REAL  is   non  empty  V46() V47() V48() V52() V53()  set 
 
 NAT  is  V46() V47() V48() V49() V50() V51() V52()  Element of K19(REAL)
 
K19(REAL) is    set 
 
 COMPLEX  is   non  empty  V46() V52() V53()  set 
 
 {}  is    set 
 
 the   empty  V46() V47() V48() V49() V50() V51() V52()  set  is   empty  V46() V47() V48() V49() V50() V51() V52()  set 
 
1 is   non  empty   ext-real   natural  V25()  real  V46() V47() V48() V49() V50() V51() V131() V132()  Element of  NAT 
 
{{},1} is    set 
 
 omega  is  V46() V47() V48() V49() V50() V51() V52()  set 
 
K19(omega) is    set 
 
K19(NAT) is    set 
 
K20(NAT,REAL) is  V36() V37() V38()  set 
 
K19(K20(NAT,REAL)) is    set 
 
 RAT  is   non  empty  V46() V47() V48() V49() V52() V53()  set 
 
 INT  is   non  empty  V46() V47() V48() V49() V50() V52() V53()  set 
 
 0  is   ext-real   natural  V25()  real  V46() V47() V48() V49() V50() V51() V131() V132()  Element of  NAT 
 
 - 1 is   ext-real  V25()  real   Element of  REAL 
 
X is   non  empty   set 
 
Y is   non  empty   addLoopStr 
 
 the U1 of Y is   non  empty   set 
 
K20(X, the U1 of Y) is    set 
 
K19(K20(X, the U1 of Y)) is    set 
 
C is  V1() V4(X) V5( the U1 of Y) V6()  Element of K19(K20(X, the U1 of Y))
 
V is  V1() V4(X) V5( the U1 of Y) V6()  Element of K19(K20(X, the U1 of Y))
 
 dom C is    Element of K19(X)
 
K19(X) is    set 
 
 dom V is    Element of K19(X)
 
(dom C) /\ (dom V) is    Element of K19(X)
 
f2 is  V1() V4(X) V5( the U1 of Y) V6()  Element of K19(K20(X, the U1 of Y))
 
 dom f2 is    Element of K19(X)
 
c is    Element of X
 
f2 /. c is    Element of  the U1 of Y
 
C /. c is    Element of  the U1 of Y
 
V /. c is    Element of  the U1 of Y
 
(C /. c) + (V /. c) is    Element of  the U1 of Y
 
f2 is  V1() V4(X) V5( the U1 of Y) V6()  Element of K19(K20(X, the U1 of Y))
 
 dom f2 is    Element of K19(X)
 
c is    Element of X
 
f2 /. c is    Element of  the U1 of Y
 
C /. c is    Element of  the U1 of Y
 
V /. c is    Element of  the U1 of Y
 
(C /. c) - (V /. c) is    Element of  the U1 of Y
 
 - (V /. c) is    Element of  the U1 of Y
 
(C /. c) + (- (V /. c)) is    Element of  the U1 of Y
 
X is   non  empty   set 
 
Y is   non  empty   addLoopStr 
 
 the U1 of Y is   non  empty   set 
 
K20(X, the U1 of Y) is    set 
 
K19(K20(X, the U1 of Y)) is    set 
 
C is  V1() V4(X) V5( the U1 of Y) V6()  non  empty   total  V30(X, the U1 of Y)  Element of K19(K20(X, the U1 of Y))
 
V is  V1() V4(X) V5( the U1 of Y) V6()  non  empty   total  V30(X, the U1 of Y)  Element of K19(K20(X, the U1 of Y))
 
(X,Y,C,V) is  V1() V4(X) V5( the U1 of Y) V6()  Element of K19(K20(X, the U1 of Y))
 
 dom (X,Y,C,V) is    Element of K19(X)
 
K19(X) is    set 
 
 dom C is    Element of K19(X)
 
 dom V is    Element of K19(X)
 
(dom C) /\ (dom V) is    Element of K19(X)
 
X /\ (dom V) is    Element of K19(X)
 
X /\ X is    set 
 
(X,Y,C,V) is  V1() V4(X) V5( the U1 of Y) V6()  Element of K19(K20(X, the U1 of Y))
 
 dom (X,Y,C,V) is    Element of K19(X)
 
K19(X) is    set 
 
 dom C is    Element of K19(X)
 
 dom V is    Element of K19(X)
 
(dom C) /\ (dom V) is    Element of K19(X)
 
X /\ (dom V) is    Element of K19(X)
 
X /\ X is    set 
 
X is   non  empty   set 
 
K20(X,REAL) is  V36() V37() V38()  set 
 
K19(K20(X,REAL)) is    set 
 
Y is   non  empty   RLSStruct 
 
 the U1 of Y is   non  empty   set 
 
K20(X, the U1 of Y) is    set 
 
K19(K20(X, the U1 of Y)) is    set 
 
V is  V1() V4(X) V5( the U1 of Y) V6()  Element of K19(K20(X, the U1 of Y))
 
C is  V1() V4(X) V5( REAL ) V6() V36() V37() V38()  Element of K19(K20(X,REAL))
 
 dom C is    Element of K19(X)
 
K19(X) is    set 
 
 dom V is    Element of K19(X)
 
(dom C) /\ (dom V) is    Element of K19(X)
 
f2 is  V1() V4(X) V5( the U1 of Y) V6()  Element of K19(K20(X, the U1 of Y))
 
 dom f2 is    Element of K19(X)
 
c is    Element of X
 
f2 /. c is    Element of  the U1 of Y
 
V /. c is    Element of  the U1 of Y
 
C . c is   ext-real  V25()  real   Element of  REAL 
 
(C . c) * (V /. c) is    Element of  the U1 of Y
 
X is   non  empty   set 
 
K20(X,REAL) is  V36() V37() V38()  set 
 
K19(K20(X,REAL)) is    set 
 
Y is   non  empty   RLSStruct 
 
 the U1 of Y is   non  empty   set 
 
K20(X, the U1 of Y) is    set 
 
K19(K20(X, the U1 of Y)) is    set 
 
C is  V1() V4(X) V5( REAL ) V6()  non  empty   total  V30(X, REAL ) V36() V37() V38()  Element of K19(K20(X,REAL))
 
V is  V1() V4(X) V5( the U1 of Y) V6()  non  empty   total  V30(X, the U1 of Y)  Element of K19(K20(X, the U1 of Y))
 
(X,Y,C,V) is  V1() V4(X) V5( the U1 of Y) V6()  Element of K19(K20(X, the U1 of Y))
 
 dom (X,Y,C,V) is    Element of K19(X)
 
K19(X) is    set 
 
 dom C is    Element of K19(X)
 
 dom V is    Element of K19(X)
 
(dom C) /\ (dom V) is    Element of K19(X)
 
X /\ (dom V) is    Element of K19(X)
 
X /\ X is    set 
 
X is   non  empty   set 
 
Y is   non  empty   RLSStruct 
 
 the U1 of Y is   non  empty   set 
 
K20(X, the U1 of Y) is    set 
 
K19(K20(X, the U1 of Y)) is    set 
 
C is  V1() V4(X) V5( the U1 of Y) V6()  Element of K19(K20(X, the U1 of Y))
 
V is   ext-real  V25()  real   Element of  REAL 
 
 dom C is    Element of K19(X)
 
K19(X) is    set 
 
f1 is  V1() V4(X) V5( the U1 of Y) V6()  Element of K19(K20(X, the U1 of Y))
 
 dom f1 is    Element of K19(X)
 
f2 is    Element of X
 
f1 /. f2 is    Element of  the U1 of Y
 
C /. f2 is    Element of  the U1 of Y
 
V * (C /. f2) is    Element of  the U1 of Y
 
X is   non  empty   set 
 
Y is   non  empty   RLSStruct 
 
 the U1 of Y is   non  empty   set 
 
K20(X, the U1 of Y) is    set 
 
K19(K20(X, the U1 of Y)) is    set 
 
C is  V1() V4(X) V5( the U1 of Y) V6()  non  empty   total  V30(X, the U1 of Y)  Element of K19(K20(X, the U1 of Y))
 
V is   ext-real  V25()  real   Element of  REAL 
 
(X,Y,C,V) is  V1() V4(X) V5( the U1 of Y) V6()  Element of K19(K20(X, the U1 of Y))
 
 dom (X,Y,C,V) is    Element of K19(X)
 
K19(X) is    set 
 
 dom C is    Element of K19(X)
 
X is   non  empty   set 
 
Y is   non  empty   addLoopStr 
 
 the U1 of Y is   non  empty   set 
 
K20(X, the U1 of Y) is    set 
 
K19(K20(X, the U1 of Y)) is    set 
 
C is  V1() V4(X) V5( the U1 of Y) V6()  Element of K19(K20(X, the U1 of Y))
 
 dom C is    Element of K19(X)
 
K19(X) is    set 
 
V is  V1() V4(X) V5( the U1 of Y) V6()  Element of K19(K20(X, the U1 of Y))
 
 dom V is    Element of K19(X)
 
f1 is    Element of X
 
V /. f1 is    Element of  the U1 of Y
 
C /. f1 is    Element of  the U1 of Y
 
 - (C /. f1) is    Element of  the U1 of Y
 
X is   non  empty   set 
 
Y is   non  empty   addLoopStr 
 
 the U1 of Y is   non  empty   set 
 
K20(X, the U1 of Y) is    set 
 
K19(K20(X, the U1 of Y)) is    set 
 
C is  V1() V4(X) V5( the U1 of Y) V6()  non  empty   total  V30(X, the U1 of Y)  Element of K19(K20(X, the U1 of Y))
 
(X,Y,C) is  V1() V4(X) V5( the U1 of Y) V6()  Element of K19(K20(X, the U1 of Y))
 
 dom (X,Y,C) is    Element of K19(X)
 
K19(X) is    set 
 
 dom C is    Element of K19(X)
 
{0} is  V46() V47() V48() V49() V50() V51()  set 
 
X is   non  empty   set 
 
K20(X,REAL) is  V36() V37() V38()  set 
 
K19(K20(X,REAL)) is    set 
 
Y is   non  empty   left_complementable   right_complementable   complementable   Abelian   add-associative   right_zeroed   vector-distributive   scalar-distributive   scalar-associative   scalar-unital  V123() V126() V127()  RealNormSpace-like   NORMSTR 
 
 the U1 of Y is   non  empty   set 
 
K20(X, the U1 of Y) is    set 
 
K19(K20(X, the U1 of Y)) is    set 
 
 0. Y is  V72(Y)  left_complementable   right_complementable   complementable   Element of  the U1 of Y
 
{(0. Y)} is    set 
 
C is  V1() V4(X) V5( the U1 of Y) V6()  Element of K19(K20(X, the U1 of Y))
 
 dom C is    Element of K19(X)
 
K19(X) is    set 
 
C " {(0. Y)} is    Element of K19(X)
 
(dom C) \ (C " {(0. Y)}) is    Element of K19(X)
 
V is  V1() V4(X) V5( REAL ) V6() V36() V37() V38()  Element of K19(K20(X,REAL))
 
(X,Y,V,C) is  V1() V4(X) V5( the U1 of Y) V6()  Element of K19(K20(X, the U1 of Y))
 
 dom (X,Y,V,C) is    Element of K19(X)
 
(X,Y,V,C) " {(0. Y)} is    Element of K19(X)
 
(dom (X,Y,V,C)) \ ((X,Y,V,C) " {(0. Y)}) is    Element of K19(X)
 
 dom V is    Element of K19(X)
 
V " {0} is    Element of K19(X)
 
(dom V) \ (V " {0}) is    Element of K19(X)
 
((dom V) \ (V " {0})) /\ ((dom C) \ (C " {(0. Y)})) is    Element of K19(X)
 
f1 is    set 
 
f2 is    Element of X
 
(X,Y,V,C) /. f2 is   left_complementable   right_complementable   complementable   Element of  the U1 of Y
 
C /. f2 is   left_complementable   right_complementable   complementable   Element of  the U1 of Y
 
V . f2 is   ext-real  V25()  real   Element of  REAL 
 
(V . f2) * (C /. f2) is   left_complementable   right_complementable   complementable   Element of  the U1 of Y
 
(dom V) /\ (dom C) is    Element of K19(X)
 
f1 is    set 
 
f2 is    Element of X
 
C /. f2 is   left_complementable   right_complementable   complementable   Element of  the U1 of Y
 
(dom V) /\ (dom C) is    Element of K19(X)
 
V . f2 is   ext-real  V25()  real   Element of  REAL 
 
(V . f2) * (C /. f2) is   left_complementable   right_complementable   complementable   Element of  the U1 of Y
 
(X,Y,V,C) /. f2 is   left_complementable   right_complementable   complementable   Element of  the U1 of Y
 
X is   non  empty   set 
 
Y is   non  empty   left_complementable   right_complementable   complementable   Abelian   add-associative   right_zeroed   vector-distributive   scalar-distributive   scalar-associative   scalar-unital  V123() V126() V127()  RealNormSpace-like   NORMSTR 
 
 the U1 of Y is   non  empty   set 
 
K20(X, the U1 of Y) is    set 
 
K19(K20(X, the U1 of Y)) is    set 
 
 0. Y is  V72(Y)  left_complementable   right_complementable   complementable   Element of  the U1 of Y
 
{(0. Y)} is    set 
 
C is  V1() V4(X) V5( the U1 of Y) V6()  Element of K19(K20(X, the U1 of Y))
 
||.C.|| is  V1() V4(X) V5( REAL ) V6() V36() V37() V38()  Element of K19(K20(X,REAL))
 
K20(X,REAL) is  V36() V37() V38()  set 
 
K19(K20(X,REAL)) is    set 
 
||.C.|| " {0} is    Element of K19(X)
 
K19(X) is    set 
 
C " {(0. Y)} is    Element of K19(X)
 
(X,Y,C) is  V1() V4(X) V5( the U1 of Y) V6()  Element of K19(K20(X, the U1 of Y))
 
(X,Y,C) " {(0. Y)} is    Element of K19(X)
 
V is    Element of X
 
 dom ||.C.|| is    Element of K19(X)
 
||.C.|| . V is   ext-real  V25()  real   Element of  REAL 
 
C /. V is   left_complementable   right_complementable   complementable   Element of  the U1 of Y
 
||.(C /. V).|| is   ext-real   non  negative  V25()  real   Element of  REAL 
 
 the U8 of Y is  V1() V4( the U1 of Y) V5( REAL ) V6()  non  empty   total  V30( the U1 of Y, REAL ) V36() V37() V38()  Element of K19(K20( the U1 of Y,REAL))
 
K20( the U1 of Y,REAL) is  V36() V37() V38()  set 
 
K19(K20( the U1 of Y,REAL)) is    set 
 
 the U8 of Y . (C /. V) is   ext-real  V25()  real   Element of  REAL 
 
 dom C is    Element of K19(X)
 
 dom C is    Element of K19(X)
 
 dom ||.C.|| is    Element of K19(X)
 
C /. V is   left_complementable   right_complementable   complementable   Element of  the U1 of Y
 
||.(C /. V).|| is   ext-real   non  negative  V25()  real   Element of  REAL 
 
 the U8 of Y is  V1() V4( the U1 of Y) V5( REAL ) V6()  non  empty   total  V30( the U1 of Y, REAL ) V36() V37() V38()  Element of K19(K20( the U1 of Y,REAL))
 
K20( the U1 of Y,REAL) is  V36() V37() V38()  set 
 
K19(K20( the U1 of Y,REAL)) is    set 
 
 the U8 of Y . (C /. V) is   ext-real  V25()  real   Element of  REAL 
 
||.C.|| . V is   ext-real  V25()  real   Element of  REAL 
 
V is    Element of X
 
 dom (X,Y,C) is    Element of K19(X)
 
(X,Y,C) /. V is   left_complementable   right_complementable   complementable   Element of  the U1 of Y
 
C /. V is   left_complementable   right_complementable   complementable   Element of  the U1 of Y
 
 - (C /. V) is   left_complementable   right_complementable   complementable   Element of  the U1 of Y
 
 - (- (C /. V)) is   left_complementable   right_complementable   complementable   Element of  the U1 of Y
 
 - (0. Y) is   left_complementable   right_complementable   complementable   Element of  the U1 of Y
 
 dom (X,Y,C) is    Element of K19(X)
 
C /. V is   left_complementable   right_complementable   complementable   Element of  the U1 of Y
 
(X,Y,C) /. V is   left_complementable   right_complementable   complementable   Element of  the U1 of Y
 
 - (0. Y) is   left_complementable   right_complementable   complementable   Element of  the U1 of Y
 
X is   non  empty   set 
 
Y is   non  empty   left_complementable   right_complementable   complementable   Abelian   add-associative   right_zeroed   vector-distributive   scalar-distributive   scalar-associative   scalar-unital  V123() V126() V127()  RealNormSpace-like   NORMSTR 
 
 the U1 of Y is   non  empty   set 
 
K20(X, the U1 of Y) is    set 
 
K19(K20(X, the U1 of Y)) is    set 
 
 0. Y is  V72(Y)  left_complementable   right_complementable   complementable   Element of  the U1 of Y
 
{(0. Y)} is    set 
 
C is  V1() V4(X) V5( the U1 of Y) V6()  Element of K19(K20(X, the U1 of Y))
 
C " {(0. Y)} is    Element of K19(X)
 
K19(X) is    set 
 
V is   ext-real  V25()  real   Element of  REAL 
 
(X,Y,C,V) is  V1() V4(X) V5( the U1 of Y) V6()  Element of K19(K20(X, the U1 of Y))
 
(X,Y,C,V) " {(0. Y)} is    Element of K19(X)
 
f1 is    Element of X
 
 dom (X,Y,C,V) is    Element of K19(X)
 
(X,Y,C,V) /. f1 is   left_complementable   right_complementable   complementable   Element of  the U1 of Y
 
C /. f1 is   left_complementable   right_complementable   complementable   Element of  the U1 of Y
 
V * (C /. f1) is   left_complementable   right_complementable   complementable   Element of  the U1 of Y
 
V * (0. Y) is   left_complementable   right_complementable   complementable   Element of  the U1 of Y
 
 dom C is    Element of K19(X)
 
 dom C is    Element of K19(X)
 
 dom (X,Y,C,V) is    Element of K19(X)
 
C /. f1 is   left_complementable   right_complementable   complementable   Element of  the U1 of Y
 
V * (C /. f1) is   left_complementable   right_complementable   complementable   Element of  the U1 of Y
 
V * (0. Y) is   left_complementable   right_complementable   complementable   Element of  the U1 of Y
 
(X,Y,C,V) /. f1 is   left_complementable   right_complementable   complementable   Element of  the U1 of Y
 
X is   non  empty   set 
 
Y is   non  empty   left_complementable   right_complementable   complementable   Abelian   add-associative   right_zeroed   vector-distributive   scalar-distributive   scalar-associative   scalar-unital  V123() V126() V127()  RealNormSpace-like   NORMSTR 
 
 the U1 of Y is   non  empty   set 
 
K20(X, the U1 of Y) is    set 
 
K19(K20(X, the U1 of Y)) is    set 
 
C is  V1() V4(X) V5( the U1 of Y) V6()  Element of K19(K20(X, the U1 of Y))
 
V is  V1() V4(X) V5( the U1 of Y) V6()  Element of K19(K20(X, the U1 of Y))
 
(X,Y,C,V) is  V1() V4(X) V5( the U1 of Y) V6()  Element of K19(K20(X, the U1 of Y))
 
(X,Y,V,C) is  V1() V4(X) V5( the U1 of Y) V6()  Element of K19(K20(X, the U1 of Y))
 
 dom (X,Y,C,V) is    Element of K19(X)
 
K19(X) is    set 
 
 dom V is    Element of K19(X)
 
 dom C is    Element of K19(X)
 
(dom V) /\ (dom C) is    Element of K19(X)
 
 dom (X,Y,V,C) is    Element of K19(X)
 
f1 is    Element of X
 
(X,Y,C,V) /. f1 is   left_complementable   right_complementable   complementable   Element of  the U1 of Y
 
V /. f1 is   left_complementable   right_complementable   complementable   Element of  the U1 of Y
 
C /. f1 is   left_complementable   right_complementable   complementable   Element of  the U1 of Y
 
(V /. f1) + (C /. f1) is   left_complementable   right_complementable   complementable   Element of  the U1 of Y
 
(X,Y,V,C) /. f1 is   left_complementable   right_complementable   complementable   Element of  the U1 of Y
 
X is   non  empty   set 
 
Y is   non  empty   left_complementable   right_complementable   complementable   Abelian   add-associative   right_zeroed   vector-distributive   scalar-distributive   scalar-associative   scalar-unital  V123() V126() V127()  RealNormSpace-like   NORMSTR 
 
 the U1 of Y is   non  empty   set 
 
K20(X, the U1 of Y) is    set 
 
K19(K20(X, the U1 of Y)) is    set 
 
f1 is  V1() V4(X) V5( the U1 of Y) V6()  Element of K19(K20(X, the U1 of Y))
 
f2 is  V1() V4(X) V5( the U1 of Y) V6()  Element of K19(K20(X, the U1 of Y))
 
(X,Y,f1,f2) is  V1() V4(X) V5( the U1 of Y) V6()  Element of K19(K20(X, the U1 of Y))
 
(X,Y,f2,f1) is  V1() V4(X) V5( the U1 of Y) V6()  Element of K19(K20(X, the U1 of Y))
 
X is   non  empty   set 
 
Y is   non  empty   left_complementable   right_complementable   complementable   Abelian   add-associative   right_zeroed   vector-distributive   scalar-distributive   scalar-associative   scalar-unital  V123() V126() V127()  RealNormSpace-like   NORMSTR 
 
 the U1 of Y is   non  empty   set 
 
K20(X, the U1 of Y) is    set 
 
K19(K20(X, the U1 of Y)) is    set 
 
C is  V1() V4(X) V5( the U1 of Y) V6()  Element of K19(K20(X, the U1 of Y))
 
V is  V1() V4(X) V5( the U1 of Y) V6()  Element of K19(K20(X, the U1 of Y))
 
(X,Y,C,V) is  V1() V4(X) V5( the U1 of Y) V6()  Element of K19(K20(X, the U1 of Y))
 
f1 is  V1() V4(X) V5( the U1 of Y) V6()  Element of K19(K20(X, the U1 of Y))
 
(X,Y,(X,Y,C,V),f1) is  V1() V4(X) V5( the U1 of Y) V6()  Element of K19(K20(X, the U1 of Y))
 
(X,Y,V,f1) is  V1() V4(X) V5( the U1 of Y) V6()  Element of K19(K20(X, the U1 of Y))
 
