:: INCPROJ semantic presentation

begin

definition
let CPS be ( ( non empty V116() V117() proper ) ( non empty V116() V117() proper ) CollSp) ;
:: original: LINE
redefine mode LINE of CPS -> ( ( ) ( ) Subset of ) ;
end;

definition
let CPS be ( ( non empty V116() V117() proper ) ( non empty V116() V117() proper ) CollSp) ;
func ProjectiveLines CPS -> ( ( ) ( ) set ) equals :: INCPROJ:def 1
{ B : ( ( ) ( ) Subset of ) where B is ( ( ) ( ) Subset of ) : B : ( ( ) ( ) Subset of ) is ( ( ) ( ) LINE of CPS : ( ( ) ( ) CollStr ) ) } ;
end;

registration
let CPS be ( ( non empty V116() V117() proper ) ( non empty V116() V117() proper ) CollSp) ;
cluster ProjectiveLines CPS : ( ( non empty V116() V117() proper ) ( non empty V116() V117() proper ) CollStr ) : ( ( ) ( ) set ) -> non empty ;
end;

theorem :: INCPROJ:1
for CPS being ( ( non empty V116() V117() proper ) ( non empty V116() V117() proper ) CollSp)
for x being ( ( ) ( ) set ) holds
( x : ( ( ) ( ) set ) is ( ( ) ( ) LINE of CPS : ( ( non empty V116() V117() proper ) ( non empty V116() V117() proper ) CollSp) ) iff x : ( ( ) ( ) set ) is ( ( ) ( ) Element of ProjectiveLines CPS : ( ( non empty V116() V117() proper ) ( non empty V116() V117() proper ) CollSp) : ( ( ) ( non empty ) set ) ) ) ;

definition
let CPS be ( ( non empty V116() V117() proper ) ( non empty V116() V117() proper ) CollSp) ;
func Proj_Inc CPS -> ( ( ) ( V7() V10( the carrier of CPS : ( ( V49() ) ( V49() ) set ) : ( ( ) ( ) set ) ) V11( ProjectiveLines CPS : ( ( V49() ) ( V49() ) set ) : ( ( ) ( ) set ) ) ) Relation of ,) means :: INCPROJ:def 2
for x, y being ( ( ) ( ) set ) holds
( [x : ( ( ) ( ) set ) ,y : ( ( ) ( ) set ) ] : ( ( ) ( ) set ) in it : ( ( ) ( ) set ) iff ( x : ( ( ) ( ) set ) in the carrier of CPS : ( ( V49() ) ( V49() ) set ) : ( ( ) ( ) set ) & y : ( ( ) ( ) set ) in ProjectiveLines CPS : ( ( V49() ) ( V49() ) set ) : ( ( ) ( ) set ) & ex Y being ( ( ) ( ) set ) st
( y : ( ( ) ( ) set ) = Y : ( ( ) ( ) set ) & x : ( ( ) ( ) set ) in Y : ( ( ) ( ) set ) ) ) );
end;

definition
let CPS be ( ( non empty V116() V117() proper ) ( non empty V116() V117() proper ) CollSp) ;
func IncProjSp_of CPS -> ( ( ) ( ) IncProjStr ) equals :: INCPROJ:def 3
IncProjStr(# the carrier of CPS : ( ( V49() ) ( V49() ) set ) : ( ( ) ( ) set ) ,(ProjectiveLines CPS : ( ( V49() ) ( V49() ) set ) ) : ( ( ) ( ) set ) ,(Proj_Inc CPS : ( ( V49() ) ( V49() ) set ) ) : ( ( ) ( V7() V10( the carrier of CPS : ( ( V49() ) ( V49() ) set ) : ( ( ) ( ) set ) ) V11( ProjectiveLines CPS : ( ( V49() ) ( V49() ) set ) : ( ( ) ( ) set ) ) ) Relation of ,) #) : ( ( strict ) ( strict ) IncProjStr ) ;
end;

registration
let CPS be ( ( non empty V116() V117() proper ) ( non empty V116() V117() proper ) CollSp) ;
cluster IncProjSp_of CPS : ( ( non empty V116() V117() proper ) ( non empty V116() V117() proper ) CollStr ) : ( ( ) ( ) IncProjStr ) -> strict ;
end;

theorem :: INCPROJ:2
for CPS being ( ( non empty V116() V117() proper ) ( non empty V116() V117() proper ) CollSp) holds
( the Points of (IncProjSp_of CPS : ( ( non empty V116() V117() proper ) ( non empty V116() V117() proper ) CollSp) ) : ( ( ) ( strict ) IncProjStr ) : ( ( non empty ) ( non empty ) set ) = the carrier of CPS : ( ( non empty V116() V117() proper ) ( non empty V116() V117() proper ) CollSp) : ( ( ) ( non empty ) set ) & the Lines of (IncProjSp_of CPS : ( ( non empty V116() V117() proper ) ( non empty V116() V117() proper ) CollSp) ) : ( ( ) ( strict ) IncProjStr ) : ( ( non empty ) ( non empty ) set ) = ProjectiveLines CPS : ( ( non empty V116() V117() proper ) ( non empty V116() V117() proper ) CollSp) : ( ( ) ( non empty ) set ) & the Inc of (IncProjSp_of CPS : ( ( non empty V116() V117() proper ) ( non empty V116() V117() proper ) CollSp) ) : ( ( ) ( strict ) IncProjStr ) : ( ( ) ( V7() V10( the Points of (IncProjSp_of b1 : ( ( non empty V116() V117() proper ) ( non empty V116() V117() proper ) CollSp) ) : ( ( ) ( strict ) IncProjStr ) : ( ( non empty ) ( non empty ) set ) ) V11( the Lines of (IncProjSp_of b1 : ( ( non empty V116() V117() proper ) ( non empty V116() V117() proper ) CollSp) ) : ( ( ) ( strict ) IncProjStr ) : ( ( non empty ) ( non empty ) set ) ) ) Element of bool [: the Points of (IncProjSp_of b1 : ( ( non empty V116() V117() proper ) ( non empty V116() V117() proper ) CollSp) ) : ( ( ) ( strict ) IncProjStr ) : ( ( non empty ) ( non empty ) set ) , the Lines of (IncProjSp_of b1 : ( ( non empty V116() V117() proper ) ( non empty V116() V117() proper ) CollSp) ) : ( ( ) ( strict ) IncProjStr ) : ( ( non empty ) ( non empty ) set ) :] : ( ( ) ( ) set ) : ( ( ) ( ) set ) ) = Proj_Inc CPS : ( ( non empty V116() V117() proper ) ( non empty V116() V117() proper ) CollSp) : ( ( ) ( V7() V10( the carrier of b1 : ( ( non empty V116() V117() proper ) ( non empty V116() V117() proper ) CollSp) : ( ( ) ( non empty ) set ) ) V11( ProjectiveLines b1 : ( ( non empty V116() V117() proper ) ( non empty V116() V117() proper ) CollSp) : ( ( ) ( non empty ) set ) ) ) Relation of ,) ) ;

theorem :: INCPROJ:3
for CPS being ( ( non empty V116() V117() proper ) ( non empty V116() V117() proper ) CollSp)
for x being ( ( ) ( ) set ) holds
( x : ( ( ) ( ) set ) is ( ( ) ( ) Point of ( ( ) ( non empty ) set ) ) iff x : ( ( ) ( ) set ) is ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) ) ;

theorem :: INCPROJ:4
for CPS being ( ( non empty V116() V117() proper ) ( non empty V116() V117() proper ) CollSp)
for x being ( ( ) ( ) set ) holds
( x : ( ( ) ( ) set ) is ( ( ) ( ) LINE of CPS : ( ( non empty V116() V117() proper ) ( non empty V116() V117() proper ) CollSp) ) iff x : ( ( ) ( ) set ) is ( ( ) ( ) LINE of ( ( non empty ) ( non empty ) set ) ) ) ;

