:: BORSUK_4 semantic presentation

begin

registration
cluster being_simple_closed_curve -> non trivial being_simple_closed_curve for ( ( ) ( ) Element of bool the carrier of (TOP-REAL 2 : ( ( ) ( non empty natural V72() real ext-real positive non negative V80() V81() V143() V144() V145() V146() V147() V148() left_end bounded_below ) Element of NAT : ( ( ) ( V143() V144() V145() V146() V147() V148() V149() bounded_below ) Element of bool REAL : ( ( ) ( V143() V144() V145() V149() non bounded_below non bounded_above interval ) set ) : ( ( ) ( non empty ) set ) ) ) ) : ( ( strict ) ( non empty non trivial TopSpace-like T_0 T_1 T_2 V109() V155() V156() V157() V158() V159() V160() V161() strict add-continuous Mult-continuous ) RLTopStruct ) : ( ( ) ( functional non empty non trivial ) set ) : ( ( ) ( non empty ) set ) ) ;
end;

theorem :: BORSUK_4:1
for X being ( ( non empty ) ( non empty ) set )
for A being ( ( non empty ) ( non empty ) Subset of ( ( ) ( non empty ) set ) ) st A : ( ( non empty ) ( non empty ) Subset of ( ( ) ( non empty ) set ) ) is trivial holds
ex x being ( ( ) ( ) Element of X : ( ( non empty ) ( non empty ) set ) ) st A : ( ( non empty ) ( non empty ) Subset of ( ( ) ( non empty ) set ) ) = {x : ( ( ) ( ) Element of b1 : ( ( non empty ) ( non empty ) set ) ) } : ( ( ) ( non empty trivial ) Element of bool b1 : ( ( non empty ) ( non empty ) set ) : ( ( ) ( non empty ) set ) ) ;

theorem :: BORSUK_4:2
for X being ( ( non trivial ) ( non empty non trivial ) set )
for p being ( ( ) ( ) set ) ex q being ( ( ) ( ) Element of X : ( ( non trivial ) ( non empty non trivial ) set ) ) st q : ( ( ) ( ) Element of b1 : ( ( non trivial ) ( non empty non trivial ) set ) ) <> p : ( ( ) ( ) set ) ;

theorem :: BORSUK_4:3
for T being ( ( non trivial ) ( non empty non trivial ) set )
for X being ( ( non trivial ) ( non empty non trivial ) Subset of ( ( ) ( non empty ) set ) )
for p being ( ( ) ( ) set ) ex q being ( ( ) ( ) Element of T : ( ( non trivial ) ( non empty non trivial ) set ) ) st
( q : ( ( ) ( ) Element of b1 : ( ( non trivial ) ( non empty non trivial ) set ) ) in X : ( ( non trivial ) ( non empty non trivial ) Subset of ( ( ) ( non empty ) set ) ) & q : ( ( ) ( ) Element of b1 : ( ( non trivial ) ( non empty non trivial ) set ) ) <> p : ( ( ) ( ) set ) ) ;

theorem :: BORSUK_4:4
for f, g being ( ( Relation-like Function-like ) ( Relation-like Function-like ) Function)
for a being ( ( ) ( ) set ) st f : ( ( Relation-like Function-like ) ( Relation-like Function-like ) Function) is one-to-one & g : ( ( Relation-like Function-like ) ( Relation-like Function-like ) Function) is one-to-one & (dom f : ( ( Relation-like Function-like ) ( Relation-like Function-like ) Function) ) : ( ( ) ( ) set ) /\ (dom g : ( ( Relation-like Function-like ) ( Relation-like Function-like ) Function) ) : ( ( ) ( ) set ) : ( ( ) ( ) set ) = {a : ( ( ) ( ) set ) } : ( ( ) ( non empty trivial ) set ) & (rng f : ( ( Relation-like Function-like ) ( Relation-like Function-like ) Function) ) : ( ( ) ( ) set ) /\ (rng g : ( ( Relation-like Function-like ) ( Relation-like Function-like ) Function) ) : ( ( ) ( ) set ) : ( ( ) ( ) set ) = {(f : ( ( Relation-like Function-like ) ( Relation-like Function-like ) Function) . a : ( ( ) ( ) set ) ) : ( ( ) ( ) set ) } : ( ( ) ( non empty trivial ) set ) holds
f : ( ( Relation-like Function-like ) ( Relation-like Function-like ) Function) +* g : ( ( Relation-like Function-like ) ( Relation-like Function-like ) Function) : ( ( Relation-like Function-like ) ( Relation-like Function-like ) set ) is one-to-one ;

theorem :: BORSUK_4:5
for f, g being ( ( Relation-like Function-like ) ( Relation-like Function-like ) Function)
for a being ( ( ) ( ) set ) st f : ( ( Relation-like Function-like ) ( Relation-like Function-like ) Function) is one-to-one & g : ( ( Relation-like Function-like ) ( Relation-like Function-like ) Function) is one-to-one & (dom f : ( ( Relation-like Function-like ) ( Relation-like Function-like ) Function) ) : ( ( ) ( ) set ) /\ (dom g : ( ( Relation-like Function-like ) ( Relation-like Function-like ) Function) ) : ( ( ) ( ) set ) : ( ( ) ( ) set ) = {a : ( ( ) ( ) set ) } : ( ( ) ( non empty trivial ) set ) & (rng f : ( ( Relation-like Function-like ) ( Relation-like Function-like ) Function) ) : ( ( ) ( ) set ) /\ (rng g : ( ( Relation-like Function-like ) ( Relation-like Function-like ) Function) ) : ( ( ) ( ) set ) : ( ( ) ( ) set ) = {(f : ( ( Relation-like Function-like ) ( Relation-like Function-like ) Function) . a : ( ( ) ( ) set ) ) : ( ( ) ( ) set ) } : ( ( ) ( non empty trivial ) set ) & f : ( ( Relation-like Function-like ) ( Relation-like Function-like ) Function) . a : ( ( ) ( ) set ) : ( ( ) ( ) set ) = g : ( ( Relation-like Function-like ) ( Relation-like Function-like ) Function) . a : ( ( ) ( ) set ) : ( ( ) ( ) set ) holds
(f : ( ( Relation-like Function-like ) ( Relation-like Function-like ) Function) +* g : ( ( Relation-like Function-like ) ( Relation-like Function-like ) Function) ) : ( ( Relation-like Function-like ) ( Relation-like Function-like ) set ) " : ( ( Relation-like Function-like ) ( Relation-like Function-like ) set ) = (f : ( ( Relation-like Function-like ) ( Relation-like Function-like ) Function) ") : ( ( Relation-like Function-like ) ( Relation-like Function-like ) set ) +* (g : ( ( Relation-like Function-like ) ( Relation-like Function-like ) Function) ") : ( ( Relation-like Function-like ) ( Relation-like Function-like ) set ) : ( ( Relation-like Function-like ) ( Relation-like Function-like ) set ) ;

theorem :: BORSUK_4:6
for n being ( ( ) ( natural V72() real ext-real V80() V81() V143() V144() V145() V146() V147() V148() bounded_below ) Element of NAT : ( ( ) ( V143() V144() V145() V146() V147() V148() V149() bounded_below ) Element of bool REAL : ( ( ) ( V143() V144() V145() V149() non bounded_below non bounded_above interval ) set ) : ( ( ) ( non empty ) set ) ) )
for A being ( ( ) ( ) Subset of )
for p, q being ( ( ) ( V35(b1 : ( ( ) ( natural V72() real ext-real V80() V81() V143() V144() V145() V146() V147() V148() bounded_below ) Element of NAT : ( ( ) ( V143() V144() V145() V146() V147() V148() V149() bounded_below ) Element of bool REAL : ( ( ) ( V143() V144() V145() V149() non bounded_below non bounded_above interval ) set ) : ( ( ) ( non empty ) set ) ) ) ) V77() V135() ) Point of ( ( ) ( functional non empty ) set ) ) st A : ( ( ) ( ) Subset of ) is_an_arc_of p : ( ( ) ( V35(b1 : ( ( ) ( natural V72() real ext-real V80() V81() V143() V144() V145() V146() V147() V148() bounded_below ) Element of NAT : ( ( ) ( V143() V144() V145() V146() V147() V148() V149() bounded_below ) Element of bool REAL : ( ( ) ( V143() V144() V145() V149() non bounded_below non bounded_above interval ) set ) : ( ( ) ( non empty ) set ) ) ) ) V77() V135() ) Point of ( ( ) ( functional non empty ) set ) ) ,q : ( ( ) ( V35(b1 : ( ( ) ( natural V72() real ext-real V80() V81() V143() V144() V145() V146() V147() V148() bounded_below ) Element of NAT : ( ( ) ( V143() V144() V145() V146() V147() V148() V149() bounded_below ) Element of bool REAL : ( ( ) ( V143() V144() V145() V149() non bounded_below non bounded_above interval ) set ) : ( ( ) ( non empty ) set ) ) ) ) V77() V135() ) Point of ( ( ) ( functional non empty ) set ) ) holds
not A : ( ( ) ( ) Subset of ) \ {p : ( ( ) ( V35(b1 : ( ( ) ( natural V72() real ext-real V80() V81() V143() V144() V145() V146() V147() V148() bounded_below ) Element of NAT : ( ( ) ( V143() V144() V145() V146() V147() V148() V149() bounded_below ) Element of bool REAL : ( ( ) ( V143() V144() V145() V149() non bounded_below non bounded_above interval ) set ) : ( ( ) ( non empty ) set ) ) ) ) V77() V135() ) Point of ( ( ) ( functional non empty ) set ) ) } : ( ( ) ( non empty trivial closed compact bounded ) Element of bool the carrier of (TOP-REAL b1 : ( ( ) ( natural V72() real ext-real V80() V81() V143() V144() V145() V146() V147() V148() bounded_below ) Element of NAT : ( ( ) ( V143() V144() V145() V146() V147() V148() V149() bounded_below ) Element of bool REAL : ( ( ) ( V143() V144() V145() V149() non bounded_below non bounded_above interval ) set ) : ( ( ) ( non empty ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like T_0 T_1 T_2 V109() V155() V156() V157() V158() V159() V160() V161() strict add-continuous Mult-continuous ) RLTopStruct ) : ( ( ) ( functional non empty ) set ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( ) Element of bool the carrier of (TOP-REAL b1 : ( ( ) ( natural V72() real ext-real V80() V81() V143() V144() V145() V146() V147() V148() bounded_below ) Element of NAT : ( ( ) ( V143() V144() V145() V146() V147() V148() V149() bounded_below ) Element of bool REAL : ( ( ) ( V143() V144() V145() V149() non bounded_below non bounded_above interval ) set ) : ( ( ) ( non empty ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like T_0 T_1 T_2 V109() V155() V156() V157() V158() V159() V160() V161() strict add-continuous Mult-continuous ) RLTopStruct ) : ( ( ) ( functional non empty ) set ) : ( ( ) ( non empty ) set ) ) is empty ;

theorem :: BORSUK_4:7
for s1, s3, s4, l being ( ( real ) ( V72() real ext-real ) number ) st s1 : ( ( real ) ( V72() real ext-real ) number ) <= s3 : ( ( real ) ( V72() real ext-real ) number ) & s1 : ( ( real ) ( V72() real ext-real ) number ) < s4 : ( ( real ) ( V72() real ext-real ) number ) & 0 : ( ( ) ( empty trivial natural V72() real ext-real non positive non negative V80() V81() V143() V144() V145() V146() V147() V148() V149() bounded_below interval ) Element of NAT : ( ( ) ( V143() V144() V145() V146() V147() V148() V149() bounded_below ) Element of bool REAL : ( ( ) ( V143() V144() V145() V149() non bounded_below non bounded_above interval ) set ) : ( ( ) ( non empty ) set ) ) ) <= l : ( ( real ) ( V72() real ext-real ) number ) & l : ( ( real ) ( V72() real ext-real ) number ) <= 1 : ( ( ) ( non empty natural V72() real ext-real positive non negative V80() V81() V143() V144() V145() V146() V147() V148() left_end bounded_below ) Element of NAT : ( ( ) ( V143() V144() V145() V146() V147() V148() V149() bounded_below ) Element of bool REAL : ( ( ) ( V143() V144() V145() V149() non bounded_below non bounded_above interval ) set ) : ( ( ) ( non empty ) set ) ) ) holds
s1 : ( ( real ) ( V72() real ext-real ) number ) <= ((1 : ( ( ) ( non empty natural V72() real ext-real positive non negative V80() V81() V143() V144() V145() V146() V147() V148() left_end bounded_below ) Element of NAT : ( ( ) ( V143() V144() V145() V146() V147() V148() V149() bounded_below ) Element of bool REAL : ( ( ) ( V143() V144() V145() V149() non bounded_below non bounded_above interval ) set ) : ( ( ) ( non empty ) set ) ) ) - l : ( ( real ) ( V72() real ext-real ) number ) ) : ( ( ) ( V72() real ext-real ) set ) * s3 : ( ( real ) ( V72() real ext-real ) number ) ) : ( ( ) ( V72() real ext-real ) set ) + (l : ( ( real ) ( V72() real ext-real ) number ) * s4 : ( ( real ) ( V72() real ext-real ) number ) ) : ( ( ) ( V72() real ext-real ) set ) : ( ( ) ( V72() real ext-real ) set ) ;

theorem :: BORSUK_4:8
for A being ( ( ) ( V143() V144() V145() ) Subset of )
for a, b being ( ( real ) ( V72() real ext-real ) number ) st a : ( ( real ) ( V72() real ext-real ) number ) < b : ( ( real ) ( V72() real ext-real ) number ) & A : ( ( ) ( V143() V144() V145() ) Subset of ) = ].a : ( ( real ) ( V72() real ext-real ) number ) ,b : ( ( real ) ( V72() real ext-real ) number ) .[ : ( ( ) ( V143() V144() V145() open non left_end non right_end interval ) Element of bool REAL : ( ( ) ( V143() V144() V145() V149() non bounded_below non bounded_above interval ) set ) : ( ( ) ( non empty ) set ) ) holds
[.a : ( ( real ) ( V72() real ext-real ) number ) ,b : ( ( real ) ( V72() real ext-real ) number ) .] : ( ( ) ( V143() V144() V145() closed interval ) Element of bool REAL : ( ( ) ( V143() V144() V145() V149() non bounded_below non bounded_above interval ) set ) : ( ( ) ( non empty ) set ) ) c= the carrier of I[01] : ( ( ) ( non empty strict TopSpace-like T_0 T_1 T_2 compact V197() ) SubSpace of R^1 : ( ( TopSpace-like ) ( non empty strict TopSpace-like T_0 T_1 T_2 V197() ) TopStruct ) ) : ( ( ) ( non empty V143() V144() V145() ) set ) ;

theorem :: BORSUK_4:9
for A being ( ( ) ( V143() V144() V145() ) Subset of )
for a, b being ( ( real ) ( V72() real ext-real ) number ) st a : ( ( real ) ( V72() real ext-real ) number ) < b : ( ( real ) ( V72() real ext-real ) number ) & A : ( ( ) ( V143() V144() V145() ) Subset of ) = ].a : ( ( real ) ( V72() real ext-real ) number ) ,b : ( ( real ) ( V72() real ext-real ) number ) .] : ( ( ) ( V143() V144() V145() non left_end interval ) Element of bool REAL : ( ( ) ( V143() V144() V145() V149() non bounded_below non bounded_above interval ) set ) : ( ( ) ( non empty ) set ) ) holds
[.a : ( ( real ) ( V72() real ext-real ) number ) ,b : ( ( real ) ( V72() real ext-real ) number ) .] : ( ( ) ( V143() V144() V145() closed interval ) Element of bool REAL : ( ( ) ( V143() V144() V145() V149() non bounded_below non bounded_above interval ) set ) : ( ( ) ( non empty ) set ) ) c= the carrier of I[01] : ( ( ) ( non empty strict TopSpace-like T_0 T_1 T_2 compact V197() ) SubSpace of R^1 : ( ( TopSpace-like ) ( non empty strict TopSpace-like T_0 T_1 T_2 V197() ) TopStruct ) ) : ( ( ) ( non empty V143() V144() V145() ) set ) ;

theorem :: BORSUK_4:10
for A being ( ( ) ( V143() V144() V145() ) Subset of )
for a, b being ( ( real ) ( V72() real ext-real ) number ) st a : ( ( real ) ( V72() real ext-real ) number ) < b : ( ( real ) ( V72() real ext-real ) number ) & A : ( ( ) ( V143() V144() V145() ) Subset of ) = [.a : ( ( real ) ( V72() real ext-real ) number ) ,b : ( ( real ) ( V72() real ext-real ) number ) .[ : ( ( ) ( V143() V144() V145() non right_end interval ) Element of bool REAL : ( ( ) ( V143() V144() V145() V149() non bounded_below non bounded_above interval ) set ) : ( ( ) ( non empty ) set ) ) holds
[.a : ( ( real ) ( V72() real ext-real ) number ) ,b : ( ( real ) ( V72() real ext-real ) number ) .] : ( ( ) ( V143() V144() V145() closed interval ) Element of bool REAL : ( ( ) ( V143() V144() V145() V149() non bounded_below non bounded_above interval ) set ) : ( ( ) ( non empty ) set ) ) c= the carrier of I[01] : ( ( ) ( non empty strict TopSpace-like T_0 T_1 T_2 compact V197() ) SubSpace of R^1 : ( ( TopSpace-like ) ( non empty strict TopSpace-like T_0 T_1 T_2 V197() ) TopStruct ) ) : ( ( ) ( non empty V143() V144() V145() ) set ) ;

theorem :: BORSUK_4:11
for a, b being ( ( real ) ( V72() real ext-real ) number ) st a : ( ( real ) ( V72() real ext-real ) number ) <> b : ( ( real ) ( V72() real ext-real ) number ) holds
Cl ].a : ( ( real ) ( V72() real ext-real ) number ) ,b : ( ( real ) ( V72() real ext-real ) number ) .] : ( ( ) ( V143() V144() V145() non left_end interval ) Element of bool REAL : ( ( ) ( V143() V144() V145() V149() non bounded_below non bounded_above interval ) set ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( V143() V144() V145() ) Element of bool REAL : ( ( ) ( V143() V144() V145() V149() non bounded_below non bounded_above interval ) set ) : ( ( ) ( non empty ) set ) ) = [.a : ( ( real ) ( V72() real ext-real ) number ) ,b : ( ( real ) ( V72() real ext-real ) number ) .] : ( ( ) ( V143() V144() V145() closed interval ) Element of bool REAL : ( ( ) ( V143() V144() V145() V149() non bounded_below non bounded_above interval ) set ) : ( ( ) ( non empty ) set ) ) ;

theorem :: BORSUK_4:12
for a, b being ( ( real ) ( V72() real ext-real ) number ) st a : ( ( real ) ( V72() real ext-real ) number ) <> b : ( ( real ) ( V72() real ext-real ) number ) holds
Cl [.a : ( ( real ) ( V72() real ext-real ) number ) ,b : ( ( real ) ( V72() real ext-real ) number ) .[ : ( ( ) ( V143() V144() V145() non right_end interval ) Element of bool REAL : ( ( ) ( V143() V144() V145() V149() non bounded_below non bounded_above interval ) set ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( V143() V144() V145() ) Element of bool REAL : ( ( ) ( V143() V144() V145() V149() non bounded_below non bounded_above interval ) set ) : ( ( ) ( non empty ) set ) ) = [.a : ( ( real ) ( V72() real ext-real ) number ) ,b : ( ( real ) ( V72() real ext-real ) number ) .] : ( ( ) ( V143() V144() V145() closed interval ) Element of bool REAL : ( ( ) ( V143() V144() V145() V149() non bounded_below non bounded_above interval ) set ) : ( ( ) ( non empty ) set ) ) ;

theorem :: BORSUK_4:13
for A being ( ( ) ( V143() V144() V145() ) Subset of )
for a, b being ( ( real ) ( V72() real ext-real ) number ) st a : ( ( real ) ( V72() real ext-real ) number ) < b : ( ( real ) ( V72() real ext-real ) number ) & A : ( ( ) ( V143() V144() V145() ) Subset of ) = ].a : ( ( real ) ( V72() real ext-real ) number ) ,b : ( ( real ) ( V72() real ext-real ) number ) .[ : ( ( ) ( V143() V144() V145() open non left_end non right_end interval ) Element of bool REAL : ( ( ) ( V143() V144() V145() V149() non bounded_below non bounded_above interval ) set ) : ( ( ) ( non empty ) set ) ) holds
Cl A : ( ( ) ( V143() V144() V145() ) Subset of ) : ( ( ) ( closed V143() V144() V145() ) Element of bool the carrier of I[01] : ( ( ) ( non empty strict TopSpace-like T_0 T_1 T_2 compact V197() ) SubSpace of R^1 : ( ( TopSpace-like ) ( non empty strict TopSpace-like T_0 T_1 T_2 V197() ) TopStruct ) ) : ( ( ) ( non empty V143() V144() V145() ) set ) : ( ( ) ( non empty ) set ) ) = [.a : ( ( real ) ( V72() real ext-real ) number ) ,b : ( ( real ) ( V72() real ext-real ) number ) .] : ( ( ) ( V143() V144() V145() closed interval ) Element of bool REAL : ( ( ) ( V143() V144() V145() V149() non bounded_below non bounded_above interval ) set ) : ( ( ) ( non empty ) set ) ) ;

theorem :: BORSUK_4:14
for A being ( ( ) ( V143() V144() V145() ) Subset of )
for a, b being ( ( real ) ( V72() real ext-real ) number ) st a : ( ( real ) ( V72() real ext-real ) number ) < b : ( ( real ) ( V72() real ext-real ) number ) & A : ( ( ) ( V143() V144() V145() ) Subset of ) = ].a : ( ( real ) ( V72() real ext-real ) number ) ,b : ( ( real ) ( V72() real ext-real ) number ) .] : ( ( ) ( V143() V144() V145() non left_end interval ) Element of bool REAL : ( ( ) ( V143() V144() V145() V149() non bounded_below non bounded_above interval ) set ) : ( ( ) ( non empty ) set ) ) holds
Cl A : ( ( ) ( V143() V144() V145() ) Subset of ) : ( ( ) ( closed V143() V144() V145() ) Element of bool the carrier of I[01] : ( ( ) ( non empty strict TopSpace-like T_0 T_1 T_2 compact V197() ) SubSpace of R^1 : ( ( TopSpace-like ) ( non empty strict TopSpace-like T_0 T_1 T_2 V197() ) TopStruct ) ) : ( ( ) ( non empty V143() V144() V145() ) set ) : ( ( ) ( non empty ) set ) ) = [.a : ( ( real ) ( V72() real ext-real ) number ) ,b : ( ( real ) ( V72() real ext-real ) number ) .] : ( ( ) ( V143() V144() V145() closed interval ) Element of bool REAL : ( ( ) ( V143() V144() V145() V149() non bounded_below non bounded_above interval ) set ) : ( ( ) ( non empty ) set ) ) ;

theorem :: BORSUK_4:15
for A being ( ( ) ( V143() V144() V145() ) Subset of )
for a, b being ( ( real ) ( V72() real ext-real ) number ) st a : ( ( real ) ( V72() real ext-real ) number ) < b : ( ( real ) ( V72() real ext-real ) number ) & A : ( ( ) ( V143() V144() V145() ) Subset of ) = [.a : ( ( real ) ( V72() real ext-real ) number ) ,b : ( ( real ) ( V72() real ext-real ) number ) .[ : ( ( ) ( V143() V144() V145() non right_end interval ) Element of bool REAL : ( ( ) ( V143() V144() V145() V149() non bounded_below non bounded_above interval ) set ) : ( ( ) ( non empty ) set ) ) holds
Cl A : ( ( ) ( V143() V144() V145() ) Subset of ) : ( ( ) ( closed V143() V144() V145() ) Element of bool the carrier of I[01] : ( ( ) ( non empty strict TopSpace-like T_0 T_1 T_2 compact V197() ) SubSpace of R^1 : ( ( TopSpace-like ) ( non empty strict TopSpace-like T_0 T_1 T_2 V197() ) TopStruct ) ) : ( ( ) ( non empty V143() V144() V145() ) set ) : ( ( ) ( non empty ) set ) ) = [.a : ( ( real ) ( V72() real ext-real ) number ) ,b : ( ( real ) ( V72() real ext-real ) number ) .] : ( ( ) ( V143() V144() V145() closed interval ) Element of bool REAL : ( ( ) ( V143() V144() V145() V149() non bounded_below non bounded_above interval ) set ) : ( ( ) ( non empty ) set ) ) ;

