:: BCIALG_1 semantic presentation

begin

definition
attr c1 is strict ;
struct BCIStr -> ( ( ) ( ) 1-sorted ) ;
aggr BCIStr(# carrier, InternalDiff #) -> ( ( strict ) ( strict ) BCIStr ) ;
sel InternalDiff c1 -> ( ( V6() V18([: the carrier of c1 : ( ( ) ( ) 2-sorted ) : ( ( ) ( ) set ) , the carrier of c1 : ( ( ) ( ) 2-sorted ) : ( ( ) ( ) set ) :] : ( ( ) ( Relation-like ) set ) , the carrier of c1 : ( ( ) ( ) 2-sorted ) : ( ( ) ( ) set ) ) ) ( Relation-like V6() V18([: the carrier of c1 : ( ( ) ( ) 2-sorted ) : ( ( ) ( ) set ) , the carrier of c1 : ( ( ) ( ) 2-sorted ) : ( ( ) ( ) set ) :] : ( ( ) ( Relation-like ) set ) , the carrier of c1 : ( ( ) ( ) 2-sorted ) : ( ( ) ( ) set ) ) ) BinOp of the carrier of c1 : ( ( ) ( ) 2-sorted ) : ( ( ) ( ) set ) ) ;
end;

registration
cluster non empty strict for ( ( ) ( ) BCIStr ) ;
end;

definition
let A be ( ( ) ( ) BCIStr ) ;
let x, y be ( ( ) ( ) Element of ( ( ) ( ) set ) ) ;
func x \ y -> ( ( ) ( ) Element of ( ( ) ( ) set ) ) equals :: BCIALG_1:def 1
the InternalDiff of A : ( ( ) ( ) 2-sorted ) : ( ( V6() V18([: the carrier of A : ( ( ) ( ) 2-sorted ) : ( ( ) ( ) set ) , the carrier of A : ( ( ) ( ) 2-sorted ) : ( ( ) ( ) set ) :] : ( ( ) ( Relation-like ) set ) , the carrier of A : ( ( ) ( ) 2-sorted ) : ( ( ) ( ) set ) ) ) ( Relation-like V6() V18([: the carrier of A : ( ( ) ( ) 2-sorted ) : ( ( ) ( ) set ) , the carrier of A : ( ( ) ( ) 2-sorted ) : ( ( ) ( ) set ) :] : ( ( ) ( Relation-like ) set ) , the carrier of A : ( ( ) ( ) 2-sorted ) : ( ( ) ( ) set ) ) ) BinOp of the carrier of A : ( ( ) ( ) 2-sorted ) : ( ( ) ( ) set ) ) . (x : ( ( ) ( ) set ) ,y : ( ( ) ( ) Element of A : ( ( ) ( ) 2-sorted ) ) ) : ( ( ) ( ) Element of the carrier of A : ( ( ) ( ) 2-sorted ) : ( ( ) ( ) set ) ) ;
end;

definition
attr c1 is strict ;
struct BCIStr_0 -> ( ( ) ( ) BCIStr ) , ( ( ) ( ) ZeroStr ) ;
aggr BCIStr_0(# carrier, InternalDiff, ZeroF #) -> ( ( strict ) ( strict ) BCIStr_0 ) ;
end;

registration
cluster non empty strict for ( ( ) ( ) BCIStr_0 ) ;
end;

definition
let IT be ( ( non empty ) ( non empty ) BCIStr_0 ) ;
let x be ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ;
func x ` -> ( ( ) ( ) Element of ( ( ) ( ) set ) ) equals :: BCIALG_1:def 2
(0. IT : ( ( ) ( ) 2-sorted ) ) : ( ( ) ( ) Element of the carrier of IT : ( ( ) ( ) 2-sorted ) : ( ( ) ( ) set ) ) \ x : ( ( ) ( ) set ) : ( ( ) ( ) Element of ( ( ) ( ) set ) ) ;
end;

definition
let IT be ( ( non empty ) ( non empty ) BCIStr_0 ) ;
attr IT is being_B means :: BCIALG_1:def 3
for x, y, z being ( ( ) ( ) Element of ( ( ) ( ) set ) ) holds ((x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) \ y : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ) : ( ( ) ( ) Element of ( ( ) ( ) set ) ) \ (z : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) \ y : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ) : ( ( ) ( ) Element of ( ( ) ( ) set ) ) ) : ( ( ) ( ) Element of ( ( ) ( ) set ) ) \ (x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) \ z : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ) : ( ( ) ( ) Element of ( ( ) ( ) set ) ) : ( ( ) ( ) Element of ( ( ) ( ) set ) ) = 0. IT : ( ( ) ( ) 2-sorted ) : ( ( ) ( ) Element of the carrier of IT : ( ( ) ( ) 2-sorted ) : ( ( ) ( ) set ) ) ;
attr IT is being_C means :: BCIALG_1:def 4
for x, y, z being ( ( ) ( ) Element of ( ( ) ( ) set ) ) holds ((x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) \ y : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ) : ( ( ) ( ) Element of ( ( ) ( ) set ) ) \ z : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ) : ( ( ) ( ) Element of ( ( ) ( ) set ) ) \ ((x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) \ z : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ) : ( ( ) ( ) Element of ( ( ) ( ) set ) ) \ y : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ) : ( ( ) ( ) Element of ( ( ) ( ) set ) ) : ( ( ) ( ) Element of ( ( ) ( ) set ) ) = 0. IT : ( ( ) ( ) 2-sorted ) : ( ( ) ( ) Element of the carrier of IT : ( ( ) ( ) 2-sorted ) : ( ( ) ( ) set ) ) ;
attr IT is being_I means :: BCIALG_1:def 5
for x being ( ( ) ( ) Element of ( ( ) ( ) set ) ) holds x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) \ x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) : ( ( ) ( ) Element of ( ( ) ( ) set ) ) = 0. IT : ( ( ) ( ) 2-sorted ) : ( ( ) ( ) Element of the carrier of IT : ( ( ) ( ) 2-sorted ) : ( ( ) ( ) set ) ) ;
attr IT is being_K means :: BCIALG_1:def 6
for x, y being ( ( ) ( ) Element of ( ( ) ( ) set ) ) holds (x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) \ y : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ) : ( ( ) ( ) Element of ( ( ) ( ) set ) ) \ x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) : ( ( ) ( ) Element of ( ( ) ( ) set ) ) = 0. IT : ( ( ) ( ) 2-sorted ) : ( ( ) ( ) Element of the carrier of IT : ( ( ) ( ) 2-sorted ) : ( ( ) ( ) set ) ) ;
attr IT is being_BCI-4 means :: BCIALG_1:def 7
for x, y being ( ( ) ( ) Element of ( ( ) ( ) set ) ) st x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) \ y : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) : ( ( ) ( ) Element of ( ( ) ( ) set ) ) = 0. IT : ( ( ) ( ) 2-sorted ) : ( ( ) ( ) Element of the carrier of IT : ( ( ) ( ) 2-sorted ) : ( ( ) ( ) set ) ) & y : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) \ x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) : ( ( ) ( ) Element of ( ( ) ( ) set ) ) = 0. IT : ( ( ) ( ) 2-sorted ) : ( ( ) ( ) Element of the carrier of IT : ( ( ) ( ) 2-sorted ) : ( ( ) ( ) set ) ) holds
x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) = y : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ;
attr IT is being_BCK-5 means :: BCIALG_1:def 8
for x being ( ( ) ( ) Element of ( ( ) ( ) set ) ) holds x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ` : ( ( ) ( ) Element of ( ( ) ( ) set ) ) = 0. IT : ( ( ) ( ) 2-sorted ) : ( ( ) ( ) Element of the carrier of IT : ( ( ) ( ) 2-sorted ) : ( ( ) ( ) set ) ) ;
end;

