  real   ext-real   Element of  REAL 
 
tan `| ].(- (PI / 2)),(PI / 2).[ is  V19() V22( REAL ) V23( REAL )  Function-like  V36() V37() V38()  Element of K6(K7(REAL,REAL))
 
(tan `| ].(- (PI / 2)),(PI / 2).[) . x is  V11()  real   ext-real   Element of  REAL 
 
 diff (tan,x) is  V11()  real   ext-real   Element of  REAL 
 
cos . x is  V11()  real   ext-real   Element of  REAL 
 
(cos . x) ^2  is  V11()  real   ext-real   Element of  REAL 
 
(cos . x) * (cos . x) is  V11()  real   ext-real   set 
 
1 / ((cos . x) ^2) is  V11()  real   ext-real   Element of  REAL 
 
((cos . x) ^2) "  is  V11()  real   ext-real   set 
 
1 * (((cos . x) ^2) ") is  V11()  real   ext-real   set 
 
(Z) is  V11()  real   ext-real   Element of  REAL 
 
 tan (() . Z) is  V11()  real   ext-real   Element of  REAL 
 
 sin (() . Z) is  V11()  real   ext-real   Element of  REAL 
 
 cos (() . Z) is  V11()  real   ext-real   Element of  REAL 
 
(sin (() . Z)) / (cos (() . Z)) is  V11()  real   ext-real   Element of  REAL 
 
(cos (() . Z)) "  is  V11()  real   ext-real   set 
 
(sin (() . Z)) * ((cos (() . Z)) ") is  V11()  real   ext-real   set 
 
 dom (tan | ].(- (PI / 2)),(PI / 2).[) is  V46() V47() V48()  Element of K6(REAL)
 
(dom tan) /\ ].(- (PI / 2)),(PI / 2).[ is  V46() V47() V48()  set 
 
(tan | ].(- (PI / 2)),(PI / 2).[) | ].(- (PI / 2)),(PI / 2).[ is  V19() V22( REAL ) V23( REAL )  Function-like   one-to-one  V36() V37() V38()  Element of K6(K7(REAL,REAL))
 
Z * (cos (() . Z)) is  V11()  real   ext-real   Element of  REAL 
 
(cos (() . Z)) ^2  is  V11()  real   ext-real   Element of  REAL 
 
(cos (() . Z)) * (cos (() . Z)) is  V11()  real   ext-real   set 
 
(Z ^2) + 1 is  V11()  real   ext-real   Element of  REAL 
 
((cos (() . Z)) ^2) * ((Z ^2) + 1) is  V11()  real   ext-real   Element of  REAL 
 
 diff ((tan | ].(- (PI / 2)),(PI / 2).[),(() . Z)) is  V11()  real   ext-real   Element of  REAL 
 
((tan | ].(- (PI / 2)),(PI / 2).[) `| ].(- (PI / 2)),(PI / 2).[) . (() . Z) is  V11()  real   ext-real   Element of  REAL 
 
(tan `| ].(- (PI / 2)),(PI / 2).[) . (() . Z) is  V11()  real   ext-real   Element of  REAL 
 
 diff (tan,(() . Z)) is  V11()  real   ext-real   Element of  REAL 
 
1 / ((cos (() . Z)) ^2) is  V11()  real   ext-real   Element of  REAL 
 
((cos (() . Z)) ^2) "  is  V11()  real   ext-real   set 
 
1 * (((cos (() . Z)) ^2) ") is  V11()  real   ext-real   set 
 
1 / (1 / ((cos (() . Z)) ^2)) is  V11()  real   ext-real   Element of  REAL 
 
(1 / ((cos (() . Z)) ^2)) "  is  V11()  real   ext-real   set 
 
1 * ((1 / ((cos (() . Z)) ^2)) ") is  V11()  real   ext-real   set 
 
1 / ((Z ^2) + 1) is  V11()  real   ext-real   Element of  REAL 
 
((Z ^2) + 1) "  is  V11()  real   ext-real   set 
 
1 * (((Z ^2) + 1) ") is  V11()  real   ext-real   set 
 
Z is  V11()  real   ext-real   Element of  REAL 
 
 diff ((),Z) is  V11()  real   ext-real   Element of  REAL 
 
Z ^2  is  V11()  real   ext-real   Element of  REAL 
 
Z * Z is  V11()  real   ext-real   set 
 
1 + (Z ^2) is  V11()  real   ext-real   Element of  REAL 
 
1 / (1 + (Z ^2)) is  V11()  real   ext-real   Element of  REAL 
 
(1 + (Z ^2)) "  is  V11()  real   ext-real   set 
 
1 * ((1 + (Z ^2)) ") is  V11()  real   ext-real   set 
 
 - (1 / (1 + (Z ^2))) is  V11()  real   ext-real   Element of  REAL 
 
() . Z is  V11()  real   ext-real   Element of  REAL 
 
sin . (() . Z) is  V11()  real   ext-real   Element of  REAL 
 
(sin . (() . Z)) ^2  is  V11()  real   ext-real   Element of  REAL 
 
(sin . (() . Z)) * (sin . (() . Z)) is  V11()  real   ext-real   set 
 
cos . (() . Z) is  V11()  real   ext-real   Element of  REAL 
 
(cos . (() . Z)) ^2  is  V11()  real   ext-real   Element of  REAL 
 
(cos . (() . Z)) * (cos . (() . Z)) is  V11()  real   ext-real   set 
 
((sin . (() . Z)) ^2) + ((cos . (() . Z)) ^2) is  V11()  real   ext-real   Element of  REAL 
 
x is  V11()  real   ext-real   Element of  REAL 
 
sin . x is  V11()  real   ext-real   Element of  REAL 
 
(sin . x) ^2  is  V11()  real   ext-real   Element of  REAL 
 
(sin . x) * (sin . x) is  V11()  real   ext-real   set 
 
1 / ((sin . x) ^2) is  V11()  real   ext-real   Element of  REAL 
 
((sin . x) ^2) "  is  V11()  real   ext-real   set 
 
1 * (((sin . x) ^2) ") is  V11()  real   ext-real   set 
 
 - (1 / ((sin . x) ^2)) is  V11()  real   ext-real   Element of  REAL 
 
0 / ((sin . x) ^2) is  V11()  real   ext-real   Element of  REAL 
 
0 * (((sin . x) ^2) ") is  V11()  real   ext-real   set 
 
 - 0 is  V11()  real   ext-real  V63()  Element of  REAL 
 
x is  V11()  real   ext-real   Element of  REAL 
 
 diff ((cot | ].0,PI.[),x) is  V11()  real   ext-real   Element of  REAL 
 
(cot | ].0,PI.[) `| ].0,PI.[ is  V19() V22( REAL ) V23( REAL )  Function-like  V36() V37() V38()  Element of K6(K7(REAL,REAL))
 
((cot | ].0,PI.[) `| ].0,PI.[) . x is  V11()  real   ext-real   Element of  REAL 
 
cot `| ].0,PI.[ is  V19() V22( REAL ) V23( REAL )  Function-like  V36() V37() V38()  Element of K6(K7(REAL,REAL))
 
(cot `| ].0,PI.[) . x is  V11()  real   ext-real   Element of  REAL 
 
 diff (cot,x) is  V11()  real   ext-real   Element of  REAL 
 
sin . x is  V11()  real   ext-real   Element of  REAL 
 
(sin . x) ^2  is  V11()  real   ext-real   Element of  REAL 
 
(sin . x) * (sin . x) is  V11()  real   ext-real   set 
 
1 / ((sin . x) ^2) is  V11()  real   ext-real   Element of  REAL 
 
((sin . x) ^2) "  is  V11()  real   ext-real   set 
 
1 * (((sin . x) ^2) ") is  V11()  real   ext-real   set 
 
 - (1 / ((sin . x) ^2)) is  V11()  real   ext-real   Element of  REAL 
 
(Z) is  V11()  real   ext-real   Element of  REAL 
 
 cot (() . Z) is  V11()  real   ext-real   Element of  REAL 
 
 cos (() . Z) is  V11()  real   ext-real   Element of  REAL 
 
 sin (() . Z) is  V11()  real   ext-real   Element of  REAL 
 
(cos (() . Z)) / (sin (() . Z)) is  V11()  real   ext-real   Element of  REAL 
 
(sin (() . Z)) "  is  V11()  real   ext-real   set 
 
(cos (() . Z)) * ((sin (() . Z)) ") is  V11()  real   ext-real   set 
 
 dom (cot | ].0,PI.[) is  V46() V47() V48()  Element of K6(REAL)
 
(dom cot) /\ ].0,PI.[ is  V46() V47() V48()  set 
 
(cot | ].0,PI.[) | ].0,PI.[ is  V19() V22( REAL ) V23( REAL )  Function-like   one-to-one  V36() V37() V38()  Element of K6(K7(REAL,REAL))
 
Z * (sin (() . Z)) is  V11()  real   ext-real   Element of  REAL 
 
(sin (() . Z)) ^2  is  V11()  real   ext-real   Element of  REAL 
 
(sin (() . Z)) * (sin (() . Z)) is  V11()  real   ext-real   set 
 
(Z ^2) + 1 is  V11()  real   ext-real   Element of  REAL 
 
((sin (() . Z)) ^2) * ((Z ^2) + 1) is  V11()  real   ext-real   Element of  REAL 
 
 diff ((cot | ].0,PI.[),(() . Z)) is  V11()  real   ext-real   Element of  REAL 
 
((cot | ].0,PI.[) `| ].0,PI.[) . (() . Z) is  V11()  real   ext-real   Element of  REAL 
 
(cot `| ].0,PI.[) . (() . Z) is  V11()  real   ext-real   Element of  REAL 
 
 diff (cot,(() . Z)) is  V11()  real   ext-real   Element of  REAL 
 
1 / ((sin (() . Z)) ^2) is  V11()  real   ext-real   Element of  REAL 
 
((sin (() . Z)) ^2) "  is  V11()  real   ext-real   set 
 
1 * (((sin (() . Z)) ^2) ") is  V11()  real   ext-real   set 
 
 - (1 / ((sin (() . Z)) ^2)) is  V11()  real   ext-real   Element of  REAL 
 
1 / (- (1 / ((sin (() . Z)) ^2))) is  V11()  real   ext-real   Element of  REAL 
 
(- (1 / ((sin (() . Z)) ^2))) "  is  V11()  real   ext-real   set 
 
1 * ((- (1 / ((sin (() . Z)) ^2))) ") is  V11()  real   ext-real   set 
 
1 / (1 / ((sin (() . Z)) ^2)) is  V11()  real   ext-real   Element of  REAL 
 
(1 / ((sin (() . Z)) ^2)) "  is  V11()  real   ext-real   set 
 
1 * ((1 / ((sin (() . Z)) ^2)) ") is  V11()  real   ext-real   set 
 
 - (1 / (1 / ((sin (() . Z)) ^2))) is  V11()  real   ext-real   Element of  REAL 
 
1 / ((Z ^2) + 1) is  V11()  real   ext-real   Element of  REAL 
 
((Z ^2) + 1) "  is  V11()  real   ext-real   set 
 
1 * (((Z ^2) + 1) ") is  V11()  real   ext-real   set 
 
 - (1 / ((Z ^2) + 1)) is  V11()  real   ext-real   Element of  REAL 
 
Z is  V11()  real   ext-real   Element of  REAL 
 
 diff (tan,Z) is  V11()  real   ext-real   Element of  REAL 
 
cos . Z is  V11()  real   ext-real   Element of  REAL 
 
(cos . Z) ^2  is  V11()  real   ext-real   Element of  REAL 
 
(cos . Z) * (cos . Z) is  V11()  real   ext-real   set 
 
1 / ((cos . Z) ^2) is  V11()  real   ext-real   Element of  REAL 
 
((cos . Z) ^2) "  is  V11()  real   ext-real   set 
 
1 * (((cos . Z) ^2) ") is  V11()  real   ext-real   set 
 
0 / ((cos . Z) ^2) is  V11()  real   ext-real   Element of  REAL 
 
0 * (((cos . Z) ^2) ") is  V11()  real   ext-real   set 
 
 rng (tan | ].(- (PI / 2)),(PI / 2).[) is  V46() V47() V48()  Element of K6(REAL)
 
Z is  V11()  real   ext-real   Element of  REAL 
 
 diff (cot,Z) is  V11()  real   ext-real   Element of  REAL 
 
sin . Z is  V11()  real   ext-real   Element of  REAL 
 
(sin . Z) ^2  is  V11()  real   ext-real   Element of  REAL 
 
(sin . Z) * (sin . Z) is  V11()  real   ext-real   set 
 
1 / ((sin . Z) ^2) is  V11()  real   ext-real   Element of  REAL 
 
((sin . Z) ^2) "  is  V11()  real   ext-real   set 
 
1 * (((sin . Z) ^2) ") is  V11()  real   ext-real   set 
 
0 / ((sin . Z) ^2) is  V11()  real   ext-real   Element of  REAL 
 
0 * (((sin . Z) ^2) ") is  V11()  real   ext-real   set 
 
 - 0 is  V11()  real   ext-real  V63()  Element of  REAL 
 
 - (1 / ((sin . Z) ^2)) is  V11()  real   ext-real   Element of  REAL 
 
 rng (cot | ].0,PI.[) is  V46() V47() V48()  Element of K6(REAL)
 
Z is   open  V46() V47() V48()  Element of K6(REAL)
 
() `| Z is  V19() V22( REAL ) V23( REAL )  Function-like  V36() V37() V38()  Element of K6(K7(REAL,REAL))
 
f is  V11()  real   ext-real   Element of  REAL 
 
(() `| Z) . f is  V11()  real   ext-real   Element of  REAL 
 
f ^2  is  V11()  real   ext-real   Element of  REAL 
 
f * f is  V11()  real   ext-real   set 
 
1 + (f ^2) is  V11()  real   ext-real   Element of  REAL 
 
1 / (1 + (f ^2)) is  V11()  real   ext-real   Element of  REAL 
 
(1 + (f ^2)) "  is  V11()  real   ext-real   set 
 
1 * ((1 + (f ^2)) ") is  V11()  real   ext-real   set 
 
 diff ((),f) is  V11()  real   ext-real   Element of  REAL 
 
f is  V11()  real   ext-real   Element of  REAL 
 
(() `| Z) . f is  V11()  real   ext-real   Element of  REAL 
 
f ^2  is  V11()  real   ext-real   Element of  REAL 
 
f * f is  V11()  real   ext-real   set 
 
1 + (f ^2) is  V11()  real   ext-real   Element of  REAL 
 
1 / (1 + (f ^2)) is  V11()  real   ext-real   Element of  REAL 
 
(1 + (f ^2)) "  is  V11()  real   ext-real   set 
 
1 * ((1 + (f ^2)) ") is  V11()  real   ext-real   set 
 
Z is   open  V46() V47() V48()  Element of K6(REAL)
 
() `| Z is  V19() V22( REAL ) V23( REAL )  Function-like  V36() V37() V38()  Element of K6(K7(REAL,REAL))
 
f is  V11()  real   ext-real   Element of  REAL 
 
(() `| Z) . f is  V11()  real   ext-real   Element of  REAL 
 
f ^2  is  V11()  real   ext-real   Element of  REAL 
 
f * f is  V11()  real   ext-real   set 
 
1 + (f ^2) is  V11()  real   ext-real   Element of  REAL 
 
1 / (1 + (f ^2)) is  V11()  real   ext-real   Element of  REAL 
 
(1 + (f ^2)) "  is  V11()  real   ext-real   set 
 
1 * ((1 + (f ^2)) ") is  V11()  real   ext-real   set 
 
 - (1 / (1 + (f ^2))) is  V11()  real   ext-real   Element of  REAL 
 
 diff ((),f) is  V11()  real   ext-real   Element of  REAL 
 
f is  V11()  real   ext-real   Element of  REAL 
 
(() `| Z) . f is  V11()  real   ext-real   Element of  REAL 
 
f ^2  is  V11()  real   ext-real   Element of  REAL 
 
f * f is  V11()  real   ext-real   set 
 
1 + (f ^2) is  V11()  real   ext-real   Element of  REAL 
 
1 / (1 + (f ^2)) is  V11()  real   ext-real   Element of  REAL 
 
(1 + (f ^2)) "  is  V11()  real   ext-real   set 
 
1 * ((1 + (f ^2)) ") is  V11()  real   ext-real   set 
 
 - (1 / (1 + (f ^2))) is  V11()  real   ext-real   Element of  REAL 
 
Z is  V11()  real   ext-real   Element of  REAL 
 
Z (#) () is  V19() V22( REAL ) V23( REAL )  Function-like  V36() V37() V38()  Element of K6(K7(REAL,REAL))
 
f is   open  V46() V47() V48()  Element of K6(REAL)
 
(Z (#) ()) `| f is  V19() V22( REAL ) V23( REAL )  Function-like  V36() V37() V38()  Element of K6(K7(REAL,REAL))
 
 dom (Z (#) ()) is  V46() V47() V48()  Element of K6(REAL)
 
x is  V11()  real   ext-real   Element of  REAL 
 
((Z (#) ()) `| f) . x is  V11()  real   ext-real   Element of  REAL 
 
x ^2  is  V11()  real   ext-real   Element of  REAL 
 
x * x is  V11()  real   ext-real   set 
 
1 + (x ^2) is  V11()  real   ext-real   Element of  REAL 
 
Z / (1 + (x ^2)) is  V11()  real   ext-real   Element of  REAL 
 
(1 + (x ^2)) "  is  V11()  real   ext-real   set 
 
Z * ((1 + (x ^2)) ") is  V11()  real   ext-real   set 
 
 diff ((),x) is  V11()  real   ext-real   Element of  REAL 
 
Z * (diff ((),x)) is  V11()  real   ext-real   Element of  REAL 
 
1 / (1 + (x ^2)) is  V11()  real   ext-real   Element of  REAL 
 
1 * ((1 + (x ^2)) ") is  V11()  real   ext-real   set 
 
Z * (1 / (1 + (x ^2))) is  V11()  real   ext-real   Element of  REAL 
 
x is  V11()  real   ext-real   Element of  REAL 
 
((Z (#) ()) `| f) . x is  V11()  real   ext-real   Element of  REAL 
 
x ^2  is  V11()  real   ext-real   Element of  REAL 
 
x * x is  V11()  real   ext-real   set 
 
1 + (x ^2) is  V11()  real   ext-real   Element of  REAL 
 
Z / (1 + (x ^2)) is  V11()  real   ext-real   Element of  REAL 
 
(1 + (x ^2)) "  is  V11()  real   ext-real   set 
 
Z * ((1 + (x ^2)) ") is  V11()  real   ext-real   set 
 
Z is  V11()  real   ext-real   Element of  REAL 
 
Z (#) () is  V19() V22( REAL ) V23( REAL )  Function-like  V36() V37() V38()  Element of K6(K7(REAL,REAL))
 
f is   open  V46() V47() V48()  Element of K6(REAL)
 
(Z (#) ()) `| f is  V19() V22( REAL ) V23( REAL )  Function-like  V36() V37() V38()  Element of K6(K7(REAL,REAL))
 
 dom (Z (#) ()) is  V46() V47() V48()  Element of K6(REAL)
 
x is  V11()  real   ext-real   Element of  REAL 
 
((Z (#) ()) `| f) . x is  V11()  real   ext-real   Element of  REAL 
 
x ^2  is  V11()  real   ext-real   Element of  REAL 
 
x * x is  V11()  real   ext-real   set 
 
1 + (x ^2) is  V11()  real   ext-real   Element of  REAL 
 
Z / (1 + (x ^2)) is  V11()  real   ext-real   Element of  REAL 
 
(1 + (x ^2)) "  is  V11()  real   ext-real   set 
 
Z * ((1 + (x ^2)) ") is  V11()  real   ext-real   set 
 
 - (Z / (1 + (x ^2))) is  V11()  real   ext-real   Element of  REAL 
 
 diff ((),x) is  V11()  real   ext-real   Element of  REAL 
 
Z * (diff ((),x)) is  V11()  real   ext-real   Element of  REAL 
 
1 / (1 + (x ^2)) is  V11()  real   ext-real   Element of  REAL 
 
1 * ((1 + (x ^2)) ") is  V11()  real   ext-real   set 
 
 - (1 / (1 + (x ^2))) is  V11()  real   ext-real   Element of  REAL 
 
Z * (- (1 / (1 + (x ^2)))) is  V11()  real   ext-real   Element of  REAL 
 
x is  V11()  real   ext-real   Element of  REAL 
 
((Z (#) ()) `| f) . x is  V11()  real   ext-real   Element of  REAL 
 
x ^2  is  V11()  real   ext-real   Element of  REAL 
 
x * x is  V11()  real   ext-real   set 
 
1 + (x ^2) is  V11()  real   ext-real   Element of  REAL 
 
Z / (1 + (x ^2)) is  V11()  real   ext-real   Element of  REAL 
 
(1 + (x ^2)) "  is  V11()  real   ext-real   set 
 
Z * ((1 + (x ^2)) ") is  V11()  real   ext-real   set 
 
 - (Z / (1 + (x ^2))) is  V11()  real   ext-real   Element of  REAL 
 
Z is  V11()  real   ext-real   Element of  REAL 
 
f is  V19() V22( REAL ) V23( REAL )  Function-like  V36() V37() V38()  Element of K6(K7(REAL,REAL))
 
f . Z is  V11()  real   ext-real   Element of  REAL 
 
() * f is  V19() V22( REAL ) V23( REAL )  Function-like  V36() V37() V38()  Element of K6(K7(REAL,REAL))
 
 diff ((() * f),Z) is  V11()  real   ext-real   Element of  REAL 
 
 diff (f,Z) is  V11()  real   ext-real   Element of  REAL 
 
(f . Z) ^2  is  V11()  real   ext-real   Element of  REAL 
 
(f . Z) * (f . Z) is  V11()  real   ext-real   set 
 
1 + ((f . Z) ^2) is  V11()  real   ext-real   Element of  REAL 
 
(diff (f,Z)) / (1 + ((f . Z) ^2)) is  V11()  real   ext-real   Element of  REAL 
 
(1 + ((f . Z) ^2)) "  is  V11()  real   ext-real   set 
 
(diff (f,Z)) * ((1 + ((f . Z) ^2)) ") is  V11()  real   ext-real   set 
 
 diff ((),(f . Z)) is  V11()  real   ext-real   Element of  REAL 
 
(diff ((),(f . Z))) * (diff (f,Z)) is  V11()  real   ext-real   Element of  REAL 
 
1 / (1 + ((f . Z) ^2)) is  V11()  real   ext-real   Element of  REAL 
 
1 * ((1 + ((f . Z) ^2)) ") is  V11()  real   ext-real   set 
 
(diff (f,Z)) * (1 / (1 + ((f . Z) ^2))) is  V11()  real   ext-real   Element of  REAL 
 
Z is  V11()  real   ext-real   Element of  REAL 
 
f is  V19() V22( REAL ) V23( REAL )  Function-like  V36() V37() V38()  Element of K6(K7(REAL,REAL))
 
f . Z is  V11()  real   ext-real   Element of  REAL 
 
() * f is  V19() V22( REAL ) V23( REAL )  Function-like  V36() V37() V38()  Element of K6(K7(REAL,REAL))
 
 diff ((() * f),Z) is  V11()  real   ext-real   Element of  REAL 
 
 diff (f,Z) is  V11()  real   ext-real   Element of  REAL 
 
(f . Z) ^2  is  V11()  real   ext-real   Element of  REAL 
 
(f . Z) * (f . Z) is  V11()  real   ext-real   set 
 
1 + ((f . Z) ^2) is  V11()  real   ext-real   Element of  REAL 
 
(diff (f,Z)) / (1 + ((f . Z) ^2)) is  V11()  real   ext-real   Element of  REAL 
 
(1 + ((f . Z) ^2)) "  is  V11()  real   ext-real   set 
 
(diff (f,Z)) * ((1 + ((f . Z) ^2)) ") is  V11()  real   ext-real   set 
 
 - ((diff (f,Z)) / (1 + ((f . Z) ^2))) is  V11()  real   ext-real   Element of  REAL 
 
 diff ((),(f . Z)) is  V11()  real   ext-real   Element of  REAL 
 
(diff ((),(f . Z))) * (diff (f,Z)) is  V11()  real   ext-real   Element of  REAL 
 
1 / (1 + ((f . Z) ^2)) is  V11()  real   ext-real   Element of  REAL 
 
1 * ((1 + ((f . Z) ^2)) ") is  V11()  real   ext-real   set 
 
 - (1 / (1 + ((f . Z) ^2))) is  V11()  real   ext-real   Element of  REAL 
 
(diff (f,Z)) * (- (1 / (1 + ((f . Z) ^2)))) is  V11()  real   ext-real   Element of  REAL 
 
Z is  V11()  real   ext-real   Element of  REAL 
 
f is  V11()  real   ext-real   Element of  REAL 
 
x is   open  V46() V47() V48()  Element of K6(REAL)
 
g is  V19() V22( REAL ) V23( REAL )  Function-like  V36() V37() V38()  Element of K6(K7(REAL,REAL))
 
() * g is  V19() V22( REAL ) V23( REAL )  Function-like  V36() V37() V38()  Element of K6(K7(REAL,REAL))
 
 dom (() * g) is  V46() V47() V48()  Element of K6(REAL)
 
(() * g) `| x is  V19() V22( REAL ) V23( REAL )  Function-like  V36() V37() V38()  Element of K6(K7(REAL,REAL))
 
 dom g is  V46() V47() V48()  Element of K6(REAL)
 
x is    set 
 
x is  V11()  real   ext-real   Element of  REAL 
 
g . x is  V11()  real   ext-real   Element of  REAL 
 
Z * x is  V11()  real   ext-real   Element of  REAL 
 
(Z * x) + f is  V11()  real   ext-real   Element of  REAL 
 
x is  V11()  real   ext-real   Element of  REAL 
 
g . x is  V11()  real   ext-real   Element of  REAL 
 
x is  V11()  real   ext-real   Element of  REAL 
 
((() * g) `| x) . x is  V11()  real   ext-real   Element of  REAL 
 
Z * x is  V11()  real   ext-real   Element of  REAL 
 
(Z * x) + f is  V11()  real   ext-real   Element of  REAL 
 
((Z * x) + f) ^2  is  V11()  real   ext-real   Element of  REAL 
 
((Z * x) + f) * ((Z * x) + f) is  V11()  real   ext-real   set 
 
1 + (((Z * x) + f) ^2) is  V11()  real   ext-real   Element of  REAL 
 
Z / (1 + (((Z * x) + f) ^2)) is  V11()  real   ext-real   Element of  REAL 
 
(1 + (((Z * x) + f) ^2)) "  is  V11()  real   ext-real   set 
 
Z * ((1 + (((Z * x) + f) ^2)) ") is  V11()  real   ext-real   set 
 
g . x is  V11()  real   ext-real   Element of  REAL 
 
 diff ((() * g),x) is  V11()  real   ext-real   Element of  REAL 
 
 diff (g,x) is  V11()  real   ext-real   Element of  REAL 
 
(g . x) ^2  is  V11()  real   ext-real   Element of  REAL 
 
(g . x) * (g . x) is  V11()  real   ext-real   set 
 
1 + ((g . x) ^2) is  V11()  real   ext-real   Element of  REAL 
 
(diff (g,x)) / (1 + ((g . x) ^2)) is  V11()  real   ext-real   Element of  REAL 
 
(1 + ((g . x) ^2)) "  is  V11()  real   ext-real   set 
 
(diff (g,x)) * ((1 + ((g . x) ^2)) ") is  V11()  real   ext-real   set 
 
g `| x is  V19() V22( REAL ) V23( REAL )  Function-like  V36() V37() V38()  Element of K6(K7(REAL,REAL))
 
(g `| x) . x is  V11()  real   ext-real   Element of  REAL 
 
((g `| x) . x) / (1 + ((g . x) ^2)) is  V11()  real   ext-real   Element of  REAL 
 
((g `| x) . x) * ((1 + ((g . x) ^2)) ") is  V11()  real   ext-real   set 
 
Z / (1 + ((g . x) ^2)) is  V11()  real   ext-real   Element of  REAL 
 
Z * ((1 + ((g . x) ^2)) ") is  V11()  real   ext-real   set 
 
x is  V11()  real   ext-real   Element of  REAL 
 
((() * g) `| x) . x is  V11()  real   ext-real   Element of  REAL 
 
Z * x is  V11()  real   ext-real   Element of  REAL 
 
(Z * x) + f is  V11()  real   ext-real   Element of  REAL 
 
((Z * x) + f) ^2  is  V11()  real   ext-real   Element of  REAL 
 
((Z * x) + f) * ((Z * x) + f) is  V11()  real   ext-real   set 
 
1 + (((Z * x) + f) ^2) is  V11()  real   ext-real   Element of  REAL 
 
Z / (1 + (((Z * x) + f) ^2)) is  V11()  real   ext-real   Element of  REAL 
 
(1 + (((Z * x) + f) ^2)) "  is  V11()  real   ext-real   set 
 
Z * ((1 + (((Z * x) + f) ^2)) ") is  V11()  real   ext-real   set 
 
Z is  V11()  real   ext-real   Element of  REAL 
 
f is  V11()  real   ext-real   Element of  REAL 
 
x is   open  V46() V47() V48()  Element of K6(REAL)
 
g is  V19() V22( REAL ) V23( REAL )  Function-like  V36() V37() V38()  Element of K6(K7(REAL,REAL))
 
() * g is  V19() V22( REAL ) V23( REAL )  Function-like  V36() V37() V38()  Element of K6(K7(REAL,REAL))
 
 dom (() * g) is  V46() V47() V48()  Element of K6(REAL)
 
(() * g) `| x is  V19() V22( REAL ) V23( REAL )  Function-like  V36() V37() V38()  Element of K6(K7(REAL,REAL))
 
 dom g is  V46() V47() V48()  Element of K6(REAL)
 
x is    set 
 
x is  V11()  real   ext-real   Element of  REAL 
 
g . x is  V11()  real   ext-real   Element of  REAL 
 
Z * x is  V11()  real   ext-real   Element of  REAL 
 
(Z * x) + f is  V11()  real   ext-real   Element of  REAL 
 
x is  V11()  real   ext-real   Element of  REAL 
 
g . x is  V11()  real   ext-real   Element of  REAL 
 
x is  V11()  real   ext-real   Element of  REAL 
 
((() * g) `| x) . x is  V11()  real   ext-real   Element of  REAL 
 
Z * x is  V11()  real   ext-real   Element of  REAL 
 
(Z * x) + f is  V11()  real   ext-real   Element of  REAL 
 
((Z * x) + f) ^2  is  V11()  real   ext-real   Element of  REAL 
 
((Z * x) + f) * ((Z * x) + f) is  V11()  real   ext-real   set 
 
1 + (((Z * x) + f) ^2) is  V11()  real   ext-real   Element of  REAL 
 
Z / (1 + (((Z * x) + f) ^2)) is  V11()  real   ext-real   Element of  REAL 
 
(1 + (((Z * x) + f) ^2)) "  is  V11()  real   ext-real   set 
 
Z * ((1 + (((Z * x) + f) ^2)) ") is  V11()  real   ext-real   set 
 
 - (Z / (1 + (((Z * x) + f) ^2))) is  V11()  real   ext-real   Element of  REAL 
 
g . x is  V11()  real   ext-real   Element of  REAL 
 
 diff ((() * g),x) is  V11()  real   ext-real   Element of  REAL 
 
 diff (g,x) is  V11()  real   ext-real   Element of  REAL 
 
(g . x) ^2  is  V11()  real   ext-real   Element of  REAL 
 
(g . x) * (g . x) is  V11()  real   ext-real   set 
 
1 + ((g . x) ^2) is  V11()  real   ext-real   Element of  REAL 
 
(diff (g,x)) / (1 + ((g . x) ^2)) is  V11()  real   ext-real   Element of  REAL 
 
(1 + ((g . x) ^2)) "  is  V11()  real   ext-real   set 
 
(diff (g,x)) * ((1 + ((g . x) ^2)) ") is  V11()  real   ext-real   set 
 
 - ((diff (g,x)) / (1 + ((g . x) ^2))) is  V11()  real   ext-real   Element of  REAL 
 
g `| x is  V19() V22( REAL ) V23( REAL )  Function-like  V36() V37() V38()  Element of K6(K7(REAL,REAL))
 
(g `| x) . x is  V11()  real   ext-real   Element of  REAL 
 
((g `| x) . x) / (1 + ((g . x) ^2)) is  V11()  real   ext-real   Element of  REAL 
 
((g `| x) . x) * ((1 + ((g . x) ^2)) ") is  V11()  real   ext-real   set 
 
 - (((g `| x) . x) / (1 + ((g . x) ^2))) is  V11()  real   ext-real   Element of  REAL 
 
Z / (1 + ((g . x) ^2)) is  V11()  real   ext-real   Element of  REAL 
 
Z * ((1 + ((g . x) ^2)) ") is  V11()  real   ext-real   set 
 
 - (Z / (1 + ((g . x) ^2))) is  V11()  real   ext-real   Element of  REAL 
 
x is  V11()  real   ext-real   Element of  REAL 
 
((() * g) `| x) . x is  V11()  real   ext-real   Element of  REAL 
 
Z * x is  V11()  real   ext-real   Element of  REAL 
 
(Z * x) + f is  V11()  real   ext-real   Element of  REAL 
 
((Z * x) + f) ^2  is  V11()  real   ext-real   Element of  REAL 
 
((Z * x) + f) * ((Z * x) + f) is  V11()  real   ext-real   set 
 
1 + (((Z * x) + f) ^2) is  V11()  real   ext-real   Element of  REAL 
 
Z / (1 + (((Z * x) + f) ^2)) is  V11()  real   ext-real   Element of  REAL 
 
(1 + (((Z * x) + f) ^2)) "  is  V11()  real   ext-real   set 
 
Z * ((1 + (((Z * x) + f) ^2)) ") is  V11()  real   ext-real   set 
 
 - (Z / (1 + (((Z * x) + f) ^2))) is  V11()  real   ext-real   Element of  REAL 
 
ln * () is  V19() V22( REAL ) V23( REAL )  Function-like  V36() V37() V38()  Element of K6(K7(REAL,REAL))
 
 dom (ln * ()) is  V46() V47() V48()  Element of K6(REAL)
 
Z is   open  V46() V47() V48()  Element of K6(REAL)
 
(ln * ()) `| Z is  V19() V22( REAL ) V23( REAL )  Function-like  V36() V37() V38()  Element of K6(K7(REAL,REAL))
 
f is  V11()  real   ext-real   Element of  REAL 
 
() . f is  V11()  real   ext-real   Element of  REAL 
 
f is  V11()  real   ext-real   Element of  REAL 
 
((ln * ()) `| Z) . f is  V11()  real   ext-real   Element of  REAL 
 
f ^2  is  V11()  real   ext-real   Element of  REAL 
 
f * f is  V11()  real   ext-real   set 
 
1 + (f ^2) is  V11()  real   ext-real   Element of  REAL 
 
() . f is  V11()  real   ext-real   Element of  REAL 
 
(1 + (f ^2)) * (() . f) is  V11()  real   ext-real   Element of  REAL 
 
1 / ((1 + (f ^2)) * (() . f)) is  V11()  real   ext-real   Element of  REAL 
 
((1 + (f ^2)) * (() . f)) "  is  V11()  real   ext-real   set 
 
1 * (((1 + (f ^2)) * (() . f)) ") is  V11()  real   ext-real   set 
 
 diff ((ln * ()),f) is  V11()  real   ext-real   Element of  REAL 
 
 diff ((),f) is  V11()  real   ext-real   Element of  REAL 
 
(diff ((),f)) / (() . f) is  V11()  real   ext-real   Element of  REAL 
 
(() . f) "  is  V11()  real   ext-real   set 
 
(diff ((),f)) * ((() . f) ") is  V11()  real   ext-real   set 
 
1 / (1 + (f ^2)) is  V11()  real   ext-real   Element of  REAL 
 
(1 + (f ^2)) "  is  V11()  real   ext-real   set 
 
1 * ((1 + (f ^2)) ") is  V11()  real   ext-real   set 
 
(1 / (1 + (f ^2))) / (() . f) is  V11()  real   ext-real   Element of  REAL 
 
(1 / (1 + (f ^2))) * ((() . f) ") is  V11()  real   ext-real   set 
 
f is  V11()  real   ext-real   Element of  REAL 
 
((ln * ()) `| Z) . f is  V11()  real   ext-real   Element of  REAL 
 
f ^2  is  V11()  real   ext-real   Element of  REAL 
 
f * f is  V11()  real   ext-real   set 
 
1 + (f ^2) is  V11()  real   ext-real   Element of  REAL 
 
() . f is  V11()  real   ext-real   Element of  REAL 
 
(1 + (f ^2)) * (() . f) is  V11()  real   ext-real   Element of  REAL 
 
1 / ((1 + (f ^2)) * (() . f)) is  V11()  real   ext-real   Element of  REAL 
 
((1 + (f ^2)) * (() . f)) "  is  V11()  real   ext-real   set 
 
1 * (((1 + (f ^2)) * (() . f)) ") is  V11()  real   ext-real   set 
 
ln * () is  V19() V22( REAL ) V23( REAL )  Function-like  V36() V37() V38()  Element of K6(K7(REAL,REAL))
 
 dom (ln * ()) is  V46() V47() V48()  Element of K6(REAL)
 