(X,Y,C,(X,Y,V,f1)) is  V1() V4(X) V5( the U1 of Y) V6()  Element of K19(K20(X, the U1 of Y))
 
 dom (X,Y,(X,Y,C,V),f1) is    Element of K19(X)
 
K19(X) is    set 
 
 dom (X,Y,C,V) is    Element of K19(X)
 
 dom f1 is    Element of K19(X)
 
(dom (X,Y,C,V)) /\ (dom f1) is    Element of K19(X)
 
 dom C is    Element of K19(X)
 
 dom V is    Element of K19(X)
 
(dom C) /\ (dom V) is    Element of K19(X)
 
((dom C) /\ (dom V)) /\ (dom f1) is    Element of K19(X)
 
(dom V) /\ (dom f1) is    Element of K19(X)
 
(dom C) /\ ((dom V) /\ (dom f1)) is    Element of K19(X)
 
 dom (X,Y,V,f1) is    Element of K19(X)
 
(dom C) /\ (dom (X,Y,V,f1)) is    Element of K19(X)
 
 dom (X,Y,C,(X,Y,V,f1)) is    Element of K19(X)
 
f2 is    Element of X
 
(X,Y,(X,Y,C,V),f1) /. f2 is   left_complementable   right_complementable   complementable   Element of  the U1 of Y
 
(X,Y,C,V) /. f2 is   left_complementable   right_complementable   complementable   Element of  the U1 of Y
 
f1 /. f2 is   left_complementable   right_complementable   complementable   Element of  the U1 of Y
 
((X,Y,C,V) /. f2) + (f1 /. f2) is   left_complementable   right_complementable   complementable   Element of  the U1 of Y
 
C /. f2 is   left_complementable   right_complementable   complementable   Element of  the U1 of Y
 
V /. f2 is   left_complementable   right_complementable   complementable   Element of  the U1 of Y
 
(C /. f2) + (V /. f2) is   left_complementable   right_complementable   complementable   Element of  the U1 of Y
 
((C /. f2) + (V /. f2)) + (f1 /. f2) is   left_complementable   right_complementable   complementable   Element of  the U1 of Y
 
(V /. f2) + (f1 /. f2) is   left_complementable   right_complementable   complementable   Element of  the U1 of Y
 
(C /. f2) + ((V /. f2) + (f1 /. f2)) is   left_complementable   right_complementable   complementable   Element of  the U1 of Y
 
(X,Y,V,f1) /. f2 is   left_complementable   right_complementable   complementable   Element of  the U1 of Y
 
(C /. f2) + ((X,Y,V,f1) /. f2) is   left_complementable   right_complementable   complementable   Element of  the U1 of Y
 
(X,Y,C,(X,Y,V,f1)) /. f2 is   left_complementable   right_complementable   complementable   Element of  the U1 of Y
 
X is   non  empty   set 
 
K20(X,REAL) is  V36() V37() V38()  set 
 
K19(K20(X,REAL)) is    set 
 
Y is   non  empty   left_complementable   right_complementable   complementable   Abelian   add-associative   right_zeroed   vector-distributive   scalar-distributive   scalar-associative   scalar-unital  V123() V126() V127()  RealNormSpace-like   NORMSTR 
 
 the U1 of Y is   non  empty   set 
 
K20(X, the U1 of Y) is    set 
 
K19(K20(X, the U1 of Y)) is    set 
 
C is  V1() V4(X) V5( REAL ) V6() V36() V37() V38()  Element of K19(K20(X,REAL))
 
V is  V1() V4(X) V5( REAL ) V6() V36() V37() V38()  Element of K19(K20(X,REAL))
 
C (#) V is  V1() V4(X) V5( REAL ) V6() V36() V37() V38()  Element of K19(K20(X,REAL))
 
f1 is  V1() V4(X) V5( the U1 of Y) V6()  Element of K19(K20(X, the U1 of Y))
 
(X,Y,(C (#) V),f1) is  V1() V4(X) V5( the U1 of Y) V6()  Element of K19(K20(X, the U1 of Y))
 
(X,Y,V,f1) is  V1() V4(X) V5( the U1 of Y) V6()  Element of K19(K20(X, the U1 of Y))
 
(X,Y,C,(X,Y,V,f1)) is  V1() V4(X) V5( the U1 of Y) V6()  Element of K19(K20(X, the U1 of Y))
 
 dom (X,Y,(C (#) V),f1) is    Element of K19(X)
 
K19(X) is    set 
 
 dom (C (#) V) is    Element of K19(X)
 
 dom f1 is    Element of K19(X)
 
(dom (C (#) V)) /\ (dom f1) is    Element of K19(X)
 
 dom C is    Element of K19(X)
 
 dom V is    Element of K19(X)
 
(dom C) /\ (dom V) is    Element of K19(X)
 
((dom C) /\ (dom V)) /\ (dom f1) is    Element of K19(X)
 
(dom V) /\ (dom f1) is    Element of K19(X)
 
(dom C) /\ ((dom V) /\ (dom f1)) is    Element of K19(X)
 
 dom (X,Y,V,f1) is    Element of K19(X)
 
(dom C) /\ (dom (X,Y,V,f1)) is    Element of K19(X)
 
 dom (X,Y,C,(X,Y,V,f1)) is    Element of K19(X)
 
f2 is    Element of X
 
(X,Y,(C (#) V),f1) /. f2 is   left_complementable   right_complementable   complementable   Element of  the U1 of Y
 
f1 /. f2 is   left_complementable   right_complementable   complementable   Element of  the U1 of Y
 
(C (#) V) . f2 is   ext-real  V25()  real   Element of  REAL 
 
((C (#) V) . f2) * (f1 /. f2) is   left_complementable   right_complementable   complementable   Element of  the U1 of Y
 
C . f2 is   ext-real  V25()  real   Element of  REAL 
 
V . f2 is   ext-real  V25()  real   Element of  REAL 
 
(C . f2) * (V . f2) is   ext-real  V25()  real   Element of  REAL 
 
((C . f2) * (V . f2)) * (f1 /. f2) is   left_complementable   right_complementable   complementable   Element of  the U1 of Y
 
(V . f2) * (f1 /. f2) is   left_complementable   right_complementable   complementable   Element of  the U1 of Y
 
(C . f2) * ((V . f2) * (f1 /. f2)) is   left_complementable   right_complementable   complementable   Element of  the U1 of Y
 
(X,Y,V,f1) /. f2 is   left_complementable   right_complementable   complementable   Element of  the U1 of Y
 
(C . f2) * ((X,Y,V,f1) /. f2) is   left_complementable   right_complementable   complementable   Element of  the U1 of Y
 
(X,Y,C,(X,Y,V,f1)) /. f2 is   left_complementable   right_complementable   complementable   Element of  the U1 of Y
 
X is   non  empty   set 
 
K20(X,REAL) is  V36() V37() V38()  set 
 
K19(K20(X,REAL)) is    set 
 
Y is   non  empty   left_complementable   right_complementable   complementable   Abelian   add-associative   right_zeroed   vector-distributive   scalar-distributive   scalar-associative   scalar-unital  V123() V126() V127()  RealNormSpace-like   NORMSTR 
 
 the U1 of Y is   non  empty   set 
 
K20(X, the U1 of Y) is    set 
 
K19(K20(X, the U1 of Y)) is    set 
 
C is  V1() V4(X) V5( the U1 of Y) V6()  Element of K19(K20(X, the U1 of Y))
 
V is  V1() V4(X) V5( REAL ) V6() V36() V37() V38()  Element of K19(K20(X,REAL))
 
f1 is  V1() V4(X) V5( REAL ) V6() V36() V37() V38()  Element of K19(K20(X,REAL))
 
V + f1 is  V1() V4(X) V5( REAL ) V6() V36() V37() V38()  Element of K19(K20(X,REAL))
 
(X,Y,(V + f1),C) is  V1() V4(X) V5( the U1 of Y) V6()  Element of K19(K20(X, the U1 of Y))
 
(X,Y,V,C) is  V1() V4(X) V5( the U1 of Y) V6()  Element of K19(K20(X, the U1 of Y))
 
(X,Y,f1,C) is  V1() V4(X) V5( the U1 of Y) V6()  Element of K19(K20(X, the U1 of Y))
 
(X,Y,(X,Y,V,C),(X,Y,f1,C)) is  V1() V4(X) V5( the U1 of Y) V6()  Element of K19(K20(X, the U1 of Y))
 
 dom (X,Y,(V + f1),C) is    Element of K19(X)
 
K19(X) is    set 
 
 dom (V + f1) is    Element of K19(X)
 
 dom C is    Element of K19(X)
 
(dom (V + f1)) /\ (dom C) is    Element of K19(X)
 
 dom V is    Element of K19(X)
 
 dom f1 is    Element of K19(X)
 
(dom V) /\ (dom f1) is    Element of K19(X)
 
(dom C) /\ (dom C) is    Element of K19(X)
 
((dom V) /\ (dom f1)) /\ ((dom C) /\ (dom C)) is    Element of K19(X)
 
((dom V) /\ (dom f1)) /\ (dom C) is    Element of K19(X)
 
(((dom V) /\ (dom f1)) /\ (dom C)) /\ (dom C) is    Element of K19(X)
 
(dom V) /\ (dom C) is    Element of K19(X)
 
((dom V) /\ (dom C)) /\ (dom f1) is    Element of K19(X)
 
(((dom V) /\ (dom C)) /\ (dom f1)) /\ (dom C) is    Element of K19(X)
 
(dom f1) /\ (dom C) is    Element of K19(X)
 
((dom V) /\ (dom C)) /\ ((dom f1) /\ (dom C)) is    Element of K19(X)
 
 dom (X,Y,V,C) is    Element of K19(X)
 
(dom (X,Y,V,C)) /\ ((dom f1) /\ (dom C)) is    Element of K19(X)
 
 dom (X,Y,f1,C) is    Element of K19(X)
 
(dom (X,Y,V,C)) /\ (dom (X,Y,f1,C)) is    Element of K19(X)
 
 dom (X,Y,(X,Y,V,C),(X,Y,f1,C)) is    Element of K19(X)
 
f2 is    Element of X
 
(X,Y,(V + f1),C) /. f2 is   left_complementable   right_complementable   complementable   Element of  the U1 of Y
 
C /. f2 is   left_complementable   right_complementable   complementable   Element of  the U1 of Y
 
(V + f1) . f2 is   ext-real  V25()  real   Element of  REAL 
 
((V + f1) . f2) * (C /. f2) is   left_complementable   right_complementable   complementable   Element of  the U1 of Y
 
V . f2 is   ext-real  V25()  real   Element of  REAL 
 
f1 . f2 is   ext-real  V25()  real   Element of  REAL 
 
(V . f2) + (f1 . f2) is   ext-real  V25()  real   Element of  REAL 
 
((V . f2) + (f1 . f2)) * (C /. f2) is   left_complementable   right_complementable   complementable   Element of  the U1 of Y
 
(V . f2) * (C /. f2) is   left_complementable   right_complementable   complementable   Element of  the U1 of Y
 
(f1 . f2) * (C /. f2) is   left_complementable   right_complementable   complementable   Element of  the U1 of Y
 
((V . f2) * (C /. f2)) + ((f1 . f2) * (C /. f2)) is   left_complementable   right_complementable   complementable   Element of  the U1 of Y
 
(X,Y,V,C) /. f2 is   left_complementable   right_complementable   complementable   Element of  the U1 of Y
 
((X,Y,V,C) /. f2) + ((f1 . f2) * (C /. f2)) is   left_complementable   right_complementable   complementable   Element of  the U1 of Y
 
(X,Y,f1,C) /. f2 is   left_complementable   right_complementable   complementable   Element of  the U1 of Y
 
((X,Y,V,C) /. f2) + ((X,Y,f1,C) /. f2) is   left_complementable   right_complementable   complementable   Element of  the U1 of Y
 
(X,Y,(X,Y,V,C),(X,Y,f1,C)) /. f2 is   left_complementable   right_complementable   complementable   Element of  the U1 of Y
 
X is   non  empty   set 
 
K20(X,REAL) is  V36() V37() V38()  set 
 
K19(K20(X,REAL)) is    set 
 
Y is   non  empty   left_complementable   right_complementable   complementable   Abelian   add-associative   right_zeroed   vector-distributive   scalar-distributive   scalar-associative   scalar-unital  V123() V126() V127()  RealNormSpace-like   NORMSTR 
 
 the U1 of Y is   non  empty   set 
 
K20(X, the U1 of Y) is    set 
 
K19(K20(X, the U1 of Y)) is    set 
 
C is  V1() V4(X) V5( the U1 of Y) V6()  Element of K19(K20(X, the U1 of Y))
 
V is  V1() V4(X) V5( the U1 of Y) V6()  Element of K19(K20(X, the U1 of Y))
 
(X,Y,C,V) is  V1() V4(X) V5( the U1 of Y) V6()  Element of K19(K20(X, the U1 of Y))
 
f1 is  V1() V4(X) V5( REAL ) V6() V36() V37() V38()  Element of K19(K20(X,REAL))
 
(X,Y,f1,(X,Y,C,V)) is  V1() V4(X) V5( the U1 of Y) V6()  Element of K19(K20(X, the U1 of Y))
 
(X,Y,f1,C) is  V1() V4(X) V5( the U1 of Y) V6()  Element of K19(K20(X, the U1 of Y))
 
(X,Y,f1,V) is  V1() V4(X) V5( the U1 of Y) V6()  Element of K19(K20(X, the U1 of Y))
 
(X,Y,(X,Y,f1,C),(X,Y,f1,V)) is  V1() V4(X) V5( the U1 of Y) V6()  Element of K19(K20(X, the U1 of Y))
 
 dom (X,Y,f1,(X,Y,C,V)) is    Element of K19(X)
 
K19(X) is    set 
 
 dom f1 is    Element of K19(X)
 
 dom (X,Y,C,V) is    Element of K19(X)
 
(dom f1) /\ (dom (X,Y,C,V)) is    Element of K19(X)
 
 dom C is    Element of K19(X)
 
 dom V is    Element of K19(X)
 
(dom C) /\ (dom V) is    Element of K19(X)
 
(dom f1) /\ ((dom C) /\ (dom V)) is    Element of K19(X)
 
(dom f1) /\ (dom f1) is    Element of K19(X)
 
((dom f1) /\ (dom f1)) /\ (dom C) is    Element of K19(X)
 
(((dom f1) /\ (dom f1)) /\ (dom C)) /\ (dom V) is    Element of K19(X)
 
(dom f1) /\ (dom C) is    Element of K19(X)
 
((dom f1) /\ (dom C)) /\ (dom f1) is    Element of K19(X)
 
(((dom f1) /\ (dom C)) /\ (dom f1)) /\ (dom V) is    Element of K19(X)
 
(dom f1) /\ (dom V) is    Element of K19(X)
 
((dom f1) /\ (dom C)) /\ ((dom f1) /\ (dom V)) is    Element of K19(X)
 
 dom (X,Y,f1,C) is    Element of K19(X)
 
(dom (X,Y,f1,C)) /\ ((dom f1) /\ (dom V)) is    Element of K19(X)
 
 dom (X,Y,f1,V) is    Element of K19(X)
 
(dom (X,Y,f1,C)) /\ (dom (X,Y,f1,V)) is    Element of K19(X)
 
 dom (X,Y,(X,Y,f1,C),(X,Y,f1,V)) is    Element of K19(X)
 
f2 is    Element of X
 
(X,Y,f1,(X,Y,C,V)) /. f2 is   left_complementable   right_complementable   complementable   Element of  the U1 of Y
 
(X,Y,C,V) /. f2 is   left_complementable   right_complementable   complementable   Element of  the U1 of Y
 
f1 . f2 is   ext-real  V25()  real   Element of  REAL 
 
(f1 . f2) * ((X,Y,C,V) /. f2) is   left_complementable   right_complementable   complementable   Element of  the U1 of Y
 
C /. f2 is   left_complementable   right_complementable   complementable   Element of  the U1 of Y
 
V /. f2 is   left_complementable   right_complementable   complementable   Element of  the U1 of Y
 
(C /. f2) + (V /. f2) is   left_complementable   right_complementable   complementable   Element of  the U1 of Y
 
(f1 . f2) * ((C /. f2) + (V /. f2)) is   left_complementable   right_complementable   complementable   Element of  the U1 of Y
 
(f1 . f2) * (C /. f2) is   left_complementable   right_complementable   complementable   Element of  the U1 of Y
 
(f1 . f2) * (V /. f2) is   left_complementable   right_complementable   complementable   Element of  the U1 of Y
 
((f1 . f2) * (C /. f2)) + ((f1 . f2) * (V /. f2)) is   left_complementable   right_complementable   complementable   Element of  the U1 of Y
 
(X,Y,f1,C) /. f2 is   left_complementable   right_complementable   complementable   Element of  the U1 of Y
 
((X,Y,f1,C) /. f2) + ((f1 . f2) * (V /. f2)) is   left_complementable   right_complementable   complementable   Element of  the U1 of Y
 
(X,Y,f1,V) /. f2 is   left_complementable   right_complementable   complementable   Element of  the U1 of Y
 
((X,Y,f1,C) /. f2) + ((X,Y,f1,V) /. f2) is   left_complementable   right_complementable   complementable   Element of  the U1 of Y
 
(X,Y,(X,Y,f1,C),(X,Y,f1,V)) /. f2 is   left_complementable   right_complementable   complementable   Element of  the U1 of Y
 
X is   non  empty   set 
 
K20(X,REAL) is  V36() V37() V38()  set 
 
K19(K20(X,REAL)) is    set 
 
Y is   non  empty   left_complementable   right_complementable   complementable   Abelian   add-associative   right_zeroed   vector-distributive   scalar-distributive   scalar-associative   scalar-unital  V123() V126() V127()  RealNormSpace-like   NORMSTR 
 
 the U1 of Y is   non  empty   set 
 
K20(X, the U1 of Y) is    set 
 
K19(K20(X, the U1 of Y)) is    set 
 
C is  V1() V4(X) V5( the U1 of Y) V6()  Element of K19(K20(X, the U1 of Y))
 
V is   ext-real  V25()  real   Element of  REAL 
 
f1 is  V1() V4(X) V5( REAL ) V6() V36() V37() V38()  Element of K19(K20(X,REAL))
 
(X,Y,f1,C) is  V1() V4(X) V5( the U1 of Y) V6()  Element of K19(K20(X, the U1 of Y))
 
(X,Y,(X,Y,f1,C),V) is  V1() V4(X) V5( the U1 of Y) V6()  Element of K19(K20(X, the U1 of Y))
 
V (#) f1 is  V1() V4(X) V5( REAL ) V6() V36() V37() V38()  Element of K19(K20(X,REAL))
 
(X,Y,(V (#) f1),C) is  V1() V4(X) V5( the U1 of Y) V6()  Element of K19(K20(X, the U1 of Y))
 
 dom (X,Y,(X,Y,f1,C),V) is    Element of K19(X)
 
K19(X) is    set 
 
 dom (X,Y,f1,C) is    Element of K19(X)
 
 dom f1 is    Element of K19(X)
 
 dom C is    Element of K19(X)
 
(dom f1) /\ (dom C) is    Element of K19(X)
 
 dom (V (#) f1) is    Element of K19(X)
 
(dom (V (#) f1)) /\ (dom C) is    Element of K19(X)
 
 dom (X,Y,(V (#) f1),C) is    Element of K19(X)
 
f2 is    Element of X
 
(X,Y,(X,Y,f1,C),V) /. f2 is   left_complementable   right_complementable   complementable   Element of  the U1 of Y
 
(X,Y,f1,C) /. f2 is   left_complementable   right_complementable   complementable   Element of  the U1 of Y
 
V * ((X,Y,f1,C) /. f2) is   left_complementable   right_complementable   complementable   Element of  the U1 of Y
 
C /. f2 is   left_complementable   right_complementable   complementable   Element of  the U1 of Y
 
f1 . f2 is   ext-real  V25()  real   Element of  REAL 
 
(f1 . f2) * (C /. f2) is   left_complementable   right_complementable   complementable   Element of  the U1 of Y
 
V * ((f1 . f2) * (C /. f2)) is   left_complementable   right_complementable   complementable   Element of  the U1 of Y
 
V * (f1 . f2) is   ext-real  V25()  real   Element of  REAL 
 
(V * (f1 . f2)) * (C /. f2) is   left_complementable   right_complementable   complementable   Element of  the U1 of Y
 
(V (#) f1) . f2 is   ext-real  V25()  real   Element of  REAL 
 
((V (#) f1) . f2) * (C /. f2) is   left_complementable   right_complementable   complementable   Element of  the U1 of Y
 
(X,Y,(V (#) f1),C) /. f2 is   left_complementable   right_complementable   complementable   Element of  the U1 of Y
 
X is   non  empty   set 
 
K20(X,REAL) is  V36() V37() V38()  set 
 
K19(K20(X,REAL)) is    set 
 
Y is   non  empty   left_complementable   right_complementable   complementable   Abelian   add-associative   right_zeroed   vector-distributive   scalar-distributive   scalar-associative   scalar-unital  V123() V126() V127()  RealNormSpace-like   NORMSTR 
 
 the U1 of Y is   non  empty   set 
 
K20(X, the U1 of Y) is    set 
 
K19(K20(X, the U1 of Y)) is    set 
 
C is  V1() V4(X) V5( the U1 of Y) V6()  Element of K19(K20(X, the U1 of Y))
 
V is   ext-real  V25()  real   Element of  REAL 
 
(X,Y,C,V) is  V1() V4(X) V5( the U1 of Y) V6()  Element of K19(K20(X, the U1 of Y))
 
f1 is  V1() V4(X) V5( REAL ) V6() V36() V37() V38()  Element of K19(K20(X,REAL))
 
(X,Y,f1,C) is  V1() V4(X) V5( the U1 of Y) V6()  Element of K19(K20(X, the U1 of Y))
 
(X,Y,(X,Y,f1,C),V) is  V1() V4(X) V5( the U1 of Y) V6()  Element of K19(K20(X, the U1 of Y))
 
(X,Y,f1,(X,Y,C,V)) is  V1() V4(X) V5( the U1 of Y) V6()  Element of K19(K20(X, the U1 of Y))
 
 dom (X,Y,(X,Y,f1,C),V) is    Element of K19(X)
 
K19(X) is    set 
 
 dom (X,Y,f1,C) is    Element of K19(X)
 
 dom f1 is    Element of K19(X)
 
 dom C is    Element of K19(X)
 
