:: JORDAN5D semantic presentation

begin

theorem :: JORDAN5D:1
for n being ( ( ) ( epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real V99() V100() V101() V102() V103() V104() bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) )
for h being ( ( ) ( Relation-like NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) -defined the carrier of (TOP-REAL b1 : ( ( ) ( epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real V99() V100() V101() V102() V103() V104() bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) -valued Function-like finite FinSequence-like FinSubsequence-like ) FinSequence of ( ( ) ( non empty ) set ) ) st len h : ( ( ) ( Relation-like NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) -defined the carrier of (TOP-REAL b1 : ( ( ) ( epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real V99() V100() V101() V102() V103() V104() bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) -valued Function-like finite FinSequence-like FinSubsequence-like ) FinSequence of ( ( ) ( non empty ) set ) ) : ( ( ) ( epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real V99() V100() V101() V102() V103() V104() bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) >= 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) holds
h : ( ( ) ( Relation-like NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) -defined the carrier of (TOP-REAL b1 : ( ( ) ( epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real V99() V100() V101() V102() V103() V104() bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) -valued Function-like finite FinSequence-like FinSubsequence-like ) FinSequence of ( ( ) ( non empty ) set ) ) /. (len h : ( ( ) ( Relation-like NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) -defined the carrier of (TOP-REAL b1 : ( ( ) ( epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real V99() V100() V101() V102() V103() V104() bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) -valued Function-like finite FinSequence-like FinSubsequence-like ) FinSequence of ( ( ) ( non empty ) set ) ) ) : ( ( ) ( epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real V99() V100() V101() V102() V103() V104() bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( ) ( V42(b1 : ( ( ) ( epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real V99() V100() V101() V102() V103() V104() bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) FinSequence-like V91() ) Element of the carrier of (TOP-REAL b1 : ( ( ) ( epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real V99() V100() V101() V102() V103() V104() bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) in LSeg (h : ( ( ) ( Relation-like NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) -defined the carrier of (TOP-REAL b1 : ( ( ) ( epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real V99() V100() V101() V102() V103() V104() bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) -valued Function-like finite FinSequence-like FinSubsequence-like ) FinSequence of ( ( ) ( non empty ) set ) ) ,((len h : ( ( ) ( Relation-like NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) -defined the carrier of (TOP-REAL b1 : ( ( ) ( epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real V99() V100() V101() V102() V103() V104() bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) -valued Function-like finite FinSequence-like FinSubsequence-like ) FinSequence of ( ( ) ( non empty ) set ) ) ) : ( ( ) ( epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real V99() V100() V101() V102() V103() V104() bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) -' 1 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( ) ( epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real non negative V99() V100() V101() V102() V103() V104() bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( ) ( ) Element of K6( the carrier of (TOP-REAL b1 : ( ( ) ( epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real V99() V100() V101() V102() V103() V104() bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( ) set ) ) ;

theorem :: JORDAN5D:2
for i being ( ( ) ( epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real V99() V100() V101() V102() V103() V104() bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) st 3 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) <= i : ( ( ) ( epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real V99() V100() V101() V102() V103() V104() bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) holds
i : ( ( ) ( epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real V99() V100() V101() V102() V103() V104() bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) mod (i : ( ( ) ( epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real V99() V100() V101() V102() V103() V104() bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) -' 1 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( ) ( epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real non negative V99() V100() V101() V102() V103() V104() bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( ) ( epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real V99() V100() V101() V102() V103() V104() bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) = 1 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ;

theorem :: JORDAN5D:3
for p being ( ( ) ( V42(2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) FinSequence-like V91() ) Point of ( ( ) ( non empty ) set ) )
for h being ( ( non empty non constant V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) ( non empty non trivial Relation-like NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) -defined the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) -valued Function-like non constant finite FinSequence-like FinSubsequence-like V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) special_circular_sequence) st p : ( ( ) ( V42(2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) FinSequence-like V91() ) Point of ( ( ) ( non empty ) set ) ) in rng h : ( ( non empty non constant V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) ( non empty non trivial Relation-like NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) -defined the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) -valued Function-like non constant finite FinSequence-like FinSubsequence-like V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) special_circular_sequence) : ( ( ) ( non trivial finite ) set ) holds
ex i being ( ( ) ( epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real V99() V100() V101() V102() V103() V104() bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) st
( 1 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) <= i : ( ( ) ( epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real V99() V100() V101() V102() V103() V104() bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) & i : ( ( ) ( epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real V99() V100() V101() V102() V103() V104() bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) + 1 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( ) ( epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real V99() V100() V101() V102() V103() V104() bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) <= len h : ( ( non empty non constant V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) ( non empty non trivial Relation-like NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) -defined the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) -valued Function-like non constant finite FinSequence-like FinSubsequence-like V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) special_circular_sequence) : ( ( ) ( epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real V99() V100() V101() V102() V103() V104() bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) & h : ( ( non empty non constant V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) ( non empty non trivial Relation-like NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) -defined the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) -valued Function-like non constant finite FinSequence-like FinSubsequence-like V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) special_circular_sequence) . i : ( ( ) ( epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real V99() V100() V101() V102() V103() V104() bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( ) ( ) set ) = p : ( ( ) ( V42(2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) FinSequence-like V91() ) Point of ( ( ) ( non empty ) set ) ) ) ;

theorem :: JORDAN5D:4
for r being ( ( ) ( V11() real ext-real ) Real)
for g being ( ( ) ( Relation-like NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) -defined REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) -valued Function-like finite FinSequence-like FinSubsequence-like V89() V90() V91() ) FinSequence of REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) st r : ( ( ) ( V11() real ext-real ) Real) in rng g : ( ( ) ( Relation-like NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) -defined REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) -valued Function-like finite FinSequence-like FinSubsequence-like V89() V90() V91() ) FinSequence of REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( finite V99() V100() V101() bounded_below bounded_above real-bounded ) set ) holds
( (Incr g : ( ( ) ( Relation-like NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) -defined REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) -valued Function-like finite FinSequence-like FinSubsequence-like V89() V90() V91() ) FinSequence of REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) ) : ( ( V93() ) ( Relation-like NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) -defined REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) -valued Function-like one-to-one finite FinSequence-like FinSubsequence-like V89() V90() V91() V93() V95() ) FinSequence of REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) . 1 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( ) ( V11() real ext-real ) set ) <= r : ( ( ) ( V11() real ext-real ) Real) & r : ( ( ) ( V11() real ext-real ) Real) <= (Incr g : ( ( ) ( Relation-like NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) -defined REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) -valued Function-like finite FinSequence-like FinSubsequence-like V89() V90() V91() ) FinSequence of REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) ) : ( ( V93() ) ( Relation-like NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) -defined REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) -valued Function-like one-to-one finite FinSequence-like FinSubsequence-like V89() V90() V91() V93() V95() ) FinSequence of REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) . (len (Incr g : ( ( ) ( Relation-like NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) -defined REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) -valued Function-like finite FinSequence-like FinSubsequence-like V89() V90() V91() ) FinSequence of REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) ) : ( ( V93() ) ( Relation-like NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) -defined REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) -valued Function-like one-to-one finite FinSequence-like FinSubsequence-like V89() V90() V91() V93() V95() ) FinSequence of REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) ) : ( ( ) ( epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real V99() V100() V101() V102() V103() V104() bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( ) ( V11() real ext-real ) set ) ) ;

theorem :: JORDAN5D:5
for h being ( ( non empty non constant V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) ( non empty non trivial Relation-like NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) -defined the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) -valued Function-like non constant finite FinSequence-like FinSubsequence-like V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) special_circular_sequence)
for i, I being ( ( ) ( epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real V99() V100() V101() V102() V103() V104() bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) st 1 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) <= i : ( ( ) ( epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real V99() V100() V101() V102() V103() V104() bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) & i : ( ( ) ( epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real V99() V100() V101() V102() V103() V104() bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) <= len h : ( ( non empty non constant V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) ( non empty non trivial Relation-like NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) -defined the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) -valued Function-like non constant finite FinSequence-like FinSubsequence-like V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) special_circular_sequence) : ( ( ) ( epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real V99() V100() V101() V102() V103() V104() bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) & 1 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) <= I : ( ( ) ( epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real V99() V100() V101() V102() V103() V104() bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) & I : ( ( ) ( epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real V99() V100() V101() V102() V103() V104() bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) <= width (GoB h : ( ( non empty non constant V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) ( non empty non trivial Relation-like NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) -defined the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) -valued Function-like non constant finite FinSequence-like FinSubsequence-like V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) special_circular_sequence) ) : ( ( tabular ) ( Relation-like non empty-yielding NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) -defined K266( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty functional FinSequence-membered ) M8( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) )) -valued Function-like finite FinSequence-like FinSubsequence-like tabular X_equal-in-line Y_equal-in-column Y_increasing-in-line X_increasing-in-column ) FinSequence of K266( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty functional FinSequence-membered ) M8( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) )) ) : ( ( ) ( epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real V99() V100() V101() V102() V103() V104() bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) holds
( ((GoB h : ( ( non empty non constant V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) ( non empty non trivial Relation-like NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) -defined the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) -valued Function-like non constant finite FinSequence-like FinSubsequence-like V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) special_circular_sequence) ) : ( ( tabular ) ( Relation-like non empty-yielding NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) -defined K266( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty functional FinSequence-membered ) M8( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) )) -valued Function-like finite FinSequence-like FinSubsequence-like tabular X_equal-in-line Y_equal-in-column Y_increasing-in-line X_increasing-in-column ) FinSequence of K266( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty functional FinSequence-membered ) M8( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) )) ) * (1 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ,I : ( ( ) ( epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real V99() V100() V101() V102() V103() V104() bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) )) : ( ( ) ( V42(2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) FinSequence-like V91() ) Element of the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) `1 : ( ( ) ( V11() real ext-real ) Element of REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) <= (h : ( ( non empty non constant V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) ( non empty non trivial Relation-like NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) -defined the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) -valued Function-like non constant finite FinSequence-like FinSubsequence-like V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) special_circular_sequence) /. i : ( ( ) ( epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real V99() V100() V101() V102() V103() V104() bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( ) ( V42(2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) FinSequence-like V91() ) Element of the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) `1 : ( ( ) ( V11() real ext-real ) Element of REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) & (h : ( ( non empty non constant V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) ( non empty non trivial Relation-like NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) -defined the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) -valued Function-like non constant finite FinSequence-like FinSubsequence-like V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) special_circular_sequence) /. i : ( ( ) ( epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real V99() V100() V101() V102() V103() V104() bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( ) ( V42(2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) FinSequence-like V91() ) Element of the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) `1 : ( ( ) ( V11() real ext-real ) Element of REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) <= ((GoB h : ( ( non empty non constant V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) ( non empty non trivial Relation-like NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) -defined the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) -valued Function-like non constant finite FinSequence-like FinSubsequence-like V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) special_circular_sequence) ) : ( ( tabular ) ( Relation-like non empty-yielding NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) -defined K266( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty functional FinSequence-membered ) M8( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) )) -valued Function-like finite FinSequence-like FinSubsequence-like tabular X_equal-in-line Y_equal-in-column Y_increasing-in-line X_increasing-in-column ) FinSequence of K266( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty functional FinSequence-membered ) M8( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) )) ) * ((len (GoB h : ( ( non empty non constant V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) ( non empty non trivial Relation-like NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) -defined the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) -valued Function-like non constant finite FinSequence-like FinSubsequence-like V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) special_circular_sequence) ) : ( ( tabular ) ( Relation-like non empty-yielding NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) -defined K266( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty functional FinSequence-membered ) M8( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) )) -valued Function-like finite FinSequence-like FinSubsequence-like tabular X_equal-in-line Y_equal-in-column Y_increasing-in-line X_increasing-in-column ) FinSequence of K266( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty functional FinSequence-membered ) M8( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) )) ) ) : ( ( ) ( epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real V99() V100() V101() V102() V103() V104() bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ,I : ( ( ) ( epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real V99() V100() V101() V102() V103() V104() bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) )) : ( ( ) ( V42(2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) FinSequence-like V91() ) Element of the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) `1 : ( ( ) ( V11() real ext-real ) Element of REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) ) ;

theorem :: JORDAN5D:6
for h being ( ( non empty non constant V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) ( non empty non trivial Relation-like NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) -defined the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) -valued Function-like non constant finite FinSequence-like FinSubsequence-like V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) special_circular_sequence)
for i, I being ( ( ) ( epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real V99() V100() V101() V102() V103() V104() bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) st 1 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) <= i : ( ( ) ( epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real V99() V100() V101() V102() V103() V104() bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) & i : ( ( ) ( epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real V99() V100() V101() V102() V103() V104() bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) <= len h : ( ( non empty non constant V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) ( non empty non trivial Relation-like NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) -defined the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) -valued Function-like non constant finite FinSequence-like FinSubsequence-like V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) special_circular_sequence) : ( ( ) ( epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real V99() V100() V101() V102() V103() V104() bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) & 1 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) <= I : ( ( ) ( epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real V99() V100() V101() V102() V103() V104() bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) & I : ( ( ) ( epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real V99() V100() V101() V102() V103() V104() bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) <= len (GoB h : ( ( non empty non constant V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) ( non empty non trivial Relation-like NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) -defined the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) -valued Function-like non constant finite FinSequence-like FinSubsequence-like V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) special_circular_sequence) ) : ( ( tabular ) ( Relation-like non empty-yielding NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) -defined K266( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty functional FinSequence-membered ) M8( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) )) -valued Function-like finite FinSequence-like FinSubsequence-like tabular X_equal-in-line Y_equal-in-column Y_increasing-in-line X_increasing-in-column ) FinSequence of K266( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty functional FinSequence-membered ) M8( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) )) ) : ( ( ) ( epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real V99() V100() V101() V102() V103() V104() bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) holds
( ((GoB h : ( ( non empty non constant V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) ( non empty non trivial Relation-like NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) -defined the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) -valued Function-like non constant finite FinSequence-like FinSubsequence-like V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) special_circular_sequence) ) : ( ( tabular ) ( Relation-like non empty-yielding NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) -defined K266( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty functional FinSequence-membered ) M8( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) )) -valued Function-like finite FinSequence-like FinSubsequence-like tabular X_equal-in-line Y_equal-in-column Y_increasing-in-line X_increasing-in-column ) FinSequence of K266( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty functional FinSequence-membered ) M8( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) )) ) * (I : ( ( ) ( epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real V99() V100() V101() V102() V103() V104() bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ,1 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) )) : ( ( ) ( V42(2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) FinSequence-like V91() ) Element of the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) `2 : ( ( ) ( V11() real ext-real ) Element of REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) <= (h : ( ( non empty non constant V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) ( non empty non trivial Relation-like NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) -defined the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) -valued Function-like non constant finite FinSequence-like FinSubsequence-like V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) special_circular_sequence) /. i : ( ( ) ( epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real V99() V100() V101() V102() V103() V104() bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( ) ( V42(2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) FinSequence-like V91() ) Element of the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) `2 : ( ( ) ( V11() real ext-real ) Element of REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) & (h : ( ( non empty non constant V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) ( non empty non trivial Relation-like NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) -defined the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) -valued Function-like non constant finite FinSequence-like FinSubsequence-like V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) special_circular_sequence) /. i : ( ( ) ( epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real V99() V100() V101() V102() V103() V104() bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( ) ( V42(2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) FinSequence-like V91() ) Element of the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) `2 : ( ( ) ( V11() real ext-real ) Element of REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) <= ((GoB h : ( ( non empty non constant V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) ( non empty non trivial Relation-like NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) -defined the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) -valued Function-like non constant finite FinSequence-like FinSubsequence-like V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) special_circular_sequence) ) : ( ( tabular ) ( Relation-like non empty-yielding NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) -defined K266( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty functional FinSequence-membered ) M8( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) )) -valued Function-like finite FinSequence-like FinSubsequence-like tabular X_equal-in-line Y_equal-in-column Y_increasing-in-line X_increasing-in-column ) FinSequence of K266( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty functional FinSequence-membered ) M8( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) )) ) * (I : ( ( ) ( epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real V99() V100() V101() V102() V103() V104() bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ,(width (GoB h : ( ( non empty non constant V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) ( non empty non trivial Relation-like NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) -defined the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) -valued Function-like non constant finite FinSequence-like FinSubsequence-like V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) special_circular_sequence) ) : ( ( tabular ) ( Relation-like non empty-yielding NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) -defined K266( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty functional FinSequence-membered ) M8( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) )) -valued Function-like finite FinSequence-like FinSubsequence-like tabular X_equal-in-line Y_equal-in-column Y_increasing-in-line X_increasing-in-column ) FinSequence of K266( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty functional FinSequence-membered ) M8( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) )) ) ) : ( ( ) ( epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real V99() V100() V101() V102() V103() V104() bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) )) : ( ( ) ( V42(2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) FinSequence-like V91() ) Element of the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) `2 : ( ( ) ( V11() real ext-real ) Element of REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) ) ;

theorem :: JORDAN5D:7
for f being ( ( non empty ) ( non empty Relation-like NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) -defined the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) -valued Function-like finite FinSequence-like FinSubsequence-like ) FinSequence of ( ( ) ( non empty ) set ) )
for i being ( ( ) ( epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real V99() V100() V101() V102() V103() V104() bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) st 1 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) <= i : ( ( ) ( epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real V99() V100() V101() V102() V103() V104() bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) & i : ( ( ) ( epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real V99() V100() V101() V102() V103() V104() bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) <= len (GoB f : ( ( non empty ) ( non empty Relation-like NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) -defined the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) -valued Function-like finite FinSequence-like FinSubsequence-like ) FinSequence of ( ( ) ( non empty ) set ) ) ) : ( ( tabular ) ( Relation-like non empty-yielding NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) -defined K266( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty functional FinSequence-membered ) M8( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) )) -valued Function-like finite FinSequence-like FinSubsequence-like tabular X_equal-in-line Y_equal-in-column Y_increasing-in-line X_increasing-in-column ) FinSequence of K266( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty functional FinSequence-membered ) M8( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) )) ) : ( ( ) ( epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real V99() V100() V101() V102() V103() V104() bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) holds
ex k, j being ( ( ) ( epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real V99() V100() V101() V102() V103() V104() bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) st
( k : ( ( ) ( epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real V99() V100() V101() V102() V103() V104() bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) in dom f : ( ( non empty ) ( non empty Relation-like NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) -defined the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) -valued Function-like finite FinSequence-like FinSubsequence-like ) FinSequence of ( ( ) ( non empty ) set ) ) : ( ( ) ( finite V99() V100() V101() V102() V103() V104() bounded_below bounded_above real-bounded ) Element of K6(NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( ) ( ) set ) ) & [i : ( ( ) ( epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real V99() V100() V101() V102() V103() V104() bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ,j : ( ( ) ( epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real V99() V100() V101() V102() V103() V104() bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ] : ( ( ) ( ) set ) in Indices (GoB f : ( ( non empty ) ( non empty Relation-like NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) -defined the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) -valued Function-like finite FinSequence-like FinSubsequence-like ) FinSequence of ( ( ) ( non empty ) set ) ) ) : ( ( tabular ) ( Relation-like non empty-yielding NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) -defined K266( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty functional FinSequence-membered ) M8( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) )) -valued Function-like finite FinSequence-like FinSubsequence-like tabular X_equal-in-line Y_equal-in-column Y_increasing-in-line X_increasing-in-column ) FinSequence of K266( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty functional FinSequence-membered ) M8( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) )) ) : ( ( ) ( ) set ) & f : ( ( non empty ) ( non empty Relation-like NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) -defined the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) -valued Function-like finite FinSequence-like FinSubsequence-like ) FinSequence of ( ( ) ( non empty ) set ) ) /. k : ( ( ) ( epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real V99() V100() V101() V102() V103() V104() bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( ) ( V42(2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) FinSequence-like V91() ) Element of the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) = (GoB f : ( ( non empty ) ( non empty Relation-like NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) -defined the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) -valued Function-like finite FinSequence-like FinSubsequence-like ) FinSequence of ( ( ) ( non empty ) set ) ) ) : ( ( tabular ) ( Relation-like non empty-yielding NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) -defined K266( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty functional FinSequence-membered ) M8( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) )) -valued Function-like finite FinSequence-like FinSubsequence-like tabular X_equal-in-line Y_equal-in-column Y_increasing-in-line X_increasing-in-column ) FinSequence of K266( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty functional FinSequence-membered ) M8( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) )) ) * (i : ( ( ) ( epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real V99() V100() V101() V102() V103() V104() bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ,j : ( ( ) ( epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real V99() V100() V101() V102() V103() V104() bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( ) ( V42(2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) FinSequence-like V91() ) Element of the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) ) ;

theorem :: JORDAN5D:8
for f being ( ( non empty ) ( non empty Relation-like NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) -defined the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) -valued Function-like finite FinSequence-like FinSubsequence-like ) FinSequence of ( ( ) ( non empty ) set ) )
for j being ( ( ) ( epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real V99() V100() V101() V102() V103() V104() bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) st 1 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) <= j : ( ( ) ( epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real V99() V100() V101() V102() V103() V104() bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) & j : ( ( ) ( epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real V99() V100() V101() V102() V103() V104() bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) <= width (GoB f : ( ( non empty ) ( non empty Relation-like NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) -defined the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) -valued Function-like finite FinSequence-like FinSubsequence-like ) FinSequence of ( ( ) ( non empty ) set ) ) ) : ( ( tabular ) ( Relation-like non empty-yielding NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) -defined K266( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty functional FinSequence-membered ) M8( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) )) -valued Function-like finite FinSequence-like FinSubsequence-like tabular X_equal-in-line Y_equal-in-column Y_increasing-in-line X_increasing-in-column ) FinSequence of K266( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty functional FinSequence-membered ) M8( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) )) ) : ( ( ) ( epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real V99() V100() V101() V102() V103() V104() bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) holds
ex k, i being ( ( ) ( epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real V99() V100() V101() V102() V103() V104() bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) st
( k : ( ( ) ( epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real V99() V100() V101() V102() V103() V104() bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) in dom f : ( ( non empty ) ( non empty Relation-like NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) -defined the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) -valued Function-like finite FinSequence-like FinSubsequence-like ) FinSequence of ( ( ) ( non empty ) set ) ) : ( ( ) ( finite V99() V100() V101() V102() V103() V104() bounded_below bounded_above real-bounded ) Element of K6(NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( ) ( ) set ) ) & [i : ( ( ) ( epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real V99() V100() V101() V102() V103() V104() bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ,j : ( ( ) ( epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real V99() V100() V101() V102() V103() V104() bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ] : ( ( ) ( ) set ) in Indices (GoB f : ( ( non empty ) ( non empty Relation-like NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) -defined the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) -valued Function-like finite FinSequence-like FinSubsequence-like ) FinSequence of ( ( ) ( non empty ) set ) ) ) : ( ( tabular ) ( Relation-like non empty-yielding NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) -defined K266( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty functional FinSequence-membered ) M8( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) )) -valued Function-like finite FinSequence-like FinSubsequence-like tabular X_equal-in-line Y_equal-in-column Y_increasing-in-line X_increasing-in-column ) FinSequence of K266( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty functional FinSequence-membered ) M8( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) )) ) : ( ( ) ( ) set ) & f : ( ( non empty ) ( non empty Relation-like NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) -defined the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) -valued Function-like finite FinSequence-like FinSubsequence-like ) FinSequence of ( ( ) ( non empty ) set ) ) /. k : ( ( ) ( epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real V99() V100() V101() V102() V103() V104() bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( ) ( V42(2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) FinSequence-like V91() ) Element of the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) = (GoB f : ( ( non empty ) ( non empty Relation-like NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) -defined the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) -valued Function-like finite FinSequence-like FinSubsequence-like ) FinSequence of ( ( ) ( non empty ) set ) ) ) : ( ( tabular ) ( Relation-like non empty-yielding NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) -defined K266( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty functional FinSequence-membered ) M8( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) )) -valued Function-like finite FinSequence-like FinSubsequence-like tabular X_equal-in-line Y_equal-in-column Y_increasing-in-line X_increasing-in-column ) FinSequence of K266( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty functional FinSequence-membered ) M8( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) )) ) * (i : ( ( ) ( epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real V99() V100() V101() V102() V103() V104() bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ,j : ( ( ) ( epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real V99() V100() V101() V102() V103() V104() bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( ) ( V42(2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) FinSequence-like V91() ) Element of the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) ) ;