Z is   open  V46() V47() V48()  Element of K6(REAL)
 
(ln * ()) `| Z is  V19() V22( REAL ) V23( REAL )  Function-like  V36() V37() V38()  Element of K6(K7(REAL,REAL))
 
f is  V11()  real   ext-real   Element of  REAL 
 
() . f is  V11()  real   ext-real   Element of  REAL 
 
f is  V11()  real   ext-real   Element of  REAL 
 
((ln * ()) `| Z) . f is  V11()  real   ext-real   Element of  REAL 
 
f ^2  is  V11()  real   ext-real   Element of  REAL 
 
f * f is  V11()  real   ext-real   set 
 
1 + (f ^2) is  V11()  real   ext-real   Element of  REAL 
 
() . f is  V11()  real   ext-real   Element of  REAL 
 
(1 + (f ^2)) * (() . f) is  V11()  real   ext-real   Element of  REAL 
 
1 / ((1 + (f ^2)) * (() . f)) is  V11()  real   ext-real   Element of  REAL 
 
((1 + (f ^2)) * (() . f)) "  is  V11()  real   ext-real   set 
 
1 * (((1 + (f ^2)) * (() . f)) ") is  V11()  real   ext-real   set 
 
 - (1 / ((1 + (f ^2)) * (() . f))) is  V11()  real   ext-real   Element of  REAL 
 
 diff ((ln * ()),f) is  V11()  real   ext-real   Element of  REAL 
 
 diff ((),f) is  V11()  real   ext-real   Element of  REAL 
 
(diff ((),f)) / (() . f) is  V11()  real   ext-real   Element of  REAL 
 
(() . f) "  is  V11()  real   ext-real   set 
 
(diff ((),f)) * ((() . f) ") is  V11()  real   ext-real   set 
 
1 / (1 + (f ^2)) is  V11()  real   ext-real   Element of  REAL 
 
(1 + (f ^2)) "  is  V11()  real   ext-real   set 
 
1 * ((1 + (f ^2)) ") is  V11()  real   ext-real   set 
 
 - (1 / (1 + (f ^2))) is  V11()  real   ext-real   Element of  REAL 
 
(- (1 / (1 + (f ^2)))) / (() . f) is  V11()  real   ext-real   Element of  REAL 
 
(- (1 / (1 + (f ^2)))) * ((() . f) ") is  V11()  real   ext-real   set 
 
(1 / (1 + (f ^2))) / (() . f) is  V11()  real   ext-real   Element of  REAL 
 
(1 / (1 + (f ^2))) * ((() . f) ") is  V11()  real   ext-real   set 
 
 - ((1 / (1 + (f ^2))) / (() . f)) is  V11()  real   ext-real   Element of  REAL 
 
f is  V11()  real   ext-real   Element of  REAL 
 
((ln * ()) `| Z) . f is  V11()  real   ext-real   Element of  REAL 
 
f ^2  is  V11()  real   ext-real   Element of  REAL 
 
f * f is  V11()  real   ext-real   set 
 
1 + (f ^2) is  V11()  real   ext-real   Element of  REAL 
 
() . f is  V11()  real   ext-real   Element of  REAL 
 
(1 + (f ^2)) * (() . f) is  V11()  real   ext-real   Element of  REAL 
 
1 / ((1 + (f ^2)) * (() . f)) is  V11()  real   ext-real   Element of  REAL 
 
((1 + (f ^2)) * (() . f)) "  is  V11()  real   ext-real   set 
 
1 * (((1 + (f ^2)) * (() . f)) ") is  V11()  real   ext-real   set 
 
 - (1 / ((1 + (f ^2)) * (() . f))) is  V11()  real   ext-real   Element of  REAL 
 
Z is   natural  V11()  real   ext-real  V46() V47() V48() V49() V50() V51() V63() V64() V84()  Element of  NAT 
 
 #Z Z is  V19() V22( REAL ) V23( REAL )  Function-like  V33( REAL , REAL ) V36() V37() V38()  Element of K6(K7(REAL,REAL))
 
(#Z Z) * () is  V19() V22( REAL ) V23( REAL )  Function-like  V36() V37() V38()  Element of K6(K7(REAL,REAL))
 
 dom ((#Z Z) * ()) is  V46() V47() V48()  Element of K6(REAL)
 
Z - 1 is  V11()  real   ext-real  V63()  Element of  REAL 
 
 - 1 is   non  empty  V11()  real   ext-real   non  positive   negative  V63()  set 
 
Z + (- 1) is  V11()  real   ext-real  V63()  set 
 
f is   open  V46() V47() V48()  Element of K6(REAL)
 
((#Z Z) * ()) `| f is  V19() V22( REAL ) V23( REAL )  Function-like  V36() V37() V38()  Element of K6(K7(REAL,REAL))
 
x is  V11()  real   ext-real   Element of  REAL 
 
x is  V11()  real   ext-real   Element of  REAL 
 
(((#Z Z) * ()) `| f) . x is  V11()  real   ext-real   Element of  REAL 
 
() . x is  V11()  real   ext-real   Element of  REAL 
 
(() . x) #Z (Z - 1) is  V11()  real   ext-real   Element of  REAL 
 
Z * ((() . x) #Z (Z - 1)) is  V11()  real   ext-real   Element of  REAL 
 
x ^2  is  V11()  real   ext-real   Element of  REAL 
 
x * x is  V11()  real   ext-real   set 
 
1 + (x ^2) is  V11()  real   ext-real   Element of  REAL 
 
(Z * ((() . x) #Z (Z - 1))) / (1 + (x ^2)) is  V11()  real   ext-real   Element of  REAL 
 
(1 + (x ^2)) "  is  V11()  real   ext-real   set 
 
(Z * ((() . x) #Z (Z - 1))) * ((1 + (x ^2)) ") is  V11()  real   ext-real   set 
 
 diff (((#Z Z) * ()),x) is  V11()  real   ext-real   Element of  REAL 
 
 diff ((),x) is  V11()  real   ext-real   Element of  REAL 
 
(Z * ((() . x) #Z (Z - 1))) * (diff ((),x)) is  V11()  real   ext-real   Element of  REAL 
 
1 / (1 + (x ^2)) is  V11()  real   ext-real   Element of  REAL 
 
1 * ((1 + (x ^2)) ") is  V11()  real   ext-real   set 
 
(Z * ((() . x) #Z (Z - 1))) * (1 / (1 + (x ^2))) is  V11()  real   ext-real   Element of  REAL 
 
x is  V11()  real   ext-real   Element of  REAL 
 
(((#Z Z) * ()) `| f) . x is  V11()  real   ext-real   Element of  REAL 
 
() . x is  V11()  real   ext-real   Element of  REAL 
 
(() . x) #Z (Z - 1) is  V11()  real   ext-real   Element of  REAL 
 
Z * ((() . x) #Z (Z - 1)) is  V11()  real   ext-real   Element of  REAL 
 
x ^2  is  V11()  real   ext-real   Element of  REAL 
 
x * x is  V11()  real   ext-real   set 
 
1 + (x ^2) is  V11()  real   ext-real   Element of  REAL 
 
(Z * ((() . x) #Z (Z - 1))) / (1 + (x ^2)) is  V11()  real   ext-real   Element of  REAL 
 
(1 + (x ^2)) "  is  V11()  real   ext-real   set 
 
(Z * ((() . x) #Z (Z - 1))) * ((1 + (x ^2)) ") is  V11()  real   ext-real   set 
 
Z is   natural  V11()  real   ext-real  V46() V47() V48() V49() V50() V51() V63() V64() V84()  Element of  NAT 
 
 #Z Z is  V19() V22( REAL ) V23( REAL )  Function-like  V33( REAL , REAL ) V36() V37() V38()  Element of K6(K7(REAL,REAL))
 
(#Z Z) * () is  V19() V22( REAL ) V23( REAL )  Function-like  V36() V37() V38()  Element of K6(K7(REAL,REAL))
 
 dom ((#Z Z) * ()) is  V46() V47() V48()  Element of K6(REAL)
 
Z - 1 is  V11()  real   ext-real  V63()  Element of  REAL 
 
 - 1 is   non  empty  V11()  real   ext-real   non  positive   negative  V63()  set 
 
Z + (- 1) is  V11()  real   ext-real  V63()  set 
 
f is   open  V46() V47() V48()  Element of K6(REAL)
 
((#Z Z) * ()) `| f is  V19() V22( REAL ) V23( REAL )  Function-like  V36() V37() V38()  Element of K6(K7(REAL,REAL))
 
x is  V11()  real   ext-real   Element of  REAL 
 
x is  V11()  real   ext-real   Element of  REAL 
 
(((#Z Z) * ()) `| f) . x is  V11()  real   ext-real   Element of  REAL 
 
() . x is  V11()  real   ext-real   Element of  REAL 
 
(() . x) #Z (Z - 1) is  V11()  real   ext-real   Element of  REAL 
 
Z * ((() . x) #Z (Z - 1)) is  V11()  real   ext-real   Element of  REAL 
 
x ^2  is  V11()  real   ext-real   Element of  REAL 
 
x * x is  V11()  real   ext-real   set 
 
1 + (x ^2) is  V11()  real   ext-real   Element of  REAL 
 
(Z * ((() . x) #Z (Z - 1))) / (1 + (x ^2)) is  V11()  real   ext-real   Element of  REAL 
 
(1 + (x ^2)) "  is  V11()  real   ext-real   set 
 
(Z * ((() . x) #Z (Z - 1))) * ((1 + (x ^2)) ") is  V11()  real   ext-real   set 
 
 - ((Z * ((() . x) #Z (Z - 1))) / (1 + (x ^2))) is  V11()  real   ext-real   Element of  REAL 
 
 diff (((#Z Z) * ()),x) is  V11()  real   ext-real   Element of  REAL 
 
 diff ((),x) is  V11()  real   ext-real   Element of  REAL 
 
(Z * ((() . x) #Z (Z - 1))) * (diff ((),x)) is  V11()  real   ext-real   Element of  REAL 
 
1 / (1 + (x ^2)) is  V11()  real   ext-real   Element of  REAL 
 
1 * ((1 + (x ^2)) ") is  V11()  real   ext-real   set 
 
 - (1 / (1 + (x ^2))) is  V11()  real   ext-real   Element of  REAL 
 
(Z * ((() . x) #Z (Z - 1))) * (- (1 / (1 + (x ^2)))) is  V11()  real   ext-real   Element of  REAL 
 
x is  V11()  real   ext-real   Element of  REAL 
 
(((#Z Z) * ()) `| f) . x is  V11()  real   ext-real   Element of  REAL 
 
() . x is  V11()  real   ext-real   Element of  REAL 
 
(() . x) #Z (Z - 1) is  V11()  real   ext-real   Element of  REAL 
 
Z * ((() . x) #Z (Z - 1)) is  V11()  real   ext-real   Element of  REAL 
 
x ^2  is  V11()  real   ext-real   Element of  REAL 
 
x * x is  V11()  real   ext-real   set 
 
1 + (x ^2) is  V11()  real   ext-real   Element of  REAL 
 
(Z * ((() . x) #Z (Z - 1))) / (1 + (x ^2)) is  V11()  real   ext-real   Element of  REAL 
 
(1 + (x ^2)) "  is  V11()  real   ext-real   set 
 
(Z * ((() . x) #Z (Z - 1))) * ((1 + (x ^2)) ") is  V11()  real   ext-real   set 
 
 - ((Z * ((() . x) #Z (Z - 1))) / (1 + (x ^2))) is  V11()  real   ext-real   Element of  REAL 
 
(#Z 2) * () is  V19() V22( REAL ) V23( REAL )  Function-like  V36() V37() V38()  Element of K6(K7(REAL,REAL))
 
1 / 2 is   non  empty  V11()  real   ext-real   positive   non  negative   Element of  REAL 
 
1 * (2 ") is   non  empty  V11()  real   ext-real   positive   non  negative   set 
 
(1 / 2) (#) ((#Z 2) * ()) is  V19() V22( REAL ) V23( REAL )  Function-like  V36() V37() V38()  Element of K6(K7(REAL,REAL))
 
 dom ((1 / 2) (#) ((#Z 2) * ())) is  V46() V47() V48()  Element of K6(REAL)
 
Z is   open  V46() V47() V48()  Element of K6(REAL)
 
((1 / 2) (#) ((#Z 2) * ())) `| Z is  V19() V22( REAL ) V23( REAL )  Function-like  V36() V37() V38()  Element of K6(K7(REAL,REAL))
 
 dom ((#Z 2) * ()) is  V46() V47() V48()  Element of K6(REAL)
 
f is  V11()  real   ext-real   Element of  REAL 
 
(((1 / 2) (#) ((#Z 2) * ())) `| Z) . f is  V11()  real   ext-real   Element of  REAL 
 
() . f is  V11()  real   ext-real   Element of  REAL 
 
f ^2  is  V11()  real   ext-real   Element of  REAL 
 
f * f is  V11()  real   ext-real   set 
 
1 + (f ^2) is  V11()  real   ext-real   Element of  REAL 
 
(() . f) / (1 + (f ^2)) is  V11()  real   ext-real   Element of  REAL 
 
(1 + (f ^2)) "  is  V11()  real   ext-real   set 
 
(() . f) * ((1 + (f ^2)) ") is  V11()  real   ext-real   set 
 
 diff (((#Z 2) * ()),f) is  V11()  real   ext-real   Element of  REAL 
 
(1 / 2) * (diff (((#Z 2) * ()),f)) is  V11()  real   ext-real   Element of  REAL 
 
((#Z 2) * ()) `| Z is  V19() V22( REAL ) V23( REAL )  Function-like  V36() V37() V38()  Element of K6(K7(REAL,REAL))
 
(((#Z 2) * ()) `| Z) . f is  V11()  real   ext-real   Element of  REAL 
 
(1 / 2) * ((((#Z 2) * ()) `| Z) . f) is  V11()  real   ext-real   Element of  REAL 
 
2 - 1 is  V11()  real   ext-real  V63()  Element of  REAL 
 
 - 1 is   non  empty  V11()  real   ext-real   non  positive   negative  V63()  set 
 
2 + (- 1) is  V11()  real   ext-real  V63()  set 
 
(() . f) #Z (2 - 1) is  V11()  real   ext-real   Element of  REAL 
 
2 * ((() . f) #Z (2 - 1)) is  V11()  real   ext-real   Element of  REAL 
 
(2 * ((() . f) #Z (2 - 1))) / (1 + (f ^2)) is  V11()  real   ext-real   Element of  REAL 
 
(2 * ((() . f) #Z (2 - 1))) * ((1 + (f ^2)) ") is  V11()  real   ext-real   set 
 
(1 / 2) * ((2 * ((() . f) #Z (2 - 1))) / (1 + (f ^2))) is  V11()  real   ext-real   Element of  REAL 
 
2 * (() . f) is  V11()  real   ext-real   Element of  REAL 
 
(2 * (() . f)) / (1 + (f ^2)) is  V11()  real   ext-real   Element of  REAL 
 
(2 * (() . f)) * ((1 + (f ^2)) ") is  V11()  real   ext-real   set 
 
(1 / 2) * ((2 * (() . f)) / (1 + (f ^2))) is  V11()  real   ext-real   Element of  REAL 
 
f is  V11()  real   ext-real   Element of  REAL 
 
(((1 / 2) (#) ((#Z 2) * ())) `| Z) . f is  V11()  real   ext-real   Element of  REAL 
 
() . f is  V11()  real   ext-real   Element of  REAL 
 
f ^2  is  V11()  real   ext-real   Element of  REAL 
 
f * f is  V11()  real   ext-real   set 
 
1 + (f ^2) is  V11()  real   ext-real   Element of  REAL 
 
(() . f) / (1 + (f ^2)) is  V11()  real   ext-real   Element of  REAL 
 
(1 + (f ^2)) "  is  V11()  real   ext-real   set 
 
(() . f) * ((1 + (f ^2)) ") is  V11()  real   ext-real   set 
 
(#Z 2) * () is  V19() V22( REAL ) V23( REAL )  Function-like  V36() V37() V38()  Element of K6(K7(REAL,REAL))
 
(1 / 2) (#) ((#Z 2) * ()) is  V19() V22( REAL ) V23( REAL )  Function-like  V36() V37() V38()  Element of K6(K7(REAL,REAL))
 
 dom ((1 / 2) (#) ((#Z 2) * ())) is  V46() V47() V48()  Element of K6(REAL)
 
Z is   open  V46() V47() V48()  Element of K6(REAL)
 
((1 / 2) (#) ((#Z 2) * ())) `| Z is  V19() V22( REAL ) V23( REAL )  Function-like  V36() V37() V38()  Element of K6(K7(REAL,REAL))
 
 dom ((#Z 2) * ()) is  V46() V47() V48()  Element of K6(REAL)
 
f is  V11()  real   ext-real   Element of  REAL 
 
(((1 / 2) (#) ((#Z 2) * ())) `| Z) . f is  V11()  real   ext-real   Element of  REAL 
 
() . f is  V11()  real   ext-real   Element of  REAL 
 
f ^2  is  V11()  real   ext-real   Element of  REAL 
 
f * f is  V11()  real   ext-real   set 
 
1 + (f ^2) is  V11()  real   ext-real   Element of  REAL 
 
(() . f) / (1 + (f ^2)) is  V11()  real   ext-real   Element of  REAL 
 
(1 + (f ^2)) "  is  V11()  real   ext-real   set 
 
(() . f) * ((1 + (f ^2)) ") is  V11()  real   ext-real   set 
 
 - ((() . f) / (1 + (f ^2))) is  V11()  real   ext-real   Element of  REAL 
 
 diff (((#Z 2) * ()),f) is  V11()  real   ext-real   Element of  REAL 
 
(1 / 2) * (diff (((#Z 2) * ()),f)) is  V11()  real   ext-real   Element of  REAL 
 
((#Z 2) * ()) `| Z is  V19() V22( REAL ) V23( REAL )  Function-like  V36() V37() V38()  Element of K6(K7(REAL,REAL))
 
(((#Z 2) * ()) `| Z) . f is  V11()  real   ext-real   Element of  REAL 
 
(1 / 2) * ((((#Z 2) * ()) `| Z) . f) is  V11()  real   ext-real   Element of  REAL 
 
2 - 1 is  V11()  real   ext-real  V63()  Element of  REAL 
 
 - 1 is   non  empty  V11()  real   ext-real   non  positive   negative  V63()  set 
 
2 + (- 1) is  V11()  real   ext-real  V63()  set 
 
(() . f) #Z (2 - 1) is  V11()  real   ext-real   Element of  REAL 
 
2 * ((() . f) #Z (2 - 1)) is  V11()  real   ext-real   Element of  REAL 
 
(2 * ((() . f) #Z (2 - 1))) / (1 + (f ^2)) is  V11()  real   ext-real   Element of  REAL 
 
(2 * ((() . f) #Z (2 - 1))) * ((1 + (f ^2)) ") is  V11()  real   ext-real   set 
 
 - ((2 * ((() . f) #Z (2 - 1))) / (1 + (f ^2))) is  V11()  real   ext-real   Element of  REAL 
 
(1 / 2) * (- ((2 * ((() . f) #Z (2 - 1))) / (1 + (f ^2)))) is  V11()  real   ext-real   Element of  REAL 
 
(() . f) #Z 1 is  V11()  real   ext-real   Element of  REAL 
 
2 * ((() . f) #Z 1) is  V11()  real   ext-real   Element of  REAL 
 
(2 * ((() . f) #Z 1)) / (1 + (f ^2)) is  V11()  real   ext-real   Element of  REAL 
 
(2 * ((() . f) #Z 1)) * ((1 + (f ^2)) ") is  V11()  real   ext-real   set 
 
(1 / 2) * ((2 * ((() . f) #Z 1)) / (1 + (f ^2))) is  V11()  real   ext-real   Element of  REAL 
 
 - ((1 / 2) * ((2 * ((() . f) #Z 1)) / (1 + (f ^2)))) is  V11()  real   ext-real   Element of  REAL 
 
2 * (() . f) is  V11()  real   ext-real   Element of  REAL 
 
(2 * (() . f)) / (1 + (f ^2)) is  V11()  real   ext-real   Element of  REAL 
 
(2 * (() . f)) * ((1 + (f ^2)) ") is  V11()  real   ext-real   set 
 
(1 / 2) * ((2 * (() . f)) / (1 + (f ^2))) is  V11()  real   ext-real   Element of  REAL 
 
 - ((1 / 2) * ((2 * (() . f)) / (1 + (f ^2)))) is  V11()  real   ext-real   Element of  REAL 
 
f is  V11()  real   ext-real   Element of  REAL 
 
(((1 / 2) (#) ((#Z 2) * ())) `| Z) . f is  V11()  real   ext-real   Element of  REAL 
 
() . f is  V11()  real   ext-real   Element of  REAL 
 
f ^2  is  V11()  real   ext-real   Element of  REAL 
 
f * f is  V11()  real   ext-real   set 
 
1 + (f ^2) is  V11()  real   ext-real   Element of  REAL 
 
(() . f) / (1 + (f ^2)) is  V11()  real   ext-real   Element of  REAL 
 
(1 + (f ^2)) "  is  V11()  real   ext-real   set 
 
(() . f) * ((1 + (f ^2)) ") is  V11()  real   ext-real   set 
 
 - ((() . f) / (1 + (f ^2))) is  V11()  real   ext-real   Element of  REAL 
 
Z is   open  V46() V47() V48()  Element of K6(REAL)
 
 id Z is  V19() V22( REAL ) V23( REAL )  Function-like   one-to-one  V36() V37() V38()  Element of K6(K7(REAL,REAL))
 
(id Z) (#) () is  V19() V22( REAL ) V23( REAL )  Function-like  V36() V37() V38()  Element of K6(K7(REAL,REAL))
 
((id Z) (#) ()) `| Z is  V19() V22( REAL ) V23( REAL )  Function-like  V36() V37() V38()  Element of K6(K7(REAL,REAL))
 
 dom (id Z) is  V46() V47() V48()  Element of K6(REAL)
 
(dom (id Z)) /\ (dom ()) is  V46() V47() V48()  set 
 
 dom ((id Z) (#) ()) is  V46() V47() V48()  Element of K6(REAL)
 
f is  V11()  real   ext-real   Element of  REAL 
 
(id Z) . f is  V11()  real   ext-real   Element of  REAL 
 
1 * f is  V11()  real   ext-real   Element of  REAL 
 
(1 * f) + 0 is  V11()  real   ext-real   Element of  REAL 
 
f is  V11()  real   ext-real   Element of  REAL 
 
(((id Z) (#) ()) `| Z) . f is  V11()  real   ext-real   Element of  REAL 
 
() . f is  V11()  real   ext-real   Element of  REAL 
 
f ^2  is  V11()  real   ext-real   Element of  REAL 
 
f * f is  V11()  real   ext-real   set 
 
1 + (f ^2) is  V11()  real   ext-real   Element of  REAL 
 
f / (1 + (f ^2)) is  V11()  real   ext-real   Element of  REAL 
 
(1 + (f ^2)) "  is  V11()  real   ext-real   set 
 
f * ((1 + (f ^2)) ") is  V11()  real   ext-real   set 
 
(() . f) + (f / (1 + (f ^2))) is  V11()  real   ext-real   Element of  REAL 
 
 diff ((id Z),f) is  V11()  real   ext-real   Element of  REAL 
 
(() . f) * (diff ((id Z),f)) is  V11()  real   ext-real   Element of  REAL 
 
(id Z) . f is  V11()  real   ext-real   Element of  REAL 
 
 diff ((),f) is  V11()  real   ext-real   Element of  REAL 
 
((id Z) . f) * (diff ((),f)) is  V11()  real   ext-real   Element of  REAL 
 
((() . f) * (diff ((id Z),f))) + (((id Z) . f) * (diff ((),f))) is  V11()  real   ext-real   Element of  REAL 
 
(id Z) `| Z is  V19() V22( REAL ) V23( REAL )  Function-like  V36() V37() V38()  Element of K6(K7(REAL,REAL))
 
((id Z) `| Z) . f is  V11()  real   ext-real   Element of  REAL 
 
(() . f) * (((id Z) `| Z) . f) is  V11()  real   ext-real   Element of  REAL 
 
((() . f) * (((id Z) `| Z) . f)) + (((id Z) . f) * (diff ((),f))) is  V11()  real   ext-real   Element of  REAL 
 
(() . f) * 1 is  V11()  real   ext-real   Element of  REAL 
 
((() . f) * 1) + (((id Z) . f) * (diff ((),f))) is  V11()  real   ext-real   Element of  REAL 
 
f * (diff ((),f)) is  V11()  real   ext-real   Element of  REAL 
 
(() . f) + (f * (diff ((),f))) is  V11()  real   ext-real   Element of  REAL 
 
1 / (1 + (f ^2)) is  V11()  real   ext-real   Element of  REAL 
 
1 * ((1 + (f ^2)) ") is  V11()  real   ext-real   set 
 
f * (1 / (1 + (f ^2))) is  V11()  real   ext-real   Element of  REAL 
 
(() . f) + (f * (1 / (1 + (f ^2)))) is  V11()  real   ext-real   Element of  REAL 
 
f is  V11()  real   ext-real   Element of  REAL 
 
(((id Z) (#) ()) `| Z) . f is  V11()  real   ext-real   Element of  REAL 
 
() . f is  V11()  real   ext-real   Element of  REAL 
 
f ^2  is  V11()  real   ext-real   Element of  REAL 
 
f * f is  V11()  real   ext-real   set 
 
1 + (f ^2) is  V11()  real   ext-real   Element of  REAL 
 
f / (1 + (f ^2)) is  V11()  real   ext-real   Element of  REAL 
 
(1 + (f ^2)) "  is  V11()  real   ext-real   set 
 
f * ((1 + (f ^2)) ") is  V11()  real   ext-real   set 
 
(() . f) + (f / (1 + (f ^2))) is  V11()  real   ext-real   Element of  REAL 
 
Z is   open  V46() V47() V48()  Element of K6(REAL)
 
 id Z is  V19() V22( REAL ) V23( REAL )  Function-like   one-to-one  V36() V37() V38()  Element of K6(K7(REAL,REAL))
 
(id Z) (#) () is  V19() V22( REAL ) V23( REAL )  Function-like  V36() V37() V38()  Element of K6(K7(REAL,REAL))
 
((id Z) (#) ()) `| Z is  V19() V22( REAL ) V23( REAL )  Function-like  V36() V37() V38()  Element of K6(K7(REAL,REAL))
 
 dom (id Z) is  V46() V47() V48()  Element of K6(REAL)
 
(dom (id Z)) /\ (dom ()) is  V46() V47() V48()  set 
 
 dom ((id Z) (#) ()) is  V46() V47() V48()  Element of K6(REAL)
 
f is  V11()  real   ext-real   Element of  REAL 
 
(id Z) . f is  V11()  real   ext-real   Element of  REAL 
 
1 * f is  V11()  real   ext-real   Element of  REAL 
 
(1 * f) + 0 is  V11()  real   ext-real   Element of  REAL 
 
f is  V11()  real   ext-real   Element of  REAL 
 
(((id Z) (#) ()) `| Z) . f is  V11()  real   ext-real   Element of  REAL 
 
() . f is  V11()  real   ext-real   Element of  REAL 
 
f ^2  is  V11()  real   ext-real   Element of  REAL 
 
f * f is  V11()  real   ext-real   set 
 
1 + (f ^2) is  V11()  real   ext-real   Element of  REAL 
 
f / (1 + (f ^2)) is  V11()  real   ext-real   Element of  REAL 
 
(1 + (f ^2)) "  is  V11()  real   ext-real   set 
 
f * ((1 + (f ^2)) ") is  V11()  real   ext-real   set 
 
(() . f) - (f / (1 + (f ^2))) is  V11()  real   ext-real   Element of  REAL 
 
 - (f / (1 + (f ^2))) is  V11()  real   ext-real   set 
 
(() . f) + (- (f / (1 + (f ^2)))) is  V11()  real   ext-real   set 
 
 diff ((id Z),f) is  V11()  real   ext-real   Element of  REAL 
 
(() . f) * (diff ((id Z),f)) is  V11()  real   ext-real   Element of  REAL 
 
(id Z) . f is  V11()  real   ext-real   Element of  REAL 
 
 diff ((),f) is  V11()  real   ext-real   Element of  REAL 
 
((id Z) . f) * (diff ((),f)) is  V11()  real   ext-real   Element of  REAL 
 
((() . f) * (diff ((id Z),f))) + (((id Z) . f) * (diff ((),f))) is  V11()  real   ext-real   Element of  REAL 
 
(id Z) `| Z is  V19() V22( REAL ) V23( REAL )  Function-like  V36() V37() V38()  Element of K6(K7(REAL,REAL))
 
((id Z) `| Z) . f is  V11()  real   ext-real   Element of  REAL 
 
(() . f) * (((id Z) `| Z) . f) is  V11()  real   ext-real   Element of  REAL 
 
((() . f) * (((id Z) `| Z) . f)) + (((id Z) . f) * (diff ((),f))) is  V11()  real   ext-real   Element of  REAL 
 
(() . f) * 1 is  V11()  real   ext-real   Element of  REAL 
 
((() . f) * 1) + (((id Z) . f) * (diff ((),f))) is  V11()  real   ext-real   Element of  REAL 
 
f * (diff ((),f)) is  V11()  real   ext-real   Element of  REAL 
 
(() . f) + (f * (diff ((),f))) is  V11()  real   ext-real   Element of  REAL 
 
1 / (1 + (f ^2)) is  V11()  real   ext-real   Element of  REAL 
 
1 * ((1 + (f ^2)) ") is  V11()  real   ext-real   set 
 
 - (1 / (1 + (f ^2))) is  V11()  real   ext-real   Element of  REAL 
 
f * (- (1 / (1 + (f ^2)))) is  V11()  real   ext-real   Element of  REAL 
 
(() . f) + (f * (- (1 / (1 + (f ^2))))) is  V11()  real   ext-real   Element of  REAL 
 
f is  V11()  real   ext-real   Element of  REAL 
 
(((id Z) (#) ()) `| Z) . f is  V11()  real   ext-real   Element of  REAL 
 
() . f is  V11()  real   ext-real   Element of  REAL 
 
f ^2  is  V11()  real   ext-real   Element of  REAL 
 
f * f is  V11()  real   ext-real   set 
 
1 + (f ^2) is  V11()  real   ext-real   Element of  REAL 
 
f / (1 + (f ^2)) is  V11()  real   ext-real   Element of  REAL 
 
(1 + (f ^2)) "  is  V11()  real   ext-real   set 
 
f * ((1 + (f ^2)) ") is  V11()  real   ext-real   set 
 
(() . f) - (f / (1 + (f ^2))) is  V11()  real   ext-real   Element of  REAL 
 
 - (f / (1 + (f ^2))) is  V11()  real   ext-real   set 
 
(() . f) + (- (f / (1 + (f ^2)))) is  V11()  real   ext-real   set 
 
Z is  V11()  real   ext-real   Element of  REAL 
 
f is  V11()  real   ext-real   Element of  REAL 
 
x is   open  V46() V47() V48()  Element of K6(REAL)
 
g is  V19() V22( REAL ) V23( REAL )  Function-like  V36() V37() V38()  Element of K6(K7(REAL,REAL))
 
g (#) () is  V19() V22( REAL ) V23( REAL )  Function-like  V36() V37() V38()  Element of K6(K7(REAL,REAL))
 
 dom (g (#) ()) is  V46() V47() V48()  Element of K6(REAL)
 
(g (#) ()) `| x is  V19() V22( REAL ) V23( REAL )  Function-like  V36() V37() V38()  Element of K6(K7(REAL,REAL))
 
 dom g is  V46() V47() V48()  Element of K6(REAL)
 
(dom g) /\ (dom ()) is  V46() V47() V48()  set 
 
x is  V11()  real   ext-real   Element of  REAL 
 
((g (#) ()) `| x) . x is  V11()  real   ext-real   Element of  REAL 
 
() . x is  V11()  real   ext-real   Element of  REAL 
 
Z * (() . x) is  V11()  real   ext-real   Element of  REAL 
 
Z * x is  V11()  real   ext-real   Element of  REAL 
 
(Z * x) + f is  V11()  real   ext-real   Element of  REAL 
 
x ^2  is  V11()  real   ext-real   Element of  REAL 
 
x * x is  V11()  real   ext-real   set 
 
1 + (x ^2) is  V11()  real   ext-real   Element of  REAL 
 
((Z * x) + f) / (1 + (x ^2)) is  V11()  real   ext-real   Element of  REAL 
 
(1 + (x ^2)) "  is  V11()  real   ext-real   set 
 
((Z * x) + f) * ((1 + (x ^2)) ") is  V11()  real   ext-real   set 
 
(Z * (() . x)) + (((Z * x) + f) / (1 + (x ^2))) is  V11()  real   ext-real   Element of  REAL 
 
 diff (g,x) is  V11()  real   ext-real   Element of  REAL 
 
(() . x) * (diff (g,x)) is  V11()  real   ext-real   Element of  REAL 
 
g . x is  V11()  real   ext-real   Element of  REAL 
 
 diff ((),x) is  V11()  real   ext-real   Element of  REAL 
 
(g . x) * (diff ((),x)) is  V11()  real   ext-real   Element of  REAL 
 
((() . x) * (diff (g,x))) + ((g . x) * (diff ((),x))) is  V11()  real   ext-real   Element of  REAL 
 
g `| x is  V19() V22( REAL ) V23( REAL )  Function-like  V36() V37() V38()  Element of K6(K7(REAL,REAL))
 
(g `| x) . x is  V11()  real   ext-real   Element of  REAL 
 
(() . x) * ((g `| x) . x) is  V11()  real   ext-real   Element of  REAL 
 
((() . x) * ((g `| x) . x)) + ((g . x) * (diff ((),x))) is  V11()  real   ext-real   Element of  REAL 
 
(() . x) * Z is  V11()  real   ext-real   Element of  REAL 
 
((() . x) * Z) + ((g . x) * (diff ((),x))) is  V11()  real   ext-real   Element of  REAL 
 
1 / (1 + (x ^2)) is  V11()  real   ext-real   Element of  REAL 
 
1 * ((1 + (x ^2)) ") is  V11()  real   ext-real   set 
 
(g . x) * (1 / (1 + (x ^2))) is  V11()  real   ext-real   Element of  REAL 
 
((() . x) * Z) + ((g . x) * (1 / (1 + (x ^2)))) is  V11()  real   ext-real   Element of  REAL 
 
x is  V11()  real   ext-real   Element of  REAL 
 
((g (#) ()) `| x) . x is  V11()  real   ext-real   Element of  REAL 
 
() . x is  V11()  real   ext-real   Element of  REAL 
 
Z * (() . x) is  V11()  real   ext-real   Element of  REAL 
 
Z * x is  V11()  real   ext-real   Element of  REAL 
 
(Z * x) + f is  V11()  real   ext-real   Element of  REAL 
 
x ^2  is  V11()  real   ext-real   Element of  REAL 
 
x * x is  V11()  real   ext-real   set 
 
1 + (x ^2) is  V11()  real   ext-real   Element of  REAL 
 
((Z * x) + f) / (1 + (x ^2)) is  V11()  real   ext-real   Element of  REAL 
 
(1 + (x ^2)) "  is  V11()  real   ext-real   set 
 
((Z * x) + f) * ((1 + (x ^2)) ") is  V11()  real   ext-real   set 
 
(Z * (() . x)) + (((Z * x) + f) / (1 + (x ^2))) is  V11()  real   ext-real   Element of  REAL 
 
Z is  V11()  real   ext-real   Element of  REAL 
 
f is  V11()  real   ext-real   Element of  REAL 
 
x is   open  V46() V47() V48()  Element of K6(REAL)
 
g is  V19() V22( REAL ) V23( REAL )  Function-like  V36() V37() V38()  Element of K6(K7(REAL,REAL))
 
g (#) () is  V19() V22( REAL ) V23( REAL )  Function-like  V36() V37() V38()  Element of K6(K7(REAL,REAL))
 
 dom (g (#) ()) is  V46() V47() V48()  Element of K6(REAL)
 
(g (#) ()) `| x is  V19() V22( REAL ) V23( REAL )  Function-like  V36() V37() V38()  Element of K6(K7(REAL,REAL))
 
 dom g is  V46() V47() V48()  Element of K6(REAL)
 
(dom g) /\ (dom ()) is  V46() V47() V48()  set 
 
x is  V11()  real   ext-real   Element of  REAL 
 
((g (#) ()) `| x) . x is  V11()  real   ext-real   Element of  REAL 
 
() . x is  V11()  real   ext-real   Element of  REAL 
 
Z * (() . x) is  V11()  real   ext-real   Element of  REAL 
 
Z * x is  V11()  real   ext-real   Element of  REAL 
 
(Z * x) + f is  V11()  real   ext-real   Element of  REAL 
 
x ^2  is  V11()  real   ext-real   Element of  REAL 
 
x * x is  V11()  real   ext-real   set 
 
1 + (x ^2) is  V11()  real   ext-real   Element of  REAL 
 
((Z * x) + f) / (1 + (x ^2)) is  V11()  real   ext-real   Element of  REAL 
 
(1 + (x ^2)) "  is  V11()  real   ext-real   set 
 
((Z * x) + f) * ((1 + (x ^2)) ") is  V11()  real   ext-real   set 
 
(Z * (() . x)) - (((Z * x) + f) / (1 + (x ^2))) is  V11()  real   ext-real   Element of  REAL 
 
