:: BCIALG_2 semantic presentation

begin

definition
let X be ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) ;
let x, y be ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ;
let n be ( ( ) ( V21() V22() V23() V27() V74() ext-real non negative V78() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() ) Element of bool REAL : ( ( ) ( ) set ) : ( ( ) ( non empty ) set ) ) ) ;
func (x,y) to_power n -> ( ( ) ( ) Element of ( ( ) ( ) set ) ) means :: BCIALG_2:def 1
ex f being ( ( Function-like V18( NAT : ( ( ) ( non empty V21() V22() V23() ) Element of bool REAL : ( ( ) ( ) set ) : ( ( ) ( non empty ) set ) ) , the carrier of X : ( ( ) ( ) BCIStr_0 ) : ( ( ) ( ) set ) ) ) ( Relation-like NAT : ( ( ) ( non empty V21() V22() V23() ) Element of bool REAL : ( ( ) ( ) set ) : ( ( ) ( non empty ) set ) ) -defined the carrier of X : ( ( ) ( ) BCIStr_0 ) : ( ( ) ( ) set ) -valued Function-like V18( NAT : ( ( ) ( non empty V21() V22() V23() ) Element of bool REAL : ( ( ) ( ) set ) : ( ( ) ( non empty ) set ) ) , the carrier of X : ( ( ) ( ) BCIStr_0 ) : ( ( ) ( ) set ) ) ) Function of NAT : ( ( ) ( non empty V21() V22() V23() ) Element of bool REAL : ( ( ) ( ) set ) : ( ( ) ( non empty ) set ) ) , the carrier of X : ( ( ) ( ) BCIStr_0 ) : ( ( ) ( ) set ) ) st
( it : ( ( Function-like ) ( Relation-like X : ( ( ) ( ) BCIStr_0 ) -defined x : ( ( Function-like V18([:X : ( ( ) ( ) BCIStr_0 ) ,X : ( ( ) ( ) BCIStr_0 ) :] : ( ( ) ( ) set ) ,X : ( ( ) ( ) BCIStr_0 ) ) ) ( Relation-like [:X : ( ( ) ( ) BCIStr_0 ) ,X : ( ( ) ( ) BCIStr_0 ) :] : ( ( ) ( ) set ) -defined X : ( ( ) ( ) BCIStr_0 ) -valued Function-like V18([:X : ( ( ) ( ) BCIStr_0 ) ,X : ( ( ) ( ) BCIStr_0 ) :] : ( ( ) ( ) set ) ,X : ( ( ) ( ) BCIStr_0 ) ) ) Element of bool [:[:X : ( ( ) ( ) BCIStr_0 ) ,X : ( ( ) ( ) BCIStr_0 ) :] : ( ( ) ( ) set ) ,X : ( ( ) ( ) BCIStr_0 ) :] : ( ( ) ( ) set ) : ( ( ) ( non empty ) set ) ) -valued Function-like ) Element of bool [:X : ( ( ) ( ) BCIStr_0 ) ,x : ( ( Function-like V18([:X : ( ( ) ( ) BCIStr_0 ) ,X : ( ( ) ( ) BCIStr_0 ) :] : ( ( ) ( ) set ) ,X : ( ( ) ( ) BCIStr_0 ) ) ) ( Relation-like [:X : ( ( ) ( ) BCIStr_0 ) ,X : ( ( ) ( ) BCIStr_0 ) :] : ( ( ) ( ) set ) -defined X : ( ( ) ( ) BCIStr_0 ) -valued Function-like V18([:X : ( ( ) ( ) BCIStr_0 ) ,X : ( ( ) ( ) BCIStr_0 ) :] : ( ( ) ( ) set ) ,X : ( ( ) ( ) BCIStr_0 ) ) ) Element of bool [:[:X : ( ( ) ( ) BCIStr_0 ) ,X : ( ( ) ( ) BCIStr_0 ) :] : ( ( ) ( ) set ) ,X : ( ( ) ( ) BCIStr_0 ) :] : ( ( ) ( ) set ) : ( ( ) ( non empty ) set ) ) :] : ( ( ) ( ) set ) : ( ( ) ( non empty ) set ) ) = f : ( ( Function-like V18( NAT : ( ( ) ( non empty V21() V22() V23() ) Element of bool REAL : ( ( ) ( ) set ) : ( ( ) ( non empty ) set ) ) , the carrier of X : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) : ( ( ) ( non empty ) set ) ) ) ( Relation-like NAT : ( ( ) ( non empty V21() V22() V23() ) Element of bool REAL : ( ( ) ( ) set ) : ( ( ) ( non empty ) set ) ) -defined the carrier of X : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) : ( ( ) ( non empty ) set ) -valued Function-like V18( NAT : ( ( ) ( non empty V21() V22() V23() ) Element of bool REAL : ( ( ) ( ) set ) : ( ( ) ( non empty ) set ) ) , the carrier of X : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) : ( ( ) ( non empty ) set ) ) ) Function of NAT : ( ( ) ( non empty V21() V22() V23() ) Element of bool REAL : ( ( ) ( ) set ) : ( ( ) ( non empty ) set ) ) , the carrier of X : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) : ( ( ) ( non empty ) set ) ) . n : ( ( ) ( ) set ) : ( ( ) ( ) Element of the carrier of X : ( ( ) ( ) BCIStr_0 ) : ( ( ) ( ) set ) ) & f : ( ( Function-like V18( NAT : ( ( ) ( non empty V21() V22() V23() ) Element of bool REAL : ( ( ) ( ) set ) : ( ( ) ( non empty ) set ) ) , the carrier of X : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) : ( ( ) ( non empty ) set ) ) ) ( Relation-like NAT : ( ( ) ( non empty V21() V22() V23() ) Element of bool REAL : ( ( ) ( ) set ) : ( ( ) ( non empty ) set ) ) -defined the carrier of X : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) : ( ( ) ( non empty ) set ) -valued Function-like V18( NAT : ( ( ) ( non empty V21() V22() V23() ) Element of bool REAL : ( ( ) ( ) set ) : ( ( ) ( non empty ) set ) ) , the carrier of X : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) : ( ( ) ( non empty ) set ) ) ) Function of NAT : ( ( ) ( non empty V21() V22() V23() ) Element of bool REAL : ( ( ) ( ) set ) : ( ( ) ( non empty ) set ) ) , the carrier of X : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) : ( ( ) ( non empty ) set ) ) . 0 : ( ( ) ( V21() V22() V23() V27() V74() ext-real non negative V78() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() ) Element of bool REAL : ( ( ) ( ) set ) : ( ( ) ( non empty ) set ) ) ) : ( ( ) ( ) Element of the carrier of X : ( ( ) ( ) BCIStr_0 ) : ( ( ) ( ) set ) ) = x : ( ( Function-like V18([:X : ( ( ) ( ) BCIStr_0 ) ,X : ( ( ) ( ) BCIStr_0 ) :] : ( ( ) ( ) set ) ,X : ( ( ) ( ) BCIStr_0 ) ) ) ( Relation-like [:X : ( ( ) ( ) BCIStr_0 ) ,X : ( ( ) ( ) BCIStr_0 ) :] : ( ( ) ( ) set ) -defined X : ( ( ) ( ) BCIStr_0 ) -valued Function-like V18([:X : ( ( ) ( ) BCIStr_0 ) ,X : ( ( ) ( ) BCIStr_0 ) :] : ( ( ) ( ) set ) ,X : ( ( ) ( ) BCIStr_0 ) ) ) Element of bool [:[:X : ( ( ) ( ) BCIStr_0 ) ,X : ( ( ) ( ) BCIStr_0 ) :] : ( ( ) ( ) set ) ,X : ( ( ) ( ) BCIStr_0 ) :] : ( ( ) ( ) set ) : ( ( ) ( non empty ) set ) ) & ( for j being ( ( ) ( V21() V22() V23() V27() V74() ext-real non negative V78() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() ) Element of bool REAL : ( ( ) ( ) set ) : ( ( ) ( non empty ) set ) ) ) st j : ( ( ) ( V21() V22() V23() V27() V74() ext-real non negative V78() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() ) Element of bool REAL : ( ( ) ( ) set ) : ( ( ) ( non empty ) set ) ) ) < n : ( ( ) ( ) set ) holds
f : ( ( Function-like V18( NAT : ( ( ) ( non empty V21() V22() V23() ) Element of bool REAL : ( ( ) ( ) set ) : ( ( ) ( non empty ) set ) ) , the carrier of X : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) : ( ( ) ( non empty ) set ) ) ) ( Relation-like NAT : ( ( ) ( non empty V21() V22() V23() ) Element of bool REAL : ( ( ) ( ) set ) : ( ( ) ( non empty ) set ) ) -defined the carrier of X : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) : ( ( ) ( non empty ) set ) -valued Function-like V18( NAT : ( ( ) ( non empty V21() V22() V23() ) Element of bool REAL : ( ( ) ( ) set ) : ( ( ) ( non empty ) set ) ) , the carrier of X : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) : ( ( ) ( non empty ) set ) ) ) Function of NAT : ( ( ) ( non empty V21() V22() V23() ) Element of bool REAL : ( ( ) ( ) set ) : ( ( ) ( non empty ) set ) ) , the carrier of X : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) : ( ( ) ( non empty ) set ) ) . (j : ( ( ) ( V21() V22() V23() V27() V74() ext-real non negative V78() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() ) Element of bool REAL : ( ( ) ( ) set ) : ( ( ) ( non empty ) set ) ) ) + 1 : ( ( ) ( non empty V21() V22() V23() V27() V74() ext-real non negative V78() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() ) Element of bool REAL : ( ( ) ( ) set ) : ( ( ) ( non empty ) set ) ) ) ) : ( ( ) ( non empty V21() V22() V23() V27() V74() ext-real non negative V78() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() ) Element of bool REAL : ( ( ) ( ) set ) : ( ( ) ( non empty ) set ) ) ) : ( ( ) ( ) Element of the carrier of X : ( ( ) ( ) BCIStr_0 ) : ( ( ) ( ) set ) ) = (f : ( ( Function-like V18( NAT : ( ( ) ( non empty V21() V22() V23() ) Element of bool REAL : ( ( ) ( ) set ) : ( ( ) ( non empty ) set ) ) , the carrier of X : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) : ( ( ) ( non empty ) set ) ) ) ( Relation-like NAT : ( ( ) ( non empty V21() V22() V23() ) Element of bool REAL : ( ( ) ( ) set ) : ( ( ) ( non empty ) set ) ) -defined the carrier of X : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) : ( ( ) ( non empty ) set ) -valued Function-like V18( NAT : ( ( ) ( non empty V21() V22() V23() ) Element of bool REAL : ( ( ) ( ) set ) : ( ( ) ( non empty ) set ) ) , the carrier of X : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) : ( ( ) ( non empty ) set ) ) ) Function of NAT : ( ( ) ( non empty V21() V22() V23() ) Element of bool REAL : ( ( ) ( ) set ) : ( ( ) ( non empty ) set ) ) , the carrier of X : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) : ( ( ) ( non empty ) set ) ) . j : ( ( ) ( V21() V22() V23() V27() V74() ext-real non negative V78() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() ) Element of bool REAL : ( ( ) ( ) set ) : ( ( ) ( non empty ) set ) ) ) ) : ( ( ) ( ) Element of the carrier of X : ( ( ) ( ) BCIStr_0 ) : ( ( ) ( ) set ) ) \ y : ( ( ) ( ) Element of X : ( ( ) ( ) BCIStr_0 ) ) : ( ( ) ( ) Element of the carrier of X : ( ( ) ( ) BCIStr_0 ) : ( ( ) ( ) set ) ) ) );
end;

theorem :: BCIALG_2:1
for X being ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra)
for x, y being ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) holds (x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ,y : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ) to_power 0 : ( ( ) ( V21() V22() V23() V27() V74() ext-real non negative V78() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() ) Element of bool REAL : ( ( ) ( ) set ) : ( ( ) ( non empty ) set ) ) ) : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) = x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ;

theorem :: BCIALG_2:2
for X being ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra)
for x, y being ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) holds (x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ,y : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ) to_power 1 : ( ( ) ( non empty V21() V22() V23() V27() V74() ext-real non negative V78() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() ) Element of bool REAL : ( ( ) ( ) set ) : ( ( ) ( non empty ) set ) ) ) : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) = x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) \ y : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) : ( ( ) ( ) Element of the carrier of b1 : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) : ( ( ) ( non empty ) set ) ) ;

theorem :: BCIALG_2:3
for X being ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra)
for x, y being ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) holds (x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ,y : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ) to_power 2 : ( ( ) ( non empty V21() V22() V23() V27() V74() ext-real non negative V78() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() ) Element of bool REAL : ( ( ) ( ) set ) : ( ( ) ( non empty ) set ) ) ) : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) = (x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) \ y : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ) : ( ( ) ( ) Element of the carrier of b1 : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) : ( ( ) ( non empty ) set ) ) \ y : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) : ( ( ) ( ) Element of the carrier of b1 : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) : ( ( ) ( non empty ) set ) ) ;

