:: MATHMORP semantic presentation

begin

definition
let T be ( ( non empty ) ( non empty ) addMagma ) ;
let p be ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ;
let X be ( ( ) ( ) Subset of ) ;
func X + p -> ( ( ) ( ) Subset of ) equals :: MATHMORP:def 1
{ (q : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) + p : ( ( ) ( ) Element of T : ( ( ) ( ) RLTopStruct ) ) ) : ( ( ) ( ) Element of the carrier of T : ( ( ) ( ) RLTopStruct ) : ( ( ) ( ) set ) ) where q is ( ( ) ( ) Element of ( ( ) ( ) set ) ) : q : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) in X : ( ( V12() V30(K33(T : ( ( ) ( ) RLTopStruct ) ,T : ( ( ) ( ) RLTopStruct ) ) : ( ( ) ( ) set ) ,T : ( ( ) ( ) RLTopStruct ) ) ) ( V12() V30(K33(T : ( ( ) ( ) RLTopStruct ) ,T : ( ( ) ( ) RLTopStruct ) ) : ( ( ) ( ) set ) ,T : ( ( ) ( ) RLTopStruct ) ) ) Element of K32(K33(K33(T : ( ( ) ( ) RLTopStruct ) ,T : ( ( ) ( ) RLTopStruct ) ) : ( ( ) ( ) set ) ,T : ( ( ) ( ) RLTopStruct ) ) : ( ( ) ( ) set ) ) : ( ( ) ( ) set ) ) } ;
end;

definition
let T be ( ( non empty ) ( non empty ) addLoopStr ) ;
let X be ( ( ) ( ) Subset of ) ;
func X ! -> ( ( ) ( ) Subset of ) equals :: MATHMORP:def 2
{ (- q : ( ( ) ( ) Point of ( ( ) ( non empty ) set ) ) ) : ( ( ) ( ) Element of the carrier of T : ( ( ) ( ) RLTopStruct ) : ( ( ) ( ) set ) ) where q is ( ( ) ( ) Point of ( ( ) ( ) set ) ) : q : ( ( ) ( ) Point of ( ( ) ( non empty ) set ) ) in X : ( ( ) ( ) Element of T : ( ( ) ( ) RLTopStruct ) ) } ;
end;

definition
let T be ( ( non empty ) ( non empty ) addMagma ) ;
let X, B be ( ( ) ( ) Subset of ) ;
func X (-) B -> ( ( ) ( ) Subset of ) equals :: MATHMORP:def 3
{ y : ( ( ) ( ) Point of ( ( ) ( non empty ) set ) ) where y is ( ( ) ( ) Point of ( ( ) ( ) set ) ) : B : ( ( V12() V30(K33(T : ( ( ) ( ) RLTopStruct ) ,T : ( ( ) ( ) RLTopStruct ) ) : ( ( ) ( ) set ) ,T : ( ( ) ( ) RLTopStruct ) ) ) ( V12() V30(K33(T : ( ( ) ( ) RLTopStruct ) ,T : ( ( ) ( ) RLTopStruct ) ) : ( ( ) ( ) set ) ,T : ( ( ) ( ) RLTopStruct ) ) ) Element of K32(K33(K33(T : ( ( ) ( ) RLTopStruct ) ,T : ( ( ) ( ) RLTopStruct ) ) : ( ( ) ( ) set ) ,T : ( ( ) ( ) RLTopStruct ) ) : ( ( ) ( ) set ) ) : ( ( ) ( ) set ) ) + y : ( ( ) ( ) Point of ( ( ) ( non empty ) set ) ) : ( ( ) ( ) Subset of ) c= X : ( ( ) ( ) Element of T : ( ( ) ( ) RLTopStruct ) ) } ;
end;

notation
let T be ( ( non empty ) ( non empty ) addLoopStr ) ;
let A, B be ( ( ) ( ) Subset of ) ;
synonym A (+) B for A + B;
end;

theorem :: MATHMORP:1
for T being ( ( non empty right_complementable add-associative right_zeroed ) ( non empty right_complementable add-associative right_zeroed ) RLSStruct )
for B being ( ( ) ( ) Subset of ) holds (B : ( ( ) ( ) Subset of ) !) : ( ( ) ( ) Subset of ) ! : ( ( ) ( ) Subset of ) = B : ( ( ) ( ) Subset of ) ;

theorem :: MATHMORP:2
for T being ( ( non empty right_complementable Abelian add-associative right_zeroed ) ( non empty left_complementable right_complementable Abelian add-associative right_zeroed V153() ) RLSStruct )
for x being ( ( ) ( ) Point of ( ( ) ( non empty ) set ) ) holds {(0. T : ( ( non empty right_complementable Abelian add-associative right_zeroed ) ( non empty left_complementable right_complementable Abelian add-associative right_zeroed V153() ) RLSStruct ) ) : ( ( ) ( V49(b1 : ( ( non empty right_complementable Abelian add-associative right_zeroed ) ( non empty left_complementable right_complementable Abelian add-associative right_zeroed V153() ) RLSStruct ) ) ) Element of the carrier of b1 : ( ( non empty right_complementable Abelian add-associative right_zeroed ) ( non empty left_complementable right_complementable Abelian add-associative right_zeroed V153() ) RLSStruct ) : ( ( ) ( non empty ) set ) ) } : ( ( ) ( non empty ) Element of K32( the carrier of b1 : ( ( non empty right_complementable Abelian add-associative right_zeroed ) ( non empty left_complementable right_complementable Abelian add-associative right_zeroed V153() ) RLSStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( ) set ) ) + x : ( ( ) ( ) Point of ( ( ) ( non empty ) set ) ) : ( ( ) ( ) Subset of ) = {x : ( ( ) ( ) Point of ( ( ) ( non empty ) set ) ) } : ( ( ) ( non empty ) Element of K32( the carrier of b1 : ( ( non empty right_complementable Abelian add-associative right_zeroed ) ( non empty left_complementable right_complementable Abelian add-associative right_zeroed V153() ) RLSStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( ) set ) ) ;

theorem :: MATHMORP:3
for T being ( ( non empty right_complementable Abelian add-associative right_zeroed ) ( non empty left_complementable right_complementable Abelian add-associative right_zeroed V153() ) RLSStruct )
for B1, B2 being ( ( ) ( ) Subset of )
for p being ( ( ) ( ) Point of ( ( ) ( non empty ) set ) ) st B1 : ( ( ) ( ) Subset of ) c= B2 : ( ( ) ( ) Subset of ) holds
B1 : ( ( ) ( ) Subset of ) + p : ( ( ) ( ) Point of ( ( ) ( non empty ) set ) ) : ( ( ) ( ) Subset of ) c= B2 : ( ( ) ( ) Subset of ) + p : ( ( ) ( ) Point of ( ( ) ( non empty ) set ) ) : ( ( ) ( ) Subset of ) ;

theorem :: MATHMORP:4
for T being ( ( non empty right_complementable Abelian add-associative right_zeroed ) ( non empty left_complementable right_complementable Abelian add-associative right_zeroed V153() ) RLSStruct )
for x being ( ( ) ( ) Point of ( ( ) ( non empty ) set ) )
for X being ( ( ) ( ) Subset of ) st X : ( ( ) ( ) Subset of ) = {} : ( ( ) ( empty V134() V135() V136() V137() V138() V139() V140() ) set ) holds
X : ( ( ) ( ) Subset of ) + x : ( ( ) ( ) Point of ( ( ) ( non empty ) set ) ) : ( ( ) ( ) Subset of ) = {} : ( ( ) ( empty V134() V135() V136() V137() V138() V139() V140() ) set ) ;

theorem :: MATHMORP:5
for T being ( ( non empty right_complementable Abelian add-associative right_zeroed ) ( non empty left_complementable right_complementable Abelian add-associative right_zeroed V153() ) RLSStruct )
for X being ( ( ) ( ) Subset of ) holds X : ( ( ) ( ) Subset of ) (-) {(0. T : ( ( non empty right_complementable Abelian add-associative right_zeroed ) ( non empty left_complementable right_complementable Abelian add-associative right_zeroed V153() ) RLSStruct ) ) : ( ( ) ( V49(b1 : ( ( non empty right_complementable Abelian add-associative right_zeroed ) ( non empty left_complementable right_complementable Abelian add-associative right_zeroed V153() ) RLSStruct ) ) ) Element of the carrier of b1 : ( ( non empty right_complementable Abelian add-associative right_zeroed ) ( non empty left_complementable right_complementable Abelian add-associative right_zeroed V153() ) RLSStruct ) : ( ( ) ( non empty ) set ) ) } : ( ( ) ( non empty ) Element of K32( the carrier of b1 : ( ( non empty right_complementable Abelian add-associative right_zeroed ) ( non empty left_complementable right_complementable Abelian add-associative right_zeroed V153() ) RLSStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( ) set ) ) : ( ( ) ( ) Subset of ) = X : ( ( ) ( ) Subset of ) ;

theorem :: MATHMORP:6
for T being ( ( non empty right_complementable Abelian add-associative right_zeroed ) ( non empty left_complementable right_complementable Abelian add-associative right_zeroed V153() ) RLSStruct )
for X being ( ( ) ( ) Subset of ) holds X : ( ( ) ( ) Subset of ) (+) {(0. T : ( ( non empty right_complementable Abelian add-associative right_zeroed ) ( non empty left_complementable right_complementable Abelian add-associative right_zeroed V153() ) RLSStruct ) ) : ( ( ) ( V49(b1 : ( ( non empty right_complementable Abelian add-associative right_zeroed ) ( non empty left_complementable right_complementable Abelian add-associative right_zeroed V153() ) RLSStruct ) ) ) Element of the carrier of b1 : ( ( non empty right_complementable Abelian add-associative right_zeroed ) ( non empty left_complementable right_complementable Abelian add-associative right_zeroed V153() ) RLSStruct ) : ( ( ) ( non empty ) set ) ) } : ( ( ) ( non empty ) Element of K32( the carrier of b1 : ( ( non empty right_complementable Abelian add-associative right_zeroed ) ( non empty left_complementable right_complementable Abelian add-associative right_zeroed V153() ) RLSStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( ) set ) ) : ( ( ) ( ) Element of K32( the carrier of b1 : ( ( non empty right_complementable Abelian add-associative right_zeroed ) ( non empty left_complementable right_complementable Abelian add-associative right_zeroed V153() ) RLSStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( ) set ) ) = X : ( ( ) ( ) Subset of ) ;

theorem :: MATHMORP:7
for T being ( ( non empty right_complementable Abelian add-associative right_zeroed ) ( non empty left_complementable right_complementable Abelian add-associative right_zeroed V153() ) RLSStruct )
for X being ( ( ) ( ) Subset of )
for x being ( ( ) ( ) Point of ( ( ) ( non empty ) set ) ) holds X : ( ( ) ( ) Subset of ) (+) {x : ( ( ) ( ) Point of ( ( ) ( non empty ) set ) ) } : ( ( ) ( non empty ) Element of K32( the carrier of b1 : ( ( non empty right_complementable Abelian add-associative right_zeroed ) ( non empty left_complementable right_complementable Abelian add-associative right_zeroed V153() ) RLSStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( ) set ) ) : ( ( ) ( ) Element of K32( the carrier of b1 : ( ( non empty right_complementable Abelian add-associative right_zeroed ) ( non empty left_complementable right_complementable Abelian add-associative right_zeroed V153() ) RLSStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( ) set ) ) = X : ( ( ) ( ) Subset of ) + x : ( ( ) ( ) Point of ( ( ) ( non empty ) set ) ) : ( ( ) ( ) Subset of ) ;

theorem :: MATHMORP:8
for T being ( ( non empty right_complementable Abelian add-associative right_zeroed ) ( non empty left_complementable right_complementable Abelian add-associative right_zeroed V153() ) RLSStruct )
for X, Y being ( ( ) ( ) Subset of ) st Y : ( ( ) ( ) Subset of ) = {} : ( ( ) ( empty V134() V135() V136() V137() V138() V139() V140() ) set ) holds
X : ( ( ) ( ) Subset of ) (-) Y : ( ( ) ( ) Subset of ) : ( ( ) ( ) Subset of ) = the carrier of T : ( ( non empty right_complementable Abelian add-associative right_zeroed ) ( non empty left_complementable right_complementable Abelian add-associative right_zeroed V153() ) RLSStruct ) : ( ( ) ( non empty ) set ) ;

theorem :: MATHMORP:9
for T being ( ( non empty right_complementable Abelian add-associative right_zeroed ) ( non empty left_complementable right_complementable Abelian add-associative right_zeroed V153() ) RLSStruct )
for X, Y, B being ( ( ) ( ) Subset of ) st X : ( ( ) ( ) Subset of ) c= Y : ( ( ) ( ) Subset of ) holds
( X : ( ( ) ( ) Subset of ) (-) B : ( ( ) ( ) Subset of ) : ( ( ) ( ) Subset of ) c= Y : ( ( ) ( ) Subset of ) (-) B : ( ( ) ( ) Subset of ) : ( ( ) ( ) Subset of ) & X : ( ( ) ( ) Subset of ) (+) B : ( ( ) ( ) Subset of ) : ( ( ) ( ) Element of K32( the carrier of b1 : ( ( non empty right_complementable Abelian add-associative right_zeroed ) ( non empty left_complementable right_complementable Abelian add-associative right_zeroed V153() ) RLSStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( ) set ) ) c= Y : ( ( ) ( ) Subset of ) (+) B : ( ( ) ( ) Subset of ) : ( ( ) ( ) Element of K32( the carrier of b1 : ( ( non empty right_complementable Abelian add-associative right_zeroed ) ( non empty left_complementable right_complementable Abelian add-associative right_zeroed V153() ) RLSStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( ) set ) ) ) ;

theorem :: MATHMORP:10
for T being ( ( non empty right_complementable Abelian add-associative right_zeroed ) ( non empty left_complementable right_complementable Abelian add-associative right_zeroed V153() ) RLSStruct )
for B1, B2, X being ( ( ) ( ) Subset of ) st B1 : ( ( ) ( ) Subset of ) c= B2 : ( ( ) ( ) Subset of ) holds
( X : ( ( ) ( ) Subset of ) (-) B2 : ( ( ) ( ) Subset of ) : ( ( ) ( ) Subset of ) c= X : ( ( ) ( ) Subset of ) (-) B1 : ( ( ) ( ) Subset of ) : ( ( ) ( ) Subset of ) & X : ( ( ) ( ) Subset of ) (+) B1 : ( ( ) ( ) Subset of ) : ( ( ) ( ) Element of K32( the carrier of b1 : ( ( non empty right_complementable Abelian add-associative right_zeroed ) ( non empty left_complementable right_complementable Abelian add-associative right_zeroed V153() ) RLSStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( ) set ) ) c= X : ( ( ) ( ) Subset of ) (+) B2 : ( ( ) ( ) Subset of ) : ( ( ) ( ) Element of K32( the carrier of b1 : ( ( non empty right_complementable Abelian add-associative right_zeroed ) ( non empty left_complementable right_complementable Abelian add-associative right_zeroed V153() ) RLSStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( ) set ) ) ) ;