 - (((Z * x) + f) / (1 + (x ^2))) is  V11()  real   ext-real   set 
 
(Z * (() . x)) + (- (((Z * x) + f) / (1 + (x ^2)))) is  V11()  real   ext-real   set 
 
 diff (g,x) is  V11()  real   ext-real   Element of  REAL 
 
(() . x) * (diff (g,x)) is  V11()  real   ext-real   Element of  REAL 
 
g . x is  V11()  real   ext-real   Element of  REAL 
 
 diff ((),x) is  V11()  real   ext-real   Element of  REAL 
 
(g . x) * (diff ((),x)) is  V11()  real   ext-real   Element of  REAL 
 
((() . x) * (diff (g,x))) + ((g . x) * (diff ((),x))) is  V11()  real   ext-real   Element of  REAL 
 
g `| x is  V19() V22( REAL ) V23( REAL )  Function-like  V36() V37() V38()  Element of K6(K7(REAL,REAL))
 
(g `| x) . x is  V11()  real   ext-real   Element of  REAL 
 
(() . x) * ((g `| x) . x) is  V11()  real   ext-real   Element of  REAL 
 
((() . x) * ((g `| x) . x)) + ((g . x) * (diff ((),x))) is  V11()  real   ext-real   Element of  REAL 
 
(() . x) * Z is  V11()  real   ext-real   Element of  REAL 
 
((() . x) * Z) + ((g . x) * (diff ((),x))) is  V11()  real   ext-real   Element of  REAL 
 
1 / (1 + (x ^2)) is  V11()  real   ext-real   Element of  REAL 
 
1 * ((1 + (x ^2)) ") is  V11()  real   ext-real   set 
 
 - (1 / (1 + (x ^2))) is  V11()  real   ext-real   Element of  REAL 
 
(g . x) * (- (1 / (1 + (x ^2)))) is  V11()  real   ext-real   Element of  REAL 
 
((() . x) * Z) + ((g . x) * (- (1 / (1 + (x ^2))))) is  V11()  real   ext-real   Element of  REAL 
 
(g . x) * (1 / (1 + (x ^2))) is  V11()  real   ext-real   Element of  REAL 
 
((() . x) * Z) - ((g . x) * (1 / (1 + (x ^2)))) is  V11()  real   ext-real   Element of  REAL 
 
 - ((g . x) * (1 / (1 + (x ^2)))) is  V11()  real   ext-real   set 
 
((() . x) * Z) + (- ((g . x) * (1 / (1 + (x ^2))))) is  V11()  real   ext-real   set 
 
x is  V11()  real   ext-real   Element of  REAL 
 
((g (#) ()) `| x) . x is  V11()  real   ext-real   Element of  REAL 
 
() . x is  V11()  real   ext-real   Element of  REAL 
 
Z * (() . x) is  V11()  real   ext-real   Element of  REAL 
 
Z * x is  V11()  real   ext-real   Element of  REAL 
 
(Z * x) + f is  V11()  real   ext-real   Element of  REAL 
 
x ^2  is  V11()  real   ext-real   Element of  REAL 
 
x * x is  V11()  real   ext-real   set 
 
1 + (x ^2) is  V11()  real   ext-real   Element of  REAL 
 
((Z * x) + f) / (1 + (x ^2)) is  V11()  real   ext-real   Element of  REAL 
 
(1 + (x ^2)) "  is  V11()  real   ext-real   set 
 
((Z * x) + f) * ((1 + (x ^2)) ") is  V11()  real   ext-real   set 
 
(Z * (() . x)) - (((Z * x) + f) / (1 + (x ^2))) is  V11()  real   ext-real   Element of  REAL 
 
 - (((Z * x) + f) / (1 + (x ^2))) is  V11()  real   ext-real   set 
 
(Z * (() . x)) + (- (((Z * x) + f) / (1 + (x ^2)))) is  V11()  real   ext-real   set 
 
Z is   open  V46() V47() V48()  Element of K6(REAL)
 
f is  V19() V22( REAL ) V23( REAL )  Function-like  V36() V37() V38()  Element of K6(K7(REAL,REAL))
 
() * f is  V19() V22( REAL ) V23( REAL )  Function-like  V36() V37() V38()  Element of K6(K7(REAL,REAL))
 
(1 / 2) (#) (() * f) is  V19() V22( REAL ) V23( REAL )  Function-like  V36() V37() V38()  Element of K6(K7(REAL,REAL))
 
 dom ((1 / 2) (#) (() * f)) is  V46() V47() V48()  Element of K6(REAL)
 
((1 / 2) (#) (() * f)) `| Z is  V19() V22( REAL ) V23( REAL )  Function-like  V36() V37() V38()  Element of K6(K7(REAL,REAL))
 
x is  V11()  real   ext-real   Element of  REAL 
 
f . x is  V11()  real   ext-real   Element of  REAL 
 
2 * x is  V11()  real   ext-real   Element of  REAL 
 
(2 * x) + 0 is  V11()  real   ext-real   Element of  REAL 
 
 dom (() * f) is  V46() V47() V48()  Element of K6(REAL)
 
x is  V11()  real   ext-real   Element of  REAL 
 
(((1 / 2) (#) (() * f)) `| Z) . x is  V11()  real   ext-real   Element of  REAL 
 
2 * x is  V11()  real   ext-real   Element of  REAL 
 
(2 * x) ^2  is  V11()  real   ext-real   Element of  REAL 
 
(2 * x) * (2 * x) is  V11()  real   ext-real   set 
 
1 + ((2 * x) ^2) is  V11()  real   ext-real   Element of  REAL 
 
1 / (1 + ((2 * x) ^2)) is  V11()  real   ext-real   Element of  REAL 
 
(1 + ((2 * x) ^2)) "  is  V11()  real   ext-real   set 
 
1 * ((1 + ((2 * x) ^2)) ") is  V11()  real   ext-real   set 
 
 diff ((() * f),x) is  V11()  real   ext-real   Element of  REAL 
 
(1 / 2) * (diff ((() * f),x)) is  V11()  real   ext-real   Element of  REAL 
 
(() * f) `| Z is  V19() V22( REAL ) V23( REAL )  Function-like  V36() V37() V38()  Element of K6(K7(REAL,REAL))
 
((() * f) `| Z) . x is  V11()  real   ext-real   Element of  REAL 
 
(1 / 2) * (((() * f) `| Z) . x) is  V11()  real   ext-real   Element of  REAL 
 
(2 * x) + 0 is  V11()  real   ext-real   Element of  REAL 
 
((2 * x) + 0) ^2  is  V11()  real   ext-real   Element of  REAL 
 
((2 * x) + 0) * ((2 * x) + 0) is  V11()  real   ext-real   set 
 
1 + (((2 * x) + 0) ^2) is  V11()  real   ext-real   Element of  REAL 
 
2 / (1 + (((2 * x) + 0) ^2)) is  V11()  real   ext-real   Element of  REAL 
 
(1 + (((2 * x) + 0) ^2)) "  is  V11()  real   ext-real   set 
 
2 * ((1 + (((2 * x) + 0) ^2)) ") is  V11()  real   ext-real   set 
 
(1 / 2) * (2 / (1 + (((2 * x) + 0) ^2))) is  V11()  real   ext-real   Element of  REAL 
 
x is  V11()  real   ext-real   Element of  REAL 
 
(((1 / 2) (#) (() * f)) `| Z) . x is  V11()  real   ext-real   Element of  REAL 
 
2 * x is  V11()  real   ext-real   Element of  REAL 
 
(2 * x) ^2  is  V11()  real   ext-real   Element of  REAL 
 
(2 * x) * (2 * x) is  V11()  real   ext-real   set 
 
1 + ((2 * x) ^2) is  V11()  real   ext-real   Element of  REAL 
 
1 / (1 + ((2 * x) ^2)) is  V11()  real   ext-real   Element of  REAL 
 
(1 + ((2 * x) ^2)) "  is  V11()  real   ext-real   set 
 
1 * ((1 + ((2 * x) ^2)) ") is  V11()  real   ext-real   set 
 
Z is   open  V46() V47() V48()  Element of K6(REAL)
 
f is  V19() V22( REAL ) V23( REAL )  Function-like  V36() V37() V38()  Element of K6(K7(REAL,REAL))
 
() * f is  V19() V22( REAL ) V23( REAL )  Function-like  V36() V37() V38()  Element of K6(K7(REAL,REAL))
 
(1 / 2) (#) (() * f) is  V19() V22( REAL ) V23( REAL )  Function-like  V36() V37() V38()  Element of K6(K7(REAL,REAL))
 
 dom ((1 / 2) (#) (() * f)) is  V46() V47() V48()  Element of K6(REAL)
 
((1 / 2) (#) (() * f)) `| Z is  V19() V22( REAL ) V23( REAL )  Function-like  V36() V37() V38()  Element of K6(K7(REAL,REAL))
 
x is  V11()  real   ext-real   Element of  REAL 
 
f . x is  V11()  real   ext-real   Element of  REAL 
 
2 * x is  V11()  real   ext-real   Element of  REAL 
 
(2 * x) + 0 is  V11()  real   ext-real   Element of  REAL 
 
 dom (() * f) is  V46() V47() V48()  Element of K6(REAL)
 
x is  V11()  real   ext-real   Element of  REAL 
 
(((1 / 2) (#) (() * f)) `| Z) . x is  V11()  real   ext-real   Element of  REAL 
 
2 * x is  V11()  real   ext-real   Element of  REAL 
 
(2 * x) ^2  is  V11()  real   ext-real   Element of  REAL 
 
(2 * x) * (2 * x) is  V11()  real   ext-real   set 
 
1 + ((2 * x) ^2) is  V11()  real   ext-real   Element of  REAL 
 
1 / (1 + ((2 * x) ^2)) is  V11()  real   ext-real   Element of  REAL 
 
(1 + ((2 * x) ^2)) "  is  V11()  real   ext-real   set 
 
1 * ((1 + ((2 * x) ^2)) ") is  V11()  real   ext-real   set 
 
 - (1 / (1 + ((2 * x) ^2))) is  V11()  real   ext-real   Element of  REAL 
 
 diff ((() * f),x) is  V11()  real   ext-real   Element of  REAL 
 
(1 / 2) * (diff ((() * f),x)) is  V11()  real   ext-real   Element of  REAL 
 
(() * f) `| Z is  V19() V22( REAL ) V23( REAL )  Function-like  V36() V37() V38()  Element of K6(K7(REAL,REAL))
 
((() * f) `| Z) . x is  V11()  real   ext-real   Element of  REAL 
 
(1 / 2) * (((() * f) `| Z) . x) is  V11()  real   ext-real   Element of  REAL 
 
(2 * x) + 0 is  V11()  real   ext-real   Element of  REAL 
 
((2 * x) + 0) ^2  is  V11()  real   ext-real   Element of  REAL 
 
((2 * x) + 0) * ((2 * x) + 0) is  V11()  real   ext-real   set 
 
1 + (((2 * x) + 0) ^2) is  V11()  real   ext-real   Element of  REAL 
 
2 / (1 + (((2 * x) + 0) ^2)) is  V11()  real   ext-real   Element of  REAL 
 
(1 + (((2 * x) + 0) ^2)) "  is  V11()  real   ext-real   set 
 
2 * ((1 + (((2 * x) + 0) ^2)) ") is  V11()  real   ext-real   set 
 
 - (2 / (1 + (((2 * x) + 0) ^2))) is  V11()  real   ext-real   Element of  REAL 
 
(1 / 2) * (- (2 / (1 + (((2 * x) + 0) ^2)))) is  V11()  real   ext-real   Element of  REAL 
 
x is  V11()  real   ext-real   Element of  REAL 
 
(((1 / 2) (#) (() * f)) `| Z) . x is  V11()  real   ext-real   Element of  REAL 
 
2 * x is  V11()  real   ext-real   Element of  REAL 
 
(2 * x) ^2  is  V11()  real   ext-real   Element of  REAL 
 
(2 * x) * (2 * x) is  V11()  real   ext-real   set 
 
1 + ((2 * x) ^2) is  V11()  real   ext-real   Element of  REAL 
 
1 / (1 + ((2 * x) ^2)) is  V11()  real   ext-real   Element of  REAL 
 
(1 + ((2 * x) ^2)) "  is  V11()  real   ext-real   set 
 
1 * ((1 + ((2 * x) ^2)) ") is  V11()  real   ext-real   set 
 
 - (1 / (1 + ((2 * x) ^2))) is  V11()  real   ext-real   Element of  REAL 
 
Z is   open  V46() V47() V48()  Element of K6(REAL)
 
f is  V19() V22( REAL ) V23( REAL )  Function-like  V36() V37() V38()  Element of K6(K7(REAL,REAL))
 
x is  V19() V22( REAL ) V23( REAL )  Function-like  V36() V37() V38()  Element of K6(K7(REAL,REAL))
 
f + x is  V19() V22( REAL ) V23( REAL )  Function-like  V36() V37() V38()  Element of K6(K7(REAL,REAL))
 
 dom (f + x) is  V46() V47() V48()  Element of K6(REAL)
 
(f + x) `| Z is  V19() V22( REAL ) V23( REAL )  Function-like  V36() V37() V38()  Element of K6(K7(REAL,REAL))
 
g is  V11()  real   ext-real   Element of  REAL 
 
 dom f is  V46() V47() V48()  Element of K6(REAL)
 
 dom x is  V46() V47() V48()  Element of K6(REAL)
 
(dom f) /\ (dom x) is  V46() V47() V48()  set 
 
g is  V11()  real   ext-real   Element of  REAL 
 
f . g is  V11()  real   ext-real   Element of  REAL 
 
0 * g is  V11()  real   ext-real   Element of  REAL 
 
(0 * g) + 1 is  V11()  real   ext-real   Element of  REAL 
 
x `| Z is  V19() V22( REAL ) V23( REAL )  Function-like  V36() V37() V38()  Element of K6(K7(REAL,REAL))
 
g is  V11()  real   ext-real   Element of  REAL 
 
(x `| Z) . g is  V11()  real   ext-real   Element of  REAL 
 
2 * g is  V11()  real   ext-real   Element of  REAL 
 
2 - 1 is  V11()  real   ext-real  V63()  Element of  REAL 
 
 - 1 is   non  empty  V11()  real   ext-real   non  positive   negative  V63()  set 
 
2 + (- 1) is  V11()  real   ext-real  V63()  set 
 
g #Z (2 - 1) is  V11()  real   ext-real   Element of  REAL 
 
2 * (g #Z (2 - 1)) is  V11()  real   ext-real   Element of  REAL 
 
 diff (x,g) is  V11()  real   ext-real   Element of  REAL 
 
g is  V11()  real   ext-real   Element of  REAL 
 
((f + x) `| Z) . g is  V11()  real   ext-real   Element of  REAL 
 
2 * g is  V11()  real   ext-real   Element of  REAL 
 
 diff (f,g) is  V11()  real   ext-real   Element of  REAL 
 
 diff (x,g) is  V11()  real   ext-real   Element of  REAL 
 
(diff (f,g)) + (diff (x,g)) is  V11()  real   ext-real   Element of  REAL 
 
f `| Z is  V19() V22( REAL ) V23( REAL )  Function-like  V36() V37() V38()  Element of K6(K7(REAL,REAL))
 
(f `| Z) . g is  V11()  real   ext-real   Element of  REAL 
 
((f `| Z) . g) + (diff (x,g)) is  V11()  real   ext-real   Element of  REAL 
 
(x `| Z) . g is  V11()  real   ext-real   Element of  REAL 
 
((f `| Z) . g) + ((x `| Z) . g) is  V11()  real   ext-real   Element of  REAL 
 
0 + ((x `| Z) . g) is  V11()  real   ext-real   Element of  REAL 
 
g is  V11()  real   ext-real   Element of  REAL 
 
((f + x) `| Z) . g is  V11()  real   ext-real   Element of  REAL 
 
2 * g is  V11()  real   ext-real   Element of  REAL 
 
Z is   open  V46() V47() V48()  Element of K6(REAL)
 
f is  V19() V22( REAL ) V23( REAL )  Function-like  V36() V37() V38()  Element of K6(K7(REAL,REAL))
 
x is  V19() V22( REAL ) V23( REAL )  Function-like  V36() V37() V38()  Element of K6(K7(REAL,REAL))
 
f + x is  V19() V22( REAL ) V23( REAL )  Function-like  V36() V37() V38()  Element of K6(K7(REAL,REAL))
 
ln * (f + x) is  V19() V22( REAL ) V23( REAL )  Function-like  V36() V37() V38()  Element of K6(K7(REAL,REAL))
 
(1 / 2) (#) (ln * (f + x)) is  V19() V22( REAL ) V23( REAL )  Function-like  V36() V37() V38()  Element of K6(K7(REAL,REAL))
 
 dom ((1 / 2) (#) (ln * (f + x))) is  V46() V47() V48()  Element of K6(REAL)
 
((1 / 2) (#) (ln * (f + x))) `| Z is  V19() V22( REAL ) V23( REAL )  Function-like  V36() V37() V38()  Element of K6(K7(REAL,REAL))
 
 dom (ln * (f + x)) is  V46() V47() V48()  Element of K6(REAL)
 
 dom (f + x) is  V46() V47() V48()  Element of K6(REAL)
 
g is    set 
 
g is  V11()  real   ext-real   Element of  REAL 
 
(f + x) . g is  V11()  real   ext-real   Element of  REAL 
 
f . g is  V11()  real   ext-real   Element of  REAL 
 
x . g is  V11()  real   ext-real   Element of  REAL 
 
(f . g) + (x . g) is  V11()  real   ext-real   Element of  REAL 
 
1 + (x . g) is  V11()  real   ext-real   Element of  REAL 
 
1 + 1 is   non  empty  V11()  real   ext-real   positive   non  negative  V63()  Element of  REAL 
 
g #Z (1 + 1) is  V11()  real   ext-real   Element of  REAL 
 
1 + (g #Z (1 + 1)) is  V11()  real   ext-real   Element of  REAL 
 
g #Z 1 is  V11()  real   ext-real   Element of  REAL 
 
(g #Z 1) * (g #Z 1) is  V11()  real   ext-real   Element of  REAL 
 
1 + ((g #Z 1) * (g #Z 1)) is  V11()  real   ext-real   Element of  REAL 
 
g * (g #Z 1) is  V11()  real   ext-real   Element of  REAL 
 
1 + (g * (g #Z 1)) is  V11()  real   ext-real   Element of  REAL 
 
g * g is  V11()  real   ext-real   Element of  REAL 
 
1 + (g * g) is  V11()  real   ext-real   Element of  REAL 
 
g is  V11()  real   ext-real   Element of  REAL 
 
(((1 / 2) (#) (ln * (f + x))) `| Z) . g is  V11()  real   ext-real   Element of  REAL 
 
g ^2  is  V11()  real   ext-real   Element of  REAL 
 
g * g is  V11()  real   ext-real   set 
 
1 + (g ^2) is  V11()  real   ext-real   Element of  REAL 
 
g / (1 + (g ^2)) is  V11()  real   ext-real   Element of  REAL 
 
(1 + (g ^2)) "  is  V11()  real   ext-real   set 
 
g * ((1 + (g ^2)) ") is  V11()  real   ext-real   set 
 
(f + x) . g is  V11()  real   ext-real   Element of  REAL 
 
f . g is  V11()  real   ext-real   Element of  REAL 
 
x . g is  V11()  real   ext-real   Element of  REAL 
 
(f . g) + (x . g) is  V11()  real   ext-real   Element of  REAL 
 
1 + (x . g) is  V11()  real   ext-real   Element of  REAL 
 
1 + 1 is   non  empty  V11()  real   ext-real   positive   non  negative  V63()  Element of  REAL 
 
g #Z (1 + 1) is  V11()  real   ext-real   Element of  REAL 
 
1 + (g #Z (1 + 1)) is  V11()  real   ext-real   Element of  REAL 
 
g #Z 1 is  V11()  real   ext-real   Element of  REAL 
 
(g #Z 1) * (g #Z 1) is  V11()  real   ext-real   Element of  REAL 
 
1 + ((g #Z 1) * (g #Z 1)) is  V11()  real   ext-real   Element of  REAL 
 
g * (g #Z 1) is  V11()  real   ext-real   Element of  REAL 
 
1 + (g * (g #Z 1)) is  V11()  real   ext-real   Element of  REAL 
 
g * g is  V11()  real   ext-real   Element of  REAL 
 
1 + (g * g) is  V11()  real   ext-real   Element of  REAL 
 
 diff ((ln * (f + x)),g) is  V11()  real   ext-real   Element of  REAL 
 
 diff ((f + x),g) is  V11()  real   ext-real   Element of  REAL 
 
(diff ((f + x),g)) / ((f + x) . g) is  V11()  real   ext-real   Element of  REAL 
 
((f + x) . g) "  is  V11()  real   ext-real   set 
 
(diff ((f + x),g)) * (((f + x) . g) ") is  V11()  real   ext-real   set 
 
(f + x) `| Z is  V19() V22( REAL ) V23( REAL )  Function-like  V36() V37() V38()  Element of K6(K7(REAL,REAL))
 
((f + x) `| Z) . g is  V11()  real   ext-real   Element of  REAL 
 
(((f + x) `| Z) . g) / ((f + x) . g) is  V11()  real   ext-real   Element of  REAL 
 
(((f + x) `| Z) . g) * (((f + x) . g) ") is  V11()  real   ext-real   set 
 
2 * g is  V11()  real   ext-real   Element of  REAL 
 
(2 * g) / (1 + (g ^2)) is  V11()  real   ext-real   Element of  REAL 
 
(2 * g) * ((1 + (g ^2)) ") is  V11()  real   ext-real   set 
 
(1 / 2) * ((2 * g) / (1 + (g ^2))) is  V11()  real   ext-real   Element of  REAL 
 
g is  V11()  real   ext-real   Element of  REAL 
 
(((1 / 2) (#) (ln * (f + x))) `| Z) . g is  V11()  real   ext-real   Element of  REAL 
 
g ^2  is  V11()  real   ext-real   Element of  REAL 
 
g * g is  V11()  real   ext-real   set 
 
1 + (g ^2) is  V11()  real   ext-real   Element of  REAL 
 
g / (1 + (g ^2)) is  V11()  real   ext-real   Element of  REAL 
 
(1 + (g ^2)) "  is  V11()  real   ext-real   set 
 
g * ((1 + (g ^2)) ") is  V11()  real   ext-real   set 
 
Z is   open  V46() V47() V48()  Element of K6(REAL)
 
 id Z is  V19() V22( REAL ) V23( REAL )  Function-like   one-to-one  V36() V37() V38()  Element of K6(K7(REAL,REAL))
 
(id Z) (#) () is  V19() V22( REAL ) V23( REAL )  Function-like  V36() V37() V38()  Element of K6(K7(REAL,REAL))
 
f is  V19() V22( REAL ) V23( REAL )  Function-like  V36() V37() V38()  Element of K6(K7(REAL,REAL))
 
x is  V19() V22( REAL ) V23( REAL )  Function-like  V36() V37() V38()  Element of K6(K7(REAL,REAL))
 
f + x is  V19() V22( REAL ) V23( REAL )  Function-like  V36() V37() V38()  Element of K6(K7(REAL,REAL))
 
ln * (f + x) is  V19() V22( REAL ) V23( REAL )  Function-like  V36() V37() V38()  Element of K6(K7(REAL,REAL))
 
(1 / 2) (#) (ln * (f + x)) is  V19() V22( REAL ) V23( REAL )  Function-like  V36() V37() V38()  Element of K6(K7(REAL,REAL))
 
((id Z) (#) ()) - ((1 / 2) (#) (ln * (f + x))) is  V19() V22( REAL ) V23( REAL )  Function-like  V36() V37() V38()  Element of K6(K7(REAL,REAL))
 
 - ((1 / 2) (#) (ln * (f + x))) is  V19()  Function-like  V36()  set 
 
 - 1 is   non  empty  V11()  real   ext-real   non  positive   negative  V63()  set 
 
(- 1) (#) ((1 / 2) (#) (ln * (f + x))) is  V19()  Function-like   set 
 
((id Z) (#) ()) + (- ((1 / 2) (#) (ln * (f + x)))) is  V19()  Function-like   set 
 
 dom (((id Z) (#) ()) - ((1 / 2) (#) (ln * (f + x)))) is  V46() V47() V48()  Element of K6(REAL)
 
(((id Z) (#) ()) - ((1 / 2) (#) (ln * (f + x)))) `| Z is  V19() V22( REAL ) V23( REAL )  Function-like  V36() V37() V38()  Element of K6(K7(REAL,REAL))
 
 dom ((id Z) (#) ()) is  V46() V47() V48()  Element of K6(REAL)
 
 dom ((1 / 2) (#) (ln * (f + x))) is  V46() V47() V48()  Element of K6(REAL)
 
(dom ((id Z) (#) ())) /\ (dom ((1 / 2) (#) (ln * (f + x)))) is  V46() V47() V48()  set 
 
g is  V11()  real   ext-real   Element of  REAL 
 
((((id Z) (#) ()) - ((1 / 2) (#) (ln * (f + x)))) `| Z) . g is  V11()  real   ext-real   Element of  REAL 
 
() . g is  V11()  real   ext-real   Element of  REAL 
 
 diff (((id Z) (#) ()),g) is  V11()  real   ext-real   Element of  REAL 
 
 diff (((1 / 2) (#) (ln * (f + x))),g) is  V11()  real   ext-real   Element of  REAL 
 
(diff (((id Z) (#) ()),g)) - (diff (((1 / 2) (#) (ln * (f + x))),g)) is  V11()  real   ext-real   Element of  REAL 
 
 - (diff (((1 / 2) (#) (ln * (f + x))),g)) is  V11()  real   ext-real   set 
 
(diff (((id Z) (#) ()),g)) + (- (diff (((1 / 2) (#) (ln * (f + x))),g))) is  V11()  real   ext-real   set 
 
((id Z) (#) ()) `| Z is  V19() V22( REAL ) V23( REAL )  Function-like  V36() V37() V38()  Element of K6(K7(REAL,REAL))
 
(((id Z) (#) ()) `| Z) . g is  V11()  real   ext-real   Element of  REAL 
 
((((id Z) (#) ()) `| Z) . g) - (diff (((1 / 2) (#) (ln * (f + x))),g)) is  V11()  real   ext-real   Element of  REAL 
 
((((id Z) (#) ()) `| Z) . g) + (- (diff (((1 / 2) (#) (ln * (f + x))),g))) is  V11()  real   ext-real   set 
 
((1 / 2) (#) (ln * (f + x))) `| Z is  V19() V22( REAL ) V23( REAL )  Function-like  V36() V37() V38()  Element of K6(K7(REAL,REAL))
 
(((1 / 2) (#) (ln * (f + x))) `| Z) . g is  V11()  real   ext-real   Element of  REAL 
 
((((id Z) (#) ()) `| Z) . g) - ((((1 / 2) (#) (ln * (f + x))) `| Z) . g) is  V11()  real   ext-real   Element of  REAL 
 
 - ((((1 / 2) (#) (ln * (f + x))) `| Z) . g) is  V11()  real   ext-real   set 
 
((((id Z) (#) ()) `| Z) . g) + (- ((((1 / 2) (#) (ln * (f + x))) `| Z) . g)) is  V11()  real   ext-real   set 
 
g ^2  is  V11()  real   ext-real   Element of  REAL 
 
g * g is  V11()  real   ext-real   set 
 
1 + (g ^2) is  V11()  real   ext-real   Element of  REAL 
 
g / (1 + (g ^2)) is  V11()  real   ext-real   Element of  REAL 
 
(1 + (g ^2)) "  is  V11()  real   ext-real   set 
 
g * ((1 + (g ^2)) ") is  V11()  real   ext-real   set 
 
(() . g) + (g / (1 + (g ^2))) is  V11()  real   ext-real   Element of  REAL 
 
((() . g) + (g / (1 + (g ^2)))) - ((((1 / 2) (#) (ln * (f + x))) `| Z) . g) is  V11()  real   ext-real   Element of  REAL 
 
((() . g) + (g / (1 + (g ^2)))) + (- ((((1 / 2) (#) (ln * (f + x))) `| Z) . g)) is  V11()  real   ext-real   set 
 
((() . g) + (g / (1 + (g ^2)))) - (g / (1 + (g ^2))) is  V11()  real   ext-real   Element of  REAL 
 
 - (g / (1 + (g ^2))) is  V11()  real   ext-real   set 
 
((() . g) + (g / (1 + (g ^2)))) + (- (g / (1 + (g ^2)))) is  V11()  real   ext-real   set 
 
g is  V11()  real   ext-real   Element of  REAL 
 
((((id Z) (#) ()) - ((1 / 2) (#) (ln * (f + x)))) `| Z) . g is  V11()  real   ext-real   Element of  REAL 
 
() . g is  V11()  real   ext-real   Element of  REAL 
 
Z is   open  V46() V47() V48()  Element of K6(REAL)
 
 id Z is  V19() V22( REAL ) V23( REAL )  Function-like   one-to-one  V36() V37() V38()  Element of K6(K7(REAL,REAL))
 
(id Z) (#) () is  V19() V22( REAL ) V23( REAL )  Function-like  V36() V37() V38()  Element of K6(K7(REAL,REAL))
 
f is  V19() V22( REAL ) V23( REAL )  Function-like  V36() V37() V38()  Element of K6(K7(REAL,REAL))
 
x is  V19() V22( REAL ) V23( REAL )  Function-like  V36() V37() V38()  Element of K6(K7(REAL,REAL))
 
f + x is  V19() V22( REAL ) V23( REAL )  Function-like  V36() V37() V38()  Element of K6(K7(REAL,REAL))
 
ln * (f + x) is  V19() V22( REAL ) V23( REAL )  Function-like  V36() V37() V38()  Element of K6(K7(REAL,REAL))
 
(1 / 2) (#) (ln * (f + x)) is  V19() V22( REAL ) V23( REAL )  Function-like  V36() V37() V38()  Element of K6(K7(REAL,REAL))
 
((id Z) (#) ()) + ((1 / 2) (#) (ln * (f + x))) is  V19() V22( REAL ) V23( REAL )  Function-like  V36() V37() V38()  Element of K6(K7(REAL,REAL))
 
 dom (((id Z) (#) ()) + ((1 / 2) (#) (ln * (f + x)))) is  V46() V47() V48()  Element of K6(REAL)
 
(((id Z) (#) ()) + ((1 / 2) (#) (ln * (f + x)))) `| Z is  V19() V22( REAL ) V23( REAL )  Function-like  V36() V37() V38()  Element of K6(K7(REAL,REAL))
 
 dom ((id Z) (#) ()) is  V46() V47() V48()  Element of K6(REAL)
 
 dom ((1 / 2) (#) (ln * (f + x))) is  V46() V47() V48()  Element of K6(REAL)
 
(dom ((id Z) (#) ())) /\ (dom ((1 / 2) (#) (ln * (f + x)))) is  V46() V47() V48()  set 
 
g is  V11()  real   ext-real   Element of  REAL 
 
((((id Z) (#) ()) + ((1 / 2) (#) (ln * (f + x)))) `| Z) . g is  V11()  real   ext-real   Element of  REAL 
 
() . g is  V11()  real   ext-real   Element of  REAL 
 
 diff (((id Z) (#) ()),g) is  V11()  real   ext-real   Element of  REAL 
 
 diff (((1 / 2) (#) (ln * (f + x))),g) is  V11()  real   ext-real   Element of  REAL 
 
(diff (((id Z) (#) ()),g)) + (diff (((1 / 2) (#) (ln * (f + x))),g)) is  V11()  real   ext-real   Element of  REAL 
 
((id Z) (#) ()) `| Z is  V19() V22( REAL ) V23( REAL )  Function-like  V36() V37() V38()  Element of K6(K7(REAL,REAL))
 
(((id Z) (#) ()) `| Z) . g is  V11()  real   ext-real   Element of  REAL 
 
((((id Z) (#) ()) `| Z) . g) + (diff (((1 / 2) (#) (ln * (f + x))),g)) is  V11()  real   ext-real   Element of  REAL 
 
((1 / 2) (#) (ln * (f + x))) `| Z is  V19() V22( REAL ) V23( REAL )  Function-like  V36() V37() V38()  Element of K6(K7(REAL,REAL))
 
(((1 / 2) (#) (ln * (f + x))) `| Z) . g is  V11()  real   ext-real   Element of  REAL 
 
((((id Z) (#) ()) `| Z) . g) + ((((1 / 2) (#) (ln * (f + x))) `| Z) . g) is  V11()  real   ext-real   Element of  REAL 
 
g ^2  is  V11()  real   ext-real   Element of  REAL 
 
g * g is  V11()  real   ext-real   set 
 
1 + (g ^2) is  V11()  real   ext-real   Element of  REAL 
 
g / (1 + (g ^2)) is  V11()  real   ext-real   Element of  REAL 
 
(1 + (g ^2)) "  is  V11()  real   ext-real   set 
 
g * ((1 + (g ^2)) ") is  V11()  real   ext-real   set 
 
(() . g) - (g / (1 + (g ^2))) is  V11()  real   ext-real   Element of  REAL 
 
 - (g / (1 + (g ^2))) is  V11()  real   ext-real   set 
 
(() . g) + (- (g / (1 + (g ^2)))) is  V11()  real   ext-real   set 
 
((() . g) - (g / (1 + (g ^2)))) + ((((1 / 2) (#) (ln * (f + x))) `| Z) . g) is  V11()  real   ext-real   Element of  REAL 
 
((() . g) - (g / (1 + (g ^2)))) + (g / (1 + (g ^2))) is  V11()  real   ext-real   Element of  REAL 
 
g is  V11()  real   ext-real   Element of  REAL 
 
((((id Z) (#) ()) + ((1 / 2) (#) (ln * (f + x)))) `| Z) . g is  V11()  real   ext-real   Element of  REAL 
 
() . g is  V11()  real   ext-real   Element of  REAL 
 
Z is  V11()  real   ext-real   Element of  REAL 
 
f is   open  V46() V47() V48()  Element of K6(REAL)
 
 id f is  V19() V22( REAL ) V23( REAL )  Function-like   one-to-one  V36() V37() V38()  Element of K6(K7(REAL,REAL))
 
x is  V19() V22( REAL ) V23( REAL )  Function-like  V36() V37() V38()  Element of K6(K7(REAL,REAL))
 
() * x is  V19() V22( REAL ) V23( REAL )  Function-like  V36() V37() V38()  Element of K6(K7(REAL,REAL))
 
(id f) (#) (() * x) is  V19() V22( REAL ) V23( REAL )  Function-like  V36() V37() V38()  Element of K6(K7(REAL,REAL))
 
 dom ((id f) (#) (() * x)) is  V46() V47() V48()  Element of K6(REAL)
 
((id f) (#) (() * x)) `| f is  V19() V22( REAL ) V23( REAL )  Function-like  V36() V37() V38()  Element of K6(K7(REAL,REAL))
 
 dom (id f) is  V46() V47() V48()  Element of K6(REAL)
 
 dom (() * x) is  V46() V47() V48()  Element of K6(REAL)
 
(dom (id f)) /\ (dom (() * x)) is  V46() V47() V48()  set 
 
1 / Z is  V11()  real   ext-real   Element of  REAL 
 
Z "  is  V11()  real   ext-real   set 
 
1 * (Z ") is  V11()  real   ext-real   set 
 
g is  V11()  real   ext-real   Element of  REAL 
 
x . g is  V11()  real   ext-real   Element of  REAL 
 
(1 / Z) * g is  V11()  real   ext-real   Element of  REAL 
 
((1 / Z) * g) + 0 is  V11()  real   ext-real   Element of  REAL 
 
g / Z is  V11()  real   ext-real   Element of  REAL 
 
g * (Z ") is  V11()  real   ext-real   set 
 
g is  V11()  real   ext-real   Element of  REAL 
 
x . g is  V11()  real   ext-real   Element of  REAL 
 
(1 / Z) * g is  V11()  real   ext-real   Element of  REAL 
 
((1 / Z) * g) + 0 is  V11()  real   ext-real   Element of  REAL 
 
g is  V11()  real   ext-real   Element of  REAL 
 
(id f) . g is  V11()  real   ext-real   Element of  REAL 
 
1 * g is  V11()  real   ext-real   Element of  REAL 
 
(1 * g) + 0 is  V11()  real   ext-real   Element of  REAL 
 
(() * x) `| f is  V19() V22( REAL ) V23( REAL )  Function-like  V36() V37() V38()  Element of K6(K7(REAL,REAL))
 
g is  V11()  real   ext-real   Element of  REAL 
 
((() * x) `| f) . g is  V11()  real   ext-real   Element of  REAL 
 
g / Z is  V11()  real   ext-real   Element of  REAL 
 
g * (Z ") is  V11()  real   ext-real   set 
 
(g / Z) ^2  is  V11()  real   ext-real   Element of  REAL 
 
(g / Z) * (g / Z) is  V11()  real   ext-real   set 
 
1 + ((g / Z) ^2) is  V11()  real   ext-real   Element of  REAL 
 
Z * (1 + ((g / Z) ^2)) is  V11()  real   ext-real   Element of  REAL 
 
1 / (Z * (1 + ((g / Z) ^2))) is  V11()  real   ext-real   Element of  REAL 
 
(Z * (1 + ((g / Z) ^2))) "  is  V11()  real   ext-real   set 
 
1 * ((Z * (1 + ((g / Z) ^2))) ") is  V11()  real   ext-real   set 
 
(1 / Z) * g is  V11()  real   ext-real   Element of  REAL 
 
((1 / Z) * g) + 0 is  V11()  real   ext-real   Element of  REAL 
 
(((1 / Z) * g) + 0) ^2  is  V11()  real   ext-real   Element of  REAL 
 
(((1 / Z) * g) + 0) * (((1 / Z) * g) + 0) is  V11()  real   ext-real   set 
 
1 + ((((1 / Z) * g) + 0) ^2) is  V11()  real   ext-real   Element of  REAL 
 
(1 / Z) / (1 + ((((1 / Z) * g) + 0) ^2)) is  V11()  real   ext-real   Element of  REAL 
 