(dom f1) /\ (dom C) is    Element of K19(X)
 
 dom (X,Y,C,V) is    Element of K19(X)
 
(dom f1) /\ (dom (X,Y,C,V)) is    Element of K19(X)
 
 dom (X,Y,f1,(X,Y,C,V)) is    Element of K19(X)
 
f2 is    Element of X
 
(X,Y,(X,Y,f1,C),V) /. f2 is   left_complementable   right_complementable   complementable   Element of  the U1 of Y
 
(X,Y,f1,C) /. f2 is   left_complementable   right_complementable   complementable   Element of  the U1 of Y
 
V * ((X,Y,f1,C) /. f2) is   left_complementable   right_complementable   complementable   Element of  the U1 of Y
 
C /. f2 is   left_complementable   right_complementable   complementable   Element of  the U1 of Y
 
f1 . f2 is   ext-real  V25()  real   Element of  REAL 
 
(f1 . f2) * (C /. f2) is   left_complementable   right_complementable   complementable   Element of  the U1 of Y
 
V * ((f1 . f2) * (C /. f2)) is   left_complementable   right_complementable   complementable   Element of  the U1 of Y
 
(f1 . f2) * V is   ext-real  V25()  real   Element of  REAL 
 
((f1 . f2) * V) * (C /. f2) is   left_complementable   right_complementable   complementable   Element of  the U1 of Y
 
V * (C /. f2) is   left_complementable   right_complementable   complementable   Element of  the U1 of Y
 
(f1 . f2) * (V * (C /. f2)) is   left_complementable   right_complementable   complementable   Element of  the U1 of Y
 
(X,Y,C,V) /. f2 is   left_complementable   right_complementable   complementable   Element of  the U1 of Y
 
(f1 . f2) * ((X,Y,C,V) /. f2) is   left_complementable   right_complementable   complementable   Element of  the U1 of Y
 
(X,Y,f1,(X,Y,C,V)) /. f2 is   left_complementable   right_complementable   complementable   Element of  the U1 of Y
 
X is   non  empty   set 
 
K20(X,REAL) is  V36() V37() V38()  set 
 
K19(K20(X,REAL)) is    set 
 
Y is   non  empty   left_complementable   right_complementable   complementable   Abelian   add-associative   right_zeroed   vector-distributive   scalar-distributive   scalar-associative   scalar-unital  V123() V126() V127()  RealNormSpace-like   NORMSTR 
 
 the U1 of Y is   non  empty   set 
 
K20(X, the U1 of Y) is    set 
 
K19(K20(X, the U1 of Y)) is    set 
 
C is  V1() V4(X) V5( the U1 of Y) V6()  Element of K19(K20(X, the U1 of Y))
 
V is  V1() V4(X) V5( REAL ) V6() V36() V37() V38()  Element of K19(K20(X,REAL))
 
f1 is  V1() V4(X) V5( REAL ) V6() V36() V37() V38()  Element of K19(K20(X,REAL))
 
V - f1 is  V1() V4(X) V5( REAL ) V6() V36() V37() V38()  Element of K19(K20(X,REAL))
 
(X,Y,(V - f1),C) is  V1() V4(X) V5( the U1 of Y) V6()  Element of K19(K20(X, the U1 of Y))
 
(X,Y,V,C) is  V1() V4(X) V5( the U1 of Y) V6()  Element of K19(K20(X, the U1 of Y))
 
(X,Y,f1,C) is  V1() V4(X) V5( the U1 of Y) V6()  Element of K19(K20(X, the U1 of Y))
 
(X,Y,(X,Y,V,C),(X,Y,f1,C)) is  V1() V4(X) V5( the U1 of Y) V6()  Element of K19(K20(X, the U1 of Y))
 
 dom (X,Y,(V - f1),C) is    Element of K19(X)
 
K19(X) is    set 
 
 dom (V - f1) is    Element of K19(X)
 
 dom C is    Element of K19(X)
 
(dom (V - f1)) /\ (dom C) is    Element of K19(X)
 
 dom V is    Element of K19(X)
 
 dom f1 is    Element of K19(X)
 
(dom V) /\ (dom f1) is    Element of K19(X)
 
(dom C) /\ (dom C) is    Element of K19(X)
 
((dom V) /\ (dom f1)) /\ ((dom C) /\ (dom C)) is    Element of K19(X)
 
((dom V) /\ (dom f1)) /\ (dom C) is    Element of K19(X)
 
(((dom V) /\ (dom f1)) /\ (dom C)) /\ (dom C) is    Element of K19(X)
 
(dom V) /\ (dom C) is    Element of K19(X)
 
((dom V) /\ (dom C)) /\ (dom f1) is    Element of K19(X)
 
(((dom V) /\ (dom C)) /\ (dom f1)) /\ (dom C) is    Element of K19(X)
 
(dom f1) /\ (dom C) is    Element of K19(X)
 
((dom V) /\ (dom C)) /\ ((dom f1) /\ (dom C)) is    Element of K19(X)
 
 dom (X,Y,V,C) is    Element of K19(X)
 
(dom (X,Y,V,C)) /\ ((dom f1) /\ (dom C)) is    Element of K19(X)
 
 dom (X,Y,f1,C) is    Element of K19(X)
 
(dom (X,Y,V,C)) /\ (dom (X,Y,f1,C)) is    Element of K19(X)
 
 dom (X,Y,(X,Y,V,C),(X,Y,f1,C)) is    Element of K19(X)
 
f2 is    Element of X
 
(X,Y,(V - f1),C) /. f2 is   left_complementable   right_complementable   complementable   Element of  the U1 of Y
 
C /. f2 is   left_complementable   right_complementable   complementable   Element of  the U1 of Y
 
(V - f1) . f2 is   ext-real  V25()  real   Element of  REAL 
 
((V - f1) . f2) * (C /. f2) is   left_complementable   right_complementable   complementable   Element of  the U1 of Y
 
V . f2 is   ext-real  V25()  real   Element of  REAL 
 
f1 . f2 is   ext-real  V25()  real   Element of  REAL 
 
(V . f2) - (f1 . f2) is   ext-real  V25()  real   Element of  REAL 
 
((V . f2) - (f1 . f2)) * (C /. f2) is   left_complementable   right_complementable   complementable   Element of  the U1 of Y
 
(V . f2) * (C /. f2) is   left_complementable   right_complementable   complementable   Element of  the U1 of Y
 
(f1 . f2) * (C /. f2) is   left_complementable   right_complementable   complementable   Element of  the U1 of Y
 
((V . f2) * (C /. f2)) - ((f1 . f2) * (C /. f2)) is   left_complementable   right_complementable   complementable   Element of  the U1 of Y
 
 - ((f1 . f2) * (C /. f2)) is   left_complementable   right_complementable   complementable   Element of  the U1 of Y
 
((V . f2) * (C /. f2)) + (- ((f1 . f2) * (C /. f2))) is   left_complementable   right_complementable   complementable   Element of  the U1 of Y
 
(X,Y,V,C) /. f2 is   left_complementable   right_complementable   complementable   Element of  the U1 of Y
 
((X,Y,V,C) /. f2) - ((f1 . f2) * (C /. f2)) is   left_complementable   right_complementable   complementable   Element of  the U1 of Y
 
((X,Y,V,C) /. f2) + (- ((f1 . f2) * (C /. f2))) is   left_complementable   right_complementable   complementable   Element of  the U1 of Y
 
(X,Y,f1,C) /. f2 is   left_complementable   right_complementable   complementable   Element of  the U1 of Y
 
((X,Y,V,C) /. f2) - ((X,Y,f1,C) /. f2) is   left_complementable   right_complementable   complementable   Element of  the U1 of Y
 
 - ((X,Y,f1,C) /. f2) is   left_complementable   right_complementable   complementable   Element of  the U1 of Y
 
((X,Y,V,C) /. f2) + (- ((X,Y,f1,C) /. f2)) is   left_complementable   right_complementable   complementable   Element of  the U1 of Y
 
(X,Y,(X,Y,V,C),(X,Y,f1,C)) /. f2 is   left_complementable   right_complementable   complementable   Element of  the U1 of Y
 
X is   non  empty   set 
 
K20(X,REAL) is  V36() V37() V38()  set 
 
K19(K20(X,REAL)) is    set 
 
Y is   non  empty   left_complementable   right_complementable   complementable   Abelian   add-associative   right_zeroed   vector-distributive   scalar-distributive   scalar-associative   scalar-unital  V123() V126() V127()  RealNormSpace-like   NORMSTR 
 
 the U1 of Y is   non  empty   set 
 
K20(X, the U1 of Y) is    set 
 
K19(K20(X, the U1 of Y)) is    set 
 
C is  V1() V4(X) V5( the U1 of Y) V6()  Element of K19(K20(X, the U1 of Y))
 
V is  V1() V4(X) V5( the U1 of Y) V6()  Element of K19(K20(X, the U1 of Y))
 
(X,Y,C,V) is  V1() V4(X) V5( the U1 of Y) V6()  Element of K19(K20(X, the U1 of Y))
 
f1 is  V1() V4(X) V5( REAL ) V6() V36() V37() V38()  Element of K19(K20(X,REAL))
 
(X,Y,f1,C) is  V1() V4(X) V5( the U1 of Y) V6()  Element of K19(K20(X, the U1 of Y))
 
(X,Y,f1,V) is  V1() V4(X) V5( the U1 of Y) V6()  Element of K19(K20(X, the U1 of Y))
 
(X,Y,(X,Y,f1,C),(X,Y,f1,V)) is  V1() V4(X) V5( the U1 of Y) V6()  Element of K19(K20(X, the U1 of Y))
 
(X,Y,f1,(X,Y,C,V)) is  V1() V4(X) V5( the U1 of Y) V6()  Element of K19(K20(X, the U1 of Y))
 
 dom (X,Y,(X,Y,f1,C),(X,Y,f1,V)) is    Element of K19(X)
 
K19(X) is    set 
 
 dom (X,Y,f1,C) is    Element of K19(X)
 
 dom (X,Y,f1,V) is    Element of K19(X)
 
(dom (X,Y,f1,C)) /\ (dom (X,Y,f1,V)) is    Element of K19(X)
 
 dom f1 is    Element of K19(X)
 
 dom V is    Element of K19(X)
 
(dom f1) /\ (dom V) is    Element of K19(X)
 
(dom (X,Y,f1,C)) /\ ((dom f1) /\ (dom V)) is    Element of K19(X)
 
 dom C is    Element of K19(X)
 
(dom f1) /\ (dom C) is    Element of K19(X)
 
((dom f1) /\ (dom C)) /\ ((dom f1) /\ (dom V)) is    Element of K19(X)
 
(dom f1) /\ ((dom f1) /\ (dom C)) is    Element of K19(X)
 
((dom f1) /\ ((dom f1) /\ (dom C))) /\ (dom V) is    Element of K19(X)
 
(dom f1) /\ (dom f1) is    Element of K19(X)
 
((dom f1) /\ (dom f1)) /\ (dom C) is    Element of K19(X)
 
(((dom f1) /\ (dom f1)) /\ (dom C)) /\ (dom V) is    Element of K19(X)
 
(dom C) /\ (dom V) is    Element of K19(X)
 
(dom f1) /\ ((dom C) /\ (dom V)) is    Element of K19(X)
 
 dom (X,Y,C,V) is    Element of K19(X)
 
(dom f1) /\ (dom (X,Y,C,V)) is    Element of K19(X)
 
 dom (X,Y,f1,(X,Y,C,V)) is    Element of K19(X)
 
f2 is    Element of X
 
(X,Y,f1,(X,Y,C,V)) /. f2 is   left_complementable   right_complementable   complementable   Element of  the U1 of Y
 
(X,Y,C,V) /. f2 is   left_complementable   right_complementable   complementable   Element of  the U1 of Y
 
f1 . f2 is   ext-real  V25()  real   Element of  REAL 
 
(f1 . f2) * ((X,Y,C,V) /. f2) is   left_complementable   right_complementable   complementable   Element of  the U1 of Y
 
C /. f2 is   left_complementable   right_complementable   complementable   Element of  the U1 of Y
 
V /. f2 is   left_complementable   right_complementable   complementable   Element of  the U1 of Y
 
(C /. f2) - (V /. f2) is   left_complementable   right_complementable   complementable   Element of  the U1 of Y
 
 - (V /. f2) is   left_complementable   right_complementable   complementable   Element of  the U1 of Y
 
(C /. f2) + (- (V /. f2)) is   left_complementable   right_complementable   complementable   Element of  the U1 of Y
 
(f1 . f2) * ((C /. f2) - (V /. f2)) is   left_complementable   right_complementable   complementable   Element of  the U1 of Y
 
(f1 . f2) * (C /. f2) is   left_complementable   right_complementable   complementable   Element of  the U1 of Y
 
(f1 . f2) * (V /. f2) is   left_complementable   right_complementable   complementable   Element of  the U1 of Y
 
((f1 . f2) * (C /. f2)) - ((f1 . f2) * (V /. f2)) is   left_complementable   right_complementable   complementable   Element of  the U1 of Y
 
 - ((f1 . f2) * (V /. f2)) is   left_complementable   right_complementable   complementable   Element of  the U1 of Y
 
((f1 . f2) * (C /. f2)) + (- ((f1 . f2) * (V /. f2))) is   left_complementable   right_complementable   complementable   Element of  the U1 of Y
 
(X,Y,f1,C) /. f2 is   left_complementable   right_complementable   complementable   Element of  the U1 of Y
 
((X,Y,f1,C) /. f2) - ((f1 . f2) * (V /. f2)) is   left_complementable   right_complementable   complementable   Element of  the U1 of Y
 
((X,Y,f1,C) /. f2) + (- ((f1 . f2) * (V /. f2))) is   left_complementable   right_complementable   complementable   Element of  the U1 of Y
 
(X,Y,f1,V) /. f2 is   left_complementable   right_complementable   complementable   Element of  the U1 of Y
 
((X,Y,f1,C) /. f2) - ((X,Y,f1,V) /. f2) is   left_complementable   right_complementable   complementable   Element of  the U1 of Y
 
 - ((X,Y,f1,V) /. f2) is   left_complementable   right_complementable   complementable   Element of  the U1 of Y
 
((X,Y,f1,C) /. f2) + (- ((X,Y,f1,V) /. f2)) is   left_complementable   right_complementable   complementable   Element of  the U1 of Y
 
(X,Y,(X,Y,f1,C),(X,Y,f1,V)) /. f2 is   left_complementable   right_complementable   complementable   Element of  the U1 of Y
 
X is   non  empty   set 
 
Y is   non  empty   left_complementable   right_complementable   complementable   Abelian   add-associative   right_zeroed   vector-distributive   scalar-distributive   scalar-associative   scalar-unital  V123() V126() V127()  RealNormSpace-like   NORMSTR 
 
 the U1 of Y is   non  empty   set 
 
K20(X, the U1 of Y) is    set 
 
K19(K20(X, the U1 of Y)) is    set 
 
C is  V1() V4(X) V5( the U1 of Y) V6()  Element of K19(K20(X, the U1 of Y))
 
V is  V1() V4(X) V5( the U1 of Y) V6()  Element of K19(K20(X, the U1 of Y))
 
(X,Y,C,V) is  V1() V4(X) V5( the U1 of Y) V6()  Element of K19(K20(X, the U1 of Y))
 
f1 is   ext-real  V25()  real   Element of  REAL 
 
(X,Y,(X,Y,C,V),f1) is  V1() V4(X) V5( the U1 of Y) V6()  Element of K19(K20(X, the U1 of Y))
 
(X,Y,C,f1) is  V1() V4(X) V5( the U1 of Y) V6()  Element of K19(K20(X, the U1 of Y))
 
(X,Y,V,f1) is  V1() V4(X) V5( the U1 of Y) V6()  Element of K19(K20(X, the U1 of Y))
 
(X,Y,(X,Y,C,f1),(X,Y,V,f1)) is  V1() V4(X) V5( the U1 of Y) V6()  Element of K19(K20(X, the U1 of Y))
 
 dom (X,Y,(X,Y,C,V),f1) is    Element of K19(X)
 
K19(X) is    set 
 
 dom (X,Y,C,V) is    Element of K19(X)
 
 dom C is    Element of K19(X)
 
 dom V is    Element of K19(X)
 
(dom C) /\ (dom V) is    Element of K19(X)
 
 dom (X,Y,V,f1) is    Element of K19(X)
 
(dom C) /\ (dom (X,Y,V,f1)) is    Element of K19(X)
 
 dom (X,Y,C,f1) is    Element of K19(X)
 
(dom (X,Y,C,f1)) /\ (dom (X,Y,V,f1)) is    Element of K19(X)
 
 dom (X,Y,(X,Y,C,f1),(X,Y,V,f1)) is    Element of K19(X)
 
f2 is    Element of X
 
(X,Y,(X,Y,C,V),f1) /. f2 is   left_complementable   right_complementable   complementable   Element of  the U1 of Y
 
(X,Y,C,V) /. f2 is   left_complementable   right_complementable   complementable   Element of  the U1 of Y
 
f1 * ((X,Y,C,V) /. f2) is   left_complementable   right_complementable   complementable   Element of  the U1 of Y
 
C /. f2 is   left_complementable   right_complementable   complementable   Element of  the U1 of Y
 
V /. f2 is   left_complementable   right_complementable   complementable   Element of  the U1 of Y
 
(C /. f2) + (V /. f2) is   left_complementable   right_complementable   complementable   Element of  the U1 of Y
 
f1 * ((C /. f2) + (V /. f2)) is   left_complementable   right_complementable   complementable   Element of  the U1 of Y
 
f1 * (C /. f2) is   left_complementable   right_complementable   complementable   Element of  the U1 of Y
 
f1 * (V /. f2) is   left_complementable   right_complementable   complementable   Element of  the U1 of Y
 
(f1 * (C /. f2)) + (f1 * (V /. f2)) is   left_complementable   right_complementable   complementable   Element of  the U1 of Y
 
(X,Y,C,f1) /. f2 is   left_complementable   right_complementable   complementable   Element of  the U1 of Y
 
((X,Y,C,f1) /. f2) + (f1 * (V /. f2)) is   left_complementable   right_complementable   complementable   Element of  the U1 of Y
 
(X,Y,V,f1) /. f2 is   left_complementable   right_complementable   complementable   Element of  the U1 of Y
 
((X,Y,C,f1) /. f2) + ((X,Y,V,f1) /. f2) is   left_complementable   right_complementable   complementable   Element of  the U1 of Y
 
(X,Y,(X,Y,C,f1),(X,Y,V,f1)) /. f2 is   left_complementable   right_complementable   complementable   Element of  the U1 of Y
 
X is   non  empty   set 
 
Y is   non  empty   left_complementable   right_complementable   complementable   Abelian   add-associative   right_zeroed   vector-distributive   scalar-distributive   scalar-associative   scalar-unital  V123() V126() V127()  RealNormSpace-like   NORMSTR 
 
 the U1 of Y is   non  empty   set 
 
K20(X, the U1 of Y) is    set 
 
K19(K20(X, the U1 of Y)) is    set 
 
C is  V1() V4(X) V5( the U1 of Y) V6()  Element of K19(K20(X, the U1 of Y))
 
V is   ext-real  V25()  real   Element of  REAL 
 
f1 is   ext-real  V25()  real   Element of  REAL 
 
V * f1 is   ext-real  V25()  real   Element of  REAL 
 
(X,Y,C,(V * f1)) is  V1() V4(X) V5( the U1 of Y) V6()  Element of K19(K20(X, the U1 of Y))
 
(X,Y,C,f1) is  V1() V4(X) V5( the U1 of Y) V6()  Element of K19(K20(X, the U1 of Y))
 
(X,Y,(X,Y,C,f1),V) is  V1() V4(X) V5( the U1 of Y) V6()  Element of K19(K20(X, the U1 of Y))
 
 dom (X,Y,C,(V * f1)) is    Element of K19(X)
 
K19(X) is    set 
 
 dom C is    Element of K19(X)
 
 dom (X,Y,C,f1) is    Element of K19(X)
 
 dom (X,Y,(X,Y,C,f1),V) is    Element of K19(X)
 
f2 is    Element of X
 
(X,Y,C,(V * f1)) /. f2 is   left_complementable   right_complementable   complementable   Element of  the U1 of Y
 
C /. f2 is   left_complementable   right_complementable   complementable   Element of  the U1 of Y
 
(V * f1) * (C /. f2) is   left_complementable   right_complementable   complementable   Element of  the U1 of Y
 
f1 * (C /. f2) is   left_complementable   right_complementable   complementable   Element of  the U1 of Y
 
V * (f1 * (C /. f2)) is   left_complementable   right_complementable   complementable   Element of  the U1 of Y
 
(X,Y,C,f1) /. f2 is   left_complementable   right_complementable   complementable   Element of  the U1 of Y
 
V * ((X,Y,C,f1) /. f2) is   left_complementable   right_complementable   complementable   Element of  the U1 of Y
 
(X,Y,(X,Y,C,f1),V) /. f2 is   left_complementable   right_complementable   complementable   Element of  the U1 of Y
 
X is   non  empty   set 
 
Y is   non  empty   left_complementable   right_complementable   complementable   Abelian   add-associative   right_zeroed   vector-distributive   scalar-distributive   scalar-associative   scalar-unital  V123() V126() V127()  RealNormSpace-like   NORMSTR 
 
 the U1 of Y is   non  empty   set 
 
K20(X, the U1 of Y) is    set 
 
K19(K20(X, the U1 of Y)) is    set 
 
C is  V1() V4(X) V5( the U1 of Y) V6()  Element of K19(K20(X, the U1 of Y))
 
V is  V1() V4(X) V5( the U1 of Y) V6()  Element of K19(K20(X, the U1 of Y))
 
(X,Y,C,V) is  V1() V4(X) V5( the U1 of Y) V6()  Element of K19(K20(X, the U1 of Y))
 
f1 is   ext-real  V25()  real   Element of  REAL 
 
(X,Y,(X,Y,C,V),f1) is  V1() V4(X) V5( the U1 of Y) V6()  Element of K19(K20(X, the U1 of Y))
 
(X,Y,C,f1) is  V1() V4(X) V5( the U1 of Y) V6()  Element of K19(K20(X, the U1 of Y))
 
(X,Y,V,f1) is  V1() V4(X) V5( the U1 of Y) V6()  Element of K19(K20(X, the U1 of Y))
 
(X,Y,(X,Y,C,f1),(X,Y,V,f1)) is  V1() V4(X) V5( the U1 of Y) V6()  Element of K19(K20(X, the U1 of Y))
 
 dom (X,Y,(X,Y,C,V),f1) is    Element of K19(X)
 