theorem :: BORSUK_4:16
for A being ( ( ) ( V143() V144() V145() ) Subset of )
for a, b being ( ( real ) ( V72() real ext-real ) number ) st a : ( ( real ) ( V72() real ext-real ) number ) <= b : ( ( real ) ( V72() real ext-real ) number ) & A : ( ( ) ( V143() V144() V145() ) Subset of ) = [.a : ( ( real ) ( V72() real ext-real ) number ) ,b : ( ( real ) ( V72() real ext-real ) number ) .] : ( ( ) ( V143() V144() V145() closed interval ) Element of bool REAL : ( ( ) ( V143() V144() V145() V149() non bounded_below non bounded_above interval ) set ) : ( ( ) ( non empty ) set ) ) holds
( 0 : ( ( ) ( empty trivial natural V72() real ext-real non positive non negative V80() V81() V143() V144() V145() V146() V147() V148() V149() bounded_below interval ) Element of NAT : ( ( ) ( V143() V144() V145() V146() V147() V148() V149() bounded_below ) Element of bool REAL : ( ( ) ( V143() V144() V145() V149() non bounded_below non bounded_above interval ) set ) : ( ( ) ( non empty ) set ) ) ) <= a : ( ( real ) ( V72() real ext-real ) number ) & b : ( ( real ) ( V72() real ext-real ) number ) <= 1 : ( ( ) ( non empty natural V72() real ext-real positive non negative V80() V81() V143() V144() V145() V146() V147() V148() left_end bounded_below ) Element of NAT : ( ( ) ( V143() V144() V145() V146() V147() V148() V149() bounded_below ) Element of bool REAL : ( ( ) ( V143() V144() V145() V149() non bounded_below non bounded_above interval ) set ) : ( ( ) ( non empty ) set ) ) ) ) ;

theorem :: BORSUK_4:17
for A, B being ( ( ) ( V143() V144() V145() ) Subset of )
for a, b, c being ( ( real ) ( V72() real ext-real ) number ) st a : ( ( real ) ( V72() real ext-real ) number ) < b : ( ( real ) ( V72() real ext-real ) number ) & b : ( ( real ) ( V72() real ext-real ) number ) < c : ( ( real ) ( V72() real ext-real ) number ) & A : ( ( ) ( V143() V144() V145() ) Subset of ) = [.a : ( ( real ) ( V72() real ext-real ) number ) ,b : ( ( real ) ( V72() real ext-real ) number ) .[ : ( ( ) ( V143() V144() V145() non right_end interval ) Element of bool REAL : ( ( ) ( V143() V144() V145() V149() non bounded_below non bounded_above interval ) set ) : ( ( ) ( non empty ) set ) ) & B : ( ( ) ( V143() V144() V145() ) Subset of ) = ].b : ( ( real ) ( V72() real ext-real ) number ) ,c : ( ( real ) ( V72() real ext-real ) number ) .] : ( ( ) ( V143() V144() V145() non left_end interval ) Element of bool REAL : ( ( ) ( V143() V144() V145() V149() non bounded_below non bounded_above interval ) set ) : ( ( ) ( non empty ) set ) ) holds
A : ( ( ) ( V143() V144() V145() ) Subset of ) ,B : ( ( ) ( V143() V144() V145() ) Subset of ) are_separated ;

theorem :: BORSUK_4:18
for p1, p2 being ( ( ) ( V72() real ext-real ) Point of ( ( ) ( non empty V143() V144() V145() ) set ) ) holds [.p1 : ( ( ) ( V72() real ext-real ) Point of ( ( ) ( non empty V143() V144() V145() ) set ) ) ,p2 : ( ( ) ( V72() real ext-real ) Point of ( ( ) ( non empty V143() V144() V145() ) set ) ) .] : ( ( ) ( V143() V144() V145() closed interval ) Element of bool REAL : ( ( ) ( V143() V144() V145() V149() non bounded_below non bounded_above interval ) set ) : ( ( ) ( non empty ) set ) ) is ( ( ) ( V143() V144() V145() ) Subset of ) ;

theorem :: BORSUK_4:19
for a, b being ( ( ) ( V72() real ext-real ) Point of ( ( ) ( non empty V143() V144() V145() ) set ) ) holds ].a : ( ( ) ( V72() real ext-real ) Point of ( ( ) ( non empty V143() V144() V145() ) set ) ) ,b : ( ( ) ( V72() real ext-real ) Point of ( ( ) ( non empty V143() V144() V145() ) set ) ) .[ : ( ( ) ( V143() V144() V145() open non left_end non right_end interval ) Element of bool REAL : ( ( ) ( V143() V144() V145() V149() non bounded_below non bounded_above interval ) set ) : ( ( ) ( non empty ) set ) ) is ( ( ) ( V143() V144() V145() ) Subset of ) ;

begin

theorem :: BORSUK_4:20
for p being ( ( real ) ( V72() real ext-real ) number ) holds {p : ( ( real ) ( V72() real ext-real ) number ) } : ( ( ) ( non empty trivial V143() V144() V145() ) Element of bool REAL : ( ( ) ( V143() V144() V145() V149() non bounded_below non bounded_above interval ) set ) : ( ( ) ( non empty ) set ) ) is ( ( non empty closed_interval ) ( non empty V143() V144() V145() closed_interval interval ) Subset of ( ( ) ( non empty ) set ) ) ;

theorem :: BORSUK_4:21
for A being ( ( non empty connected ) ( non empty connected V143() V144() V145() ) Subset of )
for a, b, c being ( ( ) ( V72() real ext-real ) Point of ( ( ) ( non empty V143() V144() V145() ) set ) ) st a : ( ( ) ( V72() real ext-real ) Point of ( ( ) ( non empty V143() V144() V145() ) set ) ) <= b : ( ( ) ( V72() real ext-real ) Point of ( ( ) ( non empty V143() V144() V145() ) set ) ) & b : ( ( ) ( V72() real ext-real ) Point of ( ( ) ( non empty V143() V144() V145() ) set ) ) <= c : ( ( ) ( V72() real ext-real ) Point of ( ( ) ( non empty V143() V144() V145() ) set ) ) & a : ( ( ) ( V72() real ext-real ) Point of ( ( ) ( non empty V143() V144() V145() ) set ) ) in A : ( ( non empty connected ) ( non empty connected V143() V144() V145() ) Subset of ) & c : ( ( ) ( V72() real ext-real ) Point of ( ( ) ( non empty V143() V144() V145() ) set ) ) in A : ( ( non empty connected ) ( non empty connected V143() V144() V145() ) Subset of ) holds
b : ( ( ) ( V72() real ext-real ) Point of ( ( ) ( non empty V143() V144() V145() ) set ) ) in A : ( ( non empty connected ) ( non empty connected V143() V144() V145() ) Subset of ) ;

theorem :: BORSUK_4:22
for A being ( ( non empty connected ) ( non empty connected V143() V144() V145() ) Subset of )
for a, b being ( ( real ) ( V72() real ext-real ) number ) st a : ( ( real ) ( V72() real ext-real ) number ) in A : ( ( non empty connected ) ( non empty connected V143() V144() V145() ) Subset of ) & b : ( ( real ) ( V72() real ext-real ) number ) in A : ( ( non empty connected ) ( non empty connected V143() V144() V145() ) Subset of ) holds
[.a : ( ( real ) ( V72() real ext-real ) number ) ,b : ( ( real ) ( V72() real ext-real ) number ) .] : ( ( ) ( V143() V144() V145() closed interval ) Element of bool REAL : ( ( ) ( V143() V144() V145() V149() non bounded_below non bounded_above interval ) set ) : ( ( ) ( non empty ) set ) ) c= A : ( ( non empty connected ) ( non empty connected V143() V144() V145() ) Subset of ) ;

theorem :: BORSUK_4:23
for a, b being ( ( real ) ( V72() real ext-real ) number )
for A being ( ( ) ( V143() V144() V145() ) Subset of ) st A : ( ( ) ( V143() V144() V145() ) Subset of ) = [.a : ( ( real ) ( V72() real ext-real ) number ) ,b : ( ( real ) ( V72() real ext-real ) number ) .] : ( ( ) ( V143() V144() V145() closed interval ) Element of bool REAL : ( ( ) ( V143() V144() V145() V149() non bounded_below non bounded_above interval ) set ) : ( ( ) ( non empty ) set ) ) holds
A : ( ( ) ( V143() V144() V145() ) Subset of ) is closed ;

theorem :: BORSUK_4:24
for p1, p2 being ( ( ) ( V72() real ext-real ) Point of ( ( ) ( non empty V143() V144() V145() ) set ) ) st p1 : ( ( ) ( V72() real ext-real ) Point of ( ( ) ( non empty V143() V144() V145() ) set ) ) <= p2 : ( ( ) ( V72() real ext-real ) Point of ( ( ) ( non empty V143() V144() V145() ) set ) ) holds
[.p1 : ( ( ) ( V72() real ext-real ) Point of ( ( ) ( non empty V143() V144() V145() ) set ) ) ,p2 : ( ( ) ( V72() real ext-real ) Point of ( ( ) ( non empty V143() V144() V145() ) set ) ) .] : ( ( ) ( V143() V144() V145() closed interval ) Element of bool REAL : ( ( ) ( V143() V144() V145() V149() non bounded_below non bounded_above interval ) set ) : ( ( ) ( non empty ) set ) ) is ( ( non empty connected compact ) ( non empty closed connected compact V143() V144() V145() ) Subset of ) ;

theorem :: BORSUK_4:25
for X being ( ( ) ( V143() V144() V145() ) Subset of )
for X9 being ( ( ) ( V143() V144() V145() ) Subset of ( ( ) ( non empty ) set ) ) st X9 : ( ( ) ( V143() V144() V145() ) Subset of ( ( ) ( non empty ) set ) ) = X : ( ( ) ( V143() V144() V145() ) Subset of ) holds
( X9 : ( ( ) ( V143() V144() V145() ) Subset of ( ( ) ( non empty ) set ) ) is bounded_above & X9 : ( ( ) ( V143() V144() V145() ) Subset of ( ( ) ( non empty ) set ) ) is bounded_below ) ;

theorem :: BORSUK_4:26
for X being ( ( ) ( V143() V144() V145() ) Subset of )
for X9 being ( ( ) ( V143() V144() V145() ) Subset of ( ( ) ( non empty ) set ) )
for x being ( ( real ) ( V72() real ext-real ) number ) st x : ( ( real ) ( V72() real ext-real ) number ) in X9 : ( ( ) ( V143() V144() V145() ) Subset of ( ( ) ( non empty ) set ) ) & X9 : ( ( ) ( V143() V144() V145() ) Subset of ( ( ) ( non empty ) set ) ) = X : ( ( ) ( V143() V144() V145() ) Subset of ) holds
( lower_bound X9 : ( ( ) ( V143() V144() V145() ) Subset of ( ( ) ( non empty ) set ) ) : ( ( ) ( V72() real ext-real ) Element of REAL : ( ( ) ( V143() V144() V145() V149() non bounded_below non bounded_above interval ) set ) ) <= x : ( ( real ) ( V72() real ext-real ) number ) & x : ( ( real ) ( V72() real ext-real ) number ) <= upper_bound X9 : ( ( ) ( V143() V144() V145() ) Subset of ( ( ) ( non empty ) set ) ) : ( ( ) ( V72() real ext-real ) Element of REAL : ( ( ) ( V143() V144() V145() V149() non bounded_below non bounded_above interval ) set ) ) ) ;

theorem :: BORSUK_4:27
for A being ( ( ) ( V143() V144() V145() ) Subset of ( ( ) ( non empty ) set ) )
for B being ( ( ) ( V143() V144() V145() ) Subset of ) st A : ( ( ) ( V143() V144() V145() ) Subset of ( ( ) ( non empty ) set ) ) = B : ( ( ) ( V143() V144() V145() ) Subset of ) holds
( A : ( ( ) ( V143() V144() V145() ) Subset of ( ( ) ( non empty ) set ) ) is closed iff B : ( ( ) ( V143() V144() V145() ) Subset of ) is closed ) ;

theorem :: BORSUK_4:28
for C being ( ( non empty closed_interval ) ( non empty V143() V144() V145() closed_interval interval ) Subset of ( ( ) ( non empty ) set ) ) holds lower_bound C : ( ( non empty closed_interval ) ( non empty V143() V144() V145() closed_interval interval ) Subset of ( ( ) ( non empty ) set ) ) : ( ( ) ( V72() real ext-real ) Element of REAL : ( ( ) ( V143() V144() V145() V149() non bounded_below non bounded_above interval ) set ) ) <= upper_bound C : ( ( non empty closed_interval ) ( non empty V143() V144() V145() closed_interval interval ) Subset of ( ( ) ( non empty ) set ) ) : ( ( ) ( V72() real ext-real ) Element of REAL : ( ( ) ( V143() V144() V145() V149() non bounded_below non bounded_above interval ) set ) ) ;

theorem :: BORSUK_4:29
for C being ( ( non empty connected compact ) ( non empty closed connected compact V143() V144() V145() ) Subset of )
for C9 being ( ( ) ( V143() V144() V145() ) Subset of ( ( ) ( non empty ) set ) ) st C : ( ( non empty connected compact ) ( non empty closed connected compact V143() V144() V145() ) Subset of ) = C9 : ( ( ) ( V143() V144() V145() ) Subset of ( ( ) ( non empty ) set ) ) & [.(lower_bound C9 : ( ( ) ( V143() V144() V145() ) Subset of ( ( ) ( non empty ) set ) ) ) : ( ( ) ( V72() real ext-real ) Element of REAL : ( ( ) ( V143() V144() V145() V149() non bounded_below non bounded_above interval ) set ) ) ,(upper_bound C9 : ( ( ) ( V143() V144() V145() ) Subset of ( ( ) ( non empty ) set ) ) ) : ( ( ) ( V72() real ext-real ) Element of REAL : ( ( ) ( V143() V144() V145() V149() non bounded_below non bounded_above interval ) set ) ) .] : ( ( ) ( V143() V144() V145() closed interval ) Element of bool REAL : ( ( ) ( V143() V144() V145() V149() non bounded_below non bounded_above interval ) set ) : ( ( ) ( non empty ) set ) ) c= C9 : ( ( ) ( V143() V144() V145() ) Subset of ( ( ) ( non empty ) set ) ) holds
[.(lower_bound C9 : ( ( ) ( V143() V144() V145() ) Subset of ( ( ) ( non empty ) set ) ) ) : ( ( ) ( V72() real ext-real ) Element of REAL : ( ( ) ( V143() V144() V145() V149() non bounded_below non bounded_above interval ) set ) ) ,(upper_bound C9 : ( ( ) ( V143() V144() V145() ) Subset of ( ( ) ( non empty ) set ) ) ) : ( ( ) ( V72() real ext-real ) Element of REAL : ( ( ) ( V143() V144() V145() V149() non bounded_below non bounded_above interval ) set ) ) .] : ( ( ) ( V143() V144() V145() closed interval ) Element of bool REAL : ( ( ) ( V143() V144() V145() V149() non bounded_below non bounded_above interval ) set ) : ( ( ) ( non empty ) set ) ) = C9 : ( ( ) ( V143() V144() V145() ) Subset of ( ( ) ( non empty ) set ) ) ;

theorem :: BORSUK_4:30
for C being ( ( non empty connected compact ) ( non empty closed connected compact V143() V144() V145() ) Subset of ) holds C : ( ( non empty connected compact ) ( non empty closed connected compact V143() V144() V145() ) Subset of ) is ( ( non empty closed_interval ) ( non empty V143() V144() V145() closed_interval interval ) Subset of ( ( ) ( non empty ) set ) ) ;

theorem :: BORSUK_4:31
for C being ( ( non empty connected compact ) ( non empty closed connected compact V143() V144() V145() ) Subset of ) ex p1, p2 being ( ( ) ( V72() real ext-real ) Point of ( ( ) ( non empty V143() V144() V145() ) set ) ) st
( p1 : ( ( ) ( V72() real ext-real ) Point of ( ( ) ( non empty V143() V144() V145() ) set ) ) <= p2 : ( ( ) ( V72() real ext-real ) Point of ( ( ) ( non empty V143() V144() V145() ) set ) ) & C : ( ( non empty connected compact ) ( non empty closed connected compact V143() V144() V145() ) Subset of ) = [.p1 : ( ( ) ( V72() real ext-real ) Point of ( ( ) ( non empty V143() V144() V145() ) set ) ) ,p2 : ( ( ) ( V72() real ext-real ) Point of ( ( ) ( non empty V143() V144() V145() ) set ) ) .] : ( ( ) ( V143() V144() V145() closed interval ) Element of bool REAL : ( ( ) ( V143() V144() V145() V149() non bounded_below non bounded_above interval ) set ) : ( ( ) ( non empty ) set ) ) ) ;

begin

definition
func I(01) -> ( ( strict ) ( strict TopSpace-like T_0 T_1 T_2 V197() ) SubSpace of I[01] : ( ( ) ( non empty strict TopSpace-like T_0 T_1 T_2 compact V197() ) SubSpace of R^1 : ( ( TopSpace-like ) ( non empty strict TopSpace-like T_0 T_1 T_2 V197() ) TopStruct ) ) ) means :: BORSUK_4:def 1
the carrier of it : ( ( non trivial ) ( non empty non trivial ) set ) : ( ( ) ( ) set ) = ].0 : ( ( ) ( empty trivial natural V72() real ext-real non positive non negative V80() V81() V143() V144() V145() V146() V147() V148() V149() bounded_below interval ) Element of NAT : ( ( ) ( V143() V144() V145() V146() V147() V148() V149() bounded_below ) Element of bool REAL : ( ( ) ( V143() V144() V145() V149() non bounded_below non bounded_above interval ) set ) : ( ( ) ( non empty ) set ) ) ) ,1 : ( ( ) ( non empty natural V72() real ext-real positive non negative V80() V81() V143() V144() V145() V146() V147() V148() left_end bounded_below ) Element of NAT : ( ( ) ( V143() V144() V145() V146() V147() V148() V149() bounded_below ) Element of bool REAL : ( ( ) ( V143() V144() V145() V149() non bounded_below non bounded_above interval ) set ) : ( ( ) ( non empty ) set ) ) ) .[ : ( ( ) ( V143() V144() V145() open non left_end non right_end interval ) Element of bool REAL : ( ( ) ( V143() V144() V145() V149() non bounded_below non bounded_above interval ) set ) : ( ( ) ( non empty ) set ) ) ;
end;

registration
cluster I(01) : ( ( strict ) ( strict TopSpace-like T_0 T_1 T_2 V197() ) SubSpace of I[01] : ( ( ) ( non empty strict TopSpace-like T_0 T_1 T_2 compact V197() ) SubSpace of R^1 : ( ( TopSpace-like ) ( non empty strict TopSpace-like T_0 T_1 T_2 V197() ) TopStruct ) ) ) -> non empty strict ;
end;

theorem :: BORSUK_4:32
for A being ( ( ) ( V143() V144() V145() ) Subset of ) st A : ( ( ) ( V143() V144() V145() ) Subset of ) = the carrier of I(01) : ( ( strict ) ( non empty strict TopSpace-like T_0 T_1 T_2 V197() ) SubSpace of I[01] : ( ( ) ( non empty strict TopSpace-like T_0 T_1 T_2 compact V197() ) SubSpace of R^1 : ( ( TopSpace-like ) ( non empty strict TopSpace-like T_0 T_1 T_2 V197() ) TopStruct ) ) ) : ( ( ) ( non empty V143() V144() V145() ) set ) holds
I(01) : ( ( strict ) ( non empty strict TopSpace-like T_0 T_1 T_2 V197() ) SubSpace of I[01] : ( ( ) ( non empty strict TopSpace-like T_0 T_1 T_2 compact V197() ) SubSpace of R^1 : ( ( TopSpace-like ) ( non empty strict TopSpace-like T_0 T_1 T_2 V197() ) TopStruct ) ) ) = I[01] : ( ( ) ( non empty strict TopSpace-like T_0 T_1 T_2 compact V197() ) SubSpace of R^1 : ( ( TopSpace-like ) ( non empty strict TopSpace-like T_0 T_1 T_2 V197() ) TopStruct ) ) | A : ( ( ) ( V143() V144() V145() ) Subset of ) : ( ( strict ) ( strict TopSpace-like T_0 T_1 T_2 V197() ) SubSpace of I[01] : ( ( ) ( non empty strict TopSpace-like T_0 T_1 T_2 compact V197() ) SubSpace of R^1 : ( ( TopSpace-like ) ( non empty strict TopSpace-like T_0 T_1 T_2 V197() ) TopStruct ) ) ) ;

theorem :: BORSUK_4:33
the carrier of I(01) : ( ( strict ) ( non empty strict TopSpace-like T_0 T_1 T_2 V197() ) SubSpace of I[01] : ( ( ) ( non empty strict TopSpace-like T_0 T_1 T_2 compact V197() ) SubSpace of R^1 : ( ( TopSpace-like ) ( non empty strict TopSpace-like T_0 T_1 T_2 V197() ) TopStruct ) ) ) : ( ( ) ( non empty V143() V144() V145() ) set ) = the carrier of I[01] : ( ( ) ( non empty strict TopSpace-like T_0 T_1 T_2 compact V197() ) SubSpace of R^1 : ( ( TopSpace-like ) ( non empty strict TopSpace-like T_0 T_1 T_2 V197() ) TopStruct ) ) : ( ( ) ( non empty V143() V144() V145() ) set ) \ {0 : ( ( ) ( empty trivial natural V72() real ext-real non positive non negative V80() V81() V143() V144() V145() V146() V147() V148() V149() bounded_below interval ) Element of NAT : ( ( ) ( V143() V144() V145() V146() V147() V148() V149() bounded_below ) Element of bool REAL : ( ( ) ( V143() V144() V145() V149() non bounded_below non bounded_above interval ) set ) : ( ( ) ( non empty ) set ) ) ) ,1 : ( ( ) ( non empty natural V72() real ext-real positive non negative V80() V81() V143() V144() V145() V146() V147() V148() left_end bounded_below ) Element of NAT : ( ( ) ( V143() V144() V145() V146() V147() V148() V149() bounded_below ) Element of bool REAL : ( ( ) ( V143() V144() V145() V149() non bounded_below non bounded_above interval ) set ) : ( ( ) ( non empty ) set ) ) ) } : ( ( ) ( non empty V143() V144() V145() V146() V147() V148() left_end bounded_below ) set ) : ( ( ) ( V143() V144() V145() ) Element of bool the carrier of I[01] : ( ( ) ( non empty strict TopSpace-like T_0 T_1 T_2 compact V197() ) SubSpace of R^1 : ( ( TopSpace-like ) ( non empty strict TopSpace-like T_0 T_1 T_2 V197() ) TopStruct ) ) : ( ( ) ( non empty V143() V144() V145() ) set ) : ( ( ) ( non empty ) set ) ) ;

registration
cluster I(01) : ( ( strict ) ( non empty strict TopSpace-like T_0 T_1 T_2 V197() ) SubSpace of I[01] : ( ( ) ( non empty strict TopSpace-like T_0 T_1 T_2 compact V197() ) SubSpace of R^1 : ( ( TopSpace-like ) ( non empty strict TopSpace-like T_0 T_1 T_2 V197() ) TopStruct ) ) ) -> strict open ;
end;

theorem :: BORSUK_4:34
I(01) : ( ( strict ) ( non empty strict TopSpace-like T_0 T_1 T_2 open V197() ) SubSpace of I[01] : ( ( ) ( non empty strict TopSpace-like T_0 T_1 T_2 compact V197() ) SubSpace of R^1 : ( ( TopSpace-like ) ( non empty strict TopSpace-like T_0 T_1 T_2 V197() ) TopStruct ) ) ) is open ;

theorem :: BORSUK_4:35
for r being ( ( real ) ( V72() real ext-real ) number ) holds
( r : ( ( real ) ( V72() real ext-real ) number ) in the carrier of I(01) : ( ( strict ) ( non empty strict TopSpace-like T_0 T_1 T_2 open V197() ) SubSpace of I[01] : ( ( ) ( non empty strict TopSpace-like T_0 T_1 T_2 compact V197() ) SubSpace of R^1 : ( ( TopSpace-like ) ( non empty strict TopSpace-like T_0 T_1 T_2 V197() ) TopStruct ) ) ) : ( ( ) ( non empty V143() V144() V145() ) set ) iff ( 0 : ( ( ) ( empty trivial natural V72() real ext-real non positive non negative V80() V81() V143() V144() V145() V146() V147() V148() V149() bounded_below interval ) Element of NAT : ( ( ) ( V143() V144() V145() V146() V147() V148() V149() bounded_below ) Element of bool REAL : ( ( ) ( V143() V144() V145() V149() non bounded_below non bounded_above interval ) set ) : ( ( ) ( non empty ) set ) ) ) < r : ( ( real ) ( V72() real ext-real ) number ) & r : ( ( real ) ( V72() real ext-real ) number ) < 1 : ( ( ) ( non empty natural V72() real ext-real positive non negative V80() V81() V143() V144() V145() V146() V147() V148() left_end bounded_below ) Element of NAT : ( ( ) ( V143() V144() V145() V146() V147() V148() V149() bounded_below ) Element of bool REAL : ( ( ) ( V143() V144() V145() V149() non bounded_below non bounded_above interval ) set ) : ( ( ) ( non empty ) set ) ) ) ) ) ;

