:: MESFUNC3 semantic presentation

begin

theorem :: MESFUNC3:1
for n, m being ( ( natural ) ( epsilon-transitive epsilon-connected ordinal natural V36() real ext-real non negative finite cardinal V61() ) Nat)
for a being ( ( Function-like V18([:(Seg b1 : ( ( natural ) ( epsilon-transitive epsilon-connected ordinal natural V36() real ext-real non negative finite cardinal V61() ) Nat) ) : ( ( ) ( finite b1 : ( ( natural ) ( epsilon-transitive epsilon-connected ordinal natural V36() real ext-real non negative finite cardinal V61() ) Nat) -element V61() V81() V82() V83() V84() V85() V86() ) Element of bool NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal V61() V62() V81() V82() V83() V84() V85() V86() V87() ) Element of bool REAL : ( ( ) ( non empty non trivial non finite V81() V82() V83() V87() ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) : ( ( ) ( non empty non trivial non finite ) set ) ) ,(Seg b2 : ( ( natural ) ( epsilon-transitive epsilon-connected ordinal natural V36() real ext-real non negative finite cardinal V61() ) Nat) ) : ( ( ) ( finite b2 : ( ( natural ) ( epsilon-transitive epsilon-connected ordinal natural V36() real ext-real non negative finite cardinal V61() ) Nat) -element V61() V81() V82() V83() V84() V85() V86() ) Element of bool NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal V61() V62() V81() V82() V83() V84() V85() V86() V87() ) Element of bool REAL : ( ( ) ( non empty non trivial non finite V81() V82() V83() V87() ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) : ( ( ) ( non empty non trivial non finite ) set ) ) :] : ( ( ) ( Relation-like RAT : ( ( ) ( non empty non trivial non finite V81() V82() V83() V84() V87() ) set ) -valued INT : ( ( ) ( non empty non trivial non finite V81() V82() V83() V84() V85() V87() ) set ) -valued finite V61() V71() V72() V73() V74() ) set ) , REAL : ( ( ) ( non empty non trivial non finite V81() V82() V83() V87() ) set ) ) ) ( Relation-like [:(Seg b1 : ( ( natural ) ( epsilon-transitive epsilon-connected ordinal natural V36() real ext-real non negative finite cardinal V61() ) Nat) ) : ( ( ) ( finite b1 : ( ( natural ) ( epsilon-transitive epsilon-connected ordinal natural V36() real ext-real non negative finite cardinal V61() ) Nat) -element V61() V81() V82() V83() V84() V85() V86() ) Element of bool NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal V61() V62() V81() V82() V83() V84() V85() V86() V87() ) Element of bool REAL : ( ( ) ( non empty non trivial non finite V81() V82() V83() V87() ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) : ( ( ) ( non empty non trivial non finite ) set ) ) ,(Seg b2 : ( ( natural ) ( epsilon-transitive epsilon-connected ordinal natural V36() real ext-real non negative finite cardinal V61() ) Nat) ) : ( ( ) ( finite b2 : ( ( natural ) ( epsilon-transitive epsilon-connected ordinal natural V36() real ext-real non negative finite cardinal V61() ) Nat) -element V61() V81() V82() V83() V84() V85() V86() ) Element of bool NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal V61() V62() V81() V82() V83() V84() V85() V86() V87() ) Element of bool REAL : ( ( ) ( non empty non trivial non finite V81() V82() V83() V87() ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) : ( ( ) ( non empty non trivial non finite ) set ) ) :] : ( ( ) ( Relation-like RAT : ( ( ) ( non empty non trivial non finite V81() V82() V83() V84() V87() ) set ) -valued INT : ( ( ) ( non empty non trivial non finite V81() V82() V83() V84() V85() V87() ) set ) -valued finite V61() V71() V72() V73() V74() ) set ) -defined REAL : ( ( ) ( non empty non trivial non finite V81() V82() V83() V87() ) set ) -valued Function-like total V18([:(Seg b1 : ( ( natural ) ( epsilon-transitive epsilon-connected ordinal natural V36() real ext-real non negative finite cardinal V61() ) Nat) ) : ( ( ) ( finite b1 : ( ( natural ) ( epsilon-transitive epsilon-connected ordinal natural V36() real ext-real non negative finite cardinal V61() ) Nat) -element V61() V81() V82() V83() V84() V85() V86() ) Element of bool NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal V61() V62() V81() V82() V83() V84() V85() V86() V87() ) Element