K19(X) is    set 
 
 dom (X,Y,C,V) is    Element of K19(X)
 
 dom C is    Element of K19(X)
 
 dom V is    Element of K19(X)
 
(dom C) /\ (dom V) is    Element of K19(X)
 
 dom (X,Y,V,f1) is    Element of K19(X)
 
(dom C) /\ (dom (X,Y,V,f1)) is    Element of K19(X)
 
 dom (X,Y,C,f1) is    Element of K19(X)
 
(dom (X,Y,C,f1)) /\ (dom (X,Y,V,f1)) is    Element of K19(X)
 
 dom (X,Y,(X,Y,C,f1),(X,Y,V,f1)) is    Element of K19(X)
 
f2 is    Element of X
 
(X,Y,(X,Y,C,V),f1) /. f2 is   left_complementable   right_complementable   complementable   Element of  the U1 of Y
 
(X,Y,C,V) /. f2 is   left_complementable   right_complementable   complementable   Element of  the U1 of Y
 
f1 * ((X,Y,C,V) /. f2) is   left_complementable   right_complementable   complementable   Element of  the U1 of Y
 
C /. f2 is   left_complementable   right_complementable   complementable   Element of  the U1 of Y
 
V /. f2 is   left_complementable   right_complementable   complementable   Element of  the U1 of Y
 
(C /. f2) - (V /. f2) is   left_complementable   right_complementable   complementable   Element of  the U1 of Y
 
 - (V /. f2) is   left_complementable   right_complementable   complementable   Element of  the U1 of Y
 
(C /. f2) + (- (V /. f2)) is   left_complementable   right_complementable   complementable   Element of  the U1 of Y
 
f1 * ((C /. f2) - (V /. f2)) is   left_complementable   right_complementable   complementable   Element of  the U1 of Y
 
f1 * (C /. f2) is   left_complementable   right_complementable   complementable   Element of  the U1 of Y
 
f1 * (V /. f2) is   left_complementable   right_complementable   complementable   Element of  the U1 of Y
 
(f1 * (C /. f2)) - (f1 * (V /. f2)) is   left_complementable   right_complementable   complementable   Element of  the U1 of Y
 
 - (f1 * (V /. f2)) is   left_complementable   right_complementable   complementable   Element of  the U1 of Y
 
(f1 * (C /. f2)) + (- (f1 * (V /. f2))) is   left_complementable   right_complementable   complementable   Element of  the U1 of Y
 
(X,Y,C,f1) /. f2 is   left_complementable   right_complementable   complementable   Element of  the U1 of Y
 
((X,Y,C,f1) /. f2) - (f1 * (V /. f2)) is   left_complementable   right_complementable   complementable   Element of  the U1 of Y
 
((X,Y,C,f1) /. f2) + (- (f1 * (V /. f2))) is   left_complementable   right_complementable   complementable   Element of  the U1 of Y
 
(X,Y,V,f1) /. f2 is   left_complementable   right_complementable   complementable   Element of  the U1 of Y
 
((X,Y,C,f1) /. f2) - ((X,Y,V,f1) /. f2) is   left_complementable   right_complementable   complementable   Element of  the U1 of Y
 
 - ((X,Y,V,f1) /. f2) is   left_complementable   right_complementable   complementable   Element of  the U1 of Y
 
((X,Y,C,f1) /. f2) + (- ((X,Y,V,f1) /. f2)) is   left_complementable   right_complementable   complementable   Element of  the U1 of Y
 
(X,Y,(X,Y,C,f1),(X,Y,V,f1)) /. f2 is   left_complementable   right_complementable   complementable   Element of  the U1 of Y
 
X is   non  empty   set 
 
Y is   non  empty   left_complementable   right_complementable   complementable   Abelian   add-associative   right_zeroed   vector-distributive   scalar-distributive   scalar-associative   scalar-unital  V123() V126() V127()  RealNormSpace-like   NORMSTR 
 
 the U1 of Y is   non  empty   set 
 
K20(X, the U1 of Y) is    set 
 
K19(K20(X, the U1 of Y)) is    set 
 
C is  V1() V4(X) V5( the U1 of Y) V6()  Element of K19(K20(X, the U1 of Y))
 
V is  V1() V4(X) V5( the U1 of Y) V6()  Element of K19(K20(X, the U1 of Y))
 
(X,Y,C,V) is  V1() V4(X) V5( the U1 of Y) V6()  Element of K19(K20(X, the U1 of Y))
 
(X,Y,V,C) is  V1() V4(X) V5( the U1 of Y) V6()  Element of K19(K20(X, the U1 of Y))
 
(X,Y,(X,Y,V,C),(- 1)) is  V1() V4(X) V5( the U1 of Y) V6()  Element of K19(K20(X, the U1 of Y))
 
 dom (X,Y,C,V) is    Element of K19(X)
 
K19(X) is    set 
 
 dom V is    Element of K19(X)
 
 dom C is    Element of K19(X)
 
(dom V) /\ (dom C) is    Element of K19(X)
 
 dom (X,Y,V,C) is    Element of K19(X)
 
 dom (X,Y,(X,Y,V,C),(- 1)) is    Element of K19(X)
 
f1 is    Element of X
 
(X,Y,C,V) /. f1 is   left_complementable   right_complementable   complementable   Element of  the U1 of Y
 
C /. f1 is   left_complementable   right_complementable   complementable   Element of  the U1 of Y
 
V /. f1 is   left_complementable   right_complementable   complementable   Element of  the U1 of Y
 
(C /. f1) - (V /. f1) is   left_complementable   right_complementable   complementable   Element of  the U1 of Y
 
 - (V /. f1) is   left_complementable   right_complementable   complementable   Element of  the U1 of Y
 
(C /. f1) + (- (V /. f1)) is   left_complementable   right_complementable   complementable   Element of  the U1 of Y
 
(V /. f1) - (C /. f1) is   left_complementable   right_complementable   complementable   Element of  the U1 of Y
 
 - (C /. f1) is   left_complementable   right_complementable   complementable   Element of  the U1 of Y
 
(V /. f1) + (- (C /. f1)) is   left_complementable   right_complementable   complementable   Element of  the U1 of Y
 
 - ((V /. f1) - (C /. f1)) is   left_complementable   right_complementable   complementable   Element of  the U1 of Y
 
(- 1) * ((V /. f1) - (C /. f1)) is   left_complementable   right_complementable   complementable   Element of  the U1 of Y
 
(X,Y,V,C) /. f1 is   left_complementable   right_complementable   complementable   Element of  the U1 of Y
 
(- 1) * ((X,Y,V,C) /. f1) is   left_complementable   right_complementable   complementable   Element of  the U1 of Y
 
(X,Y,(X,Y,V,C),(- 1)) /. f1 is   left_complementable   right_complementable   complementable   Element of  the U1 of Y
 
X is   non  empty   set 
 
Y is   non  empty   left_complementable   right_complementable   complementable   Abelian   add-associative   right_zeroed   vector-distributive   scalar-distributive   scalar-associative   scalar-unital  V123() V126() V127()  RealNormSpace-like   NORMSTR 
 
 the U1 of Y is   non  empty   set 
 
K20(X, the U1 of Y) is    set 
 
K19(K20(X, the U1 of Y)) is    set 
 
C is  V1() V4(X) V5( the U1 of Y) V6()  Element of K19(K20(X, the U1 of Y))
 
V is  V1() V4(X) V5( the U1 of Y) V6()  Element of K19(K20(X, the U1 of Y))
 
(X,Y,C,V) is  V1() V4(X) V5( the U1 of Y) V6()  Element of K19(K20(X, the U1 of Y))
 
f1 is  V1() V4(X) V5( the U1 of Y) V6()  Element of K19(K20(X, the U1 of Y))
 
(X,Y,V,f1) is  V1() V4(X) V5( the U1 of Y) V6()  Element of K19(K20(X, the U1 of Y))
 
(X,Y,C,(X,Y,V,f1)) is  V1() V4(X) V5( the U1 of Y) V6()  Element of K19(K20(X, the U1 of Y))
 
(X,Y,(X,Y,C,V),f1) is  V1() V4(X) V5( the U1 of Y) V6()  Element of K19(K20(X, the U1 of Y))
 
 dom (X,Y,C,(X,Y,V,f1)) is    Element of K19(X)
 
K19(X) is    set 
 
 dom C is    Element of K19(X)
 
 dom (X,Y,V,f1) is    Element of K19(X)
 
(dom C) /\ (dom (X,Y,V,f1)) is    Element of K19(X)
 
 dom V is    Element of K19(X)
 
 dom f1 is    Element of K19(X)
 
(dom V) /\ (dom f1) is    Element of K19(X)
 
(dom C) /\ ((dom V) /\ (dom f1)) is    Element of K19(X)
 
(dom C) /\ (dom V) is    Element of K19(X)
 
((dom C) /\ (dom V)) /\ (dom f1) is    Element of K19(X)
 
 dom (X,Y,C,V) is    Element of K19(X)
 
(dom (X,Y,C,V)) /\ (dom f1) is    Element of K19(X)
 
 dom (X,Y,(X,Y,C,V),f1) is    Element of K19(X)
 
f2 is    Element of X
 
(X,Y,C,(X,Y,V,f1)) /. f2 is   left_complementable   right_complementable   complementable   Element of  the U1 of Y
 
C /. f2 is   left_complementable   right_complementable   complementable   Element of  the U1 of Y
 
(X,Y,V,f1) /. f2 is   left_complementable   right_complementable   complementable   Element of  the U1 of Y
 
(C /. f2) - ((X,Y,V,f1) /. f2) is   left_complementable   right_complementable   complementable   Element of  the U1 of Y
 
 - ((X,Y,V,f1) /. f2) is   left_complementable   right_complementable   complementable   Element of  the U1 of Y
 
(C /. f2) + (- ((X,Y,V,f1) /. f2)) is   left_complementable   right_complementable   complementable   Element of  the U1 of Y
 
V /. f2 is   left_complementable   right_complementable   complementable   Element of  the U1 of Y
 
f1 /. f2 is   left_complementable   right_complementable   complementable   Element of  the U1 of Y
 
(V /. f2) + (f1 /. f2) is   left_complementable   right_complementable   complementable   Element of  the U1 of Y
 
(C /. f2) - ((V /. f2) + (f1 /. f2)) is   left_complementable   right_complementable   complementable   Element of  the U1 of Y
 
 - ((V /. f2) + (f1 /. f2)) is   left_complementable   right_complementable   complementable   Element of  the U1 of Y
 
(C /. f2) + (- ((V /. f2) + (f1 /. f2))) is   left_complementable   right_complementable   complementable   Element of  the U1 of Y
 
(C /. f2) - (V /. f2) is   left_complementable   right_complementable   complementable   Element of  the U1 of Y
 
 - (V /. f2) is   left_complementable   right_complementable   complementable   Element of  the U1 of Y
 
(C /. f2) + (- (V /. f2)) is   left_complementable   right_complementable   complementable   Element of  the U1 of Y
 
((C /. f2) - (V /. f2)) - (f1 /. f2) is   left_complementable   right_complementable   complementable   Element of  the U1 of Y
 
 - (f1 /. f2) is   left_complementable   right_complementable   complementable   Element of  the U1 of Y
 
((C /. f2) - (V /. f2)) + (- (f1 /. f2)) is   left_complementable   right_complementable   complementable   Element of  the U1 of Y
 
(X,Y,C,V) /. f2 is   left_complementable   right_complementable   complementable   Element of  the U1 of Y
 
((X,Y,C,V) /. f2) - (f1 /. f2) is   left_complementable   right_complementable   complementable   Element of  the U1 of Y
 
((X,Y,C,V) /. f2) + (- (f1 /. f2)) is   left_complementable   right_complementable   complementable   Element of  the U1 of Y
 
(X,Y,(X,Y,C,V),f1) /. f2 is   left_complementable   right_complementable   complementable   Element of  the U1 of Y
 
X is   non  empty   set 
 
Y is   non  empty   left_complementable   right_complementable   complementable   Abelian   add-associative   right_zeroed   vector-distributive   scalar-distributive   scalar-associative   scalar-unital  V123() V126() V127()  RealNormSpace-like   NORMSTR 
 
 the U1 of Y is   non  empty   set 
 
K20(X, the U1 of Y) is    set 
 
K19(K20(X, the U1 of Y)) is    set 
 
C is  V1() V4(X) V5( the U1 of Y) V6()  Element of K19(K20(X, the U1 of Y))
 
(X,Y,C,1) is  V1() V4(X) V5( the U1 of Y) V6()  Element of K19(K20(X, the U1 of Y))
 
V is    Element of X
 
 dom (X,Y,C,1) is    Element of K19(X)
 
K19(X) is    set 
 
(X,Y,C,1) /. V is   left_complementable   right_complementable   complementable   Element of  the U1 of Y
 
C /. V is   left_complementable   right_complementable   complementable   Element of  the U1 of Y
 
1 * (C /. V) is   left_complementable   right_complementable   complementable   Element of  the U1 of Y
 
 dom C is    Element of K19(X)
 
X is   non  empty   set 
 
Y is   non  empty   left_complementable   right_complementable   complementable   Abelian   add-associative   right_zeroed   vector-distributive   scalar-distributive   scalar-associative   scalar-unital  V123() V126() V127()  RealNormSpace-like   NORMSTR 
 
 the U1 of Y is   non  empty   set 
 
K20(X, the U1 of Y) is    set 
 
K19(K20(X, the U1 of Y)) is    set 
 
C is  V1() V4(X) V5( the U1 of Y) V6()  Element of K19(K20(X, the U1 of Y))
 
V is  V1() V4(X) V5( the U1 of Y) V6()  Element of K19(K20(X, the U1 of Y))
 
(X,Y,C,V) is  V1() V4(X) V5( the U1 of Y) V6()  Element of K19(K20(X, the U1 of Y))
 
f1 is  V1() V4(X) V5( the U1 of Y) V6()  Element of K19(K20(X, the U1 of Y))
 
(X,Y,V,f1) is  V1() V4(X) V5( the U1 of Y) V6()  Element of K19(K20(X, the U1 of Y))
 
(X,Y,C,(X,Y,V,f1)) is  V1() V4(X) V5( the U1 of Y) V6()  Element of K19(K20(X, the U1 of Y))
 
(X,Y,(X,Y,C,V),f1) is  V1() V4(X) V5( the U1 of Y) V6()  Element of K19(K20(X, the U1 of Y))
 
 dom (X,Y,C,(X,Y,V,f1)) is    Element of K19(X)
 
K19(X) is    set 
 
 dom C is    Element of K19(X)
 
 dom (X,Y,V,f1) is    Element of K19(X)
 
(dom C) /\ (dom (X,Y,V,f1)) is    Element of K19(X)
 
 dom V is    Element of K19(X)
 
 dom f1 is    Element of K19(X)
 
(dom V) /\ (dom f1) is    Element of K19(X)
 
(dom C) /\ ((dom V) /\ (dom f1)) is    Element of K19(X)
 
(dom C) /\ (dom V) is    Element of K19(X)
 
((dom C) /\ (dom V)) /\ (dom f1) is    Element of K19(X)
 
 dom (X,Y,C,V) is    Element of K19(X)
 
(dom (X,Y,C,V)) /\ (dom f1) is    Element of K19(X)
 
 dom (X,Y,(X,Y,C,V),f1) is    Element of K19(X)
 
f2 is    Element of X
 
(X,Y,C,(X,Y,V,f1)) /. f2 is   left_complementable   right_complementable   complementable   Element of  the U1 of Y
 
C /. f2 is   left_complementable   right_complementable   complementable   Element of  the U1 of Y
 
(X,Y,V,f1) /. f2 is   left_complementable   right_complementable   complementable   Element of  the U1 of Y
 
(C /. f2) - ((X,Y,V,f1) /. f2) is   left_complementable   right_complementable   complementable   Element of  the U1 of Y
 
 - ((X,Y,V,f1) /. f2) is   left_complementable   right_complementable   complementable   Element of  the U1 of Y
 
(C /. f2) + (- ((X,Y,V,f1) /. f2)) is   left_complementable   right_complementable   complementable   Element of  the U1 of Y
 
V /. f2 is   left_complementable   right_complementable   complementable   Element of  the U1 of Y
 
f1 /. f2 is   left_complementable   right_complementable   complementable   Element of  the U1 of Y
 
(V /. f2) - (f1 /. f2) is   left_complementable   right_complementable   complementable   Element of  the U1 of Y
 
 - (f1 /. f2) is   left_complementable   right_complementable   complementable   Element of  the U1 of Y
 
(V /. f2) + (- (f1 /. f2)) is   left_complementable   right_complementable   complementable   Element of  the U1 of Y
 
(C /. f2) - ((V /. f2) - (f1 /. f2)) is   left_complementable   right_complementable   complementable   Element of  the U1 of Y
 
 - ((V /. f2) - (f1 /. f2)) is   left_complementable   right_complementable   complementable   Element of  the U1 of Y
 
(C /. f2) + (- ((V /. f2) - (f1 /. f2))) is   left_complementable   right_complementable   complementable   Element of  the U1 of Y
 
(C /. f2) - (V /. f2) is   left_complementable   right_complementable   complementable   Element of  the U1 of Y
 
 - (V /. f2) is   left_complementable   right_complementable   complementable   Element of  the U1 of Y
 
(C /. f2) + (- (V /. f2)) is   left_complementable   right_complementable   complementable   Element of  the U1 of Y
 
((C /. f2) - (V /. f2)) + (f1 /. f2) is   left_complementable   right_complementable   complementable   Element of  the U1 of Y
 
(X,Y,C,V) /. f2 is   left_complementable   right_complementable   complementable   Element of  the U1 of Y
 
((X,Y,C,V) /. f2) + (f1 /. f2) is   left_complementable   right_complementable   complementable   Element of  the U1 of Y
 
(X,Y,(X,Y,C,V),f1) /. f2 is   left_complementable   right_complementable   complementable   Element of  the U1 of Y
 
X is   non  empty   set 
 
Y is   non  empty   left_complementable   right_complementable   complementable   Abelian   add-associative   right_zeroed   vector-distributive   scalar-distributive   scalar-associative   scalar-unital  V123() V126() V127()  RealNormSpace-like   NORMSTR 
 
 the U1 of Y is   non  empty   set 
 
K20(X, the U1 of Y) is    set 
 
K19(K20(X, the U1 of Y)) is    set 
 
C is  V1() V4(X) V5( the U1 of Y) V6()  Element of K19(K20(X, the U1 of Y))
 
V is  V1() V4(X) V5( the U1 of Y) V6()  Element of K19(K20(X, the U1 of Y))
 
(X,Y,C,V) is  V1() V4(X) V5( the U1 of Y) V6()  Element of K19(K20(X, the U1 of Y))
 
f1 is  V1() V4(X) V5( the U1 of Y) V6()  Element of K19(K20(X, the U1 of Y))
 
(X,Y,V,f1) is  V1() V4(X) V5( the U1 of Y) V6()  Element of K19(K20(X, the U1 of Y))
 
(X,Y,C,(X,Y,V,f1)) is  V1() V4(X) V5( the U1 of Y) V6()  Element of K19(K20(X, the U1 of Y))
 
(X,Y,(X,Y,C,V),f1) is  V1() V4(X) V5( the U1 of Y) V6()  Element of K19(K20(X, the U1 of Y))
 
 dom (X,Y,C,(X,Y,V,f1)) is    Element of K19(X)
 
K19(X) is    set 
 
 dom C is    Element of K19(X)
 
 dom (X,Y,V,f1) is    Element of K19(X)
 
(dom C) /\ (dom (X,Y,V,f1)) is    Element of K19(X)
 
 dom V is    Element of K19(X)
 
 dom f1 is    Element of K19(X)
 
(dom V) /\ (dom f1) is    Element of K19(X)
 
(dom C) /\ ((dom V) /\ (dom f1)) is    Element of K19(X)
 
(dom C) /\ (dom V) is    Element of K19(X)
 
((dom C) /\ (dom V)) /\ (dom f1) is    Element of K19(X)
 
 dom (X,Y,C,V) is    Element of K19(X)
 
(dom (X,Y,C,V)) /\ (dom f1) is    Element of K19(X)
 
 dom (X,Y,(X,Y,C,V),f1) is    Element of K19(X)
 
f2 is    Element of X
 
(X,Y,C,(X,Y,V,f1)) /. f2 is   left_complementable   right_complementable   complementable   Element of  the U1 of Y
 
C /. f2 is   left_complementable   right_complementable   complementable   Element of  the U1 of Y
 
(X,Y,V,f1) /. f2 is   left_complementable   right_complementable   complementable   Element of  the U1 of Y
 
(C /. f2) + ((X,Y,V,f1) /. f2) is   left_complementable   right_complementable   complementable   Element of  the U1 of Y
 
V /. f2 is   left_complementable   right_complementable   complementable   Element of  the U1 of Y
 
f1 /. f2 is   left_complementable   right_complementable   complementable   Element of  the U1 of Y
 
(V /. f2) - (f1 /. f2) is   left_complementable   right_complementable   complementable   Element of  the U1 of Y
 
 - (f1 /. f2) is   left_complementable   right_complementable   complementable   Element of  the U1 of Y
 
(V /. f2) + (- (f1 /. f2)) is   left_complementable   right_complementable   complementable   Element of  the U1 of Y
 
(C /. f2) + ((V /. f2) - (f1 /. f2)) is   left_complementable   right_complementable   complementable   Element of  the U1 of Y
 
(C /. f2) + (V /. f2) is   left_complementable   right_complementable   complementable   Element of  the U1 of Y
 
((C /. f2) + (V /. f2)) - (f1 /. f2) is   left_complementable   right_complementable   complementable   Element of  the U1 of Y
 
((C /. f2) + (V /. f2)) + (- (f1 /. f2)) is   left_complementable   right_complementable   complementable   Element of  the U1 of Y
 
(X,Y,C,V) /. f2 is   left_complementable   right_complementable   complementable   Element of  the U1 of Y
 
((X,Y,C,V) /. f2) - (f1 /. f2) is   left_complementable   right_complementable   complementable   Element of  the U1 of Y
 
((X,Y,C,V) /. f2) + (- (f1 /. f2)) is   left_complementable   right_complementable   complementable   Element of  the U1 of Y
 
(X,Y,(X,Y,C,V),f1) /. f2 is   left_complementable   right_complementable   complementable   Element of  the U1 of Y
 