theorem :: BORSUK_4:36
for a, b being ( ( ) ( V72() real ext-real ) Point of ( ( ) ( non empty V143() V144() V145() ) set ) ) st a : ( ( ) ( V72() real ext-real ) Point of ( ( ) ( non empty V143() V144() V145() ) set ) ) < b : ( ( ) ( V72() real ext-real ) Point of ( ( ) ( non empty V143() V144() V145() ) set ) ) & b : ( ( ) ( V72() real ext-real ) Point of ( ( ) ( non empty V143() V144() V145() ) set ) ) <> 1 : ( ( ) ( non empty natural V72() real ext-real positive non negative V80() V81() V143() V144() V145() V146() V147() V148() left_end bounded_below ) Element of NAT : ( ( ) ( V143() V144() V145() V146() V147() V148() V149() bounded_below ) Element of bool REAL : ( ( ) ( V143() V144() V145() V149() non bounded_below non bounded_above interval ) set ) : ( ( ) ( non empty ) set ) ) ) holds
].a : ( ( ) ( V72() real ext-real ) Point of ( ( ) ( non empty V143() V144() V145() ) set ) ) ,b : ( ( ) ( V72() real ext-real ) Point of ( ( ) ( non empty V143() V144() V145() ) set ) ) .] : ( ( ) ( V143() V144() V145() non left_end interval ) Element of bool REAL : ( ( ) ( V143() V144() V145() V149() non bounded_below non bounded_above interval ) set ) : ( ( ) ( non empty ) set ) ) is ( ( non empty ) ( non empty V143() V144() V145() ) Subset of ) ;

theorem :: BORSUK_4:37
for a, b being ( ( ) ( V72() real ext-real ) Point of ( ( ) ( non empty V143() V144() V145() ) set ) ) st a : ( ( ) ( V72() real ext-real ) Point of ( ( ) ( non empty V143() V144() V145() ) set ) ) < b : ( ( ) ( V72() real ext-real ) Point of ( ( ) ( non empty V143() V144() V145() ) set ) ) & a : ( ( ) ( V72() real ext-real ) Point of ( ( ) ( non empty V143() V144() V145() ) set ) ) <> 0 : ( ( ) ( empty trivial natural V72() real ext-real non positive non negative V80() V81() V143() V144() V145() V146() V147() V148() V149() bounded_below interval ) Element of NAT : ( ( ) ( V143() V144() V145() V146() V147() V148() V149() bounded_below ) Element of bool REAL : ( ( ) ( V143() V144() V145() V149() non bounded_below non bounded_above interval ) set ) : ( ( ) ( non empty ) set ) ) ) holds
[.a : ( ( ) ( V72() real ext-real ) Point of ( ( ) ( non empty V143() V144() V145() ) set ) ) ,b : ( ( ) ( V72() real ext-real ) Point of ( ( ) ( non empty V143() V144() V145() ) set ) ) .[ : ( ( ) ( V143() V144() V145() non right_end interval ) Element of bool REAL : ( ( ) ( V143() V144() V145() V149() non bounded_below non bounded_above interval ) set ) : ( ( ) ( non empty ) set ) ) is ( ( non empty ) ( non empty V143() V144() V145() ) Subset of ) ;

theorem :: BORSUK_4:38
for D being ( ( being_simple_closed_curve ) ( non empty non trivial closed connected compact bounded being_simple_closed_curve ) Simple_closed_curve) holds (TOP-REAL 2 : ( ( ) ( non empty natural V72() real ext-real positive non negative V80() V81() V143() V144() V145() V146() V147() V148() left_end bounded_below ) Element of NAT : ( ( ) ( V143() V144() V145() V146() V147() V148() V149() bounded_below ) Element of bool REAL : ( ( ) ( V143() V144() V145() V149() non bounded_below non bounded_above interval ) set ) : ( ( ) ( non empty ) set ) ) ) ) : ( ( strict ) ( non empty non trivial TopSpace-like T_0 T_1 T_2 V109() V155() V156() V157() V158() V159() V160() V161() strict add-continuous Mult-continuous ) RLTopStruct ) | R^2-unit_square : ( ( ) ( non empty non trivial closed connected compact bounded being_simple_closed_curve ) Element of bool the carrier of (TOP-REAL 2 : ( ( ) ( non empty natural V72() real ext-real positive non negative V80() V81() V143() V144() V145() V146() V147() V148() left_end bounded_below ) Element of NAT : ( ( ) ( V143() V144() V145() V146() V147() V148() V149() bounded_below ) Element of bool REAL : ( ( ) ( V143() V144() V145() V149() non bounded_below non bounded_above interval ) set ) : ( ( ) ( non empty ) set ) ) ) ) : ( ( strict ) ( non empty non trivial TopSpace-like T_0 T_1 T_2 V109() V155() V156() V157() V158() V159() V160() V161() strict add-continuous Mult-continuous ) RLTopStruct ) : ( ( ) ( functional non empty non trivial ) set ) : ( ( ) ( non empty ) set ) ) : ( ( strict ) ( non empty strict TopSpace-like T_0 T_1 T_2 ) SubSpace of TOP-REAL 2 : ( ( ) ( non empty natural V72() real ext-real positive non negative V80() V81() V143() V144() V145() V146() V147() V148() left_end bounded_below ) Element of NAT : ( ( ) ( V143() V144() V145() V146() V147() V148() V149() bounded_below ) Element of bool REAL : ( ( ) ( V143() V144() V145() V149() non bounded_below non bounded_above interval ) set ) : ( ( ) ( non empty ) set ) ) ) : ( ( strict ) ( non empty non trivial TopSpace-like T_0 T_1 T_2 V109() V155() V156() V157() V158() V159() V160() V161() strict add-continuous Mult-continuous ) RLTopStruct ) ) ,(TOP-REAL 2 : ( ( ) ( non empty natural V72() real ext-real positive non negative V80() V81() V143() V144() V145() V146() V147() V148() left_end bounded_below ) Element of NAT : ( ( ) ( V143() V144() V145() V146() V147() V148() V149() bounded_below ) Element of bool REAL : ( ( ) ( V143() V144() V145() V149() non bounded_below non bounded_above interval ) set ) : ( ( ) ( non empty ) set ) ) ) ) : ( ( strict ) ( non empty non trivial TopSpace-like T_0 T_1 T_2 V109() V155() V156() V157() V158() V159() V160() V161() strict add-continuous Mult-continuous ) RLTopStruct ) | D : ( ( being_simple_closed_curve ) ( non empty non trivial closed connected compact bounded being_simple_closed_curve ) Simple_closed_curve) : ( ( strict ) ( non empty strict TopSpace-like T_0 T_1 T_2 ) SubSpace of TOP-REAL 2 : ( ( ) ( non empty natural V72() real ext-real positive non negative V80() V81() V143() V144() V145() V146() V147() V148() left_end bounded_below ) Element of NAT : ( ( ) ( V143() V144() V145() V146() V147() V148() V149() bounded_below ) Element of bool REAL : ( ( ) ( V143() V144() V145() V149() non bounded_below non bounded_above interval ) set ) : ( ( ) ( non empty ) set ) ) ) : ( ( strict ) ( non empty non trivial TopSpace-like T_0 T_1 T_2 V109() V155() V156() V157() V158() V159() V160() V161() strict add-continuous Mult-continuous ) RLTopStruct ) ) are_homeomorphic ;

theorem :: BORSUK_4:39
for n being ( ( ) ( natural V72() real ext-real V80() V81() V143() V144() V145() V146() V147() V148() bounded_below ) Element of NAT : ( ( ) ( V143() V144() V145() V146() V147() V148() V149() bounded_below ) Element of bool REAL : ( ( ) ( V143() V144() V145() V149() non bounded_below non bounded_above interval ) set ) : ( ( ) ( non empty ) set ) ) )
for D being ( ( non empty ) ( non empty ) Subset of )
for p1, p2 being ( ( ) ( V35(b1 : ( ( ) ( natural V72() real ext-real V80() V81() V143() V144() V145() V146() V147() V148() bounded_below ) Element of NAT : ( ( ) ( V143() V144() V145() V146() V147() V148() V149() bounded_below ) Element of bool REAL : ( ( ) ( V143() V144() V145() V149() non bounded_below non bounded_above interval ) set ) : ( ( ) ( non empty ) set ) ) ) ) V77() V135() ) Point of ( ( ) ( functional non empty ) set ) ) st D : ( ( non empty ) ( non empty ) Subset of ) is_an_arc_of p1 : ( ( ) ( V35(b1 : ( ( ) ( natural V72() real ext-real V80() V81() V143() V144() V145() V146() V147() V148() bounded_below ) Element of NAT : ( ( ) ( V143() V144() V145() V146() V147() V148() V149() bounded_below ) Element of bool REAL : ( ( ) ( V143() V144() V145() V149() non bounded_below non bounded_above interval ) set ) : ( ( ) ( non empty ) set ) ) ) ) V77() V135() ) Point of ( ( ) ( functional non empty ) set ) ) ,p2 : ( ( ) ( V35(b1 : ( ( ) ( natural V72() real ext-real V80() V81() V143() V144() V145() V146() V147() V148() bounded_below ) Element of NAT : ( ( ) ( V143() V144() V145() V146() V147() V148() V149() bounded_below ) Element of bool REAL : ( ( ) ( V143() V144() V145() V149() non bounded_below non bounded_above interval ) set ) : ( ( ) ( non empty ) set ) ) ) ) V77() V135() ) Point of ( ( ) ( functional non empty ) set ) ) holds
I(01) : ( ( strict ) ( non empty strict TopSpace-like T_0 T_1 T_2 open V197() ) SubSpace of I[01] : ( ( ) ( non empty strict TopSpace-like T_0 T_1 T_2 compact V197() ) SubSpace of R^1 : ( ( TopSpace-like ) ( non empty strict TopSpace-like T_0 T_1 T_2 V197() ) TopStruct ) ) ) ,(TOP-REAL n : ( ( ) ( natural V72() real ext-real V80() V81() V143() V144() V145() V146() V147() V148() bounded_below ) Element of NAT : ( ( ) ( V143() V144() V145() V146() V147() V148() V149() bounded_below ) Element of bool REAL : ( ( ) ( V143() V144() V145() V149() non bounded_below non bounded_above interval ) set ) : ( ( ) ( non empty ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like T_0 T_1 T_2 V109() V155() V156() V157() V158() V159() V160() V161() strict add-continuous Mult-continuous ) RLTopStruct ) | (D : ( ( non empty ) ( non empty ) Subset of ) \ {p1 : ( ( ) ( V35(b1 : ( ( ) ( natural V72() real ext-real V80() V81() V143() V144() V145() V146() V147() V148() bounded_below ) Element of NAT : ( ( ) ( V143() V144() V145() V146() V147() V148() V149() bounded_below ) Element of bool REAL : ( ( ) ( V143() V144() V145() V149() non bounded_below non bounded_above interval ) set ) : ( ( ) ( non empty ) set ) ) ) ) V77() V135() ) Point of ( ( ) ( functional non empty ) set ) ) ,p2 : ( ( ) ( V35(b1 : ( ( ) ( natural V72() real ext-real V80() V81() V143() V144() V145() V146() V147() V148() bounded_below ) Element of NAT : ( ( ) ( V143() V144() V145() V146() V147() V148() V149() bounded_below ) Element of bool REAL : ( ( ) ( V143() V144() V145() V149() non bounded_below non bounded_above interval ) set ) : ( ( ) ( non empty ) set ) ) ) ) V77() V135() ) Point of ( ( ) ( functional non empty ) set ) ) } : ( ( ) ( non empty ) Element of bool the carrier of (TOP-REAL b1 : ( ( ) ( natural V72() real ext-real V80() V81() V143() V144() V145() V146() V147() V148() bounded_below ) Element of NAT : ( ( ) ( V143() V144() V145() V146() V147() V148() V149() bounded_below ) Element of bool REAL : ( ( ) ( V143() V144() V145() V149() non bounded_below non bounded_above interval ) set ) : ( ( ) ( non empty ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like T_0 T_1 T_2 V109() V155() V156() V157() V158() V159() V160() V161() strict add-continuous Mult-continuous ) RLTopStruct ) : ( ( ) ( functional non empty ) set ) : ( ( ) ( non empty ) set ) ) ) : ( ( ) ( ) Element of bool the carrier of (TOP-REAL b1 : ( ( ) ( natural V72() real ext-real V80() V81() V143() V144() V145() V146() V147() V148() bounded_below ) Element of NAT : ( ( ) ( V143() V144() V145() V146() V147() V148() V149() bounded_below ) Element of bool REAL : ( ( ) ( V143() V144() V145() V149() non bounded_below non bounded_above interval ) set ) : ( ( ) ( non empty ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like T_0 T_1 T_2 V109() V155() V156() V157() V158() V159() V160() V161() strict add-continuous Mult-continuous ) RLTopStruct ) : ( ( ) ( functional non empty ) set ) : ( ( ) ( non empty ) set ) ) : ( ( strict ) ( strict TopSpace-like T_0 T_1 T_2 ) SubSpace of TOP-REAL b1 : ( ( ) ( natural V72() real ext-real V80() V81() V143() V144() V145() V146() V147() V148() bounded_below ) Element of NAT : ( ( ) ( V143() V144() V145() V146() V147() V148() V149() bounded_below ) Element of bool REAL : ( ( ) ( V143() V144() V145() V149() non bounded_below non bounded_above interval ) set ) : ( ( ) ( non empty ) set ) ) ) : ( ( strict ) ( non empty TopSpace-like T_0 T_1 T_2 V109() V155() V156() V157() V158() V159() V160() V161() strict add-continuous Mult-continuous ) RLTopStruct ) ) are_homeomorphic ;

theorem :: BORSUK_4:40
for n being ( ( ) ( natural V72() real ext-real V80() V81() V143() V144() V145() V146() V147() V148() bounded_below ) Element of NAT : ( ( ) ( V143() V144() V145() V146() V147() V148() V149() bounded_below ) Element of bool REAL : ( ( ) ( V143() V144() V145() V149() non bounded_below non bounded_above interval ) set ) : ( ( ) ( non empty ) set ) ) )
for D being ( ( ) ( ) Subset of )
for p1, p2 being ( ( ) ( V35(b1 : ( ( ) ( natural V72() real ext-real V80() V81() V143() V144() V145() V146() V147() V148() bounded_below ) Element of NAT : ( ( ) ( V143() V144() V145() V146() V147() V148() V149() bounded_below ) Element of bool REAL : ( ( ) ( V143() V144() V145() V149() non bounded_below non bounded_above interval ) set ) : ( ( ) ( non empty ) set ) ) ) ) V77() V135() ) Point of ( ( ) ( functional non empty ) set ) ) st D : ( ( ) ( ) Subset of ) is_an_arc_of p1 : ( ( ) ( V35(b1 : ( ( ) ( natural V72() real ext-real V80() V81() V143() V144() V145() V146() V147() V148() bounded_below ) Element of NAT : ( ( ) ( V143() V144() V145() V146() V147() V148() V149() bounded_below ) Element of bool REAL : ( ( ) ( V143() V144() V145() V149() non bounded_below non bounded_above interval ) set ) : ( ( ) ( non empty ) set ) ) ) ) V77() V135() ) Point of ( ( ) ( functional non empty ) set ) ) ,p2 : ( ( ) ( V35(b1 : ( ( ) ( natural V72() real ext-real V80() V81() V143() V144() V145() V146() V147() V148() bounded_below ) Element of NAT : ( ( ) ( V143() V144() V145() V146() V147() V148() V149() bounded_below ) Element of bool REAL : ( ( ) ( V143() V144() V145() V149() non bounded_below non bounded_above interval ) set ) : ( ( ) ( non empty ) set ) ) ) ) V77() V135() ) Point of ( ( ) ( functional non empty ) set ) ) holds
I[01] : ( ( ) ( non empty strict TopSpace-like T_0 T_1 T_2 compact V197() ) SubSpace of R^1 : ( ( TopSpace-like ) ( non empty strict TopSpace-like T_0 T_1 T_2 V197() ) TopStruct ) ) ,(TOP-REAL n : ( ( ) ( natural V72() real ext-real V80() V81() V143() V144() V145() V146() V147() V148() bounded_below ) Element of NAT : ( ( ) ( V143() V144() V145() V146() V147() V148() V149() bounded_below ) Element of bool REAL : ( ( ) ( V143() V144() V145() V149() non bounded_below non bounded_above interval ) set ) : ( ( ) ( non empty ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like T_0 T_1 T_2 V109() V155() V156() V157() V158() V159() V160() V161() strict add-continuous Mult-continuous ) RLTopStruct ) | D : ( ( ) ( ) Subset of ) : ( ( strict ) ( strict TopSpace-like T_0 T_1 T_2 ) SubSpace of TOP-REAL b1 : ( ( ) ( natural V72() real ext-real V80() V81() V143() V144() V145() V146() V147() V148() bounded_below ) Element of NAT : ( ( ) ( V143() V144() V145() V146() V147() V148() V149() bounded_below ) Element of bool REAL : ( ( ) ( V143() V144() V145() V149() non bounded_below non bounded_above interval ) set ) : ( ( ) ( non empty ) set ) ) ) : ( ( strict ) ( non empty TopSpace-like T_0 T_1 T_2 V109() V155() V156() V157() V158() V159() V160() V161() strict add-continuous Mult-continuous ) RLTopStruct ) ) are_homeomorphic ;

theorem :: BORSUK_4:41
for n being ( ( ) ( natural V72() real ext-real V80() V81() V143() V144() V145() V146() V147() V148() bounded_below ) Element of NAT : ( ( ) ( V143() V144() V145() V146() V147() V148() V149() bounded_below ) Element of bool REAL : ( ( ) ( V143() V144() V145() V149() non bounded_below non bounded_above interval ) set ) : ( ( ) ( non empty ) set ) ) )
for p1, p2 being ( ( ) ( V35(b1 : ( ( ) ( natural V72() real ext-real V80() V81() V143() V144() V145() V146() V147() V148() bounded_below ) Element of NAT : ( ( ) ( V143() V144() V145() V146() V147() V148() V149() bounded_below ) Element of bool REAL : ( ( ) ( V143() V144() V145() V149() non bounded_below non bounded_above interval ) set ) : ( ( ) ( non empty ) set ) ) ) ) V77() V135() ) Point of ( ( ) ( functional non empty ) set ) ) st p1 : ( ( ) ( V35(b1 : ( ( ) ( natural V72() real ext-real V80() V81() V143() V144() V145() V146() V147() V148() bounded_below ) Element of NAT : ( ( ) ( V143() V144() V145() V146() V147() V148() V149() bounded_below ) Element of bool REAL : ( ( ) ( V143() V144() V145() V149() non bounded_below non bounded_above interval ) set ) : ( ( ) ( non empty ) set ) ) ) ) V77() V135() ) Point of ( ( ) ( functional non empty ) set ) ) <> p2 : ( ( ) ( V35(b1 : ( ( ) ( natural V72() real ext-real V80() V81() V143() V144() V145() V146() V147() V148() bounded_below ) Element of NAT : ( ( ) ( V143() V144() V145() V146() V147() V148() V149() bounded_below ) Element of bool REAL : ( ( ) ( V143() V144() V145() V149() non bounded_below non bounded_above interval ) set ) : ( ( ) ( non empty ) set ) ) ) ) V77() V135() ) Point of ( ( ) ( functional non empty ) set ) ) holds
I[01] : ( ( ) ( non empty strict TopSpace-like T_0 T_1 T_2 compact V197() ) SubSpace of R^1 : ( ( TopSpace-like ) ( non empty strict TopSpace-like T_0 T_1 T_2 V197() ) TopStruct ) ) ,(TOP-REAL n : ( ( ) ( natural V72() real ext-real V80() V81() V143() V144() V145() V146() V147() V148() bounded_below ) Element of NAT : ( ( ) ( V143() V144() V145() V146() V147() V148() V149() bounded_below ) Element of bool REAL : ( ( ) ( V143() V144() V145() V149() non bounded_below non bounded_above interval ) set ) : ( ( ) ( non empty ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like T_0 T_1 T_2 V109() V155() V156() V157() V158() V159() V160() V161() strict add-continuous Mult-continuous ) RLTopStruct ) | (LSeg (p1 : ( ( ) ( V35(b1 : ( ( ) ( natural V72() real ext-real V80() V81() V143() V144() V145() V146() V147() V148() bounded_below ) Element of NAT : ( ( ) ( V143() V144() V145() V146() V147() V148() V149() bounded_below ) Element of bool REAL : ( ( ) ( V143() V144() V145() V149() non bounded_below non bounded_above interval ) set ) : ( ( ) ( non empty ) set ) ) ) ) V77() V135() ) Point of ( ( ) ( functional non empty ) set ) ) ,p2 : ( ( ) ( V35(b1 : ( ( ) ( natural V72() real ext-real V80() V81() V143() V144() V145() V146() V147() V148() bounded_below ) Element of NAT : ( ( ) ( V143() V144() V145() V146() V147() V148() V149() bounded_below ) Element of bool REAL : ( ( ) ( V143() V144() V145() V149() non bounded_below non bounded_above interval ) set ) : ( ( ) ( non empty ) set ) ) ) ) V77() V135() ) Point of ( ( ) ( functional non empty ) set ) ) )) : ( ( ) ( ) Element of bool the carrier of (TOP-REAL b1 : ( ( ) ( natural V72() real ext-real V80() V81() V143() V144() V145() V146() V147() V148() bounded_below ) Element of NAT : ( ( ) ( V143() V144() V145() V146() V147() V148() V149() bounded_below ) Element of bool REAL : ( ( ) ( V143() V144() V145() V149() non bounded_below non bounded_above interval ) set ) : ( ( ) ( non empty ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like T_0 T_1 T_2 V109() V155() V156() V157() V158() V159() V160() V161() strict add-continuous Mult-continuous ) RLTopStruct ) : ( ( ) ( functional non empty ) set ) : ( ( ) ( non empty ) set ) ) : ( ( strict ) ( strict TopSpace-like T_0 T_1 T_2 ) SubSpace of TOP-REAL b1 : ( ( ) ( natural V72() real ext-real V80() V81() V143() V144() V145() V146() V147() V148() bounded_below ) Element of NAT : ( ( ) ( V143() V144() V145() V146() V147() V148() V149() bounded_below ) Element of bool REAL : ( ( ) ( V143() V144() V145() V149() non bounded_below non bounded_above interval ) set ) : ( ( ) ( non empty ) set ) ) ) : ( ( strict ) ( non empty TopSpace-like T_0 T_1 T_2 V109() V155() V156() V157() V158() V159() V160() V161() strict add-continuous Mult-continuous ) RLTopStruct ) ) are_homeomorphic ;