theorem :: MATHMORP:11
for T being ( ( non empty right_complementable Abelian add-associative right_zeroed ) ( non empty left_complementable right_complementable Abelian add-associative right_zeroed V153() ) RLSStruct )
for B, X being ( ( ) ( ) Subset of ) st 0. T : ( ( non empty right_complementable Abelian add-associative right_zeroed ) ( non empty left_complementable right_complementable Abelian add-associative right_zeroed V153() ) RLSStruct ) : ( ( ) ( V49(b1 : ( ( non empty right_complementable Abelian add-associative right_zeroed ) ( non empty left_complementable right_complementable Abelian add-associative right_zeroed V153() ) RLSStruct ) ) ) Element of the carrier of b1 : ( ( non empty right_complementable Abelian add-associative right_zeroed ) ( non empty left_complementable right_complementable Abelian add-associative right_zeroed V153() ) RLSStruct ) : ( ( ) ( non empty ) set ) ) in B : ( ( ) ( ) Subset of ) holds
( X : ( ( ) ( ) Subset of ) (-) B : ( ( ) ( ) Subset of ) : ( ( ) ( ) Subset of ) c= X : ( ( ) ( ) Subset of ) & X : ( ( ) ( ) Subset of ) c= X : ( ( ) ( ) Subset of ) (+) B : ( ( ) ( ) Subset of ) : ( ( ) ( ) Element of K32( the carrier of b1 : ( ( non empty right_complementable Abelian add-associative right_zeroed ) ( non empty left_complementable right_complementable Abelian add-associative right_zeroed V153() ) RLSStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( ) set ) ) ) ;

theorem :: MATHMORP:12
for T being ( ( non empty right_complementable Abelian add-associative right_zeroed ) ( non empty left_complementable right_complementable Abelian add-associative right_zeroed V153() ) RLSStruct )
for X, Y being ( ( ) ( ) Subset of ) holds X : ( ( ) ( ) Subset of ) (+) Y : ( ( ) ( ) Subset of ) : ( ( ) ( ) Element of K32( the carrier of b1 : ( ( non empty right_complementable Abelian add-associative right_zeroed ) ( non empty left_complementable right_complementable Abelian add-associative right_zeroed V153() ) RLSStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( ) set ) ) = Y : ( ( ) ( ) Subset of ) (+) X : ( ( ) ( ) Subset of ) : ( ( ) ( ) Element of K32( the carrier of b1 : ( ( non empty right_complementable Abelian add-associative right_zeroed ) ( non empty left_complementable right_complementable Abelian add-associative right_zeroed V153() ) RLSStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( ) set ) ) ;

theorem :: MATHMORP:13
for T being ( ( non empty right_complementable Abelian add-associative right_zeroed ) ( non empty left_complementable right_complementable Abelian add-associative right_zeroed V153() ) RLSStruct )
for Y, X being ( ( ) ( ) Subset of )
for y, x being ( ( ) ( ) Point of ( ( ) ( non empty ) set ) ) holds
( Y : ( ( ) ( ) Subset of ) + y : ( ( ) ( ) Point of ( ( ) ( non empty ) set ) ) : ( ( ) ( ) Subset of ) c= X : ( ( ) ( ) Subset of ) + x : ( ( ) ( ) Point of ( ( ) ( non empty ) set ) ) : ( ( ) ( ) Subset of ) iff Y : ( ( ) ( ) Subset of ) + (y : ( ( ) ( ) Point of ( ( ) ( non empty ) set ) ) - x : ( ( ) ( ) Point of ( ( ) ( non empty ) set ) ) ) : ( ( ) ( ) Element of the carrier of b1 : ( ( non empty right_complementable Abelian add-associative right_zeroed ) ( non empty left_complementable right_complementable Abelian add-associative right_zeroed V153() ) RLSStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( ) Subset of ) c= X : ( ( ) ( ) Subset of ) ) ;

theorem :: MATHMORP:14
for T being ( ( non empty right_complementable Abelian add-associative right_zeroed ) ( non empty left_complementable right_complementable Abelian add-associative right_zeroed V153() ) RLSStruct )
for X, Y being ( ( ) ( ) Subset of )
for p being ( ( ) ( ) Point of ( ( ) ( non empty ) set ) ) holds (X : ( ( ) ( ) Subset of ) + p : ( ( ) ( ) Point of ( ( ) ( non empty ) set ) ) ) : ( ( ) ( ) Subset of ) (-) Y : ( ( ) ( ) Subset of ) : ( ( ) ( ) Subset of ) = (X : ( ( ) ( ) Subset of ) (-) Y : ( ( ) ( ) Subset of ) ) : ( ( ) ( ) Subset of ) + p : ( ( ) ( ) Point of ( ( ) ( non empty ) set ) ) : ( ( ) ( ) Subset of ) ;

theorem :: MATHMORP:15
for T being ( ( non empty right_complementable Abelian add-associative right_zeroed ) ( non empty left_complementable right_complementable Abelian add-associative right_zeroed V153() ) RLSStruct )
for X, Y being ( ( ) ( ) Subset of )
for p being ( ( ) ( ) Point of ( ( ) ( non empty ) set ) ) holds (X : ( ( ) ( ) Subset of ) + p : ( ( ) ( ) Point of ( ( ) ( non empty ) set ) ) ) : ( ( ) ( ) Subset of ) (+) Y : ( ( ) ( ) Subset of ) : ( ( ) ( ) Element of K32( the carrier of b1 : ( ( non empty right_complementable Abelian add-associative right_zeroed ) ( non empty left_complementable right_complementable Abelian add-associative right_zeroed V153() ) RLSStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( ) set ) ) = (X : ( ( ) ( ) Subset of ) (+) Y : ( ( ) ( ) Subset of ) ) : ( ( ) ( ) Element of K32( the carrier of b1 : ( ( non empty right_complementable Abelian add-associative right_zeroed ) ( non empty left_complementable right_complementable Abelian add-associative right_zeroed V153() ) RLSStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( ) set ) ) + p : ( ( ) ( ) Point of ( ( ) ( non empty ) set ) ) : ( ( ) ( ) Subset of ) ;

theorem :: MATHMORP:16
for T being ( ( non empty right_complementable Abelian add-associative right_zeroed ) ( non empty left_complementable right_complementable Abelian add-associative right_zeroed V153() ) RLSStruct )
for X being ( ( ) ( ) Subset of )
for x, y being ( ( ) ( ) Point of ( ( ) ( non empty ) set ) ) holds (X : ( ( ) ( ) Subset of ) + x : ( ( ) ( ) Point of ( ( ) ( non empty ) set ) ) ) : ( ( ) ( ) Subset of ) + y : ( ( ) ( ) Point of ( ( ) ( non empty ) set ) ) : ( ( ) ( ) Subset of ) = X : ( ( ) ( ) Subset of ) + (x : ( ( ) ( ) Point of ( ( ) ( non empty ) set ) ) + y : ( ( ) ( ) Point of ( ( ) ( non empty ) set ) ) ) : ( ( ) ( ) Element of the carrier of b1 : ( ( non empty right_complementable Abelian add-associative right_zeroed ) ( non empty left_complementable right_complementable Abelian add-associative right_zeroed V153() ) RLSStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( ) Subset of ) ;

theorem :: MATHMORP:17
for T being ( ( non empty right_complementable Abelian add-associative right_zeroed ) ( non empty left_complementable right_complementable Abelian add-associative right_zeroed V153() ) RLSStruct )
for X, Y being ( ( ) ( ) Subset of )
for p being ( ( ) ( ) Point of ( ( ) ( non empty ) set ) ) holds X : ( ( ) ( ) Subset of ) (-) (Y : ( ( ) ( ) Subset of ) + p : ( ( ) ( ) Point of ( ( ) ( non empty ) set ) ) ) : ( ( ) ( ) Subset of ) : ( ( ) ( ) Subset of ) = (X : ( ( ) ( ) Subset of ) (-) Y : ( ( ) ( ) Subset of ) ) : ( ( ) ( ) Subset of ) + (- p : ( ( ) ( ) Point of ( ( ) ( non empty ) set ) ) ) : ( ( ) ( ) Element of the carrier of b1 : ( ( non empty right_complementable Abelian add-associative right_zeroed ) ( non empty left_complementable right_complementable Abelian add-associative right_zeroed V153() ) RLSStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( ) Subset of ) ;

theorem :: MATHMORP:18
for T being ( ( non empty right_complementable Abelian add-associative right_zeroed ) ( non empty left_complementable right_complementable Abelian add-associative right_zeroed V153() ) RLSStruct )
for X, Y being ( ( ) ( ) Subset of )
for p being ( ( ) ( ) Point of ( ( ) ( non empty ) set ) ) holds X : ( ( ) ( ) Subset of ) (+) (Y : ( ( ) ( ) Subset of ) + p : ( ( ) ( ) Point of ( ( ) ( non empty ) set ) ) ) : ( ( ) ( ) Subset of ) : ( ( ) ( ) Element of K32( the carrier of b1 : ( ( non empty right_complementable Abelian add-associative right_zeroed ) ( non empty left_complementable right_complementable Abelian add-associative right_zeroed V153() ) RLSStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( ) set ) ) = (X : ( ( ) ( ) Subset of ) (+) Y : ( ( ) ( ) Subset of ) ) : ( ( ) ( ) Element of K32( the carrier of b1 : ( ( non empty right_complementable Abelian add-associative right_zeroed ) ( non empty left_complementable right_complementable Abelian add-associative right_zeroed V153() ) RLSStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( ) set ) ) + p : ( ( ) ( ) Point of ( ( ) ( non empty ) set ) ) : ( ( ) ( ) Subset of ) ;

theorem :: MATHMORP:19
for T being ( ( non empty right_complementable Abelian add-associative right_zeroed ) ( non empty left_complementable right_complementable Abelian add-associative right_zeroed V153() ) RLSStruct )
for X, B being ( ( ) ( ) Subset of )
for x being ( ( ) ( ) Point of ( ( ) ( non empty ) set ) ) st x : ( ( ) ( ) Point of ( ( ) ( non empty ) set ) ) in X : ( ( ) ( ) Subset of ) holds
B : ( ( ) ( ) Subset of ) + x : ( ( ) ( ) Point of ( ( ) ( non empty ) set ) ) : ( ( ) ( ) Subset of ) c= B : ( ( ) ( ) Subset of ) (+) X : ( ( ) ( ) Subset of ) : ( ( ) ( ) Element of K32( the carrier of b1 : ( ( non empty right_complementable Abelian add-associative right_zeroed ) ( non empty left_complementable right_complementable Abelian add-associative right_zeroed V153() ) RLSStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( ) set ) ) ;

theorem :: MATHMORP:20
for T being ( ( non empty right_complementable Abelian add-associative right_zeroed ) ( non empty left_complementable right_complementable Abelian add-associative right_zeroed V153() ) RLSStruct )
for X, B being ( ( ) ( ) Subset of ) holds X : ( ( ) ( ) Subset of ) c= (X : ( ( ) ( ) Subset of ) (+) B : ( ( ) ( ) Subset of ) ) : ( ( ) ( ) Element of K32( the carrier of b1 : ( ( non empty right_complementable Abelian add-associative right_zeroed ) ( non empty left_complementable right_complementable Abelian add-associative right_zeroed V153() ) RLSStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( ) set ) ) (-) B : ( ( ) ( ) Subset of ) : ( ( ) ( ) Subset of ) ;

theorem :: MATHMORP:21
for T being ( ( non empty right_complementable Abelian add-associative right_zeroed ) ( non empty left_complementable right_complementable Abelian add-associative right_zeroed V153() ) RLSStruct )
for X being ( ( ) ( ) Subset of ) holds X : ( ( ) ( ) Subset of ) + (0. T : ( ( non empty right_complementable Abelian add-associative right_zeroed ) ( non empty left_complementable right_complementable Abelian add-associative right_zeroed V153() ) RLSStruct ) ) : ( ( ) ( V49(b1 : ( ( non empty right_complementable Abelian add-associative right_zeroed ) ( non empty left_complementable right_complementable Abelian add-associative right_zeroed V153() ) RLSStruct ) ) ) Element of the carrier of b1 : ( ( non empty right_complementable Abelian add-associative right_zeroed ) ( non empty left_complementable right_complementable Abelian add-associative right_zeroed V153() ) RLSStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( ) Subset of ) = X : ( ( ) ( ) Subset of ) ;

theorem :: MATHMORP:22
for T being ( ( non empty right_complementable Abelian add-associative right_zeroed ) ( non empty left_complementable right_complementable Abelian add-associative right_zeroed V153() ) RLSStruct )
for X being ( ( ) ( ) Subset of )
for x being ( ( ) ( ) Point of ( ( ) ( non empty ) set ) ) holds X : ( ( ) ( ) Subset of ) (-) {x : ( ( ) ( ) Point of ( ( ) ( non empty ) set ) ) } : ( ( ) ( non empty ) Element of K32( the carrier of b1 : ( ( non empty right_complementable Abelian add-associative right_zeroed ) ( non empty left_complementable right_complementable Abelian add-associative right_zeroed V153() ) RLSStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( ) set ) ) : ( ( ) ( ) Subset of ) = X : ( ( ) ( ) Subset of ) + (- x : ( ( ) ( ) Point of ( ( ) ( non empty ) set ) ) ) : ( ( ) ( ) Element of the carrier of b1 : ( ( non empty right_complementable Abelian add-associative right_zeroed ) ( non empty left_complementable right_complementable Abelian add-associative right_zeroed V153() ) RLSStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( ) Subset of ) ;

theorem :: MATHMORP:23
for T being ( ( non empty right_complementable Abelian add-associative right_zeroed ) ( non empty left_complementable right_complementable Abelian add-associative right_zeroed V153() ) RLSStruct )
for X, Y, Z being ( ( ) ( ) Subset of ) holds X : ( ( ) ( ) Subset of ) (-) (Y : ( ( ) ( ) Subset of ) (+) Z : ( ( ) ( ) Subset of ) ) : ( ( ) ( ) Element of K32( the carrier of b1 : ( ( non empty right_complementable Abelian add-associative right_zeroed ) ( non empty left_complementable right_complementable Abelian add-associative right_zeroed V153() ) RLSStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( ) set ) ) : ( ( ) ( ) Subset of ) = (X : ( ( ) ( ) Subset of ) (-) Y : ( ( ) ( ) Subset of ) ) : ( ( ) ( ) Subset of ) (-) Z : ( ( ) ( ) Subset of ) : ( ( ) ( ) Subset of ) ;

theorem :: MATHMORP:24
for T being ( ( non empty right_complementable Abelian add-associative right_zeroed ) ( non empty left_complementable right_complementable Abelian add-associative right_zeroed V153() ) RLSStruct )
for X, Y, Z being ( ( ) ( ) Subset of ) holds X : ( ( ) ( ) Subset of ) (-) (Y : ( ( ) ( ) Subset of ) (+) Z : ( ( ) ( ) Subset of ) ) : ( ( ) ( ) Element of K32( the carrier of b1 : ( ( non empty right_complementable Abelian add-associative right_zeroed ) ( non empty left_complementable right_complementable Abelian add-associative right_zeroed V153() ) RLSStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( ) set ) ) : ( ( ) ( ) Subset of ) = (X : ( ( ) ( ) Subset of ) (-) Z : ( ( ) ( ) Subset of ) ) : ( ( ) ( ) Subset of ) (-) Y : ( ( ) ( ) Subset of ) : ( ( ) ( ) Subset of ) ;