definition
func BCI-EXAMPLE -> ( ( ) ( ) BCIStr_0 ) equals :: BCIALG_1:def 9
BCIStr_0(# 1 : ( ( ) ( non empty ) set ) ,op2 : ( ( V6() V18([:1 : ( ( ) ( non empty ) set ) ,1 : ( ( ) ( non empty ) set ) :] : ( ( ) ( Relation-like ) set ) ,1 : ( ( ) ( non empty ) set ) ) ) ( Relation-like V6() V18([:1 : ( ( ) ( non empty ) set ) ,1 : ( ( ) ( non empty ) set ) :] : ( ( ) ( Relation-like ) set ) ,1 : ( ( ) ( non empty ) set ) ) ) Element of bool [:[:1 : ( ( ) ( non empty ) set ) ,1 : ( ( ) ( non empty ) set ) :] : ( ( ) ( Relation-like ) set ) ,1 : ( ( ) ( non empty ) set ) :] : ( ( ) ( Relation-like ) set ) : ( ( ) ( ) set ) ) ,op0 : ( ( ) ( ) Element of 1 : ( ( ) ( non empty ) set ) ) #) : ( ( strict ) ( strict ) BCIStr_0 ) ;
end;

registration
cluster BCI-EXAMPLE : ( ( ) ( ) BCIStr_0 ) -> 1 : ( ( ) ( non empty ) set ) -element strict ;
end;

registration
cluster BCI-EXAMPLE : ( ( ) ( non empty trivial V46() 1 : ( ( ) ( non empty ) set ) -element strict ) BCIStr_0 ) -> being_B being_C being_I being_BCI-4 being_BCK-5 ;
end;

registration
cluster non empty strict being_B being_C being_I being_BCI-4 being_BCK-5 for ( ( ) ( ) BCIStr_0 ) ;
end;

definition
mode BCI-algebra is ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCIStr_0 ) ;
end;

definition
mode BCK-algebra is ( ( non empty being_B being_C being_I being_BCI-4 being_BCK-5 ) ( non empty being_B being_C being_I being_BCI-4 being_BCK-5 ) BCI-algebra) ;
end;

definition
let X be ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) ;
mode SubAlgebra of X -> ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) means :: BCIALG_1:def 10
( 0. it : ( ( ) ( ) set ) : ( ( ) ( ) Element of the carrier of it : ( ( ) ( ) set ) : ( ( ) ( ) set ) ) = 0. X : ( ( non empty ) ( non empty ) set ) : ( ( ) ( ) Element of the carrier of X : ( ( non empty ) ( non empty ) set ) : ( ( ) ( ) set ) ) & the carrier of it : ( ( ) ( ) set ) : ( ( ) ( ) set ) c= the carrier of X : ( ( non empty ) ( non empty ) set ) : ( ( ) ( ) set ) & the InternalDiff of it : ( ( ) ( ) set ) : ( ( V6() V18([: the carrier of it : ( ( ) ( ) set ) : ( ( ) ( ) set ) , the carrier of it : ( ( ) ( ) set ) : ( ( ) ( ) set ) :] : ( ( ) ( Relation-like ) set ) , the carrier of it : ( ( ) ( ) set ) : ( ( ) ( ) set ) ) ) ( Relation-like V6() V18([: the carrier of it : ( ( ) ( ) set ) : ( ( ) ( ) set ) , the carrier of it : ( ( ) ( ) set ) : ( ( ) ( ) set ) :] : ( ( ) ( Relation-like ) set ) , the carrier of it : ( ( ) ( ) set ) : ( ( ) ( ) set ) ) ) BinOp of the carrier of it : ( ( ) ( ) set ) : ( ( ) ( ) set ) ) = the InternalDiff of X : ( ( non empty ) ( non empty ) set ) : ( ( V6() V18([: the carrier of X : ( ( non empty ) ( non empty ) set ) : ( ( ) ( ) set ) , the carrier of X : ( ( non empty ) ( non empty ) set ) : ( ( ) ( ) set ) :] : ( ( ) ( Relation-like ) set ) , the carrier of X : ( ( non empty ) ( non empty ) set ) : ( ( ) ( ) set ) ) ) ( Relation-like V6() V18([: the carrier of X : ( ( non empty ) ( non empty ) set ) : ( ( ) ( ) set ) , the carrier of X : ( ( non empty ) ( non empty ) set ) : ( ( ) ( ) set ) :] : ( ( ) ( Relation-like ) set ) , the carrier of X : ( ( non empty ) ( non empty ) set ) : ( ( ) ( ) set ) ) ) BinOp of the carrier of X : ( ( non empty ) ( non empty ) set ) : ( ( ) ( ) set ) ) || the carrier of it : ( ( ) ( ) set ) : ( ( ) ( ) set ) : ( ( ) ( ) set ) );
end;

theorem :: BCIALG_1:1
for X being ( ( non empty ) ( non empty ) BCIStr_0 ) holds
( X : ( ( non empty ) ( non empty ) BCIStr_0 ) is ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) iff ( X : ( ( non empty ) ( non empty ) BCIStr_0 ) is being_I & X : ( ( non empty ) ( non empty ) BCIStr_0 ) is being_BCI-4 & ( for x, y, z being ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) holds
( ((x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) \ y : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ) : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) \ (x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) \ z : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ) : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ) : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) \ (z : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) \ y : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ) : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) = 0. X : ( ( non empty ) ( non empty ) BCIStr_0 ) : ( ( ) ( V47(b1 : ( ( non empty ) ( non empty ) BCIStr_0 ) ) ) Element of the carrier of b1 : ( ( non empty ) ( non empty ) BCIStr_0 ) : ( ( ) ( non empty ) set ) ) & (x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) \ (x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) \ y : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ) : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ) : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) \ y : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) = 0. X : ( ( non empty ) ( non empty ) BCIStr_0 ) : ( ( ) ( V47(b1 : ( ( non empty ) ( non empty ) BCIStr_0 ) ) ) Element of the carrier of b1 : ( ( non empty ) ( non empty ) BCIStr_0 ) : ( ( ) ( non empty ) set ) ) ) ) ) ) ;

definition
let IT be ( ( non empty ) ( non empty ) BCIStr_0 ) ;
let x, y be ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ;
pred x <= y means :: BCIALG_1:def 11
x : ( ( ) ( ) set ) \ y : ( ( ) ( ) Element of IT : ( ( non empty ) ( non empty ) set ) ) : ( ( ) ( ) Element of ( ( ) ( ) set ) ) = 0. IT : ( ( non empty ) ( non empty ) set ) : ( ( ) ( ) Element of the carrier of IT : ( ( non empty ) ( non empty ) set ) : ( ( ) ( ) set ) ) ;
end;

theorem :: BCIALG_1:2
for X being ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra)
for x being ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) holds x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) \ (0. X : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) ) : ( ( ) ( V47(b1 : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) ) ) Element of the carrier of b1 : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) : ( ( ) ( non empty ) set ) ) : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) = x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ;