theorem :: INCPROJ:5
for CPS being ( ( non empty V116() V117() proper ) ( non empty V116() V117() proper ) CollSp)
for p being ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) )
for P being ( ( ) ( ) LINE of ( ( non empty ) ( non empty ) set ) )
for p9 being ( ( ) ( ) Point of ( ( ) ( non empty ) set ) )
for P9 being ( ( ) ( ) LINE of CPS : ( ( non empty V116() V117() proper ) ( non empty V116() V117() proper ) CollSp) ) st p : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) = p9 : ( ( ) ( ) Point of ( ( ) ( non empty ) set ) ) & P : ( ( ) ( ) LINE of ( ( non empty ) ( non empty ) set ) ) = P9 : ( ( ) ( ) LINE of b1 : ( ( non empty V116() V117() proper ) ( non empty V116() V117() proper ) CollSp) ) holds
( p : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) on P : ( ( ) ( ) LINE of ( ( non empty ) ( non empty ) set ) ) iff p9 : ( ( ) ( ) Point of ( ( ) ( non empty ) set ) ) in P9 : ( ( ) ( ) LINE of b1 : ( ( non empty V116() V117() proper ) ( non empty V116() V117() proper ) CollSp) ) ) ;

theorem :: INCPROJ:6
for CPS being ( ( non empty V116() V117() proper ) ( non empty V116() V117() proper ) CollSp) ex a9, b9, c9 being ( ( ) ( ) Point of ( ( ) ( non empty ) set ) ) st
( a9 : ( ( ) ( ) Point of ( ( ) ( non empty ) set ) ) <> b9 : ( ( ) ( ) Point of ( ( ) ( non empty ) set ) ) & b9 : ( ( ) ( ) Point of ( ( ) ( non empty ) set ) ) <> c9 : ( ( ) ( ) Point of ( ( ) ( non empty ) set ) ) & c9 : ( ( ) ( ) Point of ( ( ) ( non empty ) set ) ) <> a9 : ( ( ) ( ) Point of ( ( ) ( non empty ) set ) ) ) ;

theorem :: INCPROJ:7
for CPS being ( ( non empty V116() V117() proper ) ( non empty V116() V117() proper ) CollSp)
for a9 being ( ( ) ( ) Point of ( ( ) ( non empty ) set ) ) ex b9 being ( ( ) ( ) Point of ( ( ) ( non empty ) set ) ) st a9 : ( ( ) ( ) Point of ( ( ) ( non empty ) set ) ) <> b9 : ( ( ) ( ) Point of ( ( ) ( non empty ) set ) ) ;

theorem :: INCPROJ:8
for CPS being ( ( non empty V116() V117() proper ) ( non empty V116() V117() proper ) CollSp)
for p, q being ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) )
for P, Q being ( ( ) ( ) LINE of ( ( non empty ) ( non empty ) set ) ) st p : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) on P : ( ( ) ( ) LINE of ( ( non empty ) ( non empty ) set ) ) & q : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) on P : ( ( ) ( ) LINE of ( ( non empty ) ( non empty ) set ) ) & p : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) on Q : ( ( ) ( ) LINE of ( ( non empty ) ( non empty ) set ) ) & q : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) on Q : ( ( ) ( ) LINE of ( ( non empty ) ( non empty ) set ) ) & not p : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) = q : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) holds
P : ( ( ) ( ) LINE of ( ( non empty ) ( non empty ) set ) ) = Q : ( ( ) ( ) LINE of ( ( non empty ) ( non empty ) set ) ) ;

theorem :: INCPROJ:9
for CPS being ( ( non empty V116() V117() proper ) ( non empty V116() V117() proper ) CollSp)
for p, q being ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) ex P being ( ( ) ( ) LINE of ( ( non empty ) ( non empty ) set ) ) st
( p : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) on P : ( ( ) ( ) LINE of ( ( non empty ) ( non empty ) set ) ) & q : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) on P : ( ( ) ( ) LINE of ( ( non empty ) ( non empty ) set ) ) ) ;

theorem :: INCPROJ:10
for CPS being ( ( non empty V116() V117() proper ) ( non empty V116() V117() proper ) CollSp)
for a, b, c being ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) )
for a9, b9, c9 being ( ( ) ( ) Point of ( ( ) ( non empty ) set ) ) st a : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) = a9 : ( ( ) ( ) Point of ( ( ) ( non empty ) set ) ) & b : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) = b9 : ( ( ) ( ) Point of ( ( ) ( non empty ) set ) ) & c : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) = c9 : ( ( ) ( ) Point of ( ( ) ( non empty ) set ) ) holds
( a9 : ( ( ) ( ) Point of ( ( ) ( non empty ) set ) ) ,b9 : ( ( ) ( ) Point of ( ( ) ( non empty ) set ) ) ,c9 : ( ( ) ( ) Point of ( ( ) ( non empty ) set ) ) is_collinear iff ex P being ( ( ) ( ) LINE of ( ( non empty ) ( non empty ) set ) ) st
( a : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) on P : ( ( ) ( ) LINE of ( ( non empty ) ( non empty ) set ) ) & b : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) on P : ( ( ) ( ) LINE of ( ( non empty ) ( non empty ) set ) ) & c : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) on P : ( ( ) ( ) LINE of ( ( non empty ) ( non empty ) set ) ) ) ) ;

theorem :: INCPROJ:11
for CPS being ( ( non empty V116() V117() proper ) ( non empty V116() V117() proper ) CollSp) holds
not for p being ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) )
for P being ( ( ) ( ) LINE of ( ( non empty ) ( non empty ) set ) ) holds p : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) on P : ( ( ) ( ) LINE of ( ( non empty ) ( non empty ) set ) ) ;

theorem :: INCPROJ:12
for CPS being ( ( non empty V116() V117() proper Vebleian at_least_3rank ) ( non empty V116() V117() proper Vebleian at_least_3rank ) CollProjectiveSpace)
for P being ( ( ) ( ) LINE of ( ( non empty ) ( non empty ) set ) ) ex a, b, c being ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) st
( a : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) <> b : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) & b : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) <> c : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) & c : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) <> a : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) & a : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) on P : ( ( ) ( ) LINE of ( ( non empty ) ( non empty ) set ) ) & b : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) on P : ( ( ) ( ) LINE of ( ( non empty ) ( non empty ) set ) ) & c : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) on P : ( ( ) ( ) LINE of ( ( non empty ) ( non empty ) set ) ) ) ;

theorem :: INCPROJ:13
for CPS being ( ( non empty V116() V117() proper Vebleian at_least_3rank ) ( non empty V116() V117() proper Vebleian at_least_3rank ) CollProjectiveSpace)
for a, b, c, d, p being ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) )
for M, N, P, Q being ( ( ) ( ) LINE of ( ( non empty ) ( non empty ) set ) ) st a : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) on M : ( ( ) ( ) LINE of ( ( non empty ) ( non empty ) set ) ) & b : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) on M : ( ( ) ( ) LINE of ( ( non empty ) ( non empty ) set ) ) & c : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) on N : ( ( ) ( ) LINE of ( ( non empty ) ( non empty ) set ) ) & d : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) on N : ( ( ) ( ) LINE of ( ( non empty ) ( non empty ) set ) ) & p : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) on M : ( ( ) ( ) LINE of ( ( non empty ) ( non empty ) set ) ) & p : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) on N : ( ( ) ( ) LINE of ( ( non empty ) ( non empty ) set ) ) & a : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) on P : ( ( ) ( ) LINE of ( ( non empty ) ( non empty ) set ) ) & c : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) on P : ( ( ) ( ) LINE of ( ( non empty ) ( non empty ) set ) ) & b : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) on Q : ( ( ) ( ) LINE of ( ( non empty ) ( non empty ) set ) ) & d : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) on Q : ( ( ) ( ) LINE of ( ( non empty ) ( non empty ) set ) ) & not p : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) on P : ( ( ) ( ) LINE of ( ( non empty ) ( non empty ) set ) ) & not p : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) on Q : ( ( ) ( ) LINE of ( ( non empty ) ( non empty ) set ) ) & M : ( ( ) ( ) LINE of ( ( non empty ) ( non empty ) set ) ) <> N : ( ( ) ( ) LINE of ( ( non empty ) ( non empty ) set ) ) holds
ex q being ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) st
( q : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) on P : ( ( ) ( ) LINE of ( ( non empty ) ( non empty ) set ) ) & q : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) on Q : ( ( ) ( ) LINE of ( ( non empty ) ( non empty ) set ) ) ) ;