theorem :: MATHMORP:25
for T being ( ( non empty right_complementable Abelian add-associative right_zeroed ) ( non empty left_complementable right_complementable Abelian add-associative right_zeroed V153() ) RLSStruct )
for X, Y, Z being ( ( ) ( ) Subset of ) holds X : ( ( ) ( ) Subset of ) (+) (Y : ( ( ) ( ) Subset of ) (-) Z : ( ( ) ( ) Subset of ) ) : ( ( ) ( ) Subset of ) : ( ( ) ( ) Element of K32( the carrier of b1 : ( ( non empty right_complementable Abelian add-associative right_zeroed ) ( non empty left_complementable right_complementable Abelian add-associative right_zeroed V153() ) RLSStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( ) set ) ) c= (X : ( ( ) ( ) Subset of ) (+) Y : ( ( ) ( ) Subset of ) ) : ( ( ) ( ) Element of K32( the carrier of b1 : ( ( non empty right_complementable Abelian add-associative right_zeroed ) ( non empty left_complementable right_complementable Abelian add-associative right_zeroed V153() ) RLSStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( ) set ) ) (-) Z : ( ( ) ( ) Subset of ) : ( ( ) ( ) Subset of ) ;

theorem :: MATHMORP:26
for T being ( ( non empty right_complementable Abelian add-associative right_zeroed ) ( non empty left_complementable right_complementable Abelian add-associative right_zeroed V153() ) RLSStruct )
for X, Y, Z being ( ( ) ( ) Subset of ) holds X : ( ( ) ( ) Subset of ) (+) (Y : ( ( ) ( ) Subset of ) (+) Z : ( ( ) ( ) Subset of ) ) : ( ( ) ( ) Element of K32( the carrier of b1 : ( ( non empty right_complementable Abelian add-associative right_zeroed ) ( non empty left_complementable right_complementable Abelian add-associative right_zeroed V153() ) RLSStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( ) set ) ) : ( ( ) ( ) Element of K32( the carrier of b1 : ( ( non empty right_complementable Abelian add-associative right_zeroed ) ( non empty left_complementable right_complementable Abelian add-associative right_zeroed V153() ) RLSStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( ) set ) ) = (X : ( ( ) ( ) Subset of ) (+) Y : ( ( ) ( ) Subset of ) ) : ( ( ) ( ) Element of K32( the carrier of b1 : ( ( non empty right_complementable Abelian add-associative right_zeroed ) ( non empty left_complementable right_complementable Abelian add-associative right_zeroed V153() ) RLSStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( ) set ) ) (+) Z : ( ( ) ( ) Subset of ) : ( ( ) ( ) Element of K32( the carrier of b1 : ( ( non empty right_complementable Abelian add-associative right_zeroed ) ( non empty left_complementable right_complementable Abelian add-associative right_zeroed V153() ) RLSStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( ) set ) ) ;

theorem :: MATHMORP:27
for T being ( ( non empty right_complementable Abelian add-associative right_zeroed ) ( non empty left_complementable right_complementable Abelian add-associative right_zeroed V153() ) RLSStruct )
for B, C being ( ( ) ( ) Subset of )
for y being ( ( ) ( ) Point of ( ( ) ( non empty ) set ) ) holds (B : ( ( ) ( ) Subset of ) \/ C : ( ( ) ( ) Subset of ) ) : ( ( ) ( ) Element of K32( the carrier of b1 : ( ( non empty right_complementable Abelian add-associative right_zeroed ) ( non empty left_complementable right_complementable Abelian add-associative right_zeroed V153() ) RLSStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( ) set ) ) + y : ( ( ) ( ) Point of ( ( ) ( non empty ) set ) ) : ( ( ) ( ) Subset of ) = (B : ( ( ) ( ) Subset of ) + y : ( ( ) ( ) Point of ( ( ) ( non empty ) set ) ) ) : ( ( ) ( ) Subset of ) \/ (C : ( ( ) ( ) Subset of ) + y : ( ( ) ( ) Point of ( ( ) ( non empty ) set ) ) ) : ( ( ) ( ) Subset of ) : ( ( ) ( ) Element of K32( the carrier of b1 : ( ( non empty right_complementable Abelian add-associative right_zeroed ) ( non empty left_complementable right_complementable Abelian add-associative right_zeroed V153() ) RLSStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( ) set ) ) ;

theorem :: MATHMORP:28
for T being ( ( non empty right_complementable Abelian add-associative right_zeroed ) ( non empty left_complementable right_complementable Abelian add-associative right_zeroed V153() ) RLSStruct )
for B, C being ( ( ) ( ) Subset of )
for y being ( ( ) ( ) Point of ( ( ) ( non empty ) set ) ) holds (B : ( ( ) ( ) Subset of ) /\ C : ( ( ) ( ) Subset of ) ) : ( ( ) ( ) Element of K32( the carrier of b1 : ( ( non empty right_complementable Abelian add-associative right_zeroed ) ( non empty left_complementable right_complementable Abelian add-associative right_zeroed V153() ) RLSStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( ) set ) ) + y : ( ( ) ( ) Point of ( ( ) ( non empty ) set ) ) : ( ( ) ( ) Subset of ) = (B : ( ( ) ( ) Subset of ) + y : ( ( ) ( ) Point of ( ( ) ( non empty ) set ) ) ) : ( ( ) ( ) Subset of ) /\ (C : ( ( ) ( ) Subset of ) + y : ( ( ) ( ) Point of ( ( ) ( non empty ) set ) ) ) : ( ( ) ( ) Subset of ) : ( ( ) ( ) Element of K32( the carrier of b1 : ( ( non empty right_complementable Abelian add-associative right_zeroed ) ( non empty left_complementable right_complementable Abelian add-associative right_zeroed V153() ) RLSStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( ) set ) ) ;

theorem :: MATHMORP:29
for T being ( ( non empty right_complementable Abelian add-associative right_zeroed ) ( non empty left_complementable right_complementable Abelian add-associative right_zeroed V153() ) RLSStruct )
for X, B, C being ( ( ) ( ) Subset of ) holds X : ( ( ) ( ) Subset of ) (-) (B : ( ( ) ( ) Subset of ) \/ C : ( ( ) ( ) Subset of ) ) : ( ( ) ( ) Element of K32( the carrier of b1 : ( ( non empty right_complementable Abelian add-associative right_zeroed ) ( non empty left_complementable right_complementable Abelian add-associative right_zeroed V153() ) RLSStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( ) set ) ) : ( ( ) ( ) Subset of ) = (X : ( ( ) ( ) Subset of ) (-) B : ( ( ) ( ) Subset of ) ) : ( ( ) ( ) Subset of ) /\ (X : ( ( ) ( ) Subset of ) (-) C : ( ( ) ( ) Subset of ) ) : ( ( ) ( ) Subset of ) : ( ( ) ( ) Element of K32( the carrier of b1 : ( ( non empty right_complementable Abelian add-associative right_zeroed ) ( non empty left_complementable right_complementable Abelian add-associative right_zeroed V153() ) RLSStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( ) set ) ) ;

theorem :: MATHMORP:30
for T being ( ( non empty right_complementable Abelian add-associative right_zeroed ) ( non empty left_complementable right_complementable Abelian add-associative right_zeroed V153() ) RLSStruct )
for X, B, C being ( ( ) ( ) Subset of ) holds X : ( ( ) ( ) Subset of ) (+) (B : ( ( ) ( ) Subset of ) \/ C : ( ( ) ( ) Subset of ) ) : ( ( ) ( ) Element of K32( the carrier of b1 : ( ( non empty right_complementable Abelian add-associative right_zeroed ) ( non empty left_complementable right_complementable Abelian add-associative right_zeroed V153() ) RLSStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( ) set ) ) : ( ( ) ( ) Element of K32( the carrier of b1 : ( ( non empty right_complementable Abelian add-associative right_zeroed ) ( non empty left_complementable right_complementable Abelian add-associative right_zeroed V153() ) RLSStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( ) set ) ) = (X : ( ( ) ( ) Subset of ) (+) B : ( ( ) ( ) Subset of ) ) : ( ( ) ( ) Element of K32( the carrier of b1 : ( ( non empty right_complementable Abelian add-associative right_zeroed ) ( non empty left_complementable right_complementable Abelian add-associative right_zeroed V153() ) RLSStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( ) set ) ) \/ (X : ( ( ) ( ) Subset of ) (+) C : ( ( ) ( ) Subset of ) ) : ( ( ) ( ) Element of K32( the carrier of b1 : ( ( non empty right_complementable Abelian add-associative right_zeroed ) ( non empty left_complementable right_complementable Abelian add-associative right_zeroed V153() ) RLSStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( ) set ) ) : ( ( ) ( ) Element of K32( the carrier of b1 : ( ( non empty right_complementable Abelian add-associative right_zeroed ) ( non empty left_complementable right_complementable Abelian add-associative right_zeroed V153() ) RLSStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( ) set ) ) ;

theorem :: MATHMORP:31
for T being ( ( non empty right_complementable Abelian add-associative right_zeroed ) ( non empty left_complementable right_complementable Abelian add-associative right_zeroed V153() ) RLSStruct )
for X, B, Y being ( ( ) ( ) Subset of ) holds (X : ( ( ) ( ) Subset of ) (-) B : ( ( ) ( ) Subset of ) ) : ( ( ) ( ) Subset of ) \/ (Y : ( ( ) ( ) Subset of ) (-) B : ( ( ) ( ) Subset of ) ) : ( ( ) ( ) Subset of ) : ( ( ) ( ) Element of K32( the carrier of b1 : ( ( non empty right_complementable Abelian add-associative right_zeroed ) ( non empty left_complementable right_complementable Abelian add-associative right_zeroed V153() ) RLSStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( ) set ) ) c= (X : ( ( ) ( ) Subset of ) \/ Y : ( ( ) ( ) Subset of ) ) : ( ( ) ( ) Element of K32( the carrier of b1 : ( ( non empty right_complementable Abelian add-associative right_zeroed ) ( non empty left_complementable right_complementable Abelian add-associative right_zeroed V153() ) RLSStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( ) set ) ) (-) B : ( ( ) ( ) Subset of ) : ( ( ) ( ) Subset of ) ;

theorem :: MATHMORP:32
for T being ( ( non empty right_complementable Abelian add-associative right_zeroed ) ( non empty left_complementable right_complementable Abelian add-associative right_zeroed V153() ) RLSStruct )
for X, Y, B being ( ( ) ( ) Subset of ) holds (X : ( ( ) ( ) Subset of ) \/ Y : ( ( ) ( ) Subset of ) ) : ( ( ) ( ) Element of K32( the carrier of b1 : ( ( non empty right_complementable Abelian add-associative right_zeroed ) ( non empty left_complementable right_complementable Abelian add-associative right_zeroed V153() ) RLSStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( ) set ) ) (+) B : ( ( ) ( ) Subset of ) : ( ( ) ( ) Element of K32( the carrier of b1 : ( ( non empty right_complementable Abelian add-associative right_zeroed ) ( non empty left_complementable right_complementable Abelian add-associative right_zeroed V153() ) RLSStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( ) set ) ) = (X : ( ( ) ( ) Subset of ) (+) B : ( ( ) ( ) Subset of ) ) : ( ( ) ( ) Element of K32( the carrier of b1 : ( ( non empty right_complementable Abelian add-associative right_zeroed ) ( non empty left_complementable right_complementable Abelian add-associative right_zeroed V153() ) RLSStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( ) set ) ) \/ (Y : ( ( ) ( ) Subset of ) (+) B : ( ( ) ( ) Subset of ) ) : ( ( ) ( ) Element of K32( the carrier of b1 : ( ( non empty right_complementable Abelian add-associative right_zeroed ) ( non empty left_complementable right_complementable Abelian add-associative right_zeroed V153() ) RLSStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( ) set ) ) : ( ( ) ( ) Element of K32( the carrier of b1 : ( ( non empty right_complementable Abelian add-associative right_zeroed ) ( non empty left_complementable right_complementable Abelian add-associative right_zeroed V153() ) RLSStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( ) set ) ) ;

theorem :: MATHMORP:33
for T being ( ( non empty right_complementable Abelian add-associative right_zeroed ) ( non empty left_complementable right_complementable Abelian add-associative right_zeroed V153() ) RLSStruct )
for X, Y, B being ( ( ) ( ) Subset of ) holds (X : ( ( ) ( ) Subset of ) /\ Y : ( ( ) ( ) Subset of ) ) : ( ( ) ( ) Element of K32( the carrier of b1 : ( ( non empty right_complementable Abelian add-associative right_zeroed ) ( non empty left_complementable right_complementable Abelian add-associative right_zeroed V153() ) RLSStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( ) set ) ) (-) B : ( ( ) ( ) Subset of ) : ( ( ) ( ) Subset of ) = (X : ( ( ) ( ) Subset of ) (-) B : ( ( ) ( ) Subset of ) ) : ( ( ) ( ) Subset of ) /\ (Y : ( ( ) ( ) Subset of ) (-) B : ( ( ) ( ) Subset of ) ) : ( ( ) ( ) Subset of ) : ( ( ) ( ) Element of K32( the carrier of b1 : ( ( non empty right_complementable Abelian add-associative right_zeroed ) ( non empty left_complementable right_complementable Abelian add-associative right_zeroed V153() ) RLSStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( ) set ) ) ;

theorem :: MATHMORP:34
for T being ( ( non empty right_complementable Abelian add-associative right_zeroed ) ( non empty left_complementable right_complementable Abelian add-associative right_zeroed V153() ) RLSStruct )
for X, Y, B being ( ( ) ( ) Subset of ) holds (X : ( ( ) ( ) Subset of ) /\ Y : ( ( ) ( ) Subset of ) ) : ( ( ) ( ) Element of K32( the carrier of b1 : ( ( non empty right_complementable Abelian add-associative right_zeroed ) ( non empty left_complementable right_complementable Abelian add-associative right_zeroed V153() ) RLSStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( ) set ) ) (+) B : ( ( ) ( ) Subset of ) : ( ( ) ( ) Element of K32( the carrier of b1 : ( ( non empty right_complementable Abelian add-associative right_zeroed ) ( non empty left_complementable right_complementable Abelian add-associative right_zeroed V153() ) RLSStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( ) set ) ) c= (X : ( ( ) ( ) Subset of ) (+) B : ( ( ) ( ) Subset of ) ) : ( ( ) ( ) Element of K32( the carrier of b1 : ( ( non empty right_complementable Abelian add-associative right_zeroed ) ( non empty left_complementable right_complementable Abelian add-associative right_zeroed V153() ) RLSStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( ) set ) ) /\ (Y : ( ( ) ( ) Subset of ) (+) B : ( ( ) ( ) Subset of ) ) : ( ( ) ( ) Element of K32( the carrier of b1 : ( ( non empty right_complementable Abelian add-associative right_zeroed ) ( non empty left_complementable right_complementable Abelian add-associative right_zeroed V153() ) RLSStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( ) set ) ) : ( ( ) ( ) Element of K32( the carrier of b1 : ( ( non empty right_complementable Abelian add-associative right_zeroed ) ( non empty left_complementable right_complementable Abelian add-associative right_zeroed V153() ) RLSStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( ) set ) ) ;