theorem :: BCIALG_1:3
for X being ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra)
for x, y, z being ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) st x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) \ y : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) = 0. X : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) : ( ( ) ( V47(b1 : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) ) ) Element of the carrier of b1 : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) : ( ( ) ( non empty ) set ) ) & y : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) \ z : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) = 0. X : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) : ( ( ) ( V47(b1 : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) ) ) Element of the carrier of b1 : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) : ( ( ) ( non empty ) set ) ) holds
x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) \ z : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) = 0. X : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) : ( ( ) ( V47(b1 : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) ) ) Element of the carrier of b1 : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) : ( ( ) ( non empty ) set ) ) ;

theorem :: BCIALG_1:4
for X being ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra)
for x, y, z being ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) st x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) \ y : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) = 0. X : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) : ( ( ) ( V47(b1 : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) ) ) Element of the carrier of b1 : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) : ( ( ) ( non empty ) set ) ) holds
( (x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) \ z : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ) : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) \ (y : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) \ z : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ) : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) = 0. X : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) : ( ( ) ( V47(b1 : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) ) ) Element of the carrier of b1 : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) : ( ( ) ( non empty ) set ) ) & (z : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) \ y : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ) : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) \ (z : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) \ x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ) : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) = 0. X : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) : ( ( ) ( V47(b1 : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) ) ) Element of the carrier of b1 : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) : ( ( ) ( non empty ) set ) ) ) ;

theorem :: BCIALG_1:5
for X being ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra)
for x, y, z being ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) st x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) <= y : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) holds
( x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) \ z : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) <= y : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) \ z : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) & z : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) \ y : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) <= z : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) \ x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ) ;

theorem :: BCIALG_1:6
for X being ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra)
for x, y being ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) st x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) \ y : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) = 0. X : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) : ( ( ) ( V47(b1 : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) ) ) Element of the carrier of b1 : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) : ( ( ) ( non empty ) set ) ) holds
(y : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) \ x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ) : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ` : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) = 0. X : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) : ( ( ) ( V47(b1 : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) ) ) Element of the carrier of b1 : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) : ( ( ) ( non empty ) set ) ) ;

theorem :: BCIALG_1:7
for X being ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra)
for x, y, z being ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) holds (x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) \ y : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ) : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) \ z : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) = (x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) \ z : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ) : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) \ y : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ;

theorem :: BCIALG_1:8
for X being ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra)
for x, y being ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) holds x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) \ (x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) \ (x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) \ y : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ) : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ) : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) = x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) \ y : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ;

theorem :: BCIALG_1:9
for X being ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra)
for x, y being ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) holds (x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) \ y : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ) : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ` : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) = (x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) `) : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) \ (y : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) `) : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ;

theorem :: BCIALG_1:10
for X being ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra)
for x, y being ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) holds ((x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) \ (x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) \ y : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ) : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ) : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) \ (y : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) \ x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ) : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ) : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) \ (x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) \ (x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) \ (y : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) \ (y : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) \ x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ) : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ) : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ) : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ) : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) = 0. X : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) : ( ( ) ( V47(b1 : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) ) ) Element of the carrier of b1 : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) : ( ( ) ( non empty ) set ) ) ;

theorem :: BCIALG_1:11
for X being ( ( non empty ) ( non empty ) BCIStr_0 ) holds
( X : ( ( non empty ) ( non empty ) BCIStr_0 ) is ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) iff ( X : ( ( non empty ) ( non empty ) BCIStr_0 ) is being_BCI-4 & ( for x, y, z being ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) holds
( ((x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) \ y : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ) : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) \ (x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) \ z : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ) : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ) : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) \ (z : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) \ y : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ) : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) = 0. X : ( ( non empty ) ( non empty ) BCIStr_0 ) : ( ( ) ( V47(b1 : ( ( non empty ) ( non empty ) BCIStr_0 ) ) ) Element of the carrier of b1 : ( ( non empty ) ( non empty ) BCIStr_0 ) : ( ( ) ( non empty ) set ) ) & x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) \ (0. X : ( ( non empty ) ( non empty ) BCIStr_0 ) ) : ( ( ) ( V47(b1 : ( ( non empty ) ( non empty ) BCIStr_0 ) ) ) Element of the carrier of b1 : ( ( non empty ) ( non empty ) BCIStr_0 ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) = x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ) ) ) ) ;

theorem :: BCIALG_1:12
for X being ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) st ( for X being ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra)
for x, y being ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) holds x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) \ (x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) \ y : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ) : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) = y : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) \ (y : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) \ x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ) : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ) holds
X : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) is ( ( non empty being_B being_C being_I being_BCI-4 being_BCK-5 ) ( non empty being_B being_C being_I being_BCI-4 being_BCK-5 ) BCK-algebra) ;

theorem :: BCIALG_1:13
for X being ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) st ( for X being ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra)
for x, y being ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) holds (x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) \ y : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ) : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) \ y : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) = x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) \ y : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ) holds
X : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) is ( ( non empty being_B being_C being_I being_BCI-4 being_BCK-5 ) ( non empty being_B being_C being_I being_BCI-4 being_BCK-5 ) BCK-algebra) ;

theorem :: BCIALG_1:14
for X being ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) st ( for X being ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra)
for x, y being ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) holds x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) \ (y : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) \ x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ) : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) = x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ) holds
X : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) is ( ( non empty being_B being_C being_I being_BCI-4 being_BCK-5 ) ( non empty being_B being_C being_I being_BCI-4 being_BCK-5 ) BCK-algebra) ;

theorem :: BCIALG_1:15
for X being ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) st ( for X being ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra)
for x, y, z being ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) holds (x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) \ y : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ) : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) \ y : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) = (x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) \ z : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ) : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) \ (y : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) \ z : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ) : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ) holds
X : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) is ( ( non empty being_B being_C being_I being_BCI-4 being_BCK-5 ) ( non empty being_B being_C being_I being_BCI-4 being_BCK-5 ) BCK-algebra) ;

theorem :: BCIALG_1:16
for X being ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) st ( for X being ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra)
for x, y being ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) holds (x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) \ y : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ) : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) \ (y : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) \ x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ) : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) = x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) \ y : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ) holds
X : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) is ( ( non empty being_B being_C being_I being_BCI-4 being_BCK-5 ) ( non empty being_B being_C being_I being_BCI-4 being_BCK-5 ) BCK-algebra) ;

theorem :: BCIALG_1:17
for X being ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) st ( for X being ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra)
for x, y being ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) holds (x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) \ y : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ) : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) \ ((x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) \ y : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ) : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) \ (y : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) \ x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ) : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ) : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) = 0. X : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) : ( ( ) ( V47(b2 : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) ) ) Element of the carrier of b2 : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) : ( ( ) ( non empty ) set ) ) ) holds
X : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) is ( ( non empty being_B being_C being_I being_BCI-4 being_BCK-5 ) ( non empty being_B being_C being_I being_BCI-4 being_BCK-5 ) BCK-algebra) ;

theorem :: BCIALG_1:18
for X being ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) holds
( X : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) is being_K iff X : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) is ( ( non empty being_B being_C being_I being_BCI-4 being_BCK-5 ) ( non empty being_B being_C being_I being_BCI-4 being_BCK-5 ) BCK-algebra) ) ;