theorem :: BCIALG_2:4
for X being ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra)
for x, y being ( ( ) ( ) Element of ( ( ) ( non empty ) set ) )
for n being ( ( ) ( V21() V22() V23() V27() V74() ext-real non negative V78() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() ) Element of bool REAL : ( ( ) ( ) set ) : ( ( ) ( non empty ) set ) ) ) holds (x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ,y : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ) to_power (n : ( ( ) ( V21() V22() V23() V27() V74() ext-real non negative V78() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() ) Element of bool REAL : ( ( ) ( ) set ) : ( ( ) ( non empty ) set ) ) ) + 1 : ( ( ) ( non empty V21() V22() V23() V27() V74() ext-real non negative V78() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() ) Element of bool REAL : ( ( ) ( ) set ) : ( ( ) ( non empty ) set ) ) ) ) : ( ( ) ( non empty V21() V22() V23() V27() V74() ext-real non negative V78() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() ) Element of bool REAL : ( ( ) ( ) set ) : ( ( ) ( non empty ) set ) ) ) : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) = ((x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ,y : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ) to_power n : ( ( ) ( V21() V22() V23() V27() V74() ext-real non negative V78() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() ) Element of bool REAL : ( ( ) ( ) set ) : ( ( ) ( non empty ) set ) ) ) ) : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) \ y : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) : ( ( ) ( ) Element of the carrier of b1 : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) : ( ( ) ( non empty ) set ) ) ;

theorem :: BCIALG_2:5
for X being ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra)
for x being ( ( ) ( ) Element of ( ( ) ( non empty ) set ) )
for n being ( ( ) ( V21() V22() V23() V27() V74() ext-real non negative V78() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() ) Element of bool REAL : ( ( ) ( ) set ) : ( ( ) ( non empty ) set ) ) ) holds (x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ,(0. X : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) ) : ( ( ) ( V44(b1 : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) ) ) Element of the carrier of b1 : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) : ( ( ) ( non empty ) set ) ) ) to_power (n : ( ( ) ( V21() V22() V23() V27() V74() ext-real non negative V78() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() ) Element of bool REAL : ( ( ) ( ) set ) : ( ( ) ( non empty ) set ) ) ) + 1 : ( ( ) ( non empty V21() V22() V23() V27() V74() ext-real non negative V78() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() ) Element of bool REAL : ( ( ) ( ) set ) : ( ( ) ( non empty ) set ) ) ) ) : ( ( ) ( non empty V21() V22() V23() V27() V74() ext-real non negative V78() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() ) Element of bool REAL : ( ( ) ( ) set ) : ( ( ) ( non empty ) set ) ) ) : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) = x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ;

theorem :: BCIALG_2:6
for X being ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra)
for n being ( ( ) ( V21() V22() V23() V27() V74() ext-real non negative V78() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() ) Element of bool REAL : ( ( ) ( ) set ) : ( ( ) ( non empty ) set ) ) ) holds ((0. X : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) ) : ( ( ) ( V44(b1 : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) ) ) Element of the carrier of b1 : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) : ( ( ) ( non empty ) set ) ) ,(0. X : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) ) : ( ( ) ( V44(b1 : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) ) ) Element of the carrier of b1 : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) : ( ( ) ( non empty ) set ) ) ) to_power n : ( ( ) ( V21() V22() V23() V27() V74() ext-real non negative V78() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() ) Element of bool REAL : ( ( ) ( ) set ) : ( ( ) ( non empty ) set ) ) ) : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) = 0. X : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) : ( ( ) ( V44(b1 : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) ) ) Element of the carrier of b1 : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) : ( ( ) ( non empty ) set ) ) ;

theorem :: BCIALG_2:7
for X being ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra)
for x, y, z being ( ( ) ( ) Element of ( ( ) ( non empty ) set ) )
for n being ( ( ) ( V21() V22() V23() V27() V74() ext-real non negative V78() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() ) Element of bool REAL : ( ( ) ( ) set ) : ( ( ) ( non empty ) set ) ) ) holds ((x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ,y : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ) to_power n : ( ( ) ( V21() V22() V23() V27() V74() ext-real non negative V78() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() ) Element of bool REAL : ( ( ) ( ) set ) : ( ( ) ( non empty ) set ) ) ) ) : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) \ z : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) : ( ( ) ( ) Element of the carrier of b1 : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) : ( ( ) ( non empty ) set ) ) = ((x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) \ z : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ) : ( ( ) ( ) Element of the carrier of b1 : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) : ( ( ) ( non empty ) set ) ) ,y : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ) to_power n : ( ( ) ( V21() V22() V23() V27() V74() ext-real non negative V78() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() ) Element of bool REAL : ( ( ) ( ) set ) : ( ( ) ( non empty ) set ) ) ) : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ;

theorem :: BCIALG_2:8
for X being ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra)
for x, y being ( ( ) ( ) Element of ( ( ) ( non empty ) set ) )
for n being ( ( ) ( V21() V22() V23() V27() V74() ext-real non negative V78() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() ) Element of bool REAL : ( ( ) ( ) set ) : ( ( ) ( non empty ) set ) ) ) holds (x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ,(x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) \ (x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) \ y : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ) : ( ( ) ( ) Element of the carrier of b1 : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) : ( ( ) ( non empty ) set ) ) ) : ( ( ) ( ) Element of the carrier of b1 : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) : ( ( ) ( non empty ) set ) ) ) to_power n : ( ( ) ( V21() V22() V23() V27() V74() ext-real non negative V78() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() ) Element of bool REAL : ( ( ) ( ) set ) : ( ( ) ( non empty ) set ) ) ) : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) = (x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ,y : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ) to_power n : ( ( ) ( V21() V22() V23() V27() V74() ext-real non negative V78() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() ) Element of bool REAL : ( ( ) ( ) set ) : ( ( ) ( non empty ) set ) ) ) : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ;

theorem :: BCIALG_2:9
for X being ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra)
for x being ( ( ) ( ) Element of ( ( ) ( non empty ) set ) )
for n being ( ( ) ( V21() V22() V23() V27() V74() ext-real non negative V78() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() ) Element of bool REAL : ( ( ) ( ) set ) : ( ( ) ( non empty ) set ) ) ) holds (((0. X : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) ) : ( ( ) ( V44(b1 : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) ) ) Element of the carrier of b1 : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) : ( ( ) ( non empty ) set ) ) ,x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ) to_power n : ( ( ) ( V21() V22() V23() V27() V74() ext-real non negative V78() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() ) Element of bool REAL : ( ( ) ( ) set ) : ( ( ) ( non empty ) set ) ) ) ) : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ` : ( ( ) ( ) Element of the carrier of b1 : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) : ( ( ) ( non empty ) set ) ) = ((0. X : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) ) : ( ( ) ( V44(b1 : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) ) ) Element of the carrier of b1 : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) : ( ( ) ( non empty ) set ) ) ,(x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) `) : ( ( ) ( ) Element of the carrier of b1 : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) : ( ( ) ( non empty ) set ) ) ) to_power n : ( ( ) ( V21() V22() V23() V27() V74() ext-real non negative V78() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() ) Element of bool REAL : ( ( ) ( ) set ) : ( ( ) ( non empty ) set ) ) ) : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ;

theorem :: BCIALG_2:10
for X being ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra)
for x, y being ( ( ) ( ) Element of ( ( ) ( non empty ) set ) )
for n, m being ( ( ) ( V21() V22() V23() V27() V74() ext-real non negative V78() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() ) Element of bool REAL : ( ( ) ( ) set ) : ( ( ) ( non empty ) set ) ) ) holds (((x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ,y : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ) to_power n : ( ( ) ( V21() V22() V23() V27() V74() ext-real non negative V78() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() ) Element of bool REAL : ( ( ) ( ) set ) : ( ( ) ( non empty ) set ) ) ) ) : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ,y : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ) to_power m : ( ( ) ( V21() V22() V23() V27() V74() ext-real non negative V78() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() ) Element of bool REAL : ( ( ) ( ) set ) : ( ( ) ( non empty ) set ) ) ) : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) = (x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ,y : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ) to_power (n : ( ( ) ( V21() V22() V23() V27() V74() ext-real non negative V78() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() ) Element of bool REAL : ( ( ) ( ) set ) : ( ( ) ( non empty ) set ) ) ) + m : ( ( ) ( V21() V22() V23() V27() V74() ext-real non negative V78() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() ) Element of bool REAL : ( ( ) ( ) set ) : ( ( ) ( non empty ) set ) ) ) ) : ( ( ) ( V21() V22() V23() V27() V74() ext-real non negative V78() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() ) Element of bool REAL : ( ( ) ( ) set ) : ( ( ) ( non empty ) set ) ) ) : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ;

theorem :: BCIALG_2:11
for X being ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra)
for x, y, z being ( ( ) ( ) Element of ( ( ) ( non empty ) set ) )
for n, m being ( ( ) ( V21() V22() V23() V27() V74() ext-real non negative V78() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() ) Element of bool REAL : ( ( ) ( ) set ) : ( ( ) ( non empty ) set ) ) ) holds (((x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ,y : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ) to_power n : ( ( ) ( V21() V22() V23() V27() V74() ext-real non negative V78() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() ) Element of bool REAL : ( ( ) ( ) set ) : ( ( ) ( non empty ) set ) ) ) ) : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ,z : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ) to_power m : ( ( ) ( V21() V22() V23() V27() V74() ext-real non negative V78() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() ) Element of bool REAL : ( ( ) ( ) set ) : ( ( ) ( non empty ) set ) ) ) : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) = (((x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ,z : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ) to_power m : ( ( ) ( V21() V22() V23() V27() V74() ext-real non negative V78() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() ) Element of bool REAL : ( ( ) ( ) set ) : ( ( ) ( non empty ) set ) ) ) ) : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ,y : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ) to_power n : ( ( ) ( V21() V22() V23() V27() V74() ext-real non negative V78() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() ) Element of bool REAL : ( ( ) ( ) set ) : ( ( ) ( non empty ) set ) ) ) : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ;

theorem :: BCIALG_2:12
for X being ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra)
for x being ( ( ) ( ) Element of ( ( ) ( non empty ) set ) )
for n being ( ( ) ( V21() V22() V23() V27() V74() ext-real non negative V78() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() ) Element of bool REAL : ( ( ) ( ) set ) : ( ( ) ( non empty ) set ) ) ) holds ((((0. X : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) ) : ( ( ) ( V44(b1 : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) ) ) Element of the carrier of b1 : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) : ( ( ) ( non empty ) set ) ) ,x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ) to_power n : ( ( ) ( V21() V22() V23() V27() V74() ext-real non negative V78() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() ) Element of bool REAL : ( ( ) ( ) set ) : ( ( ) ( non empty ) set ) ) ) ) : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) `) : ( ( ) ( ) Element of the carrier of b1 : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) : ( ( ) ( non empty ) set ) ) ` : ( ( ) ( ) Element of the carrier of b1 : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) : ( ( ) ( non empty ) set ) ) = ((0. X : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) ) : ( ( ) ( V44(b1 : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) ) ) Element of the carrier of b1 : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) : ( ( ) ( non empty ) set ) ) ,x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ) to_power n : ( ( ) ( V21() V22() V23() V27() V74() ext-real non negative V78() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() ) Element of bool REAL : ( ( ) ( ) set ) : ( ( ) ( non empty ) set ) ) ) : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ;

theorem :: BCIALG_2:13
for X being ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra)
for x being ( ( ) ( ) Element of ( ( ) ( non empty ) set ) )
for n, m being ( ( ) ( V21() V22() V23() V27() V74() ext-real non negative V78() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() ) Element of bool REAL : ( ( ) ( ) set ) : ( ( ) ( non empty ) set ) ) ) holds ((0. X : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) ) : ( ( ) ( V44(b1 : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) ) ) Element of the carrier of b1 : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) : ( ( ) ( non empty ) set ) ) ,x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ) to_power (n : ( ( ) ( V21() V22() V23() V27() V74() ext-real non negative V78() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() ) Element of bool REAL : ( ( ) ( ) set ) : ( ( ) ( non empty ) set ) ) ) + m : ( ( ) ( V21() V22() V23() V27() V74() ext-real non negative V78() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() ) Element of bool REAL : ( ( ) ( ) set ) : ( ( ) ( non empty ) set ) ) ) ) : ( ( ) ( V21() V22() V23() V27() V74() ext-real non negative V78() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() ) Element of bool REAL : ( ( ) ( ) set ) : ( ( ) ( non empty ) set ) ) ) : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) = (((0. X : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) ) : ( ( ) ( V44(b1 : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) ) ) Element of the carrier of b1 : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) : ( ( ) ( non empty ) set ) ) ,x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ) to_power n : ( ( ) ( V21() V22() V23() V27() V74() ext-real non negative V78() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() ) Element of bool REAL : ( ( ) ( ) set ) : ( ( ) ( non empty ) set ) ) ) ) : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) \ ((((0. X : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) ) : ( ( ) ( V44(b1 : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) ) ) Element of the carrier of b1 : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) : ( ( ) ( non empty ) set ) ) ,x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ) to_power m : ( ( ) ( V21() V22() V23() V27() V74() ext-real non negative V78() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() ) Element of bool REAL : ( ( ) ( ) set ) : ( ( ) ( non empty ) set ) ) ) ) : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) `) : ( ( ) ( ) Element of the carrier of b1 : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) : ( ( ) ( non empty ) set ) ) : ( ( ) ( ) Element of the carrier of b1 : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) : ( ( ) ( non empty ) set ) ) ;

