:: AXIOMS semantic presentation

begin

theorem :: AXIOMS:1
for X, Y being ( ( ) ( ) Subset of ( ( ) ( ) set ) ) st ( for x, y being ( ( real ) ( V28() ext-real real ) number ) st x : ( ( real ) ( V28() ext-real real ) number ) in X : ( ( ) ( ) Subset of ( ( ) ( ) set ) ) & y : ( ( real ) ( V28() ext-real real ) number ) in Y : ( ( ) ( ) Subset of ( ( ) ( ) set ) ) holds
x : ( ( real ) ( V28() ext-real real ) number ) <= y : ( ( real ) ( V28() ext-real real ) number ) ) holds
ex z being ( ( real ) ( V28() ext-real real ) number ) st
for x, y being ( ( real ) ( V28() ext-real real ) number ) st x : ( ( real ) ( V28() ext-real real ) number ) in X : ( ( ) ( ) Subset of ( ( ) ( ) set ) ) & y : ( ( real ) ( V28() ext-real real ) number ) in Y : ( ( ) ( ) Subset of ( ( ) ( ) set ) ) holds
( x : ( ( real ) ( V28() ext-real real ) number ) <= z : ( ( real ) ( V28() ext-real real ) number ) & z : ( ( real ) ( V28() ext-real real ) number ) <= y : ( ( real ) ( V28() ext-real real ) number ) ) ;

theorem :: AXIOMS:2
for x, y being ( ( real ) ( V28() ext-real real ) number ) st x : ( ( real ) ( V28() ext-real real ) number ) in NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal ) Element of bool REAL : ( ( ) ( non empty ) set ) : ( ( ) ( ) set ) ) & y : ( ( real ) ( V28() ext-real real ) number ) in NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal ) Element of bool REAL : ( ( ) ( non empty ) set ) : ( ( ) ( ) set ) ) holds
x : ( ( real ) ( V28() ext-real real ) number ) + y : ( ( real ) ( V28() ext-real real ) number ) : ( ( ) ( V28() ext-real real ) set ) in NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal ) Element of bool REAL : ( ( ) ( non empty ) set ) : ( ( ) ( ) set ) ) ;

theorem :: AXIOMS:3
for A being ( ( ) ( ) Subset of ( ( ) ( ) set ) ) st 0 : ( ( ) ( epsilon-transitive epsilon-connected ordinal natural V28() ext-real real ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal ) Element of bool REAL : ( ( ) ( non empty ) set ) : ( ( ) ( ) set ) ) ) in A : ( ( ) ( ) Subset of ( ( ) ( ) set ) ) & ( for x being ( ( real ) ( V28() ext-real real ) number ) st x : ( ( real ) ( V28() ext-real real ) number ) in A : ( ( ) ( ) Subset of ( ( ) ( ) set ) ) holds
x : ( ( real ) ( V28() ext-real real ) number ) + 1 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V28() ext-real real ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal ) Element of bool REAL : ( ( ) ( non empty ) set ) : ( ( ) ( ) set ) ) ) : ( ( ) ( V28() ext-real real ) set ) in A : ( ( ) ( ) Subset of ( ( ) ( ) set ) ) ) holds
NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal ) Element of bool REAL : ( ( ) ( non empty ) set ) : ( ( ) ( ) set ) ) c= A : ( ( ) ( ) Subset of ( ( ) ( ) set ) ) ;

theorem :: AXIOMS:4
for k being ( ( natural ) ( epsilon-transitive epsilon-connected ordinal natural V28() ext-real real ) Nat) holds k : ( ( natural ) ( epsilon-transitive epsilon-connected ordinal natural V28() ext-real real ) Nat) = { i : ( ( ) ( epsilon-transitive epsilon-connected ordinal natural V28() ext-real real ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal ) Element of bool REAL : ( ( ) ( non empty ) set ) : ( ( ) ( ) set ) ) ) where i is ( ( ) ( epsilon-transitive epsilon-connected ordinal natural V28() ext-real real ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal ) Element of bool REAL : ( ( ) ( non empty ) set ) : ( ( ) ( ) set ) ) ) : i : ( ( ) ( epsilon-transitive epsilon-connected ordinal natural V28() ext-real real ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal ) Element of bool REAL : ( ( ) ( non empty ) set ) : ( ( ) ( ) set ) ) ) < k : ( ( natural ) ( epsilon-transitive epsilon-connected ordinal natural V28() ext-real real ) Nat) } ;