of bool REAL : ( ( ) ( non empty non trivial non finite V81() V82() V83() V87() ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) : ( ( ) ( non empty non trivial non finite ) set ) ) ,(Seg b2 : ( ( natural ) ( epsilon-transitive epsilon-connected ordinal natural V36() real ext-real non negative finite cardinal V61() ) Nat) ) : ( ( ) ( finite b2 : ( ( natural ) ( epsilon-transitive epsilon-connected ordinal natural V36() real ext-real non negative finite cardinal V61() ) Nat) -element V61() V81() V82() V83() V84() V85() V86() ) Element of bool NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal V61() V62() V81() V82() V83() V84() V85() V86() V87() ) Element of bool REAL : ( ( ) ( non empty non trivial non finite V81() V82() V83() V87() ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) : ( ( ) ( non empty non trivial non finite ) set ) ) :] : ( ( ) ( Relation-like RAT : ( ( ) ( non empty non trivial non finite V81() V82() V83() V84() V87() ) set ) -valued INT : ( ( ) ( non empty non trivial non finite V81() V82() V83() V84() V85() V87() ) set ) -valued finite V61() V71() V72() V73() V74() ) set ) , REAL : ( ( ) ( non empty non trivial non finite V81() V82() V83() V87() ) set ) ) finite V61() V71() V72() V73() ) Function of [:(Seg n : ( ( natural ) ( epsilon-transitive epsilon-connected ordinal natural V36() real ext-real non negative finite cardinal V61() ) Nat) ) : ( ( ) ( finite b1 : ( ( natural ) ( epsilon-transitive epsilon-connected ordinal natural V36() real ext-real non negative finite cardinal V61() ) Nat) -element V61() V81() V82() V83() V84() V85() V86() ) Element of bool NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal V61() V62() V81() V82() V83() V84() V85() V86() V87() ) Element of bool REAL : ( ( ) ( non empty non trivial non finite V81() V82() V83() V87() ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) : ( ( ) ( non empty non trivial non finite ) set ) ) ,(Seg m : ( ( natural ) ( epsilon-transitive epsilon-connected ordinal natural V36() real ext-real non negative finite cardinal V61() ) Nat) ) : ( ( ) ( finite b2 : ( ( natural ) ( epsilon-transitive epsilon-connected ordinal natural V36() real ext-real non negative finite cardinal V61() ) Nat) -element V61() V81() V82() V83() V84() V85() V86() ) Element of bool NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal V61() V62() V81() V82() V83() V84() V85() V86() V87() ) Element of bool REAL : ( ( ) ( non empty non trivial non finite V81() V82() V83() V87() ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) : ( ( ) ( non empty non trivial non finite ) set ) ) :] : ( ( ) ( Relation-like RAT : ( ( ) ( non empty non trivial non finite V81() V82() V83() V84() V87() ) set ) -valued INT : ( ( ) ( non empty non trivial non finite V81() V82() V83() V84() V85() V87() ) set ) -valued finite V61() V71() V72() V73() V74() ) set ) , REAL : ( ( ) ( non empty non trivial non finite V81() V82() V83() V87() ) set ) )
for p, q being ( ( ) ( Relation-like NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal V61() V62() V81() V82() V83() V84() V85() V86() V87() ) Element of bool REAL : ( ( ) ( non empty non trivial non finite V81() V82() V83() V87() ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) -defined REAL : ( ( ) ( non empty non trivial non finite V81() V82() V83() V87() ) set ) -valued Function-like finite FinSequence-like FinSubsequence-like V61() V71() V72() V73() ) FinSequence of REAL : ( ( ) ( non empty non trivial non finite V81() V82() V83() V87() ) set ) ) st dom p : ( ( ) ( Relation-like NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal V61() V62() V81() V82() V83() V84() V85() V86() V87() ) Element of bool REAL : ( ( ) ( non empty non trivial non finite V81() V82() V83() V87() ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) -defined REAL : ( ( ) ( non empty non trivial non finite V81() V82() V83() V87() ) set ) -valued Function-like finite FinSequence-like FinSubsequence-like V61() V71() V72() V73() ) FinSequence of REAL : ( ( ) ( non empty non trivial non finite V81() V82() V83() V87() ) set ) ) : ( ( ) ( finite