theorem :: INCPROJ:14
for CPS being ( ( non empty V116() V117() proper Vebleian at_least_3rank ) ( non empty V116() V117() proper Vebleian at_least_3rank ) CollProjectiveSpace) st ( for a9, b9, c9, d9 being ( ( ) ( ) Point of ( ( ) ( non empty ) set ) ) ex p9 being ( ( ) ( ) Point of ( ( ) ( non empty ) set ) ) st
( a9 : ( ( ) ( ) LINE of ( ( non empty ) ( non empty ) set ) ) ,b9 : ( ( ) ( ) LINE of ( ( non empty ) ( non empty ) set ) ) ,p9 : ( ( ) ( ) Point of ( ( ) ( non empty ) set ) ) is_collinear & c9 : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) ,d9 : ( ( ) ( ) Point of ( ( ) ( non empty ) set ) ) ,p9 : ( ( ) ( ) Point of ( ( ) ( non empty ) set ) ) is_collinear ) ) holds
for M, N being ( ( ) ( ) LINE of ( ( non empty ) ( non empty ) set ) ) ex q being ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) st
( q : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) on M : ( ( ) ( ) LINE of ( ( non empty ) ( non empty ) set ) ) & q : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) on N : ( ( ) ( ) LINE of ( ( non empty ) ( non empty ) set ) ) ) ;

theorem :: INCPROJ:15
for CPS being ( ( non empty V116() V117() proper Vebleian at_least_3rank ) ( non empty V116() V117() proper Vebleian at_least_3rank ) CollProjectiveSpace) st ex p, p1, r, r1 being ( ( ) ( ) Point of ( ( ) ( non empty ) set ) ) st
for s being ( ( ) ( ) Point of ( ( ) ( non empty ) set ) ) holds
( not p : ( ( ) ( ) LINE of ( ( non empty ) ( non empty ) set ) ) ,p1 : ( ( ) ( ) LINE of ( ( non empty ) ( non empty ) set ) ) ,s : ( ( ) ( ) Point of ( ( ) ( non empty ) set ) ) is_collinear or not r : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) ,r1 : ( ( ) ( ) Point of ( ( ) ( non empty ) set ) ) ,s : ( ( ) ( ) Point of ( ( ) ( non empty ) set ) ) is_collinear ) holds
ex M, N being ( ( ) ( ) LINE of ( ( non empty ) ( non empty ) set ) ) st
for q being ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) holds
( not q : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) on M : ( ( ) ( ) LINE of ( ( non empty ) ( non empty ) set ) ) or not q : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) on N : ( ( ) ( ) LINE of ( ( non empty ) ( non empty ) set ) ) ) ;

theorem :: INCPROJ:16
for CPS being ( ( non empty V116() V117() proper Vebleian at_least_3rank ) ( non empty V116() V117() proper Vebleian at_least_3rank ) CollProjectiveSpace) st ( for p, p1, q, q1, r2 being ( ( ) ( ) Point of ( ( ) ( non empty ) set ) ) ex r, r1 being ( ( ) ( ) Point of ( ( ) ( non empty ) set ) ) st
( p : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) ,q : ( ( ) ( ) LINE of ( ( non empty ) ( non empty ) set ) ) ,r : ( ( ) ( ) LINE of ( ( non empty ) ( non empty ) set ) ) is_collinear & p1 : ( ( ) ( ) LINE of ( ( non empty ) ( non empty ) set ) ) ,q1 : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) ,r1 : ( ( ) ( ) Point of ( ( ) ( non empty ) set ) ) is_collinear & r2 : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) ,r : ( ( ) ( ) LINE of ( ( non empty ) ( non empty ) set ) ) ,r1 : ( ( ) ( ) Point of ( ( ) ( non empty ) set ) ) is_collinear ) ) holds
for a being ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) )
for M, N being ( ( ) ( ) LINE of ( ( non empty ) ( non empty ) set ) ) ex b, c being ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) ex S being ( ( ) ( ) LINE of ( ( non empty ) ( non empty ) set ) ) st
( a : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) on S : ( ( ) ( ) LINE of ( ( non empty ) ( non empty ) set ) ) & b : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) on S : ( ( ) ( ) LINE of ( ( non empty ) ( non empty ) set ) ) & c : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) on S : ( ( ) ( ) LINE of ( ( non empty ) ( non empty ) set ) ) & b : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) on M : ( ( ) ( ) LINE of ( ( non empty ) ( non empty ) set ) ) & c : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) on N : ( ( ) ( ) LINE of ( ( non empty ) ( non empty ) set ) ) ) ;