theorem :: JORDAN5D:9
for f being ( ( non empty ) ( non empty Relation-like NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) -defined the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) -valued Function-like finite FinSequence-like FinSubsequence-like ) FinSequence of ( ( ) ( non empty ) set ) )
for i, j being ( ( ) ( epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real V99() V100() V101() V102() V103() V104() bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) st 1 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) <= i : ( ( ) ( epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real V99() V100() V101() V102() V103() V104() bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) & i : ( ( ) ( epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real V99() V100() V101() V102() V103() V104() bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) <= len (GoB f : ( ( non empty ) ( non empty Relation-like NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) -defined the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) -valued Function-like finite FinSequence-like FinSubsequence-like ) FinSequence of ( ( ) ( non empty ) set ) ) ) : ( ( tabular ) ( Relation-like non empty-yielding NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) -defined K266( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty functional FinSequence-membered ) M8( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) )) -valued Function-like finite FinSequence-like FinSubsequence-like tabular X_equal-in-line Y_equal-in-column Y_increasing-in-line X_increasing-in-column ) FinSequence of K266( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty functional FinSequence-membered ) M8( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) )) ) : ( ( ) ( epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real V99() V100() V101() V102() V103() V104() bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) & 1 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) <= j : ( ( ) ( epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real V99() V100() V101() V102() V103() V104() bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) & j : ( ( ) ( epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real V99() V100() V101() V102() V103() V104() bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) <= width (GoB f : ( ( non empty ) ( non empty Relation-like NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) -defined the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) -valued Function-like finite FinSequence-like FinSubsequence-like ) FinSequence of ( ( ) ( non empty ) set ) ) ) : ( ( tabular ) ( Relation-like non empty-yielding NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) -defined K266( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty functional FinSequence-membered ) M8( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) )) -valued Function-like finite FinSequence-like FinSubsequence-like tabular X_equal-in-line Y_equal-in-column Y_increasing-in-line X_increasing-in-column ) FinSequence of K266( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty functional FinSequence-membered ) M8( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) )) ) : ( ( ) ( epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real V99() V100() V101() V102() V103() V104() bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) holds
ex k being ( ( ) ( epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real V99() V100() V101() V102() V103() V104() bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) st
( k : ( ( ) ( epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real V99() V100() V101() V102() V103() V104() bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) in dom f : ( ( non empty ) ( non empty Relation-like NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) -defined the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) -valued Function-like finite FinSequence-like FinSubsequence-like ) FinSequence of ( ( ) ( non empty ) set ) ) : ( ( ) ( finite V99() V100() V101() V102() V103() V104() bounded_below bounded_above real-bounded ) Element of K6(NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( ) ( ) set ) ) & [i : ( ( ) ( epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real V99() V100() V101() V102() V103() V104() bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ,j : ( ( ) ( epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real V99() V100() V101() V102() V103() V104() bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ] : ( ( ) ( ) set ) in Indices (GoB f : ( ( non empty ) ( non empty Relation-like NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) -defined the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) -valued Function-like finite FinSequence-like FinSubsequence-like ) FinSequence of ( ( ) ( non empty ) set ) ) ) : ( ( tabular ) ( Relation-like non empty-yielding NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) -defined K266( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty functional FinSequence-membered ) M8( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) )) -valued Function-like finite FinSequence-like FinSubsequence-like tabular X_equal-in-line Y_equal-in-column Y_increasing-in-line X_increasing-in-column ) FinSequence of K266( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty functional FinSequence-membered ) M8( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) )) ) : ( ( ) ( ) set ) & (f : ( ( non empty ) ( non empty Relation-like NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) -defined the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) -valued Function-like finite FinSequence-like FinSubsequence-like ) FinSequence of ( ( ) ( non empty ) set ) ) /. k : ( ( ) ( epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real V99() V100() V101() V102() V103() V104() bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( ) ( V42(2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) FinSequence-like V91() ) Element of the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) `1 : ( ( ) ( V11() real ext-real ) Element of REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) = ((GoB f : ( ( non empty ) ( non empty Relation-like NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) -defined the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) -valued Function-like finite FinSequence-like FinSubsequence-like ) FinSequence of ( ( ) ( non empty ) set ) ) ) : ( ( tabular ) ( Relation-like non empty-yielding NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) -defined K266( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty functional FinSequence-membered ) M8( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) )) -valued Function-like finite FinSequence-like FinSubsequence-like tabular X_equal-in-line Y_equal-in-column Y_increasing-in-line X_increasing-in-column ) FinSequence of K266( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty functional FinSequence-membered ) M8( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) )) ) * (i : ( ( ) ( epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real V99() V100() V101() V102() V103() V104() bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ,j : ( ( ) ( epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real V99() V100() V101() V102() V103() V104() bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) )) : ( ( ) ( V42(2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) FinSequence-like V91() ) Element of the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) `1 : ( ( ) ( V11() real ext-real ) Element of REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) ) ;

theorem :: JORDAN5D:10
for f being ( ( non empty ) ( non empty Relation-like NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) -defined the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) -valued Function-like finite FinSequence-like FinSubsequence-like ) FinSequence of ( ( ) ( non empty ) set ) )
for i, j being ( ( ) ( epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real V99() V100() V101() V102() V103() V104() bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) st 1 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) <= i : ( ( ) ( epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real V99() V100() V101() V102() V103() V104() bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) & i : ( ( ) ( epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real V99() V100() V101() V102() V103() V104() bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) <= len (GoB f : ( ( non empty ) ( non empty Relation-like NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) -defined the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) -valued Function-like finite FinSequence-like FinSubsequence-like ) FinSequence of ( ( ) ( non empty ) set ) ) ) : ( ( tabular ) ( Relation-like non empty-yielding NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) -defined K266( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty functional FinSequence-membered ) M8( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) )) -valued Function-like finite FinSequence-like FinSubsequence-like tabular X_equal-in-line Y_equal-in-column Y_increasing-in-line X_increasing-in-column ) FinSequence of K266( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty functional FinSequence-membered ) M8( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) )) ) : ( ( ) ( epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real V99() V100() V101() V102() V103() V104() bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) & 1 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) <= j : ( ( ) ( epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real V99() V100() V101() V102() V103() V104() bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) & j : ( ( ) ( epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real V99() V100() V101() V102() V103() V104() bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) <= width (GoB f : ( ( non empty ) ( non empty Relation-like NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) -defined the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) -valued Function-like finite FinSequence-like FinSubsequence-like ) FinSequence of ( ( ) ( non empty ) set ) ) ) : ( ( tabular ) ( Relation-like non empty-yielding NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) -defined K266( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty functional FinSequence-membered ) M8( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) )) -valued Function-like finite FinSequence-like FinSubsequence-like tabular X_equal-in-line Y_equal-in-column Y_increasing-in-line X_increasing-in-column ) FinSequence of K266( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty functional FinSequence-membered ) M8( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) )) ) : ( ( ) ( epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real V99() V100() V101() V102() V103() V104() bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) holds
ex k being ( ( ) ( epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real V99() V100() V101() V102() V103() V104() bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) st
( k : ( ( ) ( epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real V99() V100() V101() V102() V103() V104() bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) in dom f : ( ( non empty ) ( non empty Relation-like NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) -defined the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) -valued Function-like finite FinSequence-like FinSubsequence-like ) FinSequence of ( ( ) ( non empty ) set ) ) : ( ( ) ( finite V99() V100() V101() V102() V103() V104() bounded_below bounded_above real-bounded ) Element of K6(NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( ) ( ) set ) ) & [i : ( ( ) ( epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real V99() V100() V101() V102() V103() V104() bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ,j : ( ( ) ( epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real V99() V100() V101() V102() V103() V104() bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ] : ( ( ) ( ) set ) in Indices (GoB f : ( ( non empty ) ( non empty Relation-like NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) -defined the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) -valued Function-like finite FinSequence-like FinSubsequence-like ) FinSequence of ( ( ) ( non empty ) set ) ) ) : ( ( tabular ) ( Relation-like non empty-yielding NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) -defined K266( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty functional FinSequence-membered ) M8( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) )) -valued Function-like finite FinSequence-like FinSubsequence-like tabular X_equal-in-line Y_equal-in-column Y_increasing-in-line X_increasing-in-column ) FinSequence of K266( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty functional FinSequence-membered ) M8( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) )) ) : ( ( ) ( ) set ) & (f : ( ( non empty ) ( non empty Relation-like NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) -defined the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) -valued Function-like finite FinSequence-like FinSubsequence-like ) FinSequence of ( ( ) ( non empty ) set ) ) /. k : ( ( ) ( epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real V99() V100() V101() V102() V103() V104() bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( ) ( V42(2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) FinSequence-like V91() ) Element of the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) `2 : ( ( ) ( V11() real ext-real ) Element of REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) = ((GoB f : ( ( non empty ) ( non empty Relation-like NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) -defined the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) -valued Function-like finite FinSequence-like FinSubsequence-like ) FinSequence of ( ( ) ( non empty ) set ) ) ) : ( ( tabular ) ( Relation-like non empty-yielding NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) -defined K266( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty functional FinSequence-membered ) M8( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) )) -valued Function-like finite FinSequence-like FinSubsequence-like tabular X_equal-in-line Y_equal-in-column Y_increasing-in-line X_increasing-in-column ) FinSequence of K266( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty functional FinSequence-membered ) M8( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) )) ) * (i : ( ( ) ( epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real V99() V100() V101() V102() V103() V104() bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ,j : ( ( ) ( epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real V99() V100() V101() V102() V103() V104() bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) )) : ( ( ) ( V42(2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) FinSequence-like V91() ) Element of the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) `2 : ( ( ) ( V11() real ext-real ) Element of REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) ) ;

begin

theorem :: JORDAN5D:11
for h being ( ( non empty non constant V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) ( non empty non trivial Relation-like NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) -defined the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) -valued Function-like non constant finite FinSequence-like FinSubsequence-like V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) special_circular_sequence)
for i being ( ( ) ( epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real V99() V100() V101() V102() V103() V104() bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) st 1 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) <= i : ( ( ) ( epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real V99() V100() V101() V102() V103() V104() bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) & i : ( ( ) ( epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real V99() V100() V101() V102() V103() V104() bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) <= len h : ( ( non empty non constant V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) ( non empty non trivial Relation-like NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) -defined the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) -valued Function-like non constant finite FinSequence-like FinSubsequence-like V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) special_circular_sequence) : ( ( ) ( epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real V99() V100() V101() V102() V103() V104() bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) holds
( S-bound (L~ h : ( ( non empty non constant V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) ( non empty non trivial Relation-like NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) -defined the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) -valued Function-like non constant finite FinSequence-like FinSubsequence-like V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) special_circular_sequence) ) : ( ( ) ( non empty V85( TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) ) ) Element of K6( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( ) set ) ) : ( ( ) ( V11() real ext-real ) Element of REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) <= (h : ( ( non empty non constant V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) ( non empty non trivial Relation-like NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) -defined the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) -valued Function-like non constant finite FinSequence-like FinSubsequence-like V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) special_circular_sequence) /. i : ( ( ) ( epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real V99() V100() V101() V102() V103() V104() bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( ) ( V42(2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) FinSequence-like V91() ) Element of the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) `2 : ( ( ) ( V11() real ext-real ) Element of REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) & (h : ( ( non empty non constant V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) ( non empty non trivial Relation-like NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) -defined the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) -valued Function-like non constant finite FinSequence-like FinSubsequence-like V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) special_circular_sequence) /. i : ( ( ) ( epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real V99() V100() V101() V102() V103() V104() bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( ) ( V42(2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) FinSequence-like V91() ) Element of the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) `2 : ( ( ) ( V11() real ext-real ) Element of REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) <= N-bound (L~ h : ( ( non empty non constant V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) ( non empty non trivial Relation-like NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) -defined the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) -valued Function-like non constant finite FinSequence-like FinSubsequence-like V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) special_circular_sequence) ) : ( ( ) ( non empty V85( TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) ) ) Element of K6( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( ) set ) ) : ( ( ) ( V11() real ext-real ) Element of REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) ) ;

theorem :: JORDAN5D:12
for h being ( ( non empty non constant V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) ( non empty non trivial Relation-like NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) -defined the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) -valued Function-like non constant finite FinSequence-like FinSubsequence-like V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) special_circular_sequence)
for i being ( ( ) ( epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real V99() V100() V101() V102() V103() V104() bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) st 1 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) <= i : ( ( ) ( epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real V99() V100() V101() V102() V103() V104() bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) & i : ( ( ) ( epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real V99() V100() V101() V102() V103() V104() bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) <= len h : ( ( non empty non constant V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) ( non empty non trivial Relation-like NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) -defined the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) -valued Function-like non constant finite FinSequence-like FinSubsequence-like V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) special_circular_sequence) : ( ( ) ( epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real V99() V100() V101() V102() V103() V104() bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) holds
( W-bound (L~ h : ( ( non empty non constant V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) ( non empty non trivial Relation-like NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) -defined the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) -valued Function-like non constant finite FinSequence-like FinSubsequence-like V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) special_circular_sequence) ) : ( ( ) ( non empty V85( TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) ) ) Element of K6( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( ) set ) ) : ( ( ) ( V11() real ext-real ) Element of REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) <= (h : ( ( non empty non constant V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) ( non empty non trivial Relation-like NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) -defined the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) -valued Function-like non constant finite FinSequence-like FinSubsequence-like V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) special_circular_sequence) /. i : ( ( ) ( epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real V99() V100() V101() V102() V103() V104() bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( ) ( V42(2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) FinSequence-like V91() ) Element of the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) `1 : ( ( ) ( V11() real ext-real ) Element of REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) & (h : ( ( non empty non constant V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) ( non empty non trivial Relation-like NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) -defined the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) -valued Function-like non constant finite FinSequence-like FinSubsequence-like V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) special_circular_sequence) /. i : ( ( ) ( epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real V99() V100() V101() V102() V103() V104() bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( ) ( V42(2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) FinSequence-like V91() ) Element of the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) `1 : ( ( ) ( V11() real ext-real ) Element of REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) <= E-bound (L~ h : ( ( non empty non constant V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) ( non empty non trivial Relation-like NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) -defined the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) -valued Function-like non constant finite FinSequence-like FinSubsequence-like V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) special_circular_sequence) ) : ( ( ) ( non empty V85( TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) ) ) Element of K6( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( ) set ) ) : ( ( ) ( V11() real ext-real ) Element of REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) ) ;

theorem :: JORDAN5D:13
for h being ( ( non empty non constant V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) ( non empty non trivial Relation-like NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) -defined the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) -valued Function-like non constant finite FinSequence-like FinSubsequence-like V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) special_circular_sequence)
for X being ( ( ) ( V99() V100() V101() ) Subset of ( ( ) ( ) set ) ) st X : ( ( ) ( V99() V100() V101() ) Subset of ( ( ) ( ) set ) ) = { (q : ( ( ) ( V42(2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) FinSequence-like V91() ) Point of ( ( ) ( non empty ) set ) ) `2) : ( ( ) ( V11() real ext-real ) Element of REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) where q is ( ( ) ( V42(2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) FinSequence-like V91() ) Point of ( ( ) ( non empty ) set ) ) : ( q : ( ( ) ( V42(2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) FinSequence-like V91() ) Point of ( ( ) ( non empty ) set ) ) `1 : ( ( ) ( V11() real ext-real ) Element of REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) = W-bound (L~ h : ( ( non empty non constant V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) ( non empty non trivial Relation-like NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) -defined the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) -valued Function-like non constant finite FinSequence-like FinSubsequence-like V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) special_circular_sequence) ) : ( ( ) ( non empty V85( TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) ) ) Element of K6( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( ) set ) ) : ( ( ) ( V11() real ext-real ) Element of REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) & q : ( ( ) ( V42(2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) FinSequence-like V91() ) Point of ( ( ) ( non empty ) set ) ) in L~ h : ( ( non empty non constant V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) ( non empty non trivial Relation-like NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) -defined the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) -valued Function-like non constant finite FinSequence-like FinSubsequence-like V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) special_circular_sequence) : ( ( ) ( non empty V85( TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) ) ) Element of K6( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( ) set ) ) ) } holds
X : ( ( ) ( V99() V100() V101() ) Subset of ( ( ) ( ) set ) ) = (proj2 : ( ( Function-like V29( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) , REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) ) ( Relation-like the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) -defined REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) -valued Function-like V29( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) , REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) V89() V90() V91() ) Element of K6(K7( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ,REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( V89() V90() V91() ) set ) ) : ( ( ) ( ) set ) ) | (W-most (L~ h : ( ( non empty non constant V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) ( non empty non trivial Relation-like NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) -defined the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) -valued Function-like non constant finite FinSequence-like FinSubsequence-like V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) special_circular_sequence) ) : ( ( ) ( non empty V85( TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) ) ) Element of K6( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( ) ( ) Element of K6( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( Function-like V29( the carrier of ((TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) | (W-most (L~ b1 : ( ( non empty non constant V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) ( non empty non trivial Relation-like NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) -defined the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) -valued Function-like non constant finite FinSequence-like FinSubsequence-like V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) special_circular_sequence) ) : ( ( ) ( non empty V85( TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) ) ) Element of K6( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( ) ( ) Element of K6( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( strict ) ( strict ) SubSpace of TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) ) : ( ( ) ( ) set ) , REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) ) ( Relation-like the carrier of ((TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) | (W-most (L~ b1 : ( ( non empty non constant V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) ( non empty non trivial Relation-like NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) -defined the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) -valued Function-like non constant finite FinSequence-like FinSubsequence-like V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) special_circular_sequence) ) : ( ( ) ( non empty V85( TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) ) ) Element of K6( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( ) ( ) Element of K6( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( strict ) ( strict ) SubSpace of TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) ) : ( ( ) ( ) set ) -defined REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) -valued Function-like V29( the carrier of ((TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) | (W-most (L~ b1 : ( ( non empty non constant V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) ( non empty non trivial Relation-like NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) -defined the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) -valued Function-like non constant finite FinSequence-like FinSubsequence-like V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) special_circular_sequence) ) : ( ( ) ( non empty V85( TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) ) ) Element of K6( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( ) ( ) Element of K6( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( strict ) ( strict ) SubSpace of TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) ) : ( ( ) ( ) set ) , REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) V89() V90() V91() ) Element of K6(K7( the carrier of ((TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) | (W-most (L~ b1 : ( ( non empty non constant V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) ( non empty non trivial Relation-like NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) -defined the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) -valued Function-like non constant finite FinSequence-like FinSubsequence-like V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) special_circular_sequence) ) : ( ( ) ( non empty V85( TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) ) ) Element of K6( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( ) ( ) Element of K6( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( strict ) ( strict ) SubSpace of TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) ) : ( ( ) ( ) set ) ,REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( V89() V90() V91() ) set ) ) : ( ( ) ( ) set ) ) .: the carrier of ((TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) | (W-most (L~ h : ( ( non empty non constant V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) ( non empty non trivial Relation-like NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) -defined the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) -valued Function-like non constant finite FinSequence-like FinSubsequence-like V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) special_circular_sequence) ) : ( ( ) ( non empty V85( TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) ) ) Element of K6( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( ) ( ) Element of K6( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( strict ) ( strict ) SubSpace of TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) ) : ( ( ) ( ) set ) : ( ( ) ( V99() V100() V101() ) set ) ;

theorem :: JORDAN5D:14
for h being ( ( non empty non constant V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) ( non empty non trivial Relation-like NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) -defined the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) -valued Function-like non constant finite FinSequence-like FinSubsequence-like V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) special_circular_sequence)
for X being ( ( ) ( V99() V100() V101() ) Subset of ( ( ) ( ) set ) ) st X : ( ( ) ( V99() V100() V101() ) Subset of ( ( ) ( ) set ) ) = { (q : ( ( ) ( V42(2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) FinSequence-like V91() ) Point of ( ( ) ( non empty ) set ) ) `2) : ( ( ) ( V11() real ext-real ) Element of REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) where q is ( ( ) ( V42(2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) FinSequence-like V91() ) Point of ( ( ) ( non empty ) set ) ) : ( q : ( ( ) ( V42(2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) FinSequence-like V91() ) Point of ( ( ) ( non empty ) set ) ) `1 : ( ( ) ( V11() real ext-real ) Element of REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) = E-bound (L~ h : ( ( non empty non constant V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) ( non empty non trivial Relation-like NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) -defined the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) -valued Function-like non constant finite FinSequence-like FinSubsequence-like V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) special_circular_sequence) ) : ( ( ) ( non empty V85( TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) ) ) Element of K6( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( ) set ) ) : ( ( ) ( V11() real ext-real ) Element of REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) & q : ( ( ) ( V42(2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) FinSequence-like V91() ) Point of ( ( ) ( non empty ) set ) ) in L~ h : ( ( non empty non constant V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) ( non empty non trivial Relation-like NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) -defined the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) -valued Function-like non constant finite FinSequence-like FinSubsequence-like V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) special_circular_sequence) : ( ( ) ( non empty V85( TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) ) ) Element of K6( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( ) set ) ) ) } holds
X : ( ( ) ( V99() V100() V101() ) Subset of ( ( ) ( ) set ) ) = (proj2 : ( ( Function-like V29( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) , REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) ) ( Relation-like the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) -defined REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) -valued Function-like V29( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) , REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) V89() V90() V91() ) Element of K6(K7( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ,REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( V89() V90() V91() ) set ) ) : ( ( ) ( ) set ) ) | (E-most (L~ h : ( ( non empty non constant V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) ( non empty non trivial Relation-like NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) -defined the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) -valued Function-like non constant finite FinSequence-like FinSubsequence-like V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) special_circular_sequence) ) : ( ( ) ( non empty V85( TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) ) ) Element of K6( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( ) ( ) Element of K6( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( Function-like V29( the carrier of ((TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) | (E-most (L~ b1 : ( ( non empty non constant V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) ( non empty non trivial Relation-like NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) -defined the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) -valued Function-like non constant finite FinSequence-like FinSubsequence-like V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) special_circular_sequence) ) : ( ( ) ( non empty V85( TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) ) ) Element of K6( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( ) ( ) Element of K6( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( strict ) ( strict ) SubSpace of TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) ) : ( ( ) ( ) set ) , REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) ) ( Relation-like the carrier of ((TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) | (E-most (L~ b1 : ( ( non empty non constant V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) ( non empty non trivial Relation-like NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) -defined the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) -valued Function-like non constant finite FinSequence-like FinSubsequence-like V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) special_circular_sequence) ) : ( ( ) ( non empty V85( TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) ) ) Element of K6( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( ) ( ) Element of K6( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( strict ) ( strict ) SubSpace of TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) ) : ( ( ) ( ) set ) -defined REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) -valued Function-like V29( the carrier of ((TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) | (E-most (L~ b1 : ( ( non empty non constant V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) ( non empty non trivial Relation-like NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) -defined the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) -valued Function-like non constant finite FinSequence-like FinSubsequence-like V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) special_circular_sequence) ) : ( ( ) ( non empty V85( TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) ) ) Element of K6( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( ) ( ) Element of K6( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( strict ) ( strict ) SubSpace of TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) ) : ( ( ) ( ) set ) , REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) V89() V90() V91() ) Element of K6(K7( the carrier of ((TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) | (E-most (L~ b1 : ( ( non empty non constant V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) ( non empty non trivial Relation-like NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) -defined the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) -valued Function-like non constant finite FinSequence-like FinSubsequence-like V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) special_circular_sequence) ) : ( ( ) ( non empty V85( TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) ) ) Element of K6( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( ) ( ) Element of K6( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( strict ) ( strict ) SubSpace of TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) ) : ( ( ) ( ) set ) ,REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( V89() V90() V91() ) set ) ) : ( ( ) ( ) set ) ) .: the carrier of ((TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) | (E-most (L~ h : ( ( non empty non constant V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) ( non empty non trivial Relation-like NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) -defined the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) -valued Function-like non constant finite FinSequence-like FinSubsequence-like V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) special_circular_sequence) ) : ( ( ) ( non empty V85( TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) ) ) Element of K6( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( ) ( ) Element of K6( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( strict ) ( strict ) SubSpace of TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) ) : ( ( ) ( ) set ) : ( ( ) ( V99() V100() V101() ) set ) ;

theorem :: JORDAN5D:15
for h being ( ( non empty non constant V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) ( non empty non trivial Relation-like NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) -defined the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) -valued Function-like non constant finite FinSequence-like FinSubsequence-like V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) special_circular_sequence)
for X being ( ( ) ( V99() V100() V101() ) Subset of ( ( ) ( ) set ) ) st X : ( ( ) ( V99() V100() V101() ) Subset of ( ( ) ( ) set ) ) = { (q : ( ( ) ( V42(2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) FinSequence-like V91() ) Point of ( ( ) ( non empty ) set ) ) `1) : ( ( ) ( V11() real ext-real ) Element of REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) where q is ( ( ) ( V42(2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) FinSequence-like V91() ) Point of ( ( ) ( non empty ) set ) ) : ( q : ( ( ) ( V42(2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) FinSequence-like V91() ) Point of ( ( ) ( non empty ) set ) ) `2 : ( ( ) ( V11() real ext-real ) Element of REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) = N-bound (L~ h : ( ( non empty non constant V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) ( non empty non trivial Relation-like NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) -defined the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) -valued Function-like non constant finite FinSequence-like FinSubsequence-like V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) special_circular_sequence) ) : ( ( ) ( non empty V85( TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) ) ) Element of K6( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( ) set ) ) : ( ( ) ( V11() real ext-real ) Element of REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) & q : ( ( ) ( V42(2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) FinSequence-like V91() ) Point of ( ( ) ( non empty ) set ) ) in L~ h : ( ( non empty non constant V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) ( non empty non trivial Relation-like NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) -defined the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) -valued Function-like non constant finite FinSequence-like FinSubsequence-like V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) special_circular_sequence) : ( ( ) ( non empty V85( TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) ) ) Element of K6( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( ) set ) ) ) } holds
X : ( ( ) ( V99() V100() V101() ) Subset of ( ( ) ( ) set ) ) = (proj1 : ( ( Function-like V29( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) , REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) ) ( Relation-like the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) -defined REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) -valued Function-like V29( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) , REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) V89() V90() V91() ) Element of K6(K7( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ,REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( V89() V90() V91() ) set ) ) : ( ( ) ( ) set ) ) | (N-most (L~ h : ( ( non empty non constant V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) ( non empty non trivial Relation-like NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) -defined the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) -valued Function-like non constant finite FinSequence-like FinSubsequence-like V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) special_circular_sequence) ) : ( ( ) ( non empty V85( TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) ) ) Element of K6( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( ) ( ) Element of K6( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( Function-like V29( the carrier of ((TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) | (N-most (L~ b1 : ( ( non empty non constant V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) ( non empty non trivial Relation-like NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) -defined the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) -valued Function-like non constant finite FinSequence-like FinSubsequence-like V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) special_circular_sequence) ) : ( ( ) ( non empty V85( TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) ) ) Element of K6( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( ) ( ) Element of K6( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( strict ) ( strict ) SubSpace of TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) ) : ( ( ) ( ) set ) , REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) ) ( Relation-like the carrier of ((TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) | (N-most (L~ b1 : ( ( non empty non constant V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) ( non empty non trivial Relation-like NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) -defined the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) -valued Function-like non constant finite FinSequence-like FinSubsequence-like V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) special_circular_sequence) ) : ( ( ) ( non empty V85( TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) ) ) Element of K6( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( ) ( ) Element of K6( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( strict ) ( strict ) SubSpace of TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) ) : ( ( ) ( ) set ) -defined REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) -valued Function-like V29( the carrier of ((TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) | (N-most (L~ b1 : ( ( non empty non constant V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) ( non empty non trivial Relation-like NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) -defined the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) -valued Function-like non constant finite FinSequence-like FinSubsequence-like V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) special_circular_sequence) ) : ( ( ) ( non empty V85( TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) ) ) Element of K6( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( ) ( ) Element of K6( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( strict ) ( strict ) SubSpace of TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) ) : ( ( ) ( ) set ) , REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) V89() V90() V91() ) Element of K6(K7( the carrier of ((TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) | (N-most (L~ b1 : ( ( non empty non constant V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) ( non empty non trivial Relation-like NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) -defined the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) -valued Function-like non constant finite FinSequence-like FinSubsequence-like V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) special_circular_sequence) ) : ( ( ) ( non empty V85( TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) ) ) Element of K6( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( ) ( ) Element of K6( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( strict ) ( strict ) SubSpace of TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) ) : ( ( ) ( ) set ) ,REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( V89() V90() V91() ) set ) ) : ( ( ) ( ) set ) ) .: the carrier of ((TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) | (N-most (L~ h : ( ( non empty non constant V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) ( non empty non trivial Relation-like NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) -defined the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) -valued Function-like non constant finite FinSequence-like FinSubsequence-like V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) special_circular_sequence) ) : ( ( ) ( non empty V85( TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) ) ) Element of K6( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( ) ( ) Element of K6( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( strict ) ( strict ) SubSpace of TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) ) : ( ( ) ( ) set ) : ( ( ) ( V99() V100() V101() ) set ) ;