V61() V81() V82() V83() V84() V85() V86() ) Element of bool NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal V61() V62() V81() V82() V83() V84() V85() V86() V87() ) Element of bool REAL : ( ( ) ( non empty non trivial non finite V81() V82() V83() V87() ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) : ( ( ) ( non empty non trivial non finite ) set ) ) = Seg n : ( ( natural ) ( epsilon-transitive epsilon-connected ordinal natural V36() real ext-real non negative finite cardinal V61() ) Nat) : ( ( ) ( finite b1 : ( ( natural ) ( epsilon-transitive epsilon-connected ordinal natural V36() real ext-real non negative finite cardinal V61() ) Nat) -element V61() V81() V82() V83() V84() V85() V86() ) Element of bool NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal V61() V62() V81() V82() V83() V84() V85() V86() V87() ) Element of bool REAL : ( ( ) ( non empty non trivial non finite V81() V82() V83() V87() ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) : ( ( ) ( non empty non trivial non finite ) set ) ) & ( for i being ( ( natural ) ( epsilon-transitive epsilon-connected ordinal natural V36() real ext-real non negative finite cardinal V61() ) Nat) st i : ( ( natural ) ( epsilon-transitive epsilon-connected ordinal natural V36() real ext-real non negative finite cardinal V61() ) Nat) in dom p : ( ( ) ( Relation-like NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal V61() V62() V81() V82() V83() V84() V85() V86() V87() ) Element of bool REAL : ( ( ) ( non empty non trivial non finite V81() V82() V83() V87() ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) -defined REAL : ( ( ) ( non empty non trivial non finite V81() V82() V83() V87() ) set ) -valued Function-like finite FinSequence-like FinSubsequence-like V61() V71() V72() V73() ) FinSequence of REAL : ( ( ) ( non empty non trivial non finite V81() V82() V83() V87() ) set ) ) : ( ( ) ( finite V61() V81() V82() V83() V84() V85() V86() ) Element of bool NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal V61() V62() V81() V82() V83() V84() V85() V86() V87() ) Element of bool REAL : ( ( ) ( non empty non trivial non finite V81() V82() V83() V87() ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) : ( ( ) ( non empty non trivial non finite ) set ) ) holds
ex r being ( ( ) ( Relation-like NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal V61() V62() V81() V82() V83() V84() V85() V86() V87() ) Element of bool REAL : ( ( ) ( non empty non trivial non finite V81() V82() V83() V87() ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) -defined REAL : ( ( ) ( non empty non trivial non finite V81() V82() V83() V87() ) set ) -valued Function-like finite FinSequence-like FinSubsequence-like V61() V71() V72() V73() ) FinSequence of REAL : ( ( ) ( non empty non trivial non finite V81() V82() V83() V87() ) set ) ) st
( dom r : ( ( ) ( Relation-like NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal V61() V62() V81() V82() V83() V84() V85() V86() V87() ) Element of bool REAL : ( ( ) ( non empty non trivial non finite V81() V82() V83() V87() ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) -defined REAL : ( ( ) ( non empty non trivial non finite V81() V82() V83() V87() ) set ) -valued Function-like finite FinSequence-like FinSubsequence-like V61() V71() V72() V73() ) FinSequence of REAL : ( ( ) ( non empty non trivial non finite V81() V82() V83() V87() ) set ) ) : ( ( ) ( finite V61() V81() V82() V83() V84() V85() V86() ) Element of bool NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal V61() V62() V81() V82() V83() V84() V85() V86() V87() ) Element of bool REAL : ( ( ) ( non empty non trivial non finite V81() V82() V83() V87() ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) : ( ( ) ( non empty non trivial non finite ) set ) ) = Seg m : ( ( natural ) ( epsilon-transitive epsilon-connected ordinal natural V36() real ext-real non negative finite cardinal V61() ) Nat) : ( ( ) ( finite b2 : ( ( natural ) ( epsilon-transitive epsilon-connected ordinal natural V36() real ext-real non negative finite cardinal V61() ) Nat) -element V61() V81() V82() V83() V84() V85() V86() ) Element of bool NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal V61() V62() V81() V82() V83() V84() V85() V86() V87() ) Element of bool REAL : ( ( ) ( non empty non trivial non finite V81() V82() V83() V87() ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) : ( ( ) ( non empty non trivial non finite ) set ) ) & p : ( ( ) ( Relation-like NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal V61() V62() V81() V82() V83() V84() V85() V86() V87() ) Element of bool REAL : ( ( ) ( non empty non trivial non finite V81() V82() V83() V87() ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) -defined REAL : ( ( ) ( non empty non trivial non finite V81() V82() V83() V87() ) set ) -valued Function-like finite FinSequence-like FinSubsequence-like V61() V71() V72() V73() ) FinSequence of REAL : ( ( ) ( non empty non trivial non finite V81() V82() V83() V87() ) set ) ) . i : ( ( natural ) ( epsilon-transitive epsilon-connected ordinal natural V36() real ext-real non negative finite cardinal V61() ) Nat) : ( ( ) ( V36() real ext-real ) Element of REAL : ( ( ) ( non empty non trivial non finite V81() V82() V83() V87() ) set ) ) = Sum r : ( ( ) ( Relation-like NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal V61() V62() V81() V82() V83() V84() V85() V86() V87() ) Element of bool REAL : ( ( ) ( non empty non trivial non finite V81() V82() V83() V87() ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) -defined REAL : ( ( ) ( non empty non trivial non finite V81() V82() V83() V87() ) set ) -valued Function-like finite FinSequence-like FinSubsequence-like V61() V71() V72() V73() ) FinSequence of REAL : ( ( ) ( non empty non trivial non finite V81() V82() V83() V87() ) set ) ) : ( ( ) ( V36() real ext-real ) Element of REAL : ( ( ) ( non empty non trivial non finite V81() V82() V83() V87() ) set ) ) & ( for j being ( ( natural ) ( epsilon-transitive epsilon-connected ordinal natural V36() real ext-real non negative finite cardinal V61() ) Nat) st j : ( ( natural ) ( epsilon-transitive epsilon-connected ordinal natural V36() real ext-real non negative finite cardinal V61() ) Nat) in dom r : ( ( ) ( Relation-like NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal V61() V62() V81() V82() V83() V84() V85() V86() V87() ) Element of bool REAL : ( ( ) ( non empty non trivial non finite V81() V82() V83() V87() ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) -defined REAL : ( ( ) ( non empty non trivial non finite V81() V82() V83() V87() ) set ) -valued Function-like finite FinSequence-like FinSubsequence-like V61() V71() V72() V73() ) FinSequence of REAL : ( ( ) ( non empty non trivial non finite V81() V82() V83() V87() ) set ) ) : ( ( ) ( finite V61() V81() V82() V83() V84() V85() V86() ) Element of bool NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal V61() V62() V81() V82() V83() V84() V85() V86() V87() ) Element of bool REAL : ( ( ) ( non empty non trivial non finite V81() V82() V83() V87() ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) : ( ( ) ( non empty non trivial non finite ) set ) ) holds
r : ( ( ) ( Relation-like NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal V61() V62() V81() V82() V83() V84() V85() V86() V87() ) Element of bool REAL : ( ( ) ( non empty non trivial non finite V81() V82() V83() V87() ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) -defined REAL : ( ( ) ( non empty non trivial non finite V81() V82() V83() V87() ) set ) -valued Function-like finite FinSequence-like FinSubsequence-like V61() V71() V72() V73() ) FinSequence of REAL : ( ( ) ( non empty non trivial non finite V81() V82() V83() V87() ) set ) ) . j : ( ( natural ) ( epsilon-transitive epsilon-connected ordinal natural V36() real ext-real non negative finite cardinal V61() ) Nat) : ( ( ) ( V36() real ext-real ) Element of REAL : ( ( ) ( non empty non trivial non finite V81() V82() V83() V87() ) set ) ) = a : ( ( Function-like V18([:(Seg b1 : ( ( natural ) ( epsilon-transitive epsilon-connected ordinal natural V36() real ext-real non negative finite cardinal V61() ) Nat) ) : ( ( ) ( finite b1 : ( ( natural ) ( epsilon-transitive epsilon-connected ordinal natural V36() real ext-real