(1 + ((((1 / Z) * g) + 0) ^2)) "  is  V11()  real   ext-real   set 
 
(1 / Z) * ((1 + ((((1 / Z) * g) + 0) ^2)) ") is  V11()  real   ext-real   set 
 
g is  V11()  real   ext-real   Element of  REAL 
 
(((id f) (#) (() * x)) `| f) . g is  V11()  real   ext-real   Element of  REAL 
 
g / Z is  V11()  real   ext-real   Element of  REAL 
 
g * (Z ") is  V11()  real   ext-real   set 
 
() . (g / Z) is  V11()  real   ext-real   Element of  REAL 
 
(g / Z) ^2  is  V11()  real   ext-real   Element of  REAL 
 
(g / Z) * (g / Z) is  V11()  real   ext-real   set 
 
1 + ((g / Z) ^2) is  V11()  real   ext-real   Element of  REAL 
 
Z * (1 + ((g / Z) ^2)) is  V11()  real   ext-real   Element of  REAL 
 
g / (Z * (1 + ((g / Z) ^2))) is  V11()  real   ext-real   Element of  REAL 
 
(Z * (1 + ((g / Z) ^2))) "  is  V11()  real   ext-real   set 
 
g * ((Z * (1 + ((g / Z) ^2))) ") is  V11()  real   ext-real   set 
 
(() . (g / Z)) + (g / (Z * (1 + ((g / Z) ^2)))) is  V11()  real   ext-real   Element of  REAL 
 
(() * x) . g is  V11()  real   ext-real   Element of  REAL 
 
x . g is  V11()  real   ext-real   Element of  REAL 
 
() . (x . g) is  V11()  real   ext-real   Element of  REAL 
 
 diff ((id f),g) is  V11()  real   ext-real   Element of  REAL 
 
((() * x) . g) * (diff ((id f),g)) is  V11()  real   ext-real   Element of  REAL 
 
(id f) . g is  V11()  real   ext-real   Element of  REAL 
 
 diff ((() * x),g) is  V11()  real   ext-real   Element of  REAL 
 
((id f) . g) * (diff ((() * x),g)) is  V11()  real   ext-real   Element of  REAL 
 
(((() * x) . g) * (diff ((id f),g))) + (((id f) . g) * (diff ((() * x),g))) is  V11()  real   ext-real   Element of  REAL 
 
(id f) `| f is  V19() V22( REAL ) V23( REAL )  Function-like  V36() V37() V38()  Element of K6(K7(REAL,REAL))
 
((id f) `| f) . g is  V11()  real   ext-real   Element of  REAL 
 
((() * x) . g) * (((id f) `| f) . g) is  V11()  real   ext-real   Element of  REAL 
 
(((() * x) . g) * (((id f) `| f) . g)) + (((id f) . g) * (diff ((() * x),g))) is  V11()  real   ext-real   Element of  REAL 
 
((() * x) . g) * 1 is  V11()  real   ext-real   Element of  REAL 
 
(((() * x) . g) * 1) + (((id f) . g) * (diff ((() * x),g))) is  V11()  real   ext-real   Element of  REAL 
 
((() * x) `| f) . g is  V11()  real   ext-real   Element of  REAL 
 
((id f) . g) * (((() * x) `| f) . g) is  V11()  real   ext-real   Element of  REAL 
 
(((() * x) . g) * 1) + (((id f) . g) * (((() * x) `| f) . g)) is  V11()  real   ext-real   Element of  REAL 
 
g * (((() * x) `| f) . g) is  V11()  real   ext-real   Element of  REAL 
 
((() * x) . g) + (g * (((() * x) `| f) . g)) is  V11()  real   ext-real   Element of  REAL 
 
1 / (Z * (1 + ((g / Z) ^2))) is  V11()  real   ext-real   Element of  REAL 
 
1 * ((Z * (1 + ((g / Z) ^2))) ") is  V11()  real   ext-real   set 
 
g * (1 / (Z * (1 + ((g / Z) ^2)))) is  V11()  real   ext-real   Element of  REAL 
 
(() . (g / Z)) + (g * (1 / (Z * (1 + ((g / Z) ^2))))) is  V11()  real   ext-real   Element of  REAL 
 
g is  V11()  real   ext-real   Element of  REAL 
 
(((id f) (#) (() * x)) `| f) . g is  V11()  real   ext-real   Element of  REAL 
 
g / Z is  V11()  real   ext-real   Element of  REAL 
 
g * (Z ") is  V11()  real   ext-real   set 
 
() . (g / Z) is  V11()  real   ext-real   Element of  REAL 
 
(g / Z) ^2  is  V11()  real   ext-real   Element of  REAL 
 
(g / Z) * (g / Z) is  V11()  real   ext-real   set 
 
1 + ((g / Z) ^2) is  V11()  real   ext-real   Element of  REAL 
 
Z * (1 + ((g / Z) ^2)) is  V11()  real   ext-real   Element of  REAL 
 
g / (Z * (1 + ((g / Z) ^2))) is  V11()  real   ext-real   Element of  REAL 
 
(Z * (1 + ((g / Z) ^2))) "  is  V11()  real   ext-real   set 
 
g * ((Z * (1 + ((g / Z) ^2))) ") is  V11()  real   ext-real   set 
 
(() . (g / Z)) + (g / (Z * (1 + ((g / Z) ^2)))) is  V11()  real   ext-real   Element of  REAL 
 
Z is  V11()  real   ext-real   Element of  REAL 
 
f is   open  V46() V47() V48()  Element of K6(REAL)
 
 id f is  V19() V22( REAL ) V23( REAL )  Function-like   one-to-one  V36() V37() V38()  Element of K6(K7(REAL,REAL))
 
x is  V19() V22( REAL ) V23( REAL )  Function-like  V36() V37() V38()  Element of K6(K7(REAL,REAL))
 
() * x is  V19() V22( REAL ) V23( REAL )  Function-like  V36() V37() V38()  Element of K6(K7(REAL,REAL))
 
(id f) (#) (() * x) is  V19() V22( REAL ) V23( REAL )  Function-like  V36() V37() V38()  Element of K6(K7(REAL,REAL))
 
 dom ((id f) (#) (() * x)) is  V46() V47() V48()  Element of K6(REAL)
 
((id f) (#) (() * x)) `| f is  V19() V22( REAL ) V23( REAL )  Function-like  V36() V37() V38()  Element of K6(K7(REAL,REAL))
 
 dom (id f) is  V46() V47() V48()  Element of K6(REAL)
 
 dom (() * x) is  V46() V47() V48()  Element of K6(REAL)
 
(dom (id f)) /\ (dom (() * x)) is  V46() V47() V48()  set 
 
1 / Z is  V11()  real   ext-real   Element of  REAL 
 
Z "  is  V11()  real   ext-real   set 
 
1 * (Z ") is  V11()  real   ext-real   set 
 
g is  V11()  real   ext-real   Element of  REAL 
 
x . g is  V11()  real   ext-real   Element of  REAL 
 
(1 / Z) * g is  V11()  real   ext-real   Element of  REAL 
 
((1 / Z) * g) + 0 is  V11()  real   ext-real   Element of  REAL 
 
g / Z is  V11()  real   ext-real   Element of  REAL 
 
g * (Z ") is  V11()  real   ext-real   set 
 
g is  V11()  real   ext-real   Element of  REAL 
 
x . g is  V11()  real   ext-real   Element of  REAL 
 
(1 / Z) * g is  V11()  real   ext-real   Element of  REAL 
 
((1 / Z) * g) + 0 is  V11()  real   ext-real   Element of  REAL 
 
g is  V11()  real   ext-real   Element of  REAL 
 
(id f) . g is  V11()  real   ext-real   Element of  REAL 
 
1 * g is  V11()  real   ext-real   Element of  REAL 
 
(1 * g) + 0 is  V11()  real   ext-real   Element of  REAL 
 
(() * x) `| f is  V19() V22( REAL ) V23( REAL )  Function-like  V36() V37() V38()  Element of K6(K7(REAL,REAL))
 
g is  V11()  real   ext-real   Element of  REAL 
 
((() * x) `| f) . g is  V11()  real   ext-real   Element of  REAL 
 
g / Z is  V11()  real   ext-real   Element of  REAL 
 
g * (Z ") is  V11()  real   ext-real   set 
 
(g / Z) ^2  is  V11()  real   ext-real   Element of  REAL 
 
(g / Z) * (g / Z) is  V11()  real   ext-real   set 
 
1 + ((g / Z) ^2) is  V11()  real   ext-real   Element of  REAL 
 
Z * (1 + ((g / Z) ^2)) is  V11()  real   ext-real   Element of  REAL 
 
1 / (Z * (1 + ((g / Z) ^2))) is  V11()  real   ext-real   Element of  REAL 
 
(Z * (1 + ((g / Z) ^2))) "  is  V11()  real   ext-real   set 
 
1 * ((Z * (1 + ((g / Z) ^2))) ") is  V11()  real   ext-real   set 
 
 - (1 / (Z * (1 + ((g / Z) ^2)))) is  V11()  real   ext-real   Element of  REAL 
 
(1 / Z) * g is  V11()  real   ext-real   Element of  REAL 
 
((1 / Z) * g) + 0 is  V11()  real   ext-real   Element of  REAL 
 
(((1 / Z) * g) + 0) ^2  is  V11()  real   ext-real   Element of  REAL 
 
(((1 / Z) * g) + 0) * (((1 / Z) * g) + 0) is  V11()  real   ext-real   set 
 
1 + ((((1 / Z) * g) + 0) ^2) is  V11()  real   ext-real   Element of  REAL 
 
(1 / Z) / (1 + ((((1 / Z) * g) + 0) ^2)) is  V11()  real   ext-real   Element of  REAL 
 
(1 + ((((1 / Z) * g) + 0) ^2)) "  is  V11()  real   ext-real   set 
 
(1 / Z) * ((1 + ((((1 / Z) * g) + 0) ^2)) ") is  V11()  real   ext-real   set 
 
 - ((1 / Z) / (1 + ((((1 / Z) * g) + 0) ^2))) is  V11()  real   ext-real   Element of  REAL 
 
g is  V11()  real   ext-real   Element of  REAL 
 
(((id f) (#) (() * x)) `| f) . g is  V11()  real   ext-real   Element of  REAL 
 
g / Z is  V11()  real   ext-real   Element of  REAL 
 
g * (Z ") is  V11()  real   ext-real   set 
 
() . (g / Z) is  V11()  real   ext-real   Element of  REAL 
 
(g / Z) ^2  is  V11()  real   ext-real   Element of  REAL 
 
(g / Z) * (g / Z) is  V11()  real   ext-real   set 
 
1 + ((g / Z) ^2) is  V11()  real   ext-real   Element of  REAL 
 
Z * (1 + ((g / Z) ^2)) is  V11()  real   ext-real   Element of  REAL 
 
g / (Z * (1 + ((g / Z) ^2))) is  V11()  real   ext-real   Element of  REAL 
 
(Z * (1 + ((g / Z) ^2))) "  is  V11()  real   ext-real   set 
 
g * ((Z * (1 + ((g / Z) ^2))) ") is  V11()  real   ext-real   set 
 
(() . (g / Z)) - (g / (Z * (1 + ((g / Z) ^2)))) is  V11()  real   ext-real   Element of  REAL 
 
 - (g / (Z * (1 + ((g / Z) ^2)))) is  V11()  real   ext-real   set 
 
(() . (g / Z)) + (- (g / (Z * (1 + ((g / Z) ^2))))) is  V11()  real   ext-real   set 
 
(() * x) . g is  V11()  real   ext-real   Element of  REAL 
 
x . g is  V11()  real   ext-real   Element of  REAL 
 
() . (x . g) is  V11()  real   ext-real   Element of  REAL 
 
 diff ((id f),g) is  V11()  real   ext-real   Element of  REAL 
 
((() * x) . g) * (diff ((id f),g)) is  V11()  real   ext-real   Element of  REAL 
 
(id f) . g is  V11()  real   ext-real   Element of  REAL 
 
 diff ((() * x),g) is  V11()  real   ext-real   Element of  REAL 
 
((id f) . g) * (diff ((() * x),g)) is  V11()  real   ext-real   Element of  REAL 
 
(((() * x) . g) * (diff ((id f),g))) + (((id f) . g) * (diff ((() * x),g))) is  V11()  real   ext-real   Element of  REAL 
 
(id f) `| f is  V19() V22( REAL ) V23( REAL )  Function-like  V36() V37() V38()  Element of K6(K7(REAL,REAL))
 
((id f) `| f) . g is  V11()  real   ext-real   Element of  REAL 
 
((() * x) . g) * (((id f) `| f) . g) is  V11()  real   ext-real   Element of  REAL 
 
(((() * x) . g) * (((id f) `| f) . g)) + (((id f) . g) * (diff ((() * x),g))) is  V11()  real   ext-real   Element of  REAL 
 
((() * x) . g) * 1 is  V11()  real   ext-real   Element of  REAL 
 
(((() * x) . g) * 1) + (((id f) . g) * (diff ((() * x),g))) is  V11()  real   ext-real   Element of  REAL 
 
((() * x) `| f) . g is  V11()  real   ext-real   Element of  REAL 
 
((id f) . g) * (((() * x) `| f) . g) is  V11()  real   ext-real   Element of  REAL 
 
(((() * x) . g) * 1) + (((id f) . g) * (((() * x) `| f) . g)) is  V11()  real   ext-real   Element of  REAL 
 
g * (((() * x) `| f) . g) is  V11()  real   ext-real   Element of  REAL 
 
((() * x) . g) + (g * (((() * x) `| f) . g)) is  V11()  real   ext-real   Element of  REAL 
 
1 / (Z * (1 + ((g / Z) ^2))) is  V11()  real   ext-real   Element of  REAL 
 
1 * ((Z * (1 + ((g / Z) ^2))) ") is  V11()  real   ext-real   set 
 
 - (1 / (Z * (1 + ((g / Z) ^2)))) is  V11()  real   ext-real   Element of  REAL 
 
g * (- (1 / (Z * (1 + ((g / Z) ^2))))) is  V11()  real   ext-real   Element of  REAL 
 
(() . (g / Z)) + (g * (- (1 / (Z * (1 + ((g / Z) ^2)))))) is  V11()  real   ext-real   Element of  REAL 
 
g is  V11()  real   ext-real   Element of  REAL 
 
(((id f) (#) (() * x)) `| f) . g is  V11()  real   ext-real   Element of  REAL 
 
g / Z is  V11()  real   ext-real   Element of  REAL 
 
g * (Z ") is  V11()  real   ext-real   set 
 
() . (g / Z) is  V11()  real   ext-real   Element of  REAL 
 
(g / Z) ^2  is  V11()  real   ext-real   Element of  REAL 
 
(g / Z) * (g / Z) is  V11()  real   ext-real   set 
 
1 + ((g / Z) ^2) is  V11()  real   ext-real   Element of  REAL 
 
Z * (1 + ((g / Z) ^2)) is  V11()  real   ext-real   Element of  REAL 
 
g / (Z * (1 + ((g / Z) ^2))) is  V11()  real   ext-real   Element of  REAL 
 
(Z * (1 + ((g / Z) ^2))) "  is  V11()  real   ext-real   set 
 
g * ((Z * (1 + ((g / Z) ^2))) ") is  V11()  real   ext-real   set 
 
(() . (g / Z)) - (g / (Z * (1 + ((g / Z) ^2)))) is  V11()  real   ext-real   Element of  REAL 
 
 - (g / (Z * (1 + ((g / Z) ^2)))) is  V11()  real   ext-real   set 
 
(() . (g / Z)) + (- (g / (Z * (1 + ((g / Z) ^2))))) is  V11()  real   ext-real   set 
 
Z is  V11()  real   ext-real   Element of  REAL 
 
Z ^2  is  V11()  real   ext-real   Element of  REAL 
 
Z * Z is  V11()  real   ext-real   set 
 
f is   open  V46() V47() V48()  Element of K6(REAL)
 
x is  V19() V22( REAL ) V23( REAL )  Function-like  V36() V37() V38()  Element of K6(K7(REAL,REAL))
 
g is  V19() V22( REAL ) V23( REAL )  Function-like  V36() V37() V38()  Element of K6(K7(REAL,REAL))
 
x + g is  V19() V22( REAL ) V23( REAL )  Function-like  V36() V37() V38()  Element of K6(K7(REAL,REAL))
 
 dom (x + g) is  V46() V47() V48()  Element of K6(REAL)
 
(x + g) `| f is  V19() V22( REAL ) V23( REAL )  Function-like  V36() V37() V38()  Element of K6(K7(REAL,REAL))
 
x is  V19() V22( REAL ) V23( REAL )  Function-like  V36() V37() V38()  Element of K6(K7(REAL,REAL))
 
(#Z 2) * x is  V19() V22( REAL ) V23( REAL )  Function-like  V36() V37() V38()  Element of K6(K7(REAL,REAL))
 
f1 is  V11()  real   ext-real   Element of  REAL 
 
x . f1 is  V11()  real   ext-real   Element of  REAL 
 
0 * f1 is  V11()  real   ext-real   Element of  REAL 
 
(0 * f1) + 1 is  V11()  real   ext-real   Element of  REAL 
 
 dom x is  V46() V47() V48()  Element of K6(REAL)
 
 dom g is  V46() V47() V48()  Element of K6(REAL)
 
(dom x) /\ (dom g) is  V46() V47() V48()  set 
 
1 / Z is  V11()  real   ext-real   Element of  REAL 
 
Z "  is  V11()  real   ext-real   set 
 
1 * (Z ") is  V11()  real   ext-real   set 
 
f1 is  V11()  real   ext-real   Element of  REAL 
 
x . f1 is  V11()  real   ext-real   Element of  REAL 
 
(1 / Z) * f1 is  V11()  real   ext-real   Element of  REAL 
 
((1 / Z) * f1) + 0 is  V11()  real   ext-real   Element of  REAL 
 
f1 / Z is  V11()  real   ext-real   Element of  REAL 
 
f1 * (Z ") is  V11()  real   ext-real   set 
 
f1 is  V11()  real   ext-real   Element of  REAL 
 
 dom ((#Z 2) * x) is  V46() V47() V48()  Element of K6(REAL)
 
 dom x is  V46() V47() V48()  Element of K6(REAL)
 
f2 is    set 
 
g `| f is  V19() V22( REAL ) V23( REAL )  Function-like  V36() V37() V38()  Element of K6(K7(REAL,REAL))
 
f1 is  V11()  real   ext-real   Element of  REAL 
 
(g `| f) . f1 is  V11()  real   ext-real   Element of  REAL 
 
2 * f1 is  V11()  real   ext-real   Element of  REAL 
 
(2 * f1) / (Z ^2) is  V11()  real   ext-real   Element of  REAL 
 
(Z ^2) "  is  V11()  real   ext-real   set 
 
(2 * f1) * ((Z ^2) ") is  V11()  real   ext-real   set 
 
 dom ((#Z 2) * x) is  V46() V47() V48()  Element of K6(REAL)
 
 dom x is  V46() V47() V48()  Element of K6(REAL)
 
f2 is    set 
 
 diff (((#Z 2) * x),f1) is  V11()  real   ext-real   Element of  REAL 
 
x . f1 is  V11()  real   ext-real   Element of  REAL 
 
2 - 1 is  V11()  real   ext-real  V63()  Element of  REAL 
 
 - 1 is   non  empty  V11()  real   ext-real   non  positive   negative  V63()  set 
 
2 + (- 1) is  V11()  real   ext-real  V63()  set 
 
(x . f1) #Z (2 - 1) is  V11()  real   ext-real   Element of  REAL 
 
2 * ((x . f1) #Z (2 - 1)) is  V11()  real   ext-real   Element of  REAL 
 
 diff (x,f1) is  V11()  real   ext-real   Element of  REAL 
 
(2 * ((x . f1) #Z (2 - 1))) * (diff (x,f1)) is  V11()  real   ext-real   Element of  REAL 
 
2 * (x . f1) is  V11()  real   ext-real   Element of  REAL 
 
(2 * (x . f1)) * (diff (x,f1)) is  V11()  real   ext-real   Element of  REAL 
 
f1 / Z is  V11()  real   ext-real   Element of  REAL 
 
f1 * (Z ") is  V11()  real   ext-real   set 
 
2 * (f1 / Z) is  V11()  real   ext-real   Element of  REAL 
 
(2 * (f1 / Z)) * (diff (x,f1)) is  V11()  real   ext-real   Element of  REAL 
 
x `| f is  V19() V22( REAL ) V23( REAL )  Function-like  V36() V37() V38()  Element of K6(K7(REAL,REAL))
 
(x `| f) . f1 is  V11()  real   ext-real   Element of  REAL 
 
(2 * (f1 / Z)) * ((x `| f) . f1) is  V11()  real   ext-real   Element of  REAL 
 
(2 * (f1 / Z)) * (1 / Z) is  V11()  real   ext-real   Element of  REAL 
 
(f1 / Z) * (1 / Z) is  V11()  real   ext-real   Element of  REAL 
 
2 * ((f1 / Z) * (1 / Z)) is  V11()  real   ext-real   Element of  REAL 
 
f1 * 1 is  V11()  real   ext-real   Element of  REAL 
 
Z * Z is  V11()  real   ext-real   Element of  REAL 
 
(f1 * 1) / (Z * Z) is  V11()  real   ext-real   Element of  REAL 
 
(Z * Z) "  is  V11()  real   ext-real   set 
 
(f1 * 1) * ((Z * Z) ") is  V11()  real   ext-real   set 
 
2 * ((f1 * 1) / (Z * Z)) is  V11()  real   ext-real   Element of  REAL 
 
f1 is  V11()  real   ext-real   Element of  REAL 
 
((x + g) `| f) . f1 is  V11()  real   ext-real   Element of  REAL 
 
2 * f1 is  V11()  real   ext-real   Element of  REAL 
 
(2 * f1) / (Z ^2) is  V11()  real   ext-real   Element of  REAL 
 
(Z ^2) "  is  V11()  real   ext-real   set 
 
(2 * f1) * ((Z ^2) ") is  V11()  real   ext-real   set 
 
 diff (x,f1) is  V11()  real   ext-real   Element of  REAL 
 
 diff (g,f1) is  V11()  real   ext-real   Element of  REAL 
 
(diff (x,f1)) + (diff (g,f1)) is  V11()  real   ext-real   Element of  REAL 
 
x `| f is  V19() V22( REAL ) V23( REAL )  Function-like  V36() V37() V38()  Element of K6(K7(REAL,REAL))
 
(x `| f) . f1 is  V11()  real   ext-real   Element of  REAL 
 
((x `| f) . f1) + (diff (g,f1)) is  V11()  real   ext-real   Element of  REAL 
 
(g `| f) . f1 is  V11()  real   ext-real   Element of  REAL 
 
((x `| f) . f1) + ((g `| f) . f1) is  V11()  real   ext-real   Element of  REAL 
 
0 + ((g `| f) . f1) is  V11()  real   ext-real   Element of  REAL 
 
f1 is  V11()  real   ext-real   Element of  REAL 
 
((x + g) `| f) . f1 is  V11()  real   ext-real   Element of  REAL 
 
2 * f1 is  V11()  real   ext-real   Element of  REAL 
 
(2 * f1) / (Z ^2) is  V11()  real   ext-real   Element of  REAL 
 
(Z ^2) "  is  V11()  real   ext-real   set 
 
(2 * f1) * ((Z ^2) ") is  V11()  real   ext-real   set 
 
Z is  V11()  real   ext-real   Element of  REAL 
 
Z / 2 is  V11()  real   ext-real   Element of  REAL 
 
Z * (2 ") is  V11()  real   ext-real   set 
 
f is   open  V46() V47() V48()  Element of K6(REAL)
 
x is  V19() V22( REAL ) V23( REAL )  Function-like  V36() V37() V38()  Element of K6(K7(REAL,REAL))
 
g is  V19() V22( REAL ) V23( REAL )  Function-like  V36() V37() V38()  Element of K6(K7(REAL,REAL))
 
x + g is  V19() V22( REAL ) V23( REAL )  Function-like  V36() V37() V38()  Element of K6(K7(REAL,REAL))
 
ln * (x + g) is  V19() V22( REAL ) V23( REAL )  Function-like  V36() V37() V38()  Element of K6(K7(REAL,REAL))
 
(Z / 2) (#) (ln * (x + g)) is  V19() V22( REAL ) V23( REAL )  Function-like  V36() V37() V38()  Element of K6(K7(REAL,REAL))
 
 dom ((Z / 2) (#) (ln * (x + g))) is  V46() V47() V48()  Element of K6(REAL)
 
((Z / 2) (#) (ln * (x + g))) `| f is  V19() V22( REAL ) V23( REAL )  Function-like  V36() V37() V38()  Element of K6(K7(REAL,REAL))
 
x is  V19() V22( REAL ) V23( REAL )  Function-like  V36() V37() V38()  Element of K6(K7(REAL,REAL))
 
(#Z 2) * x is  V19() V22( REAL ) V23( REAL )  Function-like  V36() V37() V38()  Element of K6(K7(REAL,REAL))
 
 dom (ln * (x + g)) is  V46() V47() V48()  Element of K6(REAL)
 
 dom (x + g) is  V46() V47() V48()  Element of K6(REAL)
 
f1 is    set 
 
 dom x is  V46() V47() V48()  Element of K6(REAL)
 
 dom g is  V46() V47() V48()  Element of K6(REAL)
 
(dom x) /\ (dom g) is  V46() V47() V48()  set 
 
f1 is  V11()  real   ext-real   Element of  REAL 
 
(x + g) . f1 is  V11()  real   ext-real   Element of  REAL 
 
x . f1 is  V11()  real   ext-real   Element of  REAL 
 
g . f1 is  V11()  real   ext-real   Element of  REAL 
 
(x . f1) + (g . f1) is  V11()  real   ext-real   Element of  REAL 
 
((#Z 2) * x) . f1 is  V11()  real   ext-real   Element of  REAL 
 
1 + (((#Z 2) * x) . f1) is  V11()  real   ext-real   Element of  REAL 
 
x . f1 is  V11()  real   ext-real   Element of  REAL 
 
(#Z 2) . (x . f1) is  V11()  real   ext-real   Element of  REAL 
 
1 + ((#Z 2) . (x . f1)) is  V11()  real   ext-real   Element of  REAL 
 
f1 / Z is  V11()  real   ext-real   Element of  REAL 
 
Z "  is  V11()  real   ext-real   set 
 
f1 * (Z ") is  V11()  real   ext-real   set 
 
(#Z 2) . (f1 / Z) is  V11()  real   ext-real   Element of  REAL 
 
1 + ((#Z 2) . (f1 / Z)) is  V11()  real   ext-real   Element of  REAL 
 
1 + 1 is   non  empty  V11()  real   ext-real   positive   non  negative  V63()  Element of  REAL 
 
(f1 / Z) #Z (1 + 1) is  V11()  real   ext-real   Element of  REAL 
 
1 + ((f1 / Z) #Z (1 + 1)) is  V11()  real   ext-real   Element of  REAL 
 
(f1 / Z) #Z 1 is  V11()  real   ext-real   Element of  REAL 
 
((f1 / Z) #Z 1) * ((f1 / Z) #Z 1) is  V11()  real   ext-real   Element of  REAL 
 
1 + (((f1 / Z) #Z 1) * ((f1 / Z) #Z 1)) is  V11()  real   ext-real   Element of  REAL 
 
(f1 / Z) * ((f1 / Z) #Z 1) is  V11()  real   ext-real   Element of  REAL 
 
1 + ((f1 / Z) * ((f1 / Z) #Z 1)) is  V11()  real   ext-real   Element of  REAL 
 
(f1 / Z) * (f1 / Z) is  V11()  real   ext-real   Element of  REAL 
 
1 + ((f1 / Z) * (f1 / Z)) is  V11()  real   ext-real   Element of  REAL 
 
f1 is  V11()  real   ext-real   Element of  REAL 
 
(((Z / 2) (#) (ln * (x + g))) `| f) . f1 is  V11()  real   ext-real   Element of  REAL 
 
f1 / Z is  V11()  real   ext-real   Element of  REAL 
 
Z "  is  V11()  real   ext-real   set 
 
f1 * (Z ") is  V11()  real   ext-real   set 
 
(f1 / Z) ^2  is  V11()  real   ext-real   Element of  REAL 
 
(f1 / Z) * (f1 / Z) is  V11()  real   ext-real   set 
 
1 + ((f1 / Z) ^2) is  V11()  real   ext-real   Element of  REAL 
 
Z * (1 + ((f1 / Z) ^2)) is  V11()  real   ext-real   Element of  REAL 
 
f1 / (Z * (1 + ((f1 / Z) ^2))) is  V11()  real   ext-real   Element of  REAL 
 
(Z * (1 + ((f1 / Z) ^2))) "  is  V11()  real   ext-real   set 
 
f1 * ((Z * (1 + ((f1 / Z) ^2))) ") is  V11()  real   ext-real   set 
 
(x + g) . f1 is  V11()  real   ext-real   Element of  REAL 
 
x . f1 is  V11()  real   ext-real   Element of  REAL 
 
g . f1 is  V11()  real   ext-real   Element of  REAL 
 
(x . f1) + (g . f1) is  V11()  real   ext-real   Element of  REAL 
 
((#Z 2) * x) . f1 is  V11()  real   ext-real   Element of  REAL 
 
1 + (((#Z 2) * x) . f1) is  V11()  real   ext-real   Element of  REAL 
 
x . f1 is  V11()  real   ext-real   Element of  REAL 
 
(#Z 2) . (x . f1) is  V11()  real   ext-real   Element of  REAL 
 
1 + ((#Z 2) . (x . f1)) is  V11()  real   ext-real   Element of  REAL 
 
(#Z 2) . (f1 / Z) is  V11()  real   ext-real   Element of  REAL 
 
1 + ((#Z 2) . (f1 / Z)) is  V11()  real   ext-real   Element of  REAL 
 
1 + 1 is   non  empty  V11()  real   ext-real   positive   non  negative  V63()  Element of  REAL 
 
(f1 / Z) #Z (1 + 1) is  V11()  real   ext-real   Element of  REAL 
 
1 + ((f1 / Z) #Z (1 + 1)) is  V11()  real   ext-real   Element of  REAL 
 
(f1 / Z) #Z 1 is  V11()  real   ext-real   Element of  REAL 
 
((f1 / Z) #Z 1) * ((f1 / Z) #Z 1) is  V11()  real   ext-real   Element of  REAL 
 
1 + (((f1 / Z) #Z 1) * ((f1 / Z) #Z 1)) is  V11()  real   ext-real   Element of  REAL 
 
(f1 / Z) * ((f1 / Z) #Z 1) is  V11()  real   ext-real   Element of  REAL 
 
1 + ((f1 / Z) * ((f1 / Z) #Z 1)) is  V11()  real   ext-real   Element of  REAL 
 
(f1 / Z) * (f1 / Z) is  V11()  real   ext-real   Element of  REAL 
 
1 + ((f1 / Z) * (f1 / Z)) is  V11()  real   ext-real   Element of  REAL 
 
 diff ((ln * (x + g)),f1) is  V11()  real   ext-real   Element of  REAL 
 
 diff ((x + g),f1) is  V11()  real   ext-real   Element of  REAL 
 
(diff ((x + g),f1)) / ((x + g) . f1) is  V11()  real   ext-real   Element of  REAL 
 
((x + g) . f1) "  is  V11()  real   ext-real   set 
 
(diff ((x + g),f1)) * (((x + g) . f1) ") is  V11()  real   ext-real   set 
 
(x + g) `| f is  V19() V22( REAL ) V23( REAL )  Function-like  V36() V37() V38()  Element of K6(K7(REAL,REAL))
 
((x + g) `| f) . f1 is  V11()  real   ext-real   Element of  REAL 
 
(((x + g) `| f) . f1) / ((x + g) . f1) is  V11()  real   ext-real   Element of  REAL 
 
(((x + g) `| f) . f1) * (((x + g) . f1) ") is  V11()  real   ext-real   set 
 
2 * f1 is  V11()  real   ext-real   Element of  REAL 
 
Z ^2  is  V11()  real   ext-real   Element of  REAL 
 
Z * Z is  V11()  real   ext-real   set 
 
(2 * f1) / (Z ^2) is  V11()  real   ext-real   Element of  REAL 
 
(Z ^2) "  is  V11()  real   ext-real   set 
 
(2 * f1) * ((Z ^2) ") is  V11()  real   ext-real   set 
 
((2 * f1) / (Z ^2)) / (1 + ((f1 / Z) ^2)) is  V11()  real   ext-real   Element of  REAL 
 
(1 + ((f1 / Z) ^2)) "  is  V11()  real   ext-real   set 
 
((2 * f1) / (Z ^2)) * ((1 + ((f1 / Z) ^2)) ") is  V11()  real   ext-real   set 
 
(Z / 2) * (diff ((ln * (x + g)),f1)) is  V11()  real   ext-real   Element of  REAL 
 
Z * f1 is  V11()  real   ext-real   Element of  REAL 
 
(Z * f1) / (Z ^2) is  V11()  real   ext-real   Element of  REAL 
 
(Z * f1) * ((Z ^2) ") is  V11()  real   ext-real   set 
 
((Z * f1) / (Z ^2)) / (1 + ((f1 / Z) ^2)) is  V11()  real   ext-real   Element of  REAL 
 
((Z * f1) / (Z ^2)) * ((1 + ((f1 / Z) ^2)) ") is  V11()  real   ext-real   set 
 
Z / Z is  V11()  real   ext-real   Element of  REAL 
 
Z * (Z ") is  V11()  real   ext-real   set 
 
(Z / Z) * (f1 / Z) is  V11()  real   ext-real   Element of  REAL 
 
((Z / Z) * (f1 / Z)) / (1 + ((f1 / Z) ^2)) is  V11()  real   ext-real   Element of  REAL 
 
((Z / Z) * (f1 / Z)) * ((1 + ((f1 / Z) ^2)) ") is  V11()  real   ext-real   set 
 
1 * (f1 / Z) is  V11()  real   ext-real   Element of  REAL 
 
(1 * (f1 / Z)) / (1 + ((f1 / Z) ^2)) is  V11()  real   ext-real   Element of  REAL 
 
(1 * (f1 / Z)) * ((1 + ((f1 / Z) ^2)) ") is  V11()  real   ext-real   set 
 
f1 is  V11()  real   ext-real   Element of  REAL 
 
(((Z / 2) (#) (ln * (x + g))) `| f) . f1 is  V11()  real   ext-real   Element of  REAL 
 
f1 / Z is  V11()  real   ext-real   Element of  REAL 
 
Z "  is  V11()  real   ext-real   set 
 
f1 * (Z ") is  V11()  real   ext-real   set 
 
(f1 / Z) ^2  is  V11()  real   ext-real   Element of  REAL 
 
(f1 / Z) * (f1 / Z) is  V11()  real   ext-real   set 
 
1 + ((f1 / Z) ^2) is  V11()  real   ext-real   Element of  REAL 
 
Z * (1 + ((f1 / Z) ^2)) is  V11()  real   ext-real   Element of  REAL 
 
f1 / (Z * (1 + ((f1 / Z) ^2))) is  V11()  real   ext-real   Element of  REAL 
 
(Z * (1 + ((f1 / Z) ^2))) "  is  V11()  real   ext-real   set 
 
f1 * ((Z * (1 + ((f1 / Z) ^2))) ") is  V11()  real   ext-real   set 
 
Z is  V11()  real   ext-real   Element of  REAL 
 
Z / 2 is  V11()  real   ext-real   Element of  REAL 
 
Z * (2 ") is  V11()  real   ext-real   set 
 
f is   open  V46() V47() V48()  Element of K6(REAL)
 
 id f is  V19() V22( REAL ) V23( REAL )  Function-like   one-to-one  V36() V37() V38()  Element of K6(K7(REAL,REAL))
 
x is  V19() V22( REAL ) V23( REAL )  Function-like  V36() V37() V38()  Element of K6(K7(REAL,REAL))
 