theorem :: BCIALG_2:14
for X being ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra)
for x being ( ( ) ( ) Element of ( ( ) ( non empty ) set ) )
for m, n being ( ( ) ( V21() V22() V23() V27() V74() ext-real non negative V78() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() ) Element of bool REAL : ( ( ) ( ) set ) : ( ( ) ( non empty ) set ) ) ) holds (((0. X : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) ) : ( ( ) ( V44(b1 : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) ) ) Element of the carrier of b1 : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) : ( ( ) ( non empty ) set ) ) ,x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ) to_power (m : ( ( ) ( V21() V22() V23() V27() V74() ext-real non negative V78() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() ) Element of bool REAL : ( ( ) ( ) set ) : ( ( ) ( non empty ) set ) ) ) + n : ( ( ) ( V21() V22() V23() V27() V74() ext-real non negative V78() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() ) Element of bool REAL : ( ( ) ( ) set ) : ( ( ) ( non empty ) set ) ) ) ) : ( ( ) ( V21() V22() V23() V27() V74() ext-real non negative V78() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() ) Element of bool REAL : ( ( ) ( ) set ) : ( ( ) ( non empty ) set ) ) ) ) : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ` : ( ( ) ( ) Element of the carrier of b1 : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) : ( ( ) ( non empty ) set ) ) = ((((0. X : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) ) : ( ( ) ( V44(b1 : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) ) ) Element of the carrier of b1 : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) : ( ( ) ( non empty ) set ) ) ,x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ) to_power m : ( ( ) ( V21() V22() V23() V27() V74() ext-real non negative V78() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() ) Element of bool REAL : ( ( ) ( ) set ) : ( ( ) ( non empty ) set ) ) ) ) : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) `) : ( ( ) ( ) Element of the carrier of b1 : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) : ( ( ) ( non empty ) set ) ) \ (((0. X : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) ) : ( ( ) ( V44(b1 : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) ) ) Element of the carrier of b1 : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) : ( ( ) ( non empty ) set ) ) ,x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ) to_power n : ( ( ) ( V21() V22() V23() V27() V74() ext-real non negative V78() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() ) Element of bool REAL : ( ( ) ( ) set ) : ( ( ) ( non empty ) set ) ) ) ) : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) : ( ( ) ( ) Element of the carrier of b1 : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) : ( ( ) ( non empty ) set ) ) ;

theorem :: BCIALG_2:15
for X being ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra)
for x being ( ( ) ( ) Element of ( ( ) ( non empty ) set ) )
for m, n being ( ( ) ( V21() V22() V23() V27() V74() ext-real non negative V78() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() ) Element of bool REAL : ( ( ) ( ) set ) : ( ( ) ( non empty ) set ) ) ) holds (((0. X : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) ) : ( ( ) ( V44(b1 : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) ) ) Element of the carrier of b1 : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) : ( ( ) ( non empty ) set ) ) ,(((0. X : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) ) : ( ( ) ( V44(b1 : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) ) ) Element of the carrier of b1 : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) : ( ( ) ( non empty ) set ) ) ,x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ) to_power m : ( ( ) ( V21() V22() V23() V27() V74() ext-real non negative V78() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() ) Element of bool REAL : ( ( ) ( ) set ) : ( ( ) ( non empty ) set ) ) ) ) : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ) to_power n : ( ( ) ( V21() V22() V23() V27() V74() ext-real non negative V78() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() ) Element of bool REAL : ( ( ) ( ) set ) : ( ( ) ( non empty ) set ) ) ) ) : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ` : ( ( ) ( ) Element of the carrier of b1 : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) : ( ( ) ( non empty ) set ) ) = ((0. X : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) ) : ( ( ) ( V44(b1 : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) ) ) Element of the carrier of b1 : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) : ( ( ) ( non empty ) set ) ) ,x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ) to_power (m : ( ( ) ( V21() V22() V23() V27() V74() ext-real non negative V78() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() ) Element of bool REAL : ( ( ) ( ) set ) : ( ( ) ( non empty ) set ) ) ) * n : ( ( ) ( V21() V22() V23() V27() V74() ext-real non negative V78() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() ) Element of bool REAL : ( ( ) ( ) set ) : ( ( ) ( non empty ) set ) ) ) ) : ( ( ) ( V21() V22() V23() V27() V74() ext-real non negative V78() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() ) Element of bool REAL : ( ( ) ( ) set ) : ( ( ) ( non empty ) set ) ) ) : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ;

theorem :: BCIALG_2:16
for X being ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra)
for x being ( ( ) ( ) Element of ( ( ) ( non empty ) set ) )
for m, n being ( ( ) ( V21() V22() V23() V27() V74() ext-real non negative V78() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() ) Element of bool REAL : ( ( ) ( ) set ) : ( ( ) ( non empty ) set ) ) ) st ((0. X : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) ) : ( ( ) ( V44(b1 : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) ) ) Element of the carrier of b1 : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) : ( ( ) ( non empty ) set ) ) ,x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ) to_power m : ( ( ) ( V21() V22() V23() V27() V74() ext-real non negative V78() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() ) Element of bool REAL : ( ( ) ( ) set ) : ( ( ) ( non empty ) set ) ) ) : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) = 0. X : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) : ( ( ) ( V44(b1 : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) ) ) Element of the carrier of b1 : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) : ( ( ) ( non empty ) set ) ) holds
((0. X : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) ) : ( ( ) ( V44(b1 : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) ) ) Element of the carrier of b1 : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) : ( ( ) ( non empty ) set ) ) ,x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ) to_power (m : ( ( ) ( V21() V22() V23() V27() V74() ext-real non negative V78() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() ) Element of bool REAL : ( ( ) ( ) set ) : ( ( ) ( non empty ) set ) ) ) * n : ( ( ) ( V21() V22() V23() V27() V74() ext-real non negative V78() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() ) Element of bool REAL : ( ( ) ( ) set ) : ( ( ) ( non empty ) set ) ) ) ) : ( ( ) ( V21() V22() V23() V27() V74() ext-real non negative V78() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() ) Element of bool REAL : ( ( ) ( ) set ) : ( ( ) ( non empty ) set ) ) ) : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) = 0. X : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) : ( ( ) ( V44(b1 : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) ) ) Element of the carrier of b1 : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) : ( ( ) ( non empty ) set ) ) ;

theorem :: BCIALG_2:17
for X being ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra)
for x, y being ( ( ) ( ) Element of ( ( ) ( non empty ) set ) )
for n being ( ( ) ( V21() V22() V23() V27() V74() ext-real non negative V78() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() ) Element of bool REAL : ( ( ) ( ) set ) : ( ( ) ( non empty ) set ) ) ) st x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) \ y : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) : ( ( ) ( ) Element of the carrier of b1 : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) : ( ( ) ( non empty ) set ) ) = x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) holds
(x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ,y : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ) to_power n : ( ( ) ( V21() V22() V23() V27() V74() ext-real non negative V78() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() ) Element of bool REAL : ( ( ) ( ) set ) : ( ( ) ( non empty ) set ) ) ) : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) = x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ;

theorem :: BCIALG_2:18
for X being ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra)
for x, y being ( ( ) ( ) Element of ( ( ) ( non empty ) set ) )
for n being ( ( ) ( V21() V22() V23() V27() V74() ext-real non negative V78() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() ) Element of bool REAL : ( ( ) ( ) set ) : ( ( ) ( non empty ) set ) ) ) holds ((0. X : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) ) : ( ( ) ( V44(b1 : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) ) ) Element of the carrier of b1 : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) : ( ( ) ( non empty ) set ) ) ,(x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) \ y : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ) : ( ( ) ( ) Element of the carrier of b1 : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) : ( ( ) ( non empty ) set ) ) ) to_power n : ( ( ) ( V21() V22() V23() V27() V74() ext-real non negative V78() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() ) Element of bool REAL : ( ( ) ( ) set ) : ( ( ) ( non empty ) set ) ) ) : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) = (((0. X : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) ) : ( ( ) ( V44(b1 : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) ) ) Element of the carrier of b1 : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) : ( ( ) ( non empty ) set ) ) ,x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ) to_power n : ( ( ) ( V21() V22() V23() V27() V74() ext-real non negative V78() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() ) Element of bool REAL : ( ( ) ( ) set ) : ( ( ) ( non empty ) set ) ) ) ) : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) \ (((0. X : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) ) : ( ( ) ( V44(b1 : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) ) ) Element of the carrier of b1 : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) : ( ( ) ( non empty ) set ) ) ,y : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ) to_power n : ( ( ) ( V21() V22() V23() V27() V74() ext-real non negative V78() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() ) Element of bool REAL : ( ( ) ( ) set ) : ( ( ) ( non empty ) set ) ) ) ) : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) : ( ( ) ( ) Element of the carrier of b1 : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) : ( ( ) ( non empty ) set ) ) ;

theorem :: BCIALG_2:19
for X being ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra)
for x, y, z being ( ( ) ( ) Element of ( ( ) ( non empty ) set ) )
for n being ( ( ) ( V21() V22() V23() V27() V74() ext-real non negative V78() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() ) Element of bool REAL : ( ( ) ( ) set ) : ( ( ) ( non empty ) set ) ) ) st x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) <= y : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) holds
(x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ,z : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ) to_power n : ( ( ) ( V21() V22() V23() V27() V74() ext-real non negative V78() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() ) Element of bool REAL : ( ( ) ( ) set ) : ( ( ) ( non empty ) set ) ) ) : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) <= (y : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ,z : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ) to_power n : ( ( ) ( V21() V22() V23() V27() V74() ext-real non negative V78() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() ) Element of bool REAL : ( ( ) ( ) set ) : ( ( ) ( non empty ) set ) ) ) : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ;

theorem :: BCIALG_2:20
for X being ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra)
for x, y, z being ( ( ) ( ) Element of ( ( ) ( non empty ) set ) )
for n being ( ( ) ( V21() V22() V23() V27() V74() ext-real non negative V78() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() ) Element of bool REAL : ( ( ) ( ) set ) : ( ( ) ( non empty ) set ) ) ) st x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) <= y : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) holds
(z : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ,y : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ) to_power n : ( ( ) ( V21() V22() V23() V27() V74() ext-real non negative V78() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() ) Element of bool REAL : ( ( ) ( ) set ) : ( ( ) ( non empty ) set ) ) ) : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) <= (z : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ,x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ) to_power n : ( ( ) ( V21() V22() V23() V27() V74() ext-real non negative V78() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() ) Element of bool REAL : ( ( ) ( ) set ) : ( ( ) ( non empty ) set ) ) ) : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ;

theorem :: BCIALG_2:21
for X being ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra)
for x, z, y being ( ( ) ( ) Element of ( ( ) ( non empty ) set ) )
for n being ( ( ) ( V21() V22() V23() V27() V74() ext-real non negative V78() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() ) Element of bool REAL : ( ( ) ( ) set ) : ( ( ) ( non empty ) set ) ) ) holds ((x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ,z : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ) to_power n : ( ( ) ( V21() V22() V23() V27() V74() ext-real non negative V78() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() ) Element of bool REAL : ( ( ) ( ) set ) : ( ( ) ( non empty ) set ) ) ) ) : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) \ ((y : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ,z : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ) to_power n : ( ( ) ( V21() V22() V23() V27() V74() ext-real non negative V78() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() ) Element of bool REAL : ( ( ) ( ) set ) : ( ( ) ( non empty ) set ) ) ) ) : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) : ( ( ) ( ) Element of the carrier of b1 : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) : ( ( ) ( non empty ) set ) ) <= x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) \ y : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) : ( ( ) ( ) Element of the carrier of b1 : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) : ( ( ) ( non empty ) set ) ) ;

theorem :: BCIALG_2:22
for X being ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra)
for x, y being ( ( ) ( ) Element of ( ( ) ( non empty ) set ) )
for n being ( ( ) ( V21() V22() V23() V27() V74() ext-real non negative V78() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() ) Element of bool REAL : ( ( ) ( ) set ) : ( ( ) ( non empty ) set ) ) ) holds (((x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ,(x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) \ y : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ) : ( ( ) ( ) Element of the carrier of b1 : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) : ( ( ) ( non empty ) set ) ) ) to_power n : ( ( ) ( V21() V22() V23() V27() V74() ext-real non negative V78() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() ) Element of bool REAL : ( ( ) ( ) set ) : ( ( ) ( non empty ) set ) ) ) ) : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ,(y : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) \ x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ) : ( ( ) ( ) Element of the carrier of b1 : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) : ( ( ) ( non empty ) set ) ) ) to_power n : ( ( ) ( V21() V22() V23() V27() V74() ext-real non negative V78() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() ) Element of bool REAL : ( ( ) ( ) set ) : ( ( ) ( non empty ) set ) ) ) : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) <= x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ;

notation
let X be ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) ;
let a be ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ;
synonym minimal a for atom ;
end;