theorem :: INCPROJ:17
for CPS being ( ( non empty V116() V117() proper Vebleian at_least_3rank ) ( non empty V116() V117() proper Vebleian at_least_3rank ) CollProjectiveSpace) st ( for p1, r2, q, r1, q1, p, r being ( ( ) ( ) Point of ( ( ) ( non empty ) set ) ) st p1 : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) ,r2 : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) ,q : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) is_collinear & r1 : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) ,q1 : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) ,q : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) is_collinear & p1 : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) ,r1 : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) ,p : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) is_collinear & r2 : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) ,q1 : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) ,p : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) is_collinear & p1 : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) ,q1 : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) ,r : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) is_collinear & r2 : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) ,r1 : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) ,r : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) is_collinear & p : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) ,q : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) ,r : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) is_collinear & not p1 : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) ,r2 : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) ,q1 : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) is_collinear & not p1 : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) ,r2 : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) ,r1 : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) is_collinear & not p1 : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) ,r1 : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) ,q1 : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) is_collinear holds
r2 : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) ,r1 : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) ,q1 : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) is_collinear ) holds
for p, q, r, s, a, b, c being ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) )
for L, Q, R, S, A, B, C being ( ( ) ( ) LINE of ( ( non empty ) ( non empty ) set ) ) st not q : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) on L : ( ( ) ( ) LINE of ( ( non empty ) ( non empty ) set ) ) & not r : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) on L : ( ( ) ( ) LINE of ( ( non empty ) ( non empty ) set ) ) & not p : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) on Q : ( ( ) ( ) LINE of ( ( non empty ) ( non empty ) set ) ) & not s : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) on Q : ( ( ) ( ) LINE of ( ( non empty ) ( non empty ) set ) ) & not p : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) on R : ( ( ) ( ) LINE of ( ( non empty ) ( non empty ) set ) ) & not r : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) on R : ( ( ) ( ) LINE of ( ( non empty ) ( non empty ) set ) ) & {a : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) ,p : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) ,s : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) } : ( ( ) ( ) Element of bool the Points of (IncProjSp_of b1 : ( ( non empty V116() V117() proper Vebleian at_least_3rank ) ( non empty V116() V117() proper Vebleian at_least_3rank ) CollProjectiveSpace) ) : ( ( ) ( strict ) IncProjStr ) : ( ( non empty ) ( non empty ) set ) : ( ( ) ( ) set ) ) on L : ( ( ) ( ) LINE of ( ( non empty ) ( non empty ) set ) ) & {a : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) ,q : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) ,r : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) } : ( ( ) ( ) Element of bool the Points of (IncProjSp_of b1 : ( ( non empty V116() V117() proper Vebleian at_least_3rank ) ( non empty V116() V117() proper Vebleian at_least_3rank ) CollProjectiveSpace) ) : ( ( ) ( strict ) IncProjStr ) : ( ( non empty ) ( non empty ) set ) : ( ( ) ( ) set ) ) on Q : ( ( ) ( ) LINE of ( ( non empty ) ( non empty ) set ) ) & {b : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) ,q : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) ,s : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) } : ( ( ) ( ) Element of bool the Points of (IncProjSp_of b1 : ( ( non empty V116() V117() proper Vebleian at_least_3rank ) ( non empty V116() V117() proper Vebleian at_least_3rank ) CollProjectiveSpace) ) : ( ( ) ( strict ) IncProjStr ) : ( ( non empty ) ( non empty ) set ) : ( ( ) ( ) set ) ) on R : ( ( ) ( ) LINE of ( ( non empty ) ( non empty ) set ) ) & {b : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) ,p : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) ,r : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) } : ( ( ) ( ) Element of bool the Points of (IncProjSp_of b1 : ( ( non empty V116() V117() proper Vebleian at_least_3rank ) ( non empty V116() V117() proper Vebleian at_least_3rank ) CollProjectiveSpace) ) : ( ( ) ( strict ) IncProjStr ) : ( ( non empty ) ( non empty ) set ) : ( ( ) ( ) set ) ) on S : ( ( ) ( ) LINE of ( ( non empty ) ( non empty ) set ) ) & {c : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) ,p : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) ,q : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) } : ( ( ) ( ) Element of bool the Points of (IncProjSp_of b1 : ( ( non empty V116() V117() proper Vebleian at_least_3rank ) ( non empty V116() V117() proper Vebleian at_least_3rank ) CollProjectiveSpace) ) : ( ( ) ( strict ) IncProjStr ) : ( ( non empty ) ( non empty ) set ) : ( ( ) ( ) set ) ) on A : ( ( ) ( ) LINE of ( ( non empty ) ( non empty ) set ) ) & {c : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) ,r : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) ,s : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) } : ( ( ) ( ) Element of bool the Points of (IncProjSp_of b1 : ( ( non empty V116() V117() proper Vebleian at_least_3rank ) ( non empty V116() V117() proper Vebleian at_least_3rank ) CollProjectiveSpace) ) : ( ( ) ( strict ) IncProjStr ) : ( ( non empty ) ( non empty ) set ) : ( ( ) ( ) set ) ) on B : ( ( ) ( ) LINE of ( ( non empty ) ( non empty ) set ) ) & {a : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) ,b : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) } : ( ( ) ( ) Element of bool the Points of (IncProjSp_of b1 : ( ( non empty V116() V117() proper Vebleian at_least_3rank ) ( non empty V116() V117() proper Vebleian at_least_3rank ) CollProjectiveSpace) ) : ( ( ) ( strict ) IncProjStr ) : ( ( non empty ) ( non empty ) set ) : ( ( ) ( ) set ) ) on C : ( ( ) ( ) LINE of ( ( non empty ) ( non empty ) set ) ) holds
not c : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) on C : ( ( ) ( ) LINE of ( ( non empty ) ( non empty ) set ) ) ;

theorem :: INCPROJ:18
for CPS being ( ( non empty V116() V117() proper Vebleian at_least_3rank ) ( non empty V116() V117() proper Vebleian at_least_3rank ) CollProjectiveSpace) st ( for o, p1, p2, p3, q1, q2, q3, r1, r2, r3 being ( ( ) ( ) Point of ( ( ) ( non empty ) set ) ) st o : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) <> q1 : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) & p1 : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) <> q1 : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) & o : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) <> q2 : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) & p2 : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) <> q2 : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) & o : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) <> q3 : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) & p3 : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) <> q3 : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) & not o : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) ,p1 : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) ,p2 : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) is_collinear & not o : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) ,p1 : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) ,p3 : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) is_collinear & not o : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) ,p2 : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) ,p3 : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) is_collinear & p1 : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) ,p2 : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) ,r3 : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) is_collinear & q1 : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) ,q2 : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) ,r3 : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) is_collinear & p2 : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) ,p3 : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) ,r1 : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) is_collinear & q2 : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) ,q3 : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) ,r1 : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) is_collinear & p1 : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) ,p3 : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) ,r2 : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) is_collinear & q1 : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) ,q3 : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) ,r2 : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) is_collinear & o : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) ,p1 : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) ,q1 : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) is_collinear & o : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) ,p2 : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) ,q2 : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) is_collinear & o : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) ,p3 : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) ,q3 : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) is_collinear holds
r1 : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) ,r2 : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) ,r3 : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) is_collinear ) holds
for o, b1, a1, b2, a2, b3, a3, r, s, t being ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) )
for C1, C2, C3, A1, A2, A3, B1, B2, B3 being ( ( ) ( ) LINE of ( ( non empty ) ( non empty ) set ) ) st {o : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) ,b1 : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) ,a1 : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) } : ( ( ) ( ) Element of bool the Points of (IncProjSp_of b1 : ( ( non empty V116() V117() proper Vebleian at_least_3rank ) ( non empty V116() V117() proper Vebleian at_least_3rank ) CollProjectiveSpace) ) : ( ( ) ( strict ) IncProjStr ) : ( ( non empty ) ( non empty ) set ) : ( ( ) ( ) set ) ) on C1 : ( ( ) ( ) LINE of ( ( non empty ) ( non empty ) set ) ) & {o : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) ,a2 : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) ,b2 : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) } : ( ( ) ( ) Element of bool the Points of (IncProjSp_of b1 : ( ( non empty V116() V117() proper Vebleian at_least_3rank ) ( non empty V116() V117() proper Vebleian at_least_3rank ) CollProjectiveSpace) ) : ( ( ) ( strict ) IncProjStr ) : ( ( non empty ) ( non empty ) set ) : ( ( ) ( ) set ) ) on C2 : ( ( ) ( ) LINE of ( ( non empty ) ( non empty ) set ) ) & {o : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) ,a3 : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) ,b3 : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) } : ( ( ) ( ) Element of bool the Points of (IncProjSp_of b1 : ( ( non empty V116() V117() proper Vebleian at_least_3rank ) ( non empty V116() V117() proper Vebleian at_least_3rank ) CollProjectiveSpace) ) : ( ( ) ( strict ) IncProjStr ) : ( ( non empty ) ( non empty ) set ) : ( ( ) ( ) set ) ) on C3 : ( ( ) ( ) LINE of ( ( non empty ) ( non empty ) set ) ) & {a3 : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) ,a2 : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) ,t : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) } : ( ( ) ( ) Element of bool the Points of (IncProjSp_of b1 : ( ( non empty V116() V117() proper Vebleian at_least_3rank ) ( non empty V116() V117() proper Vebleian at_least_3rank ) CollProjectiveSpace) ) : ( ( ) ( strict ) IncProjStr ) : ( ( non empty ) ( non empty ) set ) : ( ( ) ( ) set ) ) on A1 : ( ( ) ( ) LINE of ( ( non empty ) ( non empty ) set ) ) & {a3 : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) ,r : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) ,a1 : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) } : ( ( ) ( ) Element of bool the Points of (IncProjSp_of b1 : ( ( non empty V116() V117() proper Vebleian at_least_3rank ) ( non empty V116() V117() proper Vebleian at_least_3rank ) CollProjectiveSpace) ) : ( ( ) ( strict ) IncProjStr ) : ( ( non empty ) ( non empty ) set ) : ( ( ) ( ) set ) ) on A2 : ( ( ) ( ) LINE of ( ( non empty ) ( non empty ) set ) ) & {a2 : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) ,s : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) ,a1 : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) } : ( ( ) ( ) Element of bool the Points of (IncProjSp_of b1 : ( ( non empty V116() V117() proper Vebleian at_least_3rank ) ( non empty V116() V117() proper Vebleian at_least_3rank ) CollProjectiveSpace) ) : ( ( ) ( strict ) IncProjStr ) : ( ( non empty ) ( non empty ) set ) : ( ( ) ( ) set ) ) on A3 : ( ( ) ( ) LINE of ( ( non empty ) ( non empty ) set ) ) & {t : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) ,b2 : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) ,b3 : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) } : ( ( ) ( ) Element of bool the Points of (IncProjSp_of b1 : ( ( non empty V116() V117() proper Vebleian at_least_3rank ) ( non empty V116() V117() proper Vebleian at_least_3rank ) CollProjectiveSpace) ) : ( ( ) ( strict ) IncProjStr ) : ( ( non empty ) ( non empty ) set ) : ( ( ) ( ) set ) ) on B1 : ( ( ) ( ) LINE of ( ( non empty ) ( non empty ) set ) ) & {b1 : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) ,r : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) ,b3 : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) } : ( ( ) ( ) Element of bool the Points of (IncProjSp_of b1 : ( ( non empty V116() V117() proper Vebleian at_least_3rank ) ( non empty V116() V117() proper Vebleian at_least_3rank ) CollProjectiveSpace) ) : ( ( ) ( strict ) IncProjStr ) : ( ( non empty ) ( non empty ) set ) : ( ( ) ( ) set ) ) on B2 : ( ( ) ( ) LINE of ( ( non empty ) ( non empty ) set ) ) & {b1 : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) ,s : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) ,b2 : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) } : ( ( ) ( ) Element of bool the Points of (IncProjSp_of b1 : ( ( non empty V116() V117() proper Vebleian at_least_3rank ) ( non empty V116() V117() proper Vebleian at_least_3rank ) CollProjectiveSpace) ) : ( ( ) ( strict ) IncProjStr ) : ( ( non empty ) ( non empty ) set ) : ( ( ) ( ) set ) ) on B3 : ( ( ) ( ) LINE of ( ( non empty ) ( non empty ) set ) ) & C1 : ( ( ) ( ) LINE of ( ( non empty ) ( non empty ) set ) ) ,C2 : ( ( ) ( ) LINE of ( ( non empty ) ( non empty ) set ) ) ,C3 : ( ( ) ( ) LINE of ( ( non empty ) ( non empty ) set ) ) are_mutually_different & o : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) <> a1 : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) & o : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) <> a2 : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) & o : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) <> a3 : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) & o : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) <> b1 : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) & o : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) <> b2 : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) & o : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) <> b3 : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) & a1 : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) <> b1 : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) & a2 : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) <> b2 : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) & a3 : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) <> b3 : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) holds
ex O being ( ( ) ( ) LINE of ( ( non empty ) ( non empty ) set ) ) st {r : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) ,s : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) ,t : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) } : ( ( ) ( ) Element of bool the Points of (IncProjSp_of b1 : ( ( non empty V116() V117() proper Vebleian at_least_3rank ) ( non empty V116() V117() proper Vebleian at_least_3rank ) CollProjectiveSpace) ) : ( ( ) ( strict ) IncProjStr ) : ( ( non empty ) ( non empty ) set ) : ( ( ) ( ) set ) ) on O : ( ( ) ( ) LINE of ( ( non empty ) ( non empty ) set ) ) ;