X is   non  empty   set 
 
K20(X,REAL) is  V36() V37() V38()  set 
 
K19(K20(X,REAL)) is    set 
 
Y is   non  empty   left_complementable   right_complementable   complementable   Abelian   add-associative   right_zeroed   vector-distributive   scalar-distributive   scalar-associative   scalar-unital  V123() V126() V127()  RealNormSpace-like   NORMSTR 
 
 the U1 of Y is   non  empty   set 
 
K20(X, the U1 of Y) is    set 
 
K19(K20(X, the U1 of Y)) is    set 
 
C is  V1() V4(X) V5( the U1 of Y) V6()  Element of K19(K20(X, the U1 of Y))
 
||.C.|| is  V1() V4(X) V5( REAL ) V6() V36() V37() V38()  Element of K19(K20(X,REAL))
 
V is  V1() V4(X) V5( REAL ) V6() V36() V37() V38()  Element of K19(K20(X,REAL))
 
(X,Y,V,C) is  V1() V4(X) V5( the U1 of Y) V6()  Element of K19(K20(X, the U1 of Y))
 
||.(X,Y,V,C).|| is  V1() V4(X) V5( REAL ) V6() V36() V37() V38()  Element of K19(K20(X,REAL))
 
 abs V is  V1() V4(X) V5( REAL ) V6() V36() V37() V38()  bounded_below   Element of K19(K20(X,REAL))
 
(abs V) (#) ||.C.|| is  V1() V4(X) V5( REAL ) V6() V36() V37() V38()  Element of K19(K20(X,REAL))
 
 dom ||.(X,Y,V,C).|| is    Element of K19(X)
 
K19(X) is    set 
 
 dom (X,Y,V,C) is    Element of K19(X)
 
 dom V is    Element of K19(X)
 
 dom C is    Element of K19(X)
 
(dom V) /\ (dom C) is    Element of K19(X)
 
 dom ||.C.|| is    Element of K19(X)
 
(dom V) /\ (dom ||.C.||) is    Element of K19(X)
 
 dom (abs V) is    Element of K19(X)
 
(dom (abs V)) /\ (dom ||.C.||) is    Element of K19(X)
 
 dom ((abs V) (#) ||.C.||) is    Element of K19(X)
 
f1 is    Element of X
 
||.(X,Y,V,C).|| . f1 is   ext-real  V25()  real   Element of  REAL 
 
(X,Y,V,C) /. f1 is   left_complementable   right_complementable   complementable   Element of  the U1 of Y
 
||.((X,Y,V,C) /. f1).|| is   ext-real   non  negative  V25()  real   Element of  REAL 
 
 the U8 of Y is  V1() V4( the U1 of Y) V5( REAL ) V6()  non  empty   total  V30( the U1 of Y, REAL ) V36() V37() V38()  Element of K19(K20( the U1 of Y,REAL))
 
K20( the U1 of Y,REAL) is  V36() V37() V38()  set 
 
K19(K20( the U1 of Y,REAL)) is    set 
 
 the U8 of Y . ((X,Y,V,C) /. f1) is   ext-real  V25()  real   Element of  REAL 
 
C /. f1 is   left_complementable   right_complementable   complementable   Element of  the U1 of Y
 
V . f1 is   ext-real  V25()  real   Element of  REAL 
 
(V . f1) * (C /. f1) is   left_complementable   right_complementable   complementable   Element of  the U1 of Y
 
||.((V . f1) * (C /. f1)).|| is   ext-real   non  negative  V25()  real   Element of  REAL 
 
 the U8 of Y . ((V . f1) * (C /. f1)) is   ext-real  V25()  real   Element of  REAL 
 
 abs (V . f1) is   ext-real  V25()  real   Element of  REAL 
 
||.(C /. f1).|| is   ext-real   non  negative  V25()  real   Element of  REAL 
 
 the U8 of Y . (C /. f1) is   ext-real  V25()  real   Element of  REAL 
 
(abs (V . f1)) * ||.(C /. f1).|| is   ext-real  V25()  real   Element of  REAL 
 
(abs V) . f1 is   ext-real  V25()  real   Element of  REAL 
 
((abs V) . f1) * ||.(C /. f1).|| is   ext-real  V25()  real   Element of  REAL 
 
||.C.|| . f1 is   ext-real  V25()  real   Element of  REAL 
 
((abs V) . f1) * (||.C.|| . f1) is   ext-real  V25()  real   Element of  REAL 
 
((abs V) (#) ||.C.||) . f1 is   ext-real  V25()  real   Element of  REAL 
 
X is   non  empty   set 
 
Y is   non  empty   left_complementable   right_complementable   complementable   Abelian   add-associative   right_zeroed   vector-distributive   scalar-distributive   scalar-associative   scalar-unital  V123() V126() V127()  RealNormSpace-like   NORMSTR 
 
 the U1 of Y is   non  empty   set 
 
K20(X, the U1 of Y) is    set 
 
K19(K20(X, the U1 of Y)) is    set 
 
C is  V1() V4(X) V5( the U1 of Y) V6()  Element of K19(K20(X, the U1 of Y))
 
||.C.|| is  V1() V4(X) V5( REAL ) V6() V36() V37() V38()  Element of K19(K20(X,REAL))
 
K20(X,REAL) is  V36() V37() V38()  set 
 
K19(K20(X,REAL)) is    set 
 
V is   ext-real  V25()  real   Element of  REAL 
 
(X,Y,C,V) is  V1() V4(X) V5( the U1 of Y) V6()  Element of K19(K20(X, the U1 of Y))
 
||.(X,Y,C,V).|| is  V1() V4(X) V5( REAL ) V6() V36() V37() V38()  Element of K19(K20(X,REAL))
 
 abs V is   ext-real  V25()  real   Element of  REAL 
 
(abs V) (#) ||.C.|| is  V1() V4(X) V5( REAL ) V6() V36() V37() V38()  Element of K19(K20(X,REAL))
 
 dom ||.(X,Y,C,V).|| is    Element of K19(X)
 
K19(X) is    set 
 
 dom (X,Y,C,V) is    Element of K19(X)
 
 dom C is    Element of K19(X)
 
 dom ||.C.|| is    Element of K19(X)
 
 dom ((abs V) (#) ||.C.||) is    Element of K19(X)
 
f1 is    Element of X
 
||.(X,Y,C,V).|| . f1 is   ext-real  V25()  real   Element of  REAL 
 
(X,Y,C,V) /. f1 is   left_complementable   right_complementable   complementable   Element of  the U1 of Y
 
||.((X,Y,C,V) /. f1).|| is   ext-real   non  negative  V25()  real   Element of  REAL 
 
 the U8 of Y is  V1() V4( the U1 of Y) V5( REAL ) V6()  non  empty   total  V30( the U1 of Y, REAL ) V36() V37() V38()  Element of K19(K20( the U1 of Y,REAL))
 
K20( the U1 of Y,REAL) is  V36() V37() V38()  set 
 
K19(K20( the U1 of Y,REAL)) is    set 
 
 the U8 of Y . ((X,Y,C,V) /. f1) is   ext-real  V25()  real   Element of  REAL 
 
C /. f1 is   left_complementable   right_complementable   complementable   Element of  the U1 of Y
 
V * (C /. f1) is   left_complementable   right_complementable   complementable   Element of  the U1 of Y
 
||.(V * (C /. f1)).|| is   ext-real   non  negative  V25()  real   Element of  REAL 
 
 the U8 of Y . (V * (C /. f1)) is   ext-real  V25()  real   Element of  REAL 
 
||.(C /. f1).|| is   ext-real   non  negative  V25()  real   Element of  REAL 
 
 the U8 of Y . (C /. f1) is   ext-real  V25()  real   Element of  REAL 
 
(abs V) * ||.(C /. f1).|| is   ext-real  V25()  real   Element of  REAL 
 
||.C.|| . f1 is   ext-real  V25()  real   Element of  REAL 
 
(abs V) * (||.C.|| . f1) is   ext-real  V25()  real   Element of  REAL 
 
((abs V) (#) ||.C.||) . f1 is   ext-real  V25()  real   Element of  REAL 
 
X is   non  empty   set 
 
Y is   non  empty   left_complementable   right_complementable   complementable   Abelian   add-associative   right_zeroed   vector-distributive   scalar-distributive   scalar-associative   scalar-unital  V123() V126() V127()  RealNormSpace-like   NORMSTR 
 
 the U1 of Y is   non  empty   set 
 
K20(X, the U1 of Y) is    set 
 
K19(K20(X, the U1 of Y)) is    set 
 
C is  V1() V4(X) V5( the U1 of Y) V6()  Element of K19(K20(X, the U1 of Y))
 
(X,Y,C) is  V1() V4(X) V5( the U1 of Y) V6()  Element of K19(K20(X, the U1 of Y))
 
(X,Y,C,(- 1)) is  V1() V4(X) V5( the U1 of Y) V6()  Element of K19(K20(X, the U1 of Y))
 
 dom (X,Y,C) is    Element of K19(X)
 
K19(X) is    set 
 
 dom C is    Element of K19(X)
 
 dom (X,Y,C,(- 1)) is    Element of K19(X)
 
V is    Element of X
 
(X,Y,C) /. V is   left_complementable   right_complementable   complementable   Element of  the U1 of Y
 
C /. V is   left_complementable   right_complementable   complementable   Element of  the U1 of Y
 
 - (C /. V) is   left_complementable   right_complementable   complementable   Element of  the U1 of Y
 
(- 1) * (C /. V) is   left_complementable   right_complementable   complementable   Element of  the U1 of Y
 
(X,Y,C,(- 1)) /. V is   left_complementable   right_complementable   complementable   Element of  the U1 of Y
 
X is   non  empty   set 
 
Y is   non  empty   left_complementable   right_complementable   complementable   Abelian   add-associative   right_zeroed   vector-distributive   scalar-distributive   scalar-associative   scalar-unital  V123() V126() V127()  RealNormSpace-like   NORMSTR 
 
 the U1 of Y is   non  empty   set 
 
K20(X, the U1 of Y) is    set 
 
K19(K20(X, the U1 of Y)) is    set 
 
C is  V1() V4(X) V5( the U1 of Y) V6()  Element of K19(K20(X, the U1 of Y))
 
(X,Y,C) is  V1() V4(X) V5( the U1 of Y) V6()  Element of K19(K20(X, the U1 of Y))
 
(X,Y,(X,Y,C)) is  V1() V4(X) V5( the U1 of Y) V6()  Element of K19(K20(X, the U1 of Y))
 
(X,Y,(X,Y,C),(- 1)) is  V1() V4(X) V5( the U1 of Y) V6()  Element of K19(K20(X, the U1 of Y))
 
(X,Y,C,(- 1)) is  V1() V4(X) V5( the U1 of Y) V6()  Element of K19(K20(X, the U1 of Y))
 
(X,Y,(X,Y,C,(- 1)),(- 1)) is  V1() V4(X) V5( the U1 of Y) V6()  Element of K19(K20(X, the U1 of Y))
 
(- 1) * (- 1) is   ext-real  V25()  real   Element of  REAL 
 
(X,Y,C,((- 1) * (- 1))) is  V1() V4(X) V5( the U1 of Y) V6()  Element of K19(K20(X, the U1 of Y))
 
X is   non  empty   set 
 
Y is   non  empty   left_complementable   right_complementable   complementable   Abelian   add-associative   right_zeroed   vector-distributive   scalar-distributive   scalar-associative   scalar-unital  V123() V126() V127()  RealNormSpace-like   NORMSTR 
 
 the U1 of Y is   non  empty   set 
 
K20(X, the U1 of Y) is    set 
 
K19(K20(X, the U1 of Y)) is    set 
 
C is  V1() V4(X) V5( the U1 of Y) V6()  Element of K19(K20(X, the U1 of Y))
 
V is  V1() V4(X) V5( the U1 of Y) V6()  Element of K19(K20(X, the U1 of Y))
 
(X,Y,C,V) is  V1() V4(X) V5( the U1 of Y) V6()  Element of K19(K20(X, the U1 of Y))
 
(X,Y,V) is  V1() V4(X) V5( the U1 of Y) V6()  Element of K19(K20(X, the U1 of Y))
 
(X,Y,C,(X,Y,V)) is  V1() V4(X) V5( the U1 of Y) V6()  Element of K19(K20(X, the U1 of Y))
 
 dom (X,Y,C,V) is    Element of K19(X)
 
K19(X) is    set 
 
 dom C is    Element of K19(X)
 
 dom V is    Element of K19(X)
 
(dom C) /\ (dom V) is    Element of K19(X)
 
 dom (X,Y,V) is    Element of K19(X)
 
(dom C) /\ (dom (X,Y,V)) is    Element of K19(X)
 
 dom (X,Y,C,(X,Y,V)) is    Element of K19(X)
 
f1 is    Element of X
 
(X,Y,C,(X,Y,V)) /. f1 is   left_complementable   right_complementable   complementable   Element of  the U1 of Y
 
C /. f1 is   left_complementable   right_complementable   complementable   Element of  the U1 of Y
 
(X,Y,V) /. f1 is   left_complementable   right_complementable   complementable   Element of  the U1 of Y
 
(C /. f1) + ((X,Y,V) /. f1) is   left_complementable   right_complementable   complementable   Element of  the U1 of Y
 
V /. f1 is   left_complementable   right_complementable   complementable   Element of  the U1 of Y
 
(C /. f1) - (V /. f1) is   left_complementable   right_complementable   complementable   Element of  the U1 of Y
 
 - (V /. f1) is   left_complementable   right_complementable   complementable   Element of  the U1 of Y
 
(C /. f1) + (- (V /. f1)) is   left_complementable   right_complementable   complementable   Element of  the U1 of Y
 
(X,Y,C,V) /. f1 is   left_complementable   right_complementable   complementable   Element of  the U1 of Y
 
X is   non  empty   set 
 
Y is   non  empty   left_complementable   right_complementable   complementable   Abelian   add-associative   right_zeroed   vector-distributive   scalar-distributive   scalar-associative   scalar-unital  V123() V126() V127()  RealNormSpace-like   NORMSTR 
 
 the U1 of Y is   non  empty   set 
 
K20(X, the U1 of Y) is    set 
 
K19(K20(X, the U1 of Y)) is    set 
 
C is  V1() V4(X) V5( the U1 of Y) V6()  Element of K19(K20(X, the U1 of Y))
 
V is  V1() V4(X) V5( the U1 of Y) V6()  Element of K19(K20(X, the U1 of Y))
 
(X,Y,V) is  V1() V4(X) V5( the U1 of Y) V6()  Element of K19(K20(X, the U1 of Y))
 
(X,Y,C,(X,Y,V)) is  V1() V4(X) V5( the U1 of Y) V6()  Element of K19(K20(X, the U1 of Y))
 
(X,Y,C,V) is  V1() V4(X) V5( the U1 of Y) V6()  Element of K19(K20(X, the U1 of Y))
 
(X,Y,(X,Y,V)) is  V1() V4(X) V5( the U1 of Y) V6()  Element of K19(K20(X, the U1 of Y))
 
(X,Y,C,(X,Y,(X,Y,V))) is  V1() V4(X) V5( the U1 of Y) V6()  Element of K19(K20(X, the U1 of Y))
 
X is    set 
 
Y is   non  empty   set 
 
C is   non  empty   left_complementable   right_complementable   complementable   Abelian   add-associative   right_zeroed   vector-distributive   scalar-distributive   scalar-associative   scalar-unital  V123() V126() V127()  RealNormSpace-like   NORMSTR 
 
 the U1 of C is   non  empty   set 
 
K20(Y, the U1 of C) is    set 
 
K19(K20(Y, the U1 of C)) is    set 
 
V is  V1() V4(Y) V5( the U1 of C) V6()  Element of K19(K20(Y, the U1 of C))
 
V | X is  V1() V4(Y) V5( the U1 of C) V6()  Element of K19(K20(Y, the U1 of C))
 
f1 is  V1() V4(Y) V5( the U1 of C) V6()  Element of K19(K20(Y, the U1 of C))
 
(Y,C,V,f1) is  V1() V4(Y) V5( the U1 of C) V6()  Element of K19(K20(Y, the U1 of C))
 
(Y,C,V,f1) | X is  V1() V4(Y) V5( the U1 of C) V6()  Element of K19(K20(Y, the U1 of C))
 
f1 | X is  V1() V4(Y) V5( the U1 of C) V6()  Element of K19(K20(Y, the U1 of C))
 
(Y,C,(V | X),(f1 | X)) is  V1() V4(Y) V5( the U1 of C) V6()  Element of K19(K20(Y, the U1 of C))
 
(Y,C,(V | X),f1) is  V1() V4(Y) V5( the U1 of C) V6()  Element of K19(K20(Y, the U1 of C))
 
(Y,C,V,(f1 | X)) is  V1() V4(Y) V5( the U1 of C) V6()  Element of K19(K20(Y, the U1 of C))
 
f2 is    Element of Y
 
 dom ((Y,C,V,f1) | X) is    Element of K19(Y)
 
K19(Y) is    set 
 
 dom (Y,C,V,f1) is    Element of K19(Y)
 
(dom (Y,C,V,f1)) /\ X is    Element of K19(Y)
 
 dom V is    Element of K19(Y)
 
 dom f1 is    Element of K19(Y)
 
(dom V) /\ (dom f1) is    Element of K19(Y)
 
(dom f1) /\ X is    Element of K19(Y)
 
 dom (f1 | X) is    Element of K19(Y)
 
(dom V) /\ X is    Element of K19(Y)
 
 dom (V | X) is    Element of K19(Y)
 
(dom (V | X)) /\ (dom (f1 | X)) is    Element of K19(Y)
 
 dom (Y,C,(V | X),(f1 | X)) is    Element of K19(Y)
 
((Y,C,V,f1) | X) /. f2 is   left_complementable   right_complementable   complementable   Element of  the U1 of C
 
(Y,C,V,f1) /. f2 is   left_complementable   right_complementable   complementable   Element of  the U1 of C
 
V /. f2 is   left_complementable   right_complementable   complementable   Element of  the U1 of C
 
f1 /. f2 is   left_complementable   right_complementable   complementable   Element of  the U1 of C
 
(V /. f2) + (f1 /. f2) is   left_complementable   right_complementable   complementable   Element of  the U1 of C
 
(V | X) /. f2 is   left_complementable   right_complementable   complementable   Element of  the U1 of C
 
((V | X) /. f2) + (f1 /. f2) is   left_complementable   right_complementable   complementable   Element of  the U1 of C
 
(f1 | X) /. f2 is   left_complementable   right_complementable   complementable   Element of  the U1 of C
 
((V | X) /. f2) + ((f1 | X) /. f2) is   left_complementable   right_complementable   complementable   Element of  the U1 of C
 
(Y,C,(V | X),(f1 | X)) /. f2 is   left_complementable   right_complementable   complementable   Element of  the U1 of C
 
X /\ X is    set 
 
((dom V) /\ (dom f1)) /\ (X /\ X) is    Element of K19(Y)
 
(dom f1) /\ (X /\ X) is    Element of K19(Y)
 
(dom V) /\ ((dom f1) /\ (X /\ X)) is    Element of K19(Y)
 
((dom f1) /\ X) /\ X is    Element of K19(Y)
 
(dom V) /\ (((dom f1) /\ X) /\ X) is    Element of K19(Y)
 
X /\ (dom (f1 | X)) is    Element of K19(Y)
 
(dom V) /\ (X /\ (dom (f1 | X))) is    Element of K19(Y)
 
((dom V) /\ X) /\ (dom (f1 | X)) is    Element of K19(Y)
 
f2 is    Element of Y
 
(dom (V | X)) /\ (dom f1) is    Element of K19(Y)
 
 dom (Y,C,(V | X),f1) is    Element of K19(Y)
 
((Y,C,V,f1) | X) /. f2 is   left_complementable   right_complementable   complementable   Element of  the U1 of C
 
(Y,C,V,f1) /. f2 is   left_complementable   right_complementable   complementable   Element of  the U1 of C
 
V /. f2 is   left_complementable   right_complementable   complementable   Element of  the U1 of C
 
f1 /. f2 is   left_complementable   right_complementable   complementable   Element of  the U1 of C
 
(V /. f2) + (f1 /. f2) is   left_complementable   right_complementable   complementable   Element of  the U1 of C
 
(V | X) /. f2 is   left_complementable   right_complementable   complementable   Element of  the U1 of C
 
((V | X) /. f2) + (f1 /. f2) is   left_complementable   right_complementable   complementable   Element of  the U1 of C
 
(Y,C,(V | X),f1) /. f2 is   left_complementable   right_complementable   complementable   Element of  the U1 of C
 
((dom V) /\ (dom f1)) /\ X is    Element of K19(Y)
 
((dom V) /\ X) /\ (dom f1) is    Element of K19(Y)
 
f2 is    Element of Y
 
(dom V) /\ (dom (f1 | X)) is    Element of K19(Y)
 
 dom (Y,C,V,(f1 | X)) is    Element of K19(Y)
 
((Y,C,V,f1) | X) /. f2 is   left_complementable   right_complementable   complementable   Element of  the U1 of C
 
(Y,C,V,f1) /. f2 is   left_complementable   right_complementable   complementable   Element of  the U1 of C
 
V /. f2 is   left_complementable   right_complementable   complementable   Element of  the U1 of C
 
f1 /. f2 is   left_complementable   right_complementable   complementable   Element of  the U1 of C
 
(V /. f2) + (f1 /. f2) is   left_complementable   right_complementable   complementable   Element of  the U1 of C
 
(f1 | X) /. f2 is   left_complementable   right_complementable   complementable   Element of  the U1 of C
 
(V /. f2) + ((f1 | X) /. f2) is   left_complementable   right_complementable   complementable   Element of  the U1 of C
 
(Y,C,V,(f1 | X)) /. f2 is   left_complementable   right_complementable   complementable   Element of  the U1 of C
 
(dom V) /\ ((dom f1) /\ X) is    Element of K19(Y)
 
X is    set 
 
Y is   non  empty   set 
 
K20(Y,REAL) is  V36() V37() V38()  set 
 
K19(K20(Y,REAL)) is    set 
 
C is   non  empty   left_complementable   right_complementable   complementable   Abelian   add-associative   right_zeroed   vector-distributive   scalar-distributive   scalar-associative   scalar-unital  V123() V126() V127()  RealNormSpace-like   NORMSTR 
 
 the U1 of C is   non  empty   set 
 
K20(Y, the U1 of C) is    set 
 
K19(K20(Y, the U1 of C)) is    set 
 
V is  V1() V4(Y) V5( the U1 of C) V6()  Element of K19(K20(Y, the U1 of C))
 