theorem :: JORDAN5D:16
for h being ( ( non empty non constant V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) ( non empty non trivial Relation-like NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) -defined the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) -valued Function-like non constant finite FinSequence-like FinSubsequence-like V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) special_circular_sequence)
for X being ( ( ) ( V99() V100() V101() ) Subset of ( ( ) ( ) set ) ) st X : ( ( ) ( V99() V100() V101() ) Subset of ( ( ) ( ) set ) ) = { (q : ( ( ) ( V42(2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) FinSequence-like V91() ) Point of ( ( ) ( non empty ) set ) ) `1) : ( ( ) ( V11() real ext-real ) Element of REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) where q is ( ( ) ( V42(2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) FinSequence-like V91() ) Point of ( ( ) ( non empty ) set ) ) : ( q : ( ( ) ( V42(2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) FinSequence-like V91() ) Point of ( ( ) ( non empty ) set ) ) `2 : ( ( ) ( V11() real ext-real ) Element of REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) = S-bound (L~ h : ( ( non empty non constant V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) ( non empty non trivial Relation-like NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) -defined the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) -valued Function-like non constant finite FinSequence-like FinSubsequence-like V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) special_circular_sequence) ) : ( ( ) ( non empty V85( TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) ) ) Element of K6( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( ) set ) ) : ( ( ) ( V11() real ext-real ) Element of REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) & q : ( ( ) ( V42(2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) FinSequence-like V91() ) Point of ( ( ) ( non empty ) set ) ) in L~ h : ( ( non empty non constant V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) ( non empty non trivial Relation-like NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) -defined the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) -valued Function-like non constant finite FinSequence-like FinSubsequence-like V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) special_circular_sequence) : ( ( ) ( non empty V85( TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) ) ) Element of K6( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( ) set ) ) ) } holds
X : ( ( ) ( V99() V100() V101() ) Subset of ( ( ) ( ) set ) ) = (proj1 : ( ( Function-like V29( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) , REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) ) ( Relation-like the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) -defined REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) -valued Function-like V29( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) , REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) V89() V90() V91() ) Element of K6(K7( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ,REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( V89() V90() V91() ) set ) ) : ( ( ) ( ) set ) ) | (S-most (L~ h : ( ( non empty non constant V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) ( non empty non trivial Relation-like NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) -defined the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) -valued Function-like non constant finite FinSequence-like FinSubsequence-like V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) special_circular_sequence) ) : ( ( ) ( non empty V85( TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) ) ) Element of K6( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( ) ( ) Element of K6( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( Function-like V29( the carrier of ((TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) | (S-most (L~ b1 : ( ( non empty non constant V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) ( non empty non trivial Relation-like NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) -defined the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) -valued Function-like non constant finite FinSequence-like FinSubsequence-like V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) special_circular_sequence) ) : ( ( ) ( non empty V85( TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) ) ) Element of K6( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( ) ( ) Element of K6( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( strict ) ( strict ) SubSpace of TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) ) : ( ( ) ( ) set ) , REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) ) ( Relation-like the carrier of ((TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) | (S-most (L~ b1 : ( ( non empty non constant V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) ( non empty non trivial Relation-like NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) -defined the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) -valued Function-like non constant finite FinSequence-like FinSubsequence-like V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) special_circular_sequence) ) : ( ( ) ( non empty V85( TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) ) ) Element of K6( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( ) ( ) Element of K6( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( strict ) ( strict ) SubSpace of TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) ) : ( ( ) ( ) set ) -defined REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) -valued Function-like V29( the carrier of ((TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) | (S-most (L~ b1 : ( ( non empty non constant V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) ( non empty non trivial Relation-like NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) -defined the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) -valued Function-like non constant finite FinSequence-like FinSubsequence-like V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) special_circular_sequence) ) : ( ( ) ( non empty V85( TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) ) ) Element of K6( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( ) ( ) Element of K6( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( strict ) ( strict ) SubSpace of TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) ) : ( ( ) ( ) set ) , REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) V89() V90() V91() ) Element of K6(K7( the carrier of ((TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) | (S-most (L~ b1 : ( ( non empty non constant V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) ( non empty non trivial Relation-like NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) -defined the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) -valued Function-like non constant finite FinSequence-like FinSubsequence-like V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) special_circular_sequence) ) : ( ( ) ( non empty V85( TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) ) ) Element of K6( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( ) ( ) Element of K6( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( strict ) ( strict ) SubSpace of TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) ) : ( ( ) ( ) set ) ,REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( V89() V90() V91() ) set ) ) : ( ( ) ( ) set ) ) .: the carrier of ((TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) | (S-most (L~ h : ( ( non empty non constant V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) ( non empty non trivial Relation-like NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) -defined the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) -valued Function-like non constant finite FinSequence-like FinSubsequence-like V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) special_circular_sequence) ) : ( ( ) ( non empty V85( TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) ) ) Element of K6( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( ) ( ) Element of K6( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( strict ) ( strict ) SubSpace of TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) ) : ( ( ) ( ) set ) : ( ( ) ( V99() V100() V101() ) set ) ;

theorem :: JORDAN5D:17
for g being ( ( ) ( Relation-like NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) -defined the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) -valued Function-like finite FinSequence-like FinSubsequence-like ) FinSequence of ( ( ) ( non empty ) set ) )
for X being ( ( ) ( V99() V100() V101() ) Subset of ( ( ) ( ) set ) ) st X : ( ( ) ( V99() V100() V101() ) Subset of ( ( ) ( ) set ) ) = { (q : ( ( ) ( V42(2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) FinSequence-like V91() ) Point of ( ( ) ( non empty ) set ) ) `1) : ( ( ) ( V11() real ext-real ) Element of REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) where q is ( ( ) ( V42(2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) FinSequence-like V91() ) Point of ( ( ) ( non empty ) set ) ) : q : ( ( ) ( V42(2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) FinSequence-like V91() ) Point of ( ( ) ( non empty ) set ) ) in L~ g : ( ( ) ( Relation-like NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) -defined the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) -valued Function-like finite FinSequence-like FinSubsequence-like ) FinSequence of ( ( ) ( non empty ) set ) ) : ( ( ) ( V85( TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) ) ) Element of K6( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( ) set ) ) } holds
X : ( ( ) ( V99() V100() V101() ) Subset of ( ( ) ( ) set ) ) = (proj1 : ( ( Function-like V29( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) , REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) ) ( Relation-like the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) -defined REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) -valued Function-like V29( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) , REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) V89() V90() V91() ) Element of K6(K7( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ,REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( V89() V90() V91() ) set ) ) : ( ( ) ( ) set ) ) | (L~ g : ( ( ) ( Relation-like NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) -defined the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) -valued Function-like finite FinSequence-like FinSubsequence-like ) FinSequence of ( ( ) ( non empty ) set ) ) ) : ( ( ) ( V85( TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) ) ) Element of K6( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( Function-like V29( the carrier of ((TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) | (L~ b1 : ( ( ) ( Relation-like NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) -defined the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) -valued Function-like finite FinSequence-like FinSubsequence-like ) FinSequence of ( ( ) ( non empty ) set ) ) ) : ( ( ) ( V85( TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) ) ) Element of K6( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( strict ) ( strict ) SubSpace of TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) ) : ( ( ) ( ) set ) , REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) ) ( Relation-like the carrier of ((TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) | (L~ b1 : ( ( ) ( Relation-like NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) -defined the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) -valued Function-like finite FinSequence-like FinSubsequence-like ) FinSequence of ( ( ) ( non empty ) set ) ) ) : ( ( ) ( V85( TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) ) ) Element of K6( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( strict ) ( strict ) SubSpace of TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) ) : ( ( ) ( ) set ) -defined REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) -valued Function-like V29( the carrier of ((TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) | (L~ b1 : ( ( ) ( Relation-like NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) -defined the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) -valued Function-like finite FinSequence-like FinSubsequence-like ) FinSequence of ( ( ) ( non empty ) set ) ) ) : ( ( ) ( V85( TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) ) ) Element of K6( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( strict ) ( strict ) SubSpace of TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) ) : ( ( ) ( ) set ) , REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) V89() V90() V91() ) Element of K6(K7( the carrier of ((TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) | (L~ b1 : ( ( ) ( Relation-like NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) -defined the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) -valued Function-like finite FinSequence-like FinSubsequence-like ) FinSequence of ( ( ) ( non empty ) set ) ) ) : ( ( ) ( V85( TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) ) ) Element of K6( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( strict ) ( strict ) SubSpace of TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) ) : ( ( ) ( ) set ) ,REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( V89() V90() V91() ) set ) ) : ( ( ) ( ) set ) ) .: the carrier of ((TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) | (L~ g : ( ( ) ( Relation-like NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) -defined the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) -valued Function-like finite FinSequence-like FinSubsequence-like ) FinSequence of ( ( ) ( non empty ) set ) ) ) : ( ( ) ( V85( TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) ) ) Element of K6( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( strict ) ( strict ) SubSpace of TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) ) : ( ( ) ( ) set ) : ( ( ) ( V99() V100() V101() ) set ) ;

theorem :: JORDAN5D:18
for g being ( ( ) ( Relation-like NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) -defined the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) -valued Function-like finite FinSequence-like FinSubsequence-like ) FinSequence of ( ( ) ( non empty ) set ) )
for X being ( ( ) ( V99() V100() V101() ) Subset of ( ( ) ( ) set ) ) st X : ( ( ) ( V99() V100() V101() ) Subset of ( ( ) ( ) set ) ) = { (q : ( ( ) ( V42(2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) FinSequence-like V91() ) Point of ( ( ) ( non empty ) set ) ) `2) : ( ( ) ( V11() real ext-real ) Element of REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) where q is ( ( ) ( V42(2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) FinSequence-like V91() ) Point of ( ( ) ( non empty ) set ) ) : q : ( ( ) ( V42(2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) FinSequence-like V91() ) Point of ( ( ) ( non empty ) set ) ) in L~ g : ( ( ) ( Relation-like NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) -defined the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) -valued Function-like finite FinSequence-like FinSubsequence-like ) FinSequence of ( ( ) ( non empty ) set ) ) : ( ( ) ( V85( TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) ) ) Element of K6( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( ) set ) ) } holds
X : ( ( ) ( V99() V100() V101() ) Subset of ( ( ) ( ) set ) ) = (proj2 : ( ( Function-like V29( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) , REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) ) ( Relation-like the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) -defined REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) -valued Function-like V29( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) , REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) V89() V90() V91() ) Element of K6(K7( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ,REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( V89() V90() V91() ) set ) ) : ( ( ) ( ) set ) ) | (L~ g : ( ( ) ( Relation-like NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) -defined the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) -valued Function-like finite FinSequence-like FinSubsequence-like ) FinSequence of ( ( ) ( non empty ) set ) ) ) : ( ( ) ( V85( TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) ) ) Element of K6( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( Function-like V29( the carrier of ((TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) | (L~ b1 : ( ( ) ( Relation-like NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) -defined the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) -valued Function-like finite FinSequence-like FinSubsequence-like ) FinSequence of ( ( ) ( non empty ) set ) ) ) : ( ( ) ( V85( TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) ) ) Element of K6( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( strict ) ( strict ) SubSpace of TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) ) : ( ( ) ( ) set ) , REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) ) ( Relation-like the carrier of ((TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) | (L~ b1 : ( ( ) ( Relation-like NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) -defined the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) -valued Function-like finite FinSequence-like FinSubsequence-like ) FinSequence of ( ( ) ( non empty ) set ) ) ) : ( ( ) ( V85( TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) ) ) Element of K6( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( strict ) ( strict ) SubSpace of TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) ) : ( ( ) ( ) set ) -defined REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) -valued Function-like V29( the carrier of ((TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) | (L~ b1 : ( ( ) ( Relation-like NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) -defined the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) -valued Function-like finite FinSequence-like FinSubsequence-like ) FinSequence of ( ( ) ( non empty ) set ) ) ) : ( ( ) ( V85( TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) ) ) Element of K6( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( strict ) ( strict ) SubSpace of TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) ) : ( ( ) ( ) set ) , REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) V89() V90() V91() ) Element of K6(K7( the carrier of ((TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) | (L~ b1 : ( ( ) ( Relation-like NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) -defined the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) -valued Function-like finite FinSequence-like FinSubsequence-like ) FinSequence of ( ( ) ( non empty ) set ) ) ) : ( ( ) ( V85( TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) ) ) Element of K6( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( strict ) ( strict ) SubSpace of TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) ) : ( ( ) ( ) set ) ,REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( V89() V90() V91() ) set ) ) : ( ( ) ( ) set ) ) .: the carrier of ((TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) | (L~ g : ( ( ) ( Relation-like NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) -defined the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) -valued Function-like finite FinSequence-like FinSubsequence-like ) FinSequence of ( ( ) ( non empty ) set ) ) ) : ( ( ) ( V85( TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) ) ) Element of K6( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( strict ) ( strict ) SubSpace of TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) ) : ( ( ) ( ) set ) : ( ( ) ( V99() V100() V101() ) set ) ;

theorem :: JORDAN5D:19
for h being ( ( non empty non constant V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) ( non empty non trivial Relation-like NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) -defined the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) -valued Function-like non constant finite FinSequence-like FinSubsequence-like V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) special_circular_sequence)
for X being ( ( ) ( V99() V100() V101() ) Subset of ( ( ) ( ) set ) ) st X : ( ( ) ( V99() V100() V101() ) Subset of ( ( ) ( ) set ) ) = { (q : ( ( ) ( V42(2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) FinSequence-like V91() ) Point of ( ( ) ( non empty ) set ) ) `2) : ( ( ) ( V11() real ext-real ) Element of REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) where q is ( ( ) ( V42(2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) FinSequence-like V91() ) Point of ( ( ) ( non empty ) set ) ) : ( q : ( ( ) ( V42(2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) FinSequence-like V91() ) Point of ( ( ) ( non empty ) set ) ) `1 : ( ( ) ( V11() real ext-real ) Element of REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) = W-bound (L~ h : ( ( non empty non constant V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) ( non empty non trivial Relation-like NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) -defined the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) -valued Function-like non constant finite FinSequence-like FinSubsequence-like V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) special_circular_sequence) ) : ( ( ) ( non empty V85( TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) ) ) Element of K6( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( ) set ) ) : ( ( ) ( V11() real ext-real ) Element of REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) & q : ( ( ) ( V42(2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) FinSequence-like V91() ) Point of ( ( ) ( non empty ) set ) ) in L~ h : ( ( non empty non constant V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) ( non empty non trivial Relation-like NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) -defined the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) -valued Function-like non constant finite FinSequence-like FinSubsequence-like V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) special_circular_sequence) : ( ( ) ( non empty V85( TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) ) ) Element of K6( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( ) set ) ) ) } holds
lower_bound X : ( ( ) ( V99() V100() V101() ) Subset of ( ( ) ( ) set ) ) : ( ( ) ( V11() real ext-real ) Element of REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) = lower_bound (proj2 : ( ( Function-like V29( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) , REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) ) ( Relation-like the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) -defined REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) -valued Function-like V29( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) , REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) V89() V90() V91() ) Element of K6(K7( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ,REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( V89() V90() V91() ) set ) ) : ( ( ) ( ) set ) ) | (W-most (L~ h : ( ( non empty non constant V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) ( non empty non trivial Relation-like NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) -defined the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) -valued Function-like non constant finite FinSequence-like FinSubsequence-like V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) special_circular_sequence) ) : ( ( ) ( non empty V85( TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) ) ) Element of K6( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( ) ( ) Element of K6( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( Function-like V29( the carrier of ((TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) | (W-most (L~ b1 : ( ( non empty non constant V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) ( non empty non trivial Relation-like NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) -defined the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) -valued Function-like non constant finite FinSequence-like FinSubsequence-like V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) special_circular_sequence) ) : ( ( ) ( non empty V85( TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) ) ) Element of K6( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( ) ( ) Element of K6( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( strict ) ( strict ) SubSpace of TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) ) : ( ( ) ( ) set ) , REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) ) ( Relation-like the carrier of ((TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) | (W-most (L~ b1 : ( ( non empty non constant V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) ( non empty non trivial Relation-like NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) -defined the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) -valued Function-like non constant finite FinSequence-like FinSubsequence-like V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) special_circular_sequence) ) : ( ( ) ( non empty V85( TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) ) ) Element of K6( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( ) ( ) Element of K6( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( strict ) ( strict ) SubSpace of TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) ) : ( ( ) ( ) set ) -defined REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) -valued Function-like V29( the carrier of ((TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) | (W-most (L~ b1 : ( ( non empty non constant V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) ( non empty non trivial Relation-like NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) -defined the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) -valued Function-like non constant finite FinSequence-like FinSubsequence-like V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) special_circular_sequence) ) : ( ( ) ( non empty V85( TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) ) ) Element of K6( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( ) ( ) Element of K6( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( strict ) ( strict ) SubSpace of TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) ) : ( ( ) ( ) set ) , REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) V89() V90() V91() ) Element of K6(K7( the carrier of ((TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) | (W-most (L~ b1 : ( ( non empty non constant V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) ( non empty non trivial Relation-like NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) -defined the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) -valued Function-like non constant finite FinSequence-like FinSubsequence-like V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) special_circular_sequence) ) : ( ( ) ( non empty V85( TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) ) ) Element of K6( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( ) ( ) Element of K6( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( strict ) ( strict ) SubSpace of TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) ) : ( ( ) ( ) set ) ,REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( V89() V90() V91() ) set ) ) : ( ( ) ( ) set ) ) : ( ( ) ( V11() real ext-real ) Element of REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) ;

theorem :: JORDAN5D:20
for h being ( ( non empty non constant V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) ( non empty non trivial Relation-like NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) -defined the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) -valued Function-like non constant finite FinSequence-like FinSubsequence-like V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) special_circular_sequence)
for X being ( ( ) ( V99() V100() V101() ) Subset of ( ( ) ( ) set ) ) st X : ( ( ) ( V99() V100() V101() ) Subset of ( ( ) ( ) set ) ) = { (q : ( ( ) ( V42(2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) FinSequence-like V91() ) Point of ( ( ) ( non empty ) set ) ) `2) : ( ( ) ( V11() real ext-real ) Element of REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) where q is ( ( ) ( V42(2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) FinSequence-like V91() ) Point of ( ( ) ( non empty ) set ) ) : ( q : ( ( ) ( V42(2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) FinSequence-like V91() ) Point of ( ( ) ( non empty ) set ) ) `1 : ( ( ) ( V11() real ext-real ) Element of REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) = W-bound (L~ h : ( ( non empty non constant V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) ( non empty non trivial Relation-like NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) -defined the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) -valued Function-like non constant finite FinSequence-like FinSubsequence-like V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) special_circular_sequence) ) : ( ( ) ( non empty V85( TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) ) ) Element of K6( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( ) set ) ) : ( ( ) ( V11() real ext-real ) Element of REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) & q : ( ( ) ( V42(2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) FinSequence-like V91() ) Point of ( ( ) ( non empty ) set ) ) in L~ h : ( ( non empty non constant V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) ( non empty non trivial Relation-like NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) -defined the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) -valued Function-like non constant finite FinSequence-like FinSubsequence-like V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) special_circular_sequence) : ( ( ) ( non empty V85( TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) ) ) Element of K6( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( ) set ) ) ) } holds
upper_bound X : ( ( ) ( V99() V100() V101() ) Subset of ( ( ) ( ) set ) ) : ( ( ) ( V11() real ext-real ) Element of REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) = upper_bound (proj2 : ( ( Function-like V29( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) , REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) ) ( Relation-like the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) -defined REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) -valued Function-like V29( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) , REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) V89() V90() V91() ) Element of K6(K7( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ,REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( V89() V90() V91() ) set ) ) : ( ( ) ( ) set ) ) | (W-most (L~ h : ( ( non empty non constant V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) ( non empty non trivial Relation-like NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) -defined the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) -valued Function-like non constant finite FinSequence-like FinSubsequence-like V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) special_circular_sequence) ) : ( ( ) ( non empty V85( TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) ) ) Element of K6( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( ) ( ) Element of K6( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( Function-like V29( the carrier of ((TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) | (W-most (L~ b1 : ( ( non empty non constant V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) ( non empty non trivial Relation-like NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) -defined the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) -valued Function-like non constant finite FinSequence-like FinSubsequence-like V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) special_circular_sequence) ) : ( ( ) ( non empty V85( TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) ) ) Element of K6( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( ) ( ) Element of K6( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( strict ) ( strict ) SubSpace of TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) ) : ( ( ) ( ) set ) , REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) ) ( Relation-like the carrier of ((TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) | (W-most (L~ b1 : ( ( non empty non constant V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) ( non empty non trivial Relation-like NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) -defined the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) -valued Function-like non constant finite FinSequence-like FinSubsequence-like V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) special_circular_sequence) ) : ( ( ) ( non empty V85( TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) ) ) Element of K6( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( ) ( ) Element of K6( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( strict ) ( strict ) SubSpace of TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) ) : ( ( ) ( ) set ) -defined REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) -valued Function-like V29( the carrier of ((TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) | (W-most (L~ b1 : ( ( non empty non constant V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) ( non empty non trivial Relation-like NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) -defined the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) -valued Function-like non constant finite FinSequence-like FinSubsequence-like V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) special_circular_sequence) ) : ( ( ) ( non empty V85( TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) ) ) Element of K6( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( ) ( ) Element of K6( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( strict ) ( strict ) SubSpace of TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) ) : ( ( ) ( ) set ) , REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) V89() V90() V91() ) Element of K6(K7( the carrier of ((TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) | (W-most (L~ b1 : ( ( non empty non constant V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) ( non empty non trivial Relation-like NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) -defined the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) -valued Function-like non constant finite FinSequence-like FinSubsequence-like V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) special_circular_sequence) ) : ( ( ) ( non empty V85( TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) ) ) Element of K6( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( ) ( ) Element of K6( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( strict ) ( strict ) SubSpace of TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) ) : ( ( ) ( ) set ) ,REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( V89() V90() V91() ) set ) ) : ( ( ) ( ) set ) ) : ( ( ) ( V11() real ext-real ) Element of REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) ;

theorem :: JORDAN5D:21
for h being ( ( non empty non constant V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) ( non empty non trivial Relation-like NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) -defined the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) -valued Function-like non constant finite FinSequence-like FinSubsequence-like V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) special_circular_sequence)
for X being ( ( ) ( V99() V100() V101() ) Subset of ( ( ) ( ) set ) ) st X : ( ( ) ( V99() V100() V101() ) Subset of ( ( ) ( ) set ) ) = { (q : ( ( ) ( V42(2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) FinSequence-like V91() ) Point of ( ( ) ( non empty ) set ) ) `2) : ( ( ) ( V11() real ext-real ) Element of REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) where q is ( ( ) ( V42(2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) FinSequence-like V91() ) Point of ( ( ) ( non empty ) set ) ) : ( q : ( ( ) ( V42(2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) FinSequence-like V91() ) Point of ( ( ) ( non empty ) set ) ) `1 : ( ( ) ( V11() real ext-real ) Element of REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) = E-bound (L~ h : ( ( non empty non constant V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) ( non empty non trivial Relation-like NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) -defined the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) -valued Function-like non constant finite FinSequence-like FinSubsequence-like V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) special_circular_sequence) ) : ( ( ) ( non empty V85( TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) ) ) Element of K6( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( ) set ) ) : ( ( ) ( V11() real ext-real ) Element of REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) & q : ( ( ) ( V42(2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) FinSequence-like V91() ) Point of ( ( ) ( non empty ) set ) ) in L~ h : ( ( non empty non constant V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) ( non empty non trivial Relation-like NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) -defined the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) -valued Function-like non constant finite FinSequence-like FinSubsequence-like V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) special_circular_sequence) : ( ( ) ( non empty V85( TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) ) ) Element of K6( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( ) set ) ) ) } holds
lower_bound X : ( ( ) ( V99() V100() V101() ) Subset of ( ( ) ( ) set ) ) : ( ( ) ( V11() real ext-real ) Element of REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) = lower_bound (proj2 : ( ( Function-like V29( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) , REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) ) ( Relation-like the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) -defined REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) -valued Function-like V29( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) , REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) V89() V90() V91() ) Element of K6(K7( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ,REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( V89() V90() V91() ) set ) ) : ( ( ) ( ) set ) ) | (E-most (L~ h : ( ( non empty non constant V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) ( non empty non trivial Relation-like NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) -defined the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) -valued Function-like non constant finite FinSequence-like FinSubsequence-like V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) special_circular_sequence) ) : ( ( ) ( non empty V85( TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) ) ) Element of K6( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( ) ( ) Element of K6( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( Function-like V29( the carrier of ((TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) | (E-most (L~ b1 : ( ( non empty non constant V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) ( non empty non trivial Relation-like NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) -defined the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) -valued Function-like non constant finite FinSequence-like FinSubsequence-like V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) special_circular_sequence) ) : ( ( ) ( non empty V85( TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) ) ) Element of K6( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( ) ( ) Element of K6( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( strict ) ( strict ) SubSpace of TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) ) : ( ( ) ( ) set ) , REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) ) ( Relation-like the carrier of ((TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) | (E-most (L~ b1 : ( ( non empty non constant V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) ( non empty non trivial Relation-like NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) -defined the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) -valued Function-like non constant finite FinSequence-like FinSubsequence-like V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) special_circular_sequence) ) : ( ( ) ( non empty V85( TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) ) ) Element of K6( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( ) ( ) Element of K6( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( strict ) ( strict ) SubSpace of TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) ) : ( ( ) ( ) set ) -defined REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) -valued Function-like V29( the carrier of ((TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) | (E-most (L~ b1 : ( ( non empty non constant V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) ( non empty non trivial Relation-like NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) -defined the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) -valued Function-like non constant finite FinSequence-like FinSubsequence-like V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) special_circular_sequence) ) : ( ( ) ( non empty V85( TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) ) ) Element of K6( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( ) ( ) Element of K6( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( strict ) ( strict ) SubSpace of TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) ) : ( ( ) ( ) set ) , REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) V89() V90() V91() ) Element of K6(K7( the carrier of ((TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) | (E-most (L~ b1 : ( ( non empty non constant V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) ( non empty non trivial Relation-like NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) -defined the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) -valued Function-like non constant finite FinSequence-like FinSubsequence-like V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) special_circular_sequence) ) : ( ( ) ( non empty V85( TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) ) ) Element of K6( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( ) ( ) Element of K6( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( strict ) ( strict ) SubSpace of TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) ) : ( ( ) ( ) set ) ,REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( V89() V90() V91() ) set ) ) : ( ( ) ( ) set ) ) : ( ( ) ( V11() real ext-real ) Element of REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) ;