theorem :: BORSUK_4:42
for E being ( ( ) ( V143() V144() V145() ) Subset of ) st ex p1, p2 being ( ( ) ( V72() real ext-real ) Point of ( ( ) ( non empty V143() V144() V145() ) set ) ) st
( p1 : ( ( ) ( V72() real ext-real ) Point of ( ( ) ( non empty V143() V144() V145() ) set ) ) < p2 : ( ( ) ( V72() real ext-real ) Point of ( ( ) ( non empty V143() V144() V145() ) set ) ) & E : ( ( ) ( V143() V144() V145() ) Subset of ) = [.p1 : ( ( ) ( V72() real ext-real ) Point of ( ( ) ( non empty V143() V144() V145() ) set ) ) ,p2 : ( ( ) ( V72() real ext-real ) Point of ( ( ) ( non empty V143() V144() V145() ) set ) ) .] : ( ( ) ( V143() V144() V145() closed interval ) Element of bool REAL : ( ( ) ( V143() V144() V145() V149() non bounded_below non bounded_above interval ) set ) : ( ( ) ( non empty ) set ) ) ) holds
I[01] : ( ( ) ( non empty strict TopSpace-like T_0 T_1 T_2 compact V197() ) SubSpace of R^1 : ( ( TopSpace-like ) ( non empty strict TopSpace-like T_0 T_1 T_2 V197() ) TopStruct ) ) ,I(01) : ( ( strict ) ( non empty strict TopSpace-like T_0 T_1 T_2 open V197() ) SubSpace of I[01] : ( ( ) ( non empty strict TopSpace-like T_0 T_1 T_2 compact V197() ) SubSpace of R^1 : ( ( TopSpace-like ) ( non empty strict TopSpace-like T_0 T_1 T_2 V197() ) TopStruct ) ) ) | E : ( ( ) ( V143() V144() V145() ) Subset of ) : ( ( strict ) ( strict TopSpace-like T_0 T_1 T_2 V197() ) SubSpace of I(01) : ( ( strict ) ( non empty strict TopSpace-like T_0 T_1 T_2 open V197() ) SubSpace of I[01] : ( ( ) ( non empty strict TopSpace-like T_0 T_1 T_2 compact V197() ) SubSpace of R^1 : ( ( TopSpace-like ) ( non empty strict TopSpace-like T_0 T_1 T_2 V197() ) TopStruct ) ) ) ) are_homeomorphic ;

theorem :: BORSUK_4:43
for n being ( ( ) ( natural V72() real ext-real V80() V81() V143() V144() V145() V146() V147() V148() bounded_below ) Element of NAT : ( ( ) ( V143() V144() V145() V146() V147() V148() V149() bounded_below ) Element of bool REAL : ( ( ) ( V143() V144() V145() V149() non bounded_below non bounded_above interval ) set ) : ( ( ) ( non empty ) set ) ) )
for A being ( ( ) ( ) Subset of )
for p, q being ( ( ) ( V35(b1 : ( ( ) ( natural V72() real ext-real V80() V81() V143() V144() V145() V146() V147() V148() bounded_below ) Element of NAT : ( ( ) ( V143() V144() V145() V146() V147() V148() V149() bounded_below ) Element of bool REAL : ( ( ) ( V143() V144() V145() V149() non bounded_below non bounded_above interval ) set ) : ( ( ) ( non empty ) set ) ) ) ) V77() V135() ) Point of ( ( ) ( functional non empty ) set ) )
for a, b being ( ( ) ( V72() real ext-real ) Point of ( ( ) ( non empty V143() V144() V145() ) set ) ) st A : ( ( ) ( ) Subset of ) is_an_arc_of p : ( ( ) ( V35(b1 : ( ( ) ( natural V72() real ext-real V80() V81() V143() V144() V145() V146() V147() V148() bounded_below ) Element of NAT : ( ( ) ( V143() V144() V145() V146() V147() V148() V149() bounded_below ) Element of bool REAL : ( ( ) ( V143() V144() V145() V149() non bounded_below non bounded_above interval ) set ) : ( ( ) ( non empty ) set ) ) ) ) V77() V135() ) Point of ( ( ) ( functional non empty ) set ) ) ,q : ( ( ) ( V35(b1 : ( ( ) ( natural V72() real ext-real V80() V81() V143() V144() V145() V146() V147() V148() bounded_below ) Element of NAT : ( ( ) ( V143() V144() V145() V146() V147() V148() V149() bounded_below ) Element of bool REAL : ( ( ) ( V143() V144() V145() V149() non bounded_below non bounded_above interval ) set ) : ( ( ) ( non empty ) set ) ) ) ) V77() V135() ) Point of ( ( ) ( functional non empty ) set ) ) & a : ( ( ) ( V72() real ext-real ) Point of ( ( ) ( non empty V143() V144() V145() ) set ) ) < b : ( ( ) ( V72() real ext-real ) Point of ( ( ) ( non empty V143() V144() V145() ) set ) ) holds
ex E being ( ( non empty ) ( non empty V143() V144() V145() ) Subset of ) ex f being ( ( Function-like quasi_total ) ( Relation-like the carrier of (I[01] : ( ( ) ( non empty strict TopSpace-like T_0 T_1 T_2 compact V197() ) SubSpace of R^1 : ( ( TopSpace-like ) ( non empty strict TopSpace-like T_0 T_1 T_2 V197() ) TopStruct ) ) | b7 : ( ( non empty ) ( non empty V143() V144() V145() ) Subset of ) ) : ( ( strict ) ( non empty strict TopSpace-like T_0 T_1 T_2 V197() ) SubSpace of I[01] : ( ( ) ( non empty strict TopSpace-like T_0 T_1 T_2 compact V197() ) SubSpace of R^1 : ( ( TopSpace-like ) ( non empty strict TopSpace-like T_0 T_1 T_2 V197() ) TopStruct ) ) ) : ( ( ) ( non empty V143() V144() V145() ) set ) -defined the carrier of ((TOP-REAL b1 : ( ( ) ( natural V72() real ext-real V80() V81() V143() V144() V145() V146() V147() V148() bounded_below ) Element of NAT : ( ( ) ( V143() V144() V145() V146() V147() V148() V149() bounded_below ) Element of bool REAL : ( ( ) ( V143() V144() V145() V149() non bounded_below non bounded_above interval ) set ) : ( ( ) ( non empty ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like T_0 T_1 T_2 V109() V155() V156() V157() V158() V159() V160() V161() strict add-continuous Mult-continuous ) RLTopStruct ) | b2 : ( ( ) ( ) Subset of ) ) : ( ( strict ) ( strict TopSpace-like T_0 T_1 T_2 ) SubSpace of TOP-REAL b1 : ( ( ) ( natural V72() real ext-real V80() V81() V143() V144() V145() V146() V147() V148() bounded_below ) Element of NAT : ( ( ) ( V143() V144() V145() V146() V147() V148() V149() bounded_below ) Element of bool REAL : ( ( ) ( V143() V144() V145() V149() non bounded_below non bounded_above interval ) set ) : ( ( ) ( non empty ) set ) ) ) : ( ( strict ) ( non empty TopSpace-like T_0 T_1 T_2 V109() V155() V156() V157() V158() V159() V160() V161() strict add-continuous Mult-continuous ) RLTopStruct ) ) : ( ( ) ( ) set ) -valued Function-like quasi_total ) Function of ( ( ) ( non empty V143() V144() V145() ) set ) , ( ( ) ( ) set ) ) st
( E : ( ( non empty ) ( non empty V143() V144() V145() ) Subset of ) = [.a : ( ( ) ( V72() real ext-real ) Point of ( ( ) ( non empty V143() V144() V145() ) set ) ) ,b : ( ( ) ( V72() real ext-real ) Point of ( ( ) ( non empty V143() V144() V145() ) set ) ) .] : ( ( ) ( V143() V144() V145() closed interval ) Element of bool REAL : ( ( ) ( V143() V144() V145() V149() non bounded_below non bounded_above interval ) set ) : ( ( ) ( non empty ) set ) ) & f : ( ( Function-like quasi_total ) ( Relation-like the carrier of (I[01] : ( ( ) ( non empty strict TopSpace-like T_0 T_1 T_2 compact V197() ) SubSpace of R^1 : ( ( TopSpace-like ) ( non empty strict TopSpace-like T_0 T_1 T_2 V197() ) TopStruct ) ) | b7 : ( ( non empty ) ( non empty V143() V144() V145() ) Subset of ) ) : ( ( strict ) ( non empty strict TopSpace-like T_0 T_1 T_2 V197() ) SubSpace of I[01] : ( ( ) ( non empty strict TopSpace-like T_0 T_1 T_2 compact V197() ) SubSpace of R^1 : ( ( TopSpace-like ) ( non empty strict TopSpace-like T_0 T_1 T_2 V197() ) TopStruct ) ) ) : ( ( ) ( non empty V143() V144() V145() ) set ) -defined the carrier of ((TOP-REAL b1 : ( ( ) ( natural V72() real ext-real V80() V81() V143() V144() V145() V146() V147() V148() bounded_below ) Element of NAT : ( ( ) ( V143() V144() V145() V146() V147() V148() V149() bounded_below ) Element of bool REAL : ( ( ) ( V143() V144() V145() V149() non bounded_below non bounded_above interval ) set ) : ( ( ) ( non empty ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like T_0 T_1 T_2 V109() V155() V156() V157() V158() V159() V160() V161() strict add-continuous Mult-continuous ) RLTopStruct ) | b2 : ( ( ) ( ) Subset of ) ) : ( ( strict ) ( strict TopSpace-like T_0 T_1 T_2 ) SubSpace of TOP-REAL b1 : ( ( ) ( natural V72() real ext-real V80() V81() V143() V144() V145() V146() V147() V148() bounded_below ) Element of NAT : ( ( ) ( V143() V144() V145() V146() V147() V148() V149() bounded_below ) Element of bool REAL : ( ( ) ( V143() V144() V145() V149() non bounded_below non bounded_above interval ) set ) : ( ( ) ( non empty ) set ) ) ) : ( ( strict ) ( non empty TopSpace-like T_0 T_1 T_2 V109() V155() V156() V157() V158() V159() V160() V161() strict add-continuous Mult-continuous ) RLTopStruct ) ) : ( ( ) ( ) set ) -valued Function-like quasi_total ) Function of ( ( ) ( non empty V143() V144() V145() ) set ) , ( ( ) ( ) set ) ) is being_homeomorphism & f : ( ( Function-like quasi_total ) ( Relation-like the carrier of (I[01] : ( ( ) ( non empty strict TopSpace-like T_0 T_1 T_2 compact V197() ) SubSpace of R^1 : ( ( TopSpace-like ) ( non empty strict TopSpace-like T_0 T_1 T_2 V197() ) TopStruct ) ) | b7 : ( ( non empty ) ( non empty V143() V144() V145() ) Subset of ) ) : ( ( strict ) ( non empty strict TopSpace-like T_0 T_1 T_2 V197() ) SubSpace of I[01] : ( ( ) ( non empty strict TopSpace-like T_0 T_1 T_2 compact V197() ) SubSpace of R^1 : ( ( TopSpace-like ) ( non empty strict TopSpace-like T_0 T_1 T_2 V197() ) TopStruct ) ) ) : ( ( ) ( non empty V143() V144() V145() ) set ) -defined the carrier of ((TOP-REAL b1 : ( ( ) ( natural V72() real ext-real V80() V81() V143() V144() V145() V146() V147() V148() bounded_below ) Element of NAT : ( ( ) ( V143() V144() V145() V146() V147() V148() V149() bounded_below ) Element of bool REAL : ( ( ) ( V143() V144() V145() V149() non bounded_below non bounded_above interval ) set ) : ( ( ) ( non empty ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like T_0 T_1 T_2 V109() V155() V156() V157() V158() V159() V160() V161() strict add-continuous Mult-continuous ) RLTopStruct ) | b2 : ( ( ) ( ) Subset of ) ) : ( ( strict ) ( strict TopSpace-like T_0 T_1 T_2 ) SubSpace of TOP-REAL b1 : ( ( ) ( natural V72() real ext-real V80() V81() V143() V144() V145() V146() V147() V148() bounded_below ) Element of NAT : ( ( ) ( V143() V144() V145() V146() V147() V148() V149() bounded_below ) Element of bool REAL : ( ( ) ( V143() V144() V145() V149() non bounded_below non bounded_above interval ) set ) : ( ( ) ( non empty ) set ) ) ) : ( ( strict ) ( non empty TopSpace-like T_0 T_1 T_2 V109() V155() V156() V157() V158() V159() V160() V161() strict add-continuous Mult-continuous ) RLTopStruct ) ) : ( ( ) ( ) set ) -valued Function-like quasi_total ) Function of ( ( ) ( non empty V143() V144() V145() ) set ) , ( ( ) ( ) set ) ) . a : ( ( ) ( V72() real ext-real ) Point of ( ( ) ( non empty V143() V144() V145() ) set ) ) : ( ( ) ( ) set ) = p : ( ( ) ( V35(b1 : ( ( ) ( natural V72() real ext-real V80() V81() V143() V144() V145() V146() V147() V148() bounded_below ) Element of NAT : ( ( ) ( V143() V144() V145() V146() V147() V148() V149() bounded_below ) Element of bool REAL : ( ( ) ( V143() V144() V145() V149() non bounded_below non bounded_above interval ) set ) : ( ( ) ( non empty ) set ) ) ) ) V77() V135() ) Point of ( ( ) ( functional non empty ) set ) ) & f : ( ( Function-like quasi_total ) ( Relation-like the carrier of (I[01] : ( ( ) ( non empty strict TopSpace-like T_0 T_1 T_2 compact V197() ) SubSpace of R^1 : ( ( TopSpace-like ) ( non empty strict TopSpace-like T_0 T_1 T_2 V197() ) TopStruct ) ) | b7 : ( ( non empty ) ( non empty V143() V144() V145() ) Subset of ) ) : ( ( strict ) ( non empty strict TopSpace-like T_0 T_1 T_2 V197() ) SubSpace of I[01] : ( ( ) ( non empty strict TopSpace-like T_0 T_1 T_2 compact V197() ) SubSpace of R^1 : ( ( TopSpace-like ) ( non empty strict TopSpace-like T_0 T_1 T_2 V197() ) TopStruct ) ) ) : ( ( ) ( non empty V143() V144() V145() ) set ) -defined the carrier of ((TOP-REAL b1 : ( ( ) ( natural V72() real ext-real V80() V81() V143() V144() V145() V146() V147() V148() bounded_below ) Element of NAT : ( ( ) ( V143() V144() V145() V146() V147() V148() V149() bounded_below ) Element of bool REAL : ( ( ) ( V143() V144() V145() V149() non bounded_below non bounded_above interval ) set ) : ( ( ) ( non empty ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like T_0 T_1 T_2 V109() V155() V156() V157() V158() V159() V160() V161() strict add-continuous Mult-continuous ) RLTopStruct ) | b2 : ( ( ) ( ) Subset of ) ) : ( ( strict ) ( strict TopSpace-like T_0 T_1 T_2 ) SubSpace of TOP-REAL b1 : ( ( ) ( natural V72() real ext-real V80() V81() V143() V144() V145() V146() V147() V148() bounded_below ) Element of NAT : ( ( ) ( V143() V144() V145() V146() V147() V148() V149() bounded_below ) Element of bool REAL : ( ( ) ( V143() V144() V145() V149() non bounded_below non bounded_above interval ) set ) : ( ( ) ( non empty ) set ) ) ) : ( ( strict ) ( non empty TopSpace-like T_0 T_1 T_2 V109() V155() V156() V157() V158() V159() V160() V161() strict add-continuous Mult-continuous ) RLTopStruct ) ) : ( ( ) ( ) set ) -valued Function-like quasi_total ) Function of ( ( ) ( non empty V143() V144() V145() ) set ) , ( ( ) ( ) set ) ) . b : ( ( ) ( V72() real ext-real ) Point of ( ( ) ( non empty V143() V144() V145() ) set ) ) : ( ( ) ( ) set ) = q : ( ( ) ( V35(b1 : ( ( ) ( natural V72() real ext-real V80() V81() V143() V144() V145() V146() V147() V148() bounded_below ) Element of NAT : ( ( ) ( V143() V144() V145() V146() V147() V148() V149() bounded_below ) Element of bool REAL : ( ( ) ( V143() V144() V145() V149() non bounded_below non bounded_above interval ) set ) : ( ( ) ( non empty ) set ) ) ) ) V77() V135() ) Point of ( ( ) ( functional non empty ) set ) ) ) ;

theorem :: BORSUK_4:44
for A being ( ( TopSpace-like ) ( TopSpace-like ) TopSpace)
for B being ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace)
for f being ( ( Function-like quasi_total ) ( Relation-like the carrier of b1 : ( ( TopSpace-like ) ( TopSpace-like ) TopSpace) : ( ( ) ( ) set ) -defined the carrier of b2 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) -valued Function-like total quasi_total ) Function of ( ( ) ( ) set ) , ( ( ) ( non empty ) set ) )
for C being ( ( TopSpace-like ) ( TopSpace-like ) TopSpace)
for X being ( ( ) ( ) Subset of ) st f : ( ( Function-like quasi_total ) ( Relation-like the carrier of b1 : ( ( TopSpace-like ) ( TopSpace-like ) TopSpace) : ( ( ) ( ) set ) -defined the carrier of b2 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) -valued Function-like total quasi_total ) Function of ( ( ) ( ) set ) , ( ( ) ( non empty ) set ) ) is continuous & C : ( ( TopSpace-like ) ( TopSpace-like ) TopSpace) is ( ( ) ( TopSpace-like ) SubSpace of B : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) ) holds
for h being ( ( Function-like quasi_total ) ( Relation-like the carrier of (b1 : ( ( TopSpace-like ) ( TopSpace-like ) TopSpace) | b5 : ( ( ) ( ) Subset of ) ) : ( ( strict ) ( strict TopSpace-like ) SubSpace of b1 : ( ( TopSpace-like ) ( TopSpace-like ) TopSpace) ) : ( ( ) ( ) set ) -defined the carrier of b4 : ( ( TopSpace-like ) ( TopSpace-like ) TopSpace) : ( ( ) ( ) set ) -valued Function-like quasi_total ) Function of ( ( ) ( ) set ) , ( ( ) ( ) set ) ) st h : ( ( Function-like quasi_total ) ( Relation-like the carrier of (b1 : ( ( TopSpace-like ) ( TopSpace-like ) TopSpace) | b5 : ( ( ) ( ) Subset of ) ) : ( ( strict ) ( strict TopSpace-like ) SubSpace of b1 : ( ( TopSpace-like ) ( TopSpace-like ) TopSpace) ) : ( ( ) ( ) set ) -defined the carrier of b4 : ( ( TopSpace-like ) ( TopSpace-like ) TopSpace) : ( ( ) ( ) set ) -valued Function-like quasi_total ) Function of ( ( ) ( ) set ) , ( ( ) ( ) set ) ) = f : ( ( Function-like quasi_total ) ( Relation-like the carrier of b1 : ( ( TopSpace-like ) ( TopSpace-like ) TopSpace) : ( ( ) ( ) set ) -defined the carrier of b2 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) -valued Function-like total quasi_total ) Function of ( ( ) ( ) set ) , ( ( ) ( non empty ) set ) ) | X : ( ( ) ( ) Subset of ) : ( ( Function-like ) ( Relation-like the carrier of b1 : ( ( TopSpace-like ) ( TopSpace-like ) TopSpace) : ( ( ) ( ) set ) -defined the carrier of b2 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) -valued Function-like ) Element of bool [: the carrier of b1 : ( ( TopSpace-like ) ( TopSpace-like ) TopSpace) : ( ( ) ( ) set ) , the carrier of b2 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) :] : ( ( ) ( ) set ) : ( ( ) ( non empty ) set ) ) holds
h : ( ( Function-like quasi_total ) ( Relation-like the carrier of (b1 : ( ( TopSpace-like ) ( TopSpace-like ) TopSpace) | b5 : ( ( ) ( ) Subset of ) ) : ( ( strict ) ( strict TopSpace-like ) SubSpace of b1 : ( ( TopSpace-like ) ( TopSpace-like ) TopSpace) ) : ( ( ) ( ) set ) -defined the carrier of b4 : ( ( TopSpace-like ) ( TopSpace-like ) TopSpace) : ( ( ) ( ) set ) -valued Function-like quasi_total ) Function of ( ( ) ( ) set ) , ( ( ) ( ) set ) ) is continuous ;

theorem :: BORSUK_4:45
for X being ( ( ) ( V143() V144() V145() ) Subset of )
for a, b being ( ( ) ( V72() real ext-real ) Point of ( ( ) ( non empty V143() V144() V145() ) set ) ) st X : ( ( ) ( V143() V144() V145() ) Subset of ) = ].a : ( ( ) ( V72() real ext-real ) Point of ( ( ) ( non empty V143() V144() V145() ) set ) ) ,b : ( ( ) ( V72() real ext-real ) Point of ( ( ) ( non empty V143() V144() V145() ) set ) ) .[ : ( ( ) ( V143() V144() V145() open non left_end non right_end interval ) Element of bool REAL : ( ( ) ( V143() V144() V145() V149() non bounded_below non bounded_above interval ) set ) : ( ( ) ( non empty ) set ) ) holds
X : ( ( ) ( V143() V144() V145() ) Subset of ) is open ;

theorem :: BORSUK_4:46
for X being ( ( ) ( V143() V144() V145() ) Subset of )
for a, b being ( ( ) ( V72() real ext-real ) Point of ( ( ) ( non empty V143() V144() V145() ) set ) ) st X : ( ( ) ( V143() V144() V145() ) Subset of ) = ].a : ( ( ) ( V72() real ext-real ) Point of ( ( ) ( non empty V143() V144() V145() ) set ) ) ,b : ( ( ) ( V72() real ext-real ) Point of ( ( ) ( non empty V143() V144() V145() ) set ) ) .[ : ( ( ) ( V143() V144() V145() open non left_end non right_end interval ) Element of bool REAL : ( ( ) ( V143() V144() V145() V149() non bounded_below non bounded_above interval ) set ) : ( ( ) ( non empty ) set ) ) holds
X : ( ( ) ( V143() V144() V145() ) Subset of ) is open ;

theorem :: BORSUK_4:47
for X being ( ( ) ( V143() V144() V145() ) Subset of )
for a being ( ( ) ( V72() real ext-real ) Point of ( ( ) ( non empty V143() V144() V145() ) set ) ) st X : ( ( ) ( V143() V144() V145() ) Subset of ) = ].0 : ( ( ) ( empty trivial natural V72() real ext-real non positive non negative V80() V81() V143() V144() V145() V146() V147() V148() V149() bounded_below interval ) Element of NAT : ( ( ) ( V143() V144() V145() V146() V147() V148() V149() bounded_below ) Element of bool REAL : ( ( ) ( V143() V144() V145() V149() non bounded_below non bounded_above interval ) set ) : ( ( ) ( non empty ) set ) ) ) ,a : ( ( ) ( V72() real ext-real ) Point of ( ( ) ( non empty V143() V144() V145() ) set ) ) .] : ( ( ) ( V143() V144() V145() non left_end interval ) Element of bool REAL : ( ( ) ( V143() V144() V145() V149() non bounded_below non bounded_above interval ) set ) : ( ( ) ( non empty ) set ) ) holds
X : ( ( ) ( V143() V144() V145() ) Subset of ) is closed ;

theorem :: BORSUK_4:48
for X being ( ( ) ( V143() V144() V145() ) Subset of )
for a being ( ( ) ( V72() real ext-real ) Point of ( ( ) ( non empty V143() V144() V145() ) set ) ) st X : ( ( ) ( V143() V144() V145() ) Subset of ) = [.a : ( ( ) ( V72() real ext-real ) Point of ( ( ) ( non empty V143() V144() V145() ) set ) ) ,1 : ( ( ) ( non empty natural V72() real ext-real positive non negative V80() V81() V143() V144() V145() V146() V147() V148() left_end bounded_below ) Element of NAT : ( ( ) ( V143() V144() V145() V146() V147() V148() V149() bounded_below ) Element of bool REAL : ( ( ) ( V143() V144() V145() V149() non bounded_below non bounded_above interval ) set ) : ( ( ) ( non empty ) set ) ) ) .[ : ( ( ) ( V143() V144() V145() non right_end interval ) Element of bool REAL : ( ( ) ( V143() V144() V145() V149() non bounded_below non bounded_above interval ) set ) : ( ( ) ( non empty ) set ) ) holds
X : ( ( ) ( V143() V144() V145() ) Subset of ) is closed ;