definition
let X be ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) ;
let a be ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ;
attr a is positive means :: BCIALG_2:def 2
0. X : ( ( ) ( ) BCIStr_0 ) : ( ( ) ( V44(X : ( ( ) ( ) BCIStr_0 ) ) ) Element of the carrier of X : ( ( ) ( ) BCIStr_0 ) : ( ( ) ( ) set ) ) <= a : ( ( Function-like V18([:X : ( ( ) ( ) BCIStr_0 ) ,X : ( ( ) ( ) BCIStr_0 ) :] : ( ( ) ( ) set ) ,X : ( ( ) ( ) BCIStr_0 ) ) ) ( Relation-like [:X : ( ( ) ( ) BCIStr_0 ) ,X : ( ( ) ( ) BCIStr_0 ) :] : ( ( ) ( ) set ) -defined X : ( ( ) ( ) BCIStr_0 ) -valued Function-like V18([:X : ( ( ) ( ) BCIStr_0 ) ,X : ( ( ) ( ) BCIStr_0 ) :] : ( ( ) ( ) set ) ,X : ( ( ) ( ) BCIStr_0 ) ) ) Element of bool [:[:X : ( ( ) ( ) BCIStr_0 ) ,X : ( ( ) ( ) BCIStr_0 ) :] : ( ( ) ( ) set ) ,X : ( ( ) ( ) BCIStr_0 ) :] : ( ( ) ( ) set ) : ( ( ) ( non empty ) set ) ) ;
attr a is least means :: BCIALG_2:def 3
for x being ( ( ) ( ) Element of ( ( ) ( ) set ) ) holds a : ( ( Function-like V18([:X : ( ( ) ( ) BCIStr_0 ) ,X : ( ( ) ( ) BCIStr_0 ) :] : ( ( ) ( ) set ) ,X : ( ( ) ( ) BCIStr_0 ) ) ) ( Relation-like [:X : ( ( ) ( ) BCIStr_0 ) ,X : ( ( ) ( ) BCIStr_0 ) :] : ( ( ) ( ) set ) -defined X : ( ( ) ( ) BCIStr_0 ) -valued Function-like V18([:X : ( ( ) ( ) BCIStr_0 ) ,X : ( ( ) ( ) BCIStr_0 ) :] : ( ( ) ( ) set ) ,X : ( ( ) ( ) BCIStr_0 ) ) ) Element of bool [:[:X : ( ( ) ( ) BCIStr_0 ) ,X : ( ( ) ( ) BCIStr_0 ) :] : ( ( ) ( ) set ) ,X : ( ( ) ( ) BCIStr_0 ) :] : ( ( ) ( ) set ) : ( ( ) ( non empty ) set ) ) <= x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ;
attr a is maximal means :: BCIALG_2:def 4
for x being ( ( ) ( ) Element of ( ( ) ( ) set ) ) st a : ( ( Function-like V18([:X : ( ( ) ( ) BCIStr_0 ) ,X : ( ( ) ( ) BCIStr_0 ) :] : ( ( ) ( ) set ) ,X : ( ( ) ( ) BCIStr_0 ) ) ) ( Relation-like [:X : ( ( ) ( ) BCIStr_0 ) ,X : ( ( ) ( ) BCIStr_0 ) :] : ( ( ) ( ) set ) -defined X : ( ( ) ( ) BCIStr_0 ) -valued Function-like V18([:X : ( ( ) ( ) BCIStr_0 ) ,X : ( ( ) ( ) BCIStr_0 ) :] : ( ( ) ( ) set ) ,X : ( ( ) ( ) BCIStr_0 ) ) ) Element of bool [:[:X : ( ( ) ( ) BCIStr_0 ) ,X : ( ( ) ( ) BCIStr_0 ) :] : ( ( ) ( ) set ) ,X : ( ( ) ( ) BCIStr_0 ) :] : ( ( ) ( ) set ) : ( ( ) ( non empty ) set ) ) <= x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) holds
x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) = a : ( ( Function-like V18([:X : ( ( ) ( ) BCIStr_0 ) ,X : ( ( ) ( ) BCIStr_0 ) :] : ( ( ) ( ) set ) ,X : ( ( ) ( ) BCIStr_0 ) ) ) ( Relation-like [:X : ( ( ) ( ) BCIStr_0 ) ,X : ( ( ) ( ) BCIStr_0 ) :] : ( ( ) ( ) set ) -defined X : ( ( ) ( ) BCIStr_0 ) -valued Function-like V18([:X : ( ( ) ( ) BCIStr_0 ) ,X : ( ( ) ( ) BCIStr_0 ) :] : ( ( ) ( ) set ) ,X : ( ( ) ( ) BCIStr_0 ) ) ) Element of bool [:[:X : ( ( ) ( ) BCIStr_0 ) ,X : ( ( ) ( ) BCIStr_0 ) :] : ( ( ) ( ) set ) ,X : ( ( ) ( ) BCIStr_0 ) :] : ( ( ) ( ) set ) : ( ( ) ( non empty ) set ) ) ;
attr a is greatest means :: BCIALG_2:def 5
for x being ( ( ) ( ) Element of ( ( ) ( ) set ) ) holds x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) <= a : ( ( Function-like V18([:X : ( ( ) ( ) BCIStr_0 ) ,X : ( ( ) ( ) BCIStr_0 ) :] : ( ( ) ( ) set ) ,X : ( ( ) ( ) BCIStr_0 ) ) ) ( Relation-like [:X : ( ( ) ( ) BCIStr_0 ) ,X : ( ( ) ( ) BCIStr_0 ) :] : ( ( ) ( ) set ) -defined X : ( ( ) ( ) BCIStr_0 ) -valued Function-like V18([:X : ( ( ) ( ) BCIStr_0 ) ,X : ( ( ) ( ) BCIStr_0 ) :] : ( ( ) ( ) set ) ,X : ( ( ) ( ) BCIStr_0 ) ) ) Element of bool [:[:X : ( ( ) ( ) BCIStr_0 ) ,X : ( ( ) ( ) BCIStr_0 ) :] : ( ( ) ( ) set ) ,X : ( ( ) ( ) BCIStr_0 ) :] : ( ( ) ( ) set ) : ( ( ) ( non empty ) set ) ) ;
end;

registration
let X be ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) ;
cluster positive for ( ( ) ( ) Element of the carrier of X : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCIStr_0 ) : ( ( ) ( non empty ) set ) ) ;
end;

registration
let X be ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) ;
cluster 0. X : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCIStr_0 ) : ( ( ) ( V44(X : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCIStr_0 ) ) ) Element of the carrier of X : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCIStr_0 ) : ( ( ) ( non empty ) set ) ) -> minimal positive ;
end;

theorem :: BCIALG_2:23
for X being ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra)
for a being ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) holds
( a : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) is minimal iff for x being ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) holds a : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) \ x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) : ( ( ) ( ) Element of the carrier of b1 : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) : ( ( ) ( non empty ) set ) ) = (x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) `) : ( ( ) ( ) Element of the carrier of b1 : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) : ( ( ) ( non empty ) set ) ) \ (a : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) `) : ( ( ) ( ) Element of the carrier of b1 : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) : ( ( ) ( non empty ) set ) ) : ( ( ) ( ) Element of the carrier of b1 : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) : ( ( ) ( non empty ) set ) ) ) ;

theorem :: BCIALG_2:24
for X being ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra)
for x being ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) holds
( x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ` : ( ( ) ( ) Element of the carrier of b1 : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) : ( ( ) ( non empty ) set ) ) is minimal iff for y being ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) st y : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) <= x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) holds
x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ` : ( ( ) ( ) Element of the carrier of b1 : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) : ( ( ) ( non empty ) set ) ) = y : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ` : ( ( ) ( ) Element of the carrier of b1 : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) : ( ( ) ( non empty ) set ) ) ) ;

theorem :: BCIALG_2:25
for X being ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra)
for x being ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) holds
( x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ` : ( ( ) ( ) Element of the carrier of b1 : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) : ( ( ) ( non empty ) set ) ) is minimal iff for y, z being ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) holds (((x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) \ z : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ) : ( ( ) ( ) Element of the carrier of b1 : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) : ( ( ) ( non empty ) set ) ) \ (y : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) \ z : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ) : ( ( ) ( ) Element of the carrier of b1 : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) : ( ( ) ( non empty ) set ) ) ) : ( ( ) ( ) Element of the carrier of b1 : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) : ( ( ) ( non empty ) set ) ) `) : ( ( ) ( ) Element of the carrier of b1 : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) : ( ( ) ( non empty ) set ) ) ` : ( ( ) ( ) Element of the carrier of b1 : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) : ( ( ) ( non empty ) set ) ) = (y : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) `) : ( ( ) ( ) Element of the carrier of b1 : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) : ( ( ) ( non empty ) set ) ) \ (x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) `) : ( ( ) ( ) Element of the carrier of b1 : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) : ( ( ) ( non empty ) set ) ) : ( ( ) ( ) Element of the carrier of b1 : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) : ( ( ) ( non empty ) set ) ) ) ;

theorem :: BCIALG_2:26
for X being ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) st 0. X : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) : ( ( ) ( V44(b1 : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) ) minimal positive ) Element of the carrier of b1 : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) : ( ( ) ( non empty ) set ) ) is maximal holds
for a being ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) holds a : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) is minimal ;

theorem :: BCIALG_2:27
for X being ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) st ex x being ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) st x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) is greatest holds
for a being ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) holds a : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) is positive ;

theorem :: BCIALG_2:28
for X being ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra)
for x being ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) holds x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) \ ((x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) `) : ( ( ) ( ) Element of the carrier of b1 : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) : ( ( ) ( non empty ) set ) ) `) : ( ( ) ( ) Element of the carrier of b1 : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) : ( ( ) ( non empty ) set ) ) : ( ( ) ( ) Element of the carrier of b1 : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) : ( ( ) ( non empty ) set ) ) is ( ( positive ) ( positive ) Element of ( ( ) ( non empty ) set ) ) ;

theorem :: BCIALG_2:29
for X being ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra)
for a being ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) holds
( a : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) is minimal iff (a : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) `) : ( ( ) ( ) Element of the carrier of b1 : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) : ( ( ) ( non empty ) set ) ) ` : ( ( ) ( ) Element of the carrier of b1 : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) : ( ( ) ( non empty ) set ) ) = a : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ) ;

theorem :: BCIALG_2:30
for X being ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra)
for a being ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) holds
( a : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) is minimal iff ex x being ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) st a : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) = x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ` : ( ( ) ( ) Element of the carrier of b1 : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) : ( ( ) ( non empty ) set ) ) ) ;

definition
let X be ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) ;
let x be ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ;
attr x is nilpotent means :: BCIALG_2:def 6
ex k being ( ( non empty ) ( non empty V21() V22() V23() V27() V74() ext-real non negative V78() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() ) Element of bool REAL : ( ( ) ( ) set ) : ( ( ) ( non empty ) set ) ) ) st ((0. X : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCIStr_0 ) ) : ( ( ) ( V44(X : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCIStr_0 ) ) minimal positive ) Element of the carrier of X : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCIStr_0 ) : ( ( ) ( non empty ) set ) ) ,x : ( ( non empty ) ( non empty ) set ) ) to_power k : ( ( non empty ) ( non empty V21() V22() V23() V27() V74() ext-real non negative V78() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() ) Element of bool REAL : ( ( ) ( ) set ) : ( ( ) ( non empty ) set ) ) ) : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) = 0. X : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCIStr_0 ) : ( ( ) ( V44(X : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCIStr_0 ) ) minimal positive ) Element of the carrier of X : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCIStr_0 ) : ( ( ) ( non empty ) set ) ) ;
end;

definition
let X be ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) ;
attr X is nilpotent means :: BCIALG_2:def 7
for x being ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) holds x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) is nilpotent ;
end;

definition
let X be ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) ;
let x be ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ;
assume x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) is nilpotent ;
func ord x -> ( ( non empty ) ( non empty V21() V22() V23() V27() V74() ext-real non negative V78() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() ) Element of bool REAL : ( ( ) ( ) set ) : ( ( ) ( non empty ) set ) ) ) means :: BCIALG_2:def 8
( ((0. X : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCIStr_0 ) ) : ( ( ) ( V44(X : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCIStr_0 ) ) minimal positive ) Element of the carrier of X : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCIStr_0 ) : ( ( ) ( non empty ) set ) ) ,x : ( ( non empty ) ( non empty ) set ) ) to_power it : ( ( ) ( ) Element of X : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCIStr_0 ) ) : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) = 0. X : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCIStr_0 ) : ( ( ) ( V44(X : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCIStr_0 ) ) minimal positive ) Element of the carrier of X : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCIStr_0 ) : ( ( ) ( non empty ) set ) ) & ( for m being ( ( ) ( V21() V22() V23() V27() V74() ext-real non negative V78() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() ) Element of bool REAL : ( ( ) ( ) set ) : ( ( ) ( non empty ) set ) ) ) st ((0. X : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCIStr_0 ) ) : ( ( ) ( V44(X : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCIStr_0 ) ) minimal positive ) Element of the carrier of X : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCIStr_0 ) : ( ( ) ( non empty ) set ) ) ,x : ( ( non empty ) ( non empty ) set ) ) to_power m : ( ( ) ( V21() V22() V23() V27() V74() ext-real non negative V78() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() ) Element of bool REAL : ( ( ) ( ) set ) : ( ( ) ( non empty ) set ) ) ) : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) = 0. X : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCIStr_0 ) : ( ( ) ( V44(X : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCIStr_0 ) ) minimal positive ) Element of the carrier of X : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCIStr_0 ) : ( ( ) ( non empty ) set ) ) & m : ( ( ) ( V21() V22() V23() V27() V74() ext-real non negative V78() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() ) Element of bool REAL : ( ( ) ( ) set ) : ( ( ) ( non empty ) set ) ) ) <> 0 : ( ( ) ( V21() V22() V23() V27() V74() ext-real non negative V78() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() ) Element of bool REAL : ( ( ) ( ) set ) : ( ( ) ( non empty ) set ) ) ) holds
it : ( ( ) ( ) Element of X : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCIStr_0 ) ) <= m : ( ( ) ( V21() V22() V23() V27() V74() ext-real non negative V78() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() ) Element of bool REAL : ( ( ) ( ) set ) : ( ( ) ( non empty ) set ) ) ) ) );
end;

registration
let X be ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) ;
cluster 0. X : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCIStr_0 ) : ( ( ) ( V44(X : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCIStr_0 ) ) minimal positive ) Element of the carrier of X : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCIStr_0 ) : ( ( ) ( non empty ) set ) ) -> nilpotent ;
end;