theorem :: JORDAN5D:22
for h being ( ( non empty non constant V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) ( non empty non trivial Relation-like NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) -defined the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) -valued Function-like non constant finite FinSequence-like FinSubsequence-like V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) special_circular_sequence)
for X being ( ( ) ( V99() V100() V101() ) Subset of ( ( ) ( ) set ) ) st X : ( ( ) ( V99() V100() V101() ) Subset of ( ( ) ( ) set ) ) = { (q : ( ( ) ( V42(2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) FinSequence-like V91() ) Point of ( ( ) ( non empty ) set ) ) `2) : ( ( ) ( V11() real ext-real ) Element of REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) where q is ( ( ) ( V42(2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) FinSequence-like V91() ) Point of ( ( ) ( non empty ) set ) ) : ( q : ( ( ) ( V42(2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) FinSequence-like V91() ) Point of ( ( ) ( non empty ) set ) ) `1 : ( ( ) ( V11() real ext-real ) Element of REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) = E-bound (L~ h : ( ( non empty non constant V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) ( non empty non trivial Relation-like NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) -defined the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) -valued Function-like non constant finite FinSequence-like FinSubsequence-like V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) special_circular_sequence) ) : ( ( ) ( non empty V85( TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) ) ) Element of K6( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( ) set ) ) : ( ( ) ( V11() real ext-real ) Element of REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) & q : ( ( ) ( V42(2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) FinSequence-like V91() ) Point of ( ( ) ( non empty ) set ) ) in L~ h : ( ( non empty non constant V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) ( non empty non trivial Relation-like NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) -defined the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) -valued Function-like non constant finite FinSequence-like FinSubsequence-like V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) special_circular_sequence) : ( ( ) ( non empty V85( TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) ) ) Element of K6( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( ) set ) ) ) } holds
upper_bound X : ( ( ) ( V99() V100() V101() ) Subset of ( ( ) ( ) set ) ) : ( ( ) ( V11() real ext-real ) Element of REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) = upper_bound (proj2 : ( ( Function-like V29( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) , REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) ) ( Relation-like the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) -defined REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) -valued Function-like V29( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) , REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) V89() V90() V91() ) Element of K6(K7( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ,REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( V89() V90() V91() ) set ) ) : ( ( ) ( ) set ) ) | (E-most (L~ h : ( ( non empty non constant V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) ( non empty non trivial Relation-like NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) -defined the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) -valued Function-like non constant finite FinSequence-like FinSubsequence-like V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) special_circular_sequence) ) : ( ( ) ( non empty V85( TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) ) ) Element of K6( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( ) ( ) Element of K6( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( Function-like V29( the carrier of ((TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) | (E-most (L~ b1 : ( ( non empty non constant V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) ( non empty non trivial Relation-like NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) -defined the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) -valued Function-like non constant finite FinSequence-like FinSubsequence-like V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) special_circular_sequence) ) : ( ( ) ( non empty V85( TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) ) ) Element of K6( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( ) ( ) Element of K6( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( strict ) ( strict ) SubSpace of TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) ) : ( ( ) ( ) set ) , REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) ) ( Relation-like the carrier of ((TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) | (E-most (L~ b1 : ( ( non empty non constant V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) ( non empty non trivial Relation-like NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) -defined the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) -valued Function-like non constant finite FinSequence-like FinSubsequence-like V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) special_circular_sequence) ) : ( ( ) ( non empty V85( TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) ) ) Element of K6( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( ) ( ) Element of K6( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( strict ) ( strict ) SubSpace of TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) ) : ( ( ) ( ) set ) -defined REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) -valued Function-like V29( the carrier of ((TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) | (E-most (L~ b1 : ( ( non empty non constant V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) ( non empty non trivial Relation-like NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) -defined the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) -valued Function-like non constant finite FinSequence-like FinSubsequence-like V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) special_circular_sequence) ) : ( ( ) ( non empty V85( TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) ) ) Element of K6( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( ) ( ) Element of K6( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( strict ) ( strict ) SubSpace of TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) ) : ( ( ) ( ) set ) , REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) V89() V90() V91() ) Element of K6(K7( the carrier of ((TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) | (E-most (L~ b1 : ( ( non empty non constant V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) ( non empty non trivial Relation-like NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) -defined the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) -valued Function-like non constant finite FinSequence-like FinSubsequence-like V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) special_circular_sequence) ) : ( ( ) ( non empty V85( TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) ) ) Element of K6( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( ) ( ) Element of K6( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( strict ) ( strict ) SubSpace of TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) ) : ( ( ) ( ) set ) ,REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( V89() V90() V91() ) set ) ) : ( ( ) ( ) set ) ) : ( ( ) ( V11() real ext-real ) Element of REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) ;

theorem :: JORDAN5D:23
for g being ( ( ) ( Relation-like NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) -defined the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) -valued Function-like finite FinSequence-like FinSubsequence-like ) FinSequence of ( ( ) ( non empty ) set ) )
for X being ( ( ) ( V99() V100() V101() ) Subset of ( ( ) ( ) set ) ) st X : ( ( ) ( V99() V100() V101() ) Subset of ( ( ) ( ) set ) ) = { (q : ( ( ) ( V42(2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) FinSequence-like V91() ) Point of ( ( ) ( non empty ) set ) ) `1) : ( ( ) ( V11() real ext-real ) Element of REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) where q is ( ( ) ( V42(2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) FinSequence-like V91() ) Point of ( ( ) ( non empty ) set ) ) : q : ( ( ) ( V42(2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) FinSequence-like V91() ) Point of ( ( ) ( non empty ) set ) ) in L~ g : ( ( ) ( Relation-like NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) -defined the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) -valued Function-like finite FinSequence-like FinSubsequence-like ) FinSequence of ( ( ) ( non empty ) set ) ) : ( ( ) ( V85( TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) ) ) Element of K6( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( ) set ) ) } holds
lower_bound X : ( ( ) ( V99() V100() V101() ) Subset of ( ( ) ( ) set ) ) : ( ( ) ( V11() real ext-real ) Element of REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) = lower_bound (proj1 : ( ( Function-like V29( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) , REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) ) ( Relation-like the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) -defined REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) -valued Function-like V29( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) , REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) V89() V90() V91() ) Element of K6(K7( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ,REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( V89() V90() V91() ) set ) ) : ( ( ) ( ) set ) ) | (L~ g : ( ( ) ( Relation-like NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) -defined the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) -valued Function-like finite FinSequence-like FinSubsequence-like ) FinSequence of ( ( ) ( non empty ) set ) ) ) : ( ( ) ( V85( TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) ) ) Element of K6( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( Function-like V29( the carrier of ((TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) | (L~ b1 : ( ( ) ( Relation-like NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) -defined the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) -valued Function-like finite FinSequence-like FinSubsequence-like ) FinSequence of ( ( ) ( non empty ) set ) ) ) : ( ( ) ( V85( TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) ) ) Element of K6( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( strict ) ( strict ) SubSpace of TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) ) : ( ( ) ( ) set ) , REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) ) ( Relation-like the carrier of ((TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) | (L~ b1 : ( ( ) ( Relation-like NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) -defined the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) -valued Function-like finite FinSequence-like FinSubsequence-like ) FinSequence of ( ( ) ( non empty ) set ) ) ) : ( ( ) ( V85( TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) ) ) Element of K6( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( strict ) ( strict ) SubSpace of TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) ) : ( ( ) ( ) set ) -defined REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) -valued Function-like V29( the carrier of ((TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) | (L~ b1 : ( ( ) ( Relation-like NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) -defined the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) -valued Function-like finite FinSequence-like FinSubsequence-like ) FinSequence of ( ( ) ( non empty ) set ) ) ) : ( ( ) ( V85( TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) ) ) Element of K6( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( strict ) ( strict ) SubSpace of TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) ) : ( ( ) ( ) set ) , REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) V89() V90() V91() ) Element of K6(K7( the carrier of ((TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) | (L~ b1 : ( ( ) ( Relation-like NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) -defined the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) -valued Function-like finite FinSequence-like FinSubsequence-like ) FinSequence of ( ( ) ( non empty ) set ) ) ) : ( ( ) ( V85( TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) ) ) Element of K6( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( strict ) ( strict ) SubSpace of TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) ) : ( ( ) ( ) set ) ,REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( V89() V90() V91() ) set ) ) : ( ( ) ( ) set ) ) : ( ( ) ( V11() real ext-real ) Element of REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) ;

theorem :: JORDAN5D:24
for h being ( ( non empty non constant V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) ( non empty non trivial Relation-like NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) -defined the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) -valued Function-like non constant finite FinSequence-like FinSubsequence-like V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) special_circular_sequence)
for X being ( ( ) ( V99() V100() V101() ) Subset of ( ( ) ( ) set ) ) st X : ( ( ) ( V99() V100() V101() ) Subset of ( ( ) ( ) set ) ) = { (q : ( ( ) ( V42(2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) FinSequence-like V91() ) Point of ( ( ) ( non empty ) set ) ) `1) : ( ( ) ( V11() real ext-real ) Element of REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) where q is ( ( ) ( V42(2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) FinSequence-like V91() ) Point of ( ( ) ( non empty ) set ) ) : ( q : ( ( ) ( V42(2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) FinSequence-like V91() ) Point of ( ( ) ( non empty ) set ) ) `2 : ( ( ) ( V11() real ext-real ) Element of REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) = S-bound (L~ h : ( ( non empty non constant V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) ( non empty non trivial Relation-like NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) -defined the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) -valued Function-like non constant finite FinSequence-like FinSubsequence-like V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) special_circular_sequence) ) : ( ( ) ( non empty V85( TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) ) ) Element of K6( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( ) set ) ) : ( ( ) ( V11() real ext-real ) Element of REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) & q : ( ( ) ( V42(2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) FinSequence-like V91() ) Point of ( ( ) ( non empty ) set ) ) in L~ h : ( ( non empty non constant V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) ( non empty non trivial Relation-like NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) -defined the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) -valued Function-like non constant finite FinSequence-like FinSubsequence-like V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) special_circular_sequence) : ( ( ) ( non empty V85( TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) ) ) Element of K6( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( ) set ) ) ) } holds
lower_bound X : ( ( ) ( V99() V100() V101() ) Subset of ( ( ) ( ) set ) ) : ( ( ) ( V11() real ext-real ) Element of REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) = lower_bound (proj1 : ( ( Function-like V29( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) , REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) ) ( Relation-like the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) -defined REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) -valued Function-like V29( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) , REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) V89() V90() V91() ) Element of K6(K7( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ,REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( V89() V90() V91() ) set ) ) : ( ( ) ( ) set ) ) | (S-most (L~ h : ( ( non empty non constant V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) ( non empty non trivial Relation-like NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) -defined the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) -valued Function-like non constant finite FinSequence-like FinSubsequence-like V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) special_circular_sequence) ) : ( ( ) ( non empty V85( TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) ) ) Element of K6( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( ) ( ) Element of K6( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( Function-like V29( the carrier of ((TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) | (S-most (L~ b1 : ( ( non empty non constant V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) ( non empty non trivial Relation-like NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) -defined the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) -valued Function-like non constant finite FinSequence-like FinSubsequence-like V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) special_circular_sequence) ) : ( ( ) ( non empty V85( TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) ) ) Element of K6( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( ) ( ) Element of K6( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( strict ) ( strict ) SubSpace of TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) ) : ( ( ) ( ) set ) , REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) ) ( Relation-like the carrier of ((TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) | (S-most (L~ b1 : ( ( non empty non constant V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) ( non empty non trivial Relation-like NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) -defined the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) -valued Function-like non constant finite FinSequence-like FinSubsequence-like V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) special_circular_sequence) ) : ( ( ) ( non empty V85( TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) ) ) Element of K6( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( ) ( ) Element of K6( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( strict ) ( strict ) SubSpace of TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) ) : ( ( ) ( ) set ) -defined REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) -valued Function-like V29( the carrier of ((TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) | (S-most (L~ b1 : ( ( non empty non constant V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) ( non empty non trivial Relation-like NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) -defined the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) -valued Function-like non constant finite FinSequence-like FinSubsequence-like V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) special_circular_sequence) ) : ( ( ) ( non empty V85( TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) ) ) Element of K6( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( ) ( ) Element of K6( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( strict ) ( strict ) SubSpace of TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) ) : ( ( ) ( ) set ) , REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) V89() V90() V91() ) Element of K6(K7( the carrier of ((TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) | (S-most (L~ b1 : ( ( non empty non constant V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) ( non empty non trivial Relation-like NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) -defined the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) -valued Function-like non constant finite FinSequence-like FinSubsequence-like V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) special_circular_sequence) ) : ( ( ) ( non empty V85( TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) ) ) Element of K6( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( ) ( ) Element of K6( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( strict ) ( strict ) SubSpace of TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) ) : ( ( ) ( ) set ) ,REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( V89() V90() V91() ) set ) ) : ( ( ) ( ) set ) ) : ( ( ) ( V11() real ext-real ) Element of REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) ;

theorem :: JORDAN5D:25
for h being ( ( non empty non constant V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) ( non empty non trivial Relation-like NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) -defined the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) -valued Function-like non constant finite FinSequence-like FinSubsequence-like V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) special_circular_sequence)
for X being ( ( ) ( V99() V100() V101() ) Subset of ( ( ) ( ) set ) ) st X : ( ( ) ( V99() V100() V101() ) Subset of ( ( ) ( ) set ) ) = { (q : ( ( ) ( V42(2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) FinSequence-like V91() ) Point of ( ( ) ( non empty ) set ) ) `1) : ( ( ) ( V11() real ext-real ) Element of REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) where q is ( ( ) ( V42(2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) FinSequence-like V91() ) Point of ( ( ) ( non empty ) set ) ) : ( q : ( ( ) ( V42(2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) FinSequence-like V91() ) Point of ( ( ) ( non empty ) set ) ) `2 : ( ( ) ( V11() real ext-real ) Element of REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) = S-bound (L~ h : ( ( non empty non constant V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) ( non empty non trivial Relation-like NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) -defined the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) -valued Function-like non constant finite FinSequence-like FinSubsequence-like V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) special_circular_sequence) ) : ( ( ) ( non empty V85( TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) ) ) Element of K6( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( ) set ) ) : ( ( ) ( V11() real ext-real ) Element of REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) & q : ( ( ) ( V42(2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) FinSequence-like V91() ) Point of ( ( ) ( non empty ) set ) ) in L~ h : ( ( non empty non constant V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) ( non empty non trivial Relation-like NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) -defined the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) -valued Function-like non constant finite FinSequence-like FinSubsequence-like V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) special_circular_sequence) : ( ( ) ( non empty V85( TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) ) ) Element of K6( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( ) set ) ) ) } holds
upper_bound X : ( ( ) ( V99() V100() V101() ) Subset of ( ( ) ( ) set ) ) : ( ( ) ( V11() real ext-real ) Element of REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) = upper_bound (proj1 : ( ( Function-like V29( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) , REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) ) ( Relation-like the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) -defined REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) -valued Function-like V29( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) , REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) V89() V90() V91() ) Element of K6(K7( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ,REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( V89() V90() V91() ) set ) ) : ( ( ) ( ) set ) ) | (S-most (L~ h : ( ( non empty non constant V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) ( non empty non trivial Relation-like NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) -defined the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) -valued Function-like non constant finite FinSequence-like FinSubsequence-like V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) special_circular_sequence) ) : ( ( ) ( non empty V85( TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) ) ) Element of K6( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( ) ( ) Element of K6( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( Function-like V29( the carrier of ((TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) | (S-most (L~ b1 : ( ( non empty non constant V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) ( non empty non trivial Relation-like NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) -defined the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) -valued Function-like non constant finite FinSequence-like FinSubsequence-like V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) special_circular_sequence) ) : ( ( ) ( non empty V85( TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) ) ) Element of K6( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( ) ( ) Element of K6( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( strict ) ( strict ) SubSpace of TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) ) : ( ( ) ( ) set ) , REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) ) ( Relation-like the carrier of ((TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) | (S-most (L~ b1 : ( ( non empty non constant V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) ( non empty non trivial Relation-like NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) -defined the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) -valued Function-like non constant finite FinSequence-like FinSubsequence-like V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) special_circular_sequence) ) : ( ( ) ( non empty V85( TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) ) ) Element of K6( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( ) ( ) Element of K6( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( strict ) ( strict ) SubSpace of TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) ) : ( ( ) ( ) set ) -defined REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) -valued Function-like V29( the carrier of ((TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) | (S-most (L~ b1 : ( ( non empty non constant V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) ( non empty non trivial Relation-like NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) -defined the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) -valued Function-like non constant finite FinSequence-like FinSubsequence-like V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) special_circular_sequence) ) : ( ( ) ( non empty V85( TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) ) ) Element of K6( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( ) ( ) Element of K6( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( strict ) ( strict ) SubSpace of TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) ) : ( ( ) ( ) set ) , REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) V89() V90() V91() ) Element of K6(K7( the carrier of ((TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) | (S-most (L~ b1 : ( ( non empty non constant V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) ( non empty non trivial Relation-like NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) -defined the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) -valued Function-like non constant finite FinSequence-like FinSubsequence-like V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) special_circular_sequence) ) : ( ( ) ( non empty V85( TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) ) ) Element of K6( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( ) ( ) Element of K6( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( strict ) ( strict ) SubSpace of TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) ) : ( ( ) ( ) set ) ,REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( V89() V90() V91() ) set ) ) : ( ( ) ( ) set ) ) : ( ( ) ( V11() real ext-real ) Element of REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) ;

theorem :: JORDAN5D:26
for h being ( ( non empty non constant V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) ( non empty non trivial Relation-like NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) -defined the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) -valued Function-like non constant finite FinSequence-like FinSubsequence-like V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) special_circular_sequence)
for X being ( ( ) ( V99() V100() V101() ) Subset of ( ( ) ( ) set ) ) st X : ( ( ) ( V99() V100() V101() ) Subset of ( ( ) ( ) set ) ) = { (q : ( ( ) ( V42(2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) FinSequence-like V91() ) Point of ( ( ) ( non empty ) set ) ) `1) : ( ( ) ( V11() real ext-real ) Element of REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) where q is ( ( ) ( V42(2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) FinSequence-like V91() ) Point of ( ( ) ( non empty ) set ) ) : ( q : ( ( ) ( V42(2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) FinSequence-like V91() ) Point of ( ( ) ( non empty ) set ) ) `2 : ( ( ) ( V11() real ext-real ) Element of REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) = N-bound (L~ h : ( ( non empty non constant V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) ( non empty non trivial Relation-like NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) -defined the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) -valued Function-like non constant finite FinSequence-like FinSubsequence-like V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) special_circular_sequence) ) : ( ( ) ( non empty V85( TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) ) ) Element of K6( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( ) set ) ) : ( ( ) ( V11() real ext-real ) Element of REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) & q : ( ( ) ( V42(2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) FinSequence-like V91() ) Point of ( ( ) ( non empty ) set ) ) in L~ h : ( ( non empty non constant V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) ( non empty non trivial Relation-like NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) -defined the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) -valued Function-like non constant finite FinSequence-like FinSubsequence-like V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) special_circular_sequence) : ( ( ) ( non empty V85( TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) ) ) Element of K6( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( ) set ) ) ) } holds
lower_bound X : ( ( ) ( V99() V100() V101() ) Subset of ( ( ) ( ) set ) ) : ( ( ) ( V11() real ext-real ) Element of REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) = lower_bound (proj1 : ( ( Function-like V29( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) , REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) ) ( Relation-like the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) -defined REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) -valued Function-like V29( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) , REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) V89() V90() V91() ) Element of K6(K7( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ,REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( V89() V90() V91() ) set ) ) : ( ( ) ( ) set ) ) | (N-most (L~ h : ( ( non empty non constant V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) ( non empty non trivial Relation-like NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) -defined the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) -valued Function-like non constant finite FinSequence-like FinSubsequence-like V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) special_circular_sequence) ) : ( ( ) ( non empty V85( TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) ) ) Element of K6( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( ) ( ) Element of K6( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( Function-like V29( the carrier of ((TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) | (N-most (L~ b1 : ( ( non empty non constant V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) ( non empty non trivial Relation-like NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) -defined the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) -valued Function-like non constant finite FinSequence-like FinSubsequence-like V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) special_circular_sequence) ) : ( ( ) ( non empty V85( TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) ) ) Element of K6( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( ) ( ) Element of K6( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( strict ) ( strict ) SubSpace of TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) ) : ( ( ) ( ) set ) , REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) ) ( Relation-like the carrier of ((TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) | (N-most (L~ b1 : ( ( non empty non constant V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) ( non empty non trivial Relation-like NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) -defined the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) -valued Function-like non constant finite FinSequence-like FinSubsequence-like V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) special_circular_sequence) ) : ( ( ) ( non empty V85( TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) ) ) Element of K6( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( ) ( ) Element of K6( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( strict ) ( strict ) SubSpace of TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) ) : ( ( ) ( ) set ) -defined REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) -valued Function-like V29( the carrier of ((TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) | (N-most (L~ b1 : ( ( non empty non constant V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) ( non empty non trivial Relation-like NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) -defined the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) -valued Function-like non constant finite FinSequence-like FinSubsequence-like V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) special_circular_sequence) ) : ( ( ) ( non empty V85( TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) ) ) Element of K6( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( ) ( ) Element of K6( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( strict ) ( strict ) SubSpace of TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) ) : ( ( ) ( ) set ) , REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) V89() V90() V91() ) Element of K6(K7( the carrier of ((TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) | (N-most (L~ b1 : ( ( non empty non constant V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) ( non empty non trivial Relation-like NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) -defined the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) -valued Function-like non constant finite FinSequence-like FinSubsequence-like V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) special_circular_sequence) ) : ( ( ) ( non empty V85( TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) ) ) Element of K6( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( ) ( ) Element of K6( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( strict ) ( strict ) SubSpace of TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) ) : ( ( ) ( ) set ) ,REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( V89() V90() V91() ) set ) ) : ( ( ) ( ) set ) ) : ( ( ) ( V11() real ext-real ) Element of REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) ;

theorem :: JORDAN5D:27
for h being ( ( non empty non constant V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) ( non empty non trivial Relation-like NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) -defined the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) -valued Function-like non constant finite FinSequence-like FinSubsequence-like V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) special_circular_sequence)
for X being ( ( ) ( V99() V100() V101() ) Subset of ( ( ) ( ) set ) ) st X : ( ( ) ( V99() V100() V101() ) Subset of ( ( ) ( ) set ) ) = { (q : ( ( ) ( V42(2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) FinSequence-like V91() ) Point of ( ( ) ( non empty ) set ) ) `1) : ( ( ) ( V11() real ext-real ) Element of REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) where q is ( ( ) ( V42(2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) FinSequence-like V91() ) Point of ( ( ) ( non empty ) set ) ) : ( q : ( ( ) ( V42(2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) FinSequence-like V91() ) Point of ( ( ) ( non empty ) set ) ) `2 : ( ( ) ( V11() real ext-real ) Element of REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) = N-bound (L~ h : ( ( non empty non constant V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) ( non empty non trivial Relation-like NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) -defined the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) -valued Function-like non constant finite FinSequence-like FinSubsequence-like V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) special_circular_sequence) ) : ( ( ) ( non empty V85( TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) ) ) Element of K6( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( ) set ) ) : ( ( ) ( V11() real ext-real ) Element of REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) & q : ( ( ) ( V42(2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) FinSequence-like V91() ) Point of ( ( ) ( non empty ) set ) ) in L~ h : ( ( non empty non constant V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) ( non empty non trivial Relation-like NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) -defined the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) -valued Function-like non constant finite FinSequence-like FinSubsequence-like V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) special_circular_sequence) : ( ( ) ( non empty V85( TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) ) ) Element of K6( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( ) set ) ) ) } holds
upper_bound X : ( ( ) ( V99() V100() V101() ) Subset of ( ( ) ( ) set ) ) : ( ( ) ( V11() real ext-real ) Element of REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) = upper_bound (proj1 : ( ( Function-like V29( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) , REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) ) ( Relation-like the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) -defined REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) -valued Function-like V29( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) , REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) V89() V90() V91() ) Element of K6(K7( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ,REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( V89() V90() V91() ) set ) ) : ( ( ) ( ) set ) ) | (N-most (L~ h : ( ( non empty non constant V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) ( non empty non trivial Relation-like NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) -defined the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) -valued Function-like non constant finite FinSequence-like FinSubsequence-like V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) special_circular_sequence) ) : ( ( ) ( non empty V85( TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) ) ) Element of K6( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( ) ( ) Element of K6( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( Function-like V29( the carrier of ((TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) | (N-most (L~ b1 : ( ( non empty non constant V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) ( non empty non trivial Relation-like NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) -defined the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) -valued Function-like non constant finite FinSequence-like FinSubsequence-like V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) special_circular_sequence) ) : ( ( ) ( non empty V85( TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) ) ) Element of K6( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( ) ( ) Element of K6( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( strict ) ( strict ) SubSpace of TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) ) : ( ( ) ( ) set ) , REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) ) ( Relation-like the carrier of ((TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) | (N-most (L~ b1 : ( ( non empty non constant V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) ( non empty non trivial Relation-like NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) -defined the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) -valued Function-like non constant finite FinSequence-like FinSubsequence-like V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) special_circular_sequence) ) : ( ( ) ( non empty V85( TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) ) ) Element of K6( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( ) ( ) Element of K6( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( strict ) ( strict ) SubSpace of TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) ) : ( ( ) ( ) set ) -defined REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) -valued Function-like V29( the carrier of ((TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) | (N-most (L~ b1 : ( ( non empty non constant V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) ( non empty non trivial Relation-like NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) -defined the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) -valued Function-like non constant finite FinSequence-like FinSubsequence-like V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) special_circular_sequence) ) : ( ( ) ( non empty V85( TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) ) ) Element of K6( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( ) ( ) Element of K6( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( strict ) ( strict ) SubSpace of TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) ) : ( ( ) ( ) set ) , REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) V89() V90() V91() ) Element of K6(K7( the carrier of ((TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) | (N-most (L~ b1 : ( ( non empty non constant V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) ( non empty non trivial Relation-like NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) -defined the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) -valued Function-like non constant finite FinSequence-like FinSubsequence-like V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) special_circular_sequence) ) : ( ( ) ( non empty V85( TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) ) ) Element of K6( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( ) ( ) Element of K6( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( strict ) ( strict ) SubSpace of TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) ) : ( ( ) ( ) set ) ,REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( V89() V90() V91() ) set ) ) : ( ( ) ( ) set ) ) : ( ( ) ( V11() real ext-real ) Element of REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) ;