theorem :: BORSUK_4:49
for n being ( ( ) ( natural V72() real ext-real V80() V81() V143() V144() V145() V146() V147() V148() bounded_below ) Element of NAT : ( ( ) ( V143() V144() V145() V146() V147() V148() V149() bounded_below ) Element of bool REAL : ( ( ) ( V143() V144() V145() V149() non bounded_below non bounded_above interval ) set ) : ( ( ) ( non empty ) set ) ) )
for A being ( ( ) ( ) Subset of )
for p, q being ( ( ) ( V35(b1 : ( ( ) ( natural V72() real ext-real V80() V81() V143() V144() V145() V146() V147() V148() bounded_below ) Element of NAT : ( ( ) ( V143() V144() V145() V146() V147() V148() V149() bounded_below ) Element of bool REAL : ( ( ) ( V143() V144() V145() V149() non bounded_below non bounded_above interval ) set ) : ( ( ) ( non empty ) set ) ) ) ) V77() V135() ) Point of ( ( ) ( functional non empty ) set ) )
for a, b being ( ( ) ( V72() real ext-real ) Point of ( ( ) ( non empty V143() V144() V145() ) set ) ) st A : ( ( ) ( ) Subset of ) is_an_arc_of p : ( ( ) ( V35(b1 : ( ( ) ( natural V72() real ext-real V80() V81() V143() V144() V145() V146() V147() V148() bounded_below ) Element of NAT : ( ( ) ( V143() V144() V145() V146() V147() V148() V149() bounded_below ) Element of bool REAL : ( ( ) ( V143() V144() V145() V149() non bounded_below non bounded_above interval ) set ) : ( ( ) ( non empty ) set ) ) ) ) V77() V135() ) Point of ( ( ) ( functional non empty ) set ) ) ,q : ( ( ) ( V35(b1 : ( ( ) ( natural V72() real ext-real V80() V81() V143() V144() V145() V146() V147() V148() bounded_below ) Element of NAT : ( ( ) ( V143() V144() V145() V146() V147() V148() V149() bounded_below ) Element of bool REAL : ( ( ) ( V143() V144() V145() V149() non bounded_below non bounded_above interval ) set ) : ( ( ) ( non empty ) set ) ) ) ) V77() V135() ) Point of ( ( ) ( functional non empty ) set ) ) & a : ( ( ) ( V72() real ext-real ) Point of ( ( ) ( non empty V143() V144() V145() ) set ) ) < b : ( ( ) ( V72() real ext-real ) Point of ( ( ) ( non empty V143() V144() V145() ) set ) ) & b : ( ( ) ( V72() real ext-real ) Point of ( ( ) ( non empty V143() V144() V145() ) set ) ) <> 1 : ( ( ) ( non empty natural V72() real ext-real positive non negative V80() V81() V143() V144() V145() V146() V147() V148() left_end bounded_below ) Element of NAT : ( ( ) ( V143() V144() V145() V146() V147() V148() V149() bounded_below ) Element of bool REAL : ( ( ) ( V143() V144() V145() V149() non bounded_below non bounded_above interval ) set ) : ( ( ) ( non empty ) set ) ) ) holds
ex E being ( ( non empty ) ( non empty V143() V144() V145() ) Subset of ) ex f being ( ( Function-like quasi_total ) ( Relation-like the carrier of (I(01) : ( ( strict ) ( non empty strict TopSpace-like T_0 T_1 T_2 open V197() ) SubSpace of I[01] : ( ( ) ( non empty strict TopSpace-like T_0 T_1 T_2 compact V197() ) SubSpace of R^1 : ( ( TopSpace-like ) ( non empty strict TopSpace-like T_0 T_1 T_2 V197() ) TopStruct ) ) ) | b7 : ( ( non empty ) ( non empty V143() V144() V145() ) Subset of ) ) : ( ( strict ) ( non empty strict TopSpace-like T_0 T_1 T_2 V197() ) SubSpace of I(01) : ( ( strict ) ( non empty strict TopSpace-like T_0 T_1 T_2 open V197() ) SubSpace of I[01] : ( ( ) ( non empty strict TopSpace-like T_0 T_1 T_2 compact V197() ) SubSpace of R^1 : ( ( TopSpace-like ) ( non empty strict TopSpace-like T_0 T_1 T_2 V197() ) TopStruct ) ) ) ) : ( ( ) ( non empty V143() V144() V145() ) set ) -defined the carrier of ((TOP-REAL b1 : ( ( ) ( natural V72() real ext-real V80() V81() V143() V144() V145() V146() V147() V148() bounded_below ) Element of NAT : ( ( ) ( V143() V144() V145() V146() V147() V148() V149() bounded_below ) Element of bool REAL : ( ( ) ( V143() V144() V145() V149() non bounded_below non bounded_above interval ) set ) : ( ( ) ( non empty ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like T_0 T_1 T_2 V109() V155() V156() V157() V158() V159() V160() V161() strict add-continuous Mult-continuous ) RLTopStruct ) | (b2 : ( ( ) ( ) Subset of ) \ {b3 : ( ( ) ( V35(b1 : ( ( ) ( natural V72() real ext-real V80() V81() V143() V144() V145() V146() V147() V148() bounded_below ) Element of NAT : ( ( ) ( V143() V144() V145() V146() V147() V148() V149() bounded_below ) Element of bool REAL : ( ( ) ( V143() V144() V145() V149() non bounded_below non bounded_above interval ) set ) : ( ( ) ( non empty ) set ) ) ) ) V77() V135() ) Point of ( ( ) ( functional non empty ) set ) ) } : ( ( ) ( non empty trivial closed compact bounded ) Element of bool the carrier of (TOP-REAL b1 : ( ( ) ( natural V72() real ext-real V80() V81() V143() V144() V145() V146() V147() V148() bounded_below ) Element of NAT : ( ( ) ( V143() V144() V145() V146() V147() V148() V149() bounded_below ) Element of bool REAL : ( ( ) ( V143() V144() V145() V149() non bounded_below non bounded_above interval ) set ) : ( ( ) ( non empty ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like T_0 T_1 T_2 V109() V155() V156() V157() V158() V159() V160() V161() strict add-continuous Mult-continuous ) RLTopStruct ) : ( ( ) ( functional non empty ) set ) : ( ( ) ( non empty ) set ) ) ) : ( ( ) ( ) Element of bool the carrier of (TOP-REAL b1 : ( ( ) ( natural V72() real ext-real V80() V81() V143() V144() V145() V146() V147() V148() bounded_below ) Element of NAT : ( ( ) ( V143() V144() V145() V146() V147() V148() V149() bounded_below ) Element of bool REAL : ( ( ) ( V143() V144() V145() V149() non bounded_below non bounded_above interval ) set ) : ( ( ) ( non empty ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like T_0 T_1 T_2 V109() V155() V156() V157() V158() V159() V160() V161() strict add-continuous Mult-continuous ) RLTopStruct ) : ( ( ) ( functional non empty ) set ) : ( ( ) ( non empty ) set ) ) ) : ( ( strict ) ( strict TopSpace-like T_0 T_1 T_2 ) SubSpace of TOP-REAL b1 : ( ( ) ( natural V72() real ext-real V80() V81() V143() V144() V145() V146() V147() V148() bounded_below ) Element of NAT : ( ( ) ( V143() V144() V145() V146() V147() V148() V149() bounded_below ) Element of bool REAL : ( ( ) ( V143() V144() V145() V149() non bounded_below non bounded_above interval ) set ) : ( ( ) ( non empty ) set ) ) ) : ( ( strict ) ( non empty TopSpace-like T_0 T_1 T_2 V109() V155() V156() V157() V158() V159() V160() V161() strict add-continuous Mult-continuous ) RLTopStruct ) ) : ( ( ) ( ) set ) -valued Function-like quasi_total ) Function of ( ( ) ( non empty V143() V144() V145() ) set ) , ( ( ) ( ) set ) ) st
( E : ( ( non empty ) ( non empty V143() V144() V145() ) Subset of ) = ].a : ( ( ) ( V72() real ext-real ) Point of ( ( ) ( non empty V143() V144() V145() ) set ) ) ,b : ( ( ) ( V72() real ext-real ) Point of ( ( ) ( non empty V143() V144() V145() ) set ) ) .] : ( ( ) ( V143() V144() V145() non left_end interval ) Element of bool REAL : ( ( ) ( V143() V144() V145() V149() non bounded_below non bounded_above interval ) set ) : ( ( ) ( non empty ) set ) ) & f : ( ( Function-like quasi_total ) ( Relation-like the carrier of (I(01) : ( ( strict ) ( non empty strict TopSpace-like T_0 T_1 T_2 open V197() ) SubSpace of I[01] : ( ( ) ( non empty strict TopSpace-like T_0 T_1 T_2 compact V197() ) SubSpace of R^1 : ( ( TopSpace-like ) ( non empty strict TopSpace-like T_0 T_1 T_2 V197() ) TopStruct ) ) ) | b7 : ( ( non empty ) ( non empty V143() V144() V145() ) Subset of ) ) : ( ( strict ) ( non empty strict TopSpace-like T_0 T_1 T_2 V197() ) SubSpace of I(01) : ( ( strict ) ( non empty strict TopSpace-like T_0 T_1 T_2 open V197() ) SubSpace of I[01] : ( ( ) ( non empty strict TopSpace-like T_0 T_1 T_2 compact V197() ) SubSpace of R^1 : ( ( TopSpace-like ) ( non empty strict TopSpace-like T_0 T_1 T_2 V197() ) TopStruct ) ) ) ) : ( ( ) ( non empty V143() V144() V145() ) set ) -defined the carrier of ((TOP-REAL b1 : ( ( ) ( natural V72() real ext-real V80() V81() V143() V144() V145() V146() V147() V148() bounded_below ) Element of NAT : ( ( ) ( V143() V144() V145() V146() V147() V148() V149() bounded_below ) Element of bool REAL : ( ( ) ( V143() V144() V145() V149() non bounded_below non bounded_above interval ) set ) : ( ( ) ( non empty ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like T_0 T_1 T_2 V109() V155() V156() V157() V158() V159() V160() V161() strict add-continuous Mult-continuous ) RLTopStruct ) | (b2 : ( ( ) ( ) Subset of ) \ {b3 : ( ( ) ( V35(b1 : ( ( ) ( natural V72() real ext-real V80() V81() V143() V144() V145() V146() V147() V148() bounded_below ) Element of NAT : ( ( ) ( V143() V144() V145() V146() V147() V148() V149() bounded_below ) Element of bool REAL : ( ( ) ( V143() V144() V145() V149() non bounded_below non bounded_above interval ) set ) : ( ( ) ( non empty ) set ) ) ) ) V77() V135() ) Point of ( ( ) ( functional non empty ) set ) ) } : ( ( ) ( non empty trivial closed compact bounded ) Element of bool the carrier of (TOP-REAL b1 : ( ( ) ( natural V72() real ext-real V80() V81() V143() V144() V145() V146() V147() V148() bounded_below ) Element of NAT : ( ( ) ( V143() V144() V145() V146() V147() V148() V149() bounded_below ) Element of bool REAL : ( ( ) ( V143() V144() V145() V149() non bounded_below non bounded_above interval ) set ) : ( ( ) ( non empty ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like T_0 T_1 T_2 V109() V155() V156() V157() V158() V159() V160() V161() strict add-continuous Mult-continuous ) RLTopStruct ) : ( ( ) ( functional non empty ) set ) : ( ( ) ( non empty ) set ) ) ) : ( ( ) ( ) Element of bool the carrier of (TOP-REAL b1 : ( ( ) ( natural V72() real ext-real V80() V81() V143() V144() V145() V146() V147() V148() bounded_below ) Element of NAT : ( ( ) ( V143() V144() V145() V146() V147() V148() V149() bounded_below ) Element of bool REAL : ( ( ) ( V143() V144() V145() V149() non bounded_below non bounded_above interval ) set ) : ( ( ) ( non empty ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like T_0 T_1 T_2 V109() V155() V156() V157() V158() V159() V160() V161() strict add-continuous Mult-continuous ) RLTopStruct ) : ( ( ) ( functional non empty ) set ) : ( ( ) ( non empty ) set ) ) ) : ( ( strict ) ( strict TopSpace-like T_0 T_1 T_2 ) SubSpace of TOP-REAL b1 : ( ( ) ( natural V72() real ext-real V80() V81() V143() V144() V145() V146() V147() V148() bounded_below ) Element of NAT : ( ( ) ( V143() V144() V145() V146() V147() V148() V149() bounded_below ) Element of bool REAL : ( ( ) ( V143() V144() V145() V149() non bounded_below non bounded_above interval ) set ) : ( ( ) ( non empty ) set ) ) ) : ( ( strict ) ( non empty TopSpace-like T_0 T_1 T_2 V109() V155() V156() V157() V158() V159() V160() V161() strict add-continuous Mult-continuous ) RLTopStruct ) ) : ( ( ) ( ) set ) -valued Function-like quasi_total ) Function of ( ( ) ( non empty V143() V144() V145() ) set ) , ( ( ) ( ) set ) ) is being_homeomorphism & f : ( ( Function-like quasi_total ) ( Relation-like the carrier of (I(01) : ( ( strict ) ( non empty strict TopSpace-like T_0 T_1 T_2 open V197() ) SubSpace of I[01] : ( ( ) ( non empty strict TopSpace-like T_0 T_1 T_2 compact V197() ) SubSpace of R^1 : ( ( TopSpace-like ) ( non empty strict TopSpace-like T_0 T_1 T_2 V197() ) TopStruct ) ) ) | b7 : ( ( non empty ) ( non empty V143() V144() V145() ) Subset of ) ) : ( ( strict ) ( non empty strict TopSpace-like T_0 T_1 T_2 V197() ) SubSpace of I(01) : ( ( strict ) ( non empty strict TopSpace-like T_0 T_1 T_2 open V197() ) SubSpace of I[01] : ( ( ) ( non empty strict TopSpace-like T_0 T_1 T_2 compact V197() ) SubSpace of R^1 : ( ( TopSpace-like ) ( non empty strict TopSpace-like T_0 T_1 T_2 V197() ) TopStruct ) ) ) ) : ( ( ) ( non empty V143() V144() V145() ) set ) -defined the carrier of ((TOP-REAL b1 : ( ( ) ( natural V72() real ext-real V80() V81() V143() V144() V145() V146() V147() V148() bounded_below ) Element of NAT : ( ( ) ( V143() V144() V145() V146() V147() V148() V149() bounded_below ) Element of bool REAL : ( ( ) ( V143() V144() V145() V149() non bounded_below non bounded_above interval ) set ) : ( ( ) ( non empty ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like T_0 T_1 T_2 V109() V155() V156() V157() V158() V159() V160() V161() strict add-continuous Mult-continuous ) RLTopStruct ) | (b2 : ( ( ) ( ) Subset of ) \ {b3 : ( ( ) ( V35(b1 : ( ( ) ( natural V72() real ext-real V80() V81() V143() V144() V145() V146() V147() V148() bounded_below ) Element of NAT : ( ( ) ( V143() V144() V145() V146() V147() V148() V149() bounded_below ) Element of bool REAL : ( ( ) ( V143() V144() V145() V149() non bounded_below non bounded_above interval ) set ) : ( ( ) ( non empty ) set ) ) ) ) V77() V135() ) Point of ( ( ) ( functional non empty ) set ) ) } : ( ( ) ( non empty trivial closed compact bounded ) Element of bool the carrier of (TOP-REAL b1 : ( ( ) ( natural V72() real ext-real V80() V81() V143() V144() V145() V146() V147() V148() bounded_below ) Element of NAT : ( ( ) ( V143() V144() V145() V146() V147() V148() V149() bounded_below ) Element of bool REAL : ( ( ) ( V143() V144() V145() V149() non bounded_below non bounded_above interval ) set ) : ( ( ) ( non empty ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like T_0 T_1 T_2 V109() V155() V156() V157() V158() V159() V160() V161() strict add-continuous Mult-continuous ) RLTopStruct ) : ( ( ) ( functional non empty ) set ) : ( ( ) ( non empty ) set ) ) ) : ( ( ) ( ) Element of bool the carrier of (TOP-REAL b1 : ( ( ) ( natural V72() real ext-real V80() V81() V143() V144() V145() V146() V147() V148() bounded_below ) Element of NAT : ( ( ) ( V143() V144() V145() V146() V147() V148() V149() bounded_below ) Element of bool REAL : ( ( ) ( V143() V144() V145() V149() non bounded_below non bounded_above interval ) set ) : ( ( ) ( non empty ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like T_0 T_1 T_2 V109() V155() V156() V157() V158() V159() V160() V161() strict add-continuous Mult-continuous ) RLTopStruct ) : ( ( ) ( functional non empty ) set ) : ( ( ) ( non empty ) set ) ) ) : ( ( strict ) ( strict TopSpace-like T_0 T_1 T_2 ) SubSpace of TOP-REAL b1 : ( ( ) ( natural V72() real ext-real V80() V81() V143() V144() V145() V146() V147() V148() bounded_below ) Element of NAT : ( ( ) ( V143() V144() V145() V146() V147() V148() V149() bounded_below ) Element of bool REAL : ( ( ) ( V143() V144() V145() V149() non bounded_below non bounded_above interval ) set ) : ( ( ) ( non empty ) set ) ) ) : ( ( strict ) ( non empty TopSpace-like T_0 T_1 T_2 V109() V155() V156() V157() V158() V159() V160() V161() strict add-continuous Mult-continuous ) RLTopStruct ) ) : ( ( ) ( ) set ) -valued Function-like quasi_total ) Function of ( ( ) ( non empty V143() V144() V145() ) set ) , ( ( ) ( ) set ) ) . b : ( ( ) ( V72() real ext-real ) Point of ( ( ) ( non empty V143() V144() V145() ) set ) ) : ( ( ) ( ) set ) = q : ( ( ) ( V35(b1 : ( ( ) ( natural V72() real ext-real V80() V81() V143() V144() V145() V146() V147() V148() bounded_below ) Element of NAT : ( ( ) ( V143() V144() V145() V146() V147() V148() V149() bounded_below ) Element of bool REAL : ( ( ) ( V143() V144() V145() V149() non bounded_below non bounded_above interval ) set ) : ( ( ) ( non empty ) set ) ) ) ) V77() V135() ) Point of ( ( ) ( functional non empty ) set ) ) ) ;