() * x is  V19() V22( REAL ) V23( REAL )  Function-like  V36() V37() V38()  Element of K6(K7(REAL,REAL))
 
(id f) (#) (() * x) is  V19() V22( REAL ) V23( REAL )  Function-like  V36() V37() V38()  Element of K6(K7(REAL,REAL))
 
(#Z 2) * x is  V19() V22( REAL ) V23( REAL )  Function-like  V36() V37() V38()  Element of K6(K7(REAL,REAL))
 
g is  V19() V22( REAL ) V23( REAL )  Function-like  V36() V37() V38()  Element of K6(K7(REAL,REAL))
 
x is  V19() V22( REAL ) V23( REAL )  Function-like  V36() V37() V38()  Element of K6(K7(REAL,REAL))
 
g + x is  V19() V22( REAL ) V23( REAL )  Function-like  V36() V37() V38()  Element of K6(K7(REAL,REAL))
 
ln * (g + x) is  V19() V22( REAL ) V23( REAL )  Function-like  V36() V37() V38()  Element of K6(K7(REAL,REAL))
 
(Z / 2) (#) (ln * (g + x)) is  V19() V22( REAL ) V23( REAL )  Function-like  V36() V37() V38()  Element of K6(K7(REAL,REAL))
 
((id f) (#) (() * x)) - ((Z / 2) (#) (ln * (g + x))) is  V19() V22( REAL ) V23( REAL )  Function-like  V36() V37() V38()  Element of K6(K7(REAL,REAL))
 
 - ((Z / 2) (#) (ln * (g + x))) is  V19()  Function-like  V36()  set 
 
 - 1 is   non  empty  V11()  real   ext-real   non  positive   negative  V63()  set 
 
(- 1) (#) ((Z / 2) (#) (ln * (g + x))) is  V19()  Function-like   set 
 
((id f) (#) (() * x)) + (- ((Z / 2) (#) (ln * (g + x)))) is  V19()  Function-like   set 
 
 dom (((id f) (#) (() * x)) - ((Z / 2) (#) (ln * (g + x)))) is  V46() V47() V48()  Element of K6(REAL)
 
(((id f) (#) (() * x)) - ((Z / 2) (#) (ln * (g + x)))) `| f is  V19() V22( REAL ) V23( REAL )  Function-like  V36() V37() V38()  Element of K6(K7(REAL,REAL))
 
 dom ((id f) (#) (() * x)) is  V46() V47() V48()  Element of K6(REAL)
 
 dom ((Z / 2) (#) (ln * (g + x))) is  V46() V47() V48()  Element of K6(REAL)
 
(dom ((id f) (#) (() * x))) /\ (dom ((Z / 2) (#) (ln * (g + x)))) is  V46() V47() V48()  set 
 
f1 is  V11()  real   ext-real   Element of  REAL 
 
((((id f) (#) (() * x)) - ((Z / 2) (#) (ln * (g + x)))) `| f) . f1 is  V11()  real   ext-real   Element of  REAL 
 
f1 / Z is  V11()  real   ext-real   Element of  REAL 
 
Z "  is  V11()  real   ext-real   set 
 
f1 * (Z ") is  V11()  real   ext-real   set 
 
() . (f1 / Z) is  V11()  real   ext-real   Element of  REAL 
 
 diff (((id f) (#) (() * x)),f1) is  V11()  real   ext-real   Element of  REAL 
 
 diff (((Z / 2) (#) (ln * (g + x))),f1) is  V11()  real   ext-real   Element of  REAL 
 
(diff (((id f) (#) (() * x)),f1)) - (diff (((Z / 2) (#) (ln * (g + x))),f1)) is  V11()  real   ext-real   Element of  REAL 
 
 - (diff (((Z / 2) (#) (ln * (g + x))),f1)) is  V11()  real   ext-real   set 
 
(diff (((id f) (#) (() * x)),f1)) + (- (diff (((Z / 2) (#) (ln * (g + x))),f1))) is  V11()  real   ext-real   set 
 
((id f) (#) (() * x)) `| f is  V19() V22( REAL ) V23( REAL )  Function-like  V36() V37() V38()  Element of K6(K7(REAL,REAL))
 
(((id f) (#) (() * x)) `| f) . f1 is  V11()  real   ext-real   Element of  REAL 
 
((((id f) (#) (() * x)) `| f) . f1) - (diff (((Z / 2) (#) (ln * (g + x))),f1)) is  V11()  real   ext-real   Element of  REAL 
 
((((id f) (#) (() * x)) `| f) . f1) + (- (diff (((Z / 2) (#) (ln * (g + x))),f1))) is  V11()  real   ext-real   set 
 
((Z / 2) (#) (ln * (g + x))) `| f is  V19() V22( REAL ) V23( REAL )  Function-like  V36() V37() V38()  Element of K6(K7(REAL,REAL))
 
(((Z / 2) (#) (ln * (g + x))) `| f) . f1 is  V11()  real   ext-real   Element of  REAL 
 
((((id f) (#) (() * x)) `| f) . f1) - ((((Z / 2) (#) (ln * (g + x))) `| f) . f1) is  V11()  real   ext-real   Element of  REAL 
 
 - ((((Z / 2) (#) (ln * (g + x))) `| f) . f1) is  V11()  real   ext-real   set 
 
((((id f) (#) (() * x)) `| f) . f1) + (- ((((Z / 2) (#) (ln * (g + x))) `| f) . f1)) is  V11()  real   ext-real   set 
 
(f1 / Z) ^2  is  V11()  real   ext-real   Element of  REAL 
 
(f1 / Z) * (f1 / Z) is  V11()  real   ext-real   set 
 
1 + ((f1 / Z) ^2) is  V11()  real   ext-real   Element of  REAL 
 
Z * (1 + ((f1 / Z) ^2)) is  V11()  real   ext-real   Element of  REAL 
 
f1 / (Z * (1 + ((f1 / Z) ^2))) is  V11()  real   ext-real   Element of  REAL 
 
(Z * (1 + ((f1 / Z) ^2))) "  is  V11()  real   ext-real   set 
 
f1 * ((Z * (1 + ((f1 / Z) ^2))) ") is  V11()  real   ext-real   set 
 
(() . (f1 / Z)) + (f1 / (Z * (1 + ((f1 / Z) ^2)))) is  V11()  real   ext-real   Element of  REAL 
 
((() . (f1 / Z)) + (f1 / (Z * (1 + ((f1 / Z) ^2))))) - ((((Z / 2) (#) (ln * (g + x))) `| f) . f1) is  V11()  real   ext-real   Element of  REAL 
 
((() . (f1 / Z)) + (f1 / (Z * (1 + ((f1 / Z) ^2))))) + (- ((((Z / 2) (#) (ln * (g + x))) `| f) . f1)) is  V11()  real   ext-real   set 
 
((() . (f1 / Z)) + (f1 / (Z * (1 + ((f1 / Z) ^2))))) - (f1 / (Z * (1 + ((f1 / Z) ^2)))) is  V11()  real   ext-real   Element of  REAL 
 
 - (f1 / (Z * (1 + ((f1 / Z) ^2)))) is  V11()  real   ext-real   set 
 
((() . (f1 / Z)) + (f1 / (Z * (1 + ((f1 / Z) ^2))))) + (- (f1 / (Z * (1 + ((f1 / Z) ^2))))) is  V11()  real   ext-real   set 
 
f1 is  V11()  real   ext-real   Element of  REAL 
 
((((id f) (#) (() * x)) - ((Z / 2) (#) (ln * (g + x)))) `| f) . f1 is  V11()  real   ext-real   Element of  REAL 
 
f1 / Z is  V11()  real   ext-real   Element of  REAL 
 
Z "  is  V11()  real   ext-real   set 
 
f1 * (Z ") is  V11()  real   ext-real   set 
 
() . (f1 / Z) is  V11()  real   ext-real   Element of  REAL 
 
Z is  V11()  real   ext-real   Element of  REAL 
 
Z / 2 is  V11()  real   ext-real   Element of  REAL 
 
Z * (2 ") is  V11()  real   ext-real   set 
 
f is   open  V46() V47() V48()  Element of K6(REAL)
 
 id f is  V19() V22( REAL ) V23( REAL )  Function-like   one-to-one  V36() V37() V38()  Element of K6(K7(REAL,REAL))
 
x is  V19() V22( REAL ) V23( REAL )  Function-like  V36() V37() V38()  Element of K6(K7(REAL,REAL))
 
() * x is  V19() V22( REAL ) V23( REAL )  Function-like  V36() V37() V38()  Element of K6(K7(REAL,REAL))
 
(id f) (#) (() * x) is  V19() V22( REAL ) V23( REAL )  Function-like  V36() V37() V38()  Element of K6(K7(REAL,REAL))
 
(#Z 2) * x is  V19() V22( REAL ) V23( REAL )  Function-like  V36() V37() V38()  Element of K6(K7(REAL,REAL))
 
g is  V19() V22( REAL ) V23( REAL )  Function-like  V36() V37() V38()  Element of K6(K7(REAL,REAL))
 
x is  V19() V22( REAL ) V23( REAL )  Function-like  V36() V37() V38()  Element of K6(K7(REAL,REAL))
 
g + x is  V19() V22( REAL ) V23( REAL )  Function-like  V36() V37() V38()  Element of K6(K7(REAL,REAL))
 
ln * (g + x) is  V19() V22( REAL ) V23( REAL )  Function-like  V36() V37() V38()  Element of K6(K7(REAL,REAL))
 
(Z / 2) (#) (ln * (g + x)) is  V19() V22( REAL ) V23( REAL )  Function-like  V36() V37() V38()  Element of K6(K7(REAL,REAL))
 
((id f) (#) (() * x)) + ((Z / 2) (#) (ln * (g + x))) is  V19() V22( REAL ) V23( REAL )  Function-like  V36() V37() V38()  Element of K6(K7(REAL,REAL))
 
 dom (((id f) (#) (() * x)) + ((Z / 2) (#) (ln * (g + x)))) is  V46() V47() V48()  Element of K6(REAL)
 
(((id f) (#) (() * x)) + ((Z / 2) (#) (ln * (g + x)))) `| f is  V19() V22( REAL ) V23( REAL )  Function-like  V36() V37() V38()  Element of K6(K7(REAL,REAL))
 
 dom ((id f) (#) (() * x)) is  V46() V47() V48()  Element of K6(REAL)
 
 dom ((Z / 2) (#) (ln * (g + x))) is  V46() V47() V48()  Element of K6(REAL)
 
(dom ((id f) (#) (() * x))) /\ (dom ((Z / 2) (#) (ln * (g + x)))) is  V46() V47() V48()  set 
 
f1 is  V11()  real   ext-real   Element of  REAL 
 
((((id f) (#) (() * x)) + ((Z / 2) (#) (ln * (g + x)))) `| f) . f1 is  V11()  real   ext-real   Element of  REAL 
 
f1 / Z is  V11()  real   ext-real   Element of  REAL 
 
Z "  is  V11()  real   ext-real   set 
 
f1 * (Z ") is  V11()  real   ext-real   set 
 
() . (f1 / Z) is  V11()  real   ext-real   Element of  REAL 
 
 diff (((id f) (#) (() * x)),f1) is  V11()  real   ext-real   Element of  REAL 
 
 diff (((Z / 2) (#) (ln * (g + x))),f1) is  V11()  real   ext-real   Element of  REAL 
 
(diff (((id f) (#) (() * x)),f1)) + (diff (((Z / 2) (#) (ln * (g + x))),f1)) is  V11()  real   ext-real   Element of  REAL 
 
((id f) (#) (() * x)) `| f is  V19() V22( REAL ) V23( REAL )  Function-like  V36() V37() V38()  Element of K6(K7(REAL,REAL))
 
(((id f) (#) (() * x)) `| f) . f1 is  V11()  real   ext-real   Element of  REAL 
 
((((id f) (#) (() * x)) `| f) . f1) + (diff (((Z / 2) (#) (ln * (g + x))),f1)) is  V11()  real   ext-real   Element of  REAL 
 
((Z / 2) (#) (ln * (g + x))) `| f is  V19() V22( REAL ) V23( REAL )  Function-like  V36() V37() V38()  Element of K6(K7(REAL,REAL))
 
(((Z / 2) (#) (ln * (g + x))) `| f) . f1 is  V11()  real   ext-real   Element of  REAL 
 
((((id f) (#) (() * x)) `| f) . f1) + ((((Z / 2) (#) (ln * (g + x))) `| f) . f1) is  V11()  real   ext-real   Element of  REAL 
 
(f1 / Z) ^2  is  V11()  real   ext-real   Element of  REAL 
 
(f1 / Z) * (f1 / Z) is  V11()  real   ext-real   set 
 
1 + ((f1 / Z) ^2) is  V11()  real   ext-real   Element of  REAL 
 
Z * (1 + ((f1 / Z) ^2)) is  V11()  real   ext-real   Element of  REAL 
 
f1 / (Z * (1 + ((f1 / Z) ^2))) is  V11()  real   ext-real   Element of  REAL 
 
(Z * (1 + ((f1 / Z) ^2))) "  is  V11()  real   ext-real   set 
 
f1 * ((Z * (1 + ((f1 / Z) ^2))) ") is  V11()  real   ext-real   set 
 
(() . (f1 / Z)) - (f1 / (Z * (1 + ((f1 / Z) ^2)))) is  V11()  real   ext-real   Element of  REAL 
 
 - (f1 / (Z * (1 + ((f1 / Z) ^2)))) is  V11()  real   ext-real   set 
 
(() . (f1 / Z)) + (- (f1 / (Z * (1 + ((f1 / Z) ^2))))) is  V11()  real   ext-real   set 
 
((() . (f1 / Z)) - (f1 / (Z * (1 + ((f1 / Z) ^2))))) + ((((Z / 2) (#) (ln * (g + x))) `| f) . f1) is  V11()  real   ext-real   Element of  REAL 
 
((() . (f1 / Z)) - (f1 / (Z * (1 + ((f1 / Z) ^2))))) + (f1 / (Z * (1 + ((f1 / Z) ^2)))) is  V11()  real   ext-real   Element of  REAL 
 
f1 is  V11()  real   ext-real   Element of  REAL 
 
((((id f) (#) (() * x)) + ((Z / 2) (#) (ln * (g + x)))) `| f) . f1 is  V11()  real   ext-real   Element of  REAL 
 
f1 / Z is  V11()  real   ext-real   Element of  REAL 
 
Z "  is  V11()  real   ext-real   set 
 
f1 * (Z ") is  V11()  real   ext-real   set 
 
() . (f1 / Z) is  V11()  real   ext-real   Element of  REAL 
 
Z is   open  V46() V47() V48()  Element of K6(REAL)
 
 id Z is  V19() V22( REAL ) V23( REAL )  Function-like   one-to-one  V36() V37() V38()  Element of K6(K7(REAL,REAL))
 
(id Z) ^  is  V19() V22( REAL ) V23( REAL )  Function-like  V36() V37() V38()  Element of K6(K7(REAL,REAL))
 
() * ((id Z) ^) is  V19() V22( REAL ) V23( REAL )  Function-like  V36() V37() V38()  Element of K6(K7(REAL,REAL))
 
 dom (() * ((id Z) ^)) is  V46() V47() V48()  Element of K6(REAL)
 
(() * ((id Z) ^)) `| Z is  V19() V22( REAL ) V23( REAL )  Function-like  V36() V37() V38()  Element of K6(K7(REAL,REAL))
 
 dom ((id Z) ^) is  V46() V47() V48()  Element of K6(REAL)
 
x is  V11()  real   ext-real   Element of  REAL 
 
((id Z) ^) . x is  V11()  real   ext-real   Element of  REAL 
 
x is  V11()  real   ext-real   Element of  REAL 
 
((() * ((id Z) ^)) `| Z) . x is  V11()  real   ext-real   Element of  REAL 
 
x ^2  is  V11()  real   ext-real   Element of  REAL 
 
x * x is  V11()  real   ext-real   set 
 
1 + (x ^2) is  V11()  real   ext-real   Element of  REAL 
 
1 / (1 + (x ^2)) is  V11()  real   ext-real   Element of  REAL 
 
(1 + (x ^2)) "  is  V11()  real   ext-real   set 
 
1 * ((1 + (x ^2)) ") is  V11()  real   ext-real   set 
 
 - (1 / (1 + (x ^2))) is  V11()  real   ext-real   Element of  REAL 
 
((id Z) ^) . x is  V11()  real   ext-real   Element of  REAL 
 
(id Z) . x is  V11()  real   ext-real   Element of  REAL 
 
 diff ((() * ((id Z) ^)),x) is  V11()  real   ext-real   Element of  REAL 
 
 diff (((id Z) ^),x) is  V11()  real   ext-real   Element of  REAL 
 
(((id Z) ^) . x) ^2  is  V11()  real   ext-real   Element of  REAL 
 
(((id Z) ^) . x) * (((id Z) ^) . x) is  V11()  real   ext-real   set 
 
1 + ((((id Z) ^) . x) ^2) is  V11()  real   ext-real   Element of  REAL 
 
(diff (((id Z) ^),x)) / (1 + ((((id Z) ^) . x) ^2)) is  V11()  real   ext-real   Element of  REAL 
 
(1 + ((((id Z) ^) . x) ^2)) "  is  V11()  real   ext-real   set 
 
(diff (((id Z) ^),x)) * ((1 + ((((id Z) ^) . x) ^2)) ") is  V11()  real   ext-real   set 
 
((id Z) ^) `| Z is  V19() V22( REAL ) V23( REAL )  Function-like  V36() V37() V38()  Element of K6(K7(REAL,REAL))
 
(((id Z) ^) `| Z) . x is  V11()  real   ext-real   Element of  REAL 
 
((((id Z) ^) `| Z) . x) / (1 + ((((id Z) ^) . x) ^2)) is  V11()  real   ext-real   Element of  REAL 
 
((((id Z) ^) `| Z) . x) * ((1 + ((((id Z) ^) . x) ^2)) ") is  V11()  real   ext-real   set 
 
1 / (x ^2) is  V11()  real   ext-real   Element of  REAL 
 
(x ^2) "  is  V11()  real   ext-real   set 
 
1 * ((x ^2) ") is  V11()  real   ext-real   set 
 
 - (1 / (x ^2)) is  V11()  real   ext-real   Element of  REAL 
 
(- (1 / (x ^2))) / (1 + ((((id Z) ^) . x) ^2)) is  V11()  real   ext-real   Element of  REAL 
 
(- (1 / (x ^2))) * ((1 + ((((id Z) ^) . x) ^2)) ") is  V11()  real   ext-real   set 
 
((id Z) . x) "  is  V11()  real   ext-real   Element of  REAL 
 
(((id Z) . x) ") ^2  is  V11()  real   ext-real   Element of  REAL 
 
(((id Z) . x) ") * (((id Z) . x) ") is  V11()  real   ext-real   set 
 
1 + ((((id Z) . x) ") ^2) is  V11()  real   ext-real   Element of  REAL 
 
(- (1 / (x ^2))) / (1 + ((((id Z) . x) ") ^2)) is  V11()  real   ext-real   Element of  REAL 
 
(1 + ((((id Z) . x) ") ^2)) "  is  V11()  real   ext-real   set 
 
(- (1 / (x ^2))) * ((1 + ((((id Z) . x) ") ^2)) ") is  V11()  real   ext-real   set 
 
1 / x is  V11()  real   ext-real   Element of  REAL 
 
x "  is  V11()  real   ext-real   set 
 
1 * (x ") is  V11()  real   ext-real   set 
 
(1 / x) ^2  is  V11()  real   ext-real   Element of  REAL 
 
(1 / x) * (1 / x) is  V11()  real   ext-real   set 
 
1 + ((1 / x) ^2) is  V11()  real   ext-real   Element of  REAL 
 
(- (1 / (x ^2))) / (1 + ((1 / x) ^2)) is  V11()  real   ext-real   Element of  REAL 
 
(1 + ((1 / x) ^2)) "  is  V11()  real   ext-real   set 
 
(- (1 / (x ^2))) * ((1 + ((1 / x) ^2)) ") is  V11()  real   ext-real   set 
 
(1 / (x ^2)) / (1 + ((1 / x) ^2)) is  V11()  real   ext-real   Element of  REAL 
 
(1 / (x ^2)) * ((1 + ((1 / x) ^2)) ") is  V11()  real   ext-real   set 
 
 - ((1 / (x ^2)) / (1 + ((1 / x) ^2))) is  V11()  real   ext-real   Element of  REAL 
 
(x ^2) * (1 + ((1 / x) ^2)) is  V11()  real   ext-real   Element of  REAL 
 
1 / ((x ^2) * (1 + ((1 / x) ^2))) is  V11()  real   ext-real   Element of  REAL 
 
((x ^2) * (1 + ((1 / x) ^2))) "  is  V11()  real   ext-real   set 
 
1 * (((x ^2) * (1 + ((1 / x) ^2))) ") is  V11()  real   ext-real   set 
 
 - (1 / ((x ^2) * (1 + ((1 / x) ^2)))) is  V11()  real   ext-real   Element of  REAL 
 
(x ^2) * 1 is  V11()  real   ext-real   Element of  REAL 
 
(x ^2) * ((1 / x) ^2) is  V11()  real   ext-real   Element of  REAL 
 
((x ^2) * 1) + ((x ^2) * ((1 / x) ^2)) is  V11()  real   ext-real   Element of  REAL 
 
1 / (((x ^2) * 1) + ((x ^2) * ((1 / x) ^2))) is  V11()  real   ext-real   Element of  REAL 
 
(((x ^2) * 1) + ((x ^2) * ((1 / x) ^2))) "  is  V11()  real   ext-real   set 
 
1 * ((((x ^2) * 1) + ((x ^2) * ((1 / x) ^2))) ") is  V11()  real   ext-real   set 
 
 - (1 / (((x ^2) * 1) + ((x ^2) * ((1 / x) ^2)))) is  V11()  real   ext-real   Element of  REAL 
 
x * x is  V11()  real   ext-real   Element of  REAL 
 
1 / (x * x) is  V11()  real   ext-real   Element of  REAL 
 
(x * x) "  is  V11()  real   ext-real   set 
 
1 * ((x * x) ") is  V11()  real   ext-real   set 
 
(x ^2) * (1 / (x * x)) is  V11()  real   ext-real   Element of  REAL 
 
(x ^2) + ((x ^2) * (1 / (x * x))) is  V11()  real   ext-real   Element of  REAL 
 
1 / ((x ^2) + ((x ^2) * (1 / (x * x)))) is  V11()  real   ext-real   Element of  REAL 
 
((x ^2) + ((x ^2) * (1 / (x * x)))) "  is  V11()  real   ext-real   set 
 
1 * (((x ^2) + ((x ^2) * (1 / (x * x)))) ") is  V11()  real   ext-real   set 
 
 - (1 / ((x ^2) + ((x ^2) * (1 / (x * x))))) is  V11()  real   ext-real   Element of  REAL 
 
((x ^2) * 1) / (x ^2) is  V11()  real   ext-real   Element of  REAL 
 
((x ^2) * 1) * ((x ^2) ") is  V11()  real   ext-real   set 
 
(x ^2) + (((x ^2) * 1) / (x ^2)) is  V11()  real   ext-real   Element of  REAL 
 
1 / ((x ^2) + (((x ^2) * 1) / (x ^2))) is  V11()  real   ext-real   Element of  REAL 
 
((x ^2) + (((x ^2) * 1) / (x ^2))) "  is  V11()  real   ext-real   set 
 
1 * (((x ^2) + (((x ^2) * 1) / (x ^2))) ") is  V11()  real   ext-real   set 
 
 - (1 / ((x ^2) + (((x ^2) * 1) / (x ^2)))) is  V11()  real   ext-real   Element of  REAL 
 
x is  V11()  real   ext-real   Element of  REAL 
 
((() * ((id Z) ^)) `| Z) . x is  V11()  real   ext-real   Element of  REAL 
 
x ^2  is  V11()  real   ext-real   Element of  REAL 
 
x * x is  V11()  real   ext-real   set 
 
1 + (x ^2) is  V11()  real   ext-real   Element of  REAL 
 
1 / (1 + (x ^2)) is  V11()  real   ext-real   Element of  REAL 
 
(1 + (x ^2)) "  is  V11()  real   ext-real   set 
 
1 * ((1 + (x ^2)) ") is  V11()  real   ext-real   set 
 
 - (1 / (1 + (x ^2))) is  V11()  real   ext-real   Element of  REAL 
 
Z is   open  V46() V47() V48()  Element of K6(REAL)
 
 id Z is  V19() V22( REAL ) V23( REAL )  Function-like   one-to-one  V36() V37() V38()  Element of K6(K7(REAL,REAL))
 
(id Z) ^  is  V19() V22( REAL ) V23( REAL )  Function-like  V36() V37() V38()  Element of K6(K7(REAL,REAL))
 
() * ((id Z) ^) is  V19() V22( REAL ) V23( REAL )  Function-like  V36() V37() V38()  Element of K6(K7(REAL,REAL))
 
 dom (() * ((id Z) ^)) is  V46() V47() V48()  Element of K6(REAL)
 
(() * ((id Z) ^)) `| Z is  V19() V22( REAL ) V23( REAL )  Function-like  V36() V37() V38()  Element of K6(K7(REAL,REAL))
 
 dom ((id Z) ^) is  V46() V47() V48()  Element of K6(REAL)
 
x is  V11()  real   ext-real   Element of  REAL 
 
((id Z) ^) . x is  V11()  real   ext-real   Element of  REAL 
 
x is  V11()  real   ext-real   Element of  REAL 
 
((() * ((id Z) ^)) `| Z) . x is  V11()  real   ext-real   Element of  REAL 
 
x ^2  is  V11()  real   ext-real   Element of  REAL 
 
x * x is  V11()  real   ext-real   set 
 
1 + (x ^2) is  V11()  real   ext-real   Element of  REAL 
 
1 / (1 + (x ^2)) is  V11()  real   ext-real   Element of  REAL 
 
(1 + (x ^2)) "  is  V11()  real   ext-real   set 
 
1 * ((1 + (x ^2)) ") is  V11()  real   ext-real   set 
 
((id Z) ^) . x is  V11()  real   ext-real   Element of  REAL 
 
(id Z) . x is  V11()  real   ext-real   Element of  REAL 
 
 diff ((() * ((id Z) ^)),x) is  V11()  real   ext-real   Element of  REAL 
 
 diff (((id Z) ^),x) is  V11()  real   ext-real   Element of  REAL 
 
(((id Z) ^) . x) ^2  is  V11()  real   ext-real   Element of  REAL 
 
(((id Z) ^) . x) * (((id Z) ^) . x) is  V11()  real   ext-real   set 
 
1 + ((((id Z) ^) . x) ^2) is  V11()  real   ext-real   Element of  REAL 
 
(diff (((id Z) ^),x)) / (1 + ((((id Z) ^) . x) ^2)) is  V11()  real   ext-real   Element of  REAL 
 
(1 + ((((id Z) ^) . x) ^2)) "  is  V11()  real   ext-real   set 
 
(diff (((id Z) ^),x)) * ((1 + ((((id Z) ^) . x) ^2)) ") is  V11()  real   ext-real   set 
 
 - ((diff (((id Z) ^),x)) / (1 + ((((id Z) ^) . x) ^2))) is  V11()  real   ext-real   Element of  REAL 
 
((id Z) ^) `| Z is  V19() V22( REAL ) V23( REAL )  Function-like  V36() V37() V38()  Element of K6(K7(REAL,REAL))
 
(((id Z) ^) `| Z) . x is  V11()  real   ext-real   Element of  REAL 
 
((((id Z) ^) `| Z) . x) / (1 + ((((id Z) ^) . x) ^2)) is  V11()  real   ext-real   Element of  REAL 
 
((((id Z) ^) `| Z) . x) * ((1 + ((((id Z) ^) . x) ^2)) ") is  V11()  real   ext-real   set 
 
 - (((((id Z) ^) `| Z) . x) / (1 + ((((id Z) ^) . x) ^2))) is  V11()  real   ext-real   Element of  REAL 
 
1 / (x ^2) is  V11()  real   ext-real   Element of  REAL 
 
(x ^2) "  is  V11()  real   ext-real   set 
 
1 * ((x ^2) ") is  V11()  real   ext-real   set 
 
 - (1 / (x ^2)) is  V11()  real   ext-real   Element of  REAL 
 
(- (1 / (x ^2))) / (1 + ((((id Z) ^) . x) ^2)) is  V11()  real   ext-real   Element of  REAL 
 
(- (1 / (x ^2))) * ((1 + ((((id Z) ^) . x) ^2)) ") is  V11()  real   ext-real   set 
 
 - ((- (1 / (x ^2))) / (1 + ((((id Z) ^) . x) ^2))) is  V11()  real   ext-real   Element of  REAL 
 
((id Z) . x) "  is  V11()  real   ext-real   Element of  REAL 
 
(((id Z) . x) ") ^2  is  V11()  real   ext-real   Element of  REAL 
 
(((id Z) . x) ") * (((id Z) . x) ") is  V11()  real   ext-real   set 
 
1 + ((((id Z) . x) ") ^2) is  V11()  real   ext-real   Element of  REAL 
 
(- (1 / (x ^2))) / (1 + ((((id Z) . x) ") ^2)) is  V11()  real   ext-real   Element of  REAL 
 
(1 + ((((id Z) . x) ") ^2)) "  is  V11()  real   ext-real   set 
 
(- (1 / (x ^2))) * ((1 + ((((id Z) . x) ") ^2)) ") is  V11()  real   ext-real   set 
 
 - ((- (1 / (x ^2))) / (1 + ((((id Z) . x) ") ^2))) is  V11()  real   ext-real   Element of  REAL 
 
1 / x is  V11()  real   ext-real   Element of  REAL 
 
x "  is  V11()  real   ext-real   set 
 
1 * (x ") is  V11()  real   ext-real   set 
 
(1 / x) ^2  is  V11()  real   ext-real   Element of  REAL 
 
(1 / x) * (1 / x) is  V11()  real   ext-real   set 
 
1 + ((1 / x) ^2) is  V11()  real   ext-real   Element of  REAL 
 
(- (1 / (x ^2))) / (1 + ((1 / x) ^2)) is  V11()  real   ext-real   Element of  REAL 
 
(1 + ((1 / x) ^2)) "  is  V11()  real   ext-real   set 
 
(- (1 / (x ^2))) * ((1 + ((1 / x) ^2)) ") is  V11()  real   ext-real   set 
 
 - ((- (1 / (x ^2))) / (1 + ((1 / x) ^2))) is  V11()  real   ext-real   Element of  REAL 
 
(1 / (x ^2)) / (1 + ((1 / x) ^2)) is  V11()  real   ext-real   Element of  REAL 
 
(1 / (x ^2)) * ((1 + ((1 / x) ^2)) ") is  V11()  real   ext-real   set 
 
(x ^2) * (1 + ((1 / x) ^2)) is  V11()  real   ext-real   Element of  REAL 
 
1 / ((x ^2) * (1 + ((1 / x) ^2))) is  V11()  real   ext-real   Element of  REAL 
 
((x ^2) * (1 + ((1 / x) ^2))) "  is  V11()  real   ext-real   set 
 
1 * (((x ^2) * (1 + ((1 / x) ^2))) ") is  V11()  real   ext-real   set 
 
(x ^2) * 1 is  V11()  real   ext-real   Element of  REAL 
 
(x ^2) * ((1 / x) ^2) is  V11()  real   ext-real   Element of  REAL 
 
((x ^2) * 1) + ((x ^2) * ((1 / x) ^2)) is  V11()  real   ext-real   Element of  REAL 
 
1 / (((x ^2) * 1) + ((x ^2) * ((1 / x) ^2))) is  V11()  real   ext-real   Element of  REAL 
 
(((x ^2) * 1) + ((x ^2) * ((1 / x) ^2))) "  is  V11()  real   ext-real   set 
 
1 * ((((x ^2) * 1) + ((x ^2) * ((1 / x) ^2))) ") is  V11()  real   ext-real   set 
 
x * x is  V11()  real   ext-real   Element of  REAL 
 
1 / (x * x) is  V11()  real   ext-real   Element of  REAL 
 
(x * x) "  is  V11()  real   ext-real   set 
 
1 * ((x * x) ") is  V11()  real   ext-real   set 
 
(x ^2) * (1 / (x * x)) is  V11()  real   ext-real   Element of  REAL 
 
(x ^2) + ((x ^2) * (1 / (x * x))) is  V11()  real   ext-real   Element of  REAL 
 
1 / ((x ^2) + ((x ^2) * (1 / (x * x)))) is  V11()  real   ext-real   Element of  REAL 
 
((x ^2) + ((x ^2) * (1 / (x * x)))) "  is  V11()  real   ext-real   set 
 
1 * (((x ^2) + ((x ^2) * (1 / (x * x)))) ") is  V11()  real   ext-real   set 
 
((x ^2) * 1) / (x ^2) is  V11()  real   ext-real   Element of  REAL 
 
((x ^2) * 1) * ((x ^2) ") is  V11()  real   ext-real   set 
 
(x ^2) + (((x ^2) * 1) / (x ^2)) is  V11()  real   ext-real   Element of  REAL 
 
1 / ((x ^2) + (((x ^2) * 1) / (x ^2))) is  V11()  real   ext-real   Element of  REAL 
 
((x ^2) + (((x ^2) * 1) / (x ^2))) "  is  V11()  real   ext-real   set 
 
1 * (((x ^2) + (((x ^2) * 1) / (x ^2))) ") is  V11()  real   ext-real   set 
 
x is  V11()  real   ext-real   Element of  REAL 
 
((() * ((id Z) ^)) `| Z) . x is  V11()  real   ext-real   Element of  REAL 
 
x ^2  is  V11()  real   ext-real   Element of  REAL 
 
x * x is  V11()  real   ext-real   set 
 
1 + (x ^2) is  V11()  real   ext-real   Element of  REAL 
 
1 / (1 + (x ^2)) is  V11()  real   ext-real   Element of  REAL 
 
(1 + (x ^2)) "  is  V11()  real   ext-real   set 
 
1 * ((1 + (x ^2)) ") is  V11()  real   ext-real   set 
 
Z is  V11()  real   ext-real   Element of  REAL 
 
2 * Z is  V11()  real   ext-real   Element of  REAL 
 
f is  V11()  real   ext-real   Element of  REAL 
 
x is  V11()  real   ext-real   Element of  REAL 
 
g is   open  V46() V47() V48()  Element of K6(REAL)
 
x is  V19() V22( REAL ) V23( REAL )  Function-like  V36() V37() V38()  Element of K6(K7(REAL,REAL))
 
() * x is  V19() V22( REAL ) V23( REAL )  Function-like  V36() V37() V38()  Element of K6(K7(REAL,REAL))
 
 dom (() * x) is  V46() V47() V48()  Element of K6(REAL)
 
f1 is  V19() V22( REAL ) V23( REAL )  Function-like  V36() V37() V38()  Element of K6(K7(REAL,REAL))
 
f2 is  V19() V22( REAL ) V23( REAL )  Function-like  V36() V37() V38()  Element of K6(K7(REAL,REAL))
 
Z (#) f2 is  V19() V22( REAL ) V23( REAL )  Function-like  V36() V37() V38()  Element of K6(K7(REAL,REAL))
 
f1 + (Z (#) f2) is  V19() V22( REAL ) V23( REAL )  Function-like  V36() V37() V38()  Element of K6(K7(REAL,REAL))
 
() * (f1 + (Z (#) f2)) is  V19() V22( REAL ) V23( REAL )  Function-like  V36() V37() V38()  Element of K6(K7(REAL,REAL))
 
(() * (f1 + (Z (#) f2))) `| g is  V19() V22( REAL ) V23( REAL )  Function-like  V36() V37() V38()  Element of K6(K7(REAL,REAL))
 
 dom x is  V46() V47() V48()  Element of K6(REAL)
 
 dom (f1 + (Z (#) f2)) is  V46() V47() V48()  Element of K6(REAL)
 
 dom f1 is  V46() V47() V48()  Element of K6(REAL)
 
 dom (Z (#) f2) is  V46() V47() V48()  Element of K6(REAL)
 
(dom f1) /\ (dom (Z (#) f2)) is  V46() V47() V48()  set 
 
x is  V11()  real   ext-real   Element of  REAL 
 
x . x is  V11()  real   ext-real   Element of  REAL 
 
x is  V11()  real   ext-real   Element of  REAL 
 
((() * (f1 + (Z (#) f2))) `| g) . x is  V11()  real   ext-real   Element of  REAL 
 
(2 * Z) * x is  V11()  real   ext-real   Element of  REAL 
 
x + ((2 * Z) * x) is  V11()  real   ext-real   Element of  REAL 
 
x * x is  V11()  real   ext-real   Element of  REAL 
 
f + (x * x) is  V11()  real   ext-real   Element of  REAL 
 
x ^2  is  V11()  real   ext-real   Element of  REAL 
 
x * x is  V11()  real   ext-real   set 
 
Z * (x ^2) is  V11()  real   ext-real   Element of  REAL 
 
(f + (x * x)) + (Z * (x ^2)) is  V11()  real   ext-real   Element of  REAL 
 
((f + (x * x)) + (Z * (x ^2))) ^2  is  V11()  real   ext-real   Element of  REAL 
 
((f + (x * x)) + (Z * (x ^2))) * ((f + (x * x)) + (Z * (x ^2))) is  V11()  real   ext-real   set 
 