non negative finite cardinal V61() ) Nat) -element V61() V81() V82() V83() V84() V85() V86() ) Element of bool NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal V61() V62() V81() V82() V83() V84() V85() V86() V87() ) Element of bool REAL : ( ( ) ( non empty non trivial non finite V81() V82() V83() V87() ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) : ( ( ) ( non empty non trivial non finite ) set ) ) ,(Seg b2 : ( ( natural ) ( epsilon-transitive epsilon-connected ordinal natural V36() real ext-real non negative finite cardinal V61() ) Nat) ) : ( ( ) ( finite b2 : ( ( natural ) ( epsilon-transitive epsilon-connected ordinal natural V36() real ext-real non negative finite cardinal V61() ) Nat) -element V61() V81() V82() V83() V84() V85() V86() ) Element of bool NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal V61() V62() V81() V82() V83() V84() V85() V86() V87() ) Element of bool REAL : ( ( ) ( non empty non trivial non finite V81() V82() V83() V87() ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) : ( ( ) ( non empty non trivial non finite ) set ) ) :] : ( ( ) ( Relation-like RAT : ( ( ) ( non empty non trivial non finite V81() V82() V83() V84() V87() ) set ) -valued INT : ( ( ) ( non empty non trivial non finite V81() V82() V83() V84() V85() V87() ) set ) -valued finite V61() V71() V72() V73() V74() ) set ) , REAL : ( ( ) ( non empty non trivial non finite V81() V82() V83() V87() ) set ) ) ) ( Relation-like [:(Seg b1 : ( ( natural ) ( epsilon-transitive epsilon-connected ordinal natural V36() real ext-real non negative finite cardinal V61() ) Nat) ) : ( ( ) ( finite b1 : ( ( natural ) ( epsilon-transitive epsilon-connected ordinal natural V36() real ext-real non negative finite cardinal V61() ) Nat) -element V61() V81() V82() V83() V84() V85() V86() ) Element of bool NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal V61() V62() V81() V82() V83() V84() V85() V86() V87() ) Element of bool REAL : ( ( ) ( non empty non trivial non finite V81() V82() V83() V87() ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) : ( ( ) ( non empty non trivial non finite ) set ) ) ,(Seg b2 : ( ( natural ) ( epsilon-transitive epsilon-connected ordinal natural V36() real ext-real non negative finite cardinal V61() ) Nat) ) : ( ( ) ( finite b2 : ( ( natural ) ( epsilon-transitive epsilon-connected ordinal natural V36() real ext-real non negative finite cardinal V61() ) Nat) -element V61() V81() V82() V83() V84() V85() V86() ) Element of bool NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal V61() V62() V81() V82() V83() V84() V85() V86() V87() ) Element of bool REAL : ( ( ) ( non empty non trivial non finite V81() V82() V83() V87() ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) : ( ( ) ( non empty non trivial non finite ) set ) ) :] : ( ( ) ( Relation-like RAT : ( ( ) ( non empty non trivial non finite V81() V82() V83() V84() V87() ) set ) -valued INT : ( ( ) ( non empty non trivial non finite V81() V82() V83() V84() V85() V87() ) set ) -valued finite V61() V71() V72() V73() V74() ) set ) -defined REAL : ( ( ) ( non empty non trivial non finite V81() V82() V83() V87() ) set ) -valued Function-like total V18([:(Seg b1 : ( ( natural ) ( epsilon-transitive epsilon-connected ordinal natural V36() real ext-real non negative finite cardinal V61() ) Nat) ) : ( ( ) ( finite b1 : ( ( natural ) ( epsilon-transitive epsilon-connected ordinal natural V36() real ext-real non negative finite cardinal V61() ) Nat) -element V61() V81() V82() V83() V84() V85() V86() ) Element of bool NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal V61() V62() V81() V82() V83() V84() V85() V86() V87() ) Element of bool REAL : ( ( ) ( non empty non trivial non finite V81() V82() V83() V87() ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) : ( ( ) ( non empty non trivial non finite ) set ) ) ,(Seg b2 : ( ( natural ) ( epsilon-transitive epsilon-connected ordinal natural V36() real ext-real non negative finite cardinal V61() ) Nat) ) : ( ( ) ( finite b2 : ( ( natural ) ( epsilon-transitive epsilon-connected ordinal natural V36() real ext-real non negative finite cardinal