theorem :: BORSUK_4:50
for n being ( ( ) ( natural V72() real ext-real V80() V81() V143() V144() V145() V146() V147() V148() bounded_below ) Element of NAT : ( ( ) ( V143() V144() V145() V146() V147() V148() V149() bounded_below ) Element of bool REAL : ( ( ) ( V143() V144() V145() V149() non bounded_below non bounded_above interval ) set ) : ( ( ) ( non empty ) set ) ) )
for A being ( ( ) ( ) Subset of )
for p, q being ( ( ) ( V35(b1 : ( ( ) ( natural V72() real ext-real V80() V81() V143() V144() V145() V146() V147() V148() bounded_below ) Element of NAT : ( ( ) ( V143() V144() V145() V146() V147() V148() V149() bounded_below ) Element of bool REAL : ( ( ) ( V143() V144() V145() V149() non bounded_below non bounded_above interval ) set ) : ( ( ) ( non empty ) set ) ) ) ) V77() V135() ) Point of ( ( ) ( functional non empty ) set ) )
for a, b being ( ( ) ( V72() real ext-real ) Point of ( ( ) ( non empty V143() V144() V145() ) set ) ) st A : ( ( ) ( ) Subset of ) is_an_arc_of p : ( ( ) ( V35(b1 : ( ( ) ( natural V72() real ext-real V80() V81() V143() V144() V145() V146() V147() V148() bounded_below ) Element of NAT : ( ( ) ( V143() V144() V145() V146() V147() V148() V149() bounded_below ) Element of bool REAL : ( ( ) ( V143() V144() V145() V149() non bounded_below non bounded_above interval ) set ) : ( ( ) ( non empty ) set ) ) ) ) V77() V135() ) Point of ( ( ) ( functional non empty ) set ) ) ,q : ( ( ) ( V35(b1 : ( ( ) ( natural V72() real ext-real V80() V81() V143() V144() V145() V146() V147() V148() bounded_below ) Element of NAT : ( ( ) ( V143() V144() V145() V146() V147() V148() V149() bounded_below ) Element of bool REAL : ( ( ) ( V143() V144() V145() V149() non bounded_below non bounded_above interval ) set ) : ( ( ) ( non empty ) set ) ) ) ) V77() V135() ) Point of ( ( ) ( functional non empty ) set ) ) & a : ( ( ) ( V72() real ext-real ) Point of ( ( ) ( non empty V143() V144() V145() ) set ) ) < b : ( ( ) ( V72() real ext-real ) Point of ( ( ) ( non empty V143() V144() V145() ) set ) ) & a : ( ( ) ( V72() real ext-real ) Point of ( ( ) ( non empty V143() V144() V145() ) set ) ) <> 0 : ( ( ) ( empty trivial natural V72() real ext-real non positive non negative V80() V81() V143() V144() V145() V146() V147() V148() V149() bounded_below interval ) Element of NAT : ( ( ) ( V143() V144() V145() V146() V147() V148() V149() bounded_below ) Element of bool REAL : ( ( ) ( V143() V144() V145() V149() non bounded_below non bounded_above interval ) set ) : ( ( ) ( non empty ) set ) ) ) holds
ex E being ( ( non empty ) ( non empty V143() V144() V145() ) Subset of ) ex f being ( ( Function-like quasi_total ) ( Relation-like the carrier of (I(01) : ( ( strict ) ( non empty strict TopSpace-like T_0 T_1 T_2 open V197() ) SubSpace of I[01] : ( ( ) ( non empty strict TopSpace-like T_0 T_1 T_2 compact V197() ) SubSpace of R^1 : ( ( TopSpace-like ) ( non empty strict TopSpace-like T_0 T_1 T_2 V197() ) TopStruct ) ) ) | b7 : ( ( non empty ) ( non empty V143() V144() V145() ) Subset of ) ) : ( ( strict ) ( non empty strict TopSpace-like T_0 T_1 T_2 V197() ) SubSpace of I(01) : ( ( strict ) ( non empty strict TopSpace-like T_0 T_1 T_2 open V197() ) SubSpace of I[01] : ( ( ) ( non empty strict TopSpace-like T_0 T_1 T_2 compact V197() ) SubSpace of R^1 : ( ( TopSpace-like ) ( non empty strict TopSpace-like T_0 T_1 T_2 V197() ) TopStruct ) ) ) ) : ( ( ) ( non empty V143() V144() V145() ) set ) -defined the carrier of ((TOP-REAL b1 : ( ( ) ( natural V72() real ext-real V80() V81() V143() V144() V145() V146() V147() V148() bounded_below ) Element of NAT : ( ( ) ( V143() V144() V145() V146() V147() V148() V149() bounded_below ) Element of bool REAL : ( ( ) ( V143() V144() V145() V149() non bounded_below non bounded_above interval ) set ) : ( ( ) ( non empty ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like T_0 T_1 T_2 V109() V155() V156() V157() V158() V159() V160() V161() strict add-continuous Mult-continuous ) RLTopStruct ) | (b2 : ( ( ) ( ) Subset of ) \ {b4 : ( ( ) ( V35(b1 : ( ( ) ( natural V72() real ext-real V80() V81() V143() V144() V145() V146() V147() V148() bounded_below ) Element of NAT : ( ( ) ( V143() V144() V145() V146() V147() V148() V149() bounded_below ) Element of bool REAL : ( ( ) ( V143() V144() V145() V149() non bounded_below non bounded_above interval ) set ) : ( ( ) ( non empty ) set ) ) ) ) V77() V135() ) Point of ( ( ) ( functional non empty ) set ) ) } : ( ( ) ( non empty trivial closed compact bounded ) Element of bool the carrier of (TOP-REAL b1 : ( ( ) ( natural V72() real ext-real V80() V81() V143() V144() V145() V146() V147() V148() bounded_below ) Element of NAT : ( ( ) ( V143() V144() V145() V146() V147() V148() V149() bounded_below ) Element of bool REAL : ( ( ) ( V143() V144() V145() V149() non bounded_below non bounded_above interval ) set ) : ( ( ) ( non empty ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like T_0 T_1 T_2 V109() V155() V156() V157() V158() V159() V160() V161() strict add-continuous Mult-continuous ) RLTopStruct ) : ( ( ) ( functional non empty ) set ) : ( ( ) ( non empty ) set ) ) ) : ( ( ) ( ) Element of bool the carrier of (TOP-REAL b1 : ( ( ) ( natural V72() real ext-real V80() V81() V143() V144() V145() V146() V147() V148() bounded_below ) Element of NAT : ( ( ) ( V143() V144() V145() V146() V147() V148() V149() bounded_below ) Element of bool REAL : ( ( ) ( V143() V144() V145() V149() non bounded_below non bounded_above interval ) set ) : ( ( ) ( non empty ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like T_0 T_1 T_2 V109() V155() V156() V157() V158() V159() V160() V161() strict add-continuous Mult-continuous ) RLTopStruct ) : ( ( ) ( functional non empty ) set ) : ( ( ) ( non empty ) set ) ) ) : ( ( strict ) ( strict TopSpace-like T_0 T_1 T_2 ) SubSpace of TOP-REAL b1 : ( ( ) ( natural V72() real ext-real V80() V81() V143() V144() V145() V146() V147() V148() bounded_below ) Element of NAT : ( ( ) ( V143() V144() V145() V146() V147() V148() V149() bounded_below ) Element of bool REAL : ( ( ) ( V143() V144() V145() V149() non bounded_below non bounded_above interval ) set ) : ( ( ) ( non empty ) set ) ) ) : ( ( strict ) ( non empty TopSpace-like T_0 T_1 T_2 V109() V155() V156() V157() V158() V159() V160() V161() strict add-continuous Mult-continuous ) RLTopStruct ) ) : ( ( ) ( ) set ) -valued Function-like quasi_total ) Function of ( ( ) ( non empty V143() V144() V145() ) set ) , ( ( ) ( ) set ) ) st
( E : ( ( non empty ) ( non empty V143() V144() V145() ) Subset of ) = [.a : ( ( ) ( V72() real ext-real ) Point of ( ( ) ( non empty V143() V144() V145() ) set ) ) ,b : ( ( ) ( V72() real ext-real ) Point of ( ( ) ( non empty V143() V144() V145() ) set ) ) .[ : ( ( ) ( V143() V144() V145() non right_end interval ) Element of bool REAL : ( ( ) ( V143() V144() V145() V149() non bounded_below non bounded_above interval ) set ) : ( ( ) ( non empty ) set ) ) & f : ( ( Function-like quasi_total ) ( Relation-like the carrier of (I(01) : ( ( strict ) ( non empty strict TopSpace-like T_0 T_1 T_2 open V197() ) SubSpace of I[01] : ( ( ) ( non empty strict TopSpace-like T_0 T_1 T_2 compact V197() ) SubSpace of R^1 : ( ( TopSpace-like ) ( non empty strict TopSpace-like T_0 T_1 T_2 V197() ) TopStruct ) ) ) | b7 : ( ( non empty ) ( non empty V143() V144() V145() ) Subset of ) ) : ( ( strict ) ( non empty strict TopSpace-like T_0 T_1 T_2 V197() ) SubSpace of I(01) : ( ( strict ) ( non empty strict TopSpace-like T_0 T_1 T_2 open V197() ) SubSpace of I[01] : ( ( ) ( non empty strict TopSpace-like T_0 T_1 T_2 compact V197() ) SubSpace of R^1 : ( ( TopSpace-like ) ( non empty strict TopSpace-like T_0 T_1 T_2 V197() ) TopStruct ) ) ) ) : ( ( ) ( non empty V143() V144() V145() ) set ) -defined the carrier of ((TOP-REAL b1 : ( ( ) ( natural V72() real ext-real V80() V81() V143() V144() V145() V146() V147() V148() bounded_below ) Element of NAT : ( ( ) ( V143() V144() V145() V146() V147() V148() V149() bounded_below ) Element of bool REAL : ( ( ) ( V143() V144() V145() V149() non bounded_below non bounded_above interval ) set ) : ( ( ) ( non empty ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like T_0 T_1 T_2 V109() V155() V156() V157() V158() V159() V160() V161() strict add-continuous Mult-continuous ) RLTopStruct ) | (b2 : ( ( ) ( ) Subset of ) \ {b4 : ( ( ) ( V35(b1 : ( ( ) ( natural V72() real ext-real V80() V81() V143() V144() V145() V146() V147() V148() bounded_below ) Element of NAT : ( ( ) ( V143() V144() V145() V146() V147() V148() V149() bounded_below ) Element of bool REAL : ( ( ) ( V143() V144() V145() V149() non bounded_below non bounded_above interval ) set ) : ( ( ) ( non empty ) set ) ) ) ) V77() V135() ) Point of ( ( ) ( functional non empty ) set ) ) } : ( ( ) ( non empty trivial closed compact bounded ) Element of bool the carrier of (TOP-REAL b1 : ( ( ) ( natural V72() real ext-real V80() V81() V143() V144() V145() V146() V147() V148() bounded_below ) Element of NAT : ( ( ) ( V143() V144() V145() V146() V147() V148() V149() bounded_below ) Element of bool REAL : ( ( ) ( V143() V144() V145() V149() non bounded_below non bounded_above interval ) set ) : ( ( ) ( non empty ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like T_0 T_1 T_2 V109() V155() V156() V157() V158() V159() V160() V161() strict add-continuous Mult-continuous ) RLTopStruct ) : ( ( ) ( functional non empty ) set ) : ( ( ) ( non empty ) set ) ) ) : ( ( ) ( ) Element of bool the carrier of (TOP-REAL b1 : ( ( ) ( natural V72() real ext-real V80() V81() V143() V144() V145() V146() V147() V148() bounded_below ) Element of NAT : ( ( ) ( V143() V144() V145() V146() V147() V148() V149() bounded_below ) Element of bool REAL : ( ( ) ( V143() V144() V145() V149() non bounded_below non bounded_above interval ) set ) : ( ( ) ( non empty ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like T_0 T_1 T_2 V109() V155() V156() V157() V158() V159() V160() V161() strict add-continuous Mult-continuous ) RLTopStruct ) : ( ( ) ( functional non empty ) set ) : ( ( ) ( non empty ) set ) ) ) : ( ( strict ) ( strict TopSpace-like T_0 T_1 T_2 ) SubSpace of TOP-REAL b1 : ( ( ) ( natural V72() real ext-real V80() V81() V143() V144() V145() V146() V147() V148() bounded_below ) Element of NAT : ( ( ) ( V143() V144() V145() V146() V147() V148() V149() bounded_below ) Element of bool REAL : ( ( ) ( V143() V144() V145() V149() non bounded_below non bounded_above interval ) set ) : ( ( ) ( non empty ) set ) ) ) : ( ( strict ) ( non empty TopSpace-like T_0 T_1 T_2 V109() V155() V156() V157() V158() V159() V160() V161() strict add-continuous Mult-continuous ) RLTopStruct ) ) : ( ( ) ( ) set ) -valued Function-like quasi_total ) Function of ( ( ) ( non empty V143() V144() V145() ) set ) , ( ( ) ( ) set ) ) is being_homeomorphism & f : ( ( Function-like quasi_total ) ( Relation-like the carrier of (I(01) : ( ( strict ) ( non empty strict TopSpace-like T_0 T_1 T_2 open V197() ) SubSpace of I[01] : ( ( ) ( non empty strict TopSpace-like T_0 T_1 T_2 compact V197() ) SubSpace of R^1 : ( ( TopSpace-like ) ( non empty strict TopSpace-like T_0 T_1 T_2 V197() ) TopStruct ) ) ) | b7 : ( ( non empty ) ( non empty V143() V144() V145() ) Subset of ) ) : ( ( strict ) ( non empty strict TopSpace-like T_0 T_1 T_2 V197() ) SubSpace of I(01) : ( ( strict ) ( non empty strict TopSpace-like T_0 T_1 T_2 open V197() ) SubSpace of I[01] : ( ( ) ( non empty strict TopSpace-like T_0 T_1 T_2 compact V197() ) SubSpace of R^1 : ( ( TopSpace-like ) ( non empty strict TopSpace-like T_0 T_1 T_2 V197() ) TopStruct ) ) ) ) : ( ( ) ( non empty V143() V144() V145() ) set ) -defined the carrier of ((TOP-REAL b1 : ( ( ) ( natural V72() real ext-real V80() V81() V143() V144() V145() V146() V147() V148() bounded_below ) Element of NAT : ( ( ) ( V143() V144() V145() V146() V147() V148() V149() bounded_below ) Element of bool REAL : ( ( ) ( V143() V144() V145() V149() non bounded_below non bounded_above interval ) set ) : ( ( ) ( non empty ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like T_0 T_1 T_2 V109() V155() V156() V157() V158() V159() V160() V161() strict add-continuous Mult-continuous ) RLTopStruct ) | (b2 : ( ( ) ( ) Subset of ) \ {b4 : ( ( ) ( V35(b1 : ( ( ) ( natural V72() real ext-real V80() V81() V143() V144() V145() V146() V147() V148() bounded_below ) Element of NAT : ( ( ) ( V143() V144() V145() V146() V147() V148() V149() bounded_below ) Element of bool REAL : ( ( ) ( V143() V144() V145() V149() non bounded_below non bounded_above interval ) set ) : ( ( ) ( non empty ) set ) ) ) ) V77() V135() ) Point of ( ( ) ( functional non empty ) set ) ) } : ( ( ) ( non empty trivial closed compact bounded ) Element of bool the carrier of (TOP-REAL b1 : ( ( ) ( natural V72() real ext-real V80() V81() V143() V144() V145() V146() V147() V148() bounded_below ) Element of NAT : ( ( ) ( V143() V144() V145() V146() V147() V148() V149() bounded_below ) Element of bool REAL : ( ( ) ( V143() V144() V145() V149() non bounded_below non bounded_above interval ) set ) : ( ( ) ( non empty ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like T_0 T_1 T_2 V109() V155() V156() V157() V158() V159() V160() V161() strict add-continuous Mult-continuous ) RLTopStruct ) : ( ( ) ( functional non empty ) set ) : ( ( ) ( non empty ) set ) ) ) : ( ( ) ( ) Element of bool the carrier of (TOP-REAL b1 : ( ( ) ( natural V72() real ext-real V80() V81() V143() V144() V145() V146() V147() V148() bounded_below ) Element of NAT : ( ( ) ( V143() V144() V145() V146() V147() V148() V149() bounded_below ) Element of bool REAL : ( ( ) ( V143() V144() V145() V149() non bounded_below non bounded_above interval ) set ) : ( ( ) ( non empty ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like T_0 T_1 T_2 V109() V155() V156() V157() V158() V159() V160() V161() strict add-continuous Mult-continuous ) RLTopStruct ) : ( ( ) ( functional non empty ) set ) : ( ( ) ( non empty ) set ) ) ) : ( ( strict ) ( strict TopSpace-like T_0 T_1 T_2 ) SubSpace of TOP-REAL b1 : ( ( ) ( natural V72() real ext-real V80() V81() V143() V144() V145() V146() V147() V148() bounded_below ) Element of NAT : ( ( ) ( V143() V144() V145() V146() V147() V148() V149() bounded_below ) Element of bool REAL : ( ( ) ( V143() V144() V145() V149() non bounded_below non bounded_above interval ) set ) : ( ( ) ( non empty ) set ) ) ) : ( ( strict ) ( non empty TopSpace-like T_0 T_1 T_2 V109() V155() V156() V157() V158() V159() V160() V161() strict add-continuous Mult-continuous ) RLTopStruct ) ) : ( ( ) ( ) set ) -valued Function-like quasi_total ) Function of ( ( ) ( non empty V143() V144() V145() ) set ) , ( ( ) ( ) set ) ) . a : ( ( ) ( V72() real ext-real ) Point of ( ( ) ( non empty V143() V144() V145() ) set ) ) : ( ( ) ( ) set ) = p : ( ( ) ( V35(b1 : ( ( ) ( natural V72() real ext-real V80() V81() V143() V144() V145() V146() V147() V148() bounded_below ) Element of NAT : ( ( ) ( V143() V144() V145() V146() V147() V148() V149() bounded_below ) Element of bool REAL : ( ( ) ( V143() V144() V145() V149() non bounded_below non bounded_above interval ) set ) : ( ( ) ( non empty ) set ) ) ) ) V77() V135() ) Point of ( ( ) ( functional non empty ) set ) ) ) ;

theorem :: BORSUK_4:51
for n being ( ( ) ( natural V72() real ext-real V80() V81() V143() V144() V145() V146() V147() V148() bounded_below ) Element of NAT : ( ( ) ( V143() V144() V145() V146() V147() V148() V149() bounded_below ) Element of bool REAL : ( ( ) ( V143() V144() V145() V149() non bounded_below non bounded_above interval ) set ) : ( ( ) ( non empty ) set ) ) )
for A, B being ( ( ) ( ) Subset of )
for p, q being ( ( ) ( V35(b1 : ( ( ) ( natural V72() real ext-real V80() V81() V143() V144() V145() V146() V147() V148() bounded_below ) Element of NAT : ( ( ) ( V143() V144() V145() V146() V147() V148() V149() bounded_below ) Element of bool REAL : ( ( ) ( V143() V144() V145() V149() non bounded_below non bounded_above interval ) set ) : ( ( ) ( non empty ) set ) ) ) ) V77() V135() ) Point of ( ( ) ( functional non empty ) set ) ) st A : ( ( ) ( ) Subset of ) is_an_arc_of p : ( ( ) ( V35(b1 : ( ( ) ( natural V72() real ext-real V80() V81() V143() V144() V145() V146() V147() V148() bounded_below ) Element of NAT : ( ( ) ( V143() V144() V145() V146() V147() V148() V149() bounded_below ) Element of bool REAL : ( ( ) ( V143() V144() V145() V149() non bounded_below non bounded_above interval ) set ) : ( ( ) ( non empty ) set ) ) ) ) V77() V135() ) Point of ( ( ) ( functional non empty ) set ) ) ,q : ( ( ) ( V35(b1 : ( ( ) ( natural V72() real ext-real V80() V81() V143() V144() V145() V146() V147() V148() bounded_below ) Element of NAT : ( ( ) ( V143() V144() V145() V146() V147() V148() V149() bounded_below ) Element of bool REAL : ( ( ) ( V143() V144() V145() V149() non bounded_below non bounded_above interval ) set ) : ( ( ) ( non empty ) set ) ) ) ) V77() V135() ) Point of ( ( ) ( functional non empty ) set ) ) & B : ( ( ) ( ) Subset of ) is_an_arc_of q : ( ( ) ( V35(b1 : ( ( ) ( natural V72() real ext-real V80() V81() V143() V144() V145() V146() V147() V148() bounded_below ) Element of NAT : ( ( ) ( V143() V144() V145() V146() V147() V148() V149() bounded_below ) Element of bool REAL : ( ( ) ( V143() V144() V145() V149() non bounded_below non bounded_above interval ) set ) : ( ( ) ( non empty ) set ) ) ) ) V77() V135() ) Point of ( ( ) ( functional non empty ) set ) ) ,p : ( ( ) ( V35(b1 : ( ( ) ( natural V72() real ext-real V80() V81() V143() V144() V145() V146() V147() V148() bounded_below ) Element of NAT : ( ( ) ( V143() V144() V145() V146() V147() V148() V149() bounded_below ) Element of bool REAL : ( ( ) ( V143() V144() V145() V149() non bounded_below non bounded_above interval ) set ) : ( ( ) ( non empty ) set ) ) ) ) V77() V135() ) Point of ( ( ) ( functional non empty ) set ) ) & A : ( ( ) ( ) Subset of ) /\ B : ( ( ) ( ) Subset of ) : ( ( ) ( ) Element of bool the carrier of (TOP-REAL b1 : ( ( ) ( natural V72() real ext-real V80() V81() V143() V144() V145() V146() V147() V148() bounded_below ) Element of NAT : ( ( ) ( V143() V144() V145() V146() V147() V148() V149() bounded_below ) Element of bool REAL : ( ( ) ( V143() V144() V145() V149() non bounded_below non bounded_above interval ) set ) : ( ( ) ( non empty ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like T_0 T_1 T_2 V109() V155() V156() V157() V158() V159() V160() V161() strict add-continuous Mult-continuous ) RLTopStruct ) : ( ( ) ( functional non empty ) set ) : ( ( ) ( non empty ) set ) ) = {p : ( ( ) ( V35(b1 : ( ( ) ( natural V72() real ext-real V80() V81() V143() V144() V145() V146() V147() V148() bounded_below ) Element of NAT : ( ( ) ( V143() V144() V145() V146() V147() V148() V149() bounded_below ) Element of bool REAL : ( ( ) ( V143() V144() V145() V149() non bounded_below non bounded_above interval ) set ) : ( ( ) ( non empty ) set ) ) ) ) V77() V135() ) Point of ( ( ) ( functional non empty ) set ) ) ,q : ( ( ) ( V35(b1 : ( ( ) ( natural V72() real ext-real V80() V81() V143() V144() V145() V146() V147() V148() bounded_below ) Element of NAT : ( ( ) ( V143() V144() V145() V146() V147() V148() V149() bounded_below ) Element of bool REAL : ( ( ) ( V143() V144() V145() V149() non bounded_below non bounded_above interval ) set ) : ( ( ) ( non empty ) set ) ) ) ) V77() V135() ) Point of ( ( ) ( functional non empty ) set ) ) } : ( ( ) ( non empty ) Element of bool the carrier of (TOP-REAL b1 : ( ( ) ( natural V72() real ext-real V80() V81() V143() V144() V145() V146() V147() V148() bounded_below ) Element of NAT : ( ( ) ( V143() V144() V145() V146() V147() V148() V149() bounded_below ) Element of bool REAL : ( ( ) ( V143() V144() V145() V149() non bounded_below non bounded_above interval ) set ) : ( ( ) ( non empty ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like T_0 T_1 T_2 V109() V155() V156() V157() V158() V159() V160() V161() strict add-continuous Mult-continuous ) RLTopStruct ) : ( ( ) ( functional non empty ) set ) : ( ( ) ( non empty ) set ) ) & p : ( ( ) ( V35(b1 : ( ( ) ( natural V72() real ext-real V80() V81() V143() V144() V145() V146() V147() V148() bounded_below ) Element of NAT : ( ( ) ( V143() V144() V145() V146() V147() V148() V149() bounded_below ) Element of bool REAL : ( ( ) ( V143() V144() V145() V149() non bounded_below non bounded_above interval ) set ) : ( ( ) ( non empty ) set ) ) ) ) V77() V135() ) Point of ( ( ) ( functional non empty ) set ) ) <> q : ( ( ) ( V35(b1 : ( ( ) ( natural V72() real ext-real V80() V81() V143() V144() V145() V146() V147() V148() bounded_below ) Element of NAT : ( ( ) ( V143() V144() V145() V146() V147() V148() V149() bounded_below ) Element of bool REAL : ( ( ) ( V143() V144() V145() V149() non bounded_below non bounded_above interval ) set ) : ( ( ) ( non empty ) set ) ) ) ) V77() V135() ) Point of ( ( ) ( functional non empty ) set ) ) holds
I(01) : ( ( strict ) ( non empty strict TopSpace-like T_0 T_1 T_2 open V197() ) SubSpace of I[01] : ( ( ) ( non empty strict TopSpace-like T_0 T_1 T_2 compact V197() ) SubSpace of R^1 : ( ( TopSpace-like ) ( non empty strict TopSpace-like T_0 T_1 T_2 V197() ) TopStruct ) ) ) ,(TOP-REAL n : ( ( ) ( natural V72() real ext-real V80() V81() V143() V144() V145() V146() V147() V148() bounded_below ) Element of NAT : ( ( ) ( V143() V144() V145() V146() V147() V148() V149() bounded_below ) Element of bool REAL : ( ( ) ( V143() V144() V145() V149() non bounded_below non bounded_above interval ) set ) : ( ( ) ( non empty ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like T_0 T_1 T_2 V109() V155() V156() V157() V158() V159() V160() V161() strict add-continuous Mult-continuous ) RLTopStruct ) | ((A : ( ( ) ( ) Subset of ) \ {p : ( ( ) ( V35(b1 : ( ( ) ( natural V72() real ext-real V80() V81() V143() V144() V145() V146() V147() V148() bounded_below ) Element of NAT : ( ( ) ( V143() V144() V145() V146() V147() V148() V149() bounded_below ) Element of bool REAL : ( ( ) ( V143() V144() V145() V149() non bounded_below non bounded_above interval ) set ) : ( ( ) ( non empty ) set ) ) ) ) V77() V135() ) Point of ( ( ) ( functional non empty ) set ) ) } : ( ( ) ( non empty trivial closed compact bounded ) Element of bool the carrier of (TOP-REAL b1 : ( ( ) ( natural V72() real ext-real V80() V81() V143() V144() V145() V146() V147() V148() bounded_below ) Element of NAT : ( ( ) ( V143() V144() V145() V146() V147() V148() V149() bounded_below ) Element of bool REAL : ( ( ) ( V143() V144() V145() V149() non bounded_below non bounded_above interval ) set ) : ( ( ) ( non empty ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like T_0 T_1 T_2 V109() V155() V156() V157() V158() V159() V160() V161() strict add-continuous Mult-continuous ) RLTopStruct ) : ( ( ) ( functional non empty ) set ) : ( ( ) ( non empty ) set ) ) ) : ( ( ) ( ) Element of bool the carrier of (TOP-REAL b1 : ( ( ) ( natural V72() real ext-real V80() V81() V143() V144() V145() V146() V147() V148() bounded_below ) Element of NAT : ( ( ) ( V143() V144() V145() V146() V147() V148() V149() bounded_below ) Element of bool REAL : ( ( ) ( V143() V144() V145() V149() non bounded_below non bounded_above interval ) set ) : ( ( ) ( non empty ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like T_0 T_1 T_2 V109() V155() V156() V157() V158() V159() V160() V161() strict add-continuous Mult-continuous ) RLTopStruct ) : ( ( ) ( functional non empty ) set ) : ( ( ) ( non empty ) set ) ) \/ (B : ( ( ) ( ) Subset of ) \ {p : ( ( ) ( V35(b1 : ( ( ) ( natural V72() real ext-real V80() V81() V143() V144() V145() V146() V147() V148() bounded_below ) Element of NAT : ( ( ) ( V143() V144() V145() V146() V147() V148() V149() bounded_below ) Element of bool REAL : ( ( ) ( V143() V144() V145() V149() non bounded_below non bounded_above interval ) set ) : ( ( ) ( non empty ) set ) ) ) ) V77() V135() ) Point of ( ( ) ( functional non empty ) set ) ) } : ( ( ) ( non empty trivial closed compact bounded ) Element of bool the carrier of (TOP-REAL b1 : ( ( ) ( natural V72() real ext-real V80() V81() V143() V144() V145() V146() V147() V148() bounded_below ) Element of NAT : ( ( ) ( V143() V144() V145() V146() V147() V148() V149() bounded_below ) Element of bool REAL : ( ( ) ( V143() V144() V145() V149() non bounded_below non bounded_above interval ) set ) : ( ( ) ( non empty ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like T_0 T_1 T_2 V109() V155() V156() V157() V158() V159() V160() V161() strict add-continuous Mult-continuous ) RLTopStruct ) : ( ( ) ( functional non empty ) set ) : ( ( ) ( non empty ) set ) ) ) : ( ( ) ( ) Element of bool the carrier of (TOP-REAL b1 : ( ( ) ( natural V72() real ext-real V80() V81() V143() V144() V145() V146() V147() V148() bounded_below ) Element of NAT : ( ( ) ( V143() V144() V145() V146() V147() V148() V149() bounded_below ) Element of bool REAL : ( ( ) ( V143() V144() V145() V149() non bounded_below non bounded_above interval ) set ) : ( ( ) ( non empty ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like T_0 T_1 T_2 V109() V155() V156() V157() V158() V159() V160() V161() strict add-continuous Mult-continuous ) RLTopStruct ) : ( ( ) ( functional non empty ) set ) : ( ( ) ( non empty ) set ) ) ) : ( ( ) ( ) Element of bool the carrier of (TOP-REAL b1 : ( ( ) ( natural V72() real ext-real V80() V81() V143() V144() V145() V146() V147() V148() bounded_below ) Element of NAT : ( ( ) ( V143() V144() V145() V146() V147() V148() V149() bounded_below ) Element of bool REAL : ( ( ) ( V143() V144() V145() V149() non bounded_below non bounded_above interval ) set ) : ( ( ) ( non empty ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like T_0 T_1 T_2 V109() V155() V156() V157() V158() V159() V160() V161() strict add-continuous Mult-continuous ) RLTopStruct ) : ( ( ) ( functional non empty ) set ) : ( ( ) ( non empty ) set ) ) : ( ( strict ) ( strict TopSpace-like T_0 T_1 T_2 ) SubSpace of TOP-REAL b1 : ( ( ) ( natural V72() real ext-real V80() V81() V143() V144() V145() V146() V147() V148() bounded_below ) Element of NAT : ( ( ) ( V143() V144() V145() V146() V147() V148() V149() bounded_below ) Element of bool REAL : ( ( ) ( V143() V144() V145() V149() non bounded_below non bounded_above interval ) set ) : ( ( ) ( non empty ) set ) ) ) : ( ( strict ) ( non empty TopSpace-like T_0 T_1 T_2 V109() V155() V156() V157() V158() V159() V160() V161() strict add-continuous Mult-continuous ) RLTopStruct ) ) are_homeomorphic ;