1 + (((f + (x * x)) + (Z * (x ^2))) ^2) is  V11()  real   ext-real   Element of  REAL 
 
(x + ((2 * Z) * x)) / (1 + (((f + (x * x)) + (Z * (x ^2))) ^2)) is  V11()  real   ext-real   Element of  REAL 
 
(1 + (((f + (x * x)) + (Z * (x ^2))) ^2)) "  is  V11()  real   ext-real   set 
 
(x + ((2 * Z) * x)) * ((1 + (((f + (x * x)) + (Z * (x ^2))) ^2)) ") is  V11()  real   ext-real   set 
 
(f1 + (Z (#) f2)) . x is  V11()  real   ext-real   Element of  REAL 
 
f1 . x is  V11()  real   ext-real   Element of  REAL 
 
(Z (#) f2) . x is  V11()  real   ext-real   Element of  REAL 
 
(f1 . x) + ((Z (#) f2) . x) is  V11()  real   ext-real   Element of  REAL 
 
f2 . x is  V11()  real   ext-real   Element of  REAL 
 
Z * (f2 . x) is  V11()  real   ext-real   Element of  REAL 
 
(f1 . x) + (Z * (f2 . x)) is  V11()  real   ext-real   Element of  REAL 
 
(f + (x * x)) + (Z * (f2 . x)) is  V11()  real   ext-real   Element of  REAL 
 
1 + 1 is   non  empty  V11()  real   ext-real   positive   non  negative  V63()  Element of  REAL 
 
x #Z (1 + 1) is  V11()  real   ext-real   Element of  REAL 
 
Z * (x #Z (1 + 1)) is  V11()  real   ext-real   Element of  REAL 
 
(f + (x * x)) + (Z * (x #Z (1 + 1))) is  V11()  real   ext-real   Element of  REAL 
 
x #Z 1 is  V11()  real   ext-real   Element of  REAL 
 
(x #Z 1) * (x #Z 1) is  V11()  real   ext-real   Element of  REAL 
 
Z * ((x #Z 1) * (x #Z 1)) is  V11()  real   ext-real   Element of  REAL 
 
(f + (x * x)) + (Z * ((x #Z 1) * (x #Z 1))) is  V11()  real   ext-real   Element of  REAL 
 
x * (x #Z 1) is  V11()  real   ext-real   Element of  REAL 
 
Z * (x * (x #Z 1)) is  V11()  real   ext-real   Element of  REAL 
 
(f + (x * x)) + (Z * (x * (x #Z 1))) is  V11()  real   ext-real   Element of  REAL 
 
x . x is  V11()  real   ext-real   Element of  REAL 
 
 diff ((() * x),x) is  V11()  real   ext-real   Element of  REAL 
 
 diff (x,x) is  V11()  real   ext-real   Element of  REAL 
 
(x . x) ^2  is  V11()  real   ext-real   Element of  REAL 
 
(x . x) * (x . x) is  V11()  real   ext-real   set 
 
1 + ((x . x) ^2) is  V11()  real   ext-real   Element of  REAL 
 
(diff (x,x)) / (1 + ((x . x) ^2)) is  V11()  real   ext-real   Element of  REAL 
 
(1 + ((x . x) ^2)) "  is  V11()  real   ext-real   set 
 
(diff (x,x)) * ((1 + ((x . x) ^2)) ") is  V11()  real   ext-real   set 
 
(f1 + (Z (#) f2)) `| g is  V19() V22( REAL ) V23( REAL )  Function-like  V36() V37() V38()  Element of K6(K7(REAL,REAL))
 
((f1 + (Z (#) f2)) `| g) . x is  V11()  real   ext-real   Element of  REAL 
 
(((f1 + (Z (#) f2)) `| g) . x) / (1 + ((x . x) ^2)) is  V11()  real   ext-real   Element of  REAL 
 
(((f1 + (Z (#) f2)) `| g) . x) * ((1 + ((x . x) ^2)) ") is  V11()  real   ext-real   set 
 
x is  V11()  real   ext-real   Element of  REAL 
 
((() * (f1 + (Z (#) f2))) `| g) . x is  V11()  real   ext-real   Element of  REAL 
 
(2 * Z) * x is  V11()  real   ext-real   Element of  REAL 
 
x + ((2 * Z) * x) is  V11()  real   ext-real   Element of  REAL 
 
x * x is  V11()  real   ext-real   Element of  REAL 
 
f + (x * x) is  V11()  real   ext-real   Element of  REAL 
 
x ^2  is  V11()  real   ext-real   Element of  REAL 
 
x * x is  V11()  real   ext-real   set 
 
Z * (x ^2) is  V11()  real   ext-real   Element of  REAL 
 
(f + (x * x)) + (Z * (x ^2)) is  V11()  real   ext-real   Element of  REAL 
 
((f + (x * x)) + (Z * (x ^2))) ^2  is  V11()  real   ext-real   Element of  REAL 
 
((f + (x * x)) + (Z * (x ^2))) * ((f + (x * x)) + (Z * (x ^2))) is  V11()  real   ext-real   set 
 
1 + (((f + (x * x)) + (Z * (x ^2))) ^2) is  V11()  real   ext-real   Element of  REAL 
 
(x + ((2 * Z) * x)) / (1 + (((f + (x * x)) + (Z * (x ^2))) ^2)) is  V11()  real   ext-real   Element of  REAL 
 
(1 + (((f + (x * x)) + (Z * (x ^2))) ^2)) "  is  V11()  real   ext-real   set 
 
(x + ((2 * Z) * x)) * ((1 + (((f + (x * x)) + (Z * (x ^2))) ^2)) ") is  V11()  real   ext-real   set 
 
Z is  V11()  real   ext-real   Element of  REAL 
 
2 * Z is  V11()  real   ext-real   Element of  REAL 
 
f is  V11()  real   ext-real   Element of  REAL 
 
x is  V11()  real   ext-real   Element of  REAL 
 
g is   open  V46() V47() V48()  Element of K6(REAL)
 
x is  V19() V22( REAL ) V23( REAL )  Function-like  V36() V37() V38()  Element of K6(K7(REAL,REAL))
 
() * x is  V19() V22( REAL ) V23( REAL )  Function-like  V36() V37() V38()  Element of K6(K7(REAL,REAL))
 
 dom (() * x) is  V46() V47() V48()  Element of K6(REAL)
 
f1 is  V19() V22( REAL ) V23( REAL )  Function-like  V36() V37() V38()  Element of K6(K7(REAL,REAL))
 
f2 is  V19() V22( REAL ) V23( REAL )  Function-like  V36() V37() V38()  Element of K6(K7(REAL,REAL))
 
Z (#) f2 is  V19() V22( REAL ) V23( REAL )  Function-like  V36() V37() V38()  Element of K6(K7(REAL,REAL))
 
f1 + (Z (#) f2) is  V19() V22( REAL ) V23( REAL )  Function-like  V36() V37() V38()  Element of K6(K7(REAL,REAL))
 
() * (f1 + (Z (#) f2)) is  V19() V22( REAL ) V23( REAL )  Function-like  V36() V37() V38()  Element of K6(K7(REAL,REAL))
 
(() * (f1 + (Z (#) f2))) `| g is  V19() V22( REAL ) V23( REAL )  Function-like  V36() V37() V38()  Element of K6(K7(REAL,REAL))
 
 dom x is  V46() V47() V48()  Element of K6(REAL)
 
 dom (f1 + (Z (#) f2)) is  V46() V47() V48()  Element of K6(REAL)
 
 dom f1 is  V46() V47() V48()  Element of K6(REAL)
 
 dom (Z (#) f2) is  V46() V47() V48()  Element of K6(REAL)
 
(dom f1) /\ (dom (Z (#) f2)) is  V46() V47() V48()  set 
 
x is  V11()  real   ext-real   Element of  REAL 
 
x . x is  V11()  real   ext-real   Element of  REAL 
 
x is  V11()  real   ext-real   Element of  REAL 
 
((() * (f1 + (Z (#) f2))) `| g) . x is  V11()  real   ext-real   Element of  REAL 
 
(2 * Z) * x is  V11()  real   ext-real   Element of  REAL 
 
x + ((2 * Z) * x) is  V11()  real   ext-real   Element of  REAL 
 
x * x is  V11()  real   ext-real   Element of  REAL 
 
f + (x * x) is  V11()  real   ext-real   Element of  REAL 
 
x ^2  is  V11()  real   ext-real   Element of  REAL 
 
x * x is  V11()  real   ext-real   set 
 
Z * (x ^2) is  V11()  real   ext-real   Element of  REAL 
 
(f + (x * x)) + (Z * (x ^2)) is  V11()  real   ext-real   Element of  REAL 
 
((f + (x * x)) + (Z * (x ^2))) ^2  is  V11()  real   ext-real   Element of  REAL 
 
((f + (x * x)) + (Z * (x ^2))) * ((f + (x * x)) + (Z * (x ^2))) is  V11()  real   ext-real   set 
 
1 + (((f + (x * x)) + (Z * (x ^2))) ^2) is  V11()  real   ext-real   Element of  REAL 
 
(x + ((2 * Z) * x)) / (1 + (((f + (x * x)) + (Z * (x ^2))) ^2)) is  V11()  real   ext-real   Element of  REAL 
 
(1 + (((f + (x * x)) + (Z * (x ^2))) ^2)) "  is  V11()  real   ext-real   set 
 
(x + ((2 * Z) * x)) * ((1 + (((f + (x * x)) + (Z * (x ^2))) ^2)) ") is  V11()  real   ext-real   set 
 
 - ((x + ((2 * Z) * x)) / (1 + (((f + (x * x)) + (Z * (x ^2))) ^2))) is  V11()  real   ext-real   Element of  REAL 
 
(f1 + (Z (#) f2)) . x is  V11()  real   ext-real   Element of  REAL 
 
f1 . x is  V11()  real   ext-real   Element of  REAL 
 
(Z (#) f2) . x is  V11()  real   ext-real   Element of  REAL 
 
(f1 . x) + ((Z (#) f2) . x) is  V11()  real   ext-real   Element of  REAL 
 
f2 . x is  V11()  real   ext-real   Element of  REAL 
 
Z * (f2 . x) is  V11()  real   ext-real   Element of  REAL 
 
(f1 . x) + (Z * (f2 . x)) is  V11()  real   ext-real   Element of  REAL 
 
(f + (x * x)) + (Z * (f2 . x)) is  V11()  real   ext-real   Element of  REAL 
 
1 + 1 is   non  empty  V11()  real   ext-real   positive   non  negative  V63()  Element of  REAL 
 
x #Z (1 + 1) is  V11()  real   ext-real   Element of  REAL 
 
Z * (x #Z (1 + 1)) is  V11()  real   ext-real   Element of  REAL 
 
(f + (x * x)) + (Z * (x #Z (1 + 1))) is  V11()  real   ext-real   Element of  REAL 
 
x #Z 1 is  V11()  real   ext-real   Element of  REAL 
 
(x #Z 1) * (x #Z 1) is  V11()  real   ext-real   Element of  REAL 
 
Z * ((x #Z 1) * (x #Z 1)) is  V11()  real   ext-real   Element of  REAL 
 
(f + (x * x)) + (Z * ((x #Z 1) * (x #Z 1))) is  V11()  real   ext-real   Element of  REAL 
 
x * (x #Z 1) is  V11()  real   ext-real   Element of  REAL 
 
Z * (x * (x #Z 1)) is  V11()  real   ext-real   Element of  REAL 
 
(f + (x * x)) + (Z * (x * (x #Z 1))) is  V11()  real   ext-real   Element of  REAL 
 
x . x is  V11()  real   ext-real   Element of  REAL 
 
 diff ((() * x),x) is  V11()  real   ext-real   Element of  REAL 
 
 diff (x,x) is  V11()  real   ext-real   Element of  REAL 
 
(x . x) ^2  is  V11()  real   ext-real   Element of  REAL 
 
(x . x) * (x . x) is  V11()  real   ext-real   set 
 
1 + ((x . x) ^2) is  V11()  real   ext-real   Element of  REAL 
 
(diff (x,x)) / (1 + ((x . x) ^2)) is  V11()  real   ext-real   Element of  REAL 
 
(1 + ((x . x) ^2)) "  is  V11()  real   ext-real   set 
 
(diff (x,x)) * ((1 + ((x . x) ^2)) ") is  V11()  real   ext-real   set 
 
 - ((diff (x,x)) / (1 + ((x . x) ^2))) is  V11()  real   ext-real   Element of  REAL 
 
(f1 + (Z (#) f2)) `| g is  V19() V22( REAL ) V23( REAL )  Function-like  V36() V37() V38()  Element of K6(K7(REAL,REAL))
 
((f1 + (Z (#) f2)) `| g) . x is  V11()  real   ext-real   Element of  REAL 
 
(((f1 + (Z (#) f2)) `| g) . x) / (1 + ((x . x) ^2)) is  V11()  real   ext-real   Element of  REAL 
 
(((f1 + (Z (#) f2)) `| g) . x) * ((1 + ((x . x) ^2)) ") is  V11()  real   ext-real   set 
 
 - ((((f1 + (Z (#) f2)) `| g) . x) / (1 + ((x . x) ^2))) is  V11()  real   ext-real   Element of  REAL 
 
x is  V11()  real   ext-real   Element of  REAL 
 
((() * (f1 + (Z (#) f2))) `| g) . x is  V11()  real   ext-real   Element of  REAL 
 
(2 * Z) * x is  V11()  real   ext-real   Element of  REAL 
 
x + ((2 * Z) * x) is  V11()  real   ext-real   Element of  REAL 
 
x * x is  V11()  real   ext-real   Element of  REAL 
 
f + (x * x) is  V11()  real   ext-real   Element of  REAL 
 
x ^2  is  V11()  real   ext-real   Element of  REAL 
 
x * x is  V11()  real   ext-real   set 
 
Z * (x ^2) is  V11()  real   ext-real   Element of  REAL 
 
(f + (x * x)) + (Z * (x ^2)) is  V11()  real   ext-real   Element of  REAL 
 
((f + (x * x)) + (Z * (x ^2))) ^2  is  V11()  real   ext-real   Element of  REAL 
 
((f + (x * x)) + (Z * (x ^2))) * ((f + (x * x)) + (Z * (x ^2))) is  V11()  real   ext-real   set 
 
1 + (((f + (x * x)) + (Z * (x ^2))) ^2) is  V11()  real   ext-real   Element of  REAL 
 
(x + ((2 * Z) * x)) / (1 + (((f + (x * x)) + (Z * (x ^2))) ^2)) is  V11()  real   ext-real   Element of  REAL 
 
(1 + (((f + (x * x)) + (Z * (x ^2))) ^2)) "  is  V11()  real   ext-real   set 
 
(x + ((2 * Z) * x)) * ((1 + (((f + (x * x)) + (Z * (x ^2))) ^2)) ") is  V11()  real   ext-real   set 
 
 - ((x + ((2 * Z) * x)) / (1 + (((f + (x * x)) + (Z * (x ^2))) ^2))) is  V11()  real   ext-real   Element of  REAL 
 
() * exp_R is  V19() V22( REAL ) V23( REAL )  Function-like  V36() V37() V38()  Element of K6(K7(REAL,REAL))
 
 dom (() * exp_R) is  V46() V47() V48()  Element of K6(REAL)
 
Z is   open  V46() V47() V48()  Element of K6(REAL)
 
(() * exp_R) `| Z is  V19() V22( REAL ) V23( REAL )  Function-like  V36() V37() V38()  Element of K6(K7(REAL,REAL))
 
f is  V11()  real   ext-real   Element of  REAL 
 
exp_R . f is  V11()  real   ext-real   Element of  REAL 
 
(exp_R . f) + 0 is  V11()  real   ext-real   Element of  REAL 
 
0 + (- 1) is  V11()  real   ext-real  V63()  Element of  REAL 
 
f is  V11()  real   ext-real   Element of  REAL 
 
((() * exp_R) `| Z) . f is  V11()  real   ext-real   Element of  REAL 
 
exp_R . f is  V11()  real   ext-real   Element of  REAL 
 
(exp_R . f) ^2  is  V11()  real   ext-real   Element of  REAL 
 
(exp_R . f) * (exp_R . f) is  V11()  real   ext-real   set 
 
1 + ((exp_R . f) ^2) is  V11()  real   ext-real   Element of  REAL 
 
(exp_R . f) / (1 + ((exp_R . f) ^2)) is  V11()  real   ext-real   Element of  REAL 
 
(1 + ((exp_R . f) ^2)) "  is  V11()  real   ext-real   set 
 
(exp_R . f) * ((1 + ((exp_R . f) ^2)) ") is  V11()  real   ext-real   set 
 
(exp_R . f) + 0 is  V11()  real   ext-real   Element of  REAL 
 
0 + (- 1) is  V11()  real   ext-real  V63()  Element of  REAL 
 
 diff ((() * exp_R),f) is  V11()  real   ext-real   Element of  REAL 
 
 diff (exp_R,f) is  V11()  real   ext-real   Element of  REAL 
 
(diff (exp_R,f)) / (1 + ((exp_R . f) ^2)) is  V11()  real   ext-real   Element of  REAL 
 
(diff (exp_R,f)) * ((1 + ((exp_R . f) ^2)) ") is  V11()  real   ext-real   set 
 
f is  V11()  real   ext-real   Element of  REAL 
 
((() * exp_R) `| Z) . f is  V11()  real   ext-real   Element of  REAL 
 
exp_R . f is  V11()  real   ext-real   Element of  REAL 
 
(exp_R . f) ^2  is  V11()  real   ext-real   Element of  REAL 
 
(exp_R . f) * (exp_R . f) is  V11()  real   ext-real   set 
 
1 + ((exp_R . f) ^2) is  V11()  real   ext-real   Element of  REAL 
 
(exp_R . f) / (1 + ((exp_R . f) ^2)) is  V11()  real   ext-real   Element of  REAL 
 
(1 + ((exp_R . f) ^2)) "  is  V11()  real   ext-real   set 
 
(exp_R . f) * ((1 + ((exp_R . f) ^2)) ") is  V11()  real   ext-real   set 
 
() * exp_R is  V19() V22( REAL ) V23( REAL )  Function-like  V36() V37() V38()  Element of K6(K7(REAL,REAL))
 
 dom (() * exp_R) is  V46() V47() V48()  Element of K6(REAL)
 
Z is   open  V46() V47() V48()  Element of K6(REAL)
 
(() * exp_R) `| Z is  V19() V22( REAL ) V23( REAL )  Function-like  V36() V37() V38()  Element of K6(K7(REAL,REAL))
 
f is  V11()  real   ext-real   Element of  REAL 
 
exp_R . f is  V11()  real   ext-real   Element of  REAL 
 
(exp_R . f) + 0 is  V11()  real   ext-real   Element of  REAL 
 
0 + (- 1) is  V11()  real   ext-real  V63()  Element of  REAL 
 
f is  V11()  real   ext-real   Element of  REAL 
 
((() * exp_R) `| Z) . f is  V11()  real   ext-real   Element of  REAL 
 
exp_R . f is  V11()  real   ext-real   Element of  REAL 
 
(exp_R . f) ^2  is  V11()  real   ext-real   Element of  REAL 
 
(exp_R . f) * (exp_R . f) is  V11()  real   ext-real   set 
 
1 + ((exp_R . f) ^2) is  V11()  real   ext-real   Element of  REAL 
 
(exp_R . f) / (1 + ((exp_R . f) ^2)) is  V11()  real   ext-real   Element of  REAL 
 
(1 + ((exp_R . f) ^2)) "  is  V11()  real   ext-real   set 
 
(exp_R . f) * ((1 + ((exp_R . f) ^2)) ") is  V11()  real   ext-real   set 
 
 - ((exp_R . f) / (1 + ((exp_R . f) ^2))) is  V11()  real   ext-real   Element of  REAL 
 
(exp_R . f) + 0 is  V11()  real   ext-real   Element of  REAL 
 
0 + (- 1) is  V11()  real   ext-real  V63()  Element of  REAL 
 
 diff ((() * exp_R),f) is  V11()  real   ext-real   Element of  REAL 
 
 diff (exp_R,f) is  V11()  real   ext-real   Element of  REAL 
 
(diff (exp_R,f)) / (1 + ((exp_R . f) ^2)) is  V11()  real   ext-real   Element of  REAL 
 
(diff (exp_R,f)) * ((1 + ((exp_R . f) ^2)) ") is  V11()  real   ext-real   set 
 
 - ((diff (exp_R,f)) / (1 + ((exp_R . f) ^2))) is  V11()  real   ext-real   Element of  REAL 
 
f is  V11()  real   ext-real   Element of  REAL 
 
((() * exp_R) `| Z) . f is  V11()  real   ext-real   Element of  REAL 
 
exp_R . f is  V11()  real   ext-real   Element of  REAL 
 
(exp_R . f) ^2  is  V11()  real   ext-real   Element of  REAL 
 
(exp_R . f) * (exp_R . f) is  V11()  real   ext-real   set 
 
1 + ((exp_R . f) ^2) is  V11()  real   ext-real   Element of  REAL 
 
(exp_R . f) / (1 + ((exp_R . f) ^2)) is  V11()  real   ext-real   Element of  REAL 
 
(1 + ((exp_R . f) ^2)) "  is  V11()  real   ext-real   set 
 
(exp_R . f) * ((1 + ((exp_R . f) ^2)) ") is  V11()  real   ext-real   set 
 
 - ((exp_R . f) / (1 + ((exp_R . f) ^2))) is  V11()  real   ext-real   Element of  REAL 
 
() * ln is  V19() V22( REAL ) V23( REAL )  Function-like  V36() V37() V38()  Element of K6(K7(REAL,REAL))
 
 dom (() * ln) is  V46() V47() V48()  Element of K6(REAL)
 
Z is   open  V46() V47() V48()  Element of K6(REAL)
 
(() * ln) `| Z is  V19() V22( REAL ) V23( REAL )  Function-like  V36() V37() V38()  Element of K6(K7(REAL,REAL))
 
 {  b1 where b1 is  V11()  real   ext-real   Element of  REAL  :  not b1 <=  0   }   is    set 
 
f is  V11()  real   ext-real   Element of  REAL 
 
x is  V11()  real   ext-real   Element of  REAL 
 
f is  V11()  real   ext-real   Element of  REAL 
 
ln . f is  V11()  real   ext-real   Element of  REAL 
 
f is  V11()  real   ext-real   Element of  REAL 
 
((() * ln) `| Z) . f is  V11()  real   ext-real   Element of  REAL 
 
ln . f is  V11()  real   ext-real   Element of  REAL 
 
(ln . f) ^2  is  V11()  real   ext-real   Element of  REAL 
 
(ln . f) * (ln . f) is  V11()  real   ext-real   set 
 
1 + ((ln . f) ^2) is  V11()  real   ext-real   Element of  REAL 
 
f * (1 + ((ln . f) ^2)) is  V11()  real   ext-real   Element of  REAL 
 
1 / (f * (1 + ((ln . f) ^2))) is  V11()  real   ext-real   Element of  REAL 
 
(f * (1 + ((ln . f) ^2))) "  is  V11()  real   ext-real   set 
 
1 * ((f * (1 + ((ln . f) ^2))) ") is  V11()  real   ext-real   set 
 
 diff ((() * ln),f) is  V11()  real   ext-real   Element of  REAL 
 
 diff (ln,f) is  V11()  real   ext-real   Element of  REAL 
 
(diff (ln,f)) / (1 + ((ln . f) ^2)) is  V11()  real   ext-real   Element of  REAL 
 
(1 + ((ln . f) ^2)) "  is  V11()  real   ext-real   set 
 
(diff (ln,f)) * ((1 + ((ln . f) ^2)) ") is  V11()  real   ext-real   set 
 
1 / f is  V11()  real   ext-real   Element of  REAL 
 
f "  is  V11()  real   ext-real   set 
 
1 * (f ") is  V11()  real   ext-real   set 
 
(1 / f) / (1 + ((ln . f) ^2)) is  V11()  real   ext-real   Element of  REAL 
 
(1 / f) * ((1 + ((ln . f) ^2)) ") is  V11()  real   ext-real   set 
 
f is  V11()  real   ext-real   Element of  REAL 
 
((() * ln) `| Z) . f is  V11()  real   ext-real   Element of  REAL 
 
ln . f is  V11()  real   ext-real   Element of  REAL 
 
(ln . f) ^2  is  V11()  real   ext-real   Element of  REAL 
 
(ln . f) * (ln . f) is  V11()  real   ext-real   set 
 
1 + ((ln . f) ^2) is  V11()  real   ext-real   Element of  REAL 
 
f * (1 + ((ln . f) ^2)) is  V11()  real   ext-real   Element of  REAL 
 
1 / (f * (1 + ((ln . f) ^2))) is  V11()  real   ext-real   Element of  REAL 
 
(f * (1 + ((ln . f) ^2))) "  is  V11()  real   ext-real   set 
 
1 * ((f * (1 + ((ln . f) ^2))) ") is  V11()  real   ext-real   set 
 
() * ln is  V19() V22( REAL ) V23( REAL )  Function-like  V36() V37() V38()  Element of K6(K7(REAL,REAL))
 
 dom (() * ln) is  V46() V47() V48()  Element of K6(REAL)
 
Z is   open  V46() V47() V48()  Element of K6(REAL)
 
(() * ln) `| Z is  V19() V22( REAL ) V23( REAL )  Function-like  V36() V37() V38()  Element of K6(K7(REAL,REAL))
 
 {  b1 where b1 is  V11()  real   ext-real   Element of  REAL  :  not b1 <=  0   }   is    set 
 
f is  V11()  real   ext-real   Element of  REAL 
 
x is  V11()  real   ext-real   Element of  REAL 
 
f is  V11()  real   ext-real   Element of  REAL 
 
ln . f is  V11()  real   ext-real   Element of  REAL 
 
f is  V11()  real   ext-real   Element of  REAL 
 
((() * ln) `| Z) . f is  V11()  real   ext-real   Element of  REAL 
 
ln . f is  V11()  real   ext-real   Element of  REAL 
 
(ln . f) ^2  is  V11()  real   ext-real   Element of  REAL 
 
(ln . f) * (ln . f) is  V11()  real   ext-real   set 
 
1 + ((ln . f) ^2) is  V11()  real   ext-real   Element of  REAL 
 
f * (1 + ((ln . f) ^2)) is  V11()  real   ext-real   Element of  REAL 
 
1 / (f * (1 + ((ln . f) ^2))) is  V11()  real   ext-real   Element of  REAL 
 
(f * (1 + ((ln . f) ^2))) "  is  V11()  real   ext-real   set 
 
1 * ((f * (1 + ((ln . f) ^2))) ") is  V11()  real   ext-real   set 
 
 - (1 / (f * (1 + ((ln . f) ^2)))) is  V11()  real   ext-real   Element of  REAL 
 
 diff ((() * ln),f) is  V11()  real   ext-real   Element of  REAL 
 
 diff (ln,f) is  V11()  real   ext-real   Element of  REAL 
 
(diff (ln,f)) / (1 + ((ln . f) ^2)) is  V11()  real   ext-real   Element of  REAL 
 
(1 + ((ln . f) ^2)) "  is  V11()  real   ext-real   set 
 
(diff (ln,f)) * ((1 + ((ln . f) ^2)) ") is  V11()  real   ext-real   set 
 
 - ((diff (ln,f)) / (1 + ((ln . f) ^2))) is  V11()  real   ext-real   Element of  REAL 
 
1 / f is  V11()  real   ext-real   Element of  REAL 
 
f "  is  V11()  real   ext-real   set 
 
1 * (f ") is  V11()  real   ext-real   set 
 
(1 / f) / (1 + ((ln . f) ^2)) is  V11()  real   ext-real   Element of  REAL 
 
(1 / f) * ((1 + ((ln . f) ^2)) ") is  V11()  real   ext-real   set 
 
 - ((1 / f) / (1 + ((ln . f) ^2))) is  V11()  real   ext-real   Element of  REAL 
 
f is  V11()  real   ext-real   Element of  REAL 
 
((() * ln) `| Z) . f is  V11()  real   ext-real   Element of  REAL 
 
ln . f is  V11()  real   ext-real   Element of  REAL 
 
(ln . f) ^2  is  V11()  real   ext-real   Element of  REAL 
 
(ln . f) * (ln . f) is  V11()  real   ext-real   set 
 
1 + ((ln . f) ^2) is  V11()  real   ext-real   Element of  REAL 
 
f * (1 + ((ln . f) ^2)) is  V11()  real   ext-real   Element of  REAL 
 
1 / (f * (1 + ((ln . f) ^2))) is  V11()  real   ext-real   Element of  REAL 
 
(f * (1 + ((ln . f) ^2))) "  is  V11()  real   ext-real   set 
 
1 * ((f * (1 + ((ln . f) ^2))) ") is  V11()  real   ext-real   set 
 
 - (1 / (f * (1 + ((ln . f) ^2)))) is  V11()  real   ext-real   Element of  REAL 
 
exp_R * () is  V19() V22( REAL ) V23( REAL )  Function-like  V36() V37() V38()  Element of K6(K7(REAL,REAL))
 
 dom (exp_R * ()) is  V46() V47() V48()  Element of K6(REAL)
 
Z is   open  V46() V47() V48()  Element of K6(REAL)
 
(exp_R * ()) `| Z is  V19() V22( REAL ) V23( REAL )  Function-like  V36() V37() V38()  Element of K6(K7(REAL,REAL))
 
f is  V11()  real   ext-real   Element of  REAL 
 
() . f is  V11()  real   ext-real   Element of  REAL 
 
f is  V11()  real   ext-real   Element of  REAL 
 
((exp_R * ()) `| Z) . f is  V11()  real   ext-real   Element of  REAL 
 
() . f is  V11()  real   ext-real   Element of  REAL 
 
exp_R . (() . f) is  V11()  real   ext-real   Element of  REAL 
 
f ^2  is  V11()  real   ext-real   Element of  REAL 
 
f * f is  V11()  real   ext-real   set 
 
1 + (f ^2) is  V11()  real   ext-real   Element of  REAL 
 
(exp_R . (() . f)) / (1 + (f ^2)) is  V11()  real   ext-real   Element of  REAL 
 
(1 + (f ^2)) "  is  V11()  real   ext-real   set 
 
(exp_R . (() . f)) * ((1 + (f ^2)) ") is  V11()  real   ext-real   set 
 
 diff ((exp_R * ()),f) is  V11()  real   ext-real   Element of  REAL 
 
 diff (exp_R,(() . f)) is  V11()  real   ext-real   Element of  REAL 
 
 diff ((),f) is  V11()  real   ext-real   Element of  REAL 
 
(diff (exp_R,(() . f))) * (diff ((),f)) is  V11()  real   ext-real   Element of  REAL 
 
() `| Z is  V19() V22( REAL ) V23( REAL )  Function-like  V36() V37() V38()  Element of K6(K7(REAL,REAL))
 
(() `| Z) . f is  V11()  real   ext-real   Element of  REAL 
 
(diff (exp_R,(() . f))) * ((() `| Z) . f) is  V11()  real   ext-real   Element of  REAL 
 
1 / (1 + (f ^2)) is  V11()  real   ext-real   Element of  REAL 
 
1 * ((1 + (f ^2)) ") is  V11()  real   ext-real   set 
 
(diff (exp_R,(() . f))) * (1 / (1 + (f ^2))) is  V11()  real   ext-real   Element of  REAL 
 
f is  V11()  real   ext-real   Element of  REAL 
 
((exp_R * ()) `| Z) . f is  V11()  real   ext-real   Element of  REAL 
 
() . f is  V11()  real   ext-real   Element of  REAL 
 
exp_R . (() . f) is  V11()  real   ext-real   Element of  REAL 
 
f ^2  is  V11()  real   ext-real   Element of  REAL 
 
f * f is  V11()  real   ext-real   set 
 
1 + (f ^2) is  V11()  real   ext-real   Element of  REAL 
 
(exp_R . (() . f)) / (1 + (f ^2)) is  V11()  real   ext-real   Element of  REAL 
 
(1 + (f ^2)) "  is  V11()  real   ext-real   set 
 
(exp_R . (() . f)) * ((1 + (f ^2)) ") is  V11()  real   ext-real   set 
 
exp_R * () is  V19() V22( REAL ) V23( REAL )  Function-like  V36() V37() V38()  Element of K6(K7(REAL,REAL))
 
 dom (exp_R * ()) is  V46() V47() V48()  Element of K6(REAL)
 
Z is   open  V46() V47() V48()  Element of K6(REAL)
 
(exp_R * ()) `| Z is  V19() V22( REAL ) V23( REAL )  Function-like  V36() V37() V38()  Element of K6(K7(REAL,REAL))
 
f is  V11()  real   ext-real   Element of  REAL 
 
() . f is  V11()  real   ext-real   Element of  REAL 
 
f is  V11()  real   ext-real   Element of  REAL 
 
((exp_R * ()) `| Z) . f is  V11()  real   ext-real   Element of  REAL 
 
() . f is  V11()  real   ext-real   Element of  REAL 
 
exp_R . (() . f) is  V11()  real   ext-real   Element of  REAL 
 
f ^2  is  V11()  real   ext-real   Element of  REAL 
 
f * f is  V11()  real   ext-real   set 
 
1 + (f ^2) is  V11()  real   ext-real   Element of  REAL 
 
(exp_R . (() . f)) / (1 + (f ^2)) is  V11()  real   ext-real   Element of  REAL 
 
(1 + (f ^2)) "  is  V11()  real   ext-real   set 
 
(exp_R . (() . f)) * ((1 + (f ^2)) ") is  V11()  real   ext-real   set 
 
 - ((exp_R . (() . f)) / (1 + (f ^2))) is  V11()  real   ext-real   Element of  REAL 
 
 diff ((exp_R * ()),f) is  V11()  real   ext-real   Element of  REAL 
 
 diff (exp_R,(() . f)) is  V11()  real   ext-real   Element of  REAL 
 
 diff ((),f) is  V11()  real   ext-real   Element of  REAL 
 
(diff (exp_R,(() . f))) * (diff ((),f)) is  V11()  real   ext-real   Element of  REAL 
 
() `| Z is  V19() V22( REAL ) V23( REAL )  Function-like  V36() V37() V38()  Element of K6(K7(REAL,REAL))
 
(() `| Z) . f is  V11()  real   ext-real   Element of  REAL 
 
(diff (exp_R,(() . f))) * ((() `| Z) . f) is  V11()  real   ext-real   Element of  REAL 
 
1 / (1 + (f ^2)) is  V11()  real   ext-real   Element of  REAL 
 
1 * ((1 + (f ^2)) ") is  V11()  real   ext-real   set 
 
 - (1 / (1 + (f ^2))) is  V11()  real   ext-real   Element of  REAL 
 
(diff (exp_R,(() . f))) * (- (1 / (1 + (f ^2)))) is  V11()  real   ext-real   Element of  REAL 
 
(diff (exp_R,(() . f))) * (1 / (1 + (f ^2))) is  V11()  real   ext-real   Element of  REAL 
 
 - ((diff (exp_R,(() . f))) * (1 / (1 + (f ^2)))) is  V11()  real   ext-real   Element of  REAL 
 
f is  V11()  real   ext-real   Element of  REAL 
 
((exp_R * ()) `| Z) . f is  V11()  real   ext-real   Element of  REAL 
 
() . f is  V11()  real   ext-real   Element of  REAL 
 
exp_R . (() . f) is  V11()  real   ext-real   Element of  REAL 
 
f ^2  is  V11()  real   ext-real   Element of  REAL 
 
f * f is  V11()  real   ext-real   set 
 
1 + (f ^2) is  V11()  real   ext-real   Element of  REAL 
 
(exp_R . (() . f)) / (1 + (f ^2)) is  V11()  real   ext-real   Element of  REAL 
 
(1 + (f ^2)) "  is  V11()  real   ext-real   set 
 
(exp_R . (() . f)) * ((1 + (f ^2)) ") is  V11()  real   ext-real   set 
 
 - ((exp_R . (() . f)) / (1 + (f ^2))) is  V11()  real   ext-real   Element of  REAL 
 
Z is   open  V46() V47() V48()  Element of K6(REAL)
 
 id Z is  V19() V22( REAL ) V23( REAL )  Function-like   one-to-one  V36() V37() V38()  Element of K6(K7(REAL,REAL))
 
() - (id Z) is  V19() V22( REAL ) V23( REAL )  Function-like  V36() V37() V38()  Element of K6(K7(REAL,REAL))
 
 - (id Z) is  V19()  Function-like  V36()  set 
 
 - 1 is   non  empty  V11()  real   ext-real   non  positive   negative  V63()  set 
 
(- 1) (#) (id Z) is  V19()  Function-like   set 
 
() + (- (id Z)) is  V19()  Function-like   set 
 
 dom (() - (id Z)) is  V46() V47() V48()  Element of K6(REAL)
 