theorem :: BCIALG_2:31
for X being ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra)
for x being ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) holds
( x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) is ( ( positive ) ( positive ) Element of ( ( ) ( non empty ) set ) ) iff ( x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) is nilpotent & ord x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) : ( ( non empty ) ( non empty V21() V22() V23() V27() V74() ext-real non negative V78() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() ) Element of bool REAL : ( ( ) ( ) set ) : ( ( ) ( non empty ) set ) ) ) = 1 : ( ( ) ( non empty V21() V22() V23() V27() V74() ext-real non negative V78() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() ) Element of bool REAL : ( ( ) ( ) set ) : ( ( ) ( non empty ) set ) ) ) ) ) ;

theorem :: BCIALG_2:32
for X being ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) holds
( X : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) is ( ( non empty being_B being_C being_I being_BCI-4 being_BCK-5 ) ( non empty being_B being_C being_I being_BCI-4 being_BCK-5 ) BCK-algebra) iff for x being ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) holds
( ord x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) : ( ( non empty ) ( non empty V21() V22() V23() V27() V74() ext-real non negative V78() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() ) Element of bool REAL : ( ( ) ( ) set ) : ( ( ) ( non empty ) set ) ) ) = 1 : ( ( ) ( non empty V21() V22() V23() V27() V74() ext-real non negative V78() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() ) Element of bool REAL : ( ( ) ( ) set ) : ( ( ) ( non empty ) set ) ) ) & x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) is nilpotent ) ) ;

theorem :: BCIALG_2:33
for X being ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra)
for x being ( ( ) ( ) Element of ( ( ) ( non empty ) set ) )
for n being ( ( ) ( V21() V22() V23() V27() V74() ext-real non negative V78() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() ) Element of bool REAL : ( ( ) ( ) set ) : ( ( ) ( non empty ) set ) ) ) holds ((0. X : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) ) : ( ( ) ( V44(b1 : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) ) minimal positive nilpotent ) Element of the carrier of b1 : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) : ( ( ) ( non empty ) set ) ) ,(x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) `) : ( ( ) ( ) Element of the carrier of b1 : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) : ( ( ) ( non empty ) set ) ) ) to_power n : ( ( ) ( V21() V22() V23() V27() V74() ext-real non negative V78() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() ) Element of bool REAL : ( ( ) ( ) set ) : ( ( ) ( non empty ) set ) ) ) : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) is minimal ;

theorem :: BCIALG_2:34
for X being ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra)
for x being ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) st x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) is nilpotent holds
ord x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) : ( ( non empty ) ( non empty V21() V22() V23() V27() V74() ext-real non negative V78() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() ) Element of bool REAL : ( ( ) ( ) set ) : ( ( ) ( non empty ) set ) ) ) = ord (x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) `) : ( ( ) ( ) Element of the carrier of b1 : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) : ( ( ) ( non empty ) set ) ) : ( ( non empty ) ( non empty V21() V22() V23() V27() V74() ext-real non negative V78() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() ) Element of bool REAL : ( ( ) ( ) set ) : ( ( ) ( non empty ) set ) ) ) ;

begin

definition
let X be ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) ;
mode Congruence of X -> ( ( total symmetric transitive ) ( Relation-like the carrier of X : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCIStr_0 ) : ( ( ) ( non empty ) set ) -defined the carrier of X : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCIStr_0 ) : ( ( ) ( non empty ) set ) -valued total reflexive symmetric transitive ) Equivalence_Relation of ) means :: BCIALG_2:def 9
for x, y, u, v being ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) st [x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ,y : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ] : ( ( ) ( ) set ) in it : ( ( non empty ) ( non empty ) set ) & [u : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ,v : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ] : ( ( ) ( ) set ) in it : ( ( non empty ) ( non empty ) set ) holds
[(x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) \ u : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ) : ( ( ) ( ) Element of the carrier of X : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCIStr_0 ) : ( ( ) ( non empty ) set ) ) ,(y : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) \ v : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ) : ( ( ) ( ) Element of the carrier of X : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCIStr_0 ) : ( ( ) ( non empty ) set ) ) ] : ( ( ) ( ) set ) in it : ( ( non empty ) ( non empty ) set ) ;
end;

definition
let X be ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) ;
mode L-congruence of X -> ( ( total symmetric transitive ) ( Relation-like the carrier of X : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCIStr_0 ) : ( ( ) ( non empty ) set ) -defined the carrier of X : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCIStr_0 ) : ( ( ) ( non empty ) set ) -valued total reflexive symmetric transitive ) Equivalence_Relation of ) means :: BCIALG_2:def 10
for x, y being ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) st [x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ,y : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ] : ( ( ) ( ) set ) in it : ( ( non empty ) ( non empty ) set ) holds
for u being ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) holds [(u : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) \ x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ) : ( ( ) ( ) Element of the carrier of X : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCIStr_0 ) : ( ( ) ( non empty ) set ) ) ,(u : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) \ y : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ) : ( ( ) ( ) Element of the carrier of X : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCIStr_0 ) : ( ( ) ( non empty ) set ) ) ] : ( ( ) ( ) set ) in it : ( ( non empty ) ( non empty ) set ) ;
end;

definition
let X be ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) ;
mode R-congruence of X -> ( ( total symmetric transitive ) ( Relation-like the carrier of X : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCIStr_0 ) : ( ( ) ( non empty ) set ) -defined the carrier of X : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCIStr_0 ) : ( ( ) ( non empty ) set ) -valued total reflexive symmetric transitive ) Equivalence_Relation of ) means :: BCIALG_2:def 11
for x, y being ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) st [x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ,y : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ] : ( ( ) ( ) set ) in it : ( ( non empty ) ( non empty ) set ) holds
for u being ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) holds [(x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) \ u : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ) : ( ( ) ( ) Element of the carrier of X : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCIStr_0 ) : ( ( ) ( non empty ) set ) ) ,(y : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) \ u : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ) : ( ( ) ( ) Element of the carrier of X : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCIStr_0 ) : ( ( ) ( non empty ) set ) ) ] : ( ( ) ( ) set ) in it : ( ( non empty ) ( non empty ) set ) ;
end;

definition
let X be ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) ;
let A be ( ( ) ( non empty ) Ideal of X : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) ) ;
mode I-congruence of X,A -> ( ( ) ( Relation-like the carrier of X : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCIStr_0 ) : ( ( ) ( non empty ) set ) -defined the carrier of X : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCIStr_0 ) : ( ( ) ( non empty ) set ) -valued ) Relation of ) means :: BCIALG_2:def 12
for x, y being ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) holds
( [x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ,y : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ] : ( ( ) ( ) set ) in it : ( ( ) ( ) Element of X : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCIStr_0 ) ) iff ( x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) \ y : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) : ( ( ) ( ) Element of the carrier of X : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCIStr_0 ) : ( ( ) ( non empty ) set ) ) in A : ( ( non empty ) ( non empty ) set ) & y : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) \ x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) : ( ( ) ( ) Element of the carrier of X : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCIStr_0 ) : ( ( ) ( non empty ) set ) ) in A : ( ( non empty ) ( non empty ) set ) ) );
end;

registration
let X be ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) ;
let A be ( ( ) ( non empty ) Ideal of X : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) ) ;
cluster -> total symmetric transitive for ( ( ) ( ) I-congruence of X : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCIStr_0 ) ,A : ( ( non empty ) ( non empty ) set ) ) ;
end;

definition
let X be ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) ;
func IConSet X -> ( ( ) ( ) set ) means :: BCIALG_2:def 13
for A1 being ( ( ) ( ) set ) holds
( A1 : ( ( ) ( ) set ) in it : ( ( non empty ) ( non empty ) set ) iff ex I being ( ( ) ( non empty ) Ideal of X : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCIStr_0 ) ) st A1 : ( ( ) ( ) set ) is ( ( ) ( Relation-like the carrier of X : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCIStr_0 ) : ( ( ) ( non empty ) set ) -defined the carrier of X : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCIStr_0 ) : ( ( ) ( non empty ) set ) -valued total reflexive symmetric transitive ) I-congruence of X : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCIStr_0 ) ,I : ( ( ) ( non empty ) Ideal of X : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) ) ) );
end;

definition
let X be ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) ;
func ConSet X -> ( ( ) ( ) set ) equals :: BCIALG_2:def 14
{ R : ( ( ) ( Relation-like the carrier of X : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) : ( ( ) ( non empty ) set ) -defined the carrier of X : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) : ( ( ) ( non empty ) set ) -valued total reflexive symmetric transitive ) R-congruence of X : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) ) where R is ( ( ) ( Relation-like the carrier of X : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCIStr_0 ) : ( ( ) ( non empty ) set ) -defined the carrier of X : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCIStr_0 ) : ( ( ) ( non empty ) set ) -valued total reflexive symmetric transitive ) Congruence of X : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCIStr_0 ) ) : verum } ;
func LConSet X -> ( ( ) ( ) set ) equals :: BCIALG_2:def 15
{ R : ( ( ) ( Relation-like the carrier of X : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) : ( ( ) ( non empty ) set ) -defined the carrier of X : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) : ( ( ) ( non empty ) set ) -valued total reflexive symmetric transitive ) R-congruence of X : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) ) where R is ( ( ) ( Relation-like the carrier of X : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCIStr_0 ) : ( ( ) ( non empty ) set ) -defined the carrier of X : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCIStr_0 ) : ( ( ) ( non empty ) set ) -valued total reflexive symmetric transitive ) L-congruence of X : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCIStr_0 ) ) : verum } ;
func RConSet X -> ( ( ) ( ) set ) equals :: BCIALG_2:def 16
{ R : ( ( ) ( Relation-like the carrier of X : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) : ( ( ) ( non empty ) set ) -defined the carrier of X : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) : ( ( ) ( non empty ) set ) -valued total reflexive symmetric transitive ) R-congruence of X : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) ) where R is ( ( ) ( Relation-like the carrier of X : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCIStr_0 ) : ( ( ) ( non empty ) set ) -defined the carrier of X : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCIStr_0 ) : ( ( ) ( non empty ) set ) -valued total reflexive symmetric transitive ) R-congruence of X : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCIStr_0 ) ) : verum } ;
end;

theorem :: BCIALG_2:35
for X being ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra)
for E being ( ( ) ( Relation-like the carrier of b1 : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) : ( ( ) ( non empty ) set ) -defined the carrier of b1 : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) : ( ( ) ( non empty ) set ) -valued total reflexive symmetric transitive ) Congruence of X : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) ) holds Class (E : ( ( ) ( Relation-like the carrier of b1 : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) : ( ( ) ( non empty ) set ) -defined the carrier of b1 : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) : ( ( ) ( non empty ) set ) -valued total reflexive symmetric transitive ) Congruence of b1 : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) ) ,(0. X : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) ) : ( ( ) ( V44(b1 : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) ) minimal positive nilpotent ) Element of the carrier of b1 : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) : ( ( ) ( non empty ) set ) ) ) : ( ( ) ( ) Element of bool the carrier of b1 : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) : ( ( ) ( non empty ) set ) : ( ( ) ( non empty ) set ) ) is ( ( closed ) ( non empty closed ) Ideal of X : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) ) ;

theorem :: BCIALG_2:36
for X being ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra)
for R being ( ( total symmetric transitive ) ( Relation-like the carrier of b1 : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) : ( ( ) ( non empty ) set ) -defined the carrier of b1 : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) : ( ( ) ( non empty ) set ) -valued total reflexive symmetric transitive ) Equivalence_Relation of ) holds
( R : ( ( total symmetric transitive ) ( Relation-like the carrier of b1 : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) : ( ( ) ( non empty ) set ) -defined the carrier of b1 : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) : ( ( ) ( non empty ) set ) -valued total reflexive symmetric transitive ) Equivalence_Relation of ) is ( ( ) ( Relation-like the carrier of b1 : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) : ( ( ) ( non empty ) set ) -defined the carrier of b1 : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) : ( ( ) ( non empty ) set ) -valued total reflexive symmetric transitive ) Congruence of X : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) ) iff ( R : ( ( total symmetric transitive ) ( Relation-like the carrier of b1 : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) : ( ( ) ( non empty ) set ) -defined the carrier of b1 : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) : ( ( ) ( non empty ) set ) -valued total reflexive symmetric transitive ) Equivalence_Relation of ) is ( ( ) ( Relation-like the carrier of b1 : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) : ( ( ) ( non empty ) set ) -defined the carrier of b1 : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) : ( ( ) ( non empty ) set ) -valued total reflexive symmetric transitive ) R-congruence of X : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) ) & R : ( ( total symmetric transitive ) ( Relation-like the carrier of b1 : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) : ( ( ) ( non empty ) set ) -defined the carrier of b1 : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) : ( ( ) ( non empty ) set ) -valued total reflexive symmetric transitive ) Equivalence_Relation of ) is ( ( ) ( Relation-like the carrier of b1 : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) : ( ( ) ( non empty ) set ) -defined the carrier of b1 : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) : ( ( ) ( non empty ) set ) -valued total reflexive symmetric transitive ) L-congruence of X : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) ) ) ) ;

theorem :: BCIALG_2:37
for X being ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra)
for I being ( ( ) ( non empty ) Ideal of X : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) )
for RI being ( ( ) ( Relation-like the carrier of b1 : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) : ( ( ) ( non empty ) set ) -defined the carrier of b1 : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) : ( ( ) ( non empty ) set ) -valued total reflexive symmetric transitive ) I-congruence of X : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) ,I : ( ( ) ( non empty ) Ideal of b1 : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) ) ) holds RI : ( ( ) ( Relation-like the carrier of b1 : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) : ( ( ) ( non empty ) set ) -defined the carrier of b1 : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) : ( ( ) ( non empty ) set ) -valued total reflexive symmetric transitive ) I-congruence of b1 : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) ,b2 : ( ( ) ( non empty ) Ideal of b1 : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) ) ) is ( ( ) ( Relation-like the carrier of b1 : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) : ( ( ) ( non empty ) set ) -defined the carrier of b1 : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) : ( ( ) ( non empty ) set ) -valued total reflexive symmetric transitive ) Congruence of X : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) ) ;