theorem :: JORDAN5D:28
for g being ( ( ) ( Relation-like NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) -defined the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) -valued Function-like finite FinSequence-like FinSubsequence-like ) FinSequence of ( ( ) ( non empty ) set ) )
for X being ( ( ) ( V99() V100() V101() ) Subset of ( ( ) ( ) set ) ) st X : ( ( ) ( V99() V100() V101() ) Subset of ( ( ) ( ) set ) ) = { (q : ( ( ) ( V42(2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) FinSequence-like V91() ) Point of ( ( ) ( non empty ) set ) ) `2) : ( ( ) ( V11() real ext-real ) Element of REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) where q is ( ( ) ( V42(2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) FinSequence-like V91() ) Point of ( ( ) ( non empty ) set ) ) : q : ( ( ) ( V42(2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) FinSequence-like V91() ) Point of ( ( ) ( non empty ) set ) ) in L~ g : ( ( ) ( Relation-like NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) -defined the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) -valued Function-like finite FinSequence-like FinSubsequence-like ) FinSequence of ( ( ) ( non empty ) set ) ) : ( ( ) ( V85( TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) ) ) Element of K6( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( ) set ) ) } holds
lower_bound X : ( ( ) ( V99() V100() V101() ) Subset of ( ( ) ( ) set ) ) : ( ( ) ( V11() real ext-real ) Element of REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) = lower_bound (proj2 : ( ( Function-like V29( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) , REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) ) ( Relation-like the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) -defined REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) -valued Function-like V29( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) , REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) V89() V90() V91() ) Element of K6(K7( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ,REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( V89() V90() V91() ) set ) ) : ( ( ) ( ) set ) ) | (L~ g : ( ( ) ( Relation-like NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) -defined the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) -valued Function-like finite FinSequence-like FinSubsequence-like ) FinSequence of ( ( ) ( non empty ) set ) ) ) : ( ( ) ( V85( TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) ) ) Element of K6( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( Function-like V29( the carrier of ((TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) | (L~ b1 : ( ( ) ( Relation-like NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) -defined the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) -valued Function-like finite FinSequence-like FinSubsequence-like ) FinSequence of ( ( ) ( non empty ) set ) ) ) : ( ( ) ( V85( TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) ) ) Element of K6( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( strict ) ( strict ) SubSpace of TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) ) : ( ( ) ( ) set ) , REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) ) ( Relation-like the carrier of ((TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) | (L~ b1 : ( ( ) ( Relation-like NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) -defined the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) -valued Function-like finite FinSequence-like FinSubsequence-like ) FinSequence of ( ( ) ( non empty ) set ) ) ) : ( ( ) ( V85( TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) ) ) Element of K6( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( strict ) ( strict ) SubSpace of TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) ) : ( ( ) ( ) set ) -defined REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) -valued Function-like V29( the carrier of ((TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) | (L~ b1 : ( ( ) ( Relation-like NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) -defined the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) -valued Function-like finite FinSequence-like FinSubsequence-like ) FinSequence of ( ( ) ( non empty ) set ) ) ) : ( ( ) ( V85( TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) ) ) Element of K6( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( strict ) ( strict ) SubSpace of TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) ) : ( ( ) ( ) set ) , REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) V89() V90() V91() ) Element of K6(K7( the carrier of ((TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) | (L~ b1 : ( ( ) ( Relation-like NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) -defined the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) -valued Function-like finite FinSequence-like FinSubsequence-like ) FinSequence of ( ( ) ( non empty ) set ) ) ) : ( ( ) ( V85( TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) ) ) Element of K6( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( strict ) ( strict ) SubSpace of TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) ) : ( ( ) ( ) set ) ,REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( V89() V90() V91() ) set ) ) : ( ( ) ( ) set ) ) : ( ( ) ( V11() real ext-real ) Element of REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) ;

theorem :: JORDAN5D:29
for g being ( ( ) ( Relation-like NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) -defined the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) -valued Function-like finite FinSequence-like FinSubsequence-like ) FinSequence of ( ( ) ( non empty ) set ) )
for X being ( ( ) ( V99() V100() V101() ) Subset of ( ( ) ( ) set ) ) st X : ( ( ) ( V99() V100() V101() ) Subset of ( ( ) ( ) set ) ) = { (q : ( ( ) ( V42(2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) FinSequence-like V91() ) Point of ( ( ) ( non empty ) set ) ) `1) : ( ( ) ( V11() real ext-real ) Element of REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) where q is ( ( ) ( V42(2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) FinSequence-like V91() ) Point of ( ( ) ( non empty ) set ) ) : q : ( ( ) ( V42(2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) FinSequence-like V91() ) Point of ( ( ) ( non empty ) set ) ) in L~ g : ( ( ) ( Relation-like NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) -defined the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) -valued Function-like finite FinSequence-like FinSubsequence-like ) FinSequence of ( ( ) ( non empty ) set ) ) : ( ( ) ( V85( TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) ) ) Element of K6( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( ) set ) ) } holds
upper_bound X : ( ( ) ( V99() V100() V101() ) Subset of ( ( ) ( ) set ) ) : ( ( ) ( V11() real ext-real ) Element of REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) = upper_bound (proj1 : ( ( Function-like V29( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) , REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) ) ( Relation-like the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) -defined REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) -valued Function-like V29( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) , REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) V89() V90() V91() ) Element of K6(K7( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ,REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( V89() V90() V91() ) set ) ) : ( ( ) ( ) set ) ) | (L~ g : ( ( ) ( Relation-like NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) -defined the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) -valued Function-like finite FinSequence-like FinSubsequence-like ) FinSequence of ( ( ) ( non empty ) set ) ) ) : ( ( ) ( V85( TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) ) ) Element of K6( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( Function-like V29( the carrier of ((TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) | (L~ b1 : ( ( ) ( Relation-like NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) -defined the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) -valued Function-like finite FinSequence-like FinSubsequence-like ) FinSequence of ( ( ) ( non empty ) set ) ) ) : ( ( ) ( V85( TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) ) ) Element of K6( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( strict ) ( strict ) SubSpace of TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) ) : ( ( ) ( ) set ) , REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) ) ( Relation-like the carrier of ((TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) | (L~ b1 : ( ( ) ( Relation-like NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) -defined the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) -valued Function-like finite FinSequence-like FinSubsequence-like ) FinSequence of ( ( ) ( non empty ) set ) ) ) : ( ( ) ( V85( TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) ) ) Element of K6( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( strict ) ( strict ) SubSpace of TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) ) : ( ( ) ( ) set ) -defined REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) -valued Function-like V29( the carrier of ((TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) | (L~ b1 : ( ( ) ( Relation-like NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) -defined the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) -valued Function-like finite FinSequence-like FinSubsequence-like ) FinSequence of ( ( ) ( non empty ) set ) ) ) : ( ( ) ( V85( TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) ) ) Element of K6( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( strict ) ( strict ) SubSpace of TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) ) : ( ( ) ( ) set ) , REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) V89() V90() V91() ) Element of K6(K7( the carrier of ((TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) | (L~ b1 : ( ( ) ( Relation-like NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) -defined the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) -valued Function-like finite FinSequence-like FinSubsequence-like ) FinSequence of ( ( ) ( non empty ) set ) ) ) : ( ( ) ( V85( TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) ) ) Element of K6( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( strict ) ( strict ) SubSpace of TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) ) : ( ( ) ( ) set ) ,REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( V89() V90() V91() ) set ) ) : ( ( ) ( ) set ) ) : ( ( ) ( V11() real ext-real ) Element of REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) ;

theorem :: JORDAN5D:30
for g being ( ( ) ( Relation-like NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) -defined the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) -valued Function-like finite FinSequence-like FinSubsequence-like ) FinSequence of ( ( ) ( non empty ) set ) )
for X being ( ( ) ( V99() V100() V101() ) Subset of ( ( ) ( ) set ) ) st X : ( ( ) ( V99() V100() V101() ) Subset of ( ( ) ( ) set ) ) = { (q : ( ( ) ( V42(2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) FinSequence-like V91() ) Point of ( ( ) ( non empty ) set ) ) `2) : ( ( ) ( V11() real ext-real ) Element of REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) where q is ( ( ) ( V42(2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) FinSequence-like V91() ) Point of ( ( ) ( non empty ) set ) ) : q : ( ( ) ( V42(2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) FinSequence-like V91() ) Point of ( ( ) ( non empty ) set ) ) in L~ g : ( ( ) ( Relation-like NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) -defined the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) -valued Function-like finite FinSequence-like FinSubsequence-like ) FinSequence of ( ( ) ( non empty ) set ) ) : ( ( ) ( V85( TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) ) ) Element of K6( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( ) set ) ) } holds
upper_bound X : ( ( ) ( V99() V100() V101() ) Subset of ( ( ) ( ) set ) ) : ( ( ) ( V11() real ext-real ) Element of REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) = upper_bound (proj2 : ( ( Function-like V29( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) , REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) ) ( Relation-like the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) -defined REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) -valued Function-like V29( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) , REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) V89() V90() V91() ) Element of K6(K7( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ,REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( V89() V90() V91() ) set ) ) : ( ( ) ( ) set ) ) | (L~ g : ( ( ) ( Relation-like NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) -defined the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) -valued Function-like finite FinSequence-like FinSubsequence-like ) FinSequence of ( ( ) ( non empty ) set ) ) ) : ( ( ) ( V85( TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) ) ) Element of K6( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( Function-like V29( the carrier of ((TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) | (L~ b1 : ( ( ) ( Relation-like NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) -defined the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) -valued Function-like finite FinSequence-like FinSubsequence-like ) FinSequence of ( ( ) ( non empty ) set ) ) ) : ( ( ) ( V85( TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) ) ) Element of K6( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( strict ) ( strict ) SubSpace of TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) ) : ( ( ) ( ) set ) , REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) ) ( Relation-like the carrier of ((TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) | (L~ b1 : ( ( ) ( Relation-like NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) -defined the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) -valued Function-like finite FinSequence-like FinSubsequence-like ) FinSequence of ( ( ) ( non empty ) set ) ) ) : ( ( ) ( V85( TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) ) ) Element of K6( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( strict ) ( strict ) SubSpace of TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) ) : ( ( ) ( ) set ) -defined REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) -valued Function-like V29( the carrier of ((TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) | (L~ b1 : ( ( ) ( Relation-like NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) -defined the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) -valued Function-like finite FinSequence-like FinSubsequence-like ) FinSequence of ( ( ) ( non empty ) set ) ) ) : ( ( ) ( V85( TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) ) ) Element of K6( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( strict ) ( strict ) SubSpace of TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) ) : ( ( ) ( ) set ) , REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) V89() V90() V91() ) Element of K6(K7( the carrier of ((TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) | (L~ b1 : ( ( ) ( Relation-like NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) -defined the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) -valued Function-like finite FinSequence-like FinSubsequence-like ) FinSequence of ( ( ) ( non empty ) set ) ) ) : ( ( ) ( V85( TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) ) ) Element of K6( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( strict ) ( strict ) SubSpace of TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) ) : ( ( ) ( ) set ) ,REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( V89() V90() V91() ) set ) ) : ( ( ) ( ) set ) ) : ( ( ) ( V11() real ext-real ) Element of REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) ;

theorem :: JORDAN5D:31
for p being ( ( ) ( V42(2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) FinSequence-like V91() ) Point of ( ( ) ( non empty ) set ) )
for h being ( ( non empty non constant V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) ( non empty non trivial Relation-like NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) -defined the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) -valued Function-like non constant finite FinSequence-like FinSubsequence-like V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) special_circular_sequence)
for I being ( ( ) ( epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real V99() V100() V101() V102() V103() V104() bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) st p : ( ( ) ( V42(2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) FinSequence-like V91() ) Point of ( ( ) ( non empty ) set ) ) in L~ h : ( ( non empty non constant V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) ( non empty non trivial Relation-like NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) -defined the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) -valued Function-like non constant finite FinSequence-like FinSubsequence-like V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) special_circular_sequence) : ( ( ) ( non empty V85( TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) ) ) Element of K6( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( ) set ) ) & 1 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) <= I : ( ( ) ( epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real V99() V100() V101() V102() V103() V104() bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) & I : ( ( ) ( epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real V99() V100() V101() V102() V103() V104() bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) <= width (GoB h : ( ( non empty non constant V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) ( non empty non trivial Relation-like NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) -defined the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) -valued Function-like non constant finite FinSequence-like FinSubsequence-like V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) special_circular_sequence) ) : ( ( tabular ) ( Relation-like non empty-yielding NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) -defined K266( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty functional FinSequence-membered ) M8( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) )) -valued Function-like finite FinSequence-like FinSubsequence-like tabular X_equal-in-line Y_equal-in-column Y_increasing-in-line X_increasing-in-column ) FinSequence of K266( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty functional FinSequence-membered ) M8( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) )) ) : ( ( ) ( epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real V99() V100() V101() V102() V103() V104() bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) holds
((GoB h : ( ( non empty non constant V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) ( non empty non trivial Relation-like NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) -defined the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) -valued Function-like non constant finite FinSequence-like FinSubsequence-like V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) special_circular_sequence) ) : ( ( tabular ) ( Relation-like non empty-yielding NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) -defined K266( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty functional FinSequence-membered ) M8( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) )) -valued Function-like finite FinSequence-like FinSubsequence-like tabular X_equal-in-line Y_equal-in-column Y_increasing-in-line X_increasing-in-column ) FinSequence of K266( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty functional FinSequence-membered ) M8( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) )) ) * (1 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ,I : ( ( ) ( epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real V99() V100() V101() V102() V103() V104() bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) )) : ( ( ) ( V42(2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) FinSequence-like V91() ) Element of the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) `1 : ( ( ) ( V11() real ext-real ) Element of REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) <= p : ( ( ) ( V42(2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) FinSequence-like V91() ) Point of ( ( ) ( non empty ) set ) ) `1 : ( ( ) ( V11() real ext-real ) Element of REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) ;

theorem :: JORDAN5D:32
for p being ( ( ) ( V42(2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) FinSequence-like V91() ) Point of ( ( ) ( non empty ) set ) )
for h being ( ( non empty non constant V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) ( non empty non trivial Relation-like NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) -defined the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) -valued Function-like non constant finite FinSequence-like FinSubsequence-like V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) special_circular_sequence)
for I being ( ( ) ( epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real V99() V100() V101() V102() V103() V104() bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) st p : ( ( ) ( V42(2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) FinSequence-like V91() ) Point of ( ( ) ( non empty ) set ) ) in L~ h : ( ( non empty non constant V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) ( non empty non trivial Relation-like NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) -defined the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) -valued Function-like non constant finite FinSequence-like FinSubsequence-like V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) special_circular_sequence) : ( ( ) ( non empty V85( TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) ) ) Element of K6( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( ) set ) ) & 1 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) <= I : ( ( ) ( epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real V99() V100() V101() V102() V103() V104() bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) & I : ( ( ) ( epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real V99() V100() V101() V102() V103() V104() bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) <= width (GoB h : ( ( non empty non constant V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) ( non empty non trivial Relation-like NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) -defined the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) -valued Function-like non constant finite FinSequence-like FinSubsequence-like V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) special_circular_sequence) ) : ( ( tabular ) ( Relation-like non empty-yielding NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) -defined K266( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty functional FinSequence-membered ) M8( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) )) -valued Function-like finite FinSequence-like FinSubsequence-like tabular X_equal-in-line Y_equal-in-column Y_increasing-in-line X_increasing-in-column ) FinSequence of K266( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty functional FinSequence-membered ) M8( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) )) ) : ( ( ) ( epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real V99() V100() V101() V102() V103() V104() bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) holds
p : ( ( ) ( V42(2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) FinSequence-like V91() ) Point of ( ( ) ( non empty ) set ) ) `1 : ( ( ) ( V11() real ext-real ) Element of REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) <= ((GoB h : ( ( non empty non constant V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) ( non empty non trivial Relation-like NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) -defined the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) -valued Function-like non constant finite FinSequence-like FinSubsequence-like V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) special_circular_sequence) ) : ( ( tabular ) ( Relation-like non empty-yielding NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) -defined K266( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty functional FinSequence-membered ) M8( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) )) -valued Function-like finite FinSequence-like FinSubsequence-like tabular X_equal-in-line Y_equal-in-column Y_increasing-in-line X_increasing-in-column ) FinSequence of K266( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty functional FinSequence-membered ) M8( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) )) ) * ((len (GoB h : ( ( non empty non constant V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) ( non empty non trivial Relation-like NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) -defined the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) -valued Function-like non constant finite FinSequence-like FinSubsequence-like V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) special_circular_sequence) ) : ( ( tabular ) ( Relation-like non empty-yielding NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) -defined K266( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty functional FinSequence-membered ) M8( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) )) -valued Function-like finite FinSequence-like FinSubsequence-like tabular X_equal-in-line Y_equal-in-column Y_increasing-in-line X_increasing-in-column ) FinSequence of K266( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty functional FinSequence-membered ) M8( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) )) ) ) : ( ( ) ( epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real V99() V100() V101() V102() V103() V104() bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ,I : ( ( ) ( epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real V99() V100() V101() V102() V103() V104() bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) )) : ( ( ) ( V42(2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) FinSequence-like V91() ) Element of the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) `1 : ( ( ) ( V11() real ext-real ) Element of REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) ;

theorem :: JORDAN5D:33
for p being ( ( ) ( V42(2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) FinSequence-like V91() ) Point of ( ( ) ( non empty ) set ) )
for h being ( ( non empty non constant V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) ( non empty non trivial Relation-like NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) -defined the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) -valued Function-like non constant finite FinSequence-like FinSubsequence-like V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) special_circular_sequence)
for I being ( ( ) ( epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real V99() V100() V101() V102() V103() V104() bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) st p : ( ( ) ( V42(2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) FinSequence-like V91() ) Point of ( ( ) ( non empty ) set ) ) in L~ h : ( ( non empty non constant V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) ( non empty non trivial Relation-like NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) -defined the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) -valued Function-like non constant finite FinSequence-like FinSubsequence-like V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) special_circular_sequence) : ( ( ) ( non empty V85( TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) ) ) Element of K6( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( ) set ) ) & 1 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) <= I : ( ( ) ( epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real V99() V100() V101() V102() V103() V104() bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) & I : ( ( ) ( epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real V99() V100() V101() V102() V103() V104() bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) <= len (GoB h : ( ( non empty non constant V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) ( non empty non trivial Relation-like NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) -defined the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) -valued Function-like non constant finite FinSequence-like FinSubsequence-like V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) special_circular_sequence) ) : ( ( tabular ) ( Relation-like non empty-yielding NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) -defined K266( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty functional FinSequence-membered ) M8( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) )) -valued Function-like finite FinSequence-like FinSubsequence-like tabular X_equal-in-line Y_equal-in-column Y_increasing-in-line X_increasing-in-column ) FinSequence of K266( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty functional FinSequence-membered ) M8( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) )) ) : ( ( ) ( epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real V99() V100() V101() V102() V103() V104() bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) holds
((GoB h : ( ( non empty non constant V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) ( non empty non trivial Relation-like NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) -defined the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) -valued Function-like non constant finite FinSequence-like FinSubsequence-like V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) special_circular_sequence) ) : ( ( tabular ) ( Relation-like non empty-yielding NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) -defined K266( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty functional FinSequence-membered ) M8( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) )) -valued Function-like finite FinSequence-like FinSubsequence-like tabular X_equal-in-line Y_equal-in-column Y_increasing-in-line X_increasing-in-column ) FinSequence of K266( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty functional FinSequence-membered ) M8( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) )) ) * (I : ( ( ) ( epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real V99() V100() V101() V102() V103() V104() bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ,1 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) )) : ( ( ) ( V42(2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) FinSequence-like V91() ) Element of the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) `2 : ( ( ) ( V11() real ext-real ) Element of REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) <= p : ( ( ) ( V42(2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) FinSequence-like V91() ) Point of ( ( ) ( non empty ) set ) ) `2 : ( ( ) ( V11() real ext-real ) Element of REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) ;

theorem :: JORDAN5D:34
for p being ( ( ) ( V42(2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) FinSequence-like V91() ) Point of ( ( ) ( non empty ) set ) )
for h being ( ( non empty non constant V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) ( non empty non trivial Relation-like NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) -defined the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) -valued Function-like non constant finite FinSequence-like FinSubsequence-like V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) special_circular_sequence)
for I being ( ( ) ( epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real V99() V100() V101() V102() V103() V104() bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) st p : ( ( ) ( V42(2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) FinSequence-like V91() ) Point of ( ( ) ( non empty ) set ) ) in L~ h : ( ( non empty non constant V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) ( non empty non trivial Relation-like NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) -defined the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) -valued Function-like non constant finite FinSequence-like FinSubsequence-like V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) special_circular_sequence) : ( ( ) ( non empty V85( TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) ) ) Element of K6( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( ) set ) ) & 1 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) <= I : ( ( ) ( epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real V99() V100() V101() V102() V103() V104() bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) & I : ( ( ) ( epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real V99() V100() V101() V102() V103() V104() bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) <= len (GoB h : ( ( non empty non constant V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) ( non empty non trivial Relation-like NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) -defined the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) -valued Function-like non constant finite FinSequence-like FinSubsequence-like V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) special_circular_sequence) ) : ( ( tabular ) ( Relation-like non empty-yielding NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) -defined K266( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty functional FinSequence-membered ) M8( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) )) -valued Function-like finite FinSequence-like FinSubsequence-like tabular X_equal-in-line Y_equal-in-column Y_increasing-in-line X_increasing-in-column ) FinSequence of K266( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty functional FinSequence-membered ) M8( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) )) ) : ( ( ) ( epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real V99() V100() V101() V102() V103() V104() bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) holds
p : ( ( ) ( V42(2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) FinSequence-like V91() ) Point of ( ( ) ( non empty ) set ) ) `2 : ( ( ) ( V11() real ext-real ) Element of REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) <= ((GoB h : ( ( non empty non constant V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) ( non empty non trivial Relation-like NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) -defined the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) -valued Function-like non constant finite FinSequence-like FinSubsequence-like V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) special_circular_sequence) ) : ( ( tabular ) ( Relation-like non empty-yielding NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) -defined K266( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty functional FinSequence-membered ) M8( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) )) -valued Function-like finite FinSequence-like FinSubsequence-like tabular X_equal-in-line Y_equal-in-column Y_increasing-in-line X_increasing-in-column ) FinSequence of K266( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty functional FinSequence-membered ) M8( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) )) ) * (I : ( ( ) ( epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real V99() V100() V101() V102() V103() V104() bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ,(width (GoB h : ( ( non empty non constant V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) ( non empty non trivial Relation-like NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) -defined the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) -valued Function-like non constant finite FinSequence-like FinSubsequence-like V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) special_circular_sequence) ) : ( ( tabular ) ( Relation-like non empty-yielding NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) -defined K266( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty functional FinSequence-membered ) M8( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) )) -valued Function-like finite FinSequence-like FinSubsequence-like tabular X_equal-in-line Y_equal-in-column Y_increasing-in-line X_increasing-in-column ) FinSequence of K266( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty functional FinSequence-membered ) M8( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) )) ) ) : ( ( ) ( epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real V99() V100() V101() V102() V103() V104() bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) )) : ( ( ) ( V42(2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) FinSequence-like V91() ) Element of the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) `2 : ( ( ) ( V11() real ext-real ) Element of REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) ;

theorem :: JORDAN5D:35
for h being ( ( non empty non constant V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) ( non empty non trivial Relation-like NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) -defined the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) -valued Function-like non constant finite FinSequence-like FinSubsequence-like V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) special_circular_sequence)
for i, j being ( ( ) ( epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real V99() V100() V101() V102() V103() V104() bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) st 1 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) <= i : ( ( ) ( epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real V99() V100() V101() V102() V103() V104() bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) & i : ( ( ) ( epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real V99() V100() V101() V102() V103() V104() bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) <= len (GoB h : ( ( non empty non constant V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) ( non empty non trivial Relation-like NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) -defined the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) -valued Function-like non constant finite FinSequence-like FinSubsequence-like V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) special_circular_sequence) ) : ( ( tabular ) ( Relation-like non empty-yielding NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) -defined K266( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty functional FinSequence-membered ) M8( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) )) -valued Function-like finite FinSequence-like FinSubsequence-like tabular X_equal-in-line Y_equal-in-column Y_increasing-in-line X_increasing-in-column ) FinSequence of K266( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty functional FinSequence-membered ) M8( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) )) ) : ( ( ) ( epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real V99() V100() V101() V102() V103() V104() bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) & 1 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) <= j : ( ( ) ( epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real V99() V100() V101() V102() V103() V104() bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) & j : ( ( ) ( epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real V99() V100() V101() V102() V103() V104() bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) <= width (GoB h : ( ( non empty non constant V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) ( non empty non trivial Relation-like NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) -defined the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) -valued Function-like non constant finite FinSequence-like FinSubsequence-like V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) special_circular_sequence) ) : ( ( tabular ) ( Relation-like non empty-yielding NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) -defined K266( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty functional FinSequence-membered ) M8( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) )) -valued Function-like finite FinSequence-like FinSubsequence-like tabular X_equal-in-line Y_equal-in-column Y_increasing-in-line X_increasing-in-column ) FinSequence of K266( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty functional FinSequence-membered ) M8( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) )) ) : ( ( ) ( epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real V99() V100() V101() V102() V103() V104() bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) holds
ex q being ( ( ) ( V42(2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) FinSequence-like V91() ) Point of ( ( ) ( non empty ) set ) ) st
( q : ( ( ) ( V42(2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) FinSequence-like V91() ) Point of ( ( ) ( non empty ) set ) ) `1 : ( ( ) ( V11() real ext-real ) Element of REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) = ((GoB h : ( ( non empty non constant V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) ( non empty non trivial Relation-like NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) -defined the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) -valued Function-like non constant finite FinSequence-like FinSubsequence-like V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) special_circular_sequence) ) : ( ( tabular ) ( Relation-like non empty-yielding NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) -defined K266( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty functional FinSequence-membered ) M8( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) )) -valued Function-like finite FinSequence-like FinSubsequence-like tabular X_equal-in-line Y_equal-in-column Y_increasing-in-line X_increasing-in-column ) FinSequence of K266( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty functional FinSequence-membered ) M8( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) )) ) * (i : ( ( ) ( epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real V99() V100() V101() V102() V103() V104() bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ,j : ( ( ) ( epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real V99() V100() V101() V102() V103() V104() bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) )) : ( ( ) ( V42(2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) FinSequence-like V91() ) Element of the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) `1 : ( ( ) ( V11() real ext-real ) Element of REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) & q : ( ( ) ( V42(2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) FinSequence-like V91() ) Point of ( ( ) ( non empty ) set ) ) in L~ h : ( ( non empty non constant V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) ( non empty non trivial Relation-like NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) -defined the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) -valued Function-like non constant finite FinSequence-like FinSubsequence-like V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) special_circular_sequence) : ( ( ) ( non empty V85( TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) ) ) Element of K6( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( ) set ) ) ) ;