theorem :: MATHMORP:35
for T being ( ( non empty right_complementable Abelian add-associative right_zeroed ) ( non empty left_complementable right_complementable Abelian add-associative right_zeroed V153() ) RLSStruct )
for B, X, Y being ( ( ) ( ) Subset of ) holds B : ( ( ) ( ) Subset of ) (+) (X : ( ( ) ( ) Subset of ) /\ Y : ( ( ) ( ) Subset of ) ) : ( ( ) ( ) Element of K32( the carrier of b1 : ( ( non empty right_complementable Abelian add-associative right_zeroed ) ( non empty left_complementable right_complementable Abelian add-associative right_zeroed V153() ) RLSStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( ) set ) ) : ( ( ) ( ) Element of K32( the carrier of b1 : ( ( non empty right_complementable Abelian add-associative right_zeroed ) ( non empty left_complementable right_complementable Abelian add-associative right_zeroed V153() ) RLSStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( ) set ) ) c= (B : ( ( ) ( ) Subset of ) (+) X : ( ( ) ( ) Subset of ) ) : ( ( ) ( ) Element of K32( the carrier of b1 : ( ( non empty right_complementable Abelian add-associative right_zeroed ) ( non empty left_complementable right_complementable Abelian add-associative right_zeroed V153() ) RLSStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( ) set ) ) /\ (B : ( ( ) ( ) Subset of ) (+) Y : ( ( ) ( ) Subset of ) ) : ( ( ) ( ) Element of K32( the carrier of b1 : ( ( non empty right_complementable Abelian add-associative right_zeroed ) ( non empty left_complementable right_complementable Abelian add-associative right_zeroed V153() ) RLSStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( ) set ) ) : ( ( ) ( ) Element of K32( the carrier of b1 : ( ( non empty right_complementable Abelian add-associative right_zeroed ) ( non empty left_complementable right_complementable Abelian add-associative right_zeroed V153() ) RLSStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( ) set ) ) ;

theorem :: MATHMORP:36
for T being ( ( non empty right_complementable Abelian add-associative right_zeroed ) ( non empty left_complementable right_complementable Abelian add-associative right_zeroed V153() ) RLSStruct )
for B, X, Y being ( ( ) ( ) Subset of ) holds (B : ( ( ) ( ) Subset of ) (-) X : ( ( ) ( ) Subset of ) ) : ( ( ) ( ) Subset of ) \/ (B : ( ( ) ( ) Subset of ) (-) Y : ( ( ) ( ) Subset of ) ) : ( ( ) ( ) Subset of ) : ( ( ) ( ) Element of K32( the carrier of b1 : ( ( non empty right_complementable Abelian add-associative right_zeroed ) ( non empty left_complementable right_complementable Abelian add-associative right_zeroed V153() ) RLSStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( ) set ) ) c= B : ( ( ) ( ) Subset of ) (-) (X : ( ( ) ( ) Subset of ) /\ Y : ( ( ) ( ) Subset of ) ) : ( ( ) ( ) Element of K32( the carrier of b1 : ( ( non empty right_complementable Abelian add-associative right_zeroed ) ( non empty left_complementable right_complementable Abelian add-associative right_zeroed V153() ) RLSStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( ) set ) ) : ( ( ) ( ) Subset of ) ;

theorem :: MATHMORP:37
for T being ( ( non empty right_complementable Abelian add-associative right_zeroed ) ( non empty left_complementable right_complementable Abelian add-associative right_zeroed V153() ) RLSStruct )
for X, B being ( ( ) ( ) Subset of ) holds ((X : ( ( ) ( ) Subset of ) `) : ( ( ) ( ) Element of K32( the carrier of b1 : ( ( non empty right_complementable Abelian add-associative right_zeroed ) ( non empty left_complementable right_complementable Abelian add-associative right_zeroed V153() ) RLSStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( ) set ) ) (-) B : ( ( ) ( ) Subset of ) ) : ( ( ) ( ) Subset of ) ` : ( ( ) ( ) Element of K32( the carrier of b1 : ( ( non empty right_complementable Abelian add-associative right_zeroed ) ( non empty left_complementable right_complementable Abelian add-associative right_zeroed V153() ) RLSStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( ) set ) ) = X : ( ( ) ( ) Subset of ) (+) (B : ( ( ) ( ) Subset of ) !) : ( ( ) ( ) Subset of ) : ( ( ) ( ) Element of K32( the carrier of b1 : ( ( non empty right_complementable Abelian add-associative right_zeroed ) ( non empty left_complementable right_complementable Abelian add-associative right_zeroed V153() ) RLSStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( ) set ) ) ;

theorem :: MATHMORP:38
for T being ( ( non empty right_complementable Abelian add-associative right_zeroed ) ( non empty left_complementable right_complementable Abelian add-associative right_zeroed V153() ) RLSStruct )
for X, B being ( ( ) ( ) Subset of ) holds (X : ( ( ) ( ) Subset of ) (-) B : ( ( ) ( ) Subset of ) ) : ( ( ) ( ) Subset of ) ` : ( ( ) ( ) Element of K32( the carrier of b1 : ( ( non empty right_complementable Abelian add-associative right_zeroed ) ( non empty left_complementable right_complementable Abelian add-associative right_zeroed V153() ) RLSStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( ) set ) ) = (X : ( ( ) ( ) Subset of ) `) : ( ( ) ( ) Element of K32( the carrier of b1 : ( ( non empty right_complementable Abelian add-associative right_zeroed ) ( non empty left_complementable right_complementable Abelian add-associative right_zeroed V153() ) RLSStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( ) set ) ) (+) (B : ( ( ) ( ) Subset of ) !) : ( ( ) ( ) Subset of ) : ( ( ) ( ) Element of K32( the carrier of b1 : ( ( non empty right_complementable Abelian add-associative right_zeroed ) ( non empty left_complementable right_complementable Abelian add-associative right_zeroed V153() ) RLSStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( ) set ) ) ;

begin

definition
let T be ( ( non empty ) ( non empty ) addLoopStr ) ;
let X, B be ( ( ) ( ) Subset of ) ;
func X (O) B -> ( ( ) ( ) Subset of ) equals :: MATHMORP:def 4
(X : ( ( ) ( ) Element of T : ( ( ) ( ) RLTopStruct ) ) (-) B : ( ( V12() V30(K33(T : ( ( ) ( ) RLTopStruct ) ,T : ( ( ) ( ) RLTopStruct ) ) : ( ( ) ( ) set ) ,T : ( ( ) ( ) RLTopStruct ) ) ) ( V12() V30(K33(T : ( ( ) ( ) RLTopStruct ) ,T : ( ( ) ( ) RLTopStruct ) ) : ( ( ) ( ) set ) ,T : ( ( ) ( ) RLTopStruct ) ) ) Element of K32(K33(K33(T : ( ( ) ( ) RLTopStruct ) ,T : ( ( ) ( ) RLTopStruct ) ) : ( ( ) ( ) set ) ,T : ( ( ) ( ) RLTopStruct ) ) : ( ( ) ( ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( ) ( ) Subset of ) (+) B : ( ( V12() V30(K33(T : ( ( ) ( ) RLTopStruct ) ,T : ( ( ) ( ) RLTopStruct ) ) : ( ( ) ( ) set ) ,T : ( ( ) ( ) RLTopStruct ) ) ) ( V12() V30(K33(T : ( ( ) ( ) RLTopStruct ) ,T : ( ( ) ( ) RLTopStruct ) ) : ( ( ) ( ) set ) ,T : ( ( ) ( ) RLTopStruct ) ) ) Element of K32(K33(K33(T : ( ( ) ( ) RLTopStruct ) ,T : ( ( ) ( ) RLTopStruct ) ) : ( ( ) ( ) set ) ,T : ( ( ) ( ) RLTopStruct ) ) : ( ( ) ( ) set ) ) : ( ( ) ( ) set ) ) : ( ( ) ( ) Element of K32( the carrier of T : ( ( ) ( ) RLTopStruct ) : ( ( ) ( ) set ) ) : ( ( ) ( ) set ) ) ;
end;

definition
let T be ( ( non empty ) ( non empty ) addLoopStr ) ;
let X, B be ( ( ) ( ) Subset of ) ;
func X (o) B -> ( ( ) ( ) Subset of ) equals :: MATHMORP:def 5
(X : ( ( ) ( ) Element of T : ( ( ) ( ) RLTopStruct ) ) (+) B : ( ( V12() V30(K33(T : ( ( ) ( ) RLTopStruct ) ,T : ( ( ) ( ) RLTopStruct ) ) : ( ( ) ( ) set ) ,T : ( ( ) ( ) RLTopStruct ) ) ) ( V12() V30(K33(T : ( ( ) ( ) RLTopStruct ) ,T : ( ( ) ( ) RLTopStruct ) ) : ( ( ) ( ) set ) ,T : ( ( ) ( ) RLTopStruct ) ) ) Element of K32(K33(K33(T : ( ( ) ( ) RLTopStruct ) ,T : ( ( ) ( ) RLTopStruct ) ) : ( ( ) ( ) set ) ,T : ( ( ) ( ) RLTopStruct ) ) : ( ( ) ( ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( ) ( ) Element of K32( the carrier of T : ( ( ) ( ) RLTopStruct ) : ( ( ) ( ) set ) ) : ( ( ) ( ) set ) ) (-) B : ( ( V12() V30(K33(T : ( ( ) ( ) RLTopStruct ) ,T : ( ( ) ( ) RLTopStruct ) ) : ( ( ) ( ) set ) ,T : ( ( ) ( ) RLTopStruct ) ) ) ( V12() V30(K33(T : ( ( ) ( ) RLTopStruct ) ,T : ( ( ) ( ) RLTopStruct ) ) : ( ( ) ( ) set ) ,T : ( ( ) ( ) RLTopStruct ) ) ) Element of K32(K33(K33(T : ( ( ) ( ) RLTopStruct ) ,T : ( ( ) ( ) RLTopStruct ) ) : ( ( ) ( ) set ) ,T : ( ( ) ( ) RLTopStruct ) ) : ( ( ) ( ) set ) ) : ( ( ) ( ) set ) ) : ( ( ) ( ) Subset of ) ;
end;

theorem :: MATHMORP:39
for T being ( ( non empty right_complementable Abelian add-associative right_zeroed ) ( non empty left_complementable right_complementable Abelian add-associative right_zeroed V153() ) RLSStruct )
for X, B being ( ( ) ( ) Subset of ) holds ((X : ( ( ) ( ) Subset of ) `) : ( ( ) ( ) Element of K32( the carrier of b1 : ( ( non empty right_complementable Abelian add-associative right_zeroed ) ( non empty left_complementable right_complementable Abelian add-associative right_zeroed V153() ) RLSStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( ) set ) ) (O) (B : ( ( ) ( ) Subset of ) !) : ( ( ) ( ) Subset of ) ) : ( ( ) ( ) Subset of ) ` : ( ( ) ( ) Element of K32( the carrier of b1 : ( ( non empty right_complementable Abelian add-associative right_zeroed ) ( non empty left_complementable right_complementable Abelian add-associative right_zeroed V153() ) RLSStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( ) set ) ) = X : ( ( ) ( ) Subset of ) (o) B : ( ( ) ( ) Subset of ) : ( ( ) ( ) Subset of ) ;

theorem :: MATHMORP:40
for T being ( ( non empty right_complementable Abelian add-associative right_zeroed ) ( non empty left_complementable right_complementable Abelian add-associative right_zeroed V153() ) RLSStruct )
for X, B being ( ( ) ( ) Subset of ) holds ((X : ( ( ) ( ) Subset of ) `) : ( ( ) ( ) Element of K32( the carrier of b1 : ( ( non empty right_complementable Abelian add-associative right_zeroed ) ( non empty left_complementable right_complementable Abelian add-associative right_zeroed V153() ) RLSStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( ) set ) ) (o) (B : ( ( ) ( ) Subset of ) !) : ( ( ) ( ) Subset of ) ) : ( ( ) ( ) Subset of ) ` : ( ( ) ( ) Element of K32( the carrier of b1 : ( ( non empty right_complementable Abelian add-associative right_zeroed ) ( non empty left_complementable right_complementable Abelian add-associative right_zeroed V153() ) RLSStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( ) set ) ) = X : ( ( ) ( ) Subset of ) (O) B : ( ( ) ( ) Subset of ) : ( ( ) ( ) Subset of ) ;

theorem :: MATHMORP:41
for T being ( ( non empty right_complementable Abelian add-associative right_zeroed ) ( non empty left_complementable right_complementable Abelian add-associative right_zeroed V153() ) RLSStruct )
for X, B being ( ( ) ( ) Subset of ) holds
( X : ( ( ) ( ) Subset of ) (O) B : ( ( ) ( ) Subset of ) : ( ( ) ( ) Subset of ) c= X : ( ( ) ( ) Subset of ) & X : ( ( ) ( ) Subset of ) c= X : ( ( ) ( ) Subset of ) (o) B : ( ( ) ( ) Subset of ) : ( ( ) ( ) Subset of ) ) ;

theorem :: MATHMORP:42
for T being ( ( non empty right_complementable Abelian add-associative right_zeroed ) ( non empty left_complementable right_complementable Abelian add-associative right_zeroed V153() ) RLSStruct )
for X being ( ( ) ( ) Subset of ) holds X : ( ( ) ( ) Subset of ) (O) X : ( ( ) ( ) Subset of ) : ( ( ) ( ) Subset of ) = X : ( ( ) ( ) Subset of ) ;

theorem :: MATHMORP:43
for T being ( ( non empty right_complementable Abelian add-associative right_zeroed ) ( non empty left_complementable right_complementable Abelian add-associative right_zeroed V153() ) RLSStruct )
for X, B being ( ( ) ( ) Subset of ) holds
( (X : ( ( ) ( ) Subset of ) (O) B : ( ( ) ( ) Subset of ) ) : ( ( ) ( ) Subset of ) (-) B : ( ( ) ( ) Subset of ) : ( ( ) ( ) Subset of ) c= X : ( ( ) ( ) Subset of ) (-) B : ( ( ) ( ) Subset of ) : ( ( ) ( ) Subset of ) & (X : ( ( ) ( ) Subset of ) (O) B : ( ( ) ( ) Subset of ) ) : ( ( ) ( ) Subset of ) (+) B : ( ( ) ( ) Subset of ) : ( ( ) ( ) Element of K32( the carrier of b1 : ( ( non empty right_complementable Abelian add-associative right_zeroed ) ( non empty left_complementable right_complementable Abelian add-associative right_zeroed V153() ) RLSStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( ) set ) ) c= X : ( ( ) ( ) Subset of ) (+) B : ( ( ) ( ) Subset of ) : ( ( ) ( ) Element of K32( the carrier of b1 : ( ( non empty right_complementable Abelian add-associative right_zeroed ) ( non empty left_complementable right_complementable Abelian add-associative right_zeroed V153() ) RLSStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( ) set ) ) ) ;

theorem :: MATHMORP:44
for T being ( ( non empty right_complementable Abelian add-associative right_zeroed ) ( non empty left_complementable right_complementable Abelian add-associative right_zeroed V153() ) RLSStruct )
for X, B being ( ( ) ( ) Subset of ) holds
( X : ( ( ) ( ) Subset of ) (-) B : ( ( ) ( ) Subset of ) : ( ( ) ( ) Subset of ) c= (X : ( ( ) ( ) Subset of ) (o) B : ( ( ) ( ) Subset of ) ) : ( ( ) ( ) Subset of ) (-) B : ( ( ) ( ) Subset of ) : ( ( ) ( ) Subset of ) & X : ( ( ) ( ) Subset of ) (+) B : ( ( ) ( ) Subset of ) : ( ( ) ( ) Element of K32( the carrier of b1 : ( ( non empty right_complementable Abelian add-associative right_zeroed ) ( non empty left_complementable right_complementable Abelian add-associative right_zeroed V153() ) RLSStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( ) set ) ) c= (X : ( ( ) ( ) Subset of ) (o) B : ( ( ) ( ) Subset of ) ) : ( ( ) ( ) Subset of ) (+) B : ( ( ) ( ) Subset of ) : ( ( ) ( ) Element of K32( the carrier of b1 : ( ( non empty right_complementable Abelian add-associative right_zeroed ) ( non empty left_complementable right_complementable Abelian add-associative right_zeroed V153() ) RLSStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( ) set ) ) ) ;