definition
let X be ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) ;
let I be ( ( ) ( non empty ) Ideal of X : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) ) ;
:: original: I-congruence
redefine mode I-congruence of X,I -> ( ( ) ( Relation-like the carrier of X : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCIStr_0 ) : ( ( ) ( non empty ) set ) -defined the carrier of X : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCIStr_0 ) : ( ( ) ( non empty ) set ) -valued total reflexive symmetric transitive ) Congruence of X : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCIStr_0 ) ) ;
end;

theorem :: BCIALG_2:38
for X being ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra)
for I being ( ( ) ( non empty ) Ideal of X : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) )
for RI being ( ( ) ( Relation-like the carrier of b1 : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) : ( ( ) ( non empty ) set ) -defined the carrier of b1 : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) : ( ( ) ( non empty ) set ) -valued total reflexive symmetric transitive ) I-congruence of X : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) ,I : ( ( ) ( non empty ) Ideal of b1 : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) ) ) holds Class (RI : ( ( ) ( Relation-like the carrier of b1 : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) : ( ( ) ( non empty ) set ) -defined the carrier of b1 : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) : ( ( ) ( non empty ) set ) -valued total reflexive symmetric transitive ) I-congruence of b1 : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) ,b2 : ( ( ) ( non empty ) Ideal of b1 : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) ) ) ,(0. X : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) ) : ( ( ) ( V44(b1 : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) ) minimal positive nilpotent ) Element of the carrier of b1 : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) : ( ( ) ( non empty ) set ) ) ) : ( ( ) ( ) Element of bool the carrier of b1 : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) : ( ( ) ( non empty ) set ) : ( ( ) ( non empty ) set ) ) c= I : ( ( ) ( non empty ) Ideal of b1 : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) ) ;

theorem :: BCIALG_2:39
for X being ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra)
for I being ( ( ) ( non empty ) Ideal of X : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) )
for RI being ( ( ) ( Relation-like the carrier of b1 : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) : ( ( ) ( non empty ) set ) -defined the carrier of b1 : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) : ( ( ) ( non empty ) set ) -valued total reflexive symmetric transitive ) I-congruence of X : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) ,I : ( ( ) ( non empty ) Ideal of b1 : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) ) ) holds
( I : ( ( ) ( non empty ) Ideal of b1 : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) ) is closed iff I : ( ( ) ( non empty ) Ideal of b1 : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) ) = Class (RI : ( ( ) ( Relation-like the carrier of b1 : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) : ( ( ) ( non empty ) set ) -defined the carrier of b1 : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) : ( ( ) ( non empty ) set ) -valued total reflexive symmetric transitive ) I-congruence of b1 : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) ,b2 : ( ( ) ( non empty ) Ideal of b1 : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) ) ) ,(0. X : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) ) : ( ( ) ( V44(b1 : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) ) minimal positive nilpotent ) Element of the carrier of b1 : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) : ( ( ) ( non empty ) set ) ) ) : ( ( ) ( ) Element of bool the carrier of b1 : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) : ( ( ) ( non empty ) set ) : ( ( ) ( non empty ) set ) ) ) ;

theorem :: BCIALG_2:40
for X being ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra)
for x, y being ( ( ) ( ) Element of ( ( ) ( non empty ) set ) )
for E being ( ( ) ( Relation-like the carrier of b1 : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) : ( ( ) ( non empty ) set ) -defined the carrier of b1 : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) : ( ( ) ( non empty ) set ) -valued total reflexive symmetric transitive ) Congruence of X : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) ) st [x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ,y : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ] : ( ( ) ( ) set ) in E : ( ( ) ( Relation-like the carrier of b1 : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) : ( ( ) ( non empty ) set ) -defined the carrier of b1 : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) : ( ( ) ( non empty ) set ) -valued total reflexive symmetric transitive ) Congruence of b1 : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) ) holds
( x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) \ y : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) : ( ( ) ( ) Element of the carrier of b1 : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) : ( ( ) ( non empty ) set ) ) in Class (E : ( ( ) ( Relation-like the carrier of b1 : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) : ( ( ) ( non empty ) set ) -defined the carrier of b1 : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) : ( ( ) ( non empty ) set ) -valued total reflexive symmetric transitive ) Congruence of b1 : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) ) ,(0. X : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) ) : ( ( ) ( V44(b1 : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) ) minimal positive nilpotent ) Element of the carrier of b1 : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) : ( ( ) ( non empty ) set ) ) ) : ( ( ) ( ) Element of bool the carrier of b1 : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) : ( ( ) ( non empty ) set ) : ( ( ) ( non empty ) set ) ) & y : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) \ x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) : ( ( ) ( ) Element of the carrier of b1 : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) : ( ( ) ( non empty ) set ) ) in Class (E : ( ( ) ( Relation-like the carrier of b1 : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) : ( ( ) ( non empty ) set ) -defined the carrier of b1 : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) : ( ( ) ( non empty ) set ) -valued total reflexive symmetric transitive ) Congruence of b1 : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) ) ,(0. X : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) ) : ( ( ) ( V44(b1 : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) ) minimal positive nilpotent ) Element of the carrier of b1 : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) : ( ( ) ( non empty ) set ) ) ) : ( ( ) ( ) Element of bool the carrier of b1 : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) : ( ( ) ( non empty ) set ) : ( ( ) ( non empty ) set ) ) ) ;

theorem :: BCIALG_2:41
for X being ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra)
for A, I being ( ( ) ( non empty ) Ideal of X : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) )
for IA being ( ( ) ( Relation-like the carrier of b1 : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) : ( ( ) ( non empty ) set ) -defined the carrier of b1 : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) : ( ( ) ( non empty ) set ) -valued total reflexive symmetric transitive ) I-congruence of X : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) ,A : ( ( ) ( non empty ) Ideal of b1 : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) ) )
for II being ( ( ) ( Relation-like the carrier of b1 : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) : ( ( ) ( non empty ) set ) -defined the carrier of b1 : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) : ( ( ) ( non empty ) set ) -valued total reflexive symmetric transitive ) I-congruence of X : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) ,I : ( ( ) ( non empty ) Ideal of b1 : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) ) ) st Class (IA : ( ( ) ( Relation-like the carrier of b1 : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) : ( ( ) ( non empty ) set ) -defined the carrier of b1 : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) : ( ( ) ( non empty ) set ) -valued total reflexive symmetric transitive ) I-congruence of b1 : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) ,b2 : ( ( ) ( non empty ) Ideal of b1 : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) ) ) ,(0. X : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) ) : ( ( ) ( V44(b1 : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) ) minimal positive nilpotent ) Element of the carrier of b1 : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) : ( ( ) ( non empty ) set ) ) ) : ( ( ) ( ) Element of bool the carrier of b1 : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) : ( ( ) ( non empty ) set ) : ( ( ) ( non empty ) set ) ) = Class (II : ( ( ) ( Relation-like the carrier of b1 : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) : ( ( ) ( non empty ) set ) -defined the carrier of b1 : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) : ( ( ) ( non empty ) set ) -valued total reflexive symmetric transitive ) I-congruence of b1 : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) ,b3 : ( ( ) ( non empty ) Ideal of b1 : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) ) ) ,(0. X : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) ) : ( ( ) ( V44(b1 : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) ) minimal positive nilpotent ) Element of the carrier of b1 : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) : ( ( ) ( non empty ) set ) ) ) : ( ( ) ( ) Element of bool the carrier of b1 : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) : ( ( ) ( non empty ) set ) : ( ( ) ( non empty ) set ) ) holds
IA : ( ( ) ( Relation-like the carrier of b1 : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) : ( ( ) ( non empty ) set ) -defined the carrier of b1 : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) : ( ( ) ( non empty ) set ) -valued total reflexive symmetric transitive ) I-congruence of b1 : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) ,b2 : ( ( ) ( non empty ) Ideal of b1 : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) ) ) = II : ( ( ) ( Relation-like the carrier of b1 : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) : ( ( ) ( non empty ) set ) -defined the carrier of b1 : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) : ( ( ) ( non empty ) set ) -valued total reflexive symmetric transitive ) I-congruence of b1 : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) ,b3 : ( ( ) ( non empty ) Ideal of b1 : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) ) ) ;

theorem :: BCIALG_2:42
for X being ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra)
for x, y, u being ( ( ) ( ) Element of ( ( ) ( non empty ) set ) )
for k being ( ( ) ( V21() V22() V23() V27() V74() ext-real non negative V78() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() ) Element of bool REAL : ( ( ) ( ) set ) : ( ( ) ( non empty ) set ) ) )
for E being ( ( ) ( Relation-like the carrier of b1 : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) : ( ( ) ( non empty ) set ) -defined the carrier of b1 : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) : ( ( ) ( non empty ) set ) -valued total reflexive symmetric transitive ) Congruence of X : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) ) st [x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ,y : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ] : ( ( ) ( ) set ) in E : ( ( ) ( Relation-like the carrier of b1 : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) : ( ( ) ( non empty ) set ) -defined the carrier of b1 : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) : ( ( ) ( non empty ) set ) -valued total reflexive symmetric transitive ) Congruence of b1 : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) ) & u : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) in Class (E : ( ( ) ( Relation-like the carrier of b1 : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) : ( ( ) ( non empty ) set ) -defined the carrier of b1 : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) : ( ( ) ( non empty ) set ) -valued total reflexive symmetric transitive ) Congruence of b1 : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) ) ,(0. X : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) ) : ( ( ) ( V44(b1 : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) ) minimal positive nilpotent ) Element of the carrier of b1 : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) : ( ( ) ( non empty ) set ) ) ) : ( ( ) ( ) Element of bool the carrier of b1 : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) : ( ( ) ( non empty ) set ) : ( ( ) ( non empty ) set ) ) holds
[x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ,((y : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ,u : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ) to_power k : ( ( ) ( V21() V22() V23() V27() V74() ext-real non negative V78() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() ) Element of bool REAL : ( ( ) ( ) set ) : ( ( ) ( non empty ) set ) ) ) ) : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ] : ( ( ) ( ) set ) in E : ( ( ) ( Relation-like the carrier of b1 : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) : ( ( ) ( non empty ) set ) -defined the carrier of b1 : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) : ( ( ) ( non empty ) set ) -valued total reflexive symmetric transitive ) Congruence of b1 : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) ) ;

theorem :: BCIALG_2:43
for X being ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) st ( for X being ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra)
for x, y being ( ( ) ( ) Element of ( ( ) ( ) set ) ) ex i, j, m, n being ( ( ) ( V21() V22() V23() V27() V74() ext-real non negative V78() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() ) Element of bool REAL : ( ( ) ( ) set ) : ( ( ) ( non empty ) set ) ) ) st (((x : ( ( ) ( non empty ) Ideal of b1 : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) ) ,(x : ( ( ) ( non empty ) Ideal of b1 : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) ) \ y : ( ( ) ( ) Element of ( ( ) ( ) set ) ) ) : ( ( ) ( ) Element of the carrier of b2 : ( ( ) ( Relation-like the carrier of b1 : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) : ( ( ) ( non empty ) set ) -defined the carrier of b1 : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) : ( ( ) ( non empty ) set ) -valued total reflexive symmetric transitive ) Congruence of b1 : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) ) : ( ( ) ( ) set ) ) ) to_power i : ( ( ) ( V21() V22() V23() V27() V74() ext-real non negative V78() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() ) Element of bool REAL : ( ( ) ( ) set ) : ( ( ) ( non empty ) set ) ) ) ) : ( ( ) ( ) Element of ( ( ) ( ) set ) ) ,(y : ( ( ) ( ) Element of ( ( ) ( ) set ) ) \ x : ( ( ) ( non empty ) Ideal of b1 : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) ) ) : ( ( ) ( ) Element of the carrier of b2 : ( ( ) ( Relation-like the carrier of b1 : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) : ( ( ) ( non empty ) set ) -defined the carrier of b1 : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) : ( ( ) ( non empty ) set ) -valued total reflexive symmetric transitive ) Congruence of b1 : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) ) : ( ( ) ( ) set ) ) ) to_power j : ( ( ) ( V21() V22() V23() V27() V74() ext-real non negative V78() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() ) Element of bool REAL : ( ( ) ( ) set ) : ( ( ) ( non empty ) set ) ) ) : ( ( ) ( ) Element of ( ( ) ( ) set ) ) = (((y : ( ( ) ( ) Element of ( ( ) ( ) set ) ) ,(y : ( ( ) ( ) Element of ( ( ) ( ) set ) ) \ x : ( ( ) ( non empty ) Ideal of b1 : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) ) ) : ( ( ) ( ) Element of the carrier of b2 : ( ( ) ( Relation-like the carrier of b1 : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) : ( ( ) ( non empty ) set ) -defined the carrier of b1 : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) : ( ( ) ( non empty ) set ) -valued total reflexive symmetric transitive ) Congruence of b1 : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) ) : ( ( ) ( ) set ) ) ) to_power m : ( ( ) ( V21() V22() V23() V27() V74() ext-real non negative V78() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() ) Element of bool REAL : ( ( ) ( ) set ) : ( ( ) ( non empty ) set ) ) ) ) : ( ( ) ( ) Element of ( ( ) ( ) set ) ) ,(x : ( ( ) ( non empty ) Ideal of b1 : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) ) \ y : ( ( ) ( ) Element of ( ( ) ( ) set ) ) ) : ( ( ) ( ) Element of the carrier of b2 : ( ( ) ( Relation-like the carrier of b1 : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) : ( ( ) ( non empty ) set ) -defined the carrier of b1 : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) : ( ( ) ( non empty ) set ) -valued total reflexive symmetric transitive ) Congruence of b1 : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) ) : ( ( ) ( ) set ) ) ) to_power n : ( ( ) ( V21() V22() V23() V27() V74() ext-real non negative V78() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() ) Element of bool REAL : ( ( ) ( ) set ) : ( ( ) ( non empty ) set ) ) ) : ( ( ) ( ) Element of ( ( ) ( ) set ) ) ) holds
for E being ( ( ) ( Relation-like the carrier of b1 : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) : ( ( ) ( non empty ) set ) -defined the carrier of b1 : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) : ( ( ) ( non empty ) set ) -valued total reflexive symmetric transitive ) Congruence of X : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) )
for I being ( ( ) ( non empty ) Ideal of X : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) ) st I : ( ( ) ( non empty ) Ideal of b1 : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) ) = Class (E : ( ( ) ( Relation-like the carrier of b1 : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) : ( ( ) ( non empty ) set ) -defined the carrier of b1 : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) : ( ( ) ( non empty ) set ) -valued total reflexive symmetric transitive ) Congruence of b1 : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) ) ,(0. X : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) ) : ( ( ) ( V44(b1 : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) ) minimal positive nilpotent ) Element of the carrier of b1 : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) : ( ( ) ( non empty ) set ) ) ) : ( ( ) ( ) Element of bool the carrier of b1 : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) : ( ( ) ( non empty ) set ) : ( ( ) ( non empty ) set ) ) holds
E : ( ( ) ( Relation-like the carrier of b1 : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) : ( ( ) ( non empty ) set ) -defined the carrier of b1 : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) : ( ( ) ( non empty ) set ) -valued total reflexive symmetric transitive ) Congruence of b1 : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) ) is ( ( ) ( Relation-like the carrier of b1 : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) : ( ( ) ( non empty ) set ) -defined the carrier of b1 : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) : ( ( ) ( non empty ) set ) -valued total reflexive symmetric transitive ) I-congruence of X : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) ,I : ( ( ) ( non empty ) Ideal of b1 : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) ) ) ;