theorem :: BORSUK_4:52
for D being ( ( being_simple_closed_curve ) ( non empty non trivial closed connected compact bounded being_simple_closed_curve ) Simple_closed_curve)
for p being ( ( ) ( V35(2 : ( ( ) ( non empty natural V72() real ext-real positive non negative V80() V81() V143() V144() V145() V146() V147() V148() left_end bounded_below ) Element of NAT : ( ( ) ( V143() V144() V145() V146() V147() V148() V149() bounded_below ) Element of bool REAL : ( ( ) ( V143() V144() V145() V149() non bounded_below non bounded_above interval ) set ) : ( ( ) ( non empty ) set ) ) ) ) V77() V135() ) Point of ( ( ) ( functional non empty non trivial ) set ) ) st p : ( ( ) ( V35(2 : ( ( ) ( non empty natural V72() real ext-real positive non negative V80() V81() V143() V144() V145() V146() V147() V148() left_end bounded_below ) Element of NAT : ( ( ) ( V143() V144() V145() V146() V147() V148() V149() bounded_below ) Element of bool REAL : ( ( ) ( V143() V144() V145() V149() non bounded_below non bounded_above interval ) set ) : ( ( ) ( non empty ) set ) ) ) ) V77() V135() ) Point of ( ( ) ( functional non empty non trivial ) set ) ) in D : ( ( being_simple_closed_curve ) ( non empty non trivial closed connected compact bounded being_simple_closed_curve ) Simple_closed_curve) holds
(TOP-REAL 2 : ( ( ) ( non empty natural V72() real ext-real positive non negative V80() V81() V143() V144() V145() V146() V147() V148() left_end bounded_below ) Element of NAT : ( ( ) ( V143() V144() V145() V146() V147() V148() V149() bounded_below ) Element of bool REAL : ( ( ) ( V143() V144() V145() V149() non bounded_below non bounded_above interval ) set ) : ( ( ) ( non empty ) set ) ) ) ) : ( ( strict ) ( non empty non trivial TopSpace-like T_0 T_1 T_2 V109() V155() V156() V157() V158() V159() V160() V161() strict add-continuous Mult-continuous ) RLTopStruct ) | (D : ( ( being_simple_closed_curve ) ( non empty non trivial closed connected compact bounded being_simple_closed_curve ) Simple_closed_curve) \ {p : ( ( ) ( V35(2 : ( ( ) ( non empty natural V72() real ext-real positive non negative V80() V81() V143() V144() V145() V146() V147() V148() left_end bounded_below ) Element of NAT : ( ( ) ( V143() V144() V145() V146() V147() V148() V149() bounded_below ) Element of bool REAL : ( ( ) ( V143() V144() V145() V149() non bounded_below non bounded_above interval ) set ) : ( ( ) ( non empty ) set ) ) ) ) V77() V135() ) Point of ( ( ) ( functional non empty non trivial ) set ) ) } : ( ( ) ( non empty trivial closed compact bounded ) Element of bool the carrier of (TOP-REAL 2 : ( ( ) ( non empty natural V72() real ext-real positive non negative V80() V81() V143() V144() V145() V146() V147() V148() left_end bounded_below ) Element of NAT : ( ( ) ( V143() V144() V145() V146() V147() V148() V149() bounded_below ) Element of bool REAL : ( ( ) ( V143() V144() V145() V149() non bounded_below non bounded_above interval ) set ) : ( ( ) ( non empty ) set ) ) ) ) : ( ( strict ) ( non empty non trivial TopSpace-like T_0 T_1 T_2 V109() V155() V156() V157() V158() V159() V160() V161() strict add-continuous Mult-continuous ) RLTopStruct ) : ( ( ) ( functional non empty non trivial ) set ) : ( ( ) ( non empty ) set ) ) ) : ( ( ) ( ) Element of bool the carrier of (TOP-REAL 2 : ( ( ) ( non empty natural V72() real ext-real positive non negative V80() V81() V143() V144() V145() V146() V147() V148() left_end bounded_below ) Element of NAT : ( ( ) ( V143() V144() V145() V146() V147() V148() V149() bounded_below ) Element of bool REAL : ( ( ) ( V143() V144() V145() V149() non bounded_below non bounded_above interval ) set ) : ( ( ) ( non empty ) set ) ) ) ) : ( ( strict ) ( non empty non trivial TopSpace-like T_0 T_1 T_2 V109() V155() V156() V157() V158() V159() V160() V161() strict add-continuous Mult-continuous ) RLTopStruct ) : ( ( ) ( functional non empty non trivial ) set ) : ( ( ) ( non empty ) set ) ) : ( ( strict ) ( strict TopSpace-like T_0 T_1 T_2 ) SubSpace of TOP-REAL 2 : ( ( ) ( non empty natural V72() real ext-real positive non negative V80() V81() V143() V144() V145() V146() V147() V148() left_end bounded_below ) Element of NAT : ( ( ) ( V143() V144() V145() V146() V147() V148() V149() bounded_below ) Element of bool REAL : ( ( ) ( V143() V144() V145() V149() non bounded_below non bounded_above interval ) set ) : ( ( ) ( non empty ) set ) ) ) : ( ( strict ) ( non empty non trivial TopSpace-like T_0 T_1 T_2 V109() V155() V156() V157() V158() V159() V160() V161() strict add-continuous Mult-continuous ) RLTopStruct ) ) , I(01) : ( ( strict ) ( non empty strict TopSpace-like T_0 T_1 T_2 open V197() ) SubSpace of I[01] : ( ( ) ( non empty strict TopSpace-like T_0 T_1 T_2 compact V197() ) SubSpace of R^1 : ( ( TopSpace-like ) ( non empty strict TopSpace-like T_0 T_1 T_2 V197() ) TopStruct ) ) ) are_homeomorphic ;

theorem :: BORSUK_4:53
for D being ( ( being_simple_closed_curve ) ( non empty non trivial closed connected compact bounded being_simple_closed_curve ) Simple_closed_curve)
for p, q being ( ( ) ( V35(2 : ( ( ) ( non empty natural V72() real ext-real positive non negative V80() V81() V143() V144() V145() V146() V147() V148() left_end bounded_below ) Element of NAT : ( ( ) ( V143() V144() V145() V146() V147() V148() V149() bounded_below ) Element of bool REAL : ( ( ) ( V143() V144() V145() V149() non bounded_below non bounded_above interval ) set ) : ( ( ) ( non empty ) set ) ) ) ) V77() V135() ) Point of ( ( ) ( functional non empty non trivial ) set ) ) st p : ( ( ) ( V35(2 : ( ( ) ( non empty natural V72() real ext-real positive non negative V80() V81() V143() V144() V145() V146() V147() V148() left_end bounded_below ) Element of NAT : ( ( ) ( V143() V144() V145() V146() V147() V148() V149() bounded_below ) Element of bool REAL : ( ( ) ( V143() V144() V145() V149() non bounded_below non bounded_above interval ) set ) : ( ( ) ( non empty ) set ) ) ) ) V77() V135() ) Point of ( ( ) ( functional non empty non trivial ) set ) ) in D : ( ( being_simple_closed_curve ) ( non empty non trivial closed connected compact bounded being_simple_closed_curve ) Simple_closed_curve) & q : ( ( ) ( V35(2 : ( ( ) ( non empty natural V72() real ext-real positive non negative V80() V81() V143() V144() V145() V146() V147() V148() left_end bounded_below ) Element of NAT : ( ( ) ( V143() V144() V145() V146() V147() V148() V149() bounded_below ) Element of bool REAL : ( ( ) ( V143() V144() V145() V149() non bounded_below non bounded_above interval ) set ) : ( ( ) ( non empty ) set ) ) ) ) V77() V135() ) Point of ( ( ) ( functional non empty non trivial ) set ) ) in D : ( ( being_simple_closed_curve ) ( non empty non trivial closed connected compact bounded being_simple_closed_curve ) Simple_closed_curve) holds
(TOP-REAL 2 : ( ( ) ( non empty natural V72() real ext-real positive non negative V80() V81() V143() V144() V145() V146() V147() V148() left_end bounded_below ) Element of NAT : ( ( ) ( V143() V144() V145() V146() V147() V148() V149() bounded_below ) Element of bool REAL : ( ( ) ( V143() V144() V145() V149() non bounded_below non bounded_above interval ) set ) : ( ( ) ( non empty ) set ) ) ) ) : ( ( strict ) ( non empty non trivial TopSpace-like T_0 T_1 T_2 V109() V155() V156() V157() V158() V159() V160() V161() strict add-continuous Mult-continuous ) RLTopStruct ) | (D : ( ( being_simple_closed_curve ) ( non empty non trivial closed connected compact bounded being_simple_closed_curve ) Simple_closed_curve) \ {p : ( ( ) ( V35(2 : ( ( ) ( non empty natural V72() real ext-real positive non negative V80() V81() V143() V144() V145() V146() V147() V148() left_end bounded_below ) Element of NAT : ( ( ) ( V143() V144() V145() V146() V147() V148() V149() bounded_below ) Element of bool REAL : ( ( ) ( V143() V144() V145() V149() non bounded_below non bounded_above interval ) set ) : ( ( ) ( non empty ) set ) ) ) ) V77() V135() ) Point of ( ( ) ( functional non empty non trivial ) set ) ) } : ( ( ) ( non empty trivial closed compact bounded ) Element of bool the carrier of (TOP-REAL 2 : ( ( ) ( non empty natural V72() real ext-real positive non negative V80() V81() V143() V144() V145() V146() V147() V148() left_end bounded_below ) Element of NAT : ( ( ) ( V143() V144() V145() V146() V147() V148() V149() bounded_below ) Element of bool REAL : ( ( ) ( V143() V144() V145() V149() non bounded_below non bounded_above interval ) set ) : ( ( ) ( non empty ) set ) ) ) ) : ( ( strict ) ( non empty non trivial TopSpace-like T_0 T_1 T_2 V109() V155() V156() V157() V158() V159() V160() V161() strict add-continuous Mult-continuous ) RLTopStruct ) : ( ( ) ( functional non empty non trivial ) set ) : ( ( ) ( non empty ) set ) ) ) : ( ( ) ( ) Element of bool the carrier of (TOP-REAL 2 : ( ( ) ( non empty natural V72() real ext-real positive non negative V80() V81() V143() V144() V145() V146() V147() V148() left_end bounded_below ) Element of NAT : ( ( ) ( V143() V144() V145() V146() V147() V148() V149() bounded_below ) Element of bool REAL : ( ( ) ( V143() V144() V145() V149() non bounded_below non bounded_above interval ) set ) : ( ( ) ( non empty ) set ) ) ) ) : ( ( strict ) ( non empty non trivial TopSpace-like T_0 T_1 T_2 V109() V155() V156() V157() V158() V159() V160() V161() strict add-continuous Mult-continuous ) RLTopStruct ) : ( ( ) ( functional non empty non trivial ) set ) : ( ( ) ( non empty ) set ) ) : ( ( strict ) ( strict TopSpace-like T_0 T_1 T_2 ) SubSpace of TOP-REAL 2 : ( ( ) ( non empty natural V72() real ext-real positive non negative V80() V81() V143() V144() V145() V146() V147() V148() left_end bounded_below ) Element of NAT : ( ( ) ( V143() V144() V145() V146() V147() V148() V149() bounded_below ) Element of bool REAL : ( ( ) ( V143() V144() V145() V149() non bounded_below non bounded_above interval ) set ) : ( ( ) ( non empty ) set ) ) ) : ( ( strict ) ( non empty non trivial TopSpace-like T_0 T_1 T_2 V109() V155() V156() V157() V158() V159() V160() V161() strict add-continuous Mult-continuous ) RLTopStruct ) ) ,(TOP-REAL 2 : ( ( ) ( non empty natural V72() real ext-real positive non negative V80() V81() V143() V144() V145() V146() V147() V148() left_end bounded_below ) Element of NAT : ( ( ) ( V143() V144() V145() V146() V147() V148() V149() bounded_below ) Element of bool REAL : ( ( ) ( V143() V144() V145() V149() non bounded_below non bounded_above interval ) set ) : ( ( ) ( non empty ) set ) ) ) ) : ( ( strict ) ( non empty non trivial TopSpace-like T_0 T_1 T_2 V109() V155() V156() V157() V158() V159() V160() V161() strict add-continuous Mult-continuous ) RLTopStruct ) | (D : ( ( being_simple_closed_curve ) ( non empty non trivial closed connected compact bounded being_simple_closed_curve ) Simple_closed_curve) \ {q : ( ( ) ( V35(2 : ( ( ) ( non empty natural V72() real ext-real positive non negative V80() V81() V143() V144() V145() V146() V147() V148() left_end bounded_below ) Element of NAT : ( ( ) ( V143() V144() V145() V146() V147() V148() V149() bounded_below ) Element of bool REAL : ( ( ) ( V143() V144() V145() V149() non bounded_below non bounded_above interval ) set ) : ( ( ) ( non empty ) set ) ) ) ) V77() V135() ) Point of ( ( ) ( functional non empty non trivial ) set ) ) } : ( ( ) ( non empty trivial closed compact bounded ) Element of bool the carrier of (TOP-REAL 2 : ( ( ) ( non empty natural V72() real ext-real positive non negative V80() V81() V143() V144() V145() V146() V147() V148() left_end bounded_below ) Element of NAT : ( ( ) ( V143() V144() V145() V146() V147() V148() V149() bounded_below ) Element of bool REAL : ( ( ) ( V143() V144() V145() V149() non bounded_below non bounded_above interval ) set ) : ( ( ) ( non empty ) set ) ) ) ) : ( ( strict ) ( non empty non trivial TopSpace-like T_0 T_1 T_2 V109() V155() V156() V157() V158() V159() V160() V161() strict add-continuous Mult-continuous ) RLTopStruct ) : ( ( ) ( functional non empty non trivial ) set ) : ( ( ) ( non empty ) set ) ) ) : ( ( ) ( ) Element of bool the carrier of (TOP-REAL 2 : ( ( ) ( non empty natural V72() real ext-real positive non negative V80() V81() V143() V144() V145() V146() V147() V148() left_end bounded_below ) Element of NAT : ( ( ) ( V143() V144() V145() V146() V147() V148() V149() bounded_below ) Element of bool REAL : ( ( ) ( V143() V144() V145() V149() non bounded_below non bounded_above interval ) set ) : ( ( ) ( non empty ) set ) ) ) ) : ( ( strict ) ( non empty non trivial TopSpace-like T_0 T_1 T_2 V109() V155() V156() V157() V158() V159() V160() V161() strict add-continuous Mult-continuous ) RLTopStruct ) : ( ( ) ( functional non empty non trivial ) set ) : ( ( ) ( non empty ) set ) ) : ( ( strict ) ( strict TopSpace-like T_0 T_1 T_2 ) SubSpace of TOP-REAL 2 : ( ( ) ( non empty natural V72() real ext-real positive non negative V80() V81() V143() V144() V145() V146() V147() V148() left_end bounded_below ) Element of NAT : ( ( ) ( V143() V144() V145() V146() V147() V148() V149() bounded_below ) Element of bool REAL : ( ( ) ( V143() V144() V145() V149() non bounded_below non bounded_above interval ) set ) : ( ( ) ( non empty ) set ) ) ) : ( ( strict ) ( non empty non trivial TopSpace-like T_0 T_1 T_2 V109() V155() V156() V157() V158() V159() V160() V161() strict add-continuous Mult-continuous ) RLTopStruct ) ) are_homeomorphic ;

theorem :: BORSUK_4:54
for n being ( ( ) ( natural V72() real ext-real V80() V81() V143() V144() V145() V146() V147() V148() bounded_below ) Element of NAT : ( ( ) ( V143() V144() V145() V146() V147() V148() V149() bounded_below ) Element of bool REAL : ( ( ) ( V143() V144() V145() V149() non bounded_below non bounded_above interval ) set ) : ( ( ) ( non empty ) set ) ) )
for C being ( ( non empty ) ( non empty ) Subset of )
for E being ( ( ) ( V143() V144() V145() ) Subset of ) st ex p1, p2 being ( ( ) ( V72() real ext-real ) Point of ( ( ) ( non empty V143() V144() V145() ) set ) ) st
( p1 : ( ( ) ( V35(b1 : ( ( ) ( natural V72() real ext-real V80() V81() V143() V144() V145() V146() V147() V148() bounded_below ) Element of NAT : ( ( ) ( V143() V144() V145() V146() V147() V148() V149() bounded_below ) Element of bool REAL : ( ( ) ( V143() V144() V145() V149() non bounded_below non bounded_above interval ) set ) : ( ( ) ( non empty ) set ) ) ) ) V77() V135() ) Point of ( ( ) ( functional non empty ) set ) ) < p2 : ( ( ) ( V35(b1 : ( ( ) ( natural V72() real ext-real V80() V81() V143() V144() V145() V146() V147() V148() bounded_below ) Element of NAT : ( ( ) ( V143() V144() V145() V146() V147() V148() V149() bounded_below ) Element of bool REAL : ( ( ) ( V143() V144() V145() V149() non bounded_below non bounded_above interval ) set ) : ( ( ) ( non empty ) set ) ) ) ) V77() V135() ) Point of ( ( ) ( functional non empty ) set ) ) & E : ( ( ) ( V143() V144() V145() ) Subset of ) = [.p1 : ( ( ) ( V35(b1 : ( ( ) ( natural V72() real ext-real V80() V81() V143() V144() V145() V146() V147() V148() bounded_below ) Element of NAT : ( ( ) ( V143() V144() V145() V146() V147() V148() V149() bounded_below ) Element of bool REAL : ( ( ) ( V143() V144() V145() V149() non bounded_below non bounded_above interval ) set ) : ( ( ) ( non empty ) set ) ) ) ) V77() V135() ) Point of ( ( ) ( functional non empty ) set ) ) ,p2 : ( ( ) ( V35(b1 : ( ( ) ( natural V72() real ext-real V80() V81() V143() V144() V145() V146() V147() V148() bounded_below ) Element of NAT : ( ( ) ( V143() V144() V145() V146() V147() V148() V149() bounded_below ) Element of bool REAL : ( ( ) ( V143() V144() V145() V149() non bounded_below non bounded_above interval ) set ) : ( ( ) ( non empty ) set ) ) ) ) V77() V135() ) Point of ( ( ) ( functional non empty ) set ) ) .] : ( ( ) ( V143() V144() V145() ) Element of bool REAL : ( ( ) ( V143() V144() V145() V149() non bounded_below non bounded_above interval ) set ) : ( ( ) ( non empty ) set ) ) ) & I(01) : ( ( strict ) ( non empty strict TopSpace-like T_0 T_1 T_2 open V197() ) SubSpace of I[01] : ( ( ) ( non empty strict TopSpace-like T_0 T_1 T_2 compact V197() ) SubSpace of R^1 : ( ( TopSpace-like ) ( non empty strict TopSpace-like T_0 T_1 T_2 V197() ) TopStruct ) ) ) | E : ( ( ) ( V143() V144() V145() ) Subset of ) : ( ( strict ) ( strict TopSpace-like T_0 T_1 T_2 V197() ) SubSpace of I(01) : ( ( strict ) ( non empty strict TopSpace-like T_0 T_1 T_2 open V197() ) SubSpace of I[01] : ( ( ) ( non empty strict TopSpace-like T_0 T_1 T_2 compact V197() ) SubSpace of R^1 : ( ( TopSpace-like ) ( non empty strict TopSpace-like T_0 T_1 T_2 V197() ) TopStruct ) ) ) ) ,(TOP-REAL n : ( ( ) ( natural V72() real ext-real V80() V81() V143() V144() V145() V146() V147() V148() bounded_below ) Element of NAT : ( ( ) ( V143() V144() V145() V146() V147() V148() V149() bounded_below ) Element of bool REAL : ( ( ) ( V143() V144() V145() V149() non bounded_below non bounded_above interval ) set ) : ( ( ) ( non empty ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like T_0 T_1 T_2 V109() V155() V156() V157() V158() V159() V160() V161() strict add-continuous Mult-continuous ) RLTopStruct ) | C : ( ( non empty ) ( non empty ) Subset of ) : ( ( strict ) ( non empty strict TopSpace-like T_0 T_1 T_2 ) SubSpace of TOP-REAL b1 : ( ( ) ( natural V72() real ext-real V80() V81() V143() V144() V145() V146() V147() V148() bounded_below ) Element of NAT : ( ( ) ( V143() V144() V145() V146() V147() V148() V149() bounded_below ) Element of bool REAL : ( ( ) ( V143() V144() V145() V149() non bounded_below non bounded_above interval ) set ) : ( ( ) ( non empty ) set ) ) ) : ( ( strict ) ( non empty TopSpace-like T_0 T_1 T_2 V109() V155() V156() V157() V158() V159() V160() V161() strict add-continuous Mult-continuous ) RLTopStruct ) ) are_homeomorphic holds
ex s1, s2 being ( ( ) ( V35(b1 : ( ( ) ( natural V72() real ext-real V80() V81() V143() V144() V145() V146() V147() V148() bounded_below ) Element of NAT : ( ( ) ( V143() V144() V145() V146() V147() V148() V149() bounded_below ) Element of bool REAL : ( ( ) ( V143() V144() V145() V149() non bounded_below non bounded_above interval ) set ) : ( ( ) ( non empty ) set ) ) ) ) V77() V135() ) Point of ( ( ) ( functional non empty ) set ) ) st C : ( ( non empty ) ( non empty ) Subset of ) is_an_arc_of s1 : ( ( ) ( V35(b1 : ( ( ) ( natural V72() real ext-real V80() V81() V143() V144() V145() V146() V147() V148() bounded_below ) Element of NAT : ( ( ) ( V143() V144() V145() V146() V147() V148() V149() bounded_below ) Element of bool REAL : ( ( ) ( V143() V144() V145() V149() non bounded_below non bounded_above interval ) set ) : ( ( ) ( non empty ) set ) ) ) ) V77() V135() ) Point of ( ( ) ( functional non empty ) set ) ) ,s2 : ( ( ) ( V35(b1 : ( ( ) ( natural V72() real ext-real V80() V81() V143() V144() V145() V146() V147() V148() bounded_below ) Element of NAT : ( ( ) ( V143() V144() V145() V146() V147() V148() V149() bounded_below ) Element of bool REAL : ( ( ) ( V143() V144() V145() V149() non bounded_below non bounded_above interval ) set ) : ( ( ) ( non empty ) set ) ) ) ) V77() V135() ) Point of ( ( ) ( functional non empty ) set ) ) ;