(() - (id Z)) `| Z is  V19() V22( REAL ) V23( REAL )  Function-like  V36() V37() V38()  Element of K6(K7(REAL,REAL))
 
f is  V11()  real   ext-real   Element of  REAL 
 
(id Z) . f is  V11()  real   ext-real   Element of  REAL 
 
1 * f is  V11()  real   ext-real   Element of  REAL 
 
(1 * f) + 0 is  V11()  real   ext-real   Element of  REAL 
 
 dom (id Z) is  V46() V47() V48()  Element of K6(REAL)
 
(dom ()) /\ (dom (id Z)) is  V46() V47() V48()  set 
 
f is  V11()  real   ext-real   Element of  REAL 
 
((() - (id Z)) `| Z) . f is  V11()  real   ext-real   Element of  REAL 
 
f ^2  is  V11()  real   ext-real   Element of  REAL 
 
f * f is  V11()  real   ext-real   set 
 
1 + (f ^2) is  V11()  real   ext-real   Element of  REAL 
 
(f ^2) / (1 + (f ^2)) is  V11()  real   ext-real   Element of  REAL 
 
(1 + (f ^2)) "  is  V11()  real   ext-real   set 
 
(f ^2) * ((1 + (f ^2)) ") is  V11()  real   ext-real   set 
 
 - ((f ^2) / (1 + (f ^2))) is  V11()  real   ext-real   Element of  REAL 
 
 diff ((),f) is  V11()  real   ext-real   Element of  REAL 
 
 diff ((id Z),f) is  V11()  real   ext-real   Element of  REAL 
 
(diff ((),f)) - (diff ((id Z),f)) is  V11()  real   ext-real   Element of  REAL 
 
 - (diff ((id Z),f)) is  V11()  real   ext-real   set 
 
(diff ((),f)) + (- (diff ((id Z),f))) is  V11()  real   ext-real   set 
 
() `| Z is  V19() V22( REAL ) V23( REAL )  Function-like  V36() V37() V38()  Element of K6(K7(REAL,REAL))
 
(() `| Z) . f is  V11()  real   ext-real   Element of  REAL 
 
((() `| Z) . f) - (diff ((id Z),f)) is  V11()  real   ext-real   Element of  REAL 
 
((() `| Z) . f) + (- (diff ((id Z),f))) is  V11()  real   ext-real   set 
 
1 / (1 + (f ^2)) is  V11()  real   ext-real   Element of  REAL 
 
1 * ((1 + (f ^2)) ") is  V11()  real   ext-real   set 
 
(1 / (1 + (f ^2))) - (diff ((id Z),f)) is  V11()  real   ext-real   Element of  REAL 
 
(1 / (1 + (f ^2))) + (- (diff ((id Z),f))) is  V11()  real   ext-real   set 
 
(id Z) `| Z is  V19() V22( REAL ) V23( REAL )  Function-like  V36() V37() V38()  Element of K6(K7(REAL,REAL))
 
((id Z) `| Z) . f is  V11()  real   ext-real   Element of  REAL 
 
(1 / (1 + (f ^2))) - (((id Z) `| Z) . f) is  V11()  real   ext-real   Element of  REAL 
 
 - (((id Z) `| Z) . f) is  V11()  real   ext-real   set 
 
(1 / (1 + (f ^2))) + (- (((id Z) `| Z) . f)) is  V11()  real   ext-real   set 
 
(1 / (1 + (f ^2))) - 1 is  V11()  real   ext-real   Element of  REAL 
 
(1 / (1 + (f ^2))) + (- 1) is  V11()  real   ext-real   set 
 
(1 + (f ^2)) / (1 + (f ^2)) is  V11()  real   ext-real   Element of  REAL 
 
(1 + (f ^2)) * ((1 + (f ^2)) ") is  V11()  real   ext-real   set 
 
(1 / (1 + (f ^2))) - ((1 + (f ^2)) / (1 + (f ^2))) is  V11()  real   ext-real   Element of  REAL 
 
 - ((1 + (f ^2)) / (1 + (f ^2))) is  V11()  real   ext-real   set 
 
(1 / (1 + (f ^2))) + (- ((1 + (f ^2)) / (1 + (f ^2)))) is  V11()  real   ext-real   set 
 
f is  V11()  real   ext-real   Element of  REAL 
 
((() - (id Z)) `| Z) . f is  V11()  real   ext-real   Element of  REAL 
 
f ^2  is  V11()  real   ext-real   Element of  REAL 
 
f * f is  V11()  real   ext-real   set 
 
1 + (f ^2) is  V11()  real   ext-real   Element of  REAL 
 
(f ^2) / (1 + (f ^2)) is  V11()  real   ext-real   Element of  REAL 
 
(1 + (f ^2)) "  is  V11()  real   ext-real   set 
 
(f ^2) * ((1 + (f ^2)) ") is  V11()  real   ext-real   set 
 
 - ((f ^2) / (1 + (f ^2))) is  V11()  real   ext-real   Element of  REAL 
 
 - () is  V19() V22( REAL ) V23( REAL )  Function-like  V36() V37() V38()  Element of K6(K7(REAL,REAL))
 
 - 1 is   non  empty  V11()  real   ext-real   non  positive   negative  V63()  set 
 
(- 1) (#) () is  V19()  Function-like   set 
 
Z is   open  V46() V47() V48()  Element of K6(REAL)
 
 id Z is  V19() V22( REAL ) V23( REAL )  Function-like   one-to-one  V36() V37() V38()  Element of K6(K7(REAL,REAL))
 
(- ()) - (id Z) is  V19() V22( REAL ) V23( REAL )  Function-like  V36() V37() V38()  Element of K6(K7(REAL,REAL))
 
 - (id Z) is  V19()  Function-like  V36()  set 
 
(- 1) (#) (id Z) is  V19()  Function-like   set 
 
(- ()) + (- (id Z)) is  V19()  Function-like   set 
 
 dom ((- ()) - (id Z)) is  V46() V47() V48()  Element of K6(REAL)
 
((- ()) - (id Z)) `| Z is  V19() V22( REAL ) V23( REAL )  Function-like  V36() V37() V38()  Element of K6(K7(REAL,REAL))
 
 dom (- ()) is  V46() V47() V48()  Element of K6(REAL)
 
 dom (id Z) is  V46() V47() V48()  Element of K6(REAL)
 
(dom (- ())) /\ (dom (id Z)) is  V46() V47() V48()  set 
 
f is  V11()  real   ext-real   Element of  REAL 
 
(id Z) . f is  V11()  real   ext-real   Element of  REAL 
 
1 * f is  V11()  real   ext-real   Element of  REAL 
 
(1 * f) + 0 is  V11()  real   ext-real   Element of  REAL 
 
(- 1) (#) () is  V19() V22( REAL ) V23( REAL )  Function-like  V36() V37() V38()  Element of K6(K7(REAL,REAL))
 
 dom ((- 1) (#) ()) is  V46() V47() V48()  Element of K6(REAL)
 
f is  V11()  real   ext-real   Element of  REAL 
 
(((- ()) - (id Z)) `| Z) . f is  V11()  real   ext-real   Element of  REAL 
 
f ^2  is  V11()  real   ext-real   Element of  REAL 
 
f * f is  V11()  real   ext-real   set 
 
1 + (f ^2) is  V11()  real   ext-real   Element of  REAL 
 
(f ^2) / (1 + (f ^2)) is  V11()  real   ext-real   Element of  REAL 
 
(1 + (f ^2)) "  is  V11()  real   ext-real   set 
 
(f ^2) * ((1 + (f ^2)) ") is  V11()  real   ext-real   set 
 
 - ((f ^2) / (1 + (f ^2))) is  V11()  real   ext-real   Element of  REAL 
 
 diff ((- ()),f) is  V11()  real   ext-real   Element of  REAL 
 
 diff ((id Z),f) is  V11()  real   ext-real   Element of  REAL 
 
(diff ((- ()),f)) - (diff ((id Z),f)) is  V11()  real   ext-real   Element of  REAL 
 
 - (diff ((id Z),f)) is  V11()  real   ext-real   set 
 
(diff ((- ()),f)) + (- (diff ((id Z),f))) is  V11()  real   ext-real   set 
 
(- ()) `| Z is  V19() V22( REAL ) V23( REAL )  Function-like  V36() V37() V38()  Element of K6(K7(REAL,REAL))
 
((- ()) `| Z) . f is  V11()  real   ext-real   Element of  REAL 
 
(((- ()) `| Z) . f) - (diff ((id Z),f)) is  V11()  real   ext-real   Element of  REAL 
 
(((- ()) `| Z) . f) + (- (diff ((id Z),f))) is  V11()  real   ext-real   set 
 
 diff ((),f) is  V11()  real   ext-real   Element of  REAL 
 
(- 1) * (diff ((),f)) is  V11()  real   ext-real   Element of  REAL 
 
((- 1) * (diff ((),f))) - (diff ((id Z),f)) is  V11()  real   ext-real   Element of  REAL 
 
((- 1) * (diff ((),f))) + (- (diff ((id Z),f))) is  V11()  real   ext-real   set 
 
() `| Z is  V19() V22( REAL ) V23( REAL )  Function-like  V36() V37() V38()  Element of K6(K7(REAL,REAL))
 
(() `| Z) . f is  V11()  real   ext-real   Element of  REAL 
 
(- 1) * ((() `| Z) . f) is  V11()  real   ext-real   Element of  REAL 
 
((- 1) * ((() `| Z) . f)) - (diff ((id Z),f)) is  V11()  real   ext-real   Element of  REAL 
 
((- 1) * ((() `| Z) . f)) + (- (diff ((id Z),f))) is  V11()  real   ext-real   set 
 
1 / (1 + (f ^2)) is  V11()  real   ext-real   Element of  REAL 
 
1 * ((1 + (f ^2)) ") is  V11()  real   ext-real   set 
 
 - (1 / (1 + (f ^2))) is  V11()  real   ext-real   Element of  REAL 
 
(- 1) * (- (1 / (1 + (f ^2)))) is  V11()  real   ext-real   Element of  REAL 
 
((- 1) * (- (1 / (1 + (f ^2))))) - (diff ((id Z),f)) is  V11()  real   ext-real   Element of  REAL 
 
((- 1) * (- (1 / (1 + (f ^2))))) + (- (diff ((id Z),f))) is  V11()  real   ext-real   set 
 
(id Z) `| Z is  V19() V22( REAL ) V23( REAL )  Function-like  V36() V37() V38()  Element of K6(K7(REAL,REAL))
 
((id Z) `| Z) . f is  V11()  real   ext-real   Element of  REAL 
 
(1 / (1 + (f ^2))) - (((id Z) `| Z) . f) is  V11()  real   ext-real   Element of  REAL 
 
 - (((id Z) `| Z) . f) is  V11()  real   ext-real   set 
 
(1 / (1 + (f ^2))) + (- (((id Z) `| Z) . f)) is  V11()  real   ext-real   set 
 
(1 / (1 + (f ^2))) - 1 is  V11()  real   ext-real   Element of  REAL 
 
(1 / (1 + (f ^2))) + (- 1) is  V11()  real   ext-real   set 
 
(1 + (f ^2)) / (1 + (f ^2)) is  V11()  real   ext-real   Element of  REAL 
 
(1 + (f ^2)) * ((1 + (f ^2)) ") is  V11()  real   ext-real   set 
 
(1 / (1 + (f ^2))) - ((1 + (f ^2)) / (1 + (f ^2))) is  V11()  real   ext-real   Element of  REAL 
 
 - ((1 + (f ^2)) / (1 + (f ^2))) is  V11()  real   ext-real   set 
 
(1 / (1 + (f ^2))) + (- ((1 + (f ^2)) / (1 + (f ^2)))) is  V11()  real   ext-real   set 
 
f is  V11()  real   ext-real   Element of  REAL 
 
(((- ()) - (id Z)) `| Z) . f is  V11()  real   ext-real   Element of  REAL 
 
f ^2  is  V11()  real   ext-real   Element of  REAL 
 
f * f is  V11()  real   ext-real   set 
 
1 + (f ^2) is  V11()  real   ext-real   Element of  REAL 
 
(f ^2) / (1 + (f ^2)) is  V11()  real   ext-real   Element of  REAL 
 
(1 + (f ^2)) "  is  V11()  real   ext-real   set 
 
(f ^2) * ((1 + (f ^2)) ") is  V11()  real   ext-real   set 
 
 - ((f ^2) / (1 + (f ^2))) is  V11()  real   ext-real   Element of  REAL 
 
exp_R (#) () is  V19() V22( REAL ) V23( REAL )  Function-like  V36() V37() V38()  Element of K6(K7(REAL,REAL))
 
Z is   open  V46() V47() V48()  Element of K6(REAL)
 
(exp_R (#) ()) `| Z is  V19() V22( REAL ) V23( REAL )  Function-like  V36() V37() V38()  Element of K6(K7(REAL,REAL))
 
(dom exp_R) /\ (dom ()) is  V46() V47() V48()  set 
 
 dom (exp_R (#) ()) is  V46() V47() V48()  Element of K6(REAL)
 
f is  V11()  real   ext-real   Element of  REAL 
 
f is  V11()  real   ext-real   Element of  REAL 
 
((exp_R (#) ()) `| Z) . f is  V11()  real   ext-real   Element of  REAL 
 
exp_R . f is  V11()  real   ext-real   Element of  REAL 
 
() . f is  V11()  real   ext-real   Element of  REAL 
 
(exp_R . f) * (() . f) is  V11()  real   ext-real   Element of  REAL 
 
f ^2  is  V11()  real   ext-real   Element of  REAL 
 
f * f is  V11()  real   ext-real   set 
 
1 + (f ^2) is  V11()  real   ext-real   Element of  REAL 
 
(exp_R . f) / (1 + (f ^2)) is  V11()  real   ext-real   Element of  REAL 
 
(1 + (f ^2)) "  is  V11()  real   ext-real   set 
 
(exp_R . f) * ((1 + (f ^2)) ") is  V11()  real   ext-real   set 
 
((exp_R . f) * (() . f)) + ((exp_R . f) / (1 + (f ^2))) is  V11()  real   ext-real   Element of  REAL 
 
 diff (exp_R,f) is  V11()  real   ext-real   Element of  REAL 
 
(() . f) * (diff (exp_R,f)) is  V11()  real   ext-real   Element of  REAL 
 
 diff ((),f) is  V11()  real   ext-real   Element of  REAL 
 
(exp_R . f) * (diff ((),f)) is  V11()  real   ext-real   Element of  REAL 
 
((() . f) * (diff (exp_R,f))) + ((exp_R . f) * (diff ((),f))) is  V11()  real   ext-real   Element of  REAL 
 
(() . f) * (exp_R . f) is  V11()  real   ext-real   Element of  REAL 
 
((() . f) * (exp_R . f)) + ((exp_R . f) * (diff ((),f))) is  V11()  real   ext-real   Element of  REAL 
 
() `| Z is  V19() V22( REAL ) V23( REAL )  Function-like  V36() V37() V38()  Element of K6(K7(REAL,REAL))
 
(() `| Z) . f is  V11()  real   ext-real   Element of  REAL 
 
(exp_R . f) * ((() `| Z) . f) is  V11()  real   ext-real   Element of  REAL 
 
((exp_R . f) * (() . f)) + ((exp_R . f) * ((() `| Z) . f)) is  V11()  real   ext-real   Element of  REAL 
 
1 / (1 + (f ^2)) is  V11()  real   ext-real   Element of  REAL 
 
1 * ((1 + (f ^2)) ") is  V11()  real   ext-real   set 
 
(exp_R . f) * (1 / (1 + (f ^2))) is  V11()  real   ext-real   Element of  REAL 
 
((exp_R . f) * (() . f)) + ((exp_R . f) * (1 / (1 + (f ^2)))) is  V11()  real   ext-real   Element of  REAL 
 
f is  V11()  real   ext-real   Element of  REAL 
 
((exp_R (#) ()) `| Z) . f is  V11()  real   ext-real   Element of  REAL 
 
exp_R . f is  V11()  real   ext-real   Element of  REAL 
 
() . f is  V11()  real   ext-real   Element of  REAL 
 
(exp_R . f) * (() . f) is  V11()  real   ext-real   Element of  REAL 
 
f ^2  is  V11()  real   ext-real   Element of  REAL 
 
f * f is  V11()  real   ext-real   set 
 
1 + (f ^2) is  V11()  real   ext-real   Element of  REAL 
 
(exp_R . f) / (1 + (f ^2)) is  V11()  real   ext-real   Element of  REAL 
 
(1 + (f ^2)) "  is  V11()  real   ext-real   set 
 
(exp_R . f) * ((1 + (f ^2)) ") is  V11()  real   ext-real   set 
 
((exp_R . f) * (() . f)) + ((exp_R . f) / (1 + (f ^2))) is  V11()  real   ext-real   Element of  REAL 
 
exp_R (#) () is  V19() V22( REAL ) V23( REAL )  Function-like  V36() V37() V38()  Element of K6(K7(REAL,REAL))
 
Z is   open  V46() V47() V48()  Element of K6(REAL)
 
(exp_R (#) ()) `| Z is  V19() V22( REAL ) V23( REAL )  Function-like  V36() V37() V38()  Element of K6(K7(REAL,REAL))
 
(dom exp_R) /\ (dom ()) is  V46() V47() V48()  set 
 
 dom (exp_R (#) ()) is  V46() V47() V48()  Element of K6(REAL)
 
f is  V11()  real   ext-real   Element of  REAL 
 
f is  V11()  real   ext-real   Element of  REAL 
 
((exp_R (#) ()) `| Z) . f is  V11()  real   ext-real   Element of  REAL 
 
exp_R . f is  V11()  real   ext-real   Element of  REAL 
 
() . f is  V11()  real   ext-real   Element of  REAL 
 
(exp_R . f) * (() . f) is  V11()  real   ext-real   Element of  REAL 
 
f ^2  is  V11()  real   ext-real   Element of  REAL 
 
f * f is  V11()  real   ext-real   set 
 
1 + (f ^2) is  V11()  real   ext-real   Element of  REAL 
 
(exp_R . f) / (1 + (f ^2)) is  V11()  real   ext-real   Element of  REAL 
 
(1 + (f ^2)) "  is  V11()  real   ext-real   set 
 
(exp_R . f) * ((1 + (f ^2)) ") is  V11()  real   ext-real   set 
 
((exp_R . f) * (() . f)) - ((exp_R . f) / (1 + (f ^2))) is  V11()  real   ext-real   Element of  REAL 
 
 - ((exp_R . f) / (1 + (f ^2))) is  V11()  real   ext-real   set 
 
((exp_R . f) * (() . f)) + (- ((exp_R . f) / (1 + (f ^2)))) is  V11()  real   ext-real   set 
 
 diff (exp_R,f) is  V11()  real   ext-real   Element of  REAL 
 
(() . f) * (diff (exp_R,f)) is  V11()  real   ext-real   Element of  REAL 
 
 diff ((),f) is  V11()  real   ext-real   Element of  REAL 
 
(exp_R . f) * (diff ((),f)) is  V11()  real   ext-real   Element of  REAL 
 
((() . f) * (diff (exp_R,f))) + ((exp_R . f) * (diff ((),f))) is  V11()  real   ext-real   Element of  REAL 
 
(() . f) * (exp_R . f) is  V11()  real   ext-real   Element of  REAL 
 
((() . f) * (exp_R . f)) + ((exp_R . f) * (diff ((),f))) is  V11()  real   ext-real   Element of  REAL 
 
() `| Z is  V19() V22( REAL ) V23( REAL )  Function-like  V36() V37() V38()  Element of K6(K7(REAL,REAL))
 
(() `| Z) . f is  V11()  real   ext-real   Element of  REAL 
 
(exp_R . f) * ((() `| Z) . f) is  V11()  real   ext-real   Element of  REAL 
 
((exp_R . f) * (() . f)) + ((exp_R . f) * ((() `| Z) . f)) is  V11()  real   ext-real   Element of  REAL 
 
1 / (1 + (f ^2)) is  V11()  real   ext-real   Element of  REAL 
 
1 * ((1 + (f ^2)) ") is  V11()  real   ext-real   set 
 
 - (1 / (1 + (f ^2))) is  V11()  real   ext-real   Element of  REAL 
 
(exp_R . f) * (- (1 / (1 + (f ^2)))) is  V11()  real   ext-real   Element of  REAL 
 
((exp_R . f) * (() . f)) + ((exp_R . f) * (- (1 / (1 + (f ^2))))) is  V11()  real   ext-real   Element of  REAL 
 
f is  V11()  real   ext-real   Element of  REAL 
 
((exp_R (#) ()) `| Z) . f is  V11()  real   ext-real   Element of  REAL 
 
exp_R . f is  V11()  real   ext-real   Element of  REAL 
 
() . f is  V11()  real   ext-real   Element of  REAL 
 
(exp_R . f) * (() . f) is  V11()  real   ext-real   Element of  REAL 
 
f ^2  is  V11()  real   ext-real   Element of  REAL 
 
f * f is  V11()  real   ext-real   set 
 
1 + (f ^2) is  V11()  real   ext-real   Element of  REAL 
 
(exp_R . f) / (1 + (f ^2)) is  V11()  real   ext-real   Element of  REAL 
 
(1 + (f ^2)) "  is  V11()  real   ext-real   set 
 
(exp_R . f) * ((1 + (f ^2)) ") is  V11()  real   ext-real   set 
 
((exp_R . f) * (() . f)) - ((exp_R . f) / (1 + (f ^2))) is  V11()  real   ext-real   Element of  REAL 
 
 - ((exp_R . f) / (1 + (f ^2))) is  V11()  real   ext-real   set 
 
((exp_R . f) * (() . f)) + (- ((exp_R . f) / (1 + (f ^2)))) is  V11()  real   ext-real   set 
 
Z is  V11()  real   ext-real   Element of  REAL 
 
1 / Z is  V11()  real   ext-real   Element of  REAL 
 
Z "  is  V11()  real   ext-real   set 
 
1 * (Z ") is  V11()  real   ext-real   set 
 
f is   open  V46() V47() V48()  Element of K6(REAL)
 
 id f is  V19() V22( REAL ) V23( REAL )  Function-like   one-to-one  V36() V37() V38()  Element of K6(K7(REAL,REAL))
 
x is  V19() V22( REAL ) V23( REAL )  Function-like  V36() V37() V38()  Element of K6(K7(REAL,REAL))
 
() * x is  V19() V22( REAL ) V23( REAL )  Function-like  V36() V37() V38()  Element of K6(K7(REAL,REAL))
 
(1 / Z) (#) (() * x) is  V19() V22( REAL ) V23( REAL )  Function-like  V36() V37() V38()  Element of K6(K7(REAL,REAL))
 
((1 / Z) (#) (() * x)) - (id f) is  V19() V22( REAL ) V23( REAL )  Function-like  V36() V37() V38()  Element of K6(K7(REAL,REAL))
 
 - (id f) is  V19()  Function-like  V36()  set 
 
(- 1) (#) (id f) is  V19()  Function-like   set 
 
((1 / Z) (#) (() * x)) + (- (id f)) is  V19()  Function-like   set 
 
 dom (((1 / Z) (#) (() * x)) - (id f)) is  V46() V47() V48()  Element of K6(REAL)
 
(((1 / Z) (#) (() * x)) - (id f)) `| f is  V19() V22( REAL ) V23( REAL )  Function-like  V36() V37() V38()  Element of K6(K7(REAL,REAL))
 
g is  V11()  real   ext-real   Element of  REAL 
 
x . g is  V11()  real   ext-real   Element of  REAL 
 
Z * g is  V11()  real   ext-real   Element of  REAL 
 
(Z * g) + 0 is  V11()  real   ext-real   Element of  REAL 
 
x is  V11()  real   ext-real   Element of  REAL 
 
(id f) . x is  V11()  real   ext-real   Element of  REAL 
 
1 * x is  V11()  real   ext-real   Element of  REAL 
 
(1 * x) + 0 is  V11()  real   ext-real   Element of  REAL 
 
 dom ((1 / Z) (#) (() * x)) is  V46() V47() V48()  Element of K6(REAL)
 
 dom (id f) is  V46() V47() V48()  Element of K6(REAL)
 
(dom ((1 / Z) (#) (() * x))) /\ (dom (id f)) is  V46() V47() V48()  set 
 
 dom (() * x) is  V46() V47() V48()  Element of K6(REAL)
 
x is  V11()  real   ext-real   Element of  REAL 
 
((((1 / Z) (#) (() * x)) - (id f)) `| f) . x is  V11()  real   ext-real   Element of  REAL 
 
Z * x is  V11()  real   ext-real   Element of  REAL 
 
(Z * x) ^2  is  V11()  real   ext-real   Element of  REAL 
 
(Z * x) * (Z * x) is  V11()  real   ext-real   set 
 
1 + ((Z * x) ^2) is  V11()  real   ext-real   Element of  REAL 
 
((Z * x) ^2) / (1 + ((Z * x) ^2)) is  V11()  real   ext-real   Element of  REAL 
 
(1 + ((Z * x) ^2)) "  is  V11()  real   ext-real   set 
 
((Z * x) ^2) * ((1 + ((Z * x) ^2)) ") is  V11()  real   ext-real   set 
 
 - (((Z * x) ^2) / (1 + ((Z * x) ^2))) is  V11()  real   ext-real   Element of  REAL 
 
 diff (((1 / Z) (#) (() * x)),x) is  V11()  real   ext-real   Element of  REAL 
 
 diff ((id f),x) is  V11()  real   ext-real   Element of  REAL 
 
(diff (((1 / Z) (#) (() * x)),x)) - (diff ((id f),x)) is  V11()  real   ext-real   Element of  REAL 
 
 - (diff ((id f),x)) is  V11()  real   ext-real   set 
 
(diff (((1 / Z) (#) (() * x)),x)) + (- (diff ((id f),x))) is  V11()  real   ext-real   set 
 
((1 / Z) (#) (() * x)) `| f is  V19() V22( REAL ) V23( REAL )  Function-like  V36() V37() V38()  Element of K6(K7(REAL,REAL))
 
(((1 / Z) (#) (() * x)) `| f) . x is  V11()  real   ext-real   Element of  REAL 
 
((((1 / Z) (#) (() * x)) `| f) . x) - (diff ((id f),x)) is  V11()  real   ext-real   Element of  REAL 
 
((((1 / Z) (#) (() * x)) `| f) . x) + (- (diff ((id f),x))) is  V11()  real   ext-real   set 
 
 diff ((() * x),x) is  V11()  real   ext-real   Element of  REAL 
 
(1 / Z) * (diff ((() * x),x)) is  V11()  real   ext-real   Element of  REAL 
 
((1 / Z) * (diff ((() * x),x))) - (diff ((id f),x)) is  V11()  real   ext-real   Element of  REAL 
 
((1 / Z) * (diff ((() * x),x))) + (- (diff ((id f),x))) is  V11()  real   ext-real   set 
 
(() * x) `| f is  V19() V22( REAL ) V23( REAL )  Function-like  V36() V37() V38()  Element of K6(K7(REAL,REAL))
 
((() * x) `| f) . x is  V11()  real   ext-real   Element of  REAL 
 
(1 / Z) * (((() * x) `| f) . x) is  V11()  real   ext-real   Element of  REAL 
 
((1 / Z) * (((() * x) `| f) . x)) - (diff ((id f),x)) is  V11()  real   ext-real   Element of  REAL 
 
((1 / Z) * (((() * x) `| f) . x)) + (- (diff ((id f),x))) is  V11()  real   ext-real   set 
 
(id f) `| f is  V19() V22( REAL ) V23( REAL )  Function-like  V36() V37() V38()  Element of K6(K7(REAL,REAL))
 
((id f) `| f) . x is  V11()  real   ext-real   Element of  REAL 
 
((1 / Z) * (((() * x) `| f) . x)) - (((id f) `| f) . x) is  V11()  real   ext-real   Element of  REAL 
 
 - (((id f) `| f) . x) is  V11()  real   ext-real   set 
 
((1 / Z) * (((() * x) `| f) . x)) + (- (((id f) `| f) . x)) is  V11()  real   ext-real   set 
 
(Z * x) + 0 is  V11()  real   ext-real   Element of  REAL 
 
((Z * x) + 0) ^2  is  V11()  real   ext-real   Element of  REAL 
 
((Z * x) + 0) * ((Z * x) + 0) is  V11()  real   ext-real   set 
 
1 + (((Z * x) + 0) ^2) is  V11()  real   ext-real   Element of  REAL 
 
Z / (1 + (((Z * x) + 0) ^2)) is  V11()  real   ext-real   Element of  REAL 
 
(1 + (((Z * x) + 0) ^2)) "  is  V11()  real   ext-real   set 
 
Z * ((1 + (((Z * x) + 0) ^2)) ") is  V11()  real   ext-real   set 
 
(1 / Z) * (Z / (1 + (((Z * x) + 0) ^2))) is  V11()  real   ext-real   Element of  REAL 
 
((1 / Z) * (Z / (1 + (((Z * x) + 0) ^2)))) - (((id f) `| f) . x) is  V11()  real   ext-real   Element of  REAL 
 
((1 / Z) * (Z / (1 + (((Z * x) + 0) ^2)))) + (- (((id f) `| f) . x)) is  V11()  real   ext-real   set 
 
Z / (1 + ((Z * x) ^2)) is  V11()  real   ext-real   Element of  REAL 
 
Z * ((1 + ((Z * x) ^2)) ") is  V11()  real   ext-real   set 
 
(1 / Z) * (Z / (1 + ((Z * x) ^2))) is  V11()  real   ext-real   Element of  REAL 
 
((1 / Z) * (Z / (1 + ((Z * x) ^2)))) - 1 is  V11()  real   ext-real   Element of  REAL 
 
((1 / Z) * (Z / (1 + ((Z * x) ^2)))) + (- 1) is  V11()  real   ext-real   set 
 
1 * Z is  V11()  real   ext-real   Element of  REAL 
 
Z * (1 + ((Z * x) ^2)) is  V11()  real   ext-real   Element of  REAL 
 
(1 * Z) / (Z * (1 + ((Z * x) ^2))) is  V11()  real   ext-real   Element of  REAL 
 
(Z * (1 + ((Z * x) ^2))) "  is  V11()  real   ext-real   set 
 
(1 * Z) * ((Z * (1 + ((Z * x) ^2))) ") is  V11()  real   ext-real   set 
 
((1 * Z) / (Z * (1 + ((Z * x) ^2)))) - 1 is  V11()  real   ext-real   Element of  REAL 
 
((1 * Z) / (Z * (1 + ((Z * x) ^2)))) + (- 1) is  V11()  real   ext-real   set 
 
1 / (1 + ((Z * x) ^2)) is  V11()  real   ext-real   Element of  REAL 
 
1 * ((1 + ((Z * x) ^2)) ") is  V11()  real   ext-real   set 
 
(1 / (1 + ((Z * x) ^2))) - 1 is  V11()  real   ext-real   Element of  REAL 
 
(1 / (1 + ((Z * x) ^2))) + (- 1) is  V11()  real   ext-real   set 
 
(1 + ((Z * x) ^2)) / (1 + ((Z * x) ^2)) is  V11()  real   ext-real   Element of  REAL 
 
(1 + ((Z * x) ^2)) * ((1 + ((Z * x) ^2)) ") is  V11()  real   ext-real   set 
 
(1 / (1 + ((Z * x) ^2))) - ((1 + ((Z * x) ^2)) / (1 + ((Z * x) ^2))) is  V11()  real   ext-real   Element of  REAL 
 
 - ((1 + ((Z * x) ^2)) / (1 + ((Z * x) ^2))) is  V11()  real   ext-real   set 
 
(1 / (1 + ((Z * x) ^2))) + (- ((1 + ((Z * x) ^2)) / (1 + ((Z * x) ^2)))) is  V11()  real   ext-real   set 
 
x is  V11()  real   ext-real   Element of  REAL 
 
((((1 / Z) (#) (() * x)) - (id f)) `| f) . x is  V11()  real   ext-real   Element of  REAL 
 
Z * x is  V11()  real   ext-real   Element of  REAL 
 
(Z * x) ^2  is  V11()  real   ext-real   Element of  REAL 
 
(Z * x) * (Z * x) is  V11()  real   ext-real   set 
 
1 + ((Z * x) ^2) is  V11()  real   ext-real   Element of  REAL 
 
((Z * x) ^2) / (1 + ((Z * x) ^2)) is  V11()  real   ext-real   Element of  REAL 
 
(1 + ((Z * x) ^2)) "  is  V11()  real   ext-real   set 
 
((Z * x) ^2) * ((1 + ((Z * x) ^2)) ") is  V11()  real   ext-real   set 
 
 - (((Z * x) ^2) / (1 + ((Z * x) ^2))) is  V11()  real   ext-real   Element of  REAL 
 
Z is  V11()  real   ext-real   Element of  REAL 
 
1 / Z is  V11()  real   ext-real   Element of  REAL 
 
Z "  is  V11()  real   ext-real   set 
 
1 * (Z ") is  V11()  real   ext-real   set 
 
 - (1 / Z) is  V11()  real   ext-real   Element of  REAL 
 
f is   open  V46() V47() V48()  Element of K6(REAL)
 
 id f is  V19() V22( REAL ) V23( REAL )  Function-like   one-to-one  V36() V37() V38()  Element of K6(K7(REAL,REAL))
 
x is  V19() V22( REAL ) V23( REAL )  Function-like  V36() V37() V38()  Element of K6(K7(REAL,REAL))
 
() * x is  V19() V22( REAL ) V23( REAL )  Function-like  V36() V37() V38()  Element of K6(K7(REAL,REAL))
 
(- (1 / Z)) (#) (() * x) is  V19() V22( REAL ) V23( REAL )  Function-like  V36() V37() V38()  Element of K6(K7(REAL,REAL))
 
((- (1 / Z)) (#) (() * x)) - (id f) is  V19() V22( REAL ) V23( REAL )  Function-like  V36() V37() V38()  Element of K6(K7(REAL,REAL))
 
 - (id f) is  V19()  Function-like  V36()  set 
 
(- 1) (#) (id f) is  V19()  Function-like   set 
 
((- (1 / Z)) (#) (() * x)) + (- (id f)) is  V19()  Function-like   set 
 
 dom (((- (1 / Z)) (#) (() * x)) - (id f)) is  V46() V47() V48()  Element of K6(REAL)
 
(((- (1 / Z)) (#) (() * x)) - (id f)) `| f is  V19() V22( REAL ) V23( REAL )  Function-like  V36() V37() V38()  Element of K6(K7(REAL,REAL))
 
g is  V11()  real   ext-real   Element of  REAL 
 
x . g is  V11()  real   ext-real   Element of  REAL 
 
Z * g is  V11()  real   ext-real   Element of  REAL 
 
(Z * g) + 0 is  V11()  real   ext-real   Element of  REAL 
 
x is  V11()  real   ext-real   Element of  REAL 
 
(id f) . x is  V11()  real   ext-real   Element of  REAL 
 
1 * x is  V11()  real   ext-real   Element of  REAL 
 
(1 * x) + 0 is  V11()  real   ext-real   Element of  REAL 
 
 dom ((- (1 / Z)) (#) (() * x)) is  V46() V47() V48()  Element of K6(REAL)
 
 dom (id f) is  V46() V47() V48()  Element of K6(REAL)
 
(dom ((- (1 / Z)) (#) (() * x))) /\ (dom (id f)) is  V46() V47() V48()  set 
 
 dom (() * x) is  V46() V47() V48()  Element of K6(REAL)
 
x is  V11()  real   ext-real   Element of  REAL 
 
((((- (1 / Z)) (#) (() * x)) - (id f)) `| f) . x is  V11()  real   ext-real   Element of  REAL 
 
Z * x is  V11()  real   ext-real   Element of  REAL 
 
(Z * x) ^2  is  V11()  real   ext-real   Element of  REAL 
 
(Z * x) * (Z * x) is  V11()  real   ext-real   set 
 
1 + ((Z * x) ^2) is  V11()  real   ext-real   Element of  REAL 
 
((Z * x) ^2) / (1 + ((Z * x) ^2)) is  V11()  real   ext-real   Element of  REAL 
 
(1 + ((Z * x) ^2)) "  is  V11()  real   ext-real   set 
 
((Z * x) ^2) * ((1 + ((Z * x) ^2)) ") is  V11()  real   ext-real   set 
 
 - (((Z * x) ^2) / (1 + ((Z * x) ^2))) is  V11()  real   ext-real   Element of  REAL 
 
 diff (((- (1 / Z)) (#) (() * x)),x) is  V11()  real   ext-real   Element of  REAL 
 
 diff ((id f),x) is  V11()  real   ext-real   Element of  REAL 
 
(diff (((- (1 / Z)) (#) (() * x)),x)) - (diff ((id f),x)) is  V11()  real   ext-real   Element of  REAL 
 
 - (diff ((id f),x)) is  V11()  real   ext-real   set 
 
(diff (((- (1 / Z)) (#) (() * x)),x)) + (- (diff ((id f),x))) is  V11()  real   ext-real   set 
 
((- (1 / Z)) (#) (() * x)) `| f is  V19() V22( REAL ) V23( REAL )  Function-like  V36() V37() V38()  Element of K6(K7(REAL,REAL))
 
(((- (1 / Z)) (#) (() * x)) `| f) . x is  V11()  real   ext-real   Element of  REAL 
 
((((- (1 / Z)) (#) (() * x)) `| f) . x) - (diff ((id f),x)) is  V11()  real   ext-real   Element of  REAL 
 