theorem :: JORDAN5D:36
for h being ( ( non empty non constant V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) ( non empty non trivial Relation-like NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) -defined the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) -valued Function-like non constant finite FinSequence-like FinSubsequence-like V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) special_circular_sequence)
for i, j being ( ( ) ( epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real V99() V100() V101() V102() V103() V104() bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) st 1 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) <= i : ( ( ) ( epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real V99() V100() V101() V102() V103() V104() bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) & i : ( ( ) ( epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real V99() V100() V101() V102() V103() V104() bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) <= len (GoB h : ( ( non empty non constant V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) ( non empty non trivial Relation-like NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) -defined the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) -valued Function-like non constant finite FinSequence-like FinSubsequence-like V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) special_circular_sequence) ) : ( ( tabular ) ( Relation-like non empty-yielding NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) -defined K266( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty functional FinSequence-membered ) M8( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) )) -valued Function-like finite FinSequence-like FinSubsequence-like tabular X_equal-in-line Y_equal-in-column Y_increasing-in-line X_increasing-in-column ) FinSequence of K266( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty functional FinSequence-membered ) M8( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) )) ) : ( ( ) ( epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real V99() V100() V101() V102() V103() V104() bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) & 1 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) <= j : ( ( ) ( epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real V99() V100() V101() V102() V103() V104() bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) & j : ( ( ) ( epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real V99() V100() V101() V102() V103() V104() bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) <= width (GoB h : ( ( non empty non constant V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) ( non empty non trivial Relation-like NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) -defined the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) -valued Function-like non constant finite FinSequence-like FinSubsequence-like V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) special_circular_sequence) ) : ( ( tabular ) ( Relation-like non empty-yielding NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) -defined K266( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty functional FinSequence-membered ) M8( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) )) -valued Function-like finite FinSequence-like FinSubsequence-like tabular X_equal-in-line Y_equal-in-column Y_increasing-in-line X_increasing-in-column ) FinSequence of K266( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty functional FinSequence-membered ) M8( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) )) ) : ( ( ) ( epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real V99() V100() V101() V102() V103() V104() bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) holds
ex q being ( ( ) ( V42(2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) FinSequence-like V91() ) Point of ( ( ) ( non empty ) set ) ) st
( q : ( ( ) ( V42(2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) FinSequence-like V91() ) Point of ( ( ) ( non empty ) set ) ) `2 : ( ( ) ( V11() real ext-real ) Element of REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) = ((GoB h : ( ( non empty non constant V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) ( non empty non trivial Relation-like NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) -defined the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) -valued Function-like non constant finite FinSequence-like FinSubsequence-like V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) special_circular_sequence) ) : ( ( tabular ) ( Relation-like non empty-yielding NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) -defined K266( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty functional FinSequence-membered ) M8( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) )) -valued Function-like finite FinSequence-like FinSubsequence-like tabular X_equal-in-line Y_equal-in-column Y_increasing-in-line X_increasing-in-column ) FinSequence of K266( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty functional FinSequence-membered ) M8( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) )) ) * (i : ( ( ) ( epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real V99() V100() V101() V102() V103() V104() bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ,j : ( ( ) ( epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real V99() V100() V101() V102() V103() V104() bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) )) : ( ( ) ( V42(2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) FinSequence-like V91() ) Element of the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) `2 : ( ( ) ( V11() real ext-real ) Element of REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) & q : ( ( ) ( V42(2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) FinSequence-like V91() ) Point of ( ( ) ( non empty ) set ) ) in L~ h : ( ( non empty non constant V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) ( non empty non trivial Relation-like NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) -defined the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) -valued Function-like non constant finite FinSequence-like FinSubsequence-like V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) special_circular_sequence) : ( ( ) ( non empty V85( TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) ) ) Element of K6( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( ) set ) ) ) ;

theorem :: JORDAN5D:37
for h being ( ( non empty non constant V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) ( non empty non trivial Relation-like NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) -defined the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) -valued Function-like non constant finite FinSequence-like FinSubsequence-like V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) special_circular_sequence) holds W-bound (L~ h : ( ( non empty non constant V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) ( non empty non trivial Relation-like NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) -defined the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) -valued Function-like non constant finite FinSequence-like FinSubsequence-like V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) special_circular_sequence) ) : ( ( ) ( non empty V85( TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) ) ) Element of K6( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( ) set ) ) : ( ( ) ( V11() real ext-real ) Element of REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) = ((GoB h : ( ( non empty non constant V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) ( non empty non trivial Relation-like NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) -defined the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) -valued Function-like non constant finite FinSequence-like FinSubsequence-like V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) special_circular_sequence) ) : ( ( tabular ) ( Relation-like non empty-yielding NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) -defined K266( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty functional FinSequence-membered ) M8( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) )) -valued Function-like finite FinSequence-like FinSubsequence-like tabular X_equal-in-line Y_equal-in-column Y_increasing-in-line X_increasing-in-column ) FinSequence of K266( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty functional FinSequence-membered ) M8( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) )) ) * (1 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ,1 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) )) : ( ( ) ( V42(2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) FinSequence-like V91() ) Element of the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) `1 : ( ( ) ( V11() real ext-real ) Element of REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) ;

theorem :: JORDAN5D:38
for h being ( ( non empty non constant V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) ( non empty non trivial Relation-like NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) -defined the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) -valued Function-like non constant finite FinSequence-like FinSubsequence-like V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) special_circular_sequence) holds S-bound (L~ h : ( ( non empty non constant V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) ( non empty non trivial Relation-like NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) -defined the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) -valued Function-like non constant finite FinSequence-like FinSubsequence-like V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) special_circular_sequence) ) : ( ( ) ( non empty V85( TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) ) ) Element of K6( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( ) set ) ) : ( ( ) ( V11() real ext-real ) Element of REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) = ((GoB h : ( ( non empty non constant V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) ( non empty non trivial Relation-like NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) -defined the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) -valued Function-like non constant finite FinSequence-like FinSubsequence-like V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) special_circular_sequence) ) : ( ( tabular ) ( Relation-like non empty-yielding NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) -defined K266( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty functional FinSequence-membered ) M8( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) )) -valued Function-like finite FinSequence-like FinSubsequence-like tabular X_equal-in-line Y_equal-in-column Y_increasing-in-line X_increasing-in-column ) FinSequence of K266( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty functional FinSequence-membered ) M8( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) )) ) * (1 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ,1 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) )) : ( ( ) ( V42(2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) FinSequence-like V91() ) Element of the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) `2 : ( ( ) ( V11() real ext-real ) Element of REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) ;

theorem :: JORDAN5D:39
for h being ( ( non empty non constant V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) ( non empty non trivial Relation-like NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) -defined the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) -valued Function-like non constant finite FinSequence-like FinSubsequence-like V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) special_circular_sequence) holds E-bound (L~ h : ( ( non empty non constant V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) ( non empty non trivial Relation-like NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) -defined the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) -valued Function-like non constant finite FinSequence-like FinSubsequence-like V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) special_circular_sequence) ) : ( ( ) ( non empty V85( TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) ) ) Element of K6( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( ) set ) ) : ( ( ) ( V11() real ext-real ) Element of REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) = ((GoB h : ( ( non empty non constant V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) ( non empty non trivial Relation-like NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) -defined the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) -valued Function-like non constant finite FinSequence-like FinSubsequence-like V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) special_circular_sequence) ) : ( ( tabular ) ( Relation-like non empty-yielding NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) -defined K266( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty functional FinSequence-membered ) M8( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) )) -valued Function-like finite FinSequence-like FinSubsequence-like tabular X_equal-in-line Y_equal-in-column Y_increasing-in-line X_increasing-in-column ) FinSequence of K266( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty functional FinSequence-membered ) M8( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) )) ) * ((len (GoB h : ( ( non empty non constant V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) ( non empty non trivial Relation-like NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) -defined the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) -valued Function-like non constant finite FinSequence-like FinSubsequence-like V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) special_circular_sequence) ) : ( ( tabular ) ( Relation-like non empty-yielding NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) -defined K266( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty functional FinSequence-membered ) M8( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) )) -valued Function-like finite FinSequence-like FinSubsequence-like tabular X_equal-in-line Y_equal-in-column Y_increasing-in-line X_increasing-in-column ) FinSequence of K266( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty functional FinSequence-membered ) M8( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) )) ) ) : ( ( ) ( epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real V99() V100() V101() V102() V103() V104() bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ,1 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) )) : ( ( ) ( V42(2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) FinSequence-like V91() ) Element of the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) `1 : ( ( ) ( V11() real ext-real ) Element of REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) ;

theorem :: JORDAN5D:40
for h being ( ( non empty non constant V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) ( non empty non trivial Relation-like NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) -defined the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) -valued Function-like non constant finite FinSequence-like FinSubsequence-like V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) special_circular_sequence) holds N-bound (L~ h : ( ( non empty non constant V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) ( non empty non trivial Relation-like NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) -defined the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) -valued Function-like non constant finite FinSequence-like FinSubsequence-like V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) special_circular_sequence) ) : ( ( ) ( non empty V85( TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) ) ) Element of K6( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( ) set ) ) : ( ( ) ( V11() real ext-real ) Element of REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) = ((GoB h : ( ( non empty non constant V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) ( non empty non trivial Relation-like NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) -defined the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) -valued Function-like non constant finite FinSequence-like FinSubsequence-like V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) special_circular_sequence) ) : ( ( tabular ) ( Relation-like non empty-yielding NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) -defined K266( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty functional FinSequence-membered ) M8( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) )) -valued Function-like finite FinSequence-like FinSubsequence-like tabular X_equal-in-line Y_equal-in-column Y_increasing-in-line X_increasing-in-column ) FinSequence of K266( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty functional FinSequence-membered ) M8( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) )) ) * (1 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ,(width (GoB h : ( ( non empty non constant V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) ( non empty non trivial Relation-like NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) -defined the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) -valued Function-like non constant finite FinSequence-like FinSubsequence-like V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) special_circular_sequence) ) : ( ( tabular ) ( Relation-like non empty-yielding NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) -defined K266( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty functional FinSequence-membered ) M8( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) )) -valued Function-like finite FinSequence-like FinSubsequence-like tabular X_equal-in-line Y_equal-in-column Y_increasing-in-line X_increasing-in-column ) FinSequence of K266( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty functional FinSequence-membered ) M8( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) )) ) ) : ( ( ) ( epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real V99() V100() V101() V102() V103() V104() bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) )) : ( ( ) ( V42(2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) FinSequence-like V91() ) Element of the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) `2 : ( ( ) ( V11() real ext-real ) Element of REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) ;

theorem :: JORDAN5D:41
for f being ( ( non empty ) ( non empty Relation-like NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) -defined the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) -valued Function-like finite FinSequence-like FinSubsequence-like ) FinSequence of ( ( ) ( non empty ) set ) )
for i, I, i1 being ( ( ) ( epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real V99() V100() V101() V102() V103() V104() bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) )
for Y being ( ( non empty finite ) ( non empty finite V99() V100() V101() V102() V103() V104() left_end right_end bounded_below bounded_above real-bounded ) Subset of ( ( ) ( ) set ) ) st 1 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) <= i : ( ( ) ( epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real V99() V100() V101() V102() V103() V104() bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) & i : ( ( ) ( epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real V99() V100() V101() V102() V103() V104() bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) <= len f : ( ( non empty ) ( non empty Relation-like NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) -defined the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) -valued Function-like finite FinSequence-like FinSubsequence-like ) FinSequence of ( ( ) ( non empty ) set ) ) : ( ( ) ( epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real V99() V100() V101() V102() V103() V104() bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) & 1 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) <= I : ( ( ) ( epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real V99() V100() V101() V102() V103() V104() bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) & I : ( ( ) ( epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real V99() V100() V101() V102() V103() V104() bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) <= len (GoB f : ( ( non empty ) ( non empty Relation-like NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) -defined the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) -valued Function-like finite FinSequence-like FinSubsequence-like ) FinSequence of ( ( ) ( non empty ) set ) ) ) : ( ( tabular ) ( Relation-like non empty-yielding NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) -defined K266( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty functional FinSequence-membered ) M8( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) )) -valued Function-like finite FinSequence-like FinSubsequence-like tabular X_equal-in-line Y_equal-in-column Y_increasing-in-line X_increasing-in-column ) FinSequence of K266( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty functional FinSequence-membered ) M8( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) )) ) : ( ( ) ( epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real V99() V100() V101() V102() V103() V104() bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) & Y : ( ( non empty finite ) ( non empty finite V99() V100() V101() V102() V103() V104() left_end right_end bounded_below bounded_above real-bounded ) Subset of ( ( ) ( ) set ) ) = { j : ( ( ) ( epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real V99() V100() V101() V102() V103() V104() bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) where j is ( ( ) ( epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real V99() V100() V101() V102() V103() V104() bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) : ( [I : ( ( ) ( epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real V99() V100() V101() V102() V103() V104() bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ,j : ( ( ) ( epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real V99() V100() V101() V102() V103() V104() bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ] : ( ( ) ( ) set ) in Indices (GoB f : ( ( non empty ) ( non empty Relation-like NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) -defined the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) -valued Function-like finite FinSequence-like FinSubsequence-like ) FinSequence of ( ( ) ( non empty ) set ) ) ) : ( ( tabular ) ( Relation-like non empty-yielding NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) -defined K266( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty functional FinSequence-membered ) M8( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) )) -valued Function-like finite FinSequence-like FinSubsequence-like tabular X_equal-in-line Y_equal-in-column Y_increasing-in-line X_increasing-in-column ) FinSequence of K266( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty functional FinSequence-membered ) M8( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) )) ) : ( ( ) ( ) set ) & ex k being ( ( ) ( epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real V99() V100() V101() V102() V103() V104() bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) st
( k : ( ( ) ( epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real V99() V100() V101() V102() V103() V104() bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) in dom f : ( ( non empty ) ( non empty Relation-like NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) -defined the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) -valued Function-like finite FinSequence-like FinSubsequence-like ) FinSequence of ( ( ) ( non empty ) set ) ) : ( ( ) ( finite V99() V100() V101() V102() V103() V104() bounded_below bounded_above real-bounded ) Element of K6(NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( ) ( ) set ) ) & f : ( ( non empty ) ( non empty Relation-like NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) -defined the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) -valued Function-like finite FinSequence-like FinSubsequence-like ) FinSequence of ( ( ) ( non empty ) set ) ) /. k : ( ( ) ( epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real V99() V100() V101() V102() V103() V104() bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( ) ( V42(2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) FinSequence-like V91() ) Element of the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) = (GoB f : ( ( non empty ) ( non empty Relation-like NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) -defined the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) -valued Function-like finite FinSequence-like FinSubsequence-like ) FinSequence of ( ( ) ( non empty ) set ) ) ) : ( ( tabular ) ( Relation-like non empty-yielding NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) -defined K266( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty functional FinSequence-membered ) M8( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) )) -valued Function-like finite FinSequence-like FinSubsequence-like tabular X_equal-in-line Y_equal-in-column Y_increasing-in-line X_increasing-in-column ) FinSequence of K266( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty functional FinSequence-membered ) M8( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) )) ) * (I : ( ( ) ( epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real V99() V100() V101() V102() V103() V104() bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ,j : ( ( ) ( epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real V99() V100() V101() V102() V103() V104() bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( ) ( V42(2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) FinSequence-like V91() ) Element of the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) ) )
}
& (f : ( ( non empty ) ( non empty Relation-like NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) -defined the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) -valued Function-like finite FinSequence-like FinSubsequence-like ) FinSequence of ( ( ) ( non empty ) set ) ) /. i : ( ( ) ( epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real V99() V100() V101() V102() V103() V104() bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( ) ( V42(2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) FinSequence-like V91() ) Element of the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) `1 : ( ( ) ( V11() real ext-real ) Element of REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) = ((GoB f : ( ( non empty ) ( non empty Relation-like NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) -defined the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) -valued Function-like finite FinSequence-like FinSubsequence-like ) FinSequence of ( ( ) ( non empty ) set ) ) ) : ( ( tabular ) ( Relation-like non empty-yielding NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) -defined K266( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty functional FinSequence-membered ) M8( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) )) -valued Function-like finite FinSequence-like FinSubsequence-like tabular X_equal-in-line Y_equal-in-column Y_increasing-in-line X_increasing-in-column ) FinSequence of K266( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty functional FinSequence-membered ) M8( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) )) ) * (I : ( ( ) ( epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real V99() V100() V101() V102() V103() V104() bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ,1 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) )) : ( ( ) ( V42(2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) FinSequence-like V91() ) Element of the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) `1 : ( ( ) ( V11() real ext-real ) Element of REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) & i1 : ( ( ) ( epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real V99() V100() V101() V102() V103() V104() bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) = min Y : ( ( non empty finite ) ( non empty finite V99() V100() V101() V102() V103() V104() left_end right_end bounded_below bounded_above real-bounded ) Subset of ( ( ) ( ) set ) ) : ( ( ) ( epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real V99() V100() V101() V102() V103() V104() bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) holds
((GoB f : ( ( non empty ) ( non empty Relation-like NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) -defined the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) -valued Function-like finite FinSequence-like FinSubsequence-like ) FinSequence of ( ( ) ( non empty ) set ) ) ) : ( ( tabular ) ( Relation-like non empty-yielding NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) -defined K266( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty functional FinSequence-membered ) M8( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) )) -valued Function-like finite FinSequence-like FinSubsequence-like tabular X_equal-in-line Y_equal-in-column Y_increasing-in-line X_increasing-in-column ) FinSequence of K266( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty functional FinSequence-membered ) M8( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) )) ) * (I : ( ( ) ( epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real V99() V100() V101() V102() V103() V104() bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ,i1 : ( ( ) ( epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real V99() V100() V101() V102() V103() V104() bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) )) : ( ( ) ( V42(2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) FinSequence-like V91() ) Element of the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) `2 : ( ( ) ( V11() real ext-real ) Element of REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) <= (f : ( ( non empty ) ( non empty Relation-like NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) -defined the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) -valued Function-like finite FinSequence-like FinSubsequence-like ) FinSequence of ( ( ) ( non empty ) set ) ) /. i : ( ( ) ( epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real V99() V100() V101() V102() V103() V104() bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( ) ( V42(2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) FinSequence-like V91() ) Element of the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) `2 : ( ( ) ( V11() real ext-real ) Element of REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) ;

theorem :: JORDAN5D:42
for h being ( ( non empty non constant V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) ( non empty non trivial Relation-like NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) -defined the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) -valued Function-like non constant finite FinSequence-like FinSubsequence-like V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) special_circular_sequence)
for i, I, i1 being ( ( ) ( epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real V99() V100() V101() V102() V103() V104() bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) )
for Y being ( ( non empty finite ) ( non empty finite V99() V100() V101() V102() V103() V104() left_end right_end bounded_below bounded_above real-bounded ) Subset of ( ( ) ( ) set ) ) st 1 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) <= i : ( ( ) ( epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real V99() V100() V101() V102() V103() V104() bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) & i : ( ( ) ( epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real V99() V100() V101() V102() V103() V104() bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) <= len h : ( ( non empty non constant V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) ( non empty non trivial Relation-like NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) -defined the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) -valued Function-like non constant finite FinSequence-like FinSubsequence-like V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) special_circular_sequence) : ( ( ) ( epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real V99() V100() V101() V102() V103() V104() bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) & 1 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) <= I : ( ( ) ( epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real V99() V100() V101() V102() V103() V104() bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) & I : ( ( ) ( epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real V99() V100() V101() V102() V103() V104() bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) <= width (GoB h : ( ( non empty non constant V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) ( non empty non trivial Relation-like NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) -defined the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) -valued Function-like non constant finite FinSequence-like FinSubsequence-like V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) special_circular_sequence) ) : ( ( tabular ) ( Relation-like non empty-yielding NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) -defined K266( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty functional FinSequence-membered ) M8( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) )) -valued Function-like finite FinSequence-like FinSubsequence-like tabular X_equal-in-line Y_equal-in-column Y_increasing-in-line X_increasing-in-column ) FinSequence of K266( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty functional FinSequence-membered ) M8( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) )) ) : ( ( ) ( epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real V99() V100() V101() V102() V103() V104() bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) & Y : ( ( non empty finite ) ( non empty finite V99() V100() V101() V102() V103() V104() left_end right_end bounded_below bounded_above real-bounded ) Subset of ( ( ) ( ) set ) ) = { j : ( ( ) ( epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real V99() V100() V101() V102() V103() V104() bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) where j is ( ( ) ( epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real V99() V100() V101() V102() V103() V104() bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) : ( [j : ( ( ) ( epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real V99() V100() V101() V102() V103() V104() bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ,I : ( ( ) ( epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real V99() V100() V101() V102() V103() V104() bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ] : ( ( ) ( ) set ) in Indices (GoB h : ( ( non empty non constant V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) ( non empty non trivial Relation-like NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) -defined the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) -valued Function-like non constant finite FinSequence-like FinSubsequence-like V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) special_circular_sequence) ) : ( ( tabular ) ( Relation-like non empty-yielding NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) -defined K266( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty functional FinSequence-membered ) M8( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) )) -valued Function-like finite FinSequence-like FinSubsequence-like tabular X_equal-in-line Y_equal-in-column Y_increasing-in-line X_increasing-in-column ) FinSequence of K266( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty functional FinSequence-membered ) M8( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) )) ) : ( ( ) ( ) set ) & ex k being ( ( ) ( epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real V99() V100() V101() V102() V103() V104() bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) st
( k : ( ( ) ( epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real V99() V100() V101() V102() V103() V104() bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) in dom h : ( ( non empty non constant V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) ( non empty non trivial Relation-like NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) -defined the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) -valued Function-like non constant finite FinSequence-like FinSubsequence-like V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) special_circular_sequence) : ( ( ) ( non trivial finite V99() V100() V101() V102() V103() V104() bounded_below bounded_above real-bounded ) Element of K6(NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( ) ( ) set ) ) & h : ( ( non empty non constant V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) ( non empty non trivial Relation-like NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) -defined the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) -valued Function-like non constant finite FinSequence-like FinSubsequence-like V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) special_circular_sequence) /. k : ( ( ) ( epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real V99() V100() V101() V102() V103() V104() bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( ) ( V42(2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) FinSequence-like V91() ) Element of the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) = (GoB h : ( ( non empty non constant V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) ( non empty non trivial Relation-like NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) -defined the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) -valued Function-like non constant finite FinSequence-like FinSubsequence-like V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) special_circular_sequence) ) : ( ( tabular ) ( Relation-like non empty-yielding NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) -defined K266( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty functional FinSequence-membered ) M8( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) )) -valued Function-like finite FinSequence-like FinSubsequence-like tabular X_equal-in-line Y_equal-in-column Y_increasing-in-line X_increasing-in-column ) FinSequence of K266( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty functional FinSequence-membered ) M8( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) )) ) * (j : ( ( ) ( epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real V99() V100() V101() V102() V103() V104() bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ,I : ( ( ) ( epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real V99() V100() V101() V102() V103() V104() bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( ) ( V42(2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) FinSequence-like V91() ) Element of the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) ) )
}
& (h : ( ( non empty non constant V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) ( non empty non trivial Relation-like NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) -defined the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) -valued Function-like non constant finite FinSequence-like FinSubsequence-like V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) special_circular_sequence) /. i : ( ( ) ( epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real V99() V100() V101() V102() V103() V104() bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( ) ( V42(2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) FinSequence-like V91() ) Element of the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) `2 : ( ( ) ( V11() real ext-real ) Element of REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) = ((GoB h : ( ( non empty non constant V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) ( non empty non trivial Relation-like NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) -defined the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) -valued Function-like non constant finite FinSequence-like FinSubsequence-like V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) special_circular_sequence) ) : ( ( tabular ) ( Relation-like non empty-yielding NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) -defined K266( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty functional FinSequence-membered ) M8( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) )) -valued Function-like finite FinSequence-like FinSubsequence-like tabular X_equal-in-line Y_equal-in-column Y_increasing-in-line X_increasing-in-column ) FinSequence of K266( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty functional FinSequence-membered ) M8( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) )) ) * (1 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ,I : ( ( ) ( epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real V99() V100() V101() V102() V103() V104() bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) )) : ( ( ) ( V42(2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) FinSequence-like V91() ) Element of the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) `2 : ( ( ) ( V11() real ext-real ) Element of REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) & i1 : ( ( ) ( epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real V99() V100() V101() V102() V103() V104() bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) = min Y : ( ( non empty finite ) ( non empty finite V99() V100() V101() V102() V103() V104() left_end right_end bounded_below bounded_above real-bounded ) Subset of ( ( ) ( ) set ) ) : ( ( ) ( epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real V99() V100() V101() V102() V103() V104() bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) holds
((GoB h : ( ( non empty non constant V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) ( non empty non trivial Relation-like NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) -defined the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) -valued Function-like non constant finite FinSequence-like FinSubsequence-like V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) special_circular_sequence) ) : ( ( tabular ) ( Relation-like non empty-yielding NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) -defined K266( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty functional FinSequence-membered ) M8( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) )) -valued Function-like finite FinSequence-like FinSubsequence-like tabular X_equal-in-line Y_equal-in-column Y_increasing-in-line X_increasing-in-column ) FinSequence of K266( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty functional FinSequence-membered ) M8( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) )) ) * (i1 : ( ( ) ( epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real V99() V100() V101() V102() V103() V104() bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ,I : ( ( ) ( epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real V99() V100() V101() V102() V103() V104() bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) )) : ( ( ) ( V42(2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) FinSequence-like V91() ) Element of the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) `1 : ( ( ) ( V11() real ext-real ) Element of REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) <= (h : ( ( non empty non constant V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) ( non empty non trivial Relation-like NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) -defined the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) -valued Function-like non constant finite FinSequence-like FinSubsequence-like V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) special_circular_sequence) /. i : ( ( ) ( epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real V99() V100() V101() V102() V103() V104() bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( ) ( V42(2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) FinSequence-like V91() ) Element of the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) `1 : ( ( ) ( V11() real ext-real ) Element of REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) ;