theorem :: MATHMORP:45
for T being ( ( non empty right_complementable Abelian add-associative right_zeroed ) ( non empty left_complementable right_complementable Abelian add-associative right_zeroed V153() ) RLSStruct )
for X, Y, B being ( ( ) ( ) Subset of ) st X : ( ( ) ( ) Subset of ) c= Y : ( ( ) ( ) Subset of ) holds
( X : ( ( ) ( ) Subset of ) (O) B : ( ( ) ( ) Subset of ) : ( ( ) ( ) Subset of ) c= Y : ( ( ) ( ) Subset of ) (O) B : ( ( ) ( ) Subset of ) : ( ( ) ( ) Subset of ) & X : ( ( ) ( ) Subset of ) (o) B : ( ( ) ( ) Subset of ) : ( ( ) ( ) Subset of ) c= Y : ( ( ) ( ) Subset of ) (o) B : ( ( ) ( ) Subset of ) : ( ( ) ( ) Subset of ) ) ;

theorem :: MATHMORP:46
for T being ( ( non empty right_complementable Abelian add-associative right_zeroed ) ( non empty left_complementable right_complementable Abelian add-associative right_zeroed V153() ) RLSStruct )
for X, Y being ( ( ) ( ) Subset of )
for p being ( ( ) ( ) Point of ( ( ) ( non empty ) set ) ) holds (X : ( ( ) ( ) Subset of ) + p : ( ( ) ( ) Point of ( ( ) ( non empty ) set ) ) ) : ( ( ) ( ) Subset of ) (O) Y : ( ( ) ( ) Subset of ) : ( ( ) ( ) Subset of ) = (X : ( ( ) ( ) Subset of ) (O) Y : ( ( ) ( ) Subset of ) ) : ( ( ) ( ) Subset of ) + p : ( ( ) ( ) Point of ( ( ) ( non empty ) set ) ) : ( ( ) ( ) Subset of ) ;

theorem :: MATHMORP:47
for T being ( ( non empty right_complementable Abelian add-associative right_zeroed ) ( non empty left_complementable right_complementable Abelian add-associative right_zeroed V153() ) RLSStruct )
for X, Y being ( ( ) ( ) Subset of )
for p being ( ( ) ( ) Point of ( ( ) ( non empty ) set ) ) holds (X : ( ( ) ( ) Subset of ) + p : ( ( ) ( ) Point of ( ( ) ( non empty ) set ) ) ) : ( ( ) ( ) Subset of ) (o) Y : ( ( ) ( ) Subset of ) : ( ( ) ( ) Subset of ) = (X : ( ( ) ( ) Subset of ) (o) Y : ( ( ) ( ) Subset of ) ) : ( ( ) ( ) Subset of ) + p : ( ( ) ( ) Point of ( ( ) ( non empty ) set ) ) : ( ( ) ( ) Subset of ) ;

theorem :: MATHMORP:48
for T being ( ( non empty right_complementable Abelian add-associative right_zeroed ) ( non empty left_complementable right_complementable Abelian add-associative right_zeroed V153() ) RLSStruct )
for C, B, X being ( ( ) ( ) Subset of ) st C : ( ( ) ( ) Subset of ) c= B : ( ( ) ( ) Subset of ) holds
X : ( ( ) ( ) Subset of ) (O) B : ( ( ) ( ) Subset of ) : ( ( ) ( ) Subset of ) c= (X : ( ( ) ( ) Subset of ) (-) C : ( ( ) ( ) Subset of ) ) : ( ( ) ( ) Subset of ) (+) B : ( ( ) ( ) Subset of ) : ( ( ) ( ) Element of K32( the carrier of b1 : ( ( non empty right_complementable Abelian add-associative right_zeroed ) ( non empty left_complementable right_complementable Abelian add-associative right_zeroed V153() ) RLSStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( ) set ) ) ;

theorem :: MATHMORP:49
for T being ( ( non empty right_complementable Abelian add-associative right_zeroed ) ( non empty left_complementable right_complementable Abelian add-associative right_zeroed V153() ) RLSStruct )
for B, C, X being ( ( ) ( ) Subset of ) st B : ( ( ) ( ) Subset of ) c= C : ( ( ) ( ) Subset of ) holds
X : ( ( ) ( ) Subset of ) (o) B : ( ( ) ( ) Subset of ) : ( ( ) ( ) Subset of ) c= (X : ( ( ) ( ) Subset of ) (+) C : ( ( ) ( ) Subset of ) ) : ( ( ) ( ) Element of K32( the carrier of b1 : ( ( non empty right_complementable Abelian add-associative right_zeroed ) ( non empty left_complementable right_complementable Abelian add-associative right_zeroed V153() ) RLSStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( ) set ) ) (-) B : ( ( ) ( ) Subset of ) : ( ( ) ( ) Subset of ) ;

theorem :: MATHMORP:50
for T being ( ( non empty right_complementable Abelian add-associative right_zeroed ) ( non empty left_complementable right_complementable Abelian add-associative right_zeroed V153() ) RLSStruct )
for X, Y being ( ( ) ( ) Subset of ) holds
( X : ( ( ) ( ) Subset of ) (+) Y : ( ( ) ( ) Subset of ) : ( ( ) ( ) Element of K32( the carrier of b1 : ( ( non empty right_complementable Abelian add-associative right_zeroed ) ( non empty left_complementable right_complementable Abelian add-associative right_zeroed V153() ) RLSStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( ) set ) ) = (X : ( ( ) ( ) Subset of ) (o) Y : ( ( ) ( ) Subset of ) ) : ( ( ) ( ) Subset of ) (+) Y : ( ( ) ( ) Subset of ) : ( ( ) ( ) Element of K32( the carrier of b1 : ( ( non empty right_complementable Abelian add-associative right_zeroed ) ( non empty left_complementable right_complementable Abelian add-associative right_zeroed V153() ) RLSStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( ) set ) ) & X : ( ( ) ( ) Subset of ) (-) Y : ( ( ) ( ) Subset of ) : ( ( ) ( ) Subset of ) = (X : ( ( ) ( ) Subset of ) (O) Y : ( ( ) ( ) Subset of ) ) : ( ( ) ( ) Subset of ) (-) Y : ( ( ) ( ) Subset of ) : ( ( ) ( ) Subset of ) ) ;

theorem :: MATHMORP:51
for T being ( ( non empty right_complementable Abelian add-associative right_zeroed ) ( non empty left_complementable right_complementable Abelian add-associative right_zeroed V153() ) RLSStruct )
for X, Y being ( ( ) ( ) Subset of ) holds
( X : ( ( ) ( ) Subset of ) (+) Y : ( ( ) ( ) Subset of ) : ( ( ) ( ) Element of K32( the carrier of b1 : ( ( non empty right_complementable Abelian add-associative right_zeroed ) ( non empty left_complementable right_complementable Abelian add-associative right_zeroed V153() ) RLSStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( ) set ) ) = (X : ( ( ) ( ) Subset of ) (+) Y : ( ( ) ( ) Subset of ) ) : ( ( ) ( ) Element of K32( the carrier of b1 : ( ( non empty right_complementable Abelian add-associative right_zeroed ) ( non empty left_complementable right_complementable Abelian add-associative right_zeroed V153() ) RLSStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( ) set ) ) (O) Y : ( ( ) ( ) Subset of ) : ( ( ) ( ) Subset of ) & X : ( ( ) ( ) Subset of ) (-) Y : ( ( ) ( ) Subset of ) : ( ( ) ( ) Subset of ) = (X : ( ( ) ( ) Subset of ) (-) Y : ( ( ) ( ) Subset of ) ) : ( ( ) ( ) Subset of ) (o) Y : ( ( ) ( ) Subset of ) : ( ( ) ( ) Subset of ) ) ;

theorem :: MATHMORP:52
for T being ( ( non empty right_complementable Abelian add-associative right_zeroed ) ( non empty left_complementable right_complementable Abelian add-associative right_zeroed V153() ) RLSStruct )
for X, B being ( ( ) ( ) Subset of ) holds (X : ( ( ) ( ) Subset of ) (O) B : ( ( ) ( ) Subset of ) ) : ( ( ) ( ) Subset of ) (O) B : ( ( ) ( ) Subset of ) : ( ( ) ( ) Subset of ) = X : ( ( ) ( ) Subset of ) (O) B : ( ( ) ( ) Subset of ) : ( ( ) ( ) Subset of ) ;

theorem :: MATHMORP:53
for T being ( ( non empty right_complementable Abelian add-associative right_zeroed ) ( non empty left_complementable right_complementable Abelian add-associative right_zeroed V153() ) RLSStruct )
for X, B being ( ( ) ( ) Subset of ) holds (X : ( ( ) ( ) Subset of ) (o) B : ( ( ) ( ) Subset of ) ) : ( ( ) ( ) Subset of ) (o) B : ( ( ) ( ) Subset of ) : ( ( ) ( ) Subset of ) = X : ( ( ) ( ) Subset of ) (o) B : ( ( ) ( ) Subset of ) : ( ( ) ( ) Subset of ) ;

theorem :: MATHMORP:54
for T being ( ( non empty right_complementable Abelian add-associative right_zeroed ) ( non empty left_complementable right_complementable Abelian add-associative right_zeroed V153() ) RLSStruct )
for X, B, Y being ( ( ) ( ) Subset of ) holds X : ( ( ) ( ) Subset of ) (O) B : ( ( ) ( ) Subset of ) : ( ( ) ( ) Subset of ) c= (X : ( ( ) ( ) Subset of ) \/ Y : ( ( ) ( ) Subset of ) ) : ( ( ) ( ) Element of K32( the carrier of b1 : ( ( non empty right_complementable Abelian add-associative right_zeroed ) ( non empty left_complementable right_complementable Abelian add-associative right_zeroed V153() ) RLSStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( ) set ) ) (O) B : ( ( ) ( ) Subset of ) : ( ( ) ( ) Subset of ) ;

theorem :: MATHMORP:55
for T being ( ( non empty right_complementable Abelian add-associative right_zeroed ) ( non empty left_complementable right_complementable Abelian add-associative right_zeroed V153() ) RLSStruct )
for B, B1, X being ( ( ) ( ) Subset of ) st B : ( ( ) ( ) Subset of ) = B : ( ( ) ( ) Subset of ) (O) B1 : ( ( ) ( ) Subset of ) : ( ( ) ( ) Subset of ) holds
X : ( ( ) ( ) Subset of ) (O) B : ( ( ) ( ) Subset of ) : ( ( ) ( ) Subset of ) c= X : ( ( ) ( ) Subset of ) (O) B1 : ( ( ) ( ) Subset of ) : ( ( ) ( ) Subset of ) ;

begin

definition
let t be ( ( real ) ( V24() real ext-real ) number ) ;
let T be ( ( non empty ) ( non empty ) RLSStruct ) ;
let A be ( ( ) ( ) Subset of ) ;
func t (.) A -> ( ( ) ( ) Subset of ) equals :: MATHMORP:def 6
{ (t : ( ( ) ( ) RLTopStruct ) * a : ( ( ) ( ) Point of ( ( ) ( non empty ) set ) ) ) : ( ( ) ( ) Element of the carrier of T : ( ( ) ( ) Element of t : ( ( ) ( ) RLTopStruct ) ) : ( ( ) ( ) set ) ) where a is ( ( ) ( ) Point of ( ( ) ( ) set ) ) : a : ( ( ) ( ) Point of ( ( ) ( non empty ) set ) ) in A : ( ( V12() V30(K33(t : ( ( ) ( ) RLTopStruct ) ,t : ( ( ) ( ) RLTopStruct ) ) : ( ( ) ( ) set ) ,t : ( ( ) ( ) RLTopStruct ) ) ) ( V12() V30(K33(t : ( ( ) ( ) RLTopStruct ) ,t : ( ( ) ( ) RLTopStruct ) ) : ( ( ) ( ) set ) ,t : ( ( ) ( ) RLTopStruct ) ) ) Element of K32(K33(K33(t : ( ( ) ( ) RLTopStruct ) ,t : ( ( ) ( ) RLTopStruct ) ) : ( ( ) ( ) set ) ,t : ( ( ) ( ) RLTopStruct ) ) : ( ( ) ( ) set ) ) : ( ( ) ( ) set ) ) } ;
end;

theorem :: MATHMORP:56
for T being ( ( non empty right_complementable Abelian add-associative right_zeroed ) ( non empty left_complementable right_complementable Abelian add-associative right_zeroed V153() ) RLSStruct )
for X being ( ( ) ( ) Subset of ) st X : ( ( ) ( ) Subset of ) = {} : ( ( ) ( empty V134() V135() V136() V137() V138() V139() V140() ) set ) holds
0 : ( ( ) ( empty natural V24() real ext-real non positive non negative V86() V87() V134() V135() V136() V137() V138() V139() V140() ) Element of NAT : ( ( ) ( V134() V135() V136() V137() V138() V139() V140() ) Element of K32(REAL : ( ( ) ( V134() V135() V136() V140() ) set ) ) : ( ( ) ( ) set ) ) ) (.) X : ( ( ) ( ) Subset of ) : ( ( ) ( ) Subset of ) = {} : ( ( ) ( empty V134() V135() V136() V137() V138() V139() V140() ) set ) ;

theorem :: MATHMORP:57
for n being ( ( ) ( natural V24() real ext-real V86() V87() V134() V135() V136() V137() V138() V139() ) Element of NAT : ( ( ) ( V134() V135() V136() V137() V138() V139() V140() ) Element of K32(REAL : ( ( ) ( V134() V135() V136() V140() ) set ) ) : ( ( ) ( ) set ) ) )
for X being ( ( non empty ) ( non empty ) Subset of ) holds 0 : ( ( ) ( empty natural V24() real ext-real non positive non negative V86() V87() V134() V135() V136() V137() V138() V139() V140() ) Element of NAT : ( ( ) ( V134() V135() V136() V137() V138() V139() V140() ) Element of K32(REAL : ( ( ) ( V134() V135() V136() V140() ) set ) ) : ( ( ) ( ) set ) ) ) (.) X : ( ( non empty ) ( non empty ) Subset of ) : ( ( ) ( ) Subset of ) = {(0. (TOP-REAL n : ( ( ) ( natural V24() real ext-real V86() V87() V134() V135() V136() V137() V138() V139() ) Element of NAT : ( ( ) ( V134() V135() V136() V137() V138() V139() V140() ) Element of K32(REAL : ( ( ) ( V134() V135() V136() V140() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like left_complementable right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital V153() strict ) RLTopStruct ) ) : ( ( ) ( V40(b1 : ( ( ) ( natural V24() real ext-real V86() V87() V134() V135() V136() V137() V138() V139() ) Element of NAT : ( ( ) ( V134() V135() V136() V137() V138() V139() V140() ) Element of K32(REAL : ( ( ) ( V134() V135() V136() V140() ) set ) ) : ( ( ) ( ) set ) ) ) ) V49( TOP-REAL b1 : ( ( ) ( natural V24() real ext-real V86() V87() V134() V135() V136() V137() V138() V139() ) Element of NAT : ( ( ) ( V134() V135() V136() V137() V138() V139() V140() ) Element of K32(REAL : ( ( ) ( V134() V135() V136() V140() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( strict ) ( non empty TopSpace-like left_complementable right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital V153() strict ) RLTopStruct ) ) V83() V126() ) Element of the carrier of (TOP-REAL b1 : ( ( ) ( natural V24() real ext-real V86() V87() V134() V135() V136() V137() V138() V139() ) Element of NAT : ( ( ) ( V134() V135() V136() V137() V138() V139() V140() ) Element of K32(REAL : ( ( ) ( V134() V135() V136() V140() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like left_complementable right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital V153() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) } : ( ( ) ( non empty ) Element of K32( the carrier of (TOP-REAL b1 : ( ( ) ( natural V24() real ext-real V86() V87() V134() V135() V136() V137() V138() V139() ) Element of NAT : ( ( ) ( V134() V135() V136() V137() V138() V139() V140() ) Element of K32(REAL : ( ( ) ( V134() V135() V136() V140() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like left_complementable right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital V153() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( ) set ) ) ;