definition
let X be ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) ;
func BCK-part X -> ( ( non empty ) ( non empty ) Subset of ) equals :: BCIALG_1:def 12
{ x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) where x is ( ( ) ( ) Element of ( ( ) ( ) set ) ) : 0. X : ( ( non empty ) ( non empty ) set ) : ( ( ) ( ) Element of the carrier of X : ( ( non empty ) ( non empty ) set ) : ( ( ) ( ) set ) ) <= x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) } ;
end;

theorem :: BCIALG_1:19
for X being ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) holds 0. X : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) : ( ( ) ( V47(b1 : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) ) ) Element of the carrier of b1 : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) : ( ( ) ( non empty ) set ) ) in BCK-part X : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) : ( ( non empty ) ( non empty ) Subset of ) ;

theorem :: BCIALG_1:20
for X being ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra)
for x, y being ( ( ) ( ) Element of BCK-part X : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) : ( ( non empty ) ( non empty ) Subset of ) ) holds x : ( ( ) ( ) Element of BCK-part b1 : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) : ( ( non empty ) ( non empty ) Subset of ) ) \ y : ( ( ) ( ) Element of BCK-part b1 : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) : ( ( non empty ) ( non empty ) Subset of ) ) : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) in BCK-part X : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) : ( ( non empty ) ( non empty ) Subset of ) ;

theorem :: BCIALG_1:21
for X being ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra)
for x being ( ( ) ( ) Element of ( ( ) ( non empty ) set ) )
for y being ( ( ) ( ) Element of BCK-part X : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) : ( ( non empty ) ( non empty ) Subset of ) ) holds x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) \ y : ( ( ) ( ) Element of BCK-part b1 : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) : ( ( non empty ) ( non empty ) Subset of ) ) : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) <= x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ;

theorem :: BCIALG_1:22
for X being ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) holds X : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) is ( ( ) ( non empty being_B being_C being_I being_BCI-4 ) SubAlgebra of X : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) ) ;

definition
let X be ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) ;
let IT be ( ( ) ( non empty being_B being_C being_I being_BCI-4 ) SubAlgebra of X : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) ) ;
attr IT is proper means :: BCIALG_1:def 13
IT : ( ( ) ( ) set ) <> X : ( ( non empty ) ( non empty ) set ) ;
end;

registration
let X be ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) ;
cluster non empty being_B being_C being_I being_BCI-4 non proper for ( ( ) ( ) SubAlgebra of X : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCIStr_0 ) ) ;
end;

definition
let X be ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) ;
let IT be ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ;
attr IT is atom means :: BCIALG_1:def 14
for z being ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) st z : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) \ IT : ( ( ) ( ) set ) : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) = 0. X : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCIStr_0 ) : ( ( ) ( V47(X : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCIStr_0 ) ) ) Element of the carrier of X : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCIStr_0 ) : ( ( ) ( non empty ) set ) ) holds
z : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) = IT : ( ( ) ( ) set ) ;
end;

definition
let X be ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) ;
func AtomSet X -> ( ( non empty ) ( non empty ) Subset of ) equals :: BCIALG_1:def 15
{ x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) where x is ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) : x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) is atom } ;
end;

theorem :: BCIALG_1:23
for X being ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) holds 0. X : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) : ( ( ) ( V47(b1 : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) ) ) Element of the carrier of b1 : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) : ( ( ) ( non empty ) set ) ) in AtomSet X : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) : ( ( non empty ) ( non empty ) Subset of ) ;

theorem :: BCIALG_1:24
for X being ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra)
for x being ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) holds
( x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) in AtomSet X : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) : ( ( non empty ) ( non empty ) Subset of ) iff for z being ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) holds z : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) \ (z : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) \ x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ) : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) = x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ) ;

theorem :: BCIALG_1:25
for X being ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra)
for x being ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) holds
( x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) in AtomSet X : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) : ( ( non empty ) ( non empty ) Subset of ) iff for u, z being ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) holds (z : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) \ u : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ) : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) \ (z : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) \ x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ) : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) = x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) \ u : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ) ;

theorem :: BCIALG_1:26
for X being ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra)
for x being ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) holds
( x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) in AtomSet X : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) : ( ( non empty ) ( non empty ) Subset of ) iff for y, z being ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) holds x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) \ (z : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) \ y : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ) : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) <= y : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) \ (z : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) \ x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ) : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ) ;

theorem :: BCIALG_1:27
for X being ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra)
for x being ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) holds
( x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) in AtomSet X : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) : ( ( non empty ) ( non empty ) Subset of ) iff for y, z, u being ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) holds (x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) \ u : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ) : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) \ (z : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) \ y : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ) : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) <= (y : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) \ u : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ) : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) \ (z : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) \ x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ) : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ) ;

theorem :: BCIALG_1:28
for X being ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra)
for x being ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) holds
( x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) in AtomSet X : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) : ( ( non empty ) ( non empty ) Subset of ) iff for z being ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) holds (z : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) `) : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) \ (x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) `) : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) = x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) \ z : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ) ;

theorem :: BCIALG_1:29
for X being ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra)
for x being ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) holds
( x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) in AtomSet X : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) : ( ( non empty ) ( non empty ) Subset of ) iff (x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) `) : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ` : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) = x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ) ;

theorem :: BCIALG_1:30
for X being ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra)
for x being ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) holds
( x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) in AtomSet X : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) : ( ( non empty ) ( non empty ) Subset of ) iff for z being ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) holds (z : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) \ x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ) : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ` : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) = x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) \ z : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ) ;

theorem :: BCIALG_1:31
for X being ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra)
for x being ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) holds
( x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) in AtomSet X : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) : ( ( non empty ) ( non empty ) Subset of ) iff for z being ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) holds ((x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) \ z : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ) : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) `) : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ` : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) = x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) \ z : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ) ;

theorem :: BCIALG_1:32
for X being ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra)
for x being ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) holds
( x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) in AtomSet X : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) : ( ( non empty ) ( non empty ) Subset of ) iff for z, u being ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) holds z : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) \ (z : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) \ (x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) \ u : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ) : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ) : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) = x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) \ u : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ) ;

theorem :: BCIALG_1:33
for X being ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra)
for a being ( ( ) ( ) Element of AtomSet X : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) : ( ( non empty ) ( non empty ) Subset of ) )
for x being ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) holds a : ( ( ) ( ) Element of AtomSet b1 : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) : ( ( non empty ) ( non empty ) Subset of ) ) \ x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) in AtomSet X : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) : ( ( non empty ) ( non empty ) Subset of ) ;

definition
let X be ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) ;
let a, b be ( ( ) ( ) Element of AtomSet X : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) : ( ( non empty ) ( non empty ) Subset of ) ) ;
:: original: \
redefine func a \ b -> ( ( ) ( ) Element of AtomSet X : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCIStr_0 ) : ( ( non empty ) ( non empty ) Subset of ) ) ;
end;

theorem :: BCIALG_1:34
for X being ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra)
for x being ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) holds x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ` : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) in AtomSet X : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) : ( ( non empty ) ( non empty ) Subset of ) ;

theorem :: BCIALG_1:35
for X being ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra)
for x being ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ex a being ( ( ) ( ) Element of AtomSet X : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) : ( ( non empty ) ( non empty ) Subset of ) ) st a : ( ( ) ( ) Element of AtomSet b1 : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) : ( ( non empty ) ( non empty ) Subset of ) ) <= x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ;