((((- (1 / Z)) (#) (() * x)) `| f) . x) + (- (diff ((id f),x))) is  V11()  real   ext-real   set 
 
 diff ((() * x),x) is  V11()  real   ext-real   Element of  REAL 
 
(- (1 / Z)) * (diff ((() * x),x)) is  V11()  real   ext-real   Element of  REAL 
 
((- (1 / Z)) * (diff ((() * x),x))) - (diff ((id f),x)) is  V11()  real   ext-real   Element of  REAL 
 
((- (1 / Z)) * (diff ((() * x),x))) + (- (diff ((id f),x))) is  V11()  real   ext-real   set 
 
(() * x) `| f is  V19() V22( REAL ) V23( REAL )  Function-like  V36() V37() V38()  Element of K6(K7(REAL,REAL))
 
((() * x) `| f) . x is  V11()  real   ext-real   Element of  REAL 
 
(- (1 / Z)) * (((() * x) `| f) . x) is  V11()  real   ext-real   Element of  REAL 
 
((- (1 / Z)) * (((() * x) `| f) . x)) - (diff ((id f),x)) is  V11()  real   ext-real   Element of  REAL 
 
((- (1 / Z)) * (((() * x) `| f) . x)) + (- (diff ((id f),x))) is  V11()  real   ext-real   set 
 
(id f) `| f is  V19() V22( REAL ) V23( REAL )  Function-like  V36() V37() V38()  Element of K6(K7(REAL,REAL))
 
((id f) `| f) . x is  V11()  real   ext-real   Element of  REAL 
 
((- (1 / Z)) * (((() * x) `| f) . x)) - (((id f) `| f) . x) is  V11()  real   ext-real   Element of  REAL 
 
 - (((id f) `| f) . x) is  V11()  real   ext-real   set 
 
((- (1 / Z)) * (((() * x) `| f) . x)) + (- (((id f) `| f) . x)) is  V11()  real   ext-real   set 
 
(Z * x) + 0 is  V11()  real   ext-real   Element of  REAL 
 
((Z * x) + 0) ^2  is  V11()  real   ext-real   Element of  REAL 
 
((Z * x) + 0) * ((Z * x) + 0) is  V11()  real   ext-real   set 
 
1 + (((Z * x) + 0) ^2) is  V11()  real   ext-real   Element of  REAL 
 
Z / (1 + (((Z * x) + 0) ^2)) is  V11()  real   ext-real   Element of  REAL 
 
(1 + (((Z * x) + 0) ^2)) "  is  V11()  real   ext-real   set 
 
Z * ((1 + (((Z * x) + 0) ^2)) ") is  V11()  real   ext-real   set 
 
 - (Z / (1 + (((Z * x) + 0) ^2))) is  V11()  real   ext-real   Element of  REAL 
 
(- (1 / Z)) * (- (Z / (1 + (((Z * x) + 0) ^2)))) is  V11()  real   ext-real   Element of  REAL 
 
((- (1 / Z)) * (- (Z / (1 + (((Z * x) + 0) ^2))))) - (((id f) `| f) . x) is  V11()  real   ext-real   Element of  REAL 
 
((- (1 / Z)) * (- (Z / (1 + (((Z * x) + 0) ^2))))) + (- (((id f) `| f) . x)) is  V11()  real   ext-real   set 
 
(- 1) / Z is  V11()  real   ext-real   Element of  REAL 
 
(- 1) * (Z ") is  V11()  real   ext-real   set 
 
 - Z is  V11()  real   ext-real   Element of  REAL 
 
(- Z) / (1 + ((Z * x) ^2)) is  V11()  real   ext-real   Element of  REAL 
 
(- Z) * ((1 + ((Z * x) ^2)) ") is  V11()  real   ext-real   set 
 
((- 1) / Z) * ((- Z) / (1 + ((Z * x) ^2))) is  V11()  real   ext-real   Element of  REAL 
 
(((- 1) / Z) * ((- Z) / (1 + ((Z * x) ^2)))) - 1 is  V11()  real   ext-real   Element of  REAL 
 
(((- 1) / Z) * ((- Z) / (1 + ((Z * x) ^2)))) + (- 1) is  V11()  real   ext-real   set 
 
(- 1) * (- Z) is  V11()  real   ext-real   Element of  REAL 
 
Z * (1 + ((Z * x) ^2)) is  V11()  real   ext-real   Element of  REAL 
 
((- 1) * (- Z)) / (Z * (1 + ((Z * x) ^2))) is  V11()  real   ext-real   Element of  REAL 
 
(Z * (1 + ((Z * x) ^2))) "  is  V11()  real   ext-real   set 
 
((- 1) * (- Z)) * ((Z * (1 + ((Z * x) ^2))) ") is  V11()  real   ext-real   set 
 
(((- 1) * (- Z)) / (Z * (1 + ((Z * x) ^2)))) - 1 is  V11()  real   ext-real   Element of  REAL 
 
(((- 1) * (- Z)) / (Z * (1 + ((Z * x) ^2)))) + (- 1) is  V11()  real   ext-real   set 
 
1 * Z is  V11()  real   ext-real   Element of  REAL 
 
(1 * Z) / (Z * (1 + ((Z * x) ^2))) is  V11()  real   ext-real   Element of  REAL 
 
(1 * Z) * ((Z * (1 + ((Z * x) ^2))) ") is  V11()  real   ext-real   set 
 
((1 * Z) / (Z * (1 + ((Z * x) ^2)))) - 1 is  V11()  real   ext-real   Element of  REAL 
 
((1 * Z) / (Z * (1 + ((Z * x) ^2)))) + (- 1) is  V11()  real   ext-real   set 
 
1 / (1 + ((Z * x) ^2)) is  V11()  real   ext-real   Element of  REAL 
 
1 * ((1 + ((Z * x) ^2)) ") is  V11()  real   ext-real   set 
 
(1 / (1 + ((Z * x) ^2))) - 1 is  V11()  real   ext-real   Element of  REAL 
 
(1 / (1 + ((Z * x) ^2))) + (- 1) is  V11()  real   ext-real   set 
 
(1 + ((Z * x) ^2)) / (1 + ((Z * x) ^2)) is  V11()  real   ext-real   Element of  REAL 
 
(1 + ((Z * x) ^2)) * ((1 + ((Z * x) ^2)) ") is  V11()  real   ext-real   set 
 
(1 / (1 + ((Z * x) ^2))) - ((1 + ((Z * x) ^2)) / (1 + ((Z * x) ^2))) is  V11()  real   ext-real   Element of  REAL 
 
 - ((1 + ((Z * x) ^2)) / (1 + ((Z * x) ^2))) is  V11()  real   ext-real   set 
 
(1 / (1 + ((Z * x) ^2))) + (- ((1 + ((Z * x) ^2)) / (1 + ((Z * x) ^2)))) is  V11()  real   ext-real   set 
 
x is  V11()  real   ext-real   Element of  REAL 
 
((((- (1 / Z)) (#) (() * x)) - (id f)) `| f) . x is  V11()  real   ext-real   Element of  REAL 
 
Z * x is  V11()  real   ext-real   Element of  REAL 
 
(Z * x) ^2  is  V11()  real   ext-real   Element of  REAL 
 
(Z * x) * (Z * x) is  V11()  real   ext-real   set 
 
1 + ((Z * x) ^2) is  V11()  real   ext-real   Element of  REAL 
 
((Z * x) ^2) / (1 + ((Z * x) ^2)) is  V11()  real   ext-real   Element of  REAL 
 
(1 + ((Z * x) ^2)) "  is  V11()  real   ext-real   set 
 
((Z * x) ^2) * ((1 + ((Z * x) ^2)) ") is  V11()  real   ext-real   set 
 
 - (((Z * x) ^2) / (1 + ((Z * x) ^2))) is  V11()  real   ext-real   Element of  REAL 
 
ln (#) () is  V19() V22( REAL ) V23( REAL )  Function-like  V36() V37() V38()  Element of K6(K7(REAL,REAL))
 
 dom (ln (#) ()) is  V46() V47() V48()  Element of K6(REAL)
 
Z is   open  V46() V47() V48()  Element of K6(REAL)
 
(ln (#) ()) `| Z is  V19() V22( REAL ) V23( REAL )  Function-like  V36() V37() V38()  Element of K6(K7(REAL,REAL))
 
 {  b1 where b1 is  V11()  real   ext-real   Element of  REAL  :  not b1 <=  0   }   is    set 
 
(dom ln) /\ (dom ()) is  V46() V47() V48()  set 
 
f is  V11()  real   ext-real   Element of  REAL 
 
x is  V11()  real   ext-real   Element of  REAL 
 
f is  V11()  real   ext-real   Element of  REAL 
 
f is  V11()  real   ext-real   Element of  REAL 
 
 diff (ln,f) is  V11()  real   ext-real   Element of  REAL 
 
1 / f is  V11()  real   ext-real   Element of  REAL 
 
f "  is  V11()  real   ext-real   set 
 
1 * (f ") is  V11()  real   ext-real   set 
 
f is  V11()  real   ext-real   Element of  REAL 
 
((ln (#) ()) `| Z) . f is  V11()  real   ext-real   Element of  REAL 
 
() . f is  V11()  real   ext-real   Element of  REAL 
 
(() . f) / f is  V11()  real   ext-real   Element of  REAL 
 
f "  is  V11()  real   ext-real   set 
 
(() . f) * (f ") is  V11()  real   ext-real   set 
 
ln . f is  V11()  real   ext-real   Element of  REAL 
 
f ^2  is  V11()  real   ext-real   Element of  REAL 
 
f * f is  V11()  real   ext-real   set 
 
1 + (f ^2) is  V11()  real   ext-real   Element of  REAL 
 
(ln . f) / (1 + (f ^2)) is  V11()  real   ext-real   Element of  REAL 
 
(1 + (f ^2)) "  is  V11()  real   ext-real   set 
 
(ln . f) * ((1 + (f ^2)) ") is  V11()  real   ext-real   set 
 
((() . f) / f) + ((ln . f) / (1 + (f ^2))) is  V11()  real   ext-real   Element of  REAL 
 
 diff (ln,f) is  V11()  real   ext-real   Element of  REAL 
 
(() . f) * (diff (ln,f)) is  V11()  real   ext-real   Element of  REAL 
 
 diff ((),f) is  V11()  real   ext-real   Element of  REAL 
 
(ln . f) * (diff ((),f)) is  V11()  real   ext-real   Element of  REAL 
 
((() . f) * (diff (ln,f))) + ((ln . f) * (diff ((),f))) is  V11()  real   ext-real   Element of  REAL 
 
1 / f is  V11()  real   ext-real   Element of  REAL 
 
1 * (f ") is  V11()  real   ext-real   set 
 
(() . f) * (1 / f) is  V11()  real   ext-real   Element of  REAL 
 
((() . f) * (1 / f)) + ((ln . f) * (diff ((),f))) is  V11()  real   ext-real   Element of  REAL 
 
() `| Z is  V19() V22( REAL ) V23( REAL )  Function-like  V36() V37() V38()  Element of K6(K7(REAL,REAL))
 
(() `| Z) . f is  V11()  real   ext-real   Element of  REAL 
 
(ln . f) * ((() `| Z) . f) is  V11()  real   ext-real   Element of  REAL 
 
((() . f) * (1 / f)) + ((ln . f) * ((() `| Z) . f)) is  V11()  real   ext-real   Element of  REAL 
 
(() . f) * 1 is  V11()  real   ext-real   Element of  REAL 
 
((() . f) * 1) / f is  V11()  real   ext-real   Element of  REAL 
 
((() . f) * 1) * (f ") is  V11()  real   ext-real   set 
 
1 / (1 + (f ^2)) is  V11()  real   ext-real   Element of  REAL 
 
1 * ((1 + (f ^2)) ") is  V11()  real   ext-real   set 
 
(ln . f) * (1 / (1 + (f ^2))) is  V11()  real   ext-real   Element of  REAL 
 
(((() . f) * 1) / f) + ((ln . f) * (1 / (1 + (f ^2)))) is  V11()  real   ext-real   Element of  REAL 
 
f is  V11()  real   ext-real   Element of  REAL 
 
((ln (#) ()) `| Z) . f is  V11()  real   ext-real   Element of  REAL 
 
() . f is  V11()  real   ext-real   Element of  REAL 
 
(() . f) / f is  V11()  real   ext-real   Element of  REAL 
 
f "  is  V11()  real   ext-real   set 
 
(() . f) * (f ") is  V11()  real   ext-real   set 
 
ln . f is  V11()  real   ext-real   Element of  REAL 
 
f ^2  is  V11()  real   ext-real   Element of  REAL 
 
f * f is  V11()  real   ext-real   set 
 
1 + (f ^2) is  V11()  real   ext-real   Element of  REAL 
 
(ln . f) / (1 + (f ^2)) is  V11()  real   ext-real   Element of  REAL 
 
(1 + (f ^2)) "  is  V11()  real   ext-real   set 
 
(ln . f) * ((1 + (f ^2)) ") is  V11()  real   ext-real   set 
 
((() . f) / f) + ((ln . f) / (1 + (f ^2))) is  V11()  real   ext-real   Element of  REAL 
 
ln (#) () is  V19() V22( REAL ) V23( REAL )  Function-like  V36() V37() V38()  Element of K6(K7(REAL,REAL))
 
 dom (ln (#) ()) is  V46() V47() V48()  Element of K6(REAL)
 
Z is   open  V46() V47() V48()  Element of K6(REAL)
 
(ln (#) ()) `| Z is  V19() V22( REAL ) V23( REAL )  Function-like  V36() V37() V38()  Element of K6(K7(REAL,REAL))
 
 {  b1 where b1 is  V11()  real   ext-real   Element of  REAL  :  not b1 <=  0   }   is    set 
 
(dom ln) /\ (dom ()) is  V46() V47() V48()  set 
 
f is  V11()  real   ext-real   Element of  REAL 
 
x is  V11()  real   ext-real   Element of  REAL 
 
f is  V11()  real   ext-real   Element of  REAL 
 
f is  V11()  real   ext-real   Element of  REAL 
 
 diff (ln,f) is  V11()  real   ext-real   Element of  REAL 
 
1 / f is  V11()  real   ext-real   Element of  REAL 
 
f "  is  V11()  real   ext-real   set 
 
1 * (f ") is  V11()  real   ext-real   set 
 
f is  V11()  real   ext-real   Element of  REAL 
 
((ln (#) ()) `| Z) . f is  V11()  real   ext-real   Element of  REAL 
 
() . f is  V11()  real   ext-real   Element of  REAL 
 
(() . f) / f is  V11()  real   ext-real   Element of  REAL 
 
f "  is  V11()  real   ext-real   set 
 
(() . f) * (f ") is  V11()  real   ext-real   set 
 
ln . f is  V11()  real   ext-real   Element of  REAL 
 
f ^2  is  V11()  real   ext-real   Element of  REAL 
 
f * f is  V11()  real   ext-real   set 
 
1 + (f ^2) is  V11()  real   ext-real   Element of  REAL 
 
(ln . f) / (1 + (f ^2)) is  V11()  real   ext-real   Element of  REAL 
 
(1 + (f ^2)) "  is  V11()  real   ext-real   set 
 
(ln . f) * ((1 + (f ^2)) ") is  V11()  real   ext-real   set 
 
((() . f) / f) - ((ln . f) / (1 + (f ^2))) is  V11()  real   ext-real   Element of  REAL 
 
 - ((ln . f) / (1 + (f ^2))) is  V11()  real   ext-real   set 
 
((() . f) / f) + (- ((ln . f) / (1 + (f ^2)))) is  V11()  real   ext-real   set 
 
 diff (ln,f) is  V11()  real   ext-real   Element of  REAL 
 
(() . f) * (diff (ln,f)) is  V11()  real   ext-real   Element of  REAL 
 
 diff ((),f) is  V11()  real   ext-real   Element of  REAL 
 
(ln . f) * (diff ((),f)) is  V11()  real   ext-real   Element of  REAL 
 
((() . f) * (diff (ln,f))) + ((ln . f) * (diff ((),f))) is  V11()  real   ext-real   Element of  REAL 
 
1 / f is  V11()  real   ext-real   Element of  REAL 
 
1 * (f ") is  V11()  real   ext-real   set 
 
(() . f) * (1 / f) is  V11()  real   ext-real   Element of  REAL 
 
((() . f) * (1 / f)) + ((ln . f) * (diff ((),f))) is  V11()  real   ext-real   Element of  REAL 
 
() `| Z is  V19() V22( REAL ) V23( REAL )  Function-like  V36() V37() V38()  Element of K6(K7(REAL,REAL))
 
(() `| Z) . f is  V11()  real   ext-real   Element of  REAL 
 
(ln . f) * ((() `| Z) . f) is  V11()  real   ext-real   Element of  REAL 
 
((() . f) * (1 / f)) + ((ln . f) * ((() `| Z) . f)) is  V11()  real   ext-real   Element of  REAL 
 
1 / (1 + (f ^2)) is  V11()  real   ext-real   Element of  REAL 
 
1 * ((1 + (f ^2)) ") is  V11()  real   ext-real   set 
 
 - (1 / (1 + (f ^2))) is  V11()  real   ext-real   Element of  REAL 
 
(ln . f) * (- (1 / (1 + (f ^2)))) is  V11()  real   ext-real   Element of  REAL 
 
((() . f) * (1 / f)) + ((ln . f) * (- (1 / (1 + (f ^2))))) is  V11()  real   ext-real   Element of  REAL 
 
f is  V11()  real   ext-real   Element of  REAL 
 
((ln (#) ()) `| Z) . f is  V11()  real   ext-real   Element of  REAL 
 
() . f is  V11()  real   ext-real   Element of  REAL 
 
(() . f) / f is  V11()  real   ext-real   Element of  REAL 
 
f "  is  V11()  real   ext-real   set 
 
(() . f) * (f ") is  V11()  real   ext-real   set 
 
ln . f is  V11()  real   ext-real   Element of  REAL 
 
f ^2  is  V11()  real   ext-real   Element of  REAL 
 
f * f is  V11()  real   ext-real   set 
 
1 + (f ^2) is  V11()  real   ext-real   Element of  REAL 
 
(ln . f) / (1 + (f ^2)) is  V11()  real   ext-real   Element of  REAL 
 
(1 + (f ^2)) "  is  V11()  real   ext-real   set 
 
(ln . f) * ((1 + (f ^2)) ") is  V11()  real   ext-real   set 
 
((() . f) / f) - ((ln . f) / (1 + (f ^2))) is  V11()  real   ext-real   Element of  REAL 
 
 - ((ln . f) / (1 + (f ^2))) is  V11()  real   ext-real   set 
 
((() . f) / f) + (- ((ln . f) / (1 + (f ^2)))) is  V11()  real   ext-real   set 
 
Z is   open  V46() V47() V48()  Element of K6(REAL)
 
 id Z is  V19() V22( REAL ) V23( REAL )  Function-like   one-to-one  V36() V37() V38()  Element of K6(K7(REAL,REAL))
 
(id Z) ^  is  V19() V22( REAL ) V23( REAL )  Function-like  V36() V37() V38()  Element of K6(K7(REAL,REAL))
 
((id Z) ^) (#) () is  V19() V22( REAL ) V23( REAL )  Function-like  V36() V37() V38()  Element of K6(K7(REAL,REAL))
 
 dom (((id Z) ^) (#) ()) is  V46() V47() V48()  Element of K6(REAL)
 
(((id Z) ^) (#) ()) `| Z is  V19() V22( REAL ) V23( REAL )  Function-like  V36() V37() V38()  Element of K6(K7(REAL,REAL))
 
 dom ((id Z) ^) is  V46() V47() V48()  Element of K6(REAL)
 
(dom ((id Z) ^)) /\ (dom ()) is  V46() V47() V48()  set 
 
x is  V11()  real   ext-real   Element of  REAL 
 
((((id Z) ^) (#) ()) `| Z) . x is  V11()  real   ext-real   Element of  REAL 
 
() . x is  V11()  real   ext-real   Element of  REAL 
 
x ^2  is  V11()  real   ext-real   Element of  REAL 
 
x * x is  V11()  real   ext-real   set 
 
(() . x) / (x ^2) is  V11()  real   ext-real   Element of  REAL 
 
(x ^2) "  is  V11()  real   ext-real   set 
 
(() . x) * ((x ^2) ") is  V11()  real   ext-real   set 
 
 - ((() . x) / (x ^2)) is  V11()  real   ext-real   Element of  REAL 
 
1 + (x ^2) is  V11()  real   ext-real   Element of  REAL 
 
x * (1 + (x ^2)) is  V11()  real   ext-real   Element of  REAL 
 
1 / (x * (1 + (x ^2))) is  V11()  real   ext-real   Element of  REAL 
 
(x * (1 + (x ^2))) "  is  V11()  real   ext-real   set 
 
1 * ((x * (1 + (x ^2))) ") is  V11()  real   ext-real   set 
 
(- ((() . x) / (x ^2))) + (1 / (x * (1 + (x ^2)))) is  V11()  real   ext-real   Element of  REAL 
 
 diff (((id Z) ^),x) is  V11()  real   ext-real   Element of  REAL 
 
(() . x) * (diff (((id Z) ^),x)) is  V11()  real   ext-real   Element of  REAL 
 
((id Z) ^) . x is  V11()  real   ext-real   Element of  REAL 
 
 diff ((),x) is  V11()  real   ext-real   Element of  REAL 
 
(((id Z) ^) . x) * (diff ((),x)) is  V11()  real   ext-real   Element of  REAL 
 
((() . x) * (diff (((id Z) ^),x))) + ((((id Z) ^) . x) * (diff ((),x))) is  V11()  real   ext-real   Element of  REAL 
 
((id Z) ^) `| Z is  V19() V22( REAL ) V23( REAL )  Function-like  V36() V37() V38()  Element of K6(K7(REAL,REAL))
 
(((id Z) ^) `| Z) . x is  V11()  real   ext-real   Element of  REAL 
 
(() . x) * ((((id Z) ^) `| Z) . x) is  V11()  real   ext-real   Element of  REAL 
 
((() . x) * ((((id Z) ^) `| Z) . x)) + ((((id Z) ^) . x) * (diff ((),x))) is  V11()  real   ext-real   Element of  REAL 
 
1 / (x ^2) is  V11()  real   ext-real   Element of  REAL 
 
1 * ((x ^2) ") is  V11()  real   ext-real   set 
 
 - (1 / (x ^2)) is  V11()  real   ext-real   Element of  REAL 
 
(() . x) * (- (1 / (x ^2))) is  V11()  real   ext-real   Element of  REAL 
 
((() . x) * (- (1 / (x ^2)))) + ((((id Z) ^) . x) * (diff ((),x))) is  V11()  real   ext-real   Element of  REAL 
 
(() . x) * (1 / (x ^2)) is  V11()  real   ext-real   Element of  REAL 
 
 - ((() . x) * (1 / (x ^2))) is  V11()  real   ext-real   Element of  REAL 
 
() `| Z is  V19() V22( REAL ) V23( REAL )  Function-like  V36() V37() V38()  Element of K6(K7(REAL,REAL))
 
(() `| Z) . x is  V11()  real   ext-real   Element of  REAL 
 
(((id Z) ^) . x) * ((() `| Z) . x) is  V11()  real   ext-real   Element of  REAL 
 
(- ((() . x) * (1 / (x ^2)))) + ((((id Z) ^) . x) * ((() `| Z) . x)) is  V11()  real   ext-real   Element of  REAL 
 
(() . x) * 1 is  V11()  real   ext-real   Element of  REAL 
 
((() . x) * 1) / (x ^2) is  V11()  real   ext-real   Element of  REAL 
 
((() . x) * 1) * ((x ^2) ") is  V11()  real   ext-real   set 
 
 - (((() . x) * 1) / (x ^2)) is  V11()  real   ext-real   Element of  REAL 
 
1 / (1 + (x ^2)) is  V11()  real   ext-real   Element of  REAL 
 
(1 + (x ^2)) "  is  V11()  real   ext-real   set 
 
1 * ((1 + (x ^2)) ") is  V11()  real   ext-real   set 
 
(((id Z) ^) . x) * (1 / (1 + (x ^2))) is  V11()  real   ext-real   Element of  REAL 
 
(- (((() . x) * 1) / (x ^2))) + ((((id Z) ^) . x) * (1 / (1 + (x ^2)))) is  V11()  real   ext-real   Element of  REAL 
 
(id Z) . x is  V11()  real   ext-real   Element of  REAL 
 
((id Z) . x) "  is  V11()  real   ext-real   Element of  REAL 
 
(((id Z) . x) ") * (1 / (1 + (x ^2))) is  V11()  real   ext-real   Element of  REAL 
 
(- ((() . x) / (x ^2))) + ((((id Z) . x) ") * (1 / (1 + (x ^2)))) is  V11()  real   ext-real   Element of  REAL 
 
1 / x is  V11()  real   ext-real   Element of  REAL 
 
x "  is  V11()  real   ext-real   set 
 
1 * (x ") is  V11()  real   ext-real   set 
 
(1 / x) * (1 / (1 + (x ^2))) is  V11()  real   ext-real   Element of  REAL 
 
(- ((() . x) / (x ^2))) + ((1 / x) * (1 / (1 + (x ^2)))) is  V11()  real   ext-real   Element of  REAL 
 
1 * 1 is   non  empty  V11()  real   ext-real   positive   non  negative  V63()  Element of  REAL 
 
(1 * 1) / (x * (1 + (x ^2))) is  V11()  real   ext-real   Element of  REAL 
 
(1 * 1) * ((x * (1 + (x ^2))) ") is  V11()  real   ext-real   set 
 
(- ((() . x) / (x ^2))) + ((1 * 1) / (x * (1 + (x ^2)))) is  V11()  real   ext-real   Element of  REAL 
 
x is  V11()  real   ext-real   Element of  REAL 
 
((((id Z) ^) (#) ()) `| Z) . x is  V11()  real   ext-real   Element of  REAL 
 
() . x is  V11()  real   ext-real   Element of  REAL 
 
x ^2  is  V11()  real   ext-real   Element of  REAL 
 
x * x is  V11()  real   ext-real   set 
 
(() . x) / (x ^2) is  V11()  real   ext-real   Element of  REAL 
 
(x ^2) "  is  V11()  real   ext-real   set 
 
(() . x) * ((x ^2) ") is  V11()  real   ext-real   set 
 
 - ((() . x) / (x ^2)) is  V11()  real   ext-real   Element of  REAL 
 
1 + (x ^2) is  V11()  real   ext-real   Element of  REAL 
 
x * (1 + (x ^2)) is  V11()  real   ext-real   Element of  REAL 
 
1 / (x * (1 + (x ^2))) is  V11()  real   ext-real   Element of  REAL 
 
(x * (1 + (x ^2))) "  is  V11()  real   ext-real   set 
 
1 * ((x * (1 + (x ^2))) ") is  V11()  real   ext-real   set 
 
(- ((() . x) / (x ^2))) + (1 / (x * (1 + (x ^2)))) is  V11()  real   ext-real   Element of  REAL 
 
Z is   open  V46() V47() V48()  Element of K6(REAL)
 
 id Z is  V19() V22( REAL ) V23( REAL )  Function-like   one-to-one  V36() V37() V38()  Element of K6(K7(REAL,REAL))
 
(id Z) ^  is  V19() V22( REAL ) V23( REAL )  Function-like  V36() V37() V38()  Element of K6(K7(REAL,REAL))
 
((id Z) ^) (#) () is  V19() V22( REAL ) V23( REAL )  Function-like  V36() V37() V38()  Element of K6(K7(REAL,REAL))
 
 dom (((id Z) ^) (#) ()) is  V46() V47() V48()  Element of K6(REAL)
 
(((id Z) ^) (#) ()) `| Z is  V19() V22( REAL ) V23( REAL )  Function-like  V36() V37() V38()  Element of K6(K7(REAL,REAL))
 
 dom ((id Z) ^) is  V46() V47() V48()  Element of K6(REAL)
 
(dom ((id Z) ^)) /\ (dom ()) is  V46() V47() V48()  set 
 
x is  V11()  real   ext-real   Element of  REAL 
 
((((id Z) ^) (#) ()) `| Z) . x is  V11()  real   ext-real   Element of  REAL 
 
() . x is  V11()  real   ext-real   Element of  REAL 
 
x ^2  is  V11()  real   ext-real   Element of  REAL 
 
x * x is  V11()  real   ext-real   set 
 
(() . x) / (x ^2) is  V11()  real   ext-real   Element of  REAL 
 
(x ^2) "  is  V11()  real   ext-real   set 
 
(() . x) * ((x ^2) ") is  V11()  real   ext-real   set 
 
 - ((() . x) / (x ^2)) is  V11()  real   ext-real   Element of  REAL 
 
1 + (x ^2) is  V11()  real   ext-real   Element of  REAL 
 
x * (1 + (x ^2)) is  V11()  real   ext-real   Element of  REAL 
 
1 / (x * (1 + (x ^2))) is  V11()  real   ext-real   Element of  REAL 
 
(x * (1 + (x ^2))) "  is  V11()  real   ext-real   set 
 
1 * ((x * (1 + (x ^2))) ") is  V11()  real   ext-real   set 
 
(- ((() . x) / (x ^2))) - (1 / (x * (1 + (x ^2)))) is  V11()  real   ext-real   Element of  REAL 
 
 - (1 / (x * (1 + (x ^2)))) is  V11()  real   ext-real   set 
 
(- ((() . x) / (x ^2))) + (- (1 / (x * (1 + (x ^2))))) is  V11()  real   ext-real   set 
 
 diff (((id Z) ^),x) is  V11()  real   ext-real   Element of  REAL 
 
(() . x) * (diff (((id Z) ^),x)) is  V11()  real   ext-real   Element of  REAL 
 
((id Z) ^) . x is  V11()  real   ext-real   Element of  REAL 
 
 diff ((),x) is  V11()  real   ext-real   Element of  REAL 
 
(((id Z) ^) . x) * (diff ((),x)) is  V11()  real   ext-real   Element of  REAL 
 
((() . x) * (diff (((id Z) ^),x))) + ((((id Z) ^) . x) * (diff ((),x))) is  V11()  real   ext-real   Element of  REAL 
 
((id Z) ^) `| Z is  V19() V22( REAL ) V23( REAL )  Function-like  V36() V37() V38()  Element of K6(K7(REAL,REAL))
 
(((id Z) ^) `| Z) . x is  V11()  real   ext-real   Element of  REAL 
 
(() . x) * ((((id Z) ^) `| Z) . x) is  V11()  real   ext-real   Element of  REAL 
 
((() . x) * ((((id Z) ^) `| Z) . x)) + ((((id Z) ^) . x) * (diff ((),x))) is  V11()  real   ext-real   Element of  REAL 
 
1 / (x ^2) is  V11()  real   ext-real   Element of  REAL 
 
1 * ((x ^2) ") is  V11()  real   ext-real   set 
 
 - (1 / (x ^2)) is  V11()  real   ext-real   Element of  REAL 
 
(() . x) * (- (1 / (x ^2))) is  V11()  real   ext-real   Element of  REAL 
 
((() . x) * (- (1 / (x ^2)))) + ((((id Z) ^) . x) * (diff ((),x))) is  V11()  real   ext-real   Element of  REAL 
 
(() . x) * (1 / (x ^2)) is  V11()  real   ext-real   Element of  REAL 
 
 - ((() . x) * (1 / (x ^2))) is  V11()  real   ext-real   Element of  REAL 
 
() `| Z is  V19() V22( REAL ) V23( REAL )  Function-like  V36() V37() V38()  Element of K6(K7(REAL,REAL))
 
(() `| Z) . x is  V11()  real   ext-real   Element of  REAL 
 
(((id Z) ^) . x) * ((() `| Z) . x) is  V11()  real   ext-real   Element of  REAL 
 
(- ((() . x) * (1 / (x ^2)))) + ((((id Z) ^) . x) * ((() `| Z) . x)) is  V11()  real   ext-real   Element of  REAL 
 
1 / (1 + (x ^2)) is  V11()  real   ext-real   Element of  REAL 
 
(1 + (x ^2)) "  is  V11()  real   ext-real   set 
 
1 * ((1 + (x ^2)) ") is  V11()  real   ext-real   set 
 
 - (1 / (1 + (x ^2))) is  V11()  real   ext-real   Element of  REAL 
 
(((id Z) ^) . x) * (- (1 / (1 + (x ^2)))) is  V11()  real   ext-real   Element of  REAL 
 
(- ((() . x) * (1 / (x ^2)))) + ((((id Z) ^) . x) * (- (1 / (1 + (x ^2))))) is  V11()  real   ext-real   Element of  REAL 
 
(() . x) * 1 is  V11()  real   ext-real   Element of  REAL 
 
((() . x) * 1) / (x ^2) is  V11()  real   ext-real   Element of  REAL 
 
((() . x) * 1) * ((x ^2) ") is  V11()  real   ext-real   set 
 
 - (((() . x) * 1) / (x ^2)) is  V11()  real   ext-real   Element of  REAL 
 
(((id Z) ^) . x) * (1 / (1 + (x ^2))) is  V11()  real   ext-real   Element of  REAL 
 
(- (((() . x) * 1) / (x ^2))) - ((((id Z) ^) . x) * (1 / (1 + (x ^2)))) is  V11()  real   ext-real   Element of  REAL 
 
 - ((((id Z) ^) . x) * (1 / (1 + (x ^2)))) is  V11()  real   ext-real   set 
 
(- (((() . x) * 1) / (x ^2))) + (- ((((id Z) ^) . x) * (1 / (1 + (x ^2))))) is  V11()  real   ext-real   set 
 
(id Z) . x is  V11()  real   ext-real   Element of  REAL 
 
((id Z) . x) "  is  V11()  real   ext-real   Element of  REAL 
 
(((id Z) . x) ") * (1 / (1 + (x ^2))) is  V11()  real   ext-real   Element of  REAL 
 
(- ((() . x) / (x ^2))) - ((((id Z) . x) ") * (1 / (1 + (x ^2)))) is  V11()  real   ext-real   Element of  REAL 
 
 - ((((id Z) . x) ") * (1 / (1 + (x ^2)))) is  V11()  real   ext-real   set 
 
(- ((() . x) / (x ^2))) + (- ((((id Z) . x) ") * (1 / (1 + (x ^2))))) is  V11()  real   ext-real   set 
 
1 / x is  V11()  real   ext-real   Element of  REAL 
 
x "  is  V11()  real   ext-real   set 
 
1 * (x ") is  V11()  real   ext-real   set 
 
(1 / x) * (1 / (1 + (x ^2))) is  V11()  real   ext-real   Element of  REAL 
 
(- ((() . x) / (x ^2))) - ((1 / x) * (1 / (1 + (x ^2)))) is  V11()  real   ext-real   Element of  REAL 
 
 - ((1 / x) * (1 / (1 + (x ^2)))) is  V11()  real   ext-real   set 
 
(- ((() . x) / (x ^2))) + (- ((1 / x) * (1 / (1 + (x ^2))))) is  V11()  real   ext-real   set 
 
1 * 1 is   non  empty  V11()  real   ext-real   positive   non  negative  V63()  Element of  REAL 
 
(1 * 1) / (x * (1 + (x ^2))) is  V11()  real   ext-real   Element of  REAL 
 
(1 * 1) * ((x * (1 + (x ^2))) ") is  V11()  real   ext-real   set 
 
(- ((() . x) / (x ^2))) - ((1 * 1) / (x * (1 + (x ^2)))) is  V11()  real   ext-real   Element of  REAL 
 
 - ((1 * 1) / (x * (1 + (x ^2)))) is  V11()  real   ext-real   set 
 
(- ((() . x) / (x ^2))) + (- ((1 * 1) / (x * (1 + (x ^2))))) is  V11()  real   ext-real   set 
 
x is  V11()  real   ext-real   Element of  REAL 
 
((((id Z) ^) (#) ()) `| Z) . x is  V11()  real   ext-real   Element of  REAL 
 
() . x is  V11()  real   ext-real   Element of  REAL 
 
x ^2  is  V11()  real   ext-real   Element of  REAL 
 
x * x is  V11()  real   ext-real   set 
 
(() . x) / (x ^2) is  V11()  real   ext-real   Element of  REAL 
 
(x ^2) "  is  V11()  real   ext-real   set 
 
(() . x) * ((x ^2) ") is  V11()  real   ext-real   set 
 
 - ((() . x) / (x ^2)) is  V11()  real   ext-real   Element of  REAL 
 
1 + (x ^2) is  V11()  real   ext-real   Element of  REAL 
 
x * (1 + (x ^2)) is  V11()  real   ext-real   Element of  REAL 
 
1 / (x * (1 + (x ^2))) is  V11()  real   ext-real   Element of  REAL 
 
(x * (1 + (x ^2))) "  is  V11()  real   ext-real   set 
 
1 * ((x * (1 + (x ^2))) ") is  V11()  real   ext-real   set 
 
(- ((() . x) / (x ^2))) - (1 / (x * (1 + (x ^2)))) is  V11()  real   ext-real   Element of  REAL 
 
 - (1 / (x * (1 + (x ^2)))) is  V11()  real   ext-real   set 
 
(- ((() . x) / (x ^2))) + (- (1 / (x * (1 + (x ^2))))) is  V11()  real   ext-real   set