theorem :: MATHMORP:58
for n being ( ( ) ( natural V24() real ext-real V86() V87() V134() V135() V136() V137() V138() V139() ) Element of NAT : ( ( ) ( V134() V135() V136() V137() V138() V139() V140() ) Element of K32(REAL : ( ( ) ( V134() V135() V136() V140() ) set ) ) : ( ( ) ( ) set ) ) )
for X being ( ( ) ( ) Subset of ) holds 1 : ( ( ) ( non empty natural V24() real ext-real positive non negative V86() V87() V134() V135() V136() V137() V138() V139() ) Element of NAT : ( ( ) ( V134() V135() V136() V137() V138() V139() V140() ) Element of K32(REAL : ( ( ) ( V134() V135() V136() V140() ) set ) ) : ( ( ) ( ) set ) ) ) (.) X : ( ( ) ( ) Subset of ) : ( ( ) ( ) Subset of ) = X : ( ( ) ( ) Subset of ) ;

theorem :: MATHMORP:59
for n being ( ( ) ( natural V24() real ext-real V86() V87() V134() V135() V136() V137() V138() V139() ) Element of NAT : ( ( ) ( V134() V135() V136() V137() V138() V139() V140() ) Element of K32(REAL : ( ( ) ( V134() V135() V136() V140() ) set ) ) : ( ( ) ( ) set ) ) )
for X being ( ( ) ( ) Subset of ) holds 2 : ( ( ) ( non empty natural V24() real ext-real positive non negative V86() V87() V134() V135() V136() V137() V138() V139() ) Element of NAT : ( ( ) ( V134() V135() V136() V137() V138() V139() V140() ) Element of K32(REAL : ( ( ) ( V134() V135() V136() V140() ) set ) ) : ( ( ) ( ) set ) ) ) (.) X : ( ( ) ( ) Subset of ) : ( ( ) ( ) Subset of ) c= X : ( ( ) ( ) Subset of ) (+) X : ( ( ) ( ) Subset of ) : ( ( ) ( ) Element of K32( the carrier of (TOP-REAL b1 : ( ( ) ( natural V24() real ext-real V86() V87() V134() V135() V136() V137() V138() V139() ) Element of NAT : ( ( ) ( V134() V135() V136() V137() V138() V139() V140() ) Element of K32(REAL : ( ( ) ( V134() V135() V136() V140() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like left_complementable right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital V153() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( ) set ) ) ;

theorem :: MATHMORP:60
for t, s being ( ( real ) ( V24() real ext-real ) number )
for n being ( ( ) ( natural V24() real ext-real V86() V87() V134() V135() V136() V137() V138() V139() ) Element of NAT : ( ( ) ( V134() V135() V136() V137() V138() V139() V140() ) Element of K32(REAL : ( ( ) ( V134() V135() V136() V140() ) set ) ) : ( ( ) ( ) set ) ) )
for X being ( ( ) ( ) Subset of ) holds (t : ( ( real ) ( V24() real ext-real ) number ) * s : ( ( real ) ( V24() real ext-real ) number ) ) : ( ( ) ( V24() real ext-real ) set ) (.) X : ( ( ) ( ) Subset of ) : ( ( ) ( ) Subset of ) = t : ( ( real ) ( V24() real ext-real ) number ) (.) (s : ( ( real ) ( V24() real ext-real ) number ) (.) X : ( ( ) ( ) Subset of ) ) : ( ( ) ( ) Subset of ) : ( ( ) ( ) Subset of ) ;

theorem :: MATHMORP:61
for t being ( ( real ) ( V24() real ext-real ) number )
for n being ( ( ) ( natural V24() real ext-real V86() V87() V134() V135() V136() V137() V138() V139() ) Element of NAT : ( ( ) ( V134() V135() V136() V137() V138() V139() V140() ) Element of K32(REAL : ( ( ) ( V134() V135() V136() V140() ) set ) ) : ( ( ) ( ) set ) ) )
for X, Y being ( ( ) ( ) Subset of ) st X : ( ( ) ( ) Subset of ) c= Y : ( ( ) ( ) Subset of ) holds
t : ( ( real ) ( V24() real ext-real ) number ) (.) X : ( ( ) ( ) Subset of ) : ( ( ) ( ) Subset of ) c= t : ( ( real ) ( V24() real ext-real ) number ) (.) Y : ( ( ) ( ) Subset of ) : ( ( ) ( ) Subset of ) ;

theorem :: MATHMORP:62
for t being ( ( real ) ( V24() real ext-real ) number )
for n being ( ( ) ( natural V24() real ext-real V86() V87() V134() V135() V136() V137() V138() V139() ) Element of NAT : ( ( ) ( V134() V135() V136() V137() V138() V139() V140() ) Element of K32(REAL : ( ( ) ( V134() V135() V136() V140() ) set ) ) : ( ( ) ( ) set ) ) )
for X being ( ( ) ( ) Subset of )
for x being ( ( ) ( V40(b2 : ( ( ) ( natural V24() real ext-real V86() V87() V134() V135() V136() V137() V138() V139() ) Element of NAT : ( ( ) ( V134() V135() V136() V137() V138() V139() V140() ) Element of K32(REAL : ( ( ) ( V134() V135() V136() V140() ) set ) ) : ( ( ) ( ) set ) ) ) ) V83() V126() ) Point of ( ( ) ( non empty ) set ) ) holds t : ( ( real ) ( V24() real ext-real ) number ) (.) (X : ( ( ) ( ) Subset of ) + x : ( ( ) ( V40(b2 : ( ( ) ( natural V24() real ext-real V86() V87() V134() V135() V136() V137() V138() V139() ) Element of NAT : ( ( ) ( V134() V135() V136() V137() V138() V139() V140() ) Element of K32(REAL : ( ( ) ( V134() V135() V136() V140() ) set ) ) : ( ( ) ( ) set ) ) ) ) V83() V126() ) Point of ( ( ) ( non empty ) set ) ) ) : ( ( ) ( ) Subset of ) : ( ( ) ( ) Subset of ) = (t : ( ( real ) ( V24() real ext-real ) number ) (.) X : ( ( ) ( ) Subset of ) ) : ( ( ) ( ) Subset of ) + (t : ( ( real ) ( V24() real ext-real ) number ) * x : ( ( ) ( V40(b2 : ( ( ) ( natural V24() real ext-real V86() V87() V134() V135() V136() V137() V138() V139() ) Element of NAT : ( ( ) ( V134() V135() V136() V137() V138() V139() V140() ) Element of K32(REAL : ( ( ) ( V134() V135() V136() V140() ) set ) ) : ( ( ) ( ) set ) ) ) ) V83() V126() ) Point of ( ( ) ( non empty ) set ) ) ) : ( ( ) ( V40(b2 : ( ( ) ( natural V24() real ext-real V86() V87() V134() V135() V136() V137() V138() V139() ) Element of NAT : ( ( ) ( V134() V135() V136() V137() V138() V139() V140() ) Element of K32(REAL : ( ( ) ( V134() V135() V136() V140() ) set ) ) : ( ( ) ( ) set ) ) ) ) V83() V126() ) Element of the carrier of (TOP-REAL b2 : ( ( ) ( natural V24() real ext-real V86() V87() V134() V135() V136() V137() V138() V139() ) Element of NAT : ( ( ) ( V134() V135() V136() V137() V138() V139() V140() ) Element of K32(REAL : ( ( ) ( V134() V135() V136() V140() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like left_complementable right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital V153() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( ) Subset of ) ;

theorem :: MATHMORP:63
for t being ( ( real ) ( V24() real ext-real ) number )
for n being ( ( ) ( natural V24() real ext-real V86() V87() V134() V135() V136() V137() V138() V139() ) Element of NAT : ( ( ) ( V134() V135() V136() V137() V138() V139() V140() ) Element of K32(REAL : ( ( ) ( V134() V135() V136() V140() ) set ) ) : ( ( ) ( ) set ) ) )
for X, Y being ( ( ) ( ) Subset of ) holds t : ( ( real ) ( V24() real ext-real ) number ) (.) (X : ( ( ) ( ) Subset of ) (+) Y : ( ( ) ( ) Subset of ) ) : ( ( ) ( ) Element of K32( the carrier of (TOP-REAL b2 : ( ( ) ( natural V24() real ext-real V86() V87() V134() V135() V136() V137() V138() V139() ) Element of NAT : ( ( ) ( V134() V135() V136() V137() V138() V139() V140() ) Element of K32(REAL : ( ( ) ( V134() V135() V136() V140() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like left_complementable right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital V153() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( ) set ) ) : ( ( ) ( ) Subset of ) = (t : ( ( real ) ( V24() real ext-real ) number ) (.) X : ( ( ) ( ) Subset of ) ) : ( ( ) ( ) Subset of ) (+) (t : ( ( real ) ( V24() real ext-real ) number ) (.) Y : ( ( ) ( ) Subset of ) ) : ( ( ) ( ) Subset of ) : ( ( ) ( ) Element of K32( the carrier of (TOP-REAL b2 : ( ( ) ( natural V24() real ext-real V86() V87() V134() V135() V136() V137() V138() V139() ) Element of NAT : ( ( ) ( V134() V135() V136() V137() V138() V139() V140() ) Element of K32(REAL : ( ( ) ( V134() V135() V136() V140() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like left_complementable right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital V153() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( ) set ) ) ;

theorem :: MATHMORP:64
for t being ( ( real ) ( V24() real ext-real ) number )
for n being ( ( ) ( natural V24() real ext-real V86() V87() V134() V135() V136() V137() V138() V139() ) Element of NAT : ( ( ) ( V134() V135() V136() V137() V138() V139() V140() ) Element of K32(REAL : ( ( ) ( V134() V135() V136() V140() ) set ) ) : ( ( ) ( ) set ) ) )
for X, Y being ( ( ) ( ) Subset of ) st t : ( ( real ) ( V24() real ext-real ) number ) <> 0 : ( ( ) ( empty natural V24() real ext-real non positive non negative V86() V87() V134() V135() V136() V137() V138() V139() V140() ) Element of NAT : ( ( ) ( V134() V135() V136() V137() V138() V139() V140() ) Element of K32(REAL : ( ( ) ( V134() V135() V136() V140() ) set ) ) : ( ( ) ( ) set ) ) ) holds
t : ( ( real ) ( V24() real ext-real ) number ) (.) (X : ( ( ) ( ) Subset of ) (-) Y : ( ( ) ( ) Subset of ) ) : ( ( ) ( ) Subset of ) : ( ( ) ( ) Subset of ) = (t : ( ( real ) ( V24() real ext-real ) number ) (.) X : ( ( ) ( ) Subset of ) ) : ( ( ) ( ) Subset of ) (-) (t : ( ( real ) ( V24() real ext-real ) number ) (.) Y : ( ( ) ( ) Subset of ) ) : ( ( ) ( ) Subset of ) : ( ( ) ( ) Subset of ) ;

theorem :: MATHMORP:65
for t being ( ( real ) ( V24() real ext-real ) number )
for n being ( ( ) ( natural V24() real ext-real V86() V87() V134() V135() V136() V137() V138() V139() ) Element of NAT : ( ( ) ( V134() V135() V136() V137() V138() V139() V140() ) Element of K32(REAL : ( ( ) ( V134() V135() V136() V140() ) set ) ) : ( ( ) ( ) set ) ) )
for X, Y being ( ( ) ( ) Subset of ) st t : ( ( real ) ( V24() real ext-real ) number ) <> 0 : ( ( ) ( empty natural V24() real ext-real non positive non negative V86() V87() V134() V135() V136() V137() V138() V139() V140() ) Element of NAT : ( ( ) ( V134() V135() V136() V137() V138() V139() V140() ) Element of K32(REAL : ( ( ) ( V134() V135() V136() V140() ) set ) ) : ( ( ) ( ) set ) ) ) holds
t : ( ( real ) ( V24() real ext-real ) number ) (.) (X : ( ( ) ( ) Subset of ) (O) Y : ( ( ) ( ) Subset of ) ) : ( ( ) ( ) Subset of ) : ( ( ) ( ) Subset of ) = (t : ( ( real ) ( V24() real ext-real ) number ) (.) X : ( ( ) ( ) Subset of ) ) : ( ( ) ( ) Subset of ) (O) (t : ( ( real ) ( V24() real ext-real ) number ) (.) Y : ( ( ) ( ) Subset of ) ) : ( ( ) ( ) Subset of ) : ( ( ) ( ) Subset of ) ;

theorem :: MATHMORP:66
for t being ( ( real ) ( V24() real ext-real ) number )
for n being ( ( ) ( natural V24() real ext-real V86() V87() V134() V135() V136() V137() V138() V139() ) Element of NAT : ( ( ) ( V134() V135() V136() V137() V138() V139() V140() ) Element of K32(REAL : ( ( ) ( V134() V135() V136() V140() ) set ) ) : ( ( ) ( ) set ) ) )
for X, Y being ( ( ) ( ) Subset of ) st t : ( ( real ) ( V24() real ext-real ) number ) <> 0 : ( ( ) ( empty natural V24() real ext-real non positive non negative V86() V87() V134() V135() V136() V137() V138() V139() V140() ) Element of NAT : ( ( ) ( V134() V135() V136() V137() V138() V139() V140() ) Element of K32(REAL : ( ( ) ( V134() V135() V136() V140() ) set ) ) : ( ( ) ( ) set ) ) ) holds
t : ( ( real ) ( V24() real ext-real ) number ) (.) (X : ( ( ) ( ) Subset of ) (o) Y : ( ( ) ( ) Subset of ) ) : ( ( ) ( ) Subset of ) : ( ( ) ( ) Subset of ) = (t : ( ( real ) ( V24() real ext-real ) number ) (.) X : ( ( ) ( ) Subset of ) ) : ( ( ) ( ) Subset of ) (o) (t : ( ( real ) ( V24() real ext-real ) number ) (.) Y : ( ( ) ( ) Subset of ) ) : ( ( ) ( ) Subset of ) : ( ( ) ( ) Subset of ) ;