theorem :: JORDAN5D:43
for h being ( ( non empty non constant V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) ( non empty non trivial Relation-like NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) -defined the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) -valued Function-like non constant finite FinSequence-like FinSubsequence-like V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) special_circular_sequence)
for i, I, i1 being ( ( ) ( epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real V99() V100() V101() V102() V103() V104() bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) )
for Y being ( ( non empty finite ) ( non empty finite V99() V100() V101() V102() V103() V104() left_end right_end bounded_below bounded_above real-bounded ) Subset of ( ( ) ( ) set ) ) st 1 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) <= i : ( ( ) ( epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real V99() V100() V101() V102() V103() V104() bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) & i : ( ( ) ( epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real V99() V100() V101() V102() V103() V104() bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) <= len h : ( ( non empty non constant V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) ( non empty non trivial Relation-like NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) -defined the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) -valued Function-like non constant finite FinSequence-like FinSubsequence-like V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) special_circular_sequence) : ( ( ) ( epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real V99() V100() V101() V102() V103() V104() bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) & 1 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) <= I : ( ( ) ( epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real V99() V100() V101() V102() V103() V104() bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) & I : ( ( ) ( epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real V99() V100() V101() V102() V103() V104() bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) <= width (GoB h : ( ( non empty non constant V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) ( non empty non trivial Relation-like NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) -defined the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) -valued Function-like non constant finite FinSequence-like FinSubsequence-like V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) special_circular_sequence) ) : ( ( tabular ) ( Relation-like non empty-yielding NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) -defined K266( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty functional FinSequence-membered ) M8( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) )) -valued Function-like finite FinSequence-like FinSubsequence-like tabular X_equal-in-line Y_equal-in-column Y_increasing-in-line X_increasing-in-column ) FinSequence of K266( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty functional FinSequence-membered ) M8( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) )) ) : ( ( ) ( epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real V99() V100() V101() V102() V103() V104() bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) & Y : ( ( non empty finite ) ( non empty finite V99() V100() V101() V102() V103() V104() left_end right_end bounded_below bounded_above real-bounded ) Subset of ( ( ) ( ) set ) ) = { j : ( ( ) ( epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real V99() V100() V101() V102() V103() V104() bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) where j is ( ( ) ( epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real V99() V100() V101() V102() V103() V104() bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) : ( [j : ( ( ) ( epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real V99() V100() V101() V102() V103() V104() bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ,I : ( ( ) ( epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real V99() V100() V101() V102() V103() V104() bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ] : ( ( ) ( ) set ) in Indices (GoB h : ( ( non empty non constant V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) ( non empty non trivial Relation-like NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) -defined the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) -valued Function-like non constant finite FinSequence-like FinSubsequence-like V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) special_circular_sequence) ) : ( ( tabular ) ( Relation-like non empty-yielding NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) -defined K266( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty functional FinSequence-membered ) M8( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) )) -valued Function-like finite FinSequence-like FinSubsequence-like tabular X_equal-in-line Y_equal-in-column Y_increasing-in-line X_increasing-in-column ) FinSequence of K266( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty functional FinSequence-membered ) M8( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) )) ) : ( ( ) ( ) set ) & ex k being ( ( ) ( epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real V99() V100() V101() V102() V103() V104() bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) st
( k : ( ( ) ( epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real V99() V100() V101() V102() V103() V104() bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) in dom h : ( ( non empty non constant V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) ( non empty non trivial Relation-like NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) -defined the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) -valued Function-like non constant finite FinSequence-like FinSubsequence-like V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) special_circular_sequence) : ( ( ) ( non trivial finite V99() V100() V101() V102() V103() V104() bounded_below bounded_above real-bounded ) Element of K6(NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( ) ( ) set ) ) & h : ( ( non empty non constant V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) ( non empty non trivial Relation-like NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) -defined the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) -valued Function-like non constant finite FinSequence-like FinSubsequence-like V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) special_circular_sequence) /. k : ( ( ) ( epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real V99() V100() V101() V102() V103() V104() bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( ) ( V42(2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) FinSequence-like V91() ) Element of the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) = (GoB h : ( ( non empty non constant V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) ( non empty non trivial Relation-like NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) -defined the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) -valued Function-like non constant finite FinSequence-like FinSubsequence-like V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) special_circular_sequence) ) : ( ( tabular ) ( Relation-like non empty-yielding NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) -defined K266( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty functional FinSequence-membered ) M8( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) )) -valued Function-like finite FinSequence-like FinSubsequence-like tabular X_equal-in-line Y_equal-in-column Y_increasing-in-line X_increasing-in-column ) FinSequence of K266( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty functional FinSequence-membered ) M8( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) )) ) * (j : ( ( ) ( epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real V99() V100() V101() V102() V103() V104() bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ,I : ( ( ) ( epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real V99() V100() V101() V102() V103() V104() bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( ) ( V42(2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) FinSequence-like V91() ) Element of the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) ) )
}
& (h : ( ( non empty non constant V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) ( non empty non trivial Relation-like NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) -defined the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) -valued Function-like non constant finite FinSequence-like FinSubsequence-like V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) special_circular_sequence) /. i : ( ( ) ( epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real V99() V100() V101() V102() V103() V104() bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( ) ( V42(2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) FinSequence-like V91() ) Element of the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) `2 : ( ( ) ( V11() real ext-real ) Element of REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) = ((GoB h : ( ( non empty non constant V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) ( non empty non trivial Relation-like NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) -defined the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) -valued Function-like non constant finite FinSequence-like FinSubsequence-like V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) special_circular_sequence) ) : ( ( tabular ) ( Relation-like non empty-yielding NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) -defined K266( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty functional FinSequence-membered ) M8( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) )) -valued Function-like finite FinSequence-like FinSubsequence-like tabular X_equal-in-line Y_equal-in-column Y_increasing-in-line X_increasing-in-column ) FinSequence of K266( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty functional FinSequence-membered ) M8( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) )) ) * (1 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ,I : ( ( ) ( epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real V99() V100() V101() V102() V103() V104() bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) )) : ( ( ) ( V42(2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) FinSequence-like V91() ) Element of the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) `2 : ( ( ) ( V11() real ext-real ) Element of REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) & i1 : ( ( ) ( epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real V99() V100() V101() V102() V103() V104() bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) = max Y : ( ( non empty finite ) ( non empty finite V99() V100() V101() V102() V103() V104() left_end right_end bounded_below bounded_above real-bounded ) Subset of ( ( ) ( ) set ) ) : ( ( ext-real ) ( epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real ) set ) holds
((GoB h : ( ( non empty non constant V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) ( non empty non trivial Relation-like NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) -defined the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) -valued Function-like non constant finite FinSequence-like FinSubsequence-like V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) special_circular_sequence) ) : ( ( tabular ) ( Relation-like non empty-yielding NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) -defined K266( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty functional FinSequence-membered ) M8( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) )) -valued Function-like finite FinSequence-like FinSubsequence-like tabular X_equal-in-line Y_equal-in-column Y_increasing-in-line X_increasing-in-column ) FinSequence of K266( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty functional FinSequence-membered ) M8( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) )) ) * (i1 : ( ( ) ( epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real V99() V100() V101() V102() V103() V104() bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ,I : ( ( ) ( epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real V99() V100() V101() V102() V103() V104() bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) )) : ( ( ) ( V42(2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) FinSequence-like V91() ) Element of the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) `1 : ( ( ) ( V11() real ext-real ) Element of REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) >= (h : ( ( non empty non constant V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) ( non empty non trivial Relation-like NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) -defined the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) -valued Function-like non constant finite FinSequence-like FinSubsequence-like V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) special_circular_sequence) /. i : ( ( ) ( epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real V99() V100() V101() V102() V103() V104() bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( ) ( V42(2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) FinSequence-like V91() ) Element of the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) `1 : ( ( ) ( V11() real ext-real ) Element of REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) ;

theorem :: JORDAN5D:44
for f being ( ( non empty ) ( non empty Relation-like NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) -defined the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) -valued Function-like finite FinSequence-like FinSubsequence-like ) FinSequence of ( ( ) ( non empty ) set ) )
for i, I, i1 being ( ( ) ( epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real V99() V100() V101() V102() V103() V104() bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) )
for Y being ( ( non empty finite ) ( non empty finite V99() V100() V101() V102() V103() V104() left_end right_end bounded_below bounded_above real-bounded ) Subset of ( ( ) ( ) set ) ) st 1 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) <= i : ( ( ) ( epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real V99() V100() V101() V102() V103() V104() bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) & i : ( ( ) ( epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real V99() V100() V101() V102() V103() V104() bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) <= len f : ( ( non empty ) ( non empty Relation-like NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) -defined the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) -valued Function-like finite FinSequence-like FinSubsequence-like ) FinSequence of ( ( ) ( non empty ) set ) ) : ( ( ) ( epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real V99() V100() V101() V102() V103() V104() bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) & 1 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) <= I : ( ( ) ( epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real V99() V100() V101() V102() V103() V104() bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) & I : ( ( ) ( epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real V99() V100() V101() V102() V103() V104() bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) <= len (GoB f : ( ( non empty ) ( non empty Relation-like NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) -defined the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) -valued Function-like finite FinSequence-like FinSubsequence-like ) FinSequence of ( ( ) ( non empty ) set ) ) ) : ( ( tabular ) ( Relation-like non empty-yielding NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) -defined K266( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty functional FinSequence-membered ) M8( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) )) -valued Function-like finite FinSequence-like FinSubsequence-like tabular X_equal-in-line Y_equal-in-column Y_increasing-in-line X_increasing-in-column ) FinSequence of K266( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty functional FinSequence-membered ) M8( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) )) ) : ( ( ) ( epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real V99() V100() V101() V102() V103() V104() bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) & Y : ( ( non empty finite ) ( non empty finite V99() V100() V101() V102() V103() V104() left_end right_end bounded_below bounded_above real-bounded ) Subset of ( ( ) ( ) set ) ) = { j : ( ( ) ( epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real V99() V100() V101() V102() V103() V104() bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) where j is ( ( ) ( epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real V99() V100() V101() V102() V103() V104() bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) : ( [I : ( ( ) ( epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real V99() V100() V101() V102() V103() V104() bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ,j : ( ( ) ( epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real V99() V100() V101() V102() V103() V104() bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ] : ( ( ) ( ) set ) in Indices (GoB f : ( ( non empty ) ( non empty Relation-like NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) -defined the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) -valued Function-like finite FinSequence-like FinSubsequence-like ) FinSequence of ( ( ) ( non empty ) set ) ) ) : ( ( tabular ) ( Relation-like non empty-yielding NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) -defined K266( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty functional FinSequence-membered ) M8( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) )) -valued Function-like finite FinSequence-like FinSubsequence-like tabular X_equal-in-line Y_equal-in-column Y_increasing-in-line X_increasing-in-column ) FinSequence of K266( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty functional FinSequence-membered ) M8( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) )) ) : ( ( ) ( ) set ) & ex k being ( ( ) ( epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real V99() V100() V101() V102() V103() V104() bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) st
( k : ( ( ) ( epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real V99() V100() V101() V102() V103() V104() bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) in dom f : ( ( non empty ) ( non empty Relation-like NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) -defined the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) -valued Function-like finite FinSequence-like FinSubsequence-like ) FinSequence of ( ( ) ( non empty ) set ) ) : ( ( ) ( finite V99() V100() V101() V102() V103() V104() bounded_below bounded_above real-bounded ) Element of K6(NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( ) ( ) set ) ) & f : ( ( non empty ) ( non empty Relation-like NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) -defined the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) -valued Function-like finite FinSequence-like FinSubsequence-like ) FinSequence of ( ( ) ( non empty ) set ) ) /. k : ( ( ) ( epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real V99() V100() V101() V102() V103() V104() bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( ) ( V42(2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) FinSequence-like V91() ) Element of the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) = (GoB f : ( ( non empty ) ( non empty Relation-like NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) -defined the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) -valued Function-like finite FinSequence-like FinSubsequence-like ) FinSequence of ( ( ) ( non empty ) set ) ) ) : ( ( tabular ) ( Relation-like non empty-yielding NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) -defined K266( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty functional FinSequence-membered ) M8( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) )) -valued Function-like finite FinSequence-like FinSubsequence-like tabular X_equal-in-line Y_equal-in-column Y_increasing-in-line X_increasing-in-column ) FinSequence of K266( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty functional FinSequence-membered ) M8( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) )) ) * (I : ( ( ) ( epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real V99() V100() V101() V102() V103() V104() bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ,j : ( ( ) ( epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real V99() V100() V101() V102() V103() V104() bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( ) ( V42(2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) FinSequence-like V91() ) Element of the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) ) )
}
& (f : ( ( non empty ) ( non empty Relation-like NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) -defined the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) -valued Function-like finite FinSequence-like FinSubsequence-like ) FinSequence of ( ( ) ( non empty ) set ) ) /. i : ( ( ) ( epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real V99() V100() V101() V102() V103() V104() bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( ) ( V42(2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) FinSequence-like V91() ) Element of the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) `1 : ( ( ) ( V11() real ext-real ) Element of REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) = ((GoB f : ( ( non empty ) ( non empty Relation-like NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) -defined the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) -valued Function-like finite FinSequence-like FinSubsequence-like ) FinSequence of ( ( ) ( non empty ) set ) ) ) : ( ( tabular ) ( Relation-like non empty-yielding NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) -defined K266( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty functional FinSequence-membered ) M8( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) )) -valued Function-like finite FinSequence-like FinSubsequence-like tabular X_equal-in-line Y_equal-in-column Y_increasing-in-line X_increasing-in-column ) FinSequence of K266( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty functional FinSequence-membered ) M8( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) )) ) * (I : ( ( ) ( epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real V99() V100() V101() V102() V103() V104() bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ,1 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) )) : ( ( ) ( V42(2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) FinSequence-like V91() ) Element of the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) `1 : ( ( ) ( V11() real ext-real ) Element of REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) & i1 : ( ( ) ( epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real V99() V100() V101() V102() V103() V104() bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) = max Y : ( ( non empty finite ) ( non empty finite V99() V100() V101() V102() V103() V104() left_end right_end bounded_below bounded_above real-bounded ) Subset of ( ( ) ( ) set ) ) : ( ( ext-real ) ( epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real ) set ) holds
((GoB f : ( ( non empty ) ( non empty Relation-like NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) -defined the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) -valued Function-like finite FinSequence-like FinSubsequence-like ) FinSequence of ( ( ) ( non empty ) set ) ) ) : ( ( tabular ) ( Relation-like non empty-yielding NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) -defined K266( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty functional FinSequence-membered ) M8( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) )) -valued Function-like finite FinSequence-like FinSubsequence-like tabular X_equal-in-line Y_equal-in-column Y_increasing-in-line X_increasing-in-column ) FinSequence of K266( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty functional FinSequence-membered ) M8( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) )) ) * (I : ( ( ) ( epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real V99() V100() V101() V102() V103() V104() bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ,i1 : ( ( ) ( epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real V99() V100() V101() V102() V103() V104() bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) )) : ( ( ) ( V42(2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) FinSequence-like V91() ) Element of the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) `2 : ( ( ) ( V11() real ext-real ) Element of REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) >= (f : ( ( non empty ) ( non empty Relation-like NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) -defined the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) -valued Function-like finite FinSequence-like FinSubsequence-like ) FinSequence of ( ( ) ( non empty ) set ) ) /. i : ( ( ) ( epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real V99() V100() V101() V102() V103() V104() bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( ) ( V42(2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) FinSequence-like V91() ) Element of the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) `2 : ( ( ) ( V11() real ext-real ) Element of REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) ;

begin

definition
let g be ( ( non empty non constant V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) ( non empty non trivial Relation-like NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) -defined the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) -valued Function-like non constant finite FinSequence-like FinSubsequence-like V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) special_circular_sequence) ;
func i_s_w g -> ( ( ) ( epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real V99() V100() V101() V102() V103() V104() bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) means :: JORDAN5D:def 1
( [1 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ,it : ( ( ) ( ) Element of g : ( ( ) ( ) RLTopStruct ) ) ] : ( ( ) ( ) set ) in Indices (GoB g : ( ( ) ( ) RLTopStruct ) ) : ( ( tabular ) ( Relation-like NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) -defined K266( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty functional FinSequence-membered ) M8( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) )) -valued Function-like finite FinSequence-like FinSubsequence-like tabular ) FinSequence of K266( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty functional FinSequence-membered ) M8( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) )) ) : ( ( ) ( ) set ) & (GoB g : ( ( ) ( ) RLTopStruct ) ) : ( ( tabular ) ( Relation-like NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) -defined K266( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty functional FinSequence-membered ) M8( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) )) -valued Function-like finite FinSequence-like FinSubsequence-like tabular ) FinSequence of K266( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty functional FinSequence-membered ) M8( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) )) ) * (1 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ,it : ( ( ) ( ) Element of g : ( ( ) ( ) RLTopStruct ) ) ) : ( ( ) ( V42(2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) FinSequence-like V91() ) Element of the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) = W-min (L~ g : ( ( ) ( ) RLTopStruct ) ) : ( ( ) ( ) Element of K6( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( ) set ) ) : ( ( ) ( V42(2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) FinSequence-like V91() ) Element of the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) );
func i_n_w g -> ( ( ) ( epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real V99() V100() V101() V102() V103() V104() bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) means :: JORDAN5D:def 2
( [1 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ,it : ( ( ) ( ) Element of g : ( ( ) ( ) RLTopStruct ) ) ] : ( ( ) ( ) set ) in Indices (GoB g : ( ( ) ( ) RLTopStruct ) ) : ( ( tabular ) ( Relation-like NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) -defined K266( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty functional FinSequence-membered ) M8( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) )) -valued Function-like finite FinSequence-like FinSubsequence-like tabular ) FinSequence of K266( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty functional FinSequence-membered ) M8( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) )) ) : ( ( ) ( ) set ) & (GoB g : ( ( ) ( ) RLTopStruct ) ) : ( ( tabular ) ( Relation-like NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) -defined K266( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty functional FinSequence-membered ) M8( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) )) -valued Function-like finite FinSequence-like FinSubsequence-like tabular ) FinSequence of K266( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty functional FinSequence-membered ) M8( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) )) ) * (1 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ,it : ( ( ) ( ) Element of g : ( ( ) ( ) RLTopStruct ) ) ) : ( ( ) ( V42(2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) FinSequence-like V91() ) Element of the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) = W-max (L~ g : ( ( ) ( ) RLTopStruct ) ) : ( ( ) ( ) Element of K6( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( ) set ) ) : ( ( ) ( V42(2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) FinSequence-like V91() ) Element of the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) );
func i_s_e g -> ( ( ) ( epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real V99() V100() V101() V102() V103() V104() bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) means :: JORDAN5D:def 3
( [(len (GoB g : ( ( ) ( ) RLTopStruct ) ) : ( ( tabular ) ( Relation-like NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) -defined K266( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty functional FinSequence-membered ) M8( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) )) -valued Function-like finite FinSequence-like FinSubsequence-like tabular ) FinSequence of K266( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty functional FinSequence-membered ) M8( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) )) ) ) : ( ( ) ( epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real V99() V100() V101() V102() V103() V104() bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ,it : ( ( ) ( ) Element of g : ( ( ) ( ) RLTopStruct ) ) ] : ( ( ) ( ) set ) in Indices (GoB g : ( ( ) ( ) RLTopStruct ) ) : ( ( tabular ) ( Relation-like NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) -defined K266( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty functional FinSequence-membered ) M8( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) )) -valued Function-like finite FinSequence-like FinSubsequence-like tabular ) FinSequence of K266( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty functional FinSequence-membered ) M8( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) )) ) : ( ( ) ( ) set ) & (GoB g : ( ( ) ( ) RLTopStruct ) ) : ( ( tabular ) ( Relation-like NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) -defined K266( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty functional FinSequence-membered ) M8( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) )) -valued Function-like finite FinSequence-like FinSubsequence-like tabular ) FinSequence of K266( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty functional FinSequence-membered ) M8( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) )) ) * ((len (GoB g : ( ( ) ( ) RLTopStruct ) ) : ( ( tabular ) ( Relation-like NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) -defined K266( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty functional FinSequence-membered ) M8( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) )) -valued Function-like finite FinSequence-like FinSubsequence-like tabular ) FinSequence of K266( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty functional FinSequence-membered ) M8( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) )) ) ) : ( ( ) ( epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real V99() V100() V101() V102() V103() V104() bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ,it : ( ( ) ( ) Element of g : ( ( ) ( ) RLTopStruct ) ) ) : ( ( ) ( V42(2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) FinSequence-like V91() ) Element of the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) = E-min (L~ g : ( ( ) ( ) RLTopStruct ) ) : ( ( ) ( ) Element of K6( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( ) set ) ) : ( ( ) ( V42(2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) FinSequence-like V91() ) Element of the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) );
func i_n_e g -> ( ( ) ( epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real V99() V100() V101() V102() V103() V104() bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) means :: JORDAN5D:def 4
( [(len (GoB g : ( ( ) ( ) RLTopStruct ) ) : ( ( tabular ) ( Relation-like NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) -defined K266( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty functional FinSequence-membered ) M8( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) )) -valued Function-like finite FinSequence-like FinSubsequence-like tabular ) FinSequence of K266( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty functional FinSequence-membered ) M8( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) )) ) ) : ( ( ) ( epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real V99() V100() V101() V102() V103() V104() bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ,it : ( ( ) ( ) Element of g : ( ( ) ( ) RLTopStruct ) ) ] : ( ( ) ( ) set ) in Indices (GoB g : ( ( ) ( ) RLTopStruct ) ) : ( ( tabular ) ( Relation-like NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) -defined K266( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty functional FinSequence-membered ) M8( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) )) -valued Function-like finite FinSequence-like FinSubsequence-like tabular ) FinSequence of K266( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty functional FinSequence-membered ) M8( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) )) ) : ( ( ) ( ) set ) & (GoB g : ( ( ) ( ) RLTopStruct ) ) : ( ( tabular ) ( Relation-like NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) -defined K266( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty functional FinSequence-membered ) M8( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) )) -valued Function-like finite FinSequence-like FinSubsequence-like tabular ) FinSequence of K266( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty functional FinSequence-membered ) M8( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) )) ) * ((len (GoB g : ( ( ) ( ) RLTopStruct ) ) : ( ( tabular ) ( Relation-like NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) -defined K266( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty functional FinSequence-membered ) M8( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) )) -valued Function-like finite FinSequence-like FinSubsequence-like tabular ) FinSequence of K266( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty functional FinSequence-membered ) M8( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) )) ) ) : ( ( ) ( epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real V99() V100() V101() V102() V103() V104() bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ,it : ( ( ) ( ) Element of g : ( ( ) ( ) RLTopStruct ) ) ) : ( ( ) ( V42(2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) FinSequence-like V91() ) Element of the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) = E-max (L~ g : ( ( ) ( ) RLTopStruct ) ) : ( ( ) ( ) Element of K6( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( ) set ) ) : ( ( ) ( V42(2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) FinSequence-like V91() ) Element of the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) );
func i_w_s g -> ( ( ) ( epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real V99() V100() V101() V102() V103() V104() bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) means :: JORDAN5D:def 5
( [it : ( ( ) ( ) Element of g : ( ( ) ( ) RLTopStruct ) ) ,1 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ] : ( ( ) ( ) set ) in Indices (GoB g : ( ( ) ( ) RLTopStruct ) ) : ( ( tabular ) ( Relation-like NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) -defined K266( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty functional FinSequence-membered ) M8( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) )) -valued Function-like finite FinSequence-like FinSubsequence-like tabular ) FinSequence of K266( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty functional FinSequence-membered ) M8( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) )) ) : ( ( ) ( ) set ) & (GoB g : ( ( ) ( ) RLTopStruct ) ) : ( ( tabular ) ( Relation-like NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) -defined K266( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty functional FinSequence-membered ) M8( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) )) -valued Function-like finite FinSequence-like FinSubsequence-like tabular ) FinSequence of K266( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty functional FinSequence-membered ) M8( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) )) ) * (it : ( ( ) ( ) Element of g : ( ( ) ( ) RLTopStruct ) ) ,1 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( ) ( V42(2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) FinSequence-like V91() ) Element of the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) = S-min (L~ g : ( ( ) ( ) RLTopStruct ) ) : ( ( ) ( ) Element of K6( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( ) set ) ) : ( ( ) ( V42(2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) FinSequence-like V91() ) Element of the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) );
func i_e_s g -> ( ( ) ( epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real V99() V100() V101() V102() V103() V104() bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) means :: JORDAN5D:def 6
( [it : ( ( ) ( ) Element of g : ( ( ) ( ) RLTopStruct ) ) ,1 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ] : ( ( ) ( ) set ) in Indices (GoB g : ( ( ) ( ) RLTopStruct ) ) : ( ( tabular ) ( Relation-like NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) -defined K266( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty functional FinSequence-membered ) M8( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) )) -valued Function-like finite FinSequence-like FinSubsequence-like tabular ) FinSequence of K266( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty functional FinSequence-membered ) M8( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) )) ) : ( ( ) ( ) set ) & (GoB g : ( ( ) ( ) RLTopStruct ) ) : ( ( tabular ) ( Relation-like NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) -defined K266( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty functional FinSequence-membered ) M8( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) )) -valued Function-like finite FinSequence-like FinSubsequence-like tabular ) FinSequence of K266( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty functional FinSequence-membered ) M8( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) )) ) * (it : ( ( ) ( ) Element of g : ( ( ) ( ) RLTopStruct ) ) ,1 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( ) ( V42(2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) FinSequence-like V91() ) Element of the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) = S-max (L~ g : ( ( ) ( ) RLTopStruct ) ) : ( ( ) ( ) Element of K6( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( ) set ) ) : ( ( ) ( V42(2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) FinSequence-like V91() ) Element of the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) );
func i_w_n g -> ( ( ) ( epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real V99() V100() V101() V102() V103() V104() bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) means :: JORDAN5D:def 7
( [it : ( ( ) ( ) Element of g : ( ( ) ( ) RLTopStruct ) ) ,(width (GoB g : ( ( ) ( ) RLTopStruct ) ) : ( ( tabular ) ( Relation-like NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) -defined K266( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty functional FinSequence-membered ) M8( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) )) -valued Function-like finite FinSequence-like FinSubsequence-like tabular ) FinSequence of K266( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty functional FinSequence-membered ) M8( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) )) ) ) : ( ( ) ( epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real V99() V100() V101() V102() V103() V104() bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ] : ( ( ) ( ) set ) in Indices (GoB g : ( ( ) ( ) RLTopStruct ) ) : ( ( tabular ) ( Relation-like NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) -defined K266( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty functional FinSequence-membered ) M8( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) )) -valued Function-like finite FinSequence-like FinSubsequence-like tabular ) FinSequence of K266( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty functional FinSequence-membered ) M8( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) )) ) : ( ( ) ( ) set ) & (GoB g : ( ( ) ( ) RLTopStruct ) ) : ( ( tabular ) ( Relation-like NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) -defined K266( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty functional FinSequence-membered ) M8( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) )) -valued Function-like finite FinSequence-like FinSubsequence-like tabular ) FinSequence of K266( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty functional FinSequence-membered ) M8( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) )) ) * (it : ( ( ) ( ) Element of g : ( ( ) ( ) RLTopStruct ) ) ,(width (GoB g : ( ( ) ( ) RLTopStruct ) ) : ( ( tabular ) ( Relation-like NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) -defined K266( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty functional FinSequence-membered ) M8( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) )) -valued Function-like finite FinSequence-like FinSubsequence-like tabular ) FinSequence of K266( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty functional FinSequence-membered ) M8( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) )) ) ) : ( ( ) ( epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real V99() V100() V101() V102() V103() V104() bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( ) ( V42(2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) FinSequence-like V91() ) Element of the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) = N-min (L~ g : ( ( ) ( ) RLTopStruct ) ) : ( ( ) ( ) Element of K6( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( ) set ) ) : ( ( ) ( V42(2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) FinSequence-like V91() ) Element of the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) );
func i_e_n g -> ( ( ) ( epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real V99() V100() V101() V102() V103() V104() bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) means :: JORDAN5D:def 8
( [it : ( ( ) ( ) Element of g : ( ( ) ( ) RLTopStruct ) ) ,(width (GoB g : ( ( ) ( ) RLTopStruct ) ) : ( ( tabular ) ( Relation-like NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) -defined K266( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty functional FinSequence-membered ) M8( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) )) -valued Function-like finite FinSequence-like FinSubsequence-like tabular ) FinSequence of K266( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty functional FinSequence-membered ) M8( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) )) ) ) : ( ( ) ( epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real V99() V100() V101() V102() V103() V104() bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ] : ( ( ) ( ) set ) in Indices (GoB g : ( ( ) ( ) RLTopStruct ) ) : ( ( tabular ) ( Relation-like NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) -defined K266( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty functional FinSequence-membered ) M8( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) )) -valued Function-like finite FinSequence-like FinSubsequence-like tabular ) FinSequence of K266( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty functional FinSequence-membered ) M8( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) )) ) : ( ( ) ( ) set ) & (GoB g : ( ( ) ( ) RLTopStruct ) ) : ( ( tabular ) ( Relation-like NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) -defined K266( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty functional FinSequence-membered ) M8( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) )) -valued Function-like finite FinSequence-like FinSubsequence-like tabular ) FinSequence of K266( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty functional FinSequence-membered ) M8( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) )) ) * (it : ( ( ) ( ) Element of g : ( ( ) ( ) RLTopStruct ) ) ,(width (GoB g : ( ( ) ( ) RLTopStruct ) ) : ( ( tabular ) ( Relation-like NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) -defined K266( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty functional FinSequence-membered ) M8( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) )) -valued Function-like finite FinSequence-like FinSubsequence-like tabular ) FinSequence of K266( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty functional FinSequence-membered ) M8( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) )) ) ) : ( ( ) ( epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real V99() V100() V101() V102() V103() V104() bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( ) ( V42(2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) FinSequence-like V91() ) Element of the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) = N-max (L~ g : ( ( ) ( ) RLTopStruct ) ) : ( ( ) ( ) Element of K6( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( ) set ) ) : ( ( ) ( V42(2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) FinSequence-like V91() ) Element of the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) );
end;