definition
let X be ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) ;
attr X is generated_by_atom means :: BCIALG_1:def 16
for x being ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ex a being ( ( ) ( ) Element of AtomSet X : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCIStr_0 ) : ( ( non empty ) ( non empty ) Subset of ) ) st a : ( ( ) ( ) Element of AtomSet X : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) : ( ( non empty ) ( non empty ) Subset of ) ) <= x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ;
end;

definition
let X be ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) ;
let a be ( ( ) ( ) Element of AtomSet X : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) : ( ( non empty ) ( non empty ) Subset of ) ) ;
func BranchV a -> ( ( non empty ) ( non empty ) Subset of ) equals :: BCIALG_1:def 17
{ x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) where x is ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) : a : ( ( ) ( ) set ) <= x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) } ;
end;

theorem :: BCIALG_1:36
for X being ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) holds X : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) is generated_by_atom ;

theorem :: BCIALG_1:37
for X being ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra)
for a, b being ( ( ) ( ) Element of AtomSet X : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) : ( ( non empty ) ( non empty ) Subset of ) )
for x being ( ( ) ( ) Element of BranchV b : ( ( ) ( ) Element of AtomSet b1 : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) : ( ( non empty ) ( non empty ) Subset of ) ) : ( ( non empty ) ( non empty ) Subset of ) ) holds a : ( ( ) ( ) Element of AtomSet b1 : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) : ( ( non empty ) ( non empty ) Subset of ) ) \ x : ( ( ) ( ) Element of BranchV b3 : ( ( ) ( ) Element of AtomSet b1 : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) : ( ( non empty ) ( non empty ) Subset of ) ) : ( ( non empty ) ( non empty ) Subset of ) ) : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) = a : ( ( ) ( ) Element of AtomSet b1 : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) : ( ( non empty ) ( non empty ) Subset of ) ) \ b : ( ( ) ( ) Element of AtomSet b1 : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) : ( ( non empty ) ( non empty ) Subset of ) ) : ( ( ) ( ) Element of AtomSet b1 : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) : ( ( non empty ) ( non empty ) Subset of ) ) ;

theorem :: BCIALG_1:38
for X being ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra)
for a being ( ( ) ( ) Element of AtomSet X : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) : ( ( non empty ) ( non empty ) Subset of ) )
for x being ( ( ) ( ) Element of BCK-part X : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) : ( ( non empty ) ( non empty ) Subset of ) ) holds a : ( ( ) ( ) Element of AtomSet b1 : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) : ( ( non empty ) ( non empty ) Subset of ) ) \ x : ( ( ) ( ) Element of BCK-part b1 : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) : ( ( non empty ) ( non empty ) Subset of ) ) : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) = a : ( ( ) ( ) Element of AtomSet b1 : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) : ( ( non empty ) ( non empty ) Subset of ) ) ;

theorem :: BCIALG_1:39
for X being ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra)
for a, b being ( ( ) ( ) Element of AtomSet X : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) : ( ( non empty ) ( non empty ) Subset of ) )
for x being ( ( ) ( ) Element of BranchV a : ( ( ) ( ) Element of AtomSet b1 : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) : ( ( non empty ) ( non empty ) Subset of ) ) : ( ( non empty ) ( non empty ) Subset of ) )
for y being ( ( ) ( ) Element of BranchV b : ( ( ) ( ) Element of AtomSet b1 : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) : ( ( non empty ) ( non empty ) Subset of ) ) : ( ( non empty ) ( non empty ) Subset of ) ) holds x : ( ( ) ( ) Element of BranchV b2 : ( ( ) ( ) Element of AtomSet b1 : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) : ( ( non empty ) ( non empty ) Subset of ) ) : ( ( non empty ) ( non empty ) Subset of ) ) \ y : ( ( ) ( ) Element of BranchV b3 : ( ( ) ( ) Element of AtomSet b1 : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) : ( ( non empty ) ( non empty ) Subset of ) ) : ( ( non empty ) ( non empty ) Subset of ) ) : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) in BranchV (a : ( ( ) ( ) Element of AtomSet b1 : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) : ( ( non empty ) ( non empty ) Subset of ) ) \ b : ( ( ) ( ) Element of AtomSet b1 : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) : ( ( non empty ) ( non empty ) Subset of ) ) ) : ( ( ) ( ) Element of AtomSet b1 : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) : ( ( non empty ) ( non empty ) Subset of ) ) : ( ( non empty ) ( non empty ) Subset of ) ;

theorem :: BCIALG_1:40
for X being ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra)
for a being ( ( ) ( ) Element of AtomSet X : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) : ( ( non empty ) ( non empty ) Subset of ) )
for x, y being ( ( ) ( ) Element of BranchV a : ( ( ) ( ) Element of AtomSet b1 : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) : ( ( non empty ) ( non empty ) Subset of ) ) : ( ( non empty ) ( non empty ) Subset of ) ) holds x : ( ( ) ( ) Element of BranchV b2 : ( ( ) ( ) Element of AtomSet b1 : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) : ( ( non empty ) ( non empty ) Subset of ) ) : ( ( non empty ) ( non empty ) Subset of ) ) \ y : ( ( ) ( ) Element of BranchV b2 : ( ( ) ( ) Element of AtomSet b1 : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) : ( ( non empty ) ( non empty ) Subset of ) ) : ( ( non empty ) ( non empty ) Subset of ) ) : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) in BCK-part X : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) : ( ( non empty ) ( non empty ) Subset of ) ;

theorem :: BCIALG_1:41
for X being ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra)
for a, b being ( ( ) ( ) Element of AtomSet X : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) : ( ( non empty ) ( non empty ) Subset of ) )
for x being ( ( ) ( ) Element of BranchV a : ( ( ) ( ) Element of AtomSet b1 : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) : ( ( non empty ) ( non empty ) Subset of ) ) : ( ( non empty ) ( non empty ) Subset of ) )
for y being ( ( ) ( ) Element of BranchV b : ( ( ) ( ) Element of AtomSet b1 : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) : ( ( non empty ) ( non empty ) Subset of ) ) : ( ( non empty ) ( non empty ) Subset of ) ) st a : ( ( ) ( ) Element of AtomSet b1 : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) : ( ( non empty ) ( non empty ) Subset of ) ) <> b : ( ( ) ( ) Element of AtomSet b1 : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) : ( ( non empty ) ( non empty ) Subset of ) ) holds
not x : ( ( ) ( ) Element of BranchV b2 : ( ( ) ( ) Element of AtomSet b1 : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) : ( ( non empty ) ( non empty ) Subset of ) ) : ( ( non empty ) ( non empty ) Subset of ) ) \ y : ( ( ) ( ) Element of BranchV b3 : ( ( ) ( ) Element of AtomSet b1 : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) : ( ( non empty ) ( non empty ) Subset of ) ) : ( ( non empty ) ( non empty ) Subset of ) ) : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) in BCK-part X : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) : ( ( non empty ) ( non empty ) Subset of ) ;