V61() ) Nat) -element V61() V81() V82() V83() V84() V85() V86() ) Element of bool NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal V61() V62() V81() V82() V83() V84() V85() V86() V87() ) Element of bool REAL : ( ( ) ( non empty non trivial non finite V81() V82() V83() V87() ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) : ( ( ) ( non empty non trivial non finite ) set ) ) :] : ( ( ) ( Relation-like RAT : ( ( ) ( non empty non trivial non finite V81() V82() V83() V84() V87() ) set ) -valued INT : ( ( ) ( non empty non trivial non finite V81() V82() V83() V84() V85() V87() ) set ) -valued finite V61() V71() V72() V73() V74() ) set ) , REAL : ( ( ) ( non empty non trivial non finite V81() V82() V83() V87() ) set ) ) finite V61() V71() V72() V73() ) Function of [:(Seg b1 : ( ( natural ) ( epsilon-transitive epsilon-connected ordinal natural V36() real ext-real non negative finite cardinal V61() ) Nat) ) : ( ( ) ( finite b1 : ( ( natural ) ( epsilon-transitive epsilon-connected ordinal natural V36() real ext-real non negative finite cardinal V61() ) Nat) -element V61() V81() V82() V83() V84() V85() V86() ) Element of bool NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal V61() V62() V81() V82() V83() V84() V85() V86() V87() ) Element of bool REAL : ( ( ) ( non empty non trivial non finite V81() V82() V83() V87() ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) : ( ( ) ( non empty non trivial non finite ) set ) ) ,(Seg b2 : ( ( natural ) ( epsilon-transitive epsilon-connected ordinal natural V36() real ext-real non negative finite cardinal V61() ) Nat) ) : ( ( ) ( finite b2 : ( ( natural ) ( epsilon-transitive epsilon-connected ordinal natural V36() real ext-real non negative finite cardinal V61() ) Nat) -element V61() V81() V82() V83() V84() V85() V86() ) Element of bool NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal V61() V62() V81() V82() V83() V84() V85() V86() V87() ) Element of bool REAL : ( ( ) ( non empty non trivial non finite V81() V82() V83() V87() ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) : ( ( ) ( non empty non trivial non finite ) set ) ) :] : ( ( ) ( Relation-like RAT : ( ( ) ( non empty non trivial non finite V81() V82() V83() V84() V87() ) set ) -valued INT : ( ( ) ( non empty non trivial non finite V81() V82() V83() V84() V85() V87() ) set ) -valued finite V61() V71() V72() V73() V74() ) set ) , REAL : ( ( ) ( non empty non trivial non finite V81() V82() V83() V87() ) set ) ) . [i : ( ( natural ) ( epsilon-transitive epsilon-connected ordinal natural V36() real ext-real non negative finite cardinal V61() ) Nat) ,j : ( ( natural ) ( epsilon-transitive epsilon-connected ordinal natural V36() real ext-real non negative finite cardinal V61() ) Nat) ] : ( ( ) ( ) set ) : ( ( ) ( V36() real ext-real ) Element of REAL : ( ( ) ( non empty non trivial non finite V81() V82() V83() V87() ) set ) ) ) ) ) & dom q : ( ( ) ( Relation-like NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal V61() V62() V81() V82() V83() V84() V85() V86() V87() ) Element of bool REAL : ( ( ) ( non empty non trivial non finite V81() V82() V83() V87() ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) -defined REAL : ( ( ) ( non empty non trivial non finite V81() V82() V83() V87() ) set ) -valued Function-like finite FinSequence-like FinSubsequence-like V61() V71() V72() V73() ) FinSequence of REAL : ( ( ) ( non empty non trivial non finite V81() V82() V83() V87() ) set ) ) : ( ( ) ( finite V61() V81() V82() V83() V84() V85() V86() ) Element of bool NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal V61() V62() V81() V82() V83() V84() V85() V86() V87() ) Element of bool REAL : ( ( ) ( non empty non trivial non finite V81() V82() V83() V87() ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) : ( ( ) ( non empty non trivial non finite ) set ) ) = Seg m : ( ( natural ) ( epsilon-transitive epsilon-connected ordinal natural V36() real ext-real non negative finite cardinal V61() ) Nat) : ( ( ) ( finite b2 : ( ( natural ) ( epsilon-transitive epsilon-connected ordinal natural V36() real ext-real non negative finite cardinal V61() ) Nat) -element