V | X is  V1() V4(Y) V5( the U1 of C) V6()  Element of K19(K20(Y, the U1 of C))
 
f1 is  V1() V4(Y) V5( REAL ) V6() V36() V37() V38()  Element of K19(K20(Y,REAL))
 
(Y,C,f1,V) is  V1() V4(Y) V5( the U1 of C) V6()  Element of K19(K20(Y, the U1 of C))
 
(Y,C,f1,V) | X is  V1() V4(Y) V5( the U1 of C) V6()  Element of K19(K20(Y, the U1 of C))
 
f1 | X is  V1() V4(Y) V5( REAL ) V6() V36() V37() V38()  Element of K19(K20(Y,REAL))
 
(Y,C,(f1 | X),(V | X)) is  V1() V4(Y) V5( the U1 of C) V6()  Element of K19(K20(Y, the U1 of C))
 
(Y,C,(f1 | X),V) is  V1() V4(Y) V5( the U1 of C) V6()  Element of K19(K20(Y, the U1 of C))
 
(Y,C,f1,(V | X)) is  V1() V4(Y) V5( the U1 of C) V6()  Element of K19(K20(Y, the U1 of C))
 
f2 is    Element of Y
 
 dom ((Y,C,f1,V) | X) is    Element of K19(Y)
 
K19(Y) is    set 
 
 dom (Y,C,f1,V) is    Element of K19(Y)
 
(dom (Y,C,f1,V)) /\ X is    Element of K19(Y)
 
 dom f1 is    Element of K19(Y)
 
 dom V is    Element of K19(Y)
 
(dom f1) /\ (dom V) is    Element of K19(Y)
 
(dom V) /\ X is    Element of K19(Y)
 
 dom (V | X) is    Element of K19(Y)
 
(dom f1) /\ X is    Element of K19(Y)
 
 dom (f1 | X) is    Element of K19(Y)
 
(dom (f1 | X)) /\ (dom (V | X)) is    Element of K19(Y)
 
 dom (Y,C,(f1 | X),(V | X)) is    Element of K19(Y)
 
((Y,C,f1,V) | X) /. f2 is   left_complementable   right_complementable   complementable   Element of  the U1 of C
 
(Y,C,f1,V) /. f2 is   left_complementable   right_complementable   complementable   Element of  the U1 of C
 
V /. f2 is   left_complementable   right_complementable   complementable   Element of  the U1 of C
 
f1 . f2 is   ext-real  V25()  real   Element of  REAL 
 
(f1 . f2) * (V /. f2) is   left_complementable   right_complementable   complementable   Element of  the U1 of C
 
(f1 | X) . f2 is   ext-real  V25()  real   Element of  REAL 
 
((f1 | X) . f2) * (V /. f2) is   left_complementable   right_complementable   complementable   Element of  the U1 of C
 
(V | X) /. f2 is   left_complementable   right_complementable   complementable   Element of  the U1 of C
 
((f1 | X) . f2) * ((V | X) /. f2) is   left_complementable   right_complementable   complementable   Element of  the U1 of C
 
(Y,C,(f1 | X),(V | X)) /. f2 is   left_complementable   right_complementable   complementable   Element of  the U1 of C
 
X /\ X is    set 
 
((dom f1) /\ (dom V)) /\ (X /\ X) is    Element of K19(Y)
 
(dom V) /\ (X /\ X) is    Element of K19(Y)
 
(dom f1) /\ ((dom V) /\ (X /\ X)) is    Element of K19(Y)
 
((dom V) /\ X) /\ X is    Element of K19(Y)
 
(dom f1) /\ (((dom V) /\ X) /\ X) is    Element of K19(Y)
 
X /\ (dom (V | X)) is    Element of K19(Y)
 
(dom f1) /\ (X /\ (dom (V | X))) is    Element of K19(Y)
 
((dom f1) /\ X) /\ (dom (V | X)) is    Element of K19(Y)
 
f2 is    Element of Y
 
(dom (f1 | X)) /\ (dom V) is    Element of K19(Y)
 
 dom (Y,C,(f1 | X),V) is    Element of K19(Y)
 
((Y,C,f1,V) | X) /. f2 is   left_complementable   right_complementable   complementable   Element of  the U1 of C
 
(Y,C,f1,V) /. f2 is   left_complementable   right_complementable   complementable   Element of  the U1 of C
 
V /. f2 is   left_complementable   right_complementable   complementable   Element of  the U1 of C
 
f1 . f2 is   ext-real  V25()  real   Element of  REAL 
 
(f1 . f2) * (V /. f2) is   left_complementable   right_complementable   complementable   Element of  the U1 of C
 
(f1 | X) . f2 is   ext-real  V25()  real   Element of  REAL 
 
((f1 | X) . f2) * (V /. f2) is   left_complementable   right_complementable   complementable   Element of  the U1 of C
 
(Y,C,(f1 | X),V) /. f2 is   left_complementable   right_complementable   complementable   Element of  the U1 of C
 
((dom f1) /\ (dom V)) /\ X is    Element of K19(Y)
 
((dom f1) /\ X) /\ (dom V) is    Element of K19(Y)
 
f2 is    Element of Y
 
(dom f1) /\ (dom (V | X)) is    Element of K19(Y)
 
 dom (Y,C,f1,(V | X)) is    Element of K19(Y)
 
((Y,C,f1,V) | X) /. f2 is   left_complementable   right_complementable   complementable   Element of  the U1 of C
 
(Y,C,f1,V) /. f2 is   left_complementable   right_complementable   complementable   Element of  the U1 of C
 
V /. f2 is   left_complementable   right_complementable   complementable   Element of  the U1 of C
 
f1 . f2 is   ext-real  V25()  real   Element of  REAL 
 
(f1 . f2) * (V /. f2) is   left_complementable   right_complementable   complementable   Element of  the U1 of C
 
(V | X) /. f2 is   left_complementable   right_complementable   complementable   Element of  the U1 of C
 
(f1 . f2) * ((V | X) /. f2) is   left_complementable   right_complementable   complementable   Element of  the U1 of C
 
(Y,C,f1,(V | X)) /. f2 is   left_complementable   right_complementable   complementable   Element of  the U1 of C
 
(dom f1) /\ ((dom V) /\ X) is    Element of K19(Y)
 
X is    set 
 
Y is   non  empty   set 
 
C is   non  empty   left_complementable   right_complementable   complementable   Abelian   add-associative   right_zeroed   vector-distributive   scalar-distributive   scalar-associative   scalar-unital  V123() V126() V127()  RealNormSpace-like   NORMSTR 
 
 the U1 of C is   non  empty   set 
 
K20(Y, the U1 of C) is    set 
 
K19(K20(Y, the U1 of C)) is    set 
 
V is  V1() V4(Y) V5( the U1 of C) V6()  Element of K19(K20(Y, the U1 of C))
 
(Y,C,V) is  V1() V4(Y) V5( the U1 of C) V6()  Element of K19(K20(Y, the U1 of C))
 
(Y,C,V) | X is  V1() V4(Y) V5( the U1 of C) V6()  Element of K19(K20(Y, the U1 of C))
 
V | X is  V1() V4(Y) V5( the U1 of C) V6()  Element of K19(K20(Y, the U1 of C))
 
(Y,C,(V | X)) is  V1() V4(Y) V5( the U1 of C) V6()  Element of K19(K20(Y, the U1 of C))
 
||.V.|| is  V1() V4(Y) V5( REAL ) V6() V36() V37() V38()  Element of K19(K20(Y,REAL))
 
K20(Y,REAL) is  V36() V37() V38()  set 
 
K19(K20(Y,REAL)) is    set 
 
||.V.|| | X is  V1() V4(Y) V5( REAL ) V6() V36() V37() V38()  Element of K19(K20(Y,REAL))
 
||.(V | X).|| is  V1() V4(Y) V5( REAL ) V6() V36() V37() V38()  Element of K19(K20(Y,REAL))
 
f1 is    Element of Y
 
 dom ((Y,C,V) | X) is    Element of K19(Y)
 
K19(Y) is    set 
 
 dom (Y,C,V) is    Element of K19(Y)
 
(dom (Y,C,V)) /\ X is    Element of K19(Y)
 
 dom V is    Element of K19(Y)
 
(dom V) /\ X is    Element of K19(Y)
 
 dom (V | X) is    Element of K19(Y)
 
 dom (Y,C,(V | X)) is    Element of K19(Y)
 
((Y,C,V) | X) /. f1 is   left_complementable   right_complementable   complementable   Element of  the U1 of C
 
(Y,C,V) /. f1 is   left_complementable   right_complementable   complementable   Element of  the U1 of C
 
V /. f1 is   left_complementable   right_complementable   complementable   Element of  the U1 of C
 
 - (V /. f1) is   left_complementable   right_complementable   complementable   Element of  the U1 of C
 
(V | X) /. f1 is   left_complementable   right_complementable   complementable   Element of  the U1 of C
 
 - ((V | X) /. f1) is   left_complementable   right_complementable   complementable   Element of  the U1 of C
 
(Y,C,(V | X)) /. f1 is   left_complementable   right_complementable   complementable   Element of  the U1 of C
 
 dom (||.V.|| | X) is    Element of K19(Y)
 
 dom ||.V.|| is    Element of K19(Y)
 
(dom ||.V.||) /\ X is    Element of K19(Y)
 
 dom ||.(V | X).|| is    Element of K19(Y)
 
f1 is    Element of Y
 
(||.V.|| | X) . f1 is   ext-real  V25()  real   Element of  REAL 
 
||.V.|| . f1 is   ext-real  V25()  real   Element of  REAL 
 
V /. f1 is   left_complementable   right_complementable   complementable   Element of  the U1 of C
 
||.(V /. f1).|| is   ext-real   non  negative  V25()  real   Element of  REAL 
 
 the U8 of C is  V1() V4( the U1 of C) V5( REAL ) V6()  non  empty   total  V30( the U1 of C, REAL ) V36() V37() V38()  Element of K19(K20( the U1 of C,REAL))
 
K20( the U1 of C,REAL) is  V36() V37() V38()  set 
 
K19(K20( the U1 of C,REAL)) is    set 
 
 the U8 of C . (V /. f1) is   ext-real  V25()  real   Element of  REAL 
 
(V | X) /. f1 is   left_complementable   right_complementable   complementable   Element of  the U1 of C
 
||.((V | X) /. f1).|| is   ext-real   non  negative  V25()  real   Element of  REAL 
 
 the U8 of C . ((V | X) /. f1) is   ext-real  V25()  real   Element of  REAL 
 
||.(V | X).|| . f1 is   ext-real  V25()  real   Element of  REAL 
 
X is    set 
 
Y is   non  empty   set 
 
C is   non  empty   left_complementable   right_complementable   complementable   Abelian   add-associative   right_zeroed   vector-distributive   scalar-distributive   scalar-associative   scalar-unital  V123() V126() V127()  RealNormSpace-like   NORMSTR 
 
 the U1 of C is   non  empty   set 
 
K20(Y, the U1 of C) is    set 
 
K19(K20(Y, the U1 of C)) is    set 
 
V is  V1() V4(Y) V5( the U1 of C) V6()  Element of K19(K20(Y, the U1 of C))
 
V | X is  V1() V4(Y) V5( the U1 of C) V6()  Element of K19(K20(Y, the U1 of C))
 
f1 is  V1() V4(Y) V5( the U1 of C) V6()  Element of K19(K20(Y, the U1 of C))
 
(Y,C,V,f1) is  V1() V4(Y) V5( the U1 of C) V6()  Element of K19(K20(Y, the U1 of C))
 
(Y,C,V,f1) | X is  V1() V4(Y) V5( the U1 of C) V6()  Element of K19(K20(Y, the U1 of C))
 
f1 | X is  V1() V4(Y) V5( the U1 of C) V6()  Element of K19(K20(Y, the U1 of C))
 
(Y,C,(V | X),(f1 | X)) is  V1() V4(Y) V5( the U1 of C) V6()  Element of K19(K20(Y, the U1 of C))
 
(Y,C,(V | X),f1) is  V1() V4(Y) V5( the U1 of C) V6()  Element of K19(K20(Y, the U1 of C))
 
(Y,C,V,(f1 | X)) is  V1() V4(Y) V5( the U1 of C) V6()  Element of K19(K20(Y, the U1 of C))
 
(Y,C,f1) is  V1() V4(Y) V5( the U1 of C) V6()  Element of K19(K20(Y, the U1 of C))
 
(Y,C,V,(Y,C,f1)) is  V1() V4(Y) V5( the U1 of C) V6()  Element of K19(K20(Y, the U1 of C))
 
(Y,C,V,(Y,C,f1)) | X is  V1() V4(Y) V5( the U1 of C) V6()  Element of K19(K20(Y, the U1 of C))
 
(Y,C,f1) | X is  V1() V4(Y) V5( the U1 of C) V6()  Element of K19(K20(Y, the U1 of C))
 
(Y,C,(V | X),((Y,C,f1) | X)) is  V1() V4(Y) V5( the U1 of C) V6()  Element of K19(K20(Y, the U1 of C))
 
(Y,C,(f1 | X)) is  V1() V4(Y) V5( the U1 of C) V6()  Element of K19(K20(Y, the U1 of C))
 
(Y,C,(V | X),(Y,C,(f1 | X))) is  V1() V4(Y) V5( the U1 of C) V6()  Element of K19(K20(Y, the U1 of C))
 
(Y,C,(V | X),(Y,C,f1)) is  V1() V4(Y) V5( the U1 of C) V6()  Element of K19(K20(Y, the U1 of C))
 
(Y,C,V,((Y,C,f1) | X)) is  V1() V4(Y) V5( the U1 of C) V6()  Element of K19(K20(Y, the U1 of C))
 
(Y,C,V,(Y,C,(f1 | X))) is  V1() V4(Y) V5( the U1 of C) V6()  Element of K19(K20(Y, the U1 of C))
 
X is    set 
 
Y is   non  empty   set 
 
C is   non  empty   left_complementable   right_complementable   complementable   Abelian   add-associative   right_zeroed   vector-distributive   scalar-distributive   scalar-associative   scalar-unital  V123() V126() V127()  RealNormSpace-like   NORMSTR 
 
 the U1 of C is   non  empty   set 
 
K20(Y, the U1 of C) is    set 
 
K19(K20(Y, the U1 of C)) is    set 
 
V is  V1() V4(Y) V5( the U1 of C) V6()  Element of K19(K20(Y, the U1 of C))
 
V | X is  V1() V4(Y) V5( the U1 of C) V6()  Element of K19(K20(Y, the U1 of C))
 
f1 is   ext-real  V25()  real   Element of  REAL 
 
(Y,C,V,f1) is  V1() V4(Y) V5( the U1 of C) V6()  Element of K19(K20(Y, the U1 of C))
 
(Y,C,V,f1) | X is  V1() V4(Y) V5( the U1 of C) V6()  Element of K19(K20(Y, the U1 of C))
 
(Y,C,(V | X),f1) is  V1() V4(Y) V5( the U1 of C) V6()  Element of K19(K20(Y, the U1 of C))
 
f2 is    Element of Y
 
 dom ((Y,C,V,f1) | X) is    Element of K19(Y)
 
K19(Y) is    set 
 
 dom (Y,C,V,f1) is    Element of K19(Y)
 
(dom (Y,C,V,f1)) /\ X is    Element of K19(Y)
 
 dom V is    Element of K19(Y)
 
(dom V) /\ X is    Element of K19(Y)
 
 dom (V | X) is    Element of K19(Y)
 
 dom (Y,C,(V | X),f1) is    Element of K19(Y)
 
((Y,C,V,f1) | X) /. f2 is   left_complementable   right_complementable   complementable   Element of  the U1 of C
 
(Y,C,V,f1) /. f2 is   left_complementable   right_complementable   complementable   Element of  the U1 of C
 
V /. f2 is   left_complementable   right_complementable   complementable   Element of  the U1 of C
 
f1 * (V /. f2) is   left_complementable   right_complementable   complementable   Element of  the U1 of C
 
(V | X) /. f2 is   left_complementable   right_complementable   complementable   Element of  the U1 of C
 
f1 * ((V | X) /. f2) is   left_complementable   right_complementable   complementable   Element of  the U1 of C
 
(Y,C,(V | X),f1) /. f2 is   left_complementable   right_complementable   complementable   Element of  the U1 of C
 
X is   non  empty   set 
 
Y is   non  empty   left_complementable   right_complementable   complementable   Abelian   add-associative   right_zeroed   vector-distributive   scalar-distributive   scalar-associative   scalar-unital  V123() V126() V127()  RealNormSpace-like   NORMSTR 
 
 the U1 of Y is   non  empty   set 
 
K20(X, the U1 of Y) is    set 
 
K19(K20(X, the U1 of Y)) is    set 
 
C is  V1() V4(X) V5( the U1 of Y) V6()  Element of K19(K20(X, the U1 of Y))
 
V is  V1() V4(X) V5( the U1 of Y) V6()  Element of K19(K20(X, the U1 of Y))
 
(X,Y,C,V) is  V1() V4(X) V5( the U1 of Y) V6()  Element of K19(K20(X, the U1 of Y))
 
(X,Y,C,V) is  V1() V4(X) V5( the U1 of Y) V6()  Element of K19(K20(X, the U1 of Y))
 
 dom (X,Y,C,V) is    Element of K19(X)
 
K19(X) is    set 
 
 dom C is    Element of K19(X)
 
 dom V is    Element of K19(X)
 
(dom C) /\ (dom V) is    Element of K19(X)
 
 dom (X,Y,C,V) is    Element of K19(X)
 
K19(X) is    set 
 
 dom C is    Element of K19(X)
 
 dom V is    Element of K19(X)
 
(dom C) /\ (dom V) is    Element of K19(X)
 
X is   non  empty   set 
 
K20(X,REAL) is  V36() V37() V38()  set 
 
K19(K20(X,REAL)) is    set 
 
Y is   non  empty   left_complementable   right_complementable   complementable   Abelian   add-associative   right_zeroed   vector-distributive   scalar-distributive   scalar-associative   scalar-unital  V123() V126() V127()  RealNormSpace-like   NORMSTR 
 
 the U1 of Y is   non  empty   set 
 
K20(X, the U1 of Y) is    set 
 
K19(K20(X, the U1 of Y)) is    set 
 
C is  V1() V4(X) V5( the U1 of Y) V6()  Element of K19(K20(X, the U1 of Y))
 
V is  V1() V4(X) V5( REAL ) V6() V36() V37() V38()  Element of K19(K20(X,REAL))
 
(X,Y,V,C) is  V1() V4(X) V5( the U1 of Y) V6()  Element of K19(K20(X, the U1 of Y))
 
 dom (X,Y,V,C) is    Element of K19(X)
 
K19(X) is    set 
 
 dom V is    Element of K19(X)
 
 dom C is    Element of K19(X)
 
(dom V) /\ (dom C) is    Element of K19(X)
 
X is   non  empty   set 
 
Y is   non  empty   left_complementable   right_complementable   complementable   Abelian   add-associative   right_zeroed   vector-distributive   scalar-distributive   scalar-associative   scalar-unital  V123() V126() V127()  RealNormSpace-like   NORMSTR 
 
 the U1 of Y is   non  empty   set 
 
K20(X, the U1 of Y) is    set 
 
K19(K20(X, the U1 of Y)) is    set 
 
C is  V1() V4(X) V5( the U1 of Y) V6()  Element of K19(K20(X, the U1 of Y))
 
V is   ext-real  V25()  real   Element of  REAL 
 
(X,Y,C,V) is  V1() V4(X) V5( the U1 of Y) V6()  Element of K19(K20(X, the U1 of Y))
 
 dom (X,Y,C,V) is    Element of K19(X)
 
K19(X) is    set 
 
 dom C is    Element of K19(X)
 
X is   non  empty   set 
 
Y is   non  empty   left_complementable   right_complementable   complementable   Abelian   add-associative   right_zeroed   vector-distributive   scalar-distributive   scalar-associative   scalar-unital  V123() V126() V127()  RealNormSpace-like   NORMSTR 
 
 the U1 of Y is   non  empty   set 
 
K20(X, the U1 of Y) is    set 
 
K19(K20(X, the U1 of Y)) is    set 
 
C is  V1() V4(X) V5( the U1 of Y) V6()  Element of K19(K20(X, the U1 of Y))
 
(X,Y,C) is  V1() V4(X) V5( the U1 of Y) V6()  Element of K19(K20(X, the U1 of Y))
 
(X,Y,C,(- 1)) is  V1() V4(X) V5( the U1 of Y) V6()  Element of K19(K20(X, the U1 of Y))
 
X is   non  empty   set 
 
Y is   non  empty   left_complementable   right_complementable   complementable   Abelian   add-associative   right_zeroed   vector-distributive   scalar-distributive   scalar-associative   scalar-unital  V123() V126() V127()  RealNormSpace-like   NORMSTR 
 
 the U1 of Y is   non  empty   set 
 
K20(X, the U1 of Y) is    set 
 
K19(K20(X, the U1 of Y)) is    set 
 
C is  V1() V4(X) V5( the U1 of Y) V6()  Element of K19(K20(X, the U1 of Y))
 
||.C.|| is  V1() V4(X) V5( REAL ) V6() V36() V37() V38()  Element of K19(K20(X,REAL))
 
K20(X,REAL) is  V36() V37() V38()  set 
 
K19(K20(X,REAL)) is    set 
 
 dom C is    Element of K19(X)
 
K19(X) is    set 
 
 dom ||.C.|| is    Element of K19(X)
 
 dom ||.C.|| is    Element of K19(X)
 
K19(X) is    set 
 
 dom C is    Element of K19(X)
 
X is   non  empty   set 
 
Y is    Element of X
 
C is   non  empty   left_complementable   right_complementable   complementable   Abelian   add-associative   right_zeroed   vector-distributive   scalar-distributive   scalar-associative   scalar-unital  V123() V126() V127()  RealNormSpace-like   NORMSTR 
 
 the U1 of C is   non  empty   set 
 
K20(X, the U1 of C) is    set 
 
K19(K20(X, the U1 of C)) is    set 
 
V is  V1() V4(X) V5( the U1 of C) V6()  Element of K19(K20(X, the U1 of C))
 
V /. Y is   left_complementable   right_complementable   complementable   Element of  the U1 of C
 
f1 is  V1() V4(X) V5( the U1 of C) V6()  Element of K19(K20(X, the U1 of C))
 
(X,C,V,f1) is  V1() V4(X) V5( the U1 of C) V6()  Element of K19(K20(X, the U1 of C))
 
(X,C,V,f1) /. Y is   left_complementable   right_complementable   complementable   Element of  the U1 of C
 
f1 /. Y is   left_complementable   right_complementable   complementable   Element of  the U1 of C
 