theorem :: INCPROJ:19
for CPS being ( ( non empty V116() V117() proper Vebleian at_least_3rank ) ( non empty V116() V117() proper Vebleian at_least_3rank ) CollProjectiveSpace) st ( for o, p1, p2, p3, q1, q2, q3, r1, r2, r3 being ( ( ) ( ) Point of ( ( ) ( non empty ) set ) ) st o : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) <> p2 : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) & o : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) <> p3 : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) & p2 : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) <> p3 : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) & p1 : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) <> p2 : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) & p1 : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) <> p3 : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) & o : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) <> q2 : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) & o : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) <> q3 : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) & q2 : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) <> q3 : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) & q1 : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) <> q2 : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) & q1 : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) <> q3 : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) & not o : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) ,p1 : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) ,q1 : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) is_collinear & o : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) ,p1 : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) ,p2 : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) is_collinear & o : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) ,p1 : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) ,p3 : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) is_collinear & o : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) ,q1 : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) ,q2 : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) is_collinear & o : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) ,q1 : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) ,q3 : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) is_collinear & p1 : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) ,q2 : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) ,r3 : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) is_collinear & q1 : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) ,p2 : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) ,r3 : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) is_collinear & p1 : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) ,q3 : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) ,r2 : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) is_collinear & p3 : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) ,q1 : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) ,r2 : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) is_collinear & p2 : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) ,q3 : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) ,r1 : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) is_collinear & p3 : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) ,q2 : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) ,r1 : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) is_collinear holds
r1 : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) ,r2 : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) ,r3 : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) is_collinear ) holds
for o, a1, a2, a3, b1, b2, b3, c1, c2, c3 being ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) )
for A1, A2, A3, B1, B2, B3, C1, C2, C3 being ( ( ) ( ) LINE of ( ( non empty ) ( non empty ) set ) ) st o : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) ,a1 : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) ,a2 : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) ,a3 : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) are_mutually_different & o : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) ,b1 : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) ,b2 : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) ,b3 : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) are_mutually_different & A3 : ( ( ) ( ) LINE of ( ( non empty ) ( non empty ) set ) ) <> B3 : ( ( ) ( ) LINE of ( ( non empty ) ( non empty ) set ) ) & o : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) on A3 : ( ( ) ( ) LINE of ( ( non empty ) ( non empty ) set ) ) & o : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) on B3 : ( ( ) ( ) LINE of ( ( non empty ) ( non empty ) set ) ) & {a2 : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) ,b3 : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) ,c1 : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) } : ( ( ) ( ) Element of bool the Points of (IncProjSp_of b1 : ( ( non empty V116() V117() proper Vebleian at_least_3rank ) ( non empty V116() V117() proper Vebleian at_least_3rank ) CollProjectiveSpace) ) : ( ( ) ( strict ) IncProjStr ) : ( ( non empty ) ( non empty ) set ) : ( ( ) ( ) set ) ) on A1 : ( ( ) ( ) LINE of ( ( non empty ) ( non empty ) set ) ) & {a3 : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) ,b1 : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) ,c2 : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) } : ( ( ) ( ) Element of bool the Points of (IncProjSp_of b1 : ( ( non empty V116() V117() proper Vebleian at_least_3rank ) ( non empty V116() V117() proper Vebleian at_least_3rank ) CollProjectiveSpace) ) : ( ( ) ( strict ) IncProjStr ) : ( ( non empty ) ( non empty ) set ) : ( ( ) ( ) set ) ) on B1 : ( ( ) ( ) LINE of ( ( non empty ) ( non empty ) set ) ) & {a1 : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) ,b2 : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) ,c3 : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) } : ( ( ) ( ) Element of bool the Points of (IncProjSp_of b1 : ( ( non empty V116() V117() proper Vebleian at_least_3rank ) ( non empty V116() V117() proper Vebleian at_least_3rank ) CollProjectiveSpace) ) : ( ( ) ( strict ) IncProjStr ) : ( ( non empty ) ( non empty ) set ) : ( ( ) ( ) set ) ) on C1 : ( ( ) ( ) LINE of ( ( non empty ) ( non empty ) set ) ) & {a1 : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) ,b3 : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) ,c2 : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) } : ( ( ) ( ) Element of bool the Points of (IncProjSp_of b1 : ( ( non empty V116() V117() proper Vebleian at_least_3rank ) ( non empty V116() V117() proper Vebleian at_least_3rank ) CollProjectiveSpace) ) : ( ( ) ( strict ) IncProjStr ) : ( ( non empty ) ( non empty ) set ) : ( ( ) ( ) set ) ) on A2 : ( ( ) ( ) LINE of ( ( non empty ) ( non empty ) set ) ) & {a3 : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) ,b2 : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) ,c1 : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) } : ( ( ) ( ) Element of bool the Points of (IncProjSp_of b1 : ( ( non empty V116() V117() proper Vebleian at_least_3rank ) ( non empty V116() V117() proper Vebleian at_least_3rank ) CollProjectiveSpace) ) : ( ( ) ( strict ) IncProjStr ) : ( ( non empty ) ( non empty ) set ) : ( ( ) ( ) set ) ) on B2 : ( ( ) ( ) LINE of ( ( non empty ) ( non empty ) set ) ) & {a2 : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) ,b1 : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) ,c3 : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) } : ( ( ) ( ) Element of bool the Points of (IncProjSp_of b1 : ( ( non empty V116() V117() proper Vebleian at_least_3rank ) ( non empty V116() V117() proper Vebleian at_least_3rank ) CollProjectiveSpace) ) : ( ( ) ( strict ) IncProjStr ) : ( ( non empty ) ( non empty ) set ) : ( ( ) ( ) set ) ) on C2 : ( ( ) ( ) LINE of ( ( non empty ) ( non empty ) set ) ) & {b1 : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) ,b2 : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) ,b3 : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) } : ( ( ) ( ) Element of bool the Points of (IncProjSp_of b1 : ( ( non empty V116() V117() proper Vebleian at_least_3rank ) ( non empty V116() V117() proper Vebleian at_least_3rank ) CollProjectiveSpace) ) : ( ( ) ( strict ) IncProjStr ) : ( ( non empty ) ( non empty ) set ) : ( ( ) ( ) set ) ) on A3 : ( ( ) ( ) LINE of ( ( non empty ) ( non empty ) set ) ) & {a1 : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) ,a2 : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) ,a3 : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) } : ( ( ) ( ) Element of bool the Points of (IncProjSp_of b1 : ( ( non empty V116() V117() proper Vebleian at_least_3rank ) ( non empty V116() V117() proper Vebleian at_least_3rank ) CollProjectiveSpace) ) : ( ( ) ( strict ) IncProjStr ) : ( ( non empty ) ( non empty ) set ) : ( ( ) ( ) set ) ) on B3 : ( ( ) ( ) LINE of ( ( non empty ) ( non empty ) set ) ) & {c1 : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) ,c2 : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) } : ( ( ) ( ) Element of bool the Points of (IncProjSp_of b1 : ( ( non empty V116() V117() proper Vebleian at_least_3rank ) ( non empty V116() V117() proper Vebleian at_least_3rank ) CollProjectiveSpace) ) : ( ( ) ( strict ) IncProjStr ) : ( ( non empty ) ( non empty ) set ) : ( ( ) ( ) set ) ) on C3 : ( ( ) ( ) LINE of ( ( non empty ) ( non empty ) set ) ) holds
c3 : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) on C3 : ( ( ) ( ) LINE of ( ( non empty ) ( non empty ) set ) ) ;