theorem :: BCIALG_2:44
for X being ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) holds IConSet X : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) : ( ( ) ( ) set ) c= ConSet X : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) : ( ( ) ( ) set ) ;

theorem :: BCIALG_2:45
for X being ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) holds ConSet X : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) : ( ( ) ( ) set ) c= LConSet X : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) : ( ( ) ( ) set ) ;

theorem :: BCIALG_2:46
for X being ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) holds ConSet X : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) : ( ( ) ( ) set ) c= RConSet X : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) : ( ( ) ( ) set ) ;

theorem :: BCIALG_2:47
for X being ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) holds ConSet X : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) : ( ( ) ( ) set ) = (LConSet X : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) ) : ( ( ) ( ) set ) /\ (RConSet X : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) ) : ( ( ) ( ) set ) : ( ( ) ( ) set ) ;

theorem :: BCIALG_2:48
for X being ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra)
for I being ( ( ) ( non empty ) Ideal of X : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) )
for RI being ( ( ) ( Relation-like the carrier of b1 : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) : ( ( ) ( non empty ) set ) -defined the carrier of b1 : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) : ( ( ) ( non empty ) set ) -valued total reflexive symmetric transitive ) I-congruence of X : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) ,I : ( ( ) ( non empty ) Ideal of b1 : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) ) )
for E being ( ( ) ( Relation-like the carrier of b1 : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) : ( ( ) ( non empty ) set ) -defined the carrier of b1 : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) : ( ( ) ( non empty ) set ) -valued total reflexive symmetric transitive ) Congruence of X : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) ) st ( for LC being ( ( ) ( Relation-like the carrier of b1 : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) : ( ( ) ( non empty ) set ) -defined the carrier of b1 : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) : ( ( ) ( non empty ) set ) -valued total reflexive symmetric transitive ) L-congruence of X : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) ) holds LC : ( ( ) ( Relation-like the carrier of b1 : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) : ( ( ) ( non empty ) set ) -defined the carrier of b1 : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) : ( ( ) ( non empty ) set ) -valued total reflexive symmetric transitive ) L-congruence of b1 : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) ) is ( ( ) ( Relation-like the carrier of b1 : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) : ( ( ) ( non empty ) set ) -defined the carrier of b1 : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) : ( ( ) ( non empty ) set ) -valued total reflexive symmetric transitive ) I-congruence of X : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) ,I : ( ( ) ( non empty ) Ideal of b1 : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) ) ) ) holds
E : ( ( ) ( Relation-like the carrier of b1 : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) : ( ( ) ( non empty ) set ) -defined the carrier of b1 : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) : ( ( ) ( non empty ) set ) -valued total reflexive symmetric transitive ) Congruence of b1 : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) ) = RI : ( ( ) ( Relation-like the carrier of b1 : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) : ( ( ) ( non empty ) set ) -defined the carrier of b1 : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) : ( ( ) ( non empty ) set ) -valued total reflexive symmetric transitive ) I-congruence of b1 : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) ,b2 : ( ( ) ( non empty ) Ideal of b1 : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) ) ) ;

theorem :: BCIALG_2:49
for X being ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra)
for I being ( ( ) ( non empty ) Ideal of X : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) )
for RI being ( ( ) ( Relation-like the carrier of b1 : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) : ( ( ) ( non empty ) set ) -defined the carrier of b1 : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) : ( ( ) ( non empty ) set ) -valued total reflexive symmetric transitive ) I-congruence of X : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) ,I : ( ( ) ( non empty ) Ideal of b1 : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) ) )
for E being ( ( ) ( Relation-like the carrier of b1 : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) : ( ( ) ( non empty ) set ) -defined the carrier of b1 : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) : ( ( ) ( non empty ) set ) -valued total reflexive symmetric transitive ) Congruence of X : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) ) st ( for RC being ( ( ) ( Relation-like the carrier of b1 : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) : ( ( ) ( non empty ) set ) -defined the carrier of b1 : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) : ( ( ) ( non empty ) set ) -valued total reflexive symmetric transitive ) R-congruence of X : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) ) holds RC : ( ( ) ( Relation-like the carrier of b1 : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) : ( ( ) ( non empty ) set ) -defined the carrier of b1 : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) : ( ( ) ( non empty ) set ) -valued total reflexive symmetric transitive ) R-congruence of b1 : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) ) is ( ( ) ( Relation-like the carrier of b1 : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) : ( ( ) ( non empty ) set ) -defined the carrier of b1 : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) : ( ( ) ( non empty ) set ) -valued total reflexive symmetric transitive ) I-congruence of X : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) ,I : ( ( ) ( non empty ) Ideal of b1 : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) ) ) ) holds
E : ( ( ) ( Relation-like the carrier of b1 : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) : ( ( ) ( non empty ) set ) -defined the carrier of b1 : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) : ( ( ) ( non empty ) set ) -valued total reflexive symmetric transitive ) Congruence of b1 : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) ) = RI : ( ( ) ( Relation-like the carrier of b1 : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) : ( ( ) ( non empty ) set ) -defined the carrier of b1 : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) : ( ( ) ( non empty ) set ) -valued total reflexive symmetric transitive ) I-congruence of b1 : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) ,b2 : ( ( ) ( non empty ) Ideal of b1 : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) ) ) ;

theorem :: BCIALG_2:50
for X being ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra)
for LC being ( ( ) ( Relation-like the carrier of b1 : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) : ( ( ) ( non empty ) set ) -defined the carrier of b1 : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) : ( ( ) ( non empty ) set ) -valued total reflexive symmetric transitive ) L-congruence of X : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) ) holds Class (LC : ( ( ) ( Relation-like the carrier of b1 : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) : ( ( ) ( non empty ) set ) -defined the carrier of b1 : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) : ( ( ) ( non empty ) set ) -valued total reflexive symmetric transitive ) L-congruence of b1 : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) ) ,(0. X : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) ) : ( ( ) ( V44(b1 : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) ) minimal positive nilpotent ) Element of the carrier of b1 : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) : ( ( ) ( non empty ) set ) ) ) : ( ( ) ( ) Element of bool the carrier of b1 : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) : ( ( ) ( non empty ) set ) : ( ( ) ( non empty ) set ) ) is ( ( closed ) ( non empty closed ) Ideal of X : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) ) ;

registration
let X be ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) ;
let E be ( ( ) ( Relation-like the carrier of X : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) : ( ( ) ( non empty ) set ) -defined the carrier of X : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) : ( ( ) ( non empty ) set ) -valued total reflexive symmetric transitive ) Congruence of X : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) ) ;
cluster Class E : ( ( ) ( Relation-like the carrier of X : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCIStr_0 ) : ( ( ) ( non empty ) set ) -defined the carrier of X : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCIStr_0 ) : ( ( ) ( non empty ) set ) -valued total reflexive symmetric transitive ) Congruence of X : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCIStr_0 ) ) : ( ( ) ( ) Element of bool (bool the carrier of X : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCIStr_0 ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty ) set ) : ( ( ) ( non empty ) set ) ) -> non empty ;
end;

definition
let X be ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) ;
let E be ( ( ) ( Relation-like the carrier of X : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) : ( ( ) ( non empty ) set ) -defined the carrier of X : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) : ( ( ) ( non empty ) set ) -valued total reflexive symmetric transitive ) Congruence of X : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) ) ;
func EqClaOp E -> ( ( Function-like V18([:(Class E : ( ( non empty ) ( non empty ) set ) ) : ( ( ) ( ) a_partition of the carrier of X : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCIStr_0 ) : ( ( ) ( non empty ) set ) ) ,(Class E : ( ( non empty ) ( non empty ) set ) ) : ( ( ) ( ) a_partition of the carrier of X : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCIStr_0 ) : ( ( ) ( non empty ) set ) ) :] : ( ( ) ( ) set ) , Class E : ( ( non empty ) ( non empty ) set ) : ( ( ) ( ) a_partition of the carrier of X : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCIStr_0 ) : ( ( ) ( non empty ) set ) ) ) ) ( Relation-like [:(Class E : ( ( non empty ) ( non empty ) set ) ) : ( ( ) ( ) a_partition of the carrier of X : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCIStr_0 ) : ( ( ) ( non empty ) set ) ) ,(Class E : ( ( non empty ) ( non empty ) set ) ) : ( ( ) ( ) a_partition of the carrier of X : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCIStr_0 ) : ( ( ) ( non empty ) set ) ) :] : ( ( ) ( ) set ) -defined Class E : ( ( non empty ) ( non empty ) set ) : ( ( ) ( ) a_partition of the carrier of X : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCIStr_0 ) : ( ( ) ( non empty ) set ) ) -valued Function-like V18([:(Class E : ( ( non empty ) ( non empty ) set ) ) : ( ( ) ( ) a_partition of the carrier of X : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCIStr_0 ) : ( ( ) ( non empty ) set ) ) ,(Class E : ( ( non empty ) ( non empty ) set ) ) : ( ( ) ( ) a_partition of the carrier of X : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCIStr_0 ) : ( ( ) ( non empty ) set ) ) :] : ( ( ) ( ) set ) , Class E : ( ( non empty ) ( non empty ) set ) : ( ( ) ( ) a_partition of the carrier of X : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCIStr_0 ) : ( ( ) ( non empty ) set ) ) ) ) BinOp of Class E : ( ( non empty ) ( non empty ) set ) : ( ( ) ( ) a_partition of the carrier of X : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCIStr_0 ) : ( ( ) ( non empty ) set ) ) ) means :: BCIALG_2:def 17
for W1, W2 being ( ( ) ( ) Element of Class E : ( ( non empty ) ( non empty ) set ) : ( ( ) ( ) a_partition of the carrier of X : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCIStr_0 ) : ( ( ) ( non empty ) set ) ) )
for x, y being ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) st W1 : ( ( ) ( ) Element of Class E : ( ( ) ( Relation-like the carrier of X : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) : ( ( ) ( non empty ) set ) -defined the carrier of X : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) : ( ( ) ( non empty ) set ) -valued total reflexive symmetric transitive ) Congruence of X : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) ) : ( ( ) ( non empty ) a_partition of the carrier of X : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) : ( ( ) ( non empty ) set ) ) ) = Class (E : ( ( non empty ) ( non empty ) set ) ,x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ) : ( ( ) ( ) Element of bool the carrier of X : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCIStr_0 ) : ( ( ) ( non empty ) set ) : ( ( ) ( non empty ) set ) ) & W2 : ( ( ) ( ) Element of Class E : ( ( ) ( Relation-like the carrier of X : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) : ( ( ) ( non empty ) set ) -defined the carrier of X : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) : ( ( ) ( non empty ) set ) -valued total reflexive symmetric transitive ) Congruence of X : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) ) : ( ( ) ( non empty ) a_partition of the carrier of X : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) : ( ( ) ( non empty ) set ) ) ) = Class (E : ( ( non empty ) ( non empty ) set ) ,y : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ) : ( ( ) ( ) Element of bool the carrier of X : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCIStr_0 ) : ( ( ) ( non empty ) set ) : ( ( ) ( non empty ) set ) ) holds
it : ( ( ) ( ) Element of X : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCIStr_0 ) ) . (W1 : ( ( ) ( ) Element of Class E : ( ( ) ( Relation-like the carrier of X : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) : ( ( ) ( non empty ) set ) -defined the carrier of X : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) : ( ( ) ( non empty ) set ) -valued total reflexive symmetric transitive ) Congruence of X : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) ) : ( ( ) ( non empty ) a_partition of the carrier of X : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) : ( ( ) ( non empty ) set ) ) ) ,W2 : ( ( ) ( ) Element of Class E : ( ( ) ( Relation-like the carrier of X : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) : ( ( ) ( non empty ) set ) -defined the carrier of X : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) : ( ( ) ( non empty ) set ) -valued total reflexive symmetric transitive ) Congruence of X : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) ) : ( ( ) ( non empty ) a_partition of the carrier of X : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) : ( ( ) ( non empty ) set ) ) ) ) : ( ( ) ( ) Element of Class E : ( ( non empty ) ( non empty ) set ) : ( ( ) ( ) a_partition of the carrier of X : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCIStr_0 ) : ( ( ) ( non empty ) set ) ) ) = Class (E : ( ( non empty ) ( non empty ) set ) ,(x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) \ y : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ) : ( ( ) ( ) Element of the carrier of X : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCIStr_0 ) : ( ( ) ( non empty ) set ) ) ) : ( ( ) ( ) Element of bool the carrier of X : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCIStr_0 ) : ( ( ) ( non empty ) set ) : ( ( ) ( non empty ) set ) ) ;
end;