V61() V81() V82() V83() V84() V85() V86() ) Element of bool NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal V61() V62() V81() V82() V83() V84() V85() V86() V87() ) Element of bool REAL : ( ( ) ( non empty non trivial non finite V81() V82() V83() V87() ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) : ( ( ) ( non empty non trivial non finite ) set ) ) & ( for j being ( ( natural ) ( epsilon-transitive epsilon-connected ordinal natural V36() real ext-real non negative finite cardinal V61() ) Nat) st j : ( ( natural ) ( epsilon-transitive epsilon-connected ordinal natural V36() real ext-real non negative finite cardinal V61() ) Nat) in dom q : ( ( ) ( Relation-like NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal V61() V62() V81() V82() V83() V84() V85() V86() V87() ) Element of bool REAL : ( ( ) ( non empty non trivial non finite V81() V82() V83() V87() ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) -defined REAL : ( ( ) ( non empty non trivial non finite V81() V82() V83() V87() ) set ) -valued Function-like finite FinSequence-like FinSubsequence-like V61() V71() V72() V73() ) FinSequence of REAL : ( ( ) ( non empty non trivial non finite V81() V82() V83() V87() ) set ) ) : ( ( ) ( finite V61() V81() V82() V83() V84() V85() V86() ) Element of bool NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal V61() V62() V81() V82() V83() V84() V85() V86() V87() ) Element of bool REAL : ( ( ) ( non empty non trivial non finite V81() V82() V83() V87() ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) : ( ( ) ( non empty non trivial non finite ) set ) ) holds
ex s being ( ( ) ( Relation-like NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal V61() V62() V81() V82() V83() V84() V85() V86() V87() ) Element of bool REAL : ( ( ) ( non empty non trivial non finite V81() V82() V83() V87() ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) -defined REAL : ( ( ) ( non empty non trivial non finite V81() V82() V83() V87() ) set ) -valued Function-like finite FinSequence-like FinSubsequence-like V61() V71() V72() V73() ) FinSequence of REAL : ( ( ) ( non empty non trivial non finite V81() V82() V83() V87() ) set ) ) st
( dom s : ( ( ) ( Relation-like NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal V61() V62() V81() V82() V83() V84() V85() V86() V87() ) Element of bool REAL : ( ( ) ( non empty non trivial non finite V81() V82() V83() V87() ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) -defined REAL : ( ( ) ( non empty non trivial non finite V81() V82() V83() V87() ) set ) -valued Function-like finite FinSequence-like FinSubsequence-like V61() V71() V72() V73() ) FinSequence of REAL : ( ( ) ( non empty non trivial non finite V81() V82() V83() V87() ) set ) ) : ( ( ) ( finite V61() V81() V82() V83() V84() V85() V86() ) Element of bool NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal V61() V62() V81() V82() V83() V84() V85() V86() V87() ) Element of bool REAL : ( ( ) ( non empty non trivial non finite V81() V82() V83() V87() ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) : ( ( ) ( non empty non trivial non finite ) set ) ) = Seg n : ( ( natural ) ( epsilon-transitive epsilon-connected ordinal natural V36() real ext-real non negative finite cardinal V61() ) Nat) : ( ( ) ( finite b1 : ( ( natural ) ( epsilon-transitive epsilon-connected ordinal natural V36() real ext-real non negative finite cardinal V61() ) Nat) -element V61() V81() V82() V83() V84() V85() V86() ) Element of bool NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal V61() V62() V81() V82() V83() V84() V85() V86() V87() ) Element of bool REAL : ( ( ) ( non empty non trivial non finite V81() V82() V83() V87() ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) : ( ( ) ( non empty non trivial non finite ) set ) ) & q : ( ( ) ( Relation-like NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal V61() V62() V81() V82() V83() V84() V85() V86() V87() ) Element of bool REAL : ( ( ) ( non empty non trivial non finite V81() V82() V83() V87() ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) -defined REAL : ( ( ) ( non empty non trivial non finite