begin

definition
let T be ( ( non empty ) ( non empty ) RLSStruct ) ;
let X, B1, B2 be ( ( ) ( ) Subset of ) ;
func X (*) (B1,B2) -> ( ( ) ( ) Subset of ) equals :: MATHMORP:def 7
(X : ( ( ) ( ) Element of T : ( ( ) ( ) RLTopStruct ) ) (-) B1 : ( ( V12() V30(K33(T : ( ( ) ( ) RLTopStruct ) ,T : ( ( ) ( ) RLTopStruct ) ) : ( ( ) ( ) set ) ,T : ( ( ) ( ) RLTopStruct ) ) ) ( V12() V30(K33(T : ( ( ) ( ) RLTopStruct ) ,T : ( ( ) ( ) RLTopStruct ) ) : ( ( ) ( ) set ) ,T : ( ( ) ( ) RLTopStruct ) ) ) Element of K32(K33(K33(T : ( ( ) ( ) RLTopStruct ) ,T : ( ( ) ( ) RLTopStruct ) ) : ( ( ) ( ) set ) ,T : ( ( ) ( ) RLTopStruct ) ) : ( ( ) ( ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( ) ( ) Subset of ) /\ ((X : ( ( ) ( ) Element of T : ( ( ) ( ) RLTopStruct ) ) `) : ( ( ) ( ) Element of K32( the carrier of T : ( ( ) ( ) RLTopStruct ) : ( ( ) ( ) set ) ) : ( ( ) ( ) set ) ) (-) B2 : ( ( V12() V30(K33(REAL : ( ( ) ( V134() V135() V136() V140() ) set ) ,T : ( ( ) ( ) RLTopStruct ) ) : ( ( ) ( ) set ) ,T : ( ( ) ( ) RLTopStruct ) ) ) ( V12() V30(K33(REAL : ( ( ) ( V134() V135() V136() V140() ) set ) ,T : ( ( ) ( ) RLTopStruct ) ) : ( ( ) ( ) set ) ,T : ( ( ) ( ) RLTopStruct ) ) ) Element of K32(K33(K33(REAL : ( ( ) ( V134() V135() V136() V140() ) set ) ,T : ( ( ) ( ) RLTopStruct ) ) : ( ( ) ( ) set ) ,T : ( ( ) ( ) RLTopStruct ) ) : ( ( ) ( ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( ) ( ) Subset of ) : ( ( ) ( ) Element of K32( the carrier of T : ( ( ) ( ) RLTopStruct ) : ( ( ) ( ) set ) ) : ( ( ) ( ) set ) ) ;
end;

definition
let T be ( ( non empty ) ( non empty ) RLSStruct ) ;
let X, B1, B2 be ( ( ) ( ) Subset of ) ;
func X (&) (B1,B2) -> ( ( ) ( ) Subset of ) equals :: MATHMORP:def 8
X : ( ( ) ( ) Element of T : ( ( ) ( ) RLTopStruct ) ) \/ (X : ( ( ) ( ) Element of T : ( ( ) ( ) RLTopStruct ) ) (*) (B1 : ( ( V12() V30(K33(T : ( ( ) ( ) RLTopStruct ) ,T : ( ( ) ( ) RLTopStruct ) ) : ( ( ) ( ) set ) ,T : ( ( ) ( ) RLTopStruct ) ) ) ( V12() V30(K33(T : ( ( ) ( ) RLTopStruct ) ,T : ( ( ) ( ) RLTopStruct ) ) : ( ( ) ( ) set ) ,T : ( ( ) ( ) RLTopStruct ) ) ) Element of K32(K33(K33(T : ( ( ) ( ) RLTopStruct ) ,T : ( ( ) ( ) RLTopStruct ) ) : ( ( ) ( ) set ) ,T : ( ( ) ( ) RLTopStruct ) ) : ( ( ) ( ) set ) ) : ( ( ) ( ) set ) ) ,B2 : ( ( V12() V30(K33(REAL : ( ( ) ( V134() V135() V136() V140() ) set ) ,T : ( ( ) ( ) RLTopStruct ) ) : ( ( ) ( ) set ) ,T : ( ( ) ( ) RLTopStruct ) ) ) ( V12() V30(K33(REAL : ( ( ) ( V134() V135() V136() V140() ) set ) ,T : ( ( ) ( ) RLTopStruct ) ) : ( ( ) ( ) set ) ,T : ( ( ) ( ) RLTopStruct ) ) ) Element of K32(K33(K33(REAL : ( ( ) ( V134() V135() V136() V140() ) set ) ,T : ( ( ) ( ) RLTopStruct ) ) : ( ( ) ( ) set ) ,T : ( ( ) ( ) RLTopStruct ) ) : ( ( ) ( ) set ) ) : ( ( ) ( ) set ) ) )) : ( ( ) ( ) Subset of ) : ( ( ) ( ) Element of K32( the carrier of T : ( ( ) ( ) RLTopStruct ) : ( ( ) ( ) set ) ) : ( ( ) ( ) set ) ) ;
end;

definition
let T be ( ( non empty ) ( non empty ) RLSStruct ) ;
let X, B1, B2 be ( ( ) ( ) Subset of ) ;
func X (@) (B1,B2) -> ( ( ) ( ) Subset of ) equals :: MATHMORP:def 9
X : ( ( ) ( ) Element of T : ( ( ) ( ) RLTopStruct ) ) \ (X : ( ( ) ( ) Element of T : ( ( ) ( ) RLTopStruct ) ) (*) (B1 : ( ( V12() V30(K33(T : ( ( ) ( ) RLTopStruct ) ,T : ( ( ) ( ) RLTopStruct ) ) : ( ( ) ( ) set ) ,T : ( ( ) ( ) RLTopStruct ) ) ) ( V12() V30(K33(T : ( ( ) ( ) RLTopStruct ) ,T : ( ( ) ( ) RLTopStruct ) ) : ( ( ) ( ) set ) ,T : ( ( ) ( ) RLTopStruct ) ) ) Element of K32(K33(K33(T : ( ( ) ( ) RLTopStruct ) ,T : ( ( ) ( ) RLTopStruct ) ) : ( ( ) ( ) set ) ,T : ( ( ) ( ) RLTopStruct ) ) : ( ( ) ( ) set ) ) : ( ( ) ( ) set ) ) ,B2 : ( ( V12() V30(K33(REAL : ( ( ) ( V134() V135() V136() V140() ) set ) ,T : ( ( ) ( ) RLTopStruct ) ) : ( ( ) ( ) set ) ,T : ( ( ) ( ) RLTopStruct ) ) ) ( V12() V30(K33(REAL : ( ( ) ( V134() V135() V136() V140() ) set ) ,T : ( ( ) ( ) RLTopStruct ) ) : ( ( ) ( ) set ) ,T : ( ( ) ( ) RLTopStruct ) ) ) Element of K32(K33(K33(REAL : ( ( ) ( V134() V135() V136() V140() ) set ) ,T : ( ( ) ( ) RLTopStruct ) ) : ( ( ) ( ) set ) ,T : ( ( ) ( ) RLTopStruct ) ) : ( ( ) ( ) set ) ) : ( ( ) ( ) set ) ) )) : ( ( ) ( ) Subset of ) : ( ( ) ( ) Element of K32( the carrier of T : ( ( ) ( ) RLTopStruct ) : ( ( ) ( ) set ) ) : ( ( ) ( ) set ) ) ;
end;

theorem :: MATHMORP:67
for n being ( ( ) ( natural V24() real ext-real V86() V87() V134() V135() V136() V137() V138() V139() ) Element of NAT : ( ( ) ( V134() V135() V136() V137() V138() V139() V140() ) Element of K32(REAL : ( ( ) ( V134() V135() V136() V140() ) set ) ) : ( ( ) ( ) set ) ) )
for B1, X, B2 being ( ( ) ( ) Subset of ) st B1 : ( ( ) ( ) Subset of ) = {} : ( ( ) ( empty V134() V135() V136() V137() V138() V139() V140() ) set ) holds
X : ( ( ) ( ) Subset of ) (*) (B1 : ( ( ) ( ) Subset of ) ,B2 : ( ( ) ( ) Subset of ) ) : ( ( ) ( ) Subset of ) = (X : ( ( ) ( ) Subset of ) `) : ( ( ) ( ) Element of K32( the carrier of (TOP-REAL b1 : ( ( ) ( natural V24() real ext-real V86() V87() V134() V135() V136() V137() V138() V139() ) Element of NAT : ( ( ) ( V134() V135() V136() V137() V138() V139() V140() ) Element of K32(REAL : ( ( ) ( V134() V135() V136() V140() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like left_complementable right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital V153() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( ) set ) ) (-) B2 : ( ( ) ( ) Subset of ) : ( ( ) ( ) Subset of ) ;

theorem :: MATHMORP:68
for n being ( ( ) ( natural V24() real ext-real V86() V87() V134() V135() V136() V137() V138() V139() ) Element of NAT : ( ( ) ( V134() V135() V136() V137() V138() V139() V140() ) Element of K32(REAL : ( ( ) ( V134() V135() V136() V140() ) set ) ) : ( ( ) ( ) set ) ) )
for B2, X, B1 being ( ( ) ( ) Subset of ) st B2 : ( ( ) ( ) Subset of ) = {} : ( ( ) ( empty V134() V135() V136() V137() V138() V139() V140() ) set ) holds
X : ( ( ) ( ) Subset of ) (*) (B1 : ( ( ) ( ) Subset of ) ,B2 : ( ( ) ( ) Subset of ) ) : ( ( ) ( ) Subset of ) = X : ( ( ) ( ) Subset of ) (-) B1 : ( ( ) ( ) Subset of ) : ( ( ) ( ) Subset of ) ;

theorem :: MATHMORP:69
for n being ( ( ) ( natural V24() real ext-real V86() V87() V134() V135() V136() V137() V138() V139() ) Element of NAT : ( ( ) ( V134() V135() V136() V137() V138() V139() V140() ) Element of K32(REAL : ( ( ) ( V134() V135() V136() V140() ) set ) ) : ( ( ) ( ) set ) ) )
for B1, X, B2 being ( ( ) ( ) Subset of ) st 0. (TOP-REAL n : ( ( ) ( natural V24() real ext-real V86() V87() V134() V135() V136() V137() V138() V139() ) Element of NAT : ( ( ) ( V134() V135() V136() V137() V138() V139() V140() ) Element of K32(REAL : ( ( ) ( V134() V135() V136() V140() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like left_complementable right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital V153() strict ) RLTopStruct ) : ( ( ) ( V40(b1 : ( ( ) ( natural V24() real ext-real V86() V87() V134() V135() V136() V137() V138() V139() ) Element of NAT : ( ( ) ( V134() V135() V136() V137() V138() V139() V140() ) Element of K32(REAL : ( ( ) ( V134() V135() V136() V140() ) set ) ) : ( ( ) ( ) set ) ) ) ) V49( TOP-REAL b1 : ( ( ) ( natural V24() real ext-real V86() V87() V134() V135() V136() V137() V138() V139() ) Element of NAT : ( ( ) ( V134() V135() V136() V137() V138() V139() V140() ) Element of K32(REAL : ( ( ) ( V134() V135() V136() V140() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( strict ) ( non empty TopSpace-like left_complementable right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital V153() strict ) RLTopStruct ) ) V83() V126() ) Element of the carrier of (TOP-REAL b1 : ( ( ) ( natural V24() real ext-real V86() V87() V134() V135() V136() V137() V138() V139() ) Element of NAT : ( ( ) ( V134() V135() V136() V137() V138() V139() V140() ) Element of K32(REAL : ( ( ) ( V134() V135() V136() V140() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like left_complementable right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital V153() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) in B1 : ( ( ) ( ) Subset of ) holds
X : ( ( ) ( ) Subset of ) (*) (B1 : ( ( ) ( ) Subset of ) ,B2 : ( ( ) ( ) Subset of ) ) : ( ( ) ( ) Subset of ) c= X : ( ( ) ( ) Subset of ) ;

theorem :: MATHMORP:70
for n being ( ( ) ( natural V24() real ext-real V86() V87() V134() V135() V136() V137() V138() V139() ) Element of NAT : ( ( ) ( V134() V135() V136() V137() V138() V139() V140() ) Element of K32(REAL : ( ( ) ( V134() V135() V136() V140() ) set ) ) : ( ( ) ( ) set ) ) )
for B2, X, B1 being ( ( ) ( ) Subset of ) st 0. (TOP-REAL n : ( ( ) ( natural V24() real ext-real V86() V87() V134() V135() V136() V137() V138() V139() ) Element of NAT : ( ( ) ( V134() V135() V136() V137() V138() V139() V140() ) Element of K32(REAL : ( ( ) ( V134() V135() V136() V140() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like left_complementable right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital V153() strict ) RLTopStruct ) : ( ( ) ( V40(b1 : ( ( ) ( natural V24() real ext-real V86() V87() V134() V135() V136() V137() V138() V139() ) Element of NAT : ( ( ) ( V134() V135() V136() V137() V138() V139() V140() ) Element of K32(REAL : ( ( ) ( V134() V135() V136() V140() ) set ) ) : ( ( ) ( ) set ) ) ) ) V49( TOP-REAL b1 : ( ( ) ( natural V24() real ext-real V86() V87() V134() V135() V136() V137() V138() V139() ) Element of NAT : ( ( ) ( V134() V135() V136() V137() V138() V139() V140() ) Element of K32(REAL : ( ( ) ( V134() V135() V136() V140() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( strict ) ( non empty TopSpace-like left_complementable right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital V153() strict ) RLTopStruct ) ) V83() V126() ) Element of the carrier of (TOP-REAL b1 : ( ( ) ( natural V24() real ext-real V86() V87() V134() V135() V136() V137() V138() V139() ) Element of NAT : ( ( ) ( V134() V135() V136() V137() V138() V139() V140() ) Element of K32(REAL : ( ( ) ( V134() V135() V136() V140() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like left_complementable right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital V153() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) in B2 : ( ( ) ( ) Subset of ) holds
(X : ( ( ) ( ) Subset of ) (*) (B1 : ( ( ) ( ) Subset of ) ,B2 : ( ( ) ( ) Subset of ) )) : ( ( ) ( ) Subset of ) /\ X : ( ( ) ( ) Subset of ) : ( ( ) ( ) Element of K32( the carrier of (TOP-REAL b1 : ( ( ) ( natural V24() real ext-real V86() V87() V134() V135() V136() V137() V138() V139() ) Element of NAT : ( ( ) ( V134() V135() V136() V137() V138() V139() V140() ) Element of K32(REAL : ( ( ) ( V134() V135() V136() V140() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like left_complementable right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital V153() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( ) set ) ) = {} : ( ( ) ( empty V134() V135() V136() V137() V138() V139() V140() ) set ) ;

theorem :: MATHMORP:71
for n being ( ( ) ( natural V24() real ext-real V86() V87() V134() V135() V136() V137() V138() V139() ) Element of NAT : ( ( ) ( V134() V135() V136() V137() V138() V139() V140() ) Element of K32(REAL : ( ( ) ( V134() V135() V136() V140() ) set ) ) : ( ( ) ( ) set ) ) )
for B1, X, B2 being ( ( ) ( ) Subset of ) st 0. (TOP-REAL n : ( ( ) ( natural V24() real ext-real V86() V87() V134() V135() V136() V137() V138() V139() ) Element of NAT : ( ( ) ( V134() V135() V136() V137() V138() V139() V140() ) Element of K32(REAL : ( ( ) ( V134() V135() V136() V140() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like left_complementable right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital V153() strict ) RLTopStruct ) : ( ( ) ( V40(b1 : ( ( ) ( natural V24() real ext-real V86() V87() V134() V135() V136() V137() V138() V139() ) Element of NAT : ( ( ) ( V134() V135() V136() V137() V138() V139() V140() ) Element of K32(REAL : ( ( ) ( V134() V135() V136() V140() ) set ) ) : ( ( ) ( ) set ) ) ) ) V49( TOP-REAL b1 : ( ( ) ( natural V24() real ext-real V86() V87() V134() V135() V136() V137() V138() V139() ) Element of NAT : ( ( ) ( V134() V135() V136() V137() V138() V139() V140() ) Element of K32(REAL : ( ( ) ( V134() V135() V136() V140() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( strict ) ( non empty TopSpace-like left_complementable right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital V153() strict ) RLTopStruct ) ) V83() V126() ) Element of the carrier of (TOP-REAL b1 : ( ( ) ( natural V24() real ext-real V86() V87() V134() V135() V136() V137() V138() V139() ) Element of NAT : ( ( ) ( V134() V135() V136() V137() V138() V139() V140() ) Element of K32(REAL : ( ( ) ( V134() V135() V136() V140() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like left_complementable right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital V153() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) in B1 : ( ( ) ( ) Subset of ) holds
X : ( ( ) ( ) Subset of ) (&) (B1 : ( ( ) ( ) Subset of ) ,B2 : ( ( ) ( ) Subset of ) ) : ( ( ) ( ) Subset of ) = X : ( ( ) ( ) Subset of ) ;