definition
let X be ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) ;
let E be ( ( ) ( Relation-like the carrier of X : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) : ( ( ) ( non empty ) set ) -defined the carrier of X : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) : ( ( ) ( non empty ) set ) -valued total reflexive symmetric transitive ) Congruence of X : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) ) ;
func zeroEqC E -> ( ( ) ( ) Element of Class E : ( ( non empty ) ( non empty ) set ) : ( ( ) ( ) a_partition of the carrier of X : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCIStr_0 ) : ( ( ) ( non empty ) set ) ) ) equals :: BCIALG_2:def 18
Class (E : ( ( non empty ) ( non empty ) set ) ,(0. X : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCIStr_0 ) ) : ( ( ) ( V44(X : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCIStr_0 ) ) minimal positive nilpotent ) Element of the carrier of X : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCIStr_0 ) : ( ( ) ( non empty ) set ) ) ) : ( ( ) ( ) Element of bool the carrier of X : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCIStr_0 ) : ( ( ) ( non empty ) set ) : ( ( ) ( non empty ) set ) ) ;
end;

definition
let X be ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) ;
let E be ( ( ) ( Relation-like the carrier of X : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) : ( ( ) ( non empty ) set ) -defined the carrier of X : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) : ( ( ) ( non empty ) set ) -valued total reflexive symmetric transitive ) Congruence of X : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) ) ;
func X ./. E -> ( ( ) ( ) BCIStr_0 ) equals :: BCIALG_2:def 19
BCIStr_0(# (Class E : ( ( non empty ) ( non empty ) set ) ) : ( ( ) ( ) a_partition of the carrier of X : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCIStr_0 ) : ( ( ) ( non empty ) set ) ) ,(EqClaOp E : ( ( non empty ) ( non empty ) set ) ) : ( ( Function-like V18([:(Class E : ( ( non empty ) ( non empty ) set ) ) : ( ( ) ( ) a_partition of the carrier of X : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCIStr_0 ) : ( ( ) ( non empty ) set ) ) ,(Class E : ( ( non empty ) ( non empty ) set ) ) : ( ( ) ( ) a_partition of the carrier of X : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCIStr_0 ) : ( ( ) ( non empty ) set ) ) :] : ( ( ) ( ) set ) , Class E : ( ( non empty ) ( non empty ) set ) : ( ( ) ( ) a_partition of the carrier of X : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCIStr_0 ) : ( ( ) ( non empty ) set ) ) ) ) ( Relation-like [:(Class E : ( ( non empty ) ( non empty ) set ) ) : ( ( ) ( ) a_partition of the carrier of X : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCIStr_0 ) : ( ( ) ( non empty ) set ) ) ,(Class E : ( ( non empty ) ( non empty ) set ) ) : ( ( ) ( ) a_partition of the carrier of X : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCIStr_0 ) : ( ( ) ( non empty ) set ) ) :] : ( ( ) ( ) set ) -defined Class E : ( ( non empty ) ( non empty ) set ) : ( ( ) ( ) a_partition of the carrier of X : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCIStr_0 ) : ( ( ) ( non empty ) set ) ) -valued Function-like V18([:(Class E : ( ( non empty ) ( non empty ) set ) ) : ( ( ) ( ) a_partition of the carrier of X : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCIStr_0 ) : ( ( ) ( non empty ) set ) ) ,(Class E : ( ( non empty ) ( non empty ) set ) ) : ( ( ) ( ) a_partition of the carrier of X : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCIStr_0 ) : ( ( ) ( non empty ) set ) ) :] : ( ( ) ( ) set ) , Class E : ( ( non empty ) ( non empty ) set ) : ( ( ) ( ) a_partition of the carrier of X : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCIStr_0 ) : ( ( ) ( non empty ) set ) ) ) ) BinOp of Class E : ( ( non empty ) ( non empty ) set ) : ( ( ) ( ) a_partition of the carrier of X : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCIStr_0 ) : ( ( ) ( non empty ) set ) ) ) ,(zeroEqC E : ( ( non empty ) ( non empty ) set ) ) : ( ( ) ( ) Element of Class E : ( ( non empty ) ( non empty ) set ) : ( ( ) ( ) a_partition of the carrier of X : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCIStr_0 ) : ( ( ) ( non empty ) set ) ) ) #) : ( ( strict ) ( strict ) BCIStr_0 ) ;
end;

registration
let X be ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) ;
let E be ( ( ) ( Relation-like the carrier of X : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) : ( ( ) ( non empty ) set ) -defined the carrier of X : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) : ( ( ) ( non empty ) set ) -valued total reflexive symmetric transitive ) Congruence of X : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) ) ;
cluster X : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCIStr_0 ) ./. E : ( ( ) ( Relation-like the carrier of X : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCIStr_0 ) : ( ( ) ( non empty ) set ) -defined the carrier of X : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCIStr_0 ) : ( ( ) ( non empty ) set ) -valued total reflexive symmetric transitive ) Congruence of X : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCIStr_0 ) ) : ( ( ) ( ) BCIStr_0 ) -> non empty ;
end;

definition
let X be ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) ;
let E be ( ( ) ( Relation-like the carrier of X : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) : ( ( ) ( non empty ) set ) -defined the carrier of X : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) : ( ( ) ( non empty ) set ) -valued total reflexive symmetric transitive ) Congruence of X : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) ) ;
let W1, W2 be ( ( ) ( ) Element of Class E : ( ( ) ( Relation-like the carrier of X : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) : ( ( ) ( non empty ) set ) -defined the carrier of X : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) : ( ( ) ( non empty ) set ) -valued total reflexive symmetric transitive ) Congruence of X : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) ) : ( ( ) ( non empty ) a_partition of the carrier of X : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) : ( ( ) ( non empty ) set ) ) ) ;
func W1 \ W2 -> ( ( ) ( ) Element of Class E : ( ( non empty ) ( non empty ) set ) : ( ( ) ( ) a_partition of the carrier of X : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCIStr_0 ) : ( ( ) ( non empty ) set ) ) ) equals :: BCIALG_2:def 20
(EqClaOp E : ( ( non empty ) ( non empty ) set ) ) : ( ( Function-like V18([:(Class E : ( ( non empty ) ( non empty ) set ) ) : ( ( ) ( ) a_partition of the carrier of X : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCIStr_0 ) : ( ( ) ( non empty ) set ) ) ,(Class E : ( ( non empty ) ( non empty ) set ) ) : ( ( ) ( ) a_partition of the carrier of X : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCIStr_0 ) : ( ( ) ( non empty ) set ) ) :] : ( ( ) ( ) set ) , Class E : ( ( non empty ) ( non empty ) set ) : ( ( ) ( ) a_partition of the carrier of X : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCIStr_0 ) : ( ( ) ( non empty ) set ) ) ) ) ( Relation-like [:(Class E : ( ( non empty ) ( non empty ) set ) ) : ( ( ) ( ) a_partition of the carrier of X : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCIStr_0 ) : ( ( ) ( non empty ) set ) ) ,(Class E : ( ( non empty ) ( non empty ) set ) ) : ( ( ) ( ) a_partition of the carrier of X : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCIStr_0 ) : ( ( ) ( non empty ) set ) ) :] : ( ( ) ( ) set ) -defined Class E : ( ( non empty ) ( non empty ) set ) : ( ( ) ( ) a_partition of the carrier of X : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCIStr_0 ) : ( ( ) ( non empty ) set ) ) -valued Function-like V18([:(Class E : ( ( non empty ) ( non empty ) set ) ) : ( ( ) ( ) a_partition of the carrier of X : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCIStr_0 ) : ( ( ) ( non empty ) set ) ) ,(Class E : ( ( non empty ) ( non empty ) set ) ) : ( ( ) ( ) a_partition of the carrier of X : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCIStr_0 ) : ( ( ) ( non empty ) set ) ) :] : ( ( ) ( ) set ) , Class E : ( ( non empty ) ( non empty ) set ) : ( ( ) ( ) a_partition of the carrier of X : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCIStr_0 ) : ( ( ) ( non empty ) set ) ) ) ) BinOp of Class E : ( ( non empty ) ( non empty ) set ) : ( ( ) ( ) a_partition of the carrier of X : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCIStr_0 ) : ( ( ) ( non empty ) set ) ) ) . (W1 : ( ( ) ( ) Element of X : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCIStr_0 ) ) ,W2 : ( ( ) ( ) set ) ) : ( ( ) ( ) Element of Class E : ( ( non empty ) ( non empty ) set ) : ( ( ) ( ) a_partition of the carrier of X : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCIStr_0 ) : ( ( ) ( non empty ) set ) ) ) ;
end;

theorem :: BCIALG_2:51
for X being ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra)
for I being ( ( ) ( non empty ) Ideal of X : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) )
for RI being ( ( ) ( Relation-like the carrier of b1 : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) : ( ( ) ( non empty ) set ) -defined the carrier of b1 : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) : ( ( ) ( non empty ) set ) -valued total reflexive symmetric transitive ) I-congruence of X : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) ,I : ( ( ) ( non empty ) Ideal of b1 : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) ) ) holds X : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) ./. RI : ( ( ) ( Relation-like the carrier of b1 : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) : ( ( ) ( non empty ) set ) -defined the carrier of b1 : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) : ( ( ) ( non empty ) set ) -valued total reflexive symmetric transitive ) I-congruence of b1 : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) ,b2 : ( ( ) ( non empty ) Ideal of b1 : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) ) ) : ( ( ) ( non empty ) BCIStr_0 ) is ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) ;

registration
let X be ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) ;
let I be ( ( ) ( non empty ) Ideal of X : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) ) ;
let RI be ( ( ) ( Relation-like the carrier of X : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) : ( ( ) ( non empty ) set ) -defined the carrier of X : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) : ( ( ) ( non empty ) set ) -valued total reflexive symmetric transitive ) I-congruence of X : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) ,I : ( ( ) ( non empty ) Ideal of X : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) ) ) ;
cluster X : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCIStr_0 ) ./. RI : ( ( ) ( Relation-like the carrier of X : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCIStr_0 ) : ( ( ) ( non empty ) set ) -defined the carrier of X : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCIStr_0 ) : ( ( ) ( non empty ) set ) -valued total reflexive symmetric transitive ) I-congruence of X : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCIStr_0 ) ,I : ( ( ) ( non empty ) Ideal of X : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCIStr_0 ) ) ) : ( ( ) ( ) BCIStr_0 ) -> strict being_B being_C being_I being_BCI-4 ;
end;

theorem :: BCIALG_2:52
for X being ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra)
for I being ( ( ) ( non empty ) Ideal of X : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) ) st I : ( ( ) ( non empty ) Ideal of b1 : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) ) = BCK-part X : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) : ( ( non empty ) ( non empty ) Element of bool the carrier of b1 : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) : ( ( ) ( non empty ) set ) : ( ( ) ( non empty ) set ) ) holds
for RI being ( ( ) ( Relation-like the carrier of b1 : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) : ( ( ) ( non empty ) set ) -defined the carrier of b1 : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) : ( ( ) ( non empty ) set ) -valued total reflexive symmetric transitive ) I-congruence of X : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) ,I : ( ( ) ( non empty ) Ideal of b1 : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) ) ) holds X : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) ./. RI : ( ( ) ( Relation-like the carrier of b1 : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) : ( ( ) ( non empty ) set ) -defined the carrier of b1 : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) : ( ( ) ( non empty ) set ) -valued total reflexive symmetric transitive ) I-congruence of b1 : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) ,b2 : ( ( ) ( non empty ) Ideal of b1 : ( ( non empty being_B being_C being_I being_BCI-4 ) ( non empty being_B being_C being_I being_BCI-4 ) BCI-algebra) ) ) : ( ( ) ( non empty strict being_B being_C being_I being_BCI-4 ) BCIStr_0 ) is ( ( non empty being_B being_C being_I being_BCI-4 p-Semisimple ) ( non empty being_B being_C being_I being_BCI-4 weakly-positive-implicative p-Semisimple ) BCI-algebra) ;