(V /. Y) + (f1 /. Y) is   left_complementable   right_complementable   complementable   Element of  the U1 of C
 
(X,C,V,f1) is  V1() V4(X) V5( the U1 of C) V6()  Element of K19(K20(X, the U1 of C))
 
(X,C,V,f1) /. Y is   left_complementable   right_complementable   complementable   Element of  the U1 of C
 
(V /. Y) - (f1 /. Y) is   left_complementable   right_complementable   complementable   Element of  the U1 of C
 
 - (f1 /. Y) is   left_complementable   right_complementable   complementable   Element of  the U1 of C
 
(V /. Y) + (- (f1 /. Y)) is   left_complementable   right_complementable   complementable   Element of  the U1 of C
 
 dom (X,C,V,f1) is    Element of K19(X)
 
K19(X) is    set 
 
 dom (X,C,V,f1) is    Element of K19(X)
 
X is   non  empty   set 
 
K20(X,REAL) is  V36() V37() V38()  set 
 
K19(K20(X,REAL)) is    set 
 
Y is    Element of X
 
C is   non  empty   left_complementable   right_complementable   complementable   Abelian   add-associative   right_zeroed   vector-distributive   scalar-distributive   scalar-associative   scalar-unital  V123() V126() V127()  RealNormSpace-like   NORMSTR 
 
 the U1 of C is   non  empty   set 
 
K20(X, the U1 of C) is    set 
 
K19(K20(X, the U1 of C)) is    set 
 
V is  V1() V4(X) V5( the U1 of C) V6()  Element of K19(K20(X, the U1 of C))
 
V /. Y is   left_complementable   right_complementable   complementable   Element of  the U1 of C
 
f1 is  V1() V4(X) V5( REAL ) V6() V36() V37() V38()  Element of K19(K20(X,REAL))
 
(X,C,f1,V) is  V1() V4(X) V5( the U1 of C) V6()  Element of K19(K20(X, the U1 of C))
 
(X,C,f1,V) /. Y is   left_complementable   right_complementable   complementable   Element of  the U1 of C
 
f1 . Y is   ext-real  V25()  real   Element of  REAL 
 
(f1 . Y) * (V /. Y) is   left_complementable   right_complementable   complementable   Element of  the U1 of C
 
 dom (X,C,f1,V) is    Element of K19(X)
 
K19(X) is    set 
 
X is   non  empty   set 
 
Y is    Element of X
 
C is   non  empty   left_complementable   right_complementable   complementable   Abelian   add-associative   right_zeroed   vector-distributive   scalar-distributive   scalar-associative   scalar-unital  V123() V126() V127()  RealNormSpace-like   NORMSTR 
 
 the U1 of C is   non  empty   set 
 
K20(X, the U1 of C) is    set 
 
K19(K20(X, the U1 of C)) is    set 
 
V is  V1() V4(X) V5( the U1 of C) V6()  Element of K19(K20(X, the U1 of C))
 
V /. Y is   left_complementable   right_complementable   complementable   Element of  the U1 of C
 
f1 is   ext-real  V25()  real   Element of  REAL 
 
(X,C,V,f1) is  V1() V4(X) V5( the U1 of C) V6()  Element of K19(K20(X, the U1 of C))
 
(X,C,V,f1) /. Y is   left_complementable   right_complementable   complementable   Element of  the U1 of C
 
f1 * (V /. Y) is   left_complementable   right_complementable   complementable   Element of  the U1 of C
 
 dom (X,C,V,f1) is    Element of K19(X)
 
K19(X) is    set 
 
X is   non  empty   set 
 
Y is    Element of X
 
C is   non  empty   left_complementable   right_complementable   complementable   Abelian   add-associative   right_zeroed   vector-distributive   scalar-distributive   scalar-associative   scalar-unital  V123() V126() V127()  RealNormSpace-like   NORMSTR 
 
 the U1 of C is   non  empty   set 
 
K20(X, the U1 of C) is    set 
 
K19(K20(X, the U1 of C)) is    set 
 
V is  V1() V4(X) V5( the U1 of C) V6()  Element of K19(K20(X, the U1 of C))
 
(X,C,V) is  V1() V4(X) V5( the U1 of C) V6()  Element of K19(K20(X, the U1 of C))
 
(X,C,V) /. Y is   left_complementable   right_complementable   complementable   Element of  the U1 of C
 
V /. Y is   left_complementable   right_complementable   complementable   Element of  the U1 of C
 
 - (V /. Y) is   left_complementable   right_complementable   complementable   Element of  the U1 of C
 
||.V.|| is  V1() V4(X) V5( REAL ) V6() V36() V37() V38()  Element of K19(K20(X,REAL))
 
K20(X,REAL) is  V36() V37() V38()  set 
 
K19(K20(X,REAL)) is    set 
 
||.V.|| . Y is   ext-real  V25()  real   Element of  REAL 
 
||.(V /. Y).|| is   ext-real   non  negative  V25()  real   Element of  REAL 
 
 the U8 of C is  V1() V4( the U1 of C) V5( REAL ) V6()  non  empty   total  V30( the U1 of C, REAL ) V36() V37() V38()  Element of K19(K20( the U1 of C,REAL))
 
K20( the U1 of C,REAL) is  V36() V37() V38()  set 
 
K19(K20( the U1 of C,REAL)) is    set 
 
 the U8 of C . (V /. Y) is   ext-real  V25()  real   Element of  REAL 
 
 dom (X,C,V) is    Element of K19(X)
 
K19(X) is    set 
 
 dom ||.V.|| is    Element of K19(X)
 
X is   non  empty   set 
 
Y is   non  empty   NORMSTR 
 
 the U1 of Y is   non  empty   set 
 
K20(X, the U1 of Y) is    set 
 
K19(K20(X, the U1 of Y)) is    set 
 
X is    set 
 
Y is    set 
 
C is   non  empty   set 
 
V is   non  empty   left_complementable   right_complementable   complementable   Abelian   add-associative   right_zeroed   vector-distributive   scalar-distributive   scalar-associative   scalar-unital  V123() V126() V127()  RealNormSpace-like   NORMSTR 
 
 the U1 of V is   non  empty   set 
 
K20(C, the U1 of V) is    set 
 
K19(K20(C, the U1 of V)) is    set 
 
f1 is  V1() V4(C) V5( the U1 of V) V6()  Element of K19(K20(C, the U1 of V))
 
 dom f1 is    Element of K19(C)
 
K19(C) is    set 
 
Y /\ (dom f1) is    Element of K19(C)
 
f2 is   ext-real  V25()  real   Element of  REAL 
 
X /\ (dom f1) is    Element of K19(C)
 
c is    Element of C
 
f1 /. c is   left_complementable   right_complementable   complementable   Element of  the U1 of V
 
||.(f1 /. c).|| is   ext-real   non  negative  V25()  real   Element of  REAL 
 
 the U8 of V is  V1() V4( the U1 of V) V5( REAL ) V6()  non  empty   total  V30( the U1 of V, REAL ) V36() V37() V38()  Element of K19(K20( the U1 of V,REAL))
 
K20( the U1 of V,REAL) is  V36() V37() V38()  set 
 
K19(K20( the U1 of V,REAL)) is    set 
 
 the U8 of V . (f1 /. c) is   ext-real  V25()  real   Element of  REAL 
 
X is    set 
 
Y is   non  empty   set 
 
C is   non  empty   left_complementable   right_complementable   complementable   Abelian   add-associative   right_zeroed   vector-distributive   scalar-distributive   scalar-associative   scalar-unital  V123() V126() V127()  RealNormSpace-like   NORMSTR 
 
 the U1 of C is   non  empty   set 
 
K20(Y, the U1 of C) is    set 
 
K19(K20(Y, the U1 of C)) is    set 
 
V is  V1() V4(Y) V5( the U1 of C) V6()  Element of K19(K20(Y, the U1 of C))
 
 dom V is    Element of K19(Y)
 
K19(Y) is    set 
 
X /\ (dom V) is    Element of K19(Y)
 
f1 is    Element of Y
 
V /. f1 is   left_complementable   right_complementable   complementable   Element of  the U1 of C
 
||.(V /. f1).|| is   ext-real   non  negative  V25()  real   Element of  REAL 
 
 the U8 of C is  V1() V4( the U1 of C) V5( REAL ) V6()  non  empty   total  V30( the U1 of C, REAL ) V36() V37() V38()  Element of K19(K20( the U1 of C,REAL))
 
K20( the U1 of C,REAL) is  V36() V37() V38()  set 
 
K19(K20( the U1 of C,REAL)) is    set 
 
 the U8 of C . (V /. f1) is   ext-real  V25()  real   Element of  REAL 
 
X is    set 
 
Y is   non  empty   set 
 
C is   non  empty   left_complementable   right_complementable   complementable   Abelian   add-associative   right_zeroed   vector-distributive   scalar-distributive   scalar-associative   scalar-unital  V123() V126() V127()  RealNormSpace-like   NORMSTR 
 
 the U1 of C is   non  empty   set 
 
K20(Y, the U1 of C) is    set 
 
K19(K20(Y, the U1 of C)) is    set 
 
V is  V1() V4(Y) V5( the U1 of C) V6()  Element of K19(K20(Y, the U1 of C))
 
(Y,C,V,0) is  V1() V4(Y) V5( the U1 of C) V6()  Element of K19(K20(Y, the U1 of C))
 
f2 is    Element of Y
 
V /. f2 is   left_complementable   right_complementable   complementable   Element of  the U1 of C
 
||.(V /. f2).|| is   ext-real   non  negative  V25()  real   Element of  REAL 
 
 the U8 of C is  V1() V4( the U1 of C) V5( REAL ) V6()  non  empty   total  V30( the U1 of C, REAL ) V36() V37() V38()  Element of K19(K20( the U1 of C,REAL))
 
K20( the U1 of C,REAL) is  V36() V37() V38()  set 
 
K19(K20( the U1 of C,REAL)) is    set 
 
 the U8 of C . (V /. f2) is   ext-real  V25()  real   Element of  REAL 
 
0 * ||.(V /. f2).|| is   ext-real  V25()  real   Element of  REAL 
 
 abs 0 is   ext-real  V25()  real   Element of  REAL 
 
(abs 0) * ||.(V /. f2).|| is   ext-real  V25()  real   Element of  REAL 
 
0 * (V /. f2) is   left_complementable   right_complementable   complementable   Element of  the U1 of C
 
||.(0 * (V /. f2)).|| is   ext-real   non  negative  V25()  real   Element of  REAL 
 
 the U8 of C . (0 * (V /. f2)) is   ext-real  V25()  real   Element of  REAL 
 
 dom (Y,C,V,0) is    Element of K19(Y)
 
K19(Y) is    set 
 
X /\ (dom (Y,C,V,0)) is    Element of K19(Y)
 
(Y,C,V,0) /. f2 is   left_complementable   right_complementable   complementable   Element of  the U1 of C
 
||.((Y,C,V,0) /. f2).|| is   ext-real   non  negative  V25()  real   Element of  REAL 
 
 the U8 of C . ((Y,C,V,0) /. f2) is   ext-real  V25()  real   Element of  REAL 
 
f1 is   ext-real   natural  V25()  real  V46() V47() V48() V49() V50() V51() V131() V132()  Element of  NAT 
 
f1 is   ext-real   natural  V25()  real  V46() V47() V48() V49() V50() V51() V131() V132()  Element of  NAT 
 
X is    set 
 
Y is   non  empty   set 
 
C is   non  empty   left_complementable   right_complementable   complementable   Abelian   add-associative   right_zeroed   vector-distributive   scalar-distributive   scalar-associative   scalar-unital  V123() V126() V127()  RealNormSpace-like   NORMSTR 
 
 the U1 of C is   non  empty   set 
 
K20(Y, the U1 of C) is    set 
 
K19(K20(Y, the U1 of C)) is    set 
 
V is  V1() V4(Y) V5( the U1 of C) V6()  Element of K19(K20(Y, the U1 of C))
 
f1 is   ext-real  V25()  real   Element of  REAL 
 
(Y,C,V,f1) is  V1() V4(Y) V5( the U1 of C) V6()  Element of K19(K20(Y, the U1 of C))
 
 dom V is    Element of K19(Y)
 
K19(Y) is    set 
 
X /\ (dom V) is    Element of K19(Y)
 
f2 is   ext-real  V25()  real   Element of  REAL 
 
 abs f1 is   ext-real  V25()  real   Element of  REAL 
 
 abs f2 is   ext-real  V25()  real   Element of  REAL 
 
(abs f1) * (abs f2) is   ext-real  V25()  real   Element of  REAL 
 
 dom (Y,C,V,f1) is    Element of K19(Y)
 
X /\ (dom (Y,C,V,f1)) is    Element of K19(Y)
 
c is   ext-real  V25()  real   Element of  REAL 
 
r2 is    Element of Y
 
(Y,C,V,f1) /. r2 is   left_complementable   right_complementable   complementable   Element of  the U1 of C
 
||.((Y,C,V,f1) /. r2).|| is   ext-real   non  negative  V25()  real   Element of  REAL 
 
 the U8 of C is  V1() V4( the U1 of C) V5( REAL ) V6()  non  empty   total  V30( the U1 of C, REAL ) V36() V37() V38()  Element of K19(K20( the U1 of C,REAL))
 
K20( the U1 of C,REAL) is  V36() V37() V38()  set 
 
K19(K20( the U1 of C,REAL)) is    set 
 
 the U8 of C . ((Y,C,V,f1) /. r2) is   ext-real  V25()  real   Element of  REAL 
 
V /. r2 is   left_complementable   right_complementable   complementable   Element of  the U1 of C
 
||.(V /. r2).|| is   ext-real   non  negative  V25()  real   Element of  REAL 
 
 the U8 of C . (V /. r2) is   ext-real  V25()  real   Element of  REAL 
 
(abs f1) * ||.(V /. r2).|| is   ext-real  V25()  real   Element of  REAL 
 
f1 * (V /. r2) is   left_complementable   right_complementable   complementable   Element of  the U1 of C
 
||.(f1 * (V /. r2)).|| is   ext-real   non  negative  V25()  real   Element of  REAL 
 
 the U8 of C . (f1 * (V /. r2)) is   ext-real  V25()  real   Element of  REAL 
 
X is    set 
 
Y is   non  empty   set 
 
C is   non  empty   left_complementable   right_complementable   complementable   Abelian   add-associative   right_zeroed   vector-distributive   scalar-distributive   scalar-associative   scalar-unital  V123() V126() V127()  RealNormSpace-like   NORMSTR 
 
 the U1 of C is   non  empty   set 
 
K20(Y, the U1 of C) is    set 
 
K19(K20(Y, the U1 of C)) is    set 
 
V is  V1() V4(Y) V5( the U1 of C) V6()  Element of K19(K20(Y, the U1 of C))
 
||.V.|| is  V1() V4(Y) V5( REAL ) V6() V36() V37() V38()  Element of K19(K20(Y,REAL))
 
K20(Y,REAL) is  V36() V37() V38()  set 
 
K19(K20(Y,REAL)) is    set 
 
||.V.|| | X is  V1() V4(Y) V5( REAL ) V6() V36() V37() V38()  Element of K19(K20(Y,REAL))
 
(Y,C,V) is  V1() V4(Y) V5( the U1 of C) V6()  Element of K19(K20(Y, the U1 of C))
 
 dom V is    Element of K19(Y)
 
K19(Y) is    set 
 
X /\ (dom V) is    Element of K19(Y)
 
f1 is   ext-real  V25()  real   Element of  REAL 
 
f2 is    set 
 
 dom ||.V.|| is    Element of K19(Y)
 
X /\ (dom ||.V.||) is    Element of K19(Y)
 
V /. f2 is   left_complementable   right_complementable   complementable   Element of  the U1 of C
 
||.(V /. f2).|| is   ext-real   non  negative  V25()  real   Element of  REAL 
 
 the U8 of C is  V1() V4( the U1 of C) V5( REAL ) V6()  non  empty   total  V30( the U1 of C, REAL ) V36() V37() V38()  Element of K19(K20( the U1 of C,REAL))
 
K20( the U1 of C,REAL) is  V36() V37() V38()  set 
 
K19(K20( the U1 of C,REAL)) is    set 
 
 the U8 of C . (V /. f2) is   ext-real  V25()  real   Element of  REAL 
 
 abs ||.(V /. f2).|| is   ext-real  V25()  real   Element of  REAL 
 
||.V.|| . f2 is   ext-real  V25()  real   Element of  REAL 
 
 abs (||.V.|| . f2) is   ext-real  V25()  real   Element of  REAL 
 
(Y,C,V,(- 1)) is  V1() V4(Y) V5( the U1 of C) V6()  Element of K19(K20(Y, the U1 of C))
 
X is    set 
 
Y is    set 
 
X /\ Y is    set 
 
C is   non  empty   set 
 
V is   non  empty   left_complementable   right_complementable   complementable   Abelian   add-associative   right_zeroed   vector-distributive   scalar-distributive   scalar-associative   scalar-unital  V123() V126() V127()  RealNormSpace-like   NORMSTR 
 
 the U1 of V is   non  empty   set 
 
K20(C, the U1 of V) is    set 
 
K19(K20(C, the U1 of V)) is    set 
 
f1 is  V1() V4(C) V5( the U1 of V) V6()  Element of K19(K20(C, the U1 of V))
 
f2 is  V1() V4(C) V5( the U1 of V) V6()  Element of K19(K20(C, the U1 of V))
 
(C,V,f1,f2) is  V1() V4(C) V5( the U1 of V) V6()  Element of K19(K20(C, the U1 of V))
 
 dom f1 is    Element of K19(C)
 
K19(C) is    set 
 
X /\ (dom f1) is    Element of K19(C)
 
c is   ext-real  V25()  real   Element of  REAL 
 
 dom f2 is    Element of K19(C)
 
Y /\ (dom f2) is    Element of K19(C)
 
r2 is   ext-real  V25()  real   Element of  REAL 
 
c + r2 is   ext-real  V25()  real   Element of  REAL 
 
 dom (C,V,f1,f2) is    Element of K19(C)
 
(X /\ Y) /\ (dom (C,V,f1,f2)) is    Element of K19(C)
 
c is   ext-real  V25()  real   Element of  REAL 
 
r is    Element of C
 
(C,V,f1,f2) /. r is   left_complementable   right_complementable   complementable   Element of  the U1 of V
 
||.((C,V,f1,f2) /. r).|| is   ext-real   non  negative  V25()  real   Element of  REAL 
 
 the U8 of V is  V1() V4( the U1 of V) V5( REAL ) V6()  non  empty   total  V30( the U1 of V, REAL ) V36() V37() V38()  Element of K19(K20( the U1 of V,REAL))
 
K20( the U1 of V,REAL) is  V36() V37() V38()  set 
 
K19(K20( the U1 of V,REAL)) is    set 
 
 the U8 of V . ((C,V,f1,f2) /. r) is   ext-real  V25()  real   Element of  REAL 
 
(dom f1) /\ (dom f2) is    Element of K19(C)
 
f2 /. r is   left_complementable   right_complementable   complementable   Element of  the U1 of V
 
||.(f2 /. r).|| is   ext-real   non  negative  V25()  real   Element of  REAL 
 
 the U8 of V . (f2 /. r) is   ext-real  V25()  real   Element of  REAL 
 
f1 /. r is   left_complementable   right_complementable   complementable   Element of  the U1 of V
 
||.(f1 /. r).|| is   ext-real   non  negative  V25()  real   Element of  REAL 
 
 the U8 of V . (f1 /. r) is   ext-real  V25()  real   Element of  REAL 
 
(f1 /. r) + (f2 /. r) is   left_complementable   right_complementable   complementable   Element of  the U1 of V
 
||.((f1 /. r) + (f2 /. r)).|| is   ext-real   non  negative  V25()  real   Element of  REAL 
 
 the U8 of V . ((f1 /. r) + (f2 /. r)) is   ext-real  V25()  real   Element of  REAL 
 
||.(f1 /. r).|| + ||.(f2 /. r).|| is   ext-real   non  negative  V25()  real   Element of  REAL 
 
X is    set 
 
Y is    set 
 
X /\ Y is    set 
 
C is   non  empty   set 
 
K20(C,REAL) is  V36() V37() V38()  set 
 
K19(K20(C,REAL)) is    set 
 
V is   non  empty   left_complementable   right_complementable   complementable   Abelian   add-associative   right_zeroed   vector-distributive   scalar-distributive   scalar-associative   scalar-unital  V123() V126() V127()  RealNormSpace-like   NORMSTR 
 
 the U1 of V is   non  empty   set 
 
K20(C, the U1 of V) is    set 
 
K19(K20(C, the U1 of V)) is    set 
 
f1 is  V1() V4(C) V5( the U1 of V) V6()  Element of K19(K20(C, the U1 of V))
 
f2 is  V1() V4(C) V5( REAL ) V6() V36() V37() V38()  Element of K19(K20(C,REAL))
 
f2 | X is  V1() V4(C) V5( REAL ) V6() V36() V37() V38()  Element of K19(K20(C,REAL))
 
(C,V,f2,f1) is  V1() V4(C) V5( the U1 of V) V6()  Element of K19(K20(C, the U1 of V))
 
 dom f2 is    Element of K19(C)
 
K19(C) is    set 
 
X /\ (dom f2) is    Element of K19(C)
 
c is   ext-real  V25()  real   set 
 
 dom f1 is    Element of K19(C)
 
Y /\ (dom f1) is    Element of K19(C)
 
r2 is   ext-real  V25()  real   Element of  REAL 
 
c is   ext-real  V25()  real   Element of  REAL 
 
c * r2 is   ext-real  V25()  real   Element of  REAL 
 
c is    Element of C
 
 dom (C,V,f2,f1) is    Element of K19(C)
 
(X /\ Y) /\ (dom (C,V,f2,f1)) is    Element of K19(C)
 
(dom f2) /\ (dom f1) is    Element of K19(C)
 
f2 . c is   ext-real  V25()  real   Element of  REAL 
 
 abs (f2 . c) is   ext-real  V25()  real   Element of  REAL 
 
f1 /. c is   left_complementable   right_complementable   complementable   Element of  the U1 of V
 
||.(f1 /. c).|| is   ext-real   non  negative  V25()  real   Element of  REAL 
 
 the U8 of V is  V1() V4( the U1 of V) V5( REAL ) V6()  non  empty   total  V30( the U1 of V, REAL ) V36() V37() V38()  Element of K19(K20( the U1 of V,REAL))
 