definition
let S be ( ( ) ( ) IncProjStr ) ;
attr S is partial means :: INCPROJ:def 4
for p, q being ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) )
for P, Q being ( ( ) ( ) LINE of ( ( non empty ) ( non empty ) set ) ) st p : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) on P : ( ( ) ( ) LINE of ( ( non empty ) ( non empty ) set ) ) & q : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) on P : ( ( ) ( ) LINE of ( ( non empty ) ( non empty ) set ) ) & p : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) on Q : ( ( ) ( ) LINE of ( ( non empty ) ( non empty ) set ) ) & q : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) on Q : ( ( ) ( ) LINE of ( ( non empty ) ( non empty ) set ) ) & not p : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) = q : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) holds
P : ( ( ) ( ) LINE of ( ( non empty ) ( non empty ) set ) ) = Q : ( ( ) ( ) LINE of ( ( non empty ) ( non empty ) set ) ) ;
redefine attr S is linear means :: INCPROJ:def 5
for p, q being ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) ex P being ( ( ) ( ) LINE of ( ( non empty ) ( non empty ) set ) ) st
( p : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) on P : ( ( ) ( ) LINE of ( ( non empty ) ( non empty ) set ) ) & q : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) on P : ( ( ) ( ) LINE of ( ( non empty ) ( non empty ) set ) ) );
end;

definition
let S be ( ( ) ( ) IncProjStr ) ;
attr S is up-2-dimensional means :: INCPROJ:def 6
not for p being ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) )
for P being ( ( ) ( ) LINE of ( ( non empty ) ( non empty ) set ) ) holds p : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) on P : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) ;
attr S is up-3-rank means :: INCPROJ:def 7
for P being ( ( ) ( ) LINE of ( ( non empty ) ( non empty ) set ) ) ex a, b, c being ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) st
( a : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) <> b : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) & b : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) <> c : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) & c : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) <> a : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) & a : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) on P : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) & b : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) on P : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) & c : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) on P : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) );
attr S is Vebleian means :: INCPROJ:def 8
for a, b, c, d, p, q being ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) )
for M, N, P, Q being ( ( ) ( ) LINE of ( ( non empty ) ( non empty ) set ) ) st a : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) on M : ( ( ) ( ) LINE of ( ( non empty ) ( non empty ) set ) ) & b : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) on M : ( ( ) ( ) LINE of ( ( non empty ) ( non empty ) set ) ) & c : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) on N : ( ( ) ( ) LINE of ( ( non empty ) ( non empty ) set ) ) & d : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) on N : ( ( ) ( ) LINE of ( ( non empty ) ( non empty ) set ) ) & p : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) on M : ( ( ) ( ) LINE of ( ( non empty ) ( non empty ) set ) ) & p : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) on N : ( ( ) ( ) LINE of ( ( non empty ) ( non empty ) set ) ) & a : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) on P : ( ( ) ( ) LINE of ( ( non empty ) ( non empty ) set ) ) & c : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) on P : ( ( ) ( ) LINE of ( ( non empty ) ( non empty ) set ) ) & b : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) on Q : ( ( ) ( ) LINE of ( ( non empty ) ( non empty ) set ) ) & d : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) on Q : ( ( ) ( ) LINE of ( ( non empty ) ( non empty ) set ) ) & not p : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) on P : ( ( ) ( ) LINE of ( ( non empty ) ( non empty ) set ) ) & not p : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) on Q : ( ( ) ( ) LINE of ( ( non empty ) ( non empty ) set ) ) & M : ( ( ) ( ) LINE of ( ( non empty ) ( non empty ) set ) ) <> N : ( ( ) ( ) LINE of ( ( non empty ) ( non empty ) set ) ) holds
ex q being ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) st
( q : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) on P : ( ( ) ( ) LINE of ( ( non empty ) ( non empty ) set ) ) & q : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) on Q : ( ( ) ( ) LINE of ( ( non empty ) ( non empty ) set ) ) );
end;

registration
let CPS be ( ( non empty V116() V117() proper Vebleian at_least_3rank ) ( non empty V116() V117() proper Vebleian at_least_3rank ) CollProjectiveSpace) ;
cluster IncProjSp_of CPS : ( ( non empty V116() V117() proper Vebleian at_least_3rank ) ( non empty V116() V117() proper Vebleian at_least_3rank ) CollStr ) : ( ( ) ( strict ) IncProjStr ) -> linear partial up-2-dimensional up-3-rank Vebleian ;
end;

registration
cluster strict linear partial up-2-dimensional up-3-rank Vebleian for ( ( ) ( ) IncProjStr ) ;
end;

definition
mode IncProjSp is ( ( linear partial up-2-dimensional up-3-rank Vebleian ) ( linear partial up-2-dimensional up-3-rank Vebleian ) IncProjStr ) ;
end;

registration
let CPS be ( ( non empty V116() V117() proper Vebleian at_least_3rank ) ( non empty V116() V117() proper Vebleian at_least_3rank ) CollProjectiveSpace) ;
cluster IncProjSp_of CPS : ( ( non empty V116() V117() proper Vebleian at_least_3rank ) ( non empty V116() V117() proper Vebleian at_least_3rank ) CollStr ) : ( ( ) ( strict linear partial up-2-dimensional up-3-rank Vebleian ) IncProjStr ) -> linear partial up-2-dimensional up-3-rank Vebleian ;
end;