theorem :: BCIALG_1:42
for X being ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra)
for a, b being ( ( ) ( ) Element of AtomSet X : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) : ( ( non empty ) ( non empty ) Subset of ) ) st a : ( ( ) ( ) Element of AtomSet b1 : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) : ( ( non empty ) ( non empty ) Subset of ) ) <> b : ( ( ) ( ) Element of AtomSet b1 : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) : ( ( non empty ) ( non empty ) Subset of ) ) holds
(BranchV a : ( ( ) ( ) Element of AtomSet b1 : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) : ( ( non empty ) ( non empty ) Subset of ) ) ) : ( ( non empty ) ( non empty ) Subset of ) /\ (BranchV b : ( ( ) ( ) Element of AtomSet b1 : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) : ( ( non empty ) ( non empty ) Subset of ) ) ) : ( ( non empty ) ( non empty ) Subset of ) : ( ( ) ( ) Element of bool the carrier of b1 : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) : ( ( ) ( non empty ) set ) : ( ( ) ( ) set ) ) = {} : ( ( ) ( ) set ) ;

definition
let X be ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) ;
mode Ideal of X -> ( ( non empty ) ( non empty ) Subset of ) means :: BCIALG_1:def 18
( 0. X : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCIStr_0 ) : ( ( ) ( V47(X : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCIStr_0 ) ) ) Element of the carrier of X : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCIStr_0 ) : ( ( ) ( non empty ) set ) ) in it : ( ( ) ( ) set ) & ( for x, y being ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) st x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) \ y : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) in it : ( ( ) ( ) set ) & y : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) in it : ( ( ) ( ) set ) holds
x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) in it : ( ( ) ( ) set ) ) );
end;

definition
let X be ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) ;
let IT be ( ( ) ( non empty ) Ideal of X : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) ) ;
attr IT is closed means :: BCIALG_1:def 19
for x being ( ( ) ( ) Element of IT : ( ( ) ( ) set ) ) holds x : ( ( ) ( ) Element of IT : ( ( ) ( non empty ) Ideal of X : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) ) ) ` : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) in IT : ( ( ) ( ) set ) ;
end;

registration
let X be ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) ;
cluster non empty closed for ( ( ) ( ) Ideal of X : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCIStr_0 ) ) ;
end;

theorem :: BCIALG_1:43
for X being ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) holds {(0. X : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) ) : ( ( ) ( V47(b1 : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) ) ) Element of the carrier of b1 : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) : ( ( ) ( non empty ) set ) ) } : ( ( ) ( non empty trivial V38(1 : ( ( ) ( non empty ) set ) ) ) set ) is ( ( closed ) ( non empty closed ) Ideal of X : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) ) ;

theorem :: BCIALG_1:44
for X being ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) holds the carrier of X : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) : ( ( ) ( non empty ) set ) is ( ( closed ) ( non empty closed ) Ideal of X : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) ) ;

theorem :: BCIALG_1:45
for X being ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) holds BCK-part X : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) : ( ( non empty ) ( non empty ) Subset of ) is ( ( closed ) ( non empty closed ) Ideal of X : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) ) ;

theorem :: BCIALG_1:46
for X being ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra)
for IT being ( ( non empty ) ( non empty ) Subset of ) st IT : ( ( non empty ) ( non empty ) Subset of ) is ( ( ) ( non empty ) Ideal of X : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) ) holds
for x, y being ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) st x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) in IT : ( ( non empty ) ( non empty ) Subset of ) & y : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) <= x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) holds
y : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) in IT : ( ( non empty ) ( non empty ) Subset of ) ;

begin

definition
let IT be ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) ;
attr IT is associative means :: BCIALG_1:def 20
for x, y, z being ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) holds (x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) \ y : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ) : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) \ z : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) = x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) \ (y : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) \ z : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ) : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ;
attr IT is quasi-associative means :: BCIALG_1:def 21
for x being ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) holds (x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) `) : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ` : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) = x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ` : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ;
attr IT is positive-implicative means :: BCIALG_1:def 22
for x, y being ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) holds (x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) \ (x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) \ y : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ) : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ) : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) \ (y : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) \ x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ) : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) = x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) \ (x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) \ (y : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) \ (y : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) \ x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ) : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ) : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ) : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ;
attr IT is weakly-positive-implicative means :: BCIALG_1:def 23
for x, y, z being ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) holds (x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) \ y : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ) : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) \ z : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) = ((x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) \ z : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ) : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) \ z : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ) : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) \ (y : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) \ z : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ) : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ;
attr IT is implicative means :: BCIALG_1:def 24
for x, y being ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) holds (x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) \ (x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) \ y : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ) : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ) : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) \ (y : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) \ x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ) : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) = y : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) \ (y : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) \ x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ) : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ;
attr IT is weakly-implicative means :: BCIALG_1:def 25
for x, y being ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) holds (x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) \ (y : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) \ x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ) : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ) : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) \ ((y : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) \ x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ) : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) `) : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) = x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ;
attr IT is p-Semisimple means :: BCIALG_1:def 26
for x, y being ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) holds x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) \ (x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) \ y : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ) : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) = y : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ;
attr IT is alternative means :: BCIALG_1:def 27
for x, y being ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) holds
( x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) \ (x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) \ y : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ) : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) = (x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) \ x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ) : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) \ y : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) & (x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) \ y : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ) : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) \ y : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) = x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) \ (y : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) \ y : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ) : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) );
end;

registration
cluster BCI-EXAMPLE : ( ( ) ( non empty trivial V46() 1 : ( ( ) ( non empty ) set ) -element strict being_B being_C being_I being_BCI-4 being_BCK-5 ) BCIStr_0 ) -> associative positive-implicative weakly-positive-implicative implicative weakly-implicative p-Semisimple ;
end;

registration
cluster non empty being_B being_C being_I being_BCI-4 associative positive-implicative weakly-positive-implicative implicative weakly-implicative p-Semisimple for ( ( ) ( ) BCIStr_0 ) ;
end;

theorem :: BCIALG_1:47
for X being ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) holds
( X : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) is associative iff for x being ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) holds x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ` : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) = x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ) ;

theorem :: BCIALG_1:48
for X being ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) holds
( ( for x, y being ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) holds y : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) \ x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) = x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) \ y : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ) iff X : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) is associative ) ;

theorem :: BCIALG_1:49
for X being ( ( non empty ) ( non empty ) BCIStr_0 ) holds
( X : ( ( non empty ) ( non empty ) BCIStr_0 ) is ( ( non empty being_B being_C being_I being_BCI-4 associative ) ( non empty being_B being_C being_I being_BCI-4 associative ) BCI-algebra) iff for x, y, z being ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) holds
( (y : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) \ x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ) : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) \ (z : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) \ x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ) : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) = z : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) \ y : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) & x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) \ (0. X : ( ( non empty ) ( non empty ) BCIStr_0 ) ) : ( ( ) ( V47(b1 : ( ( non empty ) ( non empty ) BCIStr_0 ) ) ) Element of the carrier of b1 : ( ( non empty ) ( non empty ) BCIStr_0 ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) = x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ) ) ;

theorem :: BCIALG_1:50
for X being ( ( non empty ) ( non empty ) BCIStr_0 ) holds
( X : ( ( non empty ) ( non empty ) BCIStr_0 ) is ( ( non empty being_B being_C being_I being_BCI-4 associative ) ( non empty being_B being_C being_I being_BCI-4 associative ) BCI-algebra) iff for x, y, z being ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) holds
( (x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) \ y : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ) : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) \ (x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) \ z : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ) : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) = z : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) \ y : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) & x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ` : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) = x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ) ) ;