theorem :: MATHMORP:72
for n being ( ( ) ( natural V24() real ext-real V86() V87() V134() V135() V136() V137() V138() V139() ) Element of NAT : ( ( ) ( V134() V135() V136() V137() V138() V139() V140() ) Element of K32(REAL : ( ( ) ( V134() V135() V136() V140() ) set ) ) : ( ( ) ( ) set ) ) )
for B2, X, B1 being ( ( ) ( ) Subset of ) st 0. (TOP-REAL n : ( ( ) ( natural V24() real ext-real V86() V87() V134() V135() V136() V137() V138() V139() ) Element of NAT : ( ( ) ( V134() V135() V136() V137() V138() V139() V140() ) Element of K32(REAL : ( ( ) ( V134() V135() V136() V140() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like left_complementable right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital V153() strict ) RLTopStruct ) : ( ( ) ( V40(b1 : ( ( ) ( natural V24() real ext-real V86() V87() V134() V135() V136() V137() V138() V139() ) Element of NAT : ( ( ) ( V134() V135() V136() V137() V138() V139() V140() ) Element of K32(REAL : ( ( ) ( V134() V135() V136() V140() ) set ) ) : ( ( ) ( ) set ) ) ) ) V49( TOP-REAL b1 : ( ( ) ( natural V24() real ext-real V86() V87() V134() V135() V136() V137() V138() V139() ) Element of NAT : ( ( ) ( V134() V135() V136() V137() V138() V139() V140() ) Element of K32(REAL : ( ( ) ( V134() V135() V136() V140() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( strict ) ( non empty TopSpace-like left_complementable right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital V153() strict ) RLTopStruct ) ) V83() V126() ) Element of the carrier of (TOP-REAL b1 : ( ( ) ( natural V24() real ext-real V86() V87() V134() V135() V136() V137() V138() V139() ) Element of NAT : ( ( ) ( V134() V135() V136() V137() V138() V139() V140() ) Element of K32(REAL : ( ( ) ( V134() V135() V136() V140() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like left_complementable right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital V153() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) in B2 : ( ( ) ( ) Subset of ) holds
X : ( ( ) ( ) Subset of ) (@) (B1 : ( ( ) ( ) Subset of ) ,B2 : ( ( ) ( ) Subset of ) ) : ( ( ) ( ) Subset of ) = X : ( ( ) ( ) Subset of ) ;

theorem :: MATHMORP:73
for n being ( ( ) ( natural V24() real ext-real V86() V87() V134() V135() V136() V137() V138() V139() ) Element of NAT : ( ( ) ( V134() V135() V136() V137() V138() V139() V140() ) Element of K32(REAL : ( ( ) ( V134() V135() V136() V140() ) set ) ) : ( ( ) ( ) set ) ) )
for X, B2, B1 being ( ( ) ( ) Subset of ) holds X : ( ( ) ( ) Subset of ) (@) (B2 : ( ( ) ( ) Subset of ) ,B1 : ( ( ) ( ) Subset of ) ) : ( ( ) ( ) Subset of ) = ((X : ( ( ) ( ) Subset of ) `) : ( ( ) ( ) Element of K32( the carrier of (TOP-REAL b1 : ( ( ) ( natural V24() real ext-real V86() V87() V134() V135() V136() V137() V138() V139() ) Element of NAT : ( ( ) ( V134() V135() V136() V137() V138() V139() V140() ) Element of K32(REAL : ( ( ) ( V134() V135() V136() V140() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like left_complementable right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital V153() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( ) set ) ) (&) (B1 : ( ( ) ( ) Subset of ) ,B2 : ( ( ) ( ) Subset of ) )) : ( ( ) ( ) Subset of ) ` : ( ( ) ( ) Element of K32( the carrier of (TOP-REAL b1 : ( ( ) ( natural V24() real ext-real V86() V87() V134() V135() V136() V137() V138() V139() ) Element of NAT : ( ( ) ( V134() V135() V136() V137() V138() V139() V140() ) Element of K32(REAL : ( ( ) ( V134() V135() V136() V140() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like left_complementable right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital V153() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( ) set ) ) ;

begin

theorem :: MATHMORP:74
for V being ( ( non empty right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital ) ( non empty left_complementable right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital V153() ) RealLinearSpace)
for B being ( ( ) ( ) Subset of ) holds
( B : ( ( ) ( ) Subset of ) is convex iff for x, y being ( ( ) ( ) Point of ( ( ) ( non empty ) set ) )
for r being ( ( real ) ( V24() real ext-real ) number ) st 0 : ( ( ) ( empty natural V24() real ext-real non positive non negative V86() V87() V134() V135() V136() V137() V138() V139() V140() ) Element of NAT : ( ( ) ( V134() V135() V136() V137() V138() V139() V140() ) Element of K32(REAL : ( ( ) ( V134() V135() V136() V140() ) set ) ) : ( ( ) ( ) set ) ) ) <= r : ( ( real ) ( V24() real ext-real ) number ) & r : ( ( real ) ( V24() real ext-real ) number ) <= 1 : ( ( ) ( non empty natural V24() real ext-real positive non negative V86() V87() V134() V135() V136() V137() V138() V139() ) Element of NAT : ( ( ) ( V134() V135() V136() V137() V138() V139() V140() ) Element of K32(REAL : ( ( ) ( V134() V135() V136() V140() ) set ) ) : ( ( ) ( ) set ) ) ) & x : ( ( ) ( ) Point of ( ( ) ( non empty ) set ) ) in B : ( ( ) ( ) Subset of ) & y : ( ( ) ( ) Point of ( ( ) ( non empty ) set ) ) in B : ( ( ) ( ) Subset of ) holds
(r : ( ( real ) ( V24() real ext-real ) number ) * x : ( ( ) ( ) Point of ( ( ) ( non empty ) set ) ) ) : ( ( ) ( ) Element of the carrier of b1 : ( ( non empty right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital ) ( non empty left_complementable right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital V153() ) RealLinearSpace) : ( ( ) ( non empty ) set ) ) + ((1 : ( ( ) ( non empty natural V24() real ext-real positive non negative V86() V87() V134() V135() V136() V137() V138() V139() ) Element of NAT : ( ( ) ( V134() V135() V136() V137() V138() V139() V140() ) Element of K32(REAL : ( ( ) ( V134() V135() V136() V140() ) set ) ) : ( ( ) ( ) set ) ) ) - r : ( ( real ) ( V24() real ext-real ) number ) ) : ( ( ) ( V24() real ext-real ) Element of REAL : ( ( ) ( V134() V135() V136() V140() ) set ) ) * y : ( ( ) ( ) Point of ( ( ) ( non empty ) set ) ) ) : ( ( ) ( ) Element of the carrier of b1 : ( ( non empty right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital ) ( non empty left_complementable right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital V153() ) RealLinearSpace) : ( ( ) ( non empty ) set ) ) : ( ( ) ( ) Element of the carrier of b1 : ( ( non empty right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital ) ( non empty left_complementable right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital V153() ) RealLinearSpace) : ( ( ) ( non empty ) set ) ) in B : ( ( ) ( ) Subset of ) ) ;

definition
let V be ( ( non empty right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital ) ( non empty left_complementable right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital V153() ) RealLinearSpace) ;
let B be ( ( ) ( ) Subset of ) ;
redefine attr B is convex means :: MATHMORP:def 10
for x, y being ( ( ) ( ) Point of ( ( ) ( ) set ) )
for r being ( ( real ) ( V24() real ext-real ) number ) st 0 : ( ( ) ( empty natural V24() real ext-real non positive non negative V86() V87() V134() V135() V136() V137() V138() V139() V140() ) Element of NAT : ( ( ) ( V134() V135() V136() V137() V138() V139() V140() ) Element of K32(REAL : ( ( ) ( V134() V135() V136() V140() ) set ) ) : ( ( ) ( ) set ) ) ) <= r : ( ( real ) ( V24() real ext-real ) number ) & r : ( ( real ) ( V24() real ext-real ) number ) <= 1 : ( ( ) ( non empty natural V24() real ext-real positive non negative V86() V87() V134() V135() V136() V137() V138() V139() ) Element of NAT : ( ( ) ( V134() V135() V136() V137() V138() V139() V140() ) Element of K32(REAL : ( ( ) ( V134() V135() V136() V140() ) set ) ) : ( ( ) ( ) set ) ) ) & x : ( ( ) ( ) Point of ( ( ) ( non empty ) set ) ) in B : ( ( ) ( ) Element of V : ( ( ) ( ) RLTopStruct ) ) & y : ( ( ) ( ) Point of ( ( ) ( non empty ) set ) ) in B : ( ( ) ( ) Element of V : ( ( ) ( ) RLTopStruct ) ) holds
(r : ( ( real ) ( V24() real ext-real ) number ) * x : ( ( ) ( ) Point of ( ( ) ( non empty ) set ) ) ) : ( ( ) ( ) Element of the carrier of V : ( ( ) ( ) RLTopStruct ) : ( ( ) ( ) set ) ) + ((1 : ( ( ) ( non empty natural V24() real ext-real positive non negative V86() V87() V134() V135() V136() V137() V138() V139() ) Element of NAT : ( ( ) ( V134() V135() V136() V137() V138() V139() V140() ) Element of K32(REAL : ( ( ) ( V134() V135() V136() V140() ) set ) ) : ( ( ) ( ) set ) ) ) - r : ( ( real ) ( V24() real ext-real ) number ) ) : ( ( ) ( V24() real ext-real ) Element of REAL : ( ( ) ( V134() V135() V136() V140() ) set ) ) * y : ( ( ) ( ) Point of ( ( ) ( non empty ) set ) ) ) : ( ( ) ( ) Element of the carrier of V : ( ( ) ( ) RLTopStruct ) : ( ( ) ( ) set ) ) : ( ( ) ( ) Element of the carrier of V : ( ( ) ( ) RLTopStruct ) : ( ( ) ( ) set ) ) in B : ( ( ) ( ) Element of V : ( ( ) ( ) RLTopStruct ) ) ;
end;

theorem :: MATHMORP:75
for n being ( ( ) ( natural V24() real ext-real V86() V87() V134() V135() V136() V137() V138() V139() ) Element of NAT : ( ( ) ( V134() V135() V136() V137() V138() V139() V140() ) Element of K32(REAL : ( ( ) ( V134() V135() V136() V140() ) set ) ) : ( ( ) ( ) set ) ) )
for X being ( ( ) ( ) Subset of ) st X : ( ( ) ( ) Subset of ) is convex holds
X : ( ( ) ( ) Subset of ) ! : ( ( ) ( ) Subset of ) is convex ;

theorem :: MATHMORP:76
for n being ( ( ) ( natural V24() real ext-real V86() V87() V134() V135() V136() V137() V138() V139() ) Element of NAT : ( ( ) ( V134() V135() V136() V137() V138() V139() V140() ) Element of K32(REAL : ( ( ) ( V134() V135() V136() V140() ) set ) ) : ( ( ) ( ) set ) ) )
for X, B being ( ( ) ( ) Subset of ) st X : ( ( ) ( ) Subset of ) is convex & B : ( ( ) ( ) Subset of ) is convex holds
( X : ( ( ) ( ) Subset of ) (+) B : ( ( ) ( ) Subset of ) : ( ( ) ( ) Element of K32( the carrier of (TOP-REAL b1 : ( ( ) ( natural V24() real ext-real V86() V87() V134() V135() V136() V137() V138() V139() ) Element of NAT : ( ( ) ( V134() V135() V136() V137() V138() V139() V140() ) Element of K32(REAL : ( ( ) ( V134() V135() V136() V140() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like left_complementable right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital V153() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( ) set ) ) is convex & X : ( ( ) ( ) Subset of ) (-) B : ( ( ) ( ) Subset of ) : ( ( ) ( ) Subset of ) is convex ) ;

theorem :: MATHMORP:77
for n being ( ( ) ( natural V24() real ext-real V86() V87() V134() V135() V136() V137() V138() V139() ) Element of NAT : ( ( ) ( V134() V135() V136() V137() V138() V139() V140() ) Element of K32(REAL : ( ( ) ( V134() V135() V136() V140() ) set ) ) : ( ( ) ( ) set ) ) )
for X, B being ( ( ) ( ) Subset of ) st X : ( ( ) ( ) Subset of ) is convex & B : ( ( ) ( ) Subset of ) is convex holds
( X : ( ( ) ( ) Subset of ) (O) B : ( ( ) ( ) Subset of ) : ( ( ) ( ) Subset of ) is convex & X : ( ( ) ( ) Subset of ) (o) B : ( ( ) ( ) Subset of ) : ( ( ) ( ) Subset of ) is convex ) ;

theorem :: MATHMORP:78
for t, s being ( ( real ) ( V24() real ext-real ) number )
for n being ( ( ) ( natural V24() real ext-real V86() V87() V134() V135() V136() V137() V138() V139() ) Element of NAT : ( ( ) ( V134() V135() V136() V137() V138() V139() V140() ) Element of K32(REAL : ( ( ) ( V134() V135() V136() V140() ) set ) ) : ( ( ) ( ) set ) ) )
for B being ( ( ) ( ) Subset of ) st B : ( ( ) ( ) Subset of ) is convex & 0 : ( ( ) ( empty natural V24() real ext-real non positive non negative V86() V87() V134() V135() V136() V137() V138() V139() V140() ) Element of NAT : ( ( ) ( V134() V135() V136() V137() V138() V139() V140() ) Element of K32(REAL : ( ( ) ( V134() V135() V136() V140() ) set ) ) : ( ( ) ( ) set ) ) ) < t : ( ( real ) ( V24() real ext-real ) number ) & 0 : ( ( ) ( empty natural V24() real ext-real non positive non negative V86() V87() V134() V135() V136() V137() V138() V139() V140() ) Element of NAT : ( ( ) ( V134() V135() V136() V137() V138() V139() V140() ) Element of K32(REAL : ( ( ) ( V134() V135() V136() V140() ) set ) ) : ( ( ) ( ) set ) ) ) < s : ( ( real ) ( V24() real ext-real ) number ) holds
(s : ( ( real ) ( V24() real ext-real ) number ) + t : ( ( real ) ( V24() real ext-real ) number ) ) : ( ( ) ( V24() real ext-real ) set ) (.) B : ( ( ) ( ) Subset of ) : ( ( ) ( ) Subset of ) = (s : ( ( real ) ( V24() real ext-real ) number ) (.) B : ( ( ) ( ) Subset of ) ) : ( ( ) ( ) Subset of ) (+) (t : ( ( real ) ( V24() real ext-real ) number ) (.) B : ( ( ) ( ) Subset of ) ) : ( ( ) ( ) Subset of ) : ( ( ) ( ) Element of K32( the carrier of (TOP-REAL b3 : ( ( ) ( natural V24() real ext-real V86() V87() V134() V135() V136() V137() V138() V139() ) Element of NAT : ( ( ) ( V134() V135() V136() V137() V138() V139() V140() ) Element of K32(REAL : ( ( ) ( V134() V135() V136() V140() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( strict ) ( non empty TopSpace-like left_complementable right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital V153() strict ) RLTopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( ) set ) ) ;