definition
let IT be ( ( linear partial up-2-dimensional up-3-rank Vebleian ) ( linear partial up-2-dimensional up-3-rank Vebleian ) IncProjSp) ;
attr IT is 2-dimensional means :: INCPROJ:def 9
for M, N being ( ( ) ( ) LINE of ( ( non empty ) ( non empty ) set ) ) ex q being ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) st
( q : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) on M : ( ( ) ( ) LINE of ( ( non empty ) ( non empty ) set ) ) & q : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) on N : ( ( ) ( ) LINE of ( ( non empty ) ( non empty ) set ) ) );
end;

notation
let IT be ( ( linear partial up-2-dimensional up-3-rank Vebleian ) ( linear partial up-2-dimensional up-3-rank Vebleian ) IncProjSp) ;
antonym up-3-dimensional IT for 2-dimensional ;
end;

definition
let IT be ( ( ) ( ) IncProjStr ) ;
attr IT is at_most-3-dimensional means :: INCPROJ:def 10
for a being ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) )
for M, N being ( ( ) ( ) LINE of ( ( non empty ) ( non empty ) set ) ) ex b, c being ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) ex S being ( ( ) ( ) LINE of ( ( non empty ) ( non empty ) set ) ) st
( a : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) on S : ( ( ) ( ) LINE of ( ( non empty ) ( non empty ) set ) ) & b : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) on S : ( ( ) ( ) LINE of ( ( non empty ) ( non empty ) set ) ) & c : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) on S : ( ( ) ( ) LINE of ( ( non empty ) ( non empty ) set ) ) & b : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) on M : ( ( ) ( ) LINE of ( ( non empty ) ( non empty ) set ) ) & c : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) on N : ( ( ) ( ) LINE of ( ( non empty ) ( non empty ) set ) ) );
end;

definition
let IT be ( ( linear partial up-2-dimensional up-3-rank Vebleian ) ( linear partial up-2-dimensional up-3-rank Vebleian ) IncProjSp) ;
attr IT is 3-dimensional means :: INCPROJ:def 11
( IT : ( ( V49() ) ( V49() ) set ) is at_most-3-dimensional & IT : ( ( V49() ) ( V49() ) set ) is up-3-dimensional );
end;

definition
let IT be ( ( ) ( ) IncProjStr ) ;
attr IT is Fanoian means :: INCPROJ:def 12
for p, q, r, s, a, b, c being ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) )
for L, Q, R, S, A, B, C being ( ( ) ( ) LINE of ( ( non empty ) ( non empty ) set ) ) st not q : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) on L : ( ( ) ( ) LINE of ( ( non empty ) ( non empty ) set ) ) & not r : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) on L : ( ( ) ( ) LINE of ( ( non empty ) ( non empty ) set ) ) & not p : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) on Q : ( ( ) ( ) LINE of ( ( non empty ) ( non empty ) set ) ) & not s : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) on Q : ( ( ) ( ) LINE of ( ( non empty ) ( non empty ) set ) ) & not p : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) on R : ( ( ) ( ) LINE of ( ( non empty ) ( non empty ) set ) ) & not r : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) on R : ( ( ) ( ) LINE of ( ( non empty ) ( non empty ) set ) ) & not q : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) on S : ( ( ) ( ) LINE of ( ( non empty ) ( non empty ) set ) ) & not s : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) on S : ( ( ) ( ) LINE of ( ( non empty ) ( non empty ) set ) ) & {a : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) ,p : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) ,s : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) } : ( ( ) ( ) Element of bool the Points of IT : ( ( V49() ) ( V49() ) set ) : ( ( non empty ) ( non empty ) set ) : ( ( ) ( ) set ) ) on L : ( ( ) ( ) LINE of ( ( non empty ) ( non empty ) set ) ) & {a : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) ,q : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) ,r : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) } : ( ( ) ( ) Element of bool the Points of IT : ( ( V49() ) ( V49() ) set ) : ( ( non empty ) ( non empty ) set ) : ( ( ) ( ) set ) ) on Q : ( ( ) ( ) LINE of ( ( non empty ) ( non empty ) set ) ) & {b : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) ,q : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) ,s : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) } : ( ( ) ( ) Element of bool the Points of IT : ( ( V49() ) ( V49() ) set ) : ( ( non empty ) ( non empty ) set ) : ( ( ) ( ) set ) ) on R : ( ( ) ( ) LINE of ( ( non empty ) ( non empty ) set ) ) & {b : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) ,p : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) ,r : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) } : ( ( ) ( ) Element of bool the Points of IT : ( ( V49() ) ( V49() ) set ) : ( ( non empty ) ( non empty ) set ) : ( ( ) ( ) set ) ) on S : ( ( ) ( ) LINE of ( ( non empty ) ( non empty ) set ) ) & {c : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) ,p : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) ,q : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) } : ( ( ) ( ) Element of bool the Points of IT : ( ( V49() ) ( V49() ) set ) : ( ( non empty ) ( non empty ) set ) : ( ( ) ( ) set ) ) on A : ( ( ) ( ) LINE of ( ( non empty ) ( non empty ) set ) ) & {c : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) ,r : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) ,s : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) } : ( ( ) ( ) Element of bool the Points of IT : ( ( V49() ) ( V49() ) set ) : ( ( non empty ) ( non empty ) set ) : ( ( ) ( ) set ) ) on B : ( ( ) ( ) LINE of ( ( non empty ) ( non empty ) set ) ) & {a : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) ,b : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) } : ( ( ) ( ) Element of bool the Points of IT : ( ( V49() ) ( V49() ) set ) : ( ( non empty ) ( non empty ) set ) : ( ( ) ( ) set ) ) on C : ( ( ) ( ) LINE of ( ( non empty ) ( non empty ) set ) ) holds
not c : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) on C : ( ( ) ( ) LINE of ( ( non empty ) ( non empty ) set ) ) ;
end;