theorem :: BCIALG_1:51
for X being ( ( non empty ) ( non empty ) BCIStr_0 ) holds
( X : ( ( non empty ) ( non empty ) BCIStr_0 ) is ( ( non empty being_B being_C being_I being_BCI-4 associative ) ( non empty being_B being_C being_I being_BCI-4 associative ) BCI-algebra) iff for x, y, z being ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) holds
( (x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) \ y : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ) : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) \ (x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) \ z : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ) : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) = y : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) \ z : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) & x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) \ (0. X : ( ( non empty ) ( non empty ) BCIStr_0 ) ) : ( ( ) ( V47(b1 : ( ( non empty ) ( non empty ) BCIStr_0 ) ) ) Element of the carrier of b1 : ( ( non empty ) ( non empty ) BCIStr_0 ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) = x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ) ) ;

begin

theorem :: BCIALG_1:52
for X being ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) holds
( X : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) is p-Semisimple iff for x being ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) holds x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) is atom ) ;

theorem :: BCIALG_1:53
for X being ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) st X : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) is p-Semisimple holds
BCK-part X : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) : ( ( non empty ) ( non empty ) Subset of ) = {(0. X : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) ) : ( ( ) ( V47(b1 : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) ) ) Element of the carrier of b1 : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) : ( ( ) ( non empty ) set ) ) } : ( ( ) ( non empty trivial V38(1 : ( ( ) ( non empty ) set ) ) ) set ) ;

theorem :: BCIALG_1:54
for X being ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) holds
( X : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) is p-Semisimple iff for x being ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) holds (x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) `) : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ` : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) = x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ) ;

theorem :: BCIALG_1:55
for X being ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) holds
( X : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) is p-Semisimple iff for x, y being ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) holds y : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) \ (y : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) \ x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ) : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) = x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ) ;

theorem :: BCIALG_1:56
for X being ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) holds
( X : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) is p-Semisimple iff for x, y, z being ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) holds (z : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) \ y : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ) : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) \ (z : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) \ x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ) : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) = x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) \ y : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ) ;

theorem :: BCIALG_1:57
for X being ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) holds
( X : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) is p-Semisimple iff for x, y, z being ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) holds x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) \ (z : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) \ y : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ) : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) = y : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) \ (z : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) \ x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ) : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ) ;

theorem :: BCIALG_1:58
for X being ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) holds
( X : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) is p-Semisimple iff for x, y, z, u being ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) holds (x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) \ u : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ) : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) \ (z : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) \ y : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ) : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) = (y : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) \ u : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ) : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) \ (z : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) \ x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ) : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ) ;

theorem :: BCIALG_1:59
for X being ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) holds
( X : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) is p-Semisimple iff for x, z being ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) holds (z : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) `) : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) \ (x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) `) : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) = x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) \ z : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ) ;

theorem :: BCIALG_1:60
for X being ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) holds
( X : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) is p-Semisimple iff for x, z being ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) holds ((x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) \ z : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ) : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) `) : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ` : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) = x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) \ z : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ) ;

theorem :: BCIALG_1:61
for X being ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) holds
( X : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) is p-Semisimple iff for x, u, z being ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) holds z : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) \ (z : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) \ (x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) \ u : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ) : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ) : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) = x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) \ u : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ) ;

theorem :: BCIALG_1:62
for X being ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) holds
( X : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) is p-Semisimple iff for x being ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) st x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ` : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) = 0. X : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) : ( ( ) ( V47(b1 : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) ) ) Element of the carrier of b1 : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) : ( ( ) ( non empty ) set ) ) holds
x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) = 0. X : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) : ( ( ) ( V47(b1 : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) ) ) Element of the carrier of b1 : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) : ( ( ) ( non empty ) set ) ) ) ;

theorem :: BCIALG_1:63
for X being ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) holds
( X : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) is p-Semisimple iff for x, y being ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) holds x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) \ (y : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) `) : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) = y : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) \ (x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) `) : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ) ;

theorem :: BCIALG_1:64
for X being ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) holds
( X : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) is p-Semisimple iff for x, y, z, u being ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) holds (x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) \ y : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ) : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) \ (z : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) \ u : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ) : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) = (x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) \ z : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ) : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) \ (y : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) \ u : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ) : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ) ;

theorem :: BCIALG_1:65
for X being ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) holds
( X : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) is p-Semisimple iff for x, y, z being ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) holds (x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) \ y : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ) : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) \ (z : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) \ y : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ) : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) = x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) \ z : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ) ;

theorem :: BCIALG_1:66
for X being ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) holds
( X : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) is p-Semisimple iff for x, y, z being ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) holds x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) \ (y : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) \ z : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ) : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) = (z : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) \ y : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ) : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) \ (x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) `) : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ) ;

theorem :: BCIALG_1:67
for X being ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) holds
( X : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) is p-Semisimple iff for x, y, z being ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) st y : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) \ x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) = z : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) \ x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) holds
y : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) = z : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ) ;

theorem :: BCIALG_1:68
for X being ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) holds
( X : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) is p-Semisimple iff for x, y, z being ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) st x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) \ y : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) = x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) \ z : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) holds
y : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) = z : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ) ;

theorem :: BCIALG_1:69
for X being ( ( non empty ) ( non empty ) BCIStr_0 ) holds
( X : ( ( non empty ) ( non empty ) BCIStr_0 ) is ( ( non empty being_B being_C being_I being_BCI-4 p-Semisimple ) ( non empty being_B being_C being_I being_BCI-4 p-Semisimple ) BCI-algebra) iff for x, y, z being ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) holds
( (x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) \ y : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ) : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) \ (x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) \ z : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ) : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) = z : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) \ y : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) & x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) \ (0. X : ( ( non empty ) ( non empty ) BCIStr_0 ) ) : ( ( ) ( V47(b1 : ( ( non empty ) ( non empty ) BCIStr_0 ) ) ) Element of the carrier of b1 : ( ( non empty ) ( non empty ) BCIStr_0 ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) = x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ) ) ;

theorem :: BCIALG_1:70
for X being ( ( non empty ) ( non empty ) BCIStr_0 ) holds
( X : ( ( non empty ) ( non empty ) BCIStr_0 ) is ( ( non empty being_B being_C being_I being_BCI-4 p-Semisimple ) ( non empty being_B being_C being_I being_BCI-4 p-Semisimple ) BCI-algebra) iff ( X : ( ( non empty ) ( non empty ) BCIStr_0 ) is being_I & ( for x, y, z being ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) holds
( x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) \ (y : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) \ z : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ) : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) = z : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) \ (y : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) \ x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ) : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) & x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) \ (0. X : ( ( non empty ) ( non empty ) BCIStr_0 ) ) : ( ( ) ( V47(b1 : ( ( non empty ) ( non empty ) BCIStr_0 ) ) ) Element of the carrier of b1 : ( ( non empty ) ( non empty ) BCIStr_0 ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) = x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ) ) ) ) ;

begin

theorem :: BCIALG_1:71
for X being ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) holds
( X : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) is quasi-associative iff for x being ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) holds x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ` : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) <= x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ) ;

theorem :: BCIALG_1:72
for X being ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) holds
( X : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) is quasi-associative iff for x, y being ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) holds (x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) \ y : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ) : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ` : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) = (y : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) \ x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ) : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ` : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ) ;

theorem :: BCIALG_1:73
for X being ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) holds
( X : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) is quasi-associative iff for x, y being ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) holds (x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) `) : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) \ y : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) = (x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) \ y : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ) : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ` : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ) ;