theorem :: JORDAN5D:45
for h being ( ( non empty non constant V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) ( non empty non trivial Relation-like NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) -defined the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) -valued Function-like non constant finite FinSequence-like FinSubsequence-like V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) special_circular_sequence) holds
( 1 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) <= i_w_n h : ( ( non empty non constant V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) ( non empty non trivial Relation-like NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) -defined the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) -valued Function-like non constant finite FinSequence-like FinSubsequence-like V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) special_circular_sequence) : ( ( ) ( epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real V99() V100() V101() V102() V103() V104() bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) & i_w_n h : ( ( non empty non constant V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) ( non empty non trivial Relation-like NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) -defined the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) -valued Function-like non constant finite FinSequence-like FinSubsequence-like V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) special_circular_sequence) : ( ( ) ( epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real V99() V100() V101() V102() V103() V104() bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) <= len (GoB h : ( ( non empty non constant V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) ( non empty non trivial Relation-like NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) -defined the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) -valued Function-like non constant finite FinSequence-like FinSubsequence-like V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) special_circular_sequence) ) : ( ( tabular ) ( Relation-like non empty-yielding NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) -defined K266( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty functional FinSequence-membered ) M8( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) )) -valued Function-like finite FinSequence-like FinSubsequence-like tabular X_equal-in-line Y_equal-in-column Y_increasing-in-line X_increasing-in-column ) FinSequence of K266( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty functional FinSequence-membered ) M8( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) )) ) : ( ( ) ( epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real V99() V100() V101() V102() V103() V104() bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) & 1 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) <= i_e_n h : ( ( non empty non constant V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) ( non empty non trivial Relation-like NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) -defined the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) -valued Function-like non constant finite FinSequence-like FinSubsequence-like V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) special_circular_sequence) : ( ( ) ( epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real V99() V100() V101() V102() V103() V104() bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) & i_e_n h : ( ( non empty non constant V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) ( non empty non trivial Relation-like NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) -defined the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) -valued Function-like non constant finite FinSequence-like FinSubsequence-like V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) special_circular_sequence) : ( ( ) ( epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real V99() V100() V101() V102() V103() V104() bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) <= len (GoB h : ( ( non empty non constant V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) ( non empty non trivial Relation-like NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) -defined the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) -valued Function-like non constant finite FinSequence-like FinSubsequence-like V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) special_circular_sequence) ) : ( ( tabular ) ( Relation-like non empty-yielding NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) -defined K266( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty functional FinSequence-membered ) M8( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) )) -valued Function-like finite FinSequence-like FinSubsequence-like tabular X_equal-in-line Y_equal-in-column Y_increasing-in-line X_increasing-in-column ) FinSequence of K266( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty functional FinSequence-membered ) M8( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) )) ) : ( ( ) ( epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real V99() V100() V101() V102() V103() V104() bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) & 1 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) <= i_w_s h : ( ( non empty non constant V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) ( non empty non trivial Relation-like NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) -defined the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) -valued Function-like non constant finite FinSequence-like FinSubsequence-like V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) special_circular_sequence) : ( ( ) ( epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real V99() V100() V101() V102() V103() V104() bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) & i_w_s h : ( ( non empty non constant V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) ( non empty non trivial Relation-like NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) -defined the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) -valued Function-like non constant finite FinSequence-like FinSubsequence-like V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) special_circular_sequence) : ( ( ) ( epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real V99() V100() V101() V102() V103() V104() bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) <= len (GoB h : ( ( non empty non constant V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) ( non empty non trivial Relation-like NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) -defined the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) -valued Function-like non constant finite FinSequence-like FinSubsequence-like V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) special_circular_sequence) ) : ( ( tabular ) ( Relation-like non empty-yielding NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) -defined K266( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty functional FinSequence-membered ) M8( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) )) -valued Function-like finite FinSequence-like FinSubsequence-like tabular X_equal-in-line Y_equal-in-column Y_increasing-in-line X_increasing-in-column ) FinSequence of K266( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty functional FinSequence-membered ) M8( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) )) ) : ( ( ) ( epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real V99() V100() V101() V102() V103() V104() bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) & 1 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) <= i_e_s h : ( ( non empty non constant V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) ( non empty non trivial Relation-like NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) -defined the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) -valued Function-like non constant finite FinSequence-like FinSubsequence-like V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) special_circular_sequence) : ( ( ) ( epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real V99() V100() V101() V102() V103() V104() bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) & i_e_s h : ( ( non empty non constant V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) ( non empty non trivial Relation-like NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) -defined the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) -valued Function-like non constant finite FinSequence-like FinSubsequence-like V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) special_circular_sequence) : ( ( ) ( epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real V99() V100() V101() V102() V103() V104() bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) <= len (GoB h : ( ( non empty non constant V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) ( non empty non trivial Relation-like NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) -defined the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) -valued Function-like non constant finite FinSequence-like FinSubsequence-like V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) special_circular_sequence) ) : ( ( tabular ) ( Relation-like non empty-yielding NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) -defined K266( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty functional FinSequence-membered ) M8( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) )) -valued Function-like finite FinSequence-like FinSubsequence-like tabular X_equal-in-line Y_equal-in-column Y_increasing-in-line X_increasing-in-column ) FinSequence of K266( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty functional FinSequence-membered ) M8( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) )) ) : ( ( ) ( epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real V99() V100() V101() V102() V103() V104() bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) ;

theorem :: JORDAN5D:46
for h being ( ( non empty non constant V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) ( non empty non trivial Relation-like NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) -defined the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) -valued Function-like non constant finite FinSequence-like FinSubsequence-like V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) special_circular_sequence) holds
( 1 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) <= i_n_e h : ( ( non empty non constant V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) ( non empty non trivial Relation-like NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) -defined the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) -valued Function-like non constant finite FinSequence-like FinSubsequence-like V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) special_circular_sequence) : ( ( ) ( epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real V99() V100() V101() V102() V103() V104() bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) & i_n_e h : ( ( non empty non constant V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) ( non empty non trivial Relation-like NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) -defined the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) -valued Function-like non constant finite FinSequence-like FinSubsequence-like V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) special_circular_sequence) : ( ( ) ( epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real V99() V100() V101() V102() V103() V104() bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) <= width (GoB h : ( ( non empty non constant V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) ( non empty non trivial Relation-like NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) -defined the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) -valued Function-like non constant finite FinSequence-like FinSubsequence-like V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) special_circular_sequence) ) : ( ( tabular ) ( Relation-like non empty-yielding NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) -defined K266( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty functional FinSequence-membered ) M8( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) )) -valued Function-like finite FinSequence-like FinSubsequence-like tabular X_equal-in-line Y_equal-in-column Y_increasing-in-line X_increasing-in-column ) FinSequence of K266( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty functional FinSequence-membered ) M8( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) )) ) : ( ( ) ( epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real V99() V100() V101() V102() V103() V104() bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) & 1 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) <= i_s_e h : ( ( non empty non constant V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) ( non empty non trivial Relation-like NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) -defined the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) -valued Function-like non constant finite FinSequence-like FinSubsequence-like V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) special_circular_sequence) : ( ( ) ( epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real V99() V100() V101() V102() V103() V104() bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) & i_s_e h : ( ( non empty non constant V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) ( non empty non trivial Relation-like NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) -defined the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) -valued Function-like non constant finite FinSequence-like FinSubsequence-like V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) special_circular_sequence) : ( ( ) ( epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real V99() V100() V101() V102() V103() V104() bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) <= width (GoB h : ( ( non empty non constant V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) ( non empty non trivial Relation-like NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) -defined the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) -valued Function-like non constant finite FinSequence-like FinSubsequence-like V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) special_circular_sequence) ) : ( ( tabular ) ( Relation-like non empty-yielding NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) -defined K266( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty functional FinSequence-membered ) M8( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) )) -valued Function-like finite FinSequence-like FinSubsequence-like tabular X_equal-in-line Y_equal-in-column Y_increasing-in-line X_increasing-in-column ) FinSequence of K266( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty functional FinSequence-membered ) M8( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) )) ) : ( ( ) ( epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real V99() V100() V101() V102() V103() V104() bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) & 1 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) <= i_n_w h : ( ( non empty non constant V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) ( non empty non trivial Relation-like NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) -defined the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) -valued Function-like non constant finite FinSequence-like FinSubsequence-like V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) special_circular_sequence) : ( ( ) ( epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real V99() V100() V101() V102() V103() V104() bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) & i_n_w h : ( ( non empty non constant V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) ( non empty non trivial Relation-like NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) -defined the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) -valued Function-like non constant finite FinSequence-like FinSubsequence-like V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) special_circular_sequence) : ( ( ) ( epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real V99() V100() V101() V102() V103() V104() bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) <= width (GoB h : ( ( non empty non constant V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) ( non empty non trivial Relation-like NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) -defined the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) -valued Function-like non constant finite FinSequence-like FinSubsequence-like V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) special_circular_sequence) ) : ( ( tabular ) ( Relation-like non empty-yielding NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) -defined K266( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty functional FinSequence-membered ) M8( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) )) -valued Function-like finite FinSequence-like FinSubsequence-like tabular X_equal-in-line Y_equal-in-column Y_increasing-in-line X_increasing-in-column ) FinSequence of K266( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty functional FinSequence-membered ) M8( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) )) ) : ( ( ) ( epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real V99() V100() V101() V102() V103() V104() bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) & 1 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) <= i_s_w h : ( ( non empty non constant V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) ( non empty non trivial Relation-like NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) -defined the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) -valued Function-like non constant finite FinSequence-like FinSubsequence-like V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) special_circular_sequence) : ( ( ) ( epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real V99() V100() V101() V102() V103() V104() bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) & i_s_w h : ( ( non empty non constant V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) ( non empty non trivial Relation-like NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) -defined the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) -valued Function-like non constant finite FinSequence-like FinSubsequence-like V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) special_circular_sequence) : ( ( ) ( epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real V99() V100() V101() V102() V103() V104() bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) <= width (GoB h : ( ( non empty non constant V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) ( non empty non trivial Relation-like NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) -defined the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) -valued Function-like non constant finite FinSequence-like FinSubsequence-like V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) special_circular_sequence) ) : ( ( tabular ) ( Relation-like non empty-yielding NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) -defined K266( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty functional FinSequence-membered ) M8( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) )) -valued Function-like finite FinSequence-like FinSubsequence-like tabular X_equal-in-line Y_equal-in-column Y_increasing-in-line X_increasing-in-column ) FinSequence of K266( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty functional FinSequence-membered ) M8( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) )) ) : ( ( ) ( epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real V99() V100() V101() V102() V103() V104() bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) ;

definition
let g be ( ( non empty non constant V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) ( non empty non trivial Relation-like NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) -defined the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) -valued Function-like non constant finite FinSequence-like FinSubsequence-like V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) special_circular_sequence) ;
func n_s_w g -> ( ( ) ( epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real V99() V100() V101() V102() V103() V104() bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) means :: JORDAN5D:def 9
( 1 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) <= it : ( ( ) ( ) Element of g : ( ( ) ( ) RLTopStruct ) ) & it : ( ( ) ( ) Element of g : ( ( ) ( ) RLTopStruct ) ) + 1 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( ) ( epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real V99() V100() V101() V102() V103() V104() bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) <= len g : ( ( ) ( ) RLTopStruct ) : ( ( ) ( epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real V99() V100() V101() V102() V103() V104() bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) & g : ( ( ) ( ) RLTopStruct ) . it : ( ( ) ( ) Element of g : ( ( ) ( ) RLTopStruct ) ) : ( ( ) ( ) set ) = W-min (L~ g : ( ( ) ( ) RLTopStruct ) ) : ( ( ) ( ) Element of K6( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( ) set ) ) : ( ( ) ( V42(2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) FinSequence-like V91() ) Element of the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) );
func n_n_w g -> ( ( ) ( epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real V99() V100() V101() V102() V103() V104() bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) means :: JORDAN5D:def 10
( 1 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) <= it : ( ( ) ( ) Element of g : ( ( ) ( ) RLTopStruct ) ) & it : ( ( ) ( ) Element of g : ( ( ) ( ) RLTopStruct ) ) + 1 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( ) ( epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real V99() V100() V101() V102() V103() V104() bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) <= len g : ( ( ) ( ) RLTopStruct ) : ( ( ) ( epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real V99() V100() V101() V102() V103() V104() bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) & g : ( ( ) ( ) RLTopStruct ) . it : ( ( ) ( ) Element of g : ( ( ) ( ) RLTopStruct ) ) : ( ( ) ( ) set ) = W-max (L~ g : ( ( ) ( ) RLTopStruct ) ) : ( ( ) ( ) Element of K6( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( ) set ) ) : ( ( ) ( V42(2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) FinSequence-like V91() ) Element of the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) );
func n_s_e g -> ( ( ) ( epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real V99() V100() V101() V102() V103() V104() bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) means :: JORDAN5D:def 11
( 1 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) <= it : ( ( ) ( ) Element of g : ( ( ) ( ) RLTopStruct ) ) & it : ( ( ) ( ) Element of g : ( ( ) ( ) RLTopStruct ) ) + 1 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( ) ( epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real V99() V100() V101() V102() V103() V104() bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) <= len g : ( ( ) ( ) RLTopStruct ) : ( ( ) ( epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real V99() V100() V101() V102() V103() V104() bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) & g : ( ( ) ( ) RLTopStruct ) . it : ( ( ) ( ) Element of g : ( ( ) ( ) RLTopStruct ) ) : ( ( ) ( ) set ) = E-min (L~ g : ( ( ) ( ) RLTopStruct ) ) : ( ( ) ( ) Element of K6( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( ) set ) ) : ( ( ) ( V42(2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) FinSequence-like V91() ) Element of the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) );
func n_n_e g -> ( ( ) ( epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real V99() V100() V101() V102() V103() V104() bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) means :: JORDAN5D:def 12
( 1 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) <= it : ( ( ) ( ) Element of g : ( ( ) ( ) RLTopStruct ) ) & it : ( ( ) ( ) Element of g : ( ( ) ( ) RLTopStruct ) ) + 1 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( ) ( epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real V99() V100() V101() V102() V103() V104() bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) <= len g : ( ( ) ( ) RLTopStruct ) : ( ( ) ( epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real V99() V100() V101() V102() V103() V104() bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) & g : ( ( ) ( ) RLTopStruct ) . it : ( ( ) ( ) Element of g : ( ( ) ( ) RLTopStruct ) ) : ( ( ) ( ) set ) = E-max (L~ g : ( ( ) ( ) RLTopStruct ) ) : ( ( ) ( ) Element of K6( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( ) set ) ) : ( ( ) ( V42(2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) FinSequence-like V91() ) Element of the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) );
func n_w_s g -> ( ( ) ( epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real V99() V100() V101() V102() V103() V104() bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) means :: JORDAN5D:def 13
( 1 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) <= it : ( ( ) ( ) Element of g : ( ( ) ( ) RLTopStruct ) ) & it : ( ( ) ( ) Element of g : ( ( ) ( ) RLTopStruct ) ) + 1 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( ) ( epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real V99() V100() V101() V102() V103() V104() bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) <= len g : ( ( ) ( ) RLTopStruct ) : ( ( ) ( epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real V99() V100() V101() V102() V103() V104() bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) & g : ( ( ) ( ) RLTopStruct ) . it : ( ( ) ( ) Element of g : ( ( ) ( ) RLTopStruct ) ) : ( ( ) ( ) set ) = S-min (L~ g : ( ( ) ( ) RLTopStruct ) ) : ( ( ) ( ) Element of K6( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( ) set ) ) : ( ( ) ( V42(2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) FinSequence-like V91() ) Element of the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) );
func n_e_s g -> ( ( ) ( epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real V99() V100() V101() V102() V103() V104() bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) means :: JORDAN5D:def 14
( 1 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) <= it : ( ( ) ( ) Element of g : ( ( ) ( ) RLTopStruct ) ) & it : ( ( ) ( ) Element of g : ( ( ) ( ) RLTopStruct ) ) + 1 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( ) ( epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real V99() V100() V101() V102() V103() V104() bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) <= len g : ( ( ) ( ) RLTopStruct ) : ( ( ) ( epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real V99() V100() V101() V102() V103() V104() bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) & g : ( ( ) ( ) RLTopStruct ) . it : ( ( ) ( ) Element of g : ( ( ) ( ) RLTopStruct ) ) : ( ( ) ( ) set ) = S-max (L~ g : ( ( ) ( ) RLTopStruct ) ) : ( ( ) ( ) Element of K6( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( ) set ) ) : ( ( ) ( V42(2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) FinSequence-like V91() ) Element of the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) );
func n_w_n g -> ( ( ) ( epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real V99() V100() V101() V102() V103() V104() bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) means :: JORDAN5D:def 15
( 1 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) <= it : ( ( ) ( ) Element of g : ( ( ) ( ) RLTopStruct ) ) & it : ( ( ) ( ) Element of g : ( ( ) ( ) RLTopStruct ) ) + 1 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( ) ( epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real V99() V100() V101() V102() V103() V104() bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) <= len g : ( ( ) ( ) RLTopStruct ) : ( ( ) ( epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real V99() V100() V101() V102() V103() V104() bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) & g : ( ( ) ( ) RLTopStruct ) . it : ( ( ) ( ) Element of g : ( ( ) ( ) RLTopStruct ) ) : ( ( ) ( ) set ) = N-min (L~ g : ( ( ) ( ) RLTopStruct ) ) : ( ( ) ( ) Element of K6( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( ) set ) ) : ( ( ) ( V42(2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) FinSequence-like V91() ) Element of the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) );
func n_e_n g -> ( ( ) ( epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real V99() V100() V101() V102() V103() V104() bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) means :: JORDAN5D:def 16
( 1 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) <= it : ( ( ) ( ) Element of g : ( ( ) ( ) RLTopStruct ) ) & it : ( ( ) ( ) Element of g : ( ( ) ( ) RLTopStruct ) ) + 1 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( ) ( epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real V99() V100() V101() V102() V103() V104() bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) <= len g : ( ( ) ( ) RLTopStruct ) : ( ( ) ( epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real V99() V100() V101() V102() V103() V104() bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) & g : ( ( ) ( ) RLTopStruct ) . it : ( ( ) ( ) Element of g : ( ( ) ( ) RLTopStruct ) ) : ( ( ) ( ) set ) = N-max (L~ g : ( ( ) ( ) RLTopStruct ) ) : ( ( ) ( ) Element of K6( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( ) set ) ) : ( ( ) ( V42(2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) FinSequence-like V91() ) Element of the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) );
end;

theorem :: JORDAN5D:47
for h being ( ( non empty non constant V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) ( non empty non trivial Relation-like NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) -defined the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) -valued Function-like non constant finite FinSequence-like FinSubsequence-like V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) special_circular_sequence) holds n_w_n h : ( ( non empty non constant V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) ( non empty non trivial Relation-like NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) -defined the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) -valued Function-like non constant finite FinSequence-like FinSubsequence-like V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) special_circular_sequence) : ( ( ) ( epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real V99() V100() V101() V102() V103() V104() bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) <> n_w_s h : ( ( non empty non constant V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) ( non empty non trivial Relation-like NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) -defined the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) -valued Function-like non constant finite FinSequence-like FinSubsequence-like V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) special_circular_sequence) : ( ( ) ( epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real V99() V100() V101() V102() V103() V104() bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ;

theorem :: JORDAN5D:48
for h being ( ( non empty non constant V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) ( non empty non trivial Relation-like NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) -defined the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) -valued Function-like non constant finite FinSequence-like FinSubsequence-like V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) special_circular_sequence) holds n_s_w h : ( ( non empty non constant V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) ( non empty non trivial Relation-like NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) -defined the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) -valued Function-like non constant finite FinSequence-like FinSubsequence-like V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) special_circular_sequence) : ( ( ) ( epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real V99() V100() V101() V102() V103() V104() bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) <> n_s_e h : ( ( non empty non constant V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) ( non empty non trivial Relation-like NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) -defined the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) -valued Function-like non constant finite FinSequence-like FinSubsequence-like V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) special_circular_sequence) : ( ( ) ( epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real V99() V100() V101() V102() V103() V104() bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ;

theorem :: JORDAN5D:49
for h being ( ( non empty non constant V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) ( non empty non trivial Relation-like NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) -defined the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) -valued Function-like non constant finite FinSequence-like FinSubsequence-like V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) special_circular_sequence) holds n_e_n h : ( ( non empty non constant V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) ( non empty non trivial Relation-like NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) -defined the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) -valued Function-like non constant finite FinSequence-like FinSubsequence-like V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) special_circular_sequence) : ( ( ) ( epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real V99() V100() V101() V102() V103() V104() bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) <> n_e_s h : ( ( non empty non constant V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) ( non empty non trivial Relation-like NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) -defined the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) -valued Function-like non constant finite FinSequence-like FinSubsequence-like V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) special_circular_sequence) : ( ( ) ( epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real V99() V100() V101() V102() V103() V104() bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ;

theorem :: JORDAN5D:50
for h being ( ( non empty non constant V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) ( non empty non trivial Relation-like NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) -defined the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) -valued Function-like non constant finite FinSequence-like FinSubsequence-like V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) special_circular_sequence) holds n_n_w h : ( ( non empty non constant V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) ( non empty non trivial Relation-like NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) -defined the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) -valued Function-like non constant finite FinSequence-like FinSubsequence-like V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) special_circular_sequence) : ( ( ) ( epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real V99() V100() V101() V102() V103() V104() bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) <> n_n_e h : ( ( non empty non constant V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) ( non empty non trivial Relation-like NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) -defined the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) -valued Function-like non constant finite FinSequence-like FinSubsequence-like V186( the carrier of (TOP-REAL 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real positive V99() V100() V101() V102() V103() V104() left_end bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like V137() V162() V163() V164() V165() V166() V167() V168() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) special unfolded s.c.c. standard ) special_circular_sequence) : ( ( ) ( epsilon-transitive epsilon-connected ordinal natural V11() real V13() V32() ext-real V99() V100() V101() V102() V103() V104() bounded_below ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V99() V100() V101() V102() V103() V104() V105() left_end bounded_below ) Element of K6(REAL : ( ( ) ( non empty non trivial non finite V99() V100() V101() V105() non bounded_below non bounded_above V204() ) set ) ) : ( ( ) ( ) set ) ) ) ;