definition
let IT be ( ( ) ( ) IncProjStr ) ;
attr IT is Desarguesian means :: INCPROJ:def 13
for o, b1, a1, b2, a2, b3, a3, r, s, t being ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) )
for C1, C2, C3, A1, A2, A3, B1, B2, B3 being ( ( ) ( ) LINE of ( ( non empty ) ( non empty ) set ) ) st {o : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) ,b1 : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) ,a1 : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) } : ( ( ) ( ) Element of bool the Points of IT : ( ( V49() ) ( V49() ) set ) : ( ( non empty ) ( non empty ) set ) : ( ( ) ( ) set ) ) on C1 : ( ( ) ( ) LINE of ( ( non empty ) ( non empty ) set ) ) & {o : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) ,a2 : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) ,b2 : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) } : ( ( ) ( ) Element of bool the Points of IT : ( ( V49() ) ( V49() ) set ) : ( ( non empty ) ( non empty ) set ) : ( ( ) ( ) set ) ) on C2 : ( ( ) ( ) LINE of ( ( non empty ) ( non empty ) set ) ) & {o : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) ,a3 : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) ,b3 : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) } : ( ( ) ( ) Element of bool the Points of IT : ( ( V49() ) ( V49() ) set ) : ( ( non empty ) ( non empty ) set ) : ( ( ) ( ) set ) ) on C3 : ( ( ) ( ) LINE of ( ( non empty ) ( non empty ) set ) ) & {a3 : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) ,a2 : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) ,t : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) } : ( ( ) ( ) Element of bool the Points of IT : ( ( V49() ) ( V49() ) set ) : ( ( non empty ) ( non empty ) set ) : ( ( ) ( ) set ) ) on A1 : ( ( ) ( ) LINE of ( ( non empty ) ( non empty ) set ) ) & {a3 : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) ,r : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) ,a1 : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) } : ( ( ) ( ) Element of bool the Points of IT : ( ( V49() ) ( V49() ) set ) : ( ( non empty ) ( non empty ) set ) : ( ( ) ( ) set ) ) on A2 : ( ( ) ( ) LINE of ( ( non empty ) ( non empty ) set ) ) & {a2 : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) ,s : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) ,a1 : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) } : ( ( ) ( ) Element of bool the Points of IT : ( ( V49() ) ( V49() ) set ) : ( ( non empty ) ( non empty ) set ) : ( ( ) ( ) set ) ) on A3 : ( ( ) ( ) LINE of ( ( non empty ) ( non empty ) set ) ) & {t : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) ,b2 : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) ,b3 : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) } : ( ( ) ( ) Element of bool the Points of IT : ( ( V49() ) ( V49() ) set ) : ( ( non empty ) ( non empty ) set ) : ( ( ) ( ) set ) ) on B1 : ( ( ) ( ) LINE of ( ( non empty ) ( non empty ) set ) ) & {b1 : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) ,r : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) ,b3 : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) } : ( ( ) ( ) Element of bool the Points of IT : ( ( V49() ) ( V49() ) set ) : ( ( non empty ) ( non empty ) set ) : ( ( ) ( ) set ) ) on B2 : ( ( ) ( ) LINE of ( ( non empty ) ( non empty ) set ) ) & {b1 : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) ,s : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) ,b2 : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) } : ( ( ) ( ) Element of bool the Points of IT : ( ( V49() ) ( V49() ) set ) : ( ( non empty ) ( non empty ) set ) : ( ( ) ( ) set ) ) on B3 : ( ( ) ( ) LINE of ( ( non empty ) ( non empty ) set ) ) & C1 : ( ( ) ( ) LINE of ( ( non empty ) ( non empty ) set ) ) ,C2 : ( ( ) ( ) LINE of ( ( non empty ) ( non empty ) set ) ) ,C3 : ( ( ) ( ) LINE of ( ( non empty ) ( non empty ) set ) ) are_mutually_different & o : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) <> a1 : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) & o : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) <> a2 : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) & o : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) <> a3 : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) & o : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) <> b1 : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) & o : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) <> b2 : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) & o : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) <> b3 : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) & a1 : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) <> b1 : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) & a2 : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) <> b2 : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) & a3 : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) <> b3 : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) holds
ex O being ( ( ) ( ) LINE of ( ( non empty ) ( non empty ) set ) ) st {r : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) ,s : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) ,t : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) } : ( ( ) ( ) Element of bool the Points of IT : ( ( V49() ) ( V49() ) set ) : ( ( non empty ) ( non empty ) set ) : ( ( ) ( ) set ) ) on O : ( ( ) ( ) LINE of ( ( non empty ) ( non empty ) set ) ) ;
end;

definition
let IT be ( ( ) ( ) IncProjStr ) ;
attr IT is Pappian means :: INCPROJ:def 14
for o, a1, a2, a3, b1, b2, b3, c1, c2, c3 being ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) )
for A1, A2, A3, B1, B2, B3, C1, C2, C3 being ( ( ) ( ) LINE of ( ( non empty ) ( non empty ) set ) ) st o : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) ,a1 : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) ,a2 : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) ,a3 : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) are_mutually_different & o : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) ,b1 : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) ,b2 : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) ,b3 : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) are_mutually_different & A3 : ( ( ) ( ) LINE of ( ( non empty ) ( non empty ) set ) ) <> B3 : ( ( ) ( ) LINE of ( ( non empty ) ( non empty ) set ) ) & o : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) on A3 : ( ( ) ( ) LINE of ( ( non empty ) ( non empty ) set ) ) & o : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) on B3 : ( ( ) ( ) LINE of ( ( non empty ) ( non empty ) set ) ) & {a2 : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) ,b3 : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) ,c1 : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) } : ( ( ) ( ) Element of bool the Points of IT : ( ( V49() ) ( V49() ) set ) : ( ( non empty ) ( non empty ) set ) : ( ( ) ( ) set ) ) on A1 : ( ( ) ( ) LINE of ( ( non empty ) ( non empty ) set ) ) & {a3 : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) ,b1 : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) ,c2 : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) } : ( ( ) ( ) Element of bool the Points of IT : ( ( V49() ) ( V49() ) set ) : ( ( non empty ) ( non empty ) set ) : ( ( ) ( ) set ) ) on B1 : ( ( ) ( ) LINE of ( ( non empty ) ( non empty ) set ) ) & {a1 : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) ,b2 : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) ,c3 : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) } : ( ( ) ( ) Element of bool the Points of IT : ( ( V49() ) ( V49() ) set ) : ( ( non empty ) ( non empty ) set ) : ( ( ) ( ) set ) ) on C1 : ( ( ) ( ) LINE of ( ( non empty ) ( non empty ) set ) ) & {a1 : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) ,b3 : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) ,c2 : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) } : ( ( ) ( ) Element of bool the Points of IT : ( ( V49() ) ( V49() ) set ) : ( ( non empty ) ( non empty ) set ) : ( ( ) ( ) set ) ) on A2 : ( ( ) ( ) LINE of ( ( non empty ) ( non empty ) set ) ) & {a3 : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) ,b2 : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) ,c1 : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) } : ( ( ) ( ) Element of bool the Points of IT : ( ( V49() ) ( V49() ) set ) : ( ( non empty ) ( non empty ) set ) : ( ( ) ( ) set ) ) on B2 : ( ( ) ( ) LINE of ( ( non empty ) ( non empty ) set ) ) & {a2 : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) ,b1 : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) ,c3 : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) } : ( ( ) ( ) Element of bool the Points of IT : ( ( V49() ) ( V49() ) set ) : ( ( non empty ) ( non empty ) set ) : ( ( ) ( ) set ) ) on C2 : ( ( ) ( ) LINE of ( ( non empty ) ( non empty ) set ) ) & {b1 : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) ,b2 : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) ,b3 : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) } : ( ( ) ( ) Element of bool the Points of IT : ( ( V49() ) ( V49() ) set ) : ( ( non empty ) ( non empty ) set ) : ( ( ) ( ) set ) ) on A3 : ( ( ) ( ) LINE of ( ( non empty ) ( non empty ) set ) ) & {a1 : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) ,a2 : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) ,a3 : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) } : ( ( ) ( ) Element of bool the Points of IT : ( ( V49() ) ( V49() ) set ) : ( ( non empty ) ( non empty ) set ) : ( ( ) ( ) set ) ) on B3 : ( ( ) ( ) LINE of ( ( non empty ) ( non empty ) set ) ) & {c1 : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) ,c2 : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) } : ( ( ) ( ) Element of bool the Points of IT : ( ( V49() ) ( V49() ) set ) : ( ( non empty ) ( non empty ) set ) : ( ( ) ( ) set ) ) on C3 : ( ( ) ( ) LINE of ( ( non empty ) ( non empty ) set ) ) holds
c3 : ( ( ) ( ) POINT of ( ( non empty ) ( non empty ) set ) ) on C3 : ( ( ) ( ) LINE of ( ( non empty ) ( non empty ) set ) ) ;
end;

registration
cluster linear partial up-2-dimensional up-3-rank Vebleian up-3-dimensional at_most-3-dimensional Fanoian Desarguesian for ( ( ) ( ) IncProjStr ) ;
end;

registration
cluster linear partial up-2-dimensional up-3-rank Vebleian up-3-dimensional at_most-3-dimensional Fanoian Pappian for ( ( ) ( ) IncProjStr ) ;
end;

registration
cluster linear partial up-2-dimensional up-3-rank Vebleian 2-dimensional Fanoian Desarguesian for ( ( ) ( ) IncProjStr ) ;
end;

registration
cluster linear partial up-2-dimensional up-3-rank Vebleian 2-dimensional Fanoian Pappian for ( ( ) ( ) IncProjStr ) ;
end;