K20( the U1 of V,REAL) is  V36() V37() V38()  set 
 
K19(K20( the U1 of V,REAL)) is    set 
 
 the U8 of V . (f1 /. c) is   ext-real  V25()  real   Element of  REAL 
 
(abs (f2 . c)) * ||.(f1 /. c).|| is   ext-real  V25()  real   Element of  REAL 
 
r is   ext-real  V25()  real   Element of  REAL 
 
(f2 . c) * (f1 /. c) is   left_complementable   right_complementable   complementable   Element of  the U1 of V
 
||.((f2 . c) * (f1 /. c)).|| is   ext-real   non  negative  V25()  real   Element of  REAL 
 
 the U8 of V . ((f2 . c) * (f1 /. c)) is   ext-real  V25()  real   Element of  REAL 
 
(C,V,f2,f1) /. c is   left_complementable   right_complementable   complementable   Element of  the U1 of V
 
||.((C,V,f2,f1) /. c).|| is   ext-real   non  negative  V25()  real   Element of  REAL 
 
 the U8 of V . ((C,V,f2,f1) /. c) is   ext-real  V25()  real   Element of  REAL 
 
r is   ext-real  V25()  real   Element of  REAL 
 
X is    set 
 
Y is    set 
 
X /\ Y is    set 
 
C is   non  empty   set 
 
V is   non  empty   left_complementable   right_complementable   complementable   Abelian   add-associative   right_zeroed   vector-distributive   scalar-distributive   scalar-associative   scalar-unital  V123() V126() V127()  RealNormSpace-like   NORMSTR 
 
 the U1 of V is   non  empty   set 
 
K20(C, the U1 of V) is    set 
 
K19(K20(C, the U1 of V)) is    set 
 
f1 is  V1() V4(C) V5( the U1 of V) V6()  Element of K19(K20(C, the U1 of V))
 
f2 is  V1() V4(C) V5( the U1 of V) V6()  Element of K19(K20(C, the U1 of V))
 
(C,V,f1,f2) is  V1() V4(C) V5( the U1 of V) V6()  Element of K19(K20(C, the U1 of V))
 
(C,V,f2) is  V1() V4(C) V5( the U1 of V) V6()  Element of K19(K20(C, the U1 of V))
 
(C,V,f1,(C,V,f2)) is  V1() V4(C) V5( the U1 of V) V6()  Element of K19(K20(C, the U1 of V))
 
X is    set 
 
Y is    set 
 
X \/ Y is    set 
 
C is   non  empty   set 
 
V is   non  empty   left_complementable   right_complementable   complementable   Abelian   add-associative   right_zeroed   vector-distributive   scalar-distributive   scalar-associative   scalar-unital  V123() V126() V127()  RealNormSpace-like   NORMSTR 
 
 the U1 of V is   non  empty   set 
 
K20(C, the U1 of V) is    set 
 
K19(K20(C, the U1 of V)) is    set 
 
f1 is  V1() V4(C) V5( the U1 of V) V6()  Element of K19(K20(C, the U1 of V))
 
 dom f1 is    Element of K19(C)
 
K19(C) is    set 
 
X /\ (dom f1) is    Element of K19(C)
 
f2 is   ext-real  V25()  real   Element of  REAL 
 
Y /\ (dom f1) is    Element of K19(C)
 
c is   ext-real  V25()  real   Element of  REAL 
 
 abs f2 is   ext-real  V25()  real   Element of  REAL 
 
 abs c is   ext-real  V25()  real   Element of  REAL 
 
(abs f2) + (abs c) is   ext-real  V25()  real   Element of  REAL 
 
(X \/ Y) /\ (dom f1) is    Element of K19(C)
 
r2 is   ext-real  V25()  real   Element of  REAL 
 
c is    Element of C
 
f1 /. c is   left_complementable   right_complementable   complementable   Element of  the U1 of V
 
||.(f1 /. c).|| is   ext-real   non  negative  V25()  real   Element of  REAL 
 
 the U8 of V is  V1() V4( the U1 of V) V5( REAL ) V6()  non  empty   total  V30( the U1 of V, REAL ) V36() V37() V38()  Element of K19(K20( the U1 of V,REAL))
 
K20( the U1 of V,REAL) is  V36() V37() V38()  set 
 
K19(K20( the U1 of V,REAL)) is    set 
 
 the U8 of V . (f1 /. c) is   ext-real  V25()  real   Element of  REAL 
 
||.(f1 /. c).|| + 0 is   ext-real  V25()  real   Element of  REAL 
 
0 + ||.(f1 /. c).|| is   ext-real  V25()  real   Element of  REAL 
 
X is    set 
 
Y is    set 
 
X /\ Y is    set 
 
C is   non  empty   set 
 
V is   non  empty   left_complementable   right_complementable   complementable   Abelian   add-associative   right_zeroed   vector-distributive   scalar-distributive   scalar-associative   scalar-unital  V123() V126() V127()  RealNormSpace-like   NORMSTR 
 
 the U1 of V is   non  empty   set 
 
K20(C, the U1 of V) is    set 
 
K19(K20(C, the U1 of V)) is    set 
 
f1 is  V1() V4(C) V5( the U1 of V) V6()  Element of K19(K20(C, the U1 of V))
 
f1 | X is  V1() V4(C) V5( the U1 of V) V6()  Element of K19(K20(C, the U1 of V))
 
f2 is  V1() V4(C) V5( the U1 of V) V6()  Element of K19(K20(C, the U1 of V))
 
f2 | Y is  V1() V4(C) V5( the U1 of V) V6()  Element of K19(K20(C, the U1 of V))
 
(C,V,f1,f2) is  V1() V4(C) V5( the U1 of V) V6()  Element of K19(K20(C, the U1 of V))
 
(C,V,f1,f2) | (X /\ Y) is  V1() V4(C) V5( the U1 of V) V6()  Element of K19(K20(C, the U1 of V))
 
(C,V,f1,f2) is  V1() V4(C) V5( the U1 of V) V6()  Element of K19(K20(C, the U1 of V))
 
(C,V,f1,f2) | (X /\ Y) is  V1() V4(C) V5( the U1 of V) V6()  Element of K19(K20(C, the U1 of V))
 
 dom f1 is    Element of K19(C)
 
K19(C) is    set 
 
X /\ (dom f1) is    Element of K19(C)
 
c is   left_complementable   right_complementable   complementable   Element of  the U1 of V
 
 dom f2 is    Element of K19(C)
 
Y /\ (dom f2) is    Element of K19(C)
 
r2 is   left_complementable   right_complementable   complementable   Element of  the U1 of V
 
c is    Element of C
 
 dom (C,V,f1,f2) is    Element of K19(C)
 
(X /\ Y) /\ (dom (C,V,f1,f2)) is    Element of K19(C)
 
(dom f1) /\ (dom f2) is    Element of K19(C)
 
(C,V,f1,f2) /. c is   left_complementable   right_complementable   complementable   Element of  the U1 of V
 
f1 /. c is   left_complementable   right_complementable   complementable   Element of  the U1 of V
 
f2 /. c is   left_complementable   right_complementable   complementable   Element of  the U1 of V
 
(f1 /. c) + (f2 /. c) is   left_complementable   right_complementable   complementable   Element of  the U1 of V
 
c + (f2 /. c) is   left_complementable   right_complementable   complementable   Element of  the U1 of V
 
c + r2 is   left_complementable   right_complementable   complementable   Element of  the U1 of V
 
c is    Element of C
 
 dom (C,V,f1,f2) is    Element of K19(C)
 
(X /\ Y) /\ (dom (C,V,f1,f2)) is    Element of K19(C)
 
(C,V,f1,f2) /. c is   left_complementable   right_complementable   complementable   Element of  the U1 of V
 
f1 /. c is   left_complementable   right_complementable   complementable   Element of  the U1 of V
 
f2 /. c is   left_complementable   right_complementable   complementable   Element of  the U1 of V
 
(f1 /. c) - (f2 /. c) is   left_complementable   right_complementable   complementable   Element of  the U1 of V
 
 - (f2 /. c) is   left_complementable   right_complementable   complementable   Element of  the U1 of V
 
(f1 /. c) + (- (f2 /. c)) is   left_complementable   right_complementable   complementable   Element of  the U1 of V
 
c - (f2 /. c) is   left_complementable   right_complementable   complementable   Element of  the U1 of V
 
c + (- (f2 /. c)) is   left_complementable   right_complementable   complementable   Element of  the U1 of V
 
c - r2 is   left_complementable   right_complementable   complementable   Element of  the U1 of V
 
 - r2 is   left_complementable   right_complementable   complementable   Element of  the U1 of V
 
c + (- r2) is   left_complementable   right_complementable   complementable   Element of  the U1 of V
 
X is    set 
 
Y is    set 
 
X /\ Y is    set 
 
C is   non  empty   set 
 
K20(C,REAL) is  V36() V37() V38()  set 
 
K19(K20(C,REAL)) is    set 
 
V is   non  empty   left_complementable   right_complementable   complementable   Abelian   add-associative   right_zeroed   vector-distributive   scalar-distributive   scalar-associative   scalar-unital  V123() V126() V127()  RealNormSpace-like   NORMSTR 
 
 the U1 of V is   non  empty   set 
 
K20(C, the U1 of V) is    set 
 
K19(K20(C, the U1 of V)) is    set 
 
f1 is  V1() V4(C) V5( the U1 of V) V6()  Element of K19(K20(C, the U1 of V))
 
f1 | Y is  V1() V4(C) V5( the U1 of V) V6()  Element of K19(K20(C, the U1 of V))
 
f2 is  V1() V4(C) V5( REAL ) V6() V36() V37() V38()  Element of K19(K20(C,REAL))
 
f2 | X is  V1() V4(C) V5( REAL ) V6() V36() V37() V38()  Element of K19(K20(C,REAL))
 
(C,V,f2,f1) is  V1() V4(C) V5( the U1 of V) V6()  Element of K19(K20(C, the U1 of V))
 
(C,V,f2,f1) | (X /\ Y) is  V1() V4(C) V5( the U1 of V) V6()  Element of K19(K20(C, the U1 of V))
 
 dom f2 is    Element of K19(C)
 
K19(C) is    set 
 
X /\ (dom f2) is    Element of K19(C)
 
c is   ext-real  V25()  real   Element of  REAL 
 
 dom f1 is    Element of K19(C)
 
Y /\ (dom f1) is    Element of K19(C)
 
r2 is   left_complementable   right_complementable   complementable   Element of  the U1 of V
 
c is    Element of C
 
 dom (C,V,f2,f1) is    Element of K19(C)
 
(X /\ Y) /\ (dom (C,V,f2,f1)) is    Element of K19(C)
 
(dom f2) /\ (dom f1) is    Element of K19(C)
 
(C,V,f2,f1) /. c is   left_complementable   right_complementable   complementable   Element of  the U1 of V
 
f1 /. c is   left_complementable   right_complementable   complementable   Element of  the U1 of V
 
f2 . c is   ext-real  V25()  real   Element of  REAL 
 
(f2 . c) * (f1 /. c) is   left_complementable   right_complementable   complementable   Element of  the U1 of V
 
c * (f1 /. c) is   left_complementable   right_complementable   complementable   Element of  the U1 of V
 
c * r2 is   left_complementable   right_complementable   complementable   Element of  the U1 of V
 
X is    set 
 
Y is   non  empty   set 
 
C is   non  empty   left_complementable   right_complementable   complementable   Abelian   add-associative   right_zeroed   vector-distributive   scalar-distributive   scalar-associative   scalar-unital  V123() V126() V127()  RealNormSpace-like   NORMSTR 
 
 the U1 of C is   non  empty   set 
 
K20(Y, the U1 of C) is    set 
 
K19(K20(Y, the U1 of C)) is    set 
 
V is  V1() V4(Y) V5( the U1 of C) V6()  Element of K19(K20(Y, the U1 of C))
 
V | X is  V1() V4(Y) V5( the U1 of C) V6()  Element of K19(K20(Y, the U1 of C))
 
f1 is   ext-real  V25()  real   Element of  REAL 
 
(Y,C,V,f1) is  V1() V4(Y) V5( the U1 of C) V6()  Element of K19(K20(Y, the U1 of C))
 
(Y,C,V,f1) | X is  V1() V4(Y) V5( the U1 of C) V6()  Element of K19(K20(Y, the U1 of C))
 
 dom V is    Element of K19(Y)
 
K19(Y) is    set 
 
X /\ (dom V) is    Element of K19(Y)
 
f2 is   left_complementable   right_complementable   complementable   Element of  the U1 of C
 
c is    Element of Y
 
 dom (Y,C,V,f1) is    Element of K19(Y)
 
X /\ (dom (Y,C,V,f1)) is    Element of K19(Y)
 
(Y,C,V,f1) /. c is   left_complementable   right_complementable   complementable   Element of  the U1 of C
 
V /. c is   left_complementable   right_complementable   complementable   Element of  the U1 of C
 
f1 * (V /. c) is   left_complementable   right_complementable   complementable   Element of  the U1 of C
 
f1 * f2 is   left_complementable   right_complementable   complementable   Element of  the U1 of C
 
X is    set 
 
Y is   non  empty   set 
 
C is   non  empty   left_complementable   right_complementable   complementable   Abelian   add-associative   right_zeroed   vector-distributive   scalar-distributive   scalar-associative   scalar-unital  V123() V126() V127()  RealNormSpace-like   NORMSTR 
 
 the U1 of C is   non  empty   set 
 
K20(Y, the U1 of C) is    set 
 
K19(K20(Y, the U1 of C)) is    set 
 
V is  V1() V4(Y) V5( the U1 of C) V6()  Element of K19(K20(Y, the U1 of C))
 
V | X is  V1() V4(Y) V5( the U1 of C) V6()  Element of K19(K20(Y, the U1 of C))
 
||.V.|| is  V1() V4(Y) V5( REAL ) V6() V36() V37() V38()  Element of K19(K20(Y,REAL))
 
K20(Y,REAL) is  V36() V37() V38()  set 
 
K19(K20(Y,REAL)) is    set 
 
||.V.|| | X is  V1() V4(Y) V5( REAL ) V6() V36() V37() V38()  Element of K19(K20(Y,REAL))
 
(Y,C,V) is  V1() V4(Y) V5( the U1 of C) V6()  Element of K19(K20(Y, the U1 of C))
 
(Y,C,V) | X is  V1() V4(Y) V5( the U1 of C) V6()  Element of K19(K20(Y, the U1 of C))
 
 dom V is    Element of K19(Y)
 
K19(Y) is    set 
 
X /\ (dom V) is    Element of K19(Y)
 
f1 is   left_complementable   right_complementable   complementable   Element of  the U1 of C
 
f2 is    Element of Y
 
 dom ||.V.|| is    Element of K19(Y)
 
X /\ (dom ||.V.||) is    Element of K19(Y)
 
||.V.|| . f2 is   ext-real  V25()  real   Element of  REAL 
 
V /. f2 is   left_complementable   right_complementable   complementable   Element of  the U1 of C
 
||.(V /. f2).|| is   ext-real   non  negative  V25()  real   Element of  REAL 
 
 the U8 of C is  V1() V4( the U1 of C) V5( REAL ) V6()  non  empty   total  V30( the U1 of C, REAL ) V36() V37() V38()  Element of K19(K20( the U1 of C,REAL))
 
K20( the U1 of C,REAL) is  V36() V37() V38()  set 
 
K19(K20( the U1 of C,REAL)) is    set 
 
 the U8 of C . (V /. f2) is   ext-real  V25()  real   Element of  REAL 
 
||.f1.|| is   ext-real   non  negative  V25()  real   Element of  REAL 
 
 the U8 of C . f1 is   ext-real  V25()  real   Element of  REAL 
 
 - f1 is   left_complementable   right_complementable   complementable   Element of  the U1 of C
 
c is    Element of Y
 
 dom (Y,C,V) is    Element of K19(Y)
 
X /\ (dom (Y,C,V)) is    Element of K19(Y)
 
V /. c is   left_complementable   right_complementable   complementable   Element of  the U1 of C
 
 - (V /. c) is   left_complementable   right_complementable   complementable   Element of  the U1 of C
 
f2 is   left_complementable   right_complementable   complementable   Element of  the U1 of C
 
(Y,C,V) /. c is   left_complementable   right_complementable   complementable   Element of  the U1 of C
 
f2 is   left_complementable   right_complementable   complementable   Element of  the U1 of C
 
X is    set 
 
Y is   non  empty   set 
 
C is   non  empty   left_complementable   right_complementable   complementable   Abelian   add-associative   right_zeroed   vector-distributive   scalar-distributive   scalar-associative   scalar-unital  V123() V126() V127()  RealNormSpace-like   NORMSTR 
 
 the U1 of C is   non  empty   set 
 
K20(Y, the U1 of C) is    set 
 
K19(K20(Y, the U1 of C)) is    set 
 
V is  V1() V4(Y) V5( the U1 of C) V6()  Element of K19(K20(Y, the U1 of C))
 
V | X is  V1() V4(Y) V5( the U1 of C) V6()  Element of K19(K20(Y, the U1 of C))
 
 dom V is    Element of K19(Y)
 
K19(Y) is    set 
 
X /\ (dom V) is    Element of K19(Y)
 
f1 is   left_complementable   right_complementable   complementable   Element of  the U1 of C
 
||.f1.|| is   ext-real   non  negative  V25()  real   Element of  REAL 
 
 the U8 of C is  V1() V4( the U1 of C) V5( REAL ) V6()  non  empty   total  V30( the U1 of C, REAL ) V36() V37() V38()  Element of K19(K20( the U1 of C,REAL))
 
K20( the U1 of C,REAL) is  V36() V37() V38()  set 
 
K19(K20( the U1 of C,REAL)) is    set 
 
 the U8 of C . f1 is   ext-real  V25()  real   Element of  REAL 
 
c is    Element of Y
 
V /. c is   left_complementable   right_complementable   complementable   Element of  the U1 of C
 
||.(V /. c).|| is   ext-real   non  negative  V25()  real   Element of  REAL 
 
 the U8 of C . (V /. c) is   ext-real  V25()  real   Element of  REAL 
 
f2 is   ext-real   non  negative  V25()  real   Element of  REAL 
 
f2 is   ext-real   non  negative  V25()  real   Element of  REAL 
 
X is    set 
 
Y is   non  empty   set 
 
C is   non  empty   left_complementable   right_complementable   complementable   Abelian   add-associative   right_zeroed   vector-distributive   scalar-distributive   scalar-associative   scalar-unital  V123() V126() V127()  RealNormSpace-like   NORMSTR 
 
 the U1 of C is   non  empty   set 
 
K20(Y, the U1 of C) is    set 
 
K19(K20(Y, the U1 of C)) is    set 
 
V is  V1() V4(Y) V5( the U1 of C) V6()  Element of K19(K20(Y, the U1 of C))
 
V | X is  V1() V4(Y) V5( the U1 of C) V6()  Element of K19(K20(Y, the U1 of C))
 
(Y,C,V) is  V1() V4(Y) V5( the U1 of C) V6()  Element of K19(K20(Y, the U1 of C))
 
||.V.|| is  V1() V4(Y) V5( REAL ) V6() V36() V37() V38()  Element of K19(K20(Y,REAL))
 
K20(Y,REAL) is  V36() V37() V38()  set 
 
K19(K20(Y,REAL)) is    set 
 
||.V.|| | X is  V1() V4(Y) V5( REAL ) V6() V36() V37() V38()  Element of K19(K20(Y,REAL))
 
f1 is   ext-real  V25()  real   Element of  REAL 
 
(Y,C,V,f1) is  V1() V4(Y) V5( the U1 of C) V6()  Element of K19(K20(Y, the U1 of C))
 
(Y,C,V,f1) | X is  V1() V4(Y) V5( the U1 of C) V6()  Element of K19(K20(Y, the U1 of C))
 
(Y,C,V) | X is  V1() V4(Y) V5( the U1 of C) V6()  Element of K19(K20(Y, the U1 of C))
 
X is    set 
 
Y is    set 
 
X /\ Y is    set 
 
C is   non  empty   set 
 
V is   non  empty   left_complementable   right_complementable   complementable   Abelian   add-associative   right_zeroed   vector-distributive   scalar-distributive   scalar-associative   scalar-unital  V123() V126() V127()  RealNormSpace-like   NORMSTR 
 
 the U1 of V is   non  empty   set 
 
K20(C, the U1 of V) is    set 
 
K19(K20(C, the U1 of V)) is    set 
 
f1 is  V1() V4(C) V5( the U1 of V) V6()  Element of K19(K20(C, the U1 of V))
 
f2 is  V1() V4(C) V5( the U1 of V) V6()  Element of K19(K20(C, the U1 of V))
 
f2 | Y is  V1() V4(C) V5( the U1 of V) V6()  Element of K19(K20(C, the U1 of V))
 
(C,V,f1,f2) is  V1() V4(C) V5( the U1 of V) V6()  Element of K19(K20(C, the U1 of V))
 
X is    set 
 
Y is    set 
 
X /\ Y is    set 
 
C is   non  empty   set 
 
V is   non  empty   left_complementable   right_complementable   complementable   Abelian   add-associative   right_zeroed   vector-distributive   scalar-distributive   scalar-associative   scalar-unital  V123() V126() V127()  RealNormSpace-like   NORMSTR 
 
 the U1 of V is   non  empty   set 
 
K20(C, the U1 of V) is    set 
 
K19(K20(C, the U1 of V)) is    set 
 
f1 is  V1() V4(C) V5( the U1 of V) V6()  Element of K19(K20(C, the U1 of V))
 
f2 is  V1() V4(C) V5( the U1 of V) V6()  Element of K19(K20(C, the U1 of V))
 
f2 | Y is  V1() V4(C) V5( the U1 of V) V6()  Element of K19(K20(C, the U1 of V))
 
(C,V,f1,f2) is  V1() V4(C) V5( the U1 of V) V6()  Element of K19(K20(C, the U1 of V))
 
(C,V,f2,f1) is  V1() V4(C) V5( the U1 of V) V6()  Element of K19(K20(C, the U1 of V))
 
(C,V,f2) is  V1() V4(C) V5( the U1 of V) V6()  Element of K19(K20(C, the U1 of V))
 
(C,V,f1,(C,V,f2)) is  V1() V4(C) V5( the U1 of V) V6()  Element of K19(K20(C, the U1 of V))
 
(C,V,f1) is  V1() V4(C) V5( the U1 of V) V6()  Element of K19(K20(C, the U1 of V))
 
(C,V,f2,(C,V,f1)) is  V1() V4(C) V5( the U1 of V) V6()  Element of K19(K20(C, the U1 of V))
 
Y /\ X is    set