theorem :: BCIALG_1:74
for X being ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) holds
( X : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) is quasi-associative iff for x, y being ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) holds (x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) \ y : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ) : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) \ (y : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) \ x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ) : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) in BCK-part X : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) : ( ( non empty ) ( non empty ) Subset of ) ) ;

theorem :: BCIALG_1:75
for X being ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) holds
( X : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) is quasi-associative iff for x, y, z being ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) holds (x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) \ y : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ) : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) \ z : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) <= x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) \ (y : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) \ z : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ) : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ) ;

begin

theorem :: BCIALG_1:76
for X being ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra)
for x, y being ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) st X : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) is alternative holds
( x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ` : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) = x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) & x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) \ (x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) \ y : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ) : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) = y : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) & (x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) \ y : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ) : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) \ y : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) = x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ) ;

theorem :: BCIALG_1:77
for X being ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra)
for x, a, b being ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) st X : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) is alternative & x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) \ a : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) = x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) \ b : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) holds
a : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) = b : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ;

theorem :: BCIALG_1:78
for X being ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra)
for a, x, b being ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) st X : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) is alternative & a : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) \ x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) = b : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) \ x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) holds
a : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) = b : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ;

theorem :: BCIALG_1:79
for X being ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra)
for x, y being ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) st X : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) is alternative & x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) \ y : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) = 0. X : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) : ( ( ) ( V47(b1 : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) ) ) Element of the carrier of b1 : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) : ( ( ) ( non empty ) set ) ) holds
x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) = y : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ;

theorem :: BCIALG_1:80
for X being ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra)
for x, a, b being ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) st X : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) is alternative & (x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) \ a : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ) : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) \ b : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) = 0. X : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) : ( ( ) ( V47(b1 : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) ) ) Element of the carrier of b1 : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) : ( ( ) ( non empty ) set ) ) holds
( a : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) = x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) \ b : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) & b : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) = x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) \ a : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ) ;

registration
cluster non empty being_B being_C being_I being_BCI-4 alternative -> non empty being_B being_C being_I being_BCI-4 associative for ( ( ) ( ) BCIStr_0 ) ;
cluster non empty being_B being_C being_I being_BCI-4 associative -> non empty being_B being_C being_I being_BCI-4 alternative for ( ( ) ( ) BCIStr_0 ) ;
cluster non empty being_B being_C being_I being_BCI-4 alternative -> non empty being_B being_C being_I being_BCI-4 implicative for ( ( ) ( ) BCIStr_0 ) ;
end;

theorem :: BCIALG_1:81
for X being ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra)
for x, y being ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) st X : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) is alternative holds
(x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) \ (x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) \ y : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ) : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ) : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) \ (y : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) \ x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ) : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) = x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ;

theorem :: BCIALG_1:82
for X being ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra)
for y, x being ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) st X : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) is alternative holds
y : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) \ (y : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) \ (x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) \ (x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) \ y : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ) : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ) : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ) : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) = y : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ;

begin

registration
cluster non empty being_B being_C being_I being_BCI-4 associative -> non empty being_B being_C being_I being_BCI-4 weakly-positive-implicative for ( ( ) ( ) BCIStr_0 ) ;
cluster non empty being_B being_C being_I being_BCI-4 p-Semisimple -> non empty being_B being_C being_I being_BCI-4 weakly-positive-implicative for ( ( ) ( ) BCIStr_0 ) ;
end;

theorem :: BCIALG_1:83
for X being ( ( non empty ) ( non empty ) BCIStr_0 ) holds
( X : ( ( non empty ) ( non empty ) BCIStr_0 ) is ( ( non empty being_B being_C being_I being_BCI-4 implicative ) ( non empty being_B being_C being_I being_BCI-4 implicative ) BCI-algebra) iff for x, y, z being ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) holds
( ((x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) \ y : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ) : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) \ (x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) \ z : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ) : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ) : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) \ (z : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) \ y : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ) : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) = 0. X : ( ( non empty ) ( non empty ) BCIStr_0 ) : ( ( ) ( V47(b1 : ( ( non empty ) ( non empty ) BCIStr_0 ) ) ) Element of the carrier of b1 : ( ( non empty ) ( non empty ) BCIStr_0 ) : ( ( ) ( non empty ) set ) ) & x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) \ (0. X : ( ( non empty ) ( non empty ) BCIStr_0 ) ) : ( ( ) ( V47(b1 : ( ( non empty ) ( non empty ) BCIStr_0 ) ) ) Element of the carrier of b1 : ( ( non empty ) ( non empty ) BCIStr_0 ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) = x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) & (x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) \ (x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) \ y : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ) : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ) : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) \ (y : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) \ x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ) : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) = y : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) \ (y : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) \ x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ) : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ) ) ;

theorem :: BCIALG_1:84
for X being ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) holds
( X : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) is weakly-positive-implicative iff for x, y being ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) holds x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) \ y : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) = ((x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) \ y : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ) : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) \ y : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ) : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) \ (y : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) `) : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ) ;

registration
cluster non empty being_B being_C being_I being_BCI-4 positive-implicative -> non empty being_B being_C being_I being_BCI-4 weakly-positive-implicative for ( ( ) ( ) BCIStr_0 ) ;
cluster non empty being_B being_C being_I being_BCI-4 alternative -> non empty being_B being_C being_I being_BCI-4 weakly-positive-implicative for ( ( ) ( ) BCIStr_0 ) ;
end;

theorem :: BCIALG_1:85
for X being ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) st X : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) is ( ( non empty being_B being_C being_I being_BCI-4 weakly-positive-implicative ) ( non empty being_B being_C being_I being_BCI-4 weakly-positive-implicative ) BCI-algebra) holds
for x, y being ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) holds (x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) \ (x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) \ y : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ) : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ) : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) \ (y : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) \ x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ) : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) = ((y : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) \ (y : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) \ x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ) : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ) : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) \ (y : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) \ x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ) : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ) : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) \ (x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) \ y : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ) : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ;

theorem :: BCIALG_1:86
for X being ( ( non empty ) ( non empty ) BCIStr_0 ) holds
( X : ( ( non empty ) ( non empty ) BCIStr_0 ) is ( ( non empty being_B being_C being_I being_BCI-4 positive-implicative ) ( non empty being_B being_C being_I being_BCI-4 positive-implicative weakly-positive-implicative ) BCI-algebra) iff for x, y, z being ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) holds
( ((x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) \ y : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ) : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) \ (x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) \ z : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ) : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ) : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) \ (z : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) \ y : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ) : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) = 0. X : ( ( non empty ) ( non empty ) BCIStr_0 ) : ( ( ) ( V47(b1 : ( ( non empty ) ( non empty ) BCIStr_0 ) ) ) Element of the carrier of b1 : ( ( non empty ) ( non empty ) BCIStr_0 ) : ( ( ) ( non empty ) set ) ) & x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) \ (0. X : ( ( non empty ) ( non empty ) BCIStr_0 ) ) : ( ( ) ( V47(b1 : ( ( non empty ) ( non empty ) BCIStr_0 ) ) ) Element of the carrier of b1 : ( ( non empty ) ( non empty ) BCIStr_0 ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) = x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) & x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) \ y : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) = ((x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) \ y : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ) : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) \ y : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ) : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) \ (y : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) `) : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) & (x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) \ (x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) \ y : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ) : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ) : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) \ (y : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) \ x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ) : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) = ((y : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) \ (y : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) \ x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ) : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ) : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) \ (y : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) \ x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ) : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ) : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) \ (x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) \ y : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ) : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ) ) ;