theorem :: BORSUK_4:55
for Dp being ( ( non empty ) ( non empty ) Subset of )
for f being ( ( Function-like quasi_total ) ( Relation-like the carrier of ((TOP-REAL 2 : ( ( ) ( non empty natural V72() real ext-real positive non negative V80() V81() V143() V144() V145() V146() V147() V148() left_end bounded_below ) Element of NAT : ( ( ) ( V143() V144() V145() V146() V147() V148() V149() bounded_below ) Element of bool REAL : ( ( ) ( V143() V144() V145() V149() non bounded_below non bounded_above interval ) set ) : ( ( ) ( non empty ) set ) ) ) ) : ( ( strict ) ( non empty non trivial TopSpace-like T_0 T_1 T_2 V109() V155() V156() V157() V158() V159() V160() V161() strict add-continuous Mult-continuous ) RLTopStruct ) | b1 : ( ( non empty ) ( non empty ) Subset of ) ) : ( ( strict ) ( non empty strict TopSpace-like T_0 T_1 T_2 ) SubSpace of TOP-REAL 2 : ( ( ) ( non empty natural V72() real ext-real positive non negative V80() V81() V143() V144() V145() V146() V147() V148() left_end bounded_below ) Element of NAT : ( ( ) ( V143() V144() V145() V146() V147() V148() V149() bounded_below ) Element of bool REAL : ( ( ) ( V143() V144() V145() V149() non bounded_below non bounded_above interval ) set ) : ( ( ) ( non empty ) set ) ) ) : ( ( strict ) ( non empty non trivial TopSpace-like T_0 T_1 T_2 V109() V155() V156() V157() V158() V159() V160() V161() strict add-continuous Mult-continuous ) RLTopStruct ) ) : ( ( ) ( non empty ) set ) -defined the carrier of I(01) : ( ( strict ) ( non empty strict TopSpace-like T_0 T_1 T_2 open V197() ) SubSpace of I[01] : ( ( ) ( non empty strict TopSpace-like T_0 T_1 T_2 compact V197() ) SubSpace of R^1 : ( ( TopSpace-like ) ( non empty strict TopSpace-like T_0 T_1 T_2 V197() ) TopStruct ) ) ) : ( ( ) ( non empty V143() V144() V145() ) set ) -valued Function-like non empty total quasi_total ) Function of ( ( ) ( non empty ) set ) , ( ( ) ( non empty V143() V144() V145() ) set ) )
for C being ( ( non empty ) ( non empty ) Subset of ) st f : ( ( Function-like quasi_total ) ( Relation-like the carrier of ((TOP-REAL 2 : ( ( ) ( non empty natural V72() real ext-real positive non negative V80() V81() V143() V144() V145() V146() V147() V148() left_end bounded_below ) Element of NAT : ( ( ) ( V143() V144() V145() V146() V147() V148() V149() bounded_below ) Element of bool REAL : ( ( ) ( V143() V144() V145() V149() non bounded_below non bounded_above interval ) set ) : ( ( ) ( non empty ) set ) ) ) ) : ( ( strict ) ( non empty non trivial TopSpace-like T_0 T_1 T_2 V109() V155() V156() V157() V158() V159() V160() V161() strict add-continuous Mult-continuous ) RLTopStruct ) | b1 : ( ( non empty ) ( non empty ) Subset of ) ) : ( ( strict ) ( non empty strict TopSpace-like T_0 T_1 T_2 ) SubSpace of TOP-REAL 2 : ( ( ) ( non empty natural V72() real ext-real positive non negative V80() V81() V143() V144() V145() V146() V147() V148() left_end bounded_below ) Element of NAT : ( ( ) ( V143() V144() V145() V146() V147() V148() V149() bounded_below ) Element of bool REAL : ( ( ) ( V143() V144() V145() V149() non bounded_below non bounded_above interval ) set ) : ( ( ) ( non empty ) set ) ) ) : ( ( strict ) ( non empty non trivial TopSpace-like T_0 T_1 T_2 V109() V155() V156() V157() V158() V159() V160() V161() strict add-continuous Mult-continuous ) RLTopStruct ) ) : ( ( ) ( non empty ) set ) -defined the carrier of I(01) : ( ( strict ) ( non empty strict TopSpace-like T_0 T_1 T_2 open V197() ) SubSpace of I[01] : ( ( ) ( non empty strict TopSpace-like T_0 T_1 T_2 compact V197() ) SubSpace of R^1 : ( ( TopSpace-like ) ( non empty strict TopSpace-like T_0 T_1 T_2 V197() ) TopStruct ) ) ) : ( ( ) ( non empty V143() V144() V145() ) set ) -valued Function-like non empty total quasi_total ) Function of ( ( ) ( non empty ) set ) , ( ( ) ( non empty V143() V144() V145() ) set ) ) is being_homeomorphism & C : ( ( non empty ) ( non empty ) Subset of ) c= Dp : ( ( non empty ) ( non empty ) Subset of ) & ex p1, p2 being ( ( ) ( V72() real ext-real ) Point of ( ( ) ( non empty V143() V144() V145() ) set ) ) st
( p1 : ( ( ) ( V35(2 : ( ( ) ( non empty natural V72() real ext-real positive non negative V80() V81() V143() V144() V145() V146() V147() V148() left_end bounded_below ) Element of NAT : ( ( ) ( V143() V144() V145() V146() V147() V148() V149() bounded_below ) Element of bool REAL : ( ( ) ( V143() V144() V145() V149() non bounded_below non bounded_above interval ) set ) : ( ( ) ( non empty ) set ) ) ) ) V77() V135() ) Point of ( ( ) ( functional non empty non trivial ) set ) ) < p2 : ( ( ) ( V35(2 : ( ( ) ( non empty natural V72() real ext-real positive non negative V80() V81() V143() V144() V145() V146() V147() V148() left_end bounded_below ) Element of NAT : ( ( ) ( V143() V144() V145() V146() V147() V148() V149() bounded_below ) Element of bool REAL : ( ( ) ( V143() V144() V145() V149() non bounded_below non bounded_above interval ) set ) : ( ( ) ( non empty ) set ) ) ) ) V77() V135() ) Point of ( ( ) ( functional non empty non trivial ) set ) ) & f : ( ( Function-like quasi_total ) ( Relation-like the carrier of ((TOP-REAL 2 : ( ( ) ( non empty natural V72() real ext-real positive non negative V80() V81() V143() V144() V145() V146() V147() V148() left_end bounded_below ) Element of NAT : ( ( ) ( V143() V144() V145() V146() V147() V148() V149() bounded_below ) Element of bool REAL : ( ( ) ( V143() V144() V145() V149() non bounded_below non bounded_above interval ) set ) : ( ( ) ( non empty ) set ) ) ) ) : ( ( strict ) ( non empty non trivial TopSpace-like T_0 T_1 T_2 V109() V155() V156() V157() V158() V159() V160() V161() strict add-continuous Mult-continuous ) RLTopStruct ) | b1 : ( ( non empty ) ( non empty ) Subset of ) ) : ( ( strict ) ( non empty strict TopSpace-like T_0 T_1 T_2 ) SubSpace of TOP-REAL 2 : ( ( ) ( non empty natural V72() real ext-real positive non negative V80() V81() V143() V144() V145() V146() V147() V148() left_end bounded_below ) Element of NAT : ( ( ) ( V143() V144() V145() V146() V147() V148() V149() bounded_below ) Element of bool REAL : ( ( ) ( V143() V144() V145() V149() non bounded_below non bounded_above interval ) set ) : ( ( ) ( non empty ) set ) ) ) : ( ( strict ) ( non empty non trivial TopSpace-like T_0 T_1 T_2 V109() V155() V156() V157() V158() V159() V160() V161() strict add-continuous Mult-continuous ) RLTopStruct ) ) : ( ( ) ( non empty ) set ) -defined the carrier of I(01) : ( ( strict ) ( non empty strict TopSpace-like T_0 T_1 T_2 open V197() ) SubSpace of I[01] : ( ( ) ( non empty strict TopSpace-like T_0 T_1 T_2 compact V197() ) SubSpace of R^1 : ( ( TopSpace-like ) ( non empty strict TopSpace-like T_0 T_1 T_2 V197() ) TopStruct ) ) ) : ( ( ) ( non empty V143() V144() V145() ) set ) -valued Function-like non empty total quasi_total ) Function of ( ( ) ( non empty ) set ) , ( ( ) ( non empty V143() V144() V145() ) set ) ) .: C : ( ( non empty ) ( non empty ) Subset of ) : ( ( ) ( V143() V144() V145() ) Element of bool the carrier of I(01) : ( ( strict ) ( non empty strict TopSpace-like T_0 T_1 T_2 open V197() ) SubSpace of I[01] : ( ( ) ( non empty strict TopSpace-like T_0 T_1 T_2 compact V197() ) SubSpace of R^1 : ( ( TopSpace-like ) ( non empty strict TopSpace-like T_0 T_1 T_2 V197() ) TopStruct ) ) ) : ( ( ) ( non empty V143() V144() V145() ) set ) : ( ( ) ( non empty ) set ) ) = [.p1 : ( ( ) ( V35(2 : ( ( ) ( non empty natural V72() real ext-real positive non negative V80() V81() V143() V144() V145() V146() V147() V148() left_end bounded_below ) Element of NAT : ( ( ) ( V143() V144() V145() V146() V147() V148() V149() bounded_below ) Element of bool REAL : ( ( ) ( V143() V144() V145() V149() non bounded_below non bounded_above interval ) set ) : ( ( ) ( non empty ) set ) ) ) ) V77() V135() ) Point of ( ( ) ( functional non empty non trivial ) set ) ) ,p2 : ( ( ) ( V35(2 : ( ( ) ( non empty natural V72() real ext-real positive non negative V80() V81() V143() V144() V145() V146() V147() V148() left_end bounded_below ) Element of NAT : ( ( ) ( V143() V144() V145() V146() V147() V148() V149() bounded_below ) Element of bool REAL : ( ( ) ( V143() V144() V145() V149() non bounded_below non bounded_above interval ) set ) : ( ( ) ( non empty ) set ) ) ) ) V77() V135() ) Point of ( ( ) ( functional non empty non trivial ) set ) ) .] : ( ( ) ( V143() V144() V145() ) Element of bool REAL : ( ( ) ( V143() V144() V145() V149() non bounded_below non bounded_above interval ) set ) : ( ( ) ( non empty ) set ) ) ) holds
ex s1, s2 being ( ( ) ( V35(2 : ( ( ) ( non empty natural V72() real ext-real positive non negative V80() V81() V143() V144() V145() V146() V147() V148() left_end bounded_below ) Element of NAT : ( ( ) ( V143() V144() V145() V146() V147() V148() V149() bounded_below ) Element of bool REAL : ( ( ) ( V143() V144() V145() V149() non bounded_below non bounded_above interval ) set ) : ( ( ) ( non empty ) set ) ) ) ) V77() V135() ) Point of ( ( ) ( functional non empty non trivial ) set ) ) st C : ( ( non empty ) ( non empty ) Subset of ) is_an_arc_of s1 : ( ( ) ( V35(2 : ( ( ) ( non empty natural V72() real ext-real positive non negative V80() V81() V143() V144() V145() V146() V147() V148() left_end bounded_below ) Element of NAT : ( ( ) ( V143() V144() V145() V146() V147() V148() V149() bounded_below ) Element of bool REAL : ( ( ) ( V143() V144() V145() V149() non bounded_below non bounded_above interval ) set ) : ( ( ) ( non empty ) set ) ) ) ) V77() V135() ) Point of ( ( ) ( functional non empty non trivial ) set ) ) ,s2 : ( ( ) ( V35(2 : ( ( ) ( non empty natural V72() real ext-real positive non negative V80() V81() V143() V144() V145() V146() V147() V148() left_end bounded_below ) Element of NAT : ( ( ) ( V143() V144() V145() V146() V147() V148() V149() bounded_below ) Element of bool REAL : ( ( ) ( V143() V144() V145() V149() non bounded_below non bounded_above interval ) set ) : ( ( ) ( non empty ) set ) ) ) ) V77() V135() ) Point of ( ( ) ( functional non empty non trivial ) set ) ) ;

theorem :: BORSUK_4:56
for D being ( ( being_simple_closed_curve ) ( non empty non trivial closed connected compact bounded being_simple_closed_curve ) Simple_closed_curve)
for C being ( ( non empty connected compact ) ( non empty closed connected compact bounded ) Subset of ) holds
( not C : ( ( non empty connected compact ) ( non empty closed connected compact bounded ) Subset of ) c= D : ( ( being_simple_closed_curve ) ( non empty non trivial closed connected compact bounded being_simple_closed_curve ) Simple_closed_curve) or C : ( ( non empty connected compact ) ( non empty closed connected compact bounded ) Subset of ) = D : ( ( being_simple_closed_curve ) ( non empty non trivial closed connected compact bounded being_simple_closed_curve ) Simple_closed_curve) or ex p1, p2 being ( ( ) ( V35(2 : ( ( ) ( non empty natural V72() real ext-real positive non negative V80() V81() V143() V144() V145() V146() V147() V148() left_end bounded_below ) Element of NAT : ( ( ) ( V143() V144() V145() V146() V147() V148() V149() bounded_below ) Element of bool REAL : ( ( ) ( V143() V144() V145() V149() non bounded_below non bounded_above interval ) set ) : ( ( ) ( non empty ) set ) ) ) ) V77() V135() ) Point of ( ( ) ( functional non empty non trivial ) set ) ) st C : ( ( non empty connected compact ) ( non empty closed connected compact bounded ) Subset of ) is_an_arc_of p1 : ( ( ) ( V35(2 : ( ( ) ( non empty natural V72() real ext-real positive non negative V80() V81() V143() V144() V145() V146() V147() V148() left_end bounded_below ) Element of NAT : ( ( ) ( V143() V144() V145() V146() V147() V148() V149() bounded_below ) Element of bool REAL : ( ( ) ( V143() V144() V145() V149() non bounded_below non bounded_above interval ) set ) : ( ( ) ( non empty ) set ) ) ) ) V77() V135() ) Point of ( ( ) ( functional non empty non trivial ) set ) ) ,p2 : ( ( ) ( V35(2 : ( ( ) ( non empty natural V72() real ext-real positive non negative V80() V81() V143() V144() V145() V146() V147() V148() left_end bounded_below ) Element of NAT : ( ( ) ( V143() V144() V145() V146() V147() V148() V149() bounded_below ) Element of bool REAL : ( ( ) ( V143() V144() V145() V149() non bounded_below non bounded_above interval ) set ) : ( ( ) ( non empty ) set ) ) ) ) V77() V135() ) Point of ( ( ) ( functional non empty non trivial ) set ) ) or ex p being ( ( ) ( V35(2 : ( ( ) ( non empty natural V72() real ext-real positive non negative V80() V81() V143() V144() V145() V146() V147() V148() left_end bounded_below ) Element of NAT : ( ( ) ( V143() V144() V145() V146() V147() V148() V149() bounded_below ) Element of bool REAL : ( ( ) ( V143() V144() V145() V149() non bounded_below non bounded_above interval ) set ) : ( ( ) ( non empty ) set ) ) ) ) V77() V135() ) Point of ( ( ) ( functional non empty non trivial ) set ) ) st C : ( ( non empty connected compact ) ( non empty closed connected compact bounded ) Subset of ) = {p : ( ( ) ( V35(2 : ( ( ) ( non empty natural V72() real ext-real positive non negative V80() V81() V143() V144() V145() V146() V147() V148() left_end bounded_below ) Element of NAT : ( ( ) ( V143() V144() V145() V146() V147() V148() V149() bounded_below ) Element of bool REAL : ( ( ) ( V143() V144() V145() V149() non bounded_below non bounded_above interval ) set ) : ( ( ) ( non empty ) set ) ) ) ) V77() V135() ) Point of ( ( ) ( functional non empty non trivial ) set ) ) } : ( ( ) ( non empty trivial closed compact bounded ) Element of bool the carrier of (TOP-REAL 2 : ( ( ) ( non empty natural V72() real ext-real positive non negative V80() V81() V143() V144() V145() V146() V147() V148() left_end bounded_below ) Element of NAT : ( ( ) ( V143() V144() V145() V146() V147() V148() V149() bounded_below ) Element of bool REAL : ( ( ) ( V143() V144() V145() V149() non bounded_below non bounded_above interval ) set ) : ( ( ) ( non empty ) set ) ) ) ) : ( ( strict ) ( non empty non trivial TopSpace-like T_0 T_1 T_2 V109() V155() V156() V157() V158() V159() V160() V161() strict add-continuous Mult-continuous ) RLTopStruct ) : ( ( ) ( functional non empty non trivial ) set ) : ( ( ) ( non empty ) set ) ) ) ;

begin

theorem :: BORSUK_4:57
for C being ( ( non empty compact ) ( non empty closed compact V143() V144() V145() ) Subset of ) st C : ( ( non empty compact ) ( non empty closed compact V143() V144() V145() ) Subset of ) c= ].0 : ( ( ) ( empty trivial natural V72() real ext-real non positive non negative V80() V81() V143() V144() V145() V146() V147() V148() V149() bounded_below interval ) Element of NAT : ( ( ) ( V143() V144() V145() V146() V147() V148() V149() bounded_below ) Element of bool REAL : ( ( ) ( V143() V144() V145() V149() non bounded_below non bounded_above interval ) set ) : ( ( ) ( non empty ) set ) ) ) ,1 : ( ( ) ( non empty natural V72() real ext-real positive non negative V80() V81() V143() V144() V145() V146() V147() V148() left_end bounded_below ) Element of NAT : ( ( ) ( V143() V144() V145() V146() V147() V148() V149() bounded_below ) Element of bool REAL : ( ( ) ( V143() V144() V145() V149() non bounded_below non bounded_above interval ) set ) : ( ( ) ( non empty ) set ) ) ) .[ : ( ( ) ( V143() V144() V145() open non left_end non right_end interval ) Element of bool REAL : ( ( ) ( V143() V144() V145() V149() non bounded_below non bounded_above interval ) set ) : ( ( ) ( non empty ) set ) ) holds
ex D being ( ( non empty closed_interval ) ( non empty V143() V144() V145() closed_interval interval ) Subset of ( ( ) ( non empty ) set ) ) st
( C : ( ( non empty compact ) ( non empty closed compact V143() V144() V145() ) Subset of ) c= D : ( ( non empty closed_interval ) ( non empty V143() V144() V145() closed_interval interval ) Subset of ( ( ) ( non empty ) set ) ) & D : ( ( non empty closed_interval ) ( non empty V143() V144() V145() closed_interval interval ) Subset of ( ( ) ( non empty ) set ) ) c= ].0 : ( ( ) ( empty trivial natural V72() real ext-real non positive non negative V80() V81() V143() V144() V145() V146() V147() V148() V149() bounded_below interval ) Element of NAT : ( ( ) ( V143() V144() V145() V146() V147() V148() V149() bounded_below ) Element of bool REAL : ( ( ) ( V143() V144() V145() V149() non bounded_below non bounded_above interval ) set ) : ( ( ) ( non empty ) set ) ) ) ,1 : ( ( ) ( non empty natural V72() real ext-real positive non negative V80() V81() V143() V144() V145() V146() V147() V148() left_end bounded_below ) Element of NAT : ( ( ) ( V143() V144() V145() V146() V147() V148() V149() bounded_below ) Element of bool REAL : ( ( ) ( V143() V144() V145() V149() non bounded_below non bounded_above interval ) set ) : ( ( ) ( non empty ) set ) ) ) .[ : ( ( ) ( V143() V144() V145() open non left_end non right_end interval ) Element of bool REAL : ( ( ) ( V143() V144() V145() V149() non bounded_below non bounded_above interval ) set ) : ( ( ) ( non empty ) set ) ) & lower_bound C : ( ( non empty compact ) ( non empty closed compact V143() V144() V145() ) Subset of ) : ( ( real ) ( V72() real ext-real ) set ) = lower_bound D : ( ( non empty closed_interval ) ( non empty V143() V144() V145() closed_interval interval ) Subset of ( ( ) ( non empty ) set ) ) : ( ( ) ( V72() real ext-real ) Element of REAL : ( ( ) ( V143() V144() V145() V149() non bounded_below non bounded_above interval ) set ) ) & upper_bound C : ( ( non empty compact ) ( non empty closed compact V143() V144() V145() ) Subset of ) : ( ( real ) ( V72() real ext-real ) set ) = upper_bound D : ( ( non empty closed_interval ) ( non empty V143() V144() V145() closed_interval interval ) Subset of ( ( ) ( non empty ) set ) ) : ( ( ) ( V72() real ext-real ) Element of REAL : ( ( ) ( V143() V144() V145() V149() non bounded_below non bounded_above interval ) set ) ) ) ;

theorem :: BORSUK_4:58
for C being ( ( non empty compact ) ( non empty closed compact V143() V144() V145() ) Subset of ) st C : ( ( non empty compact ) ( non empty closed compact V143() V144() V145() ) Subset of ) c= ].0 : ( ( ) ( empty trivial natural V72() real ext-real non positive non negative V80() V81() V143() V144() V145() V146() V147() V148() V149() bounded_below interval ) Element of NAT : ( ( ) ( V143() V144() V145() V146() V147() V148() V149() bounded_below ) Element of bool REAL : ( ( ) ( V143() V144() V145() V149() non bounded_below non bounded_above interval ) set ) : ( ( ) ( non empty ) set ) ) ) ,1 : ( ( ) ( non empty natural V72() real ext-real positive non negative V80() V81() V143() V144() V145() V146() V147() V148() left_end bounded_below ) Element of NAT : ( ( ) ( V143() V144() V145() V146() V147() V148() V149() bounded_below ) Element of bool REAL : ( ( ) ( V143() V144() V145() V149() non bounded_below non bounded_above interval ) set ) : ( ( ) ( non empty ) set ) ) ) .[ : ( ( ) ( V143() V144() V145() open non left_end non right_end interval ) Element of bool REAL : ( ( ) ( V143() V144() V145() V149() non bounded_below non bounded_above interval ) set ) : ( ( ) ( non empty ) set ) ) holds
ex p1, p2 being ( ( ) ( V72() real ext-real ) Point of ( ( ) ( non empty V143() V144() V145() ) set ) ) st
( p1 : ( ( ) ( V72() real ext-real ) Point of ( ( ) ( non empty V143() V144() V145() ) set ) ) <= p2 : ( ( ) ( V72() real ext-real ) Point of ( ( ) ( non empty V143() V144() V145() ) set ) ) & C : ( ( non empty compact ) ( non empty closed compact V143() V144() V145() ) Subset of ) c= [.p1 : ( ( ) ( V72() real ext-real ) Point of ( ( ) ( non empty V143() V144() V145() ) set ) ) ,p2 : ( ( ) ( V72() real ext-real ) Point of ( ( ) ( non empty V143() V144() V145() ) set ) ) .] : ( ( ) ( V143() V144() V145() closed interval ) Element of bool REAL : ( ( ) ( V143() V144() V145() V149() non bounded_below non bounded_above interval ) set ) : ( ( ) ( non empty ) set ) ) & [.p1 : ( ( ) ( V72() real ext-real ) Point of ( ( ) ( non empty V143() V144() V145() ) set ) ) ,p2 : ( ( ) ( V72() real ext-real ) Point of ( ( ) ( non empty V143() V144() V145() ) set ) ) .] : ( ( ) ( V143() V144() V145() closed interval ) Element of bool REAL : ( ( ) ( V143() V144() V145() V149() non bounded_below non bounded_above interval ) set ) : ( ( ) ( non empty ) set ) ) c= ].0 : ( ( ) ( empty trivial natural V72() real ext-real non positive non negative V80() V81() V143() V144() V145() V146() V147() V148() V149() bounded_below interval ) Element of NAT : ( ( ) ( V143() V144() V145() V146() V147() V148() V149() bounded_below ) Element of bool REAL : ( ( ) ( V143() V144() V145() V149() non bounded_below non bounded_above interval ) set ) : ( ( ) ( non empty ) set ) ) ) ,1 : ( ( ) ( non empty natural V72() real ext-real positive non negative V80() V81() V143() V144() V145() V146() V147() V148() left_end bounded_below ) Element of NAT : ( ( ) ( V143() V144() V145() V146() V147() V148() V149() bounded_below ) Element of bool REAL : ( ( ) ( V143() V144() V145() V149() non bounded_below non bounded_above interval ) set ) : ( ( ) ( non empty ) set ) ) ) .[ : ( ( ) ( V143() V144() V145() open non left_end non right_end interval ) Element of bool REAL : ( ( ) ( V143() V144() V145() V149() non bounded_below non bounded_above interval ) set ) : ( ( ) ( non empty ) set ) ) ) ;

theorem :: BORSUK_4:59
for D being ( ( being_simple_closed_curve ) ( non empty non trivial closed connected compact bounded being_simple_closed_curve ) Simple_closed_curve)
for C being ( ( closed ) ( closed ) Subset of ) st C : ( ( closed ) ( closed ) Subset of ) c< D : ( ( being_simple_closed_curve ) ( non empty non trivial closed connected compact bounded being_simple_closed_curve ) Simple_closed_curve) holds
ex p1, p2 being ( ( ) ( V35(2 : ( ( ) ( non empty natural V72() real ext-real positive non negative V80() V81() V143() V144() V145() V146() V147() V148() left_end bounded_below ) Element of NAT : ( ( ) ( V143() V144() V145() V146() V147() V148() V149() bounded_below ) Element of bool REAL : ( ( ) ( V143() V144() V145() V149() non bounded_below non bounded_above interval ) set ) : ( ( ) ( non empty ) set ) ) ) ) V77() V135() ) Point of ( ( ) ( functional non empty non trivial ) set ) ) ex B being ( ( ) ( ) Subset of ) st
( B : ( ( ) ( ) Subset of ) is_an_arc_of p1 : ( ( ) ( V35(2 : ( ( ) ( non empty natural V72() real ext-real positive non negative V80() V81() V143() V144() V145() V146() V147() V148() left_end bounded_below ) Element of NAT : ( ( ) ( V143() V144() V145() V146() V147() V148() V149() bounded_below ) Element of bool REAL : ( ( ) ( V143() V144() V145() V149() non bounded_below non bounded_above interval ) set ) : ( ( ) ( non empty ) set ) ) ) ) V77() V135() ) Point of ( ( ) ( functional non empty non trivial ) set ) ) ,p2 : ( ( ) ( V35(2 : ( ( ) ( non empty natural V72() real ext-real positive non negative V80() V81() V143() V144() V145() V146() V147() V148() left_end bounded_below ) Element of NAT : ( ( ) ( V143() V144() V145() V146() V147() V148() V149() bounded_below ) Element of bool REAL : ( ( ) ( V143() V144() V145() V149() non bounded_below non bounded_above interval ) set ) : ( ( ) ( non empty ) set ) ) ) ) V77() V135() ) Point of ( ( ) ( functional non empty non trivial ) set ) ) & C : ( ( closed ) ( closed ) Subset of ) c= B : ( ( ) ( ) Subset of ) & B : ( ( ) ( ) Subset of ) c= D : ( ( being_simple_closed_curve ) ( non empty non trivial closed connected compact bounded being_simple_closed_curve ) Simple_closed_curve) ) ;