V81() V82() V83() V87() ) set ) -valued Function-like finite FinSequence-like FinSubsequence-like V61() V71() V72() V73() ) FinSequence of REAL : ( ( ) ( non empty non trivial non finite V81() V82() V83() V87() ) set ) ) . j : ( ( natural ) ( epsilon-transitive epsilon-connected ordinal natural V36() real ext-real non negative finite cardinal V61() ) Nat) : ( ( ) ( V36() real ext-real ) Element of REAL : ( ( ) ( non empty non trivial non finite V81() V82() V83() V87() ) set ) ) = Sum s : ( ( ) ( Relation-like NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal V61() V62() V81() V82() V83() V84() V85() V86() V87() ) Element of bool REAL : ( ( ) ( non empty non trivial non finite V81() V82() V83() V87() ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) -defined REAL : ( ( ) ( non empty non trivial non finite V81() V82() V83() V87() ) set ) -valued Function-like finite FinSequence-like FinSubsequence-like V61() V71() V72() V73() ) FinSequence of REAL : ( ( ) ( non empty non trivial non finite V81() V82() V83() V87() ) set ) ) : ( ( ) ( V36() real ext-real ) Element of REAL : ( ( ) ( non empty non trivial non finite V81() V82() V83() V87() ) set ) ) & ( for i being ( ( natural ) ( epsilon-transitive epsilon-connected ordinal natural V36() real ext-real non negative finite cardinal V61() ) Nat) st i : ( ( natural ) ( epsilon-transitive epsilon-connected ordinal natural V36() real ext-real non negative finite cardinal V61() ) Nat) in dom s : ( ( ) ( Relation-like NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal V61() V62() V81() V82() V83() V84() V85() V86() V87() ) Element of bool REAL : ( ( ) ( non empty non trivial non finite V81() V82() V83() V87() ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) -defined REAL : ( ( ) ( non empty non trivial non finite V81() V82() V83() V87() ) set ) -valued Function-like finite FinSequence-like FinSubsequence-like V61() V71() V72() V73() ) FinSequence of REAL : ( ( ) ( non empty non trivial non finite V81() V82() V83() V87() ) set ) ) : ( ( ) ( finite V61() V81() V82() V83() V84() V85() V86() ) Element of bool NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal V61() V62() V81() V82() V83() V84() V85() V86() V87() ) Element of bool REAL : ( ( ) ( non empty non trivial non finite V81() V82() V83() V87() ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) : ( ( ) ( non empty non trivial non finite ) set ) ) holds
s : ( ( ) ( Relation-like NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal V61() V62() V81() V82() V83() V84() V85() V86() V87() ) Element of bool REAL : ( ( ) ( non empty non trivial non finite V81() V82() V83() V87() ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) -defined REAL : ( ( ) ( non empty non trivial non finite V81() V82() V83() V87() ) set ) -valued Function-like finite FinSequence-like FinSubsequence-like V61() V71() V72() V73() ) FinSequence of REAL : ( ( ) ( non empty non trivial non finite V81() V82() V83() V87() ) set ) ) . i : ( ( natural ) ( epsilon-transitive epsilon-connected ordinal natural V36() real ext-real non negative finite cardinal V61() ) Nat) : ( ( ) ( V36() real ext-real ) Element of REAL : ( ( ) ( non empty non trivial non finite V81() V82() V83() V87() ) set ) ) = a : ( ( Function-like V18([:(Seg b1 : ( ( natural ) ( epsilon-transitive epsilon-connected ordinal natural V36() real ext-real non negative finite cardinal V61() ) Nat) ) : ( ( ) ( finite b1 : ( ( natural ) ( epsilon-transitive epsilon-connected ordinal natural V36() real ext-real non negative finite cardinal V61() ) Nat) -element V61() V81() V82() V83() V84() V85() V86() ) Element of bool NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal V61() V62() V81() V82() V83() V84() V85() V86() V87() ) Element of bool REAL : ( ( ) ( non empty non trivial non finite V81() V82() V83() V87() ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) : ( ( ) ( non empty non trivial non finite ) set ) ) ,(Seg b2 : ( ( natural ) ( epsilon-transitive epsilon-connected ordinal natural V36() real ext-real non negative finite cardinal V61() ) Nat) ) : ( ( ) ( finite b2 : ( ( natural ) ( epsilon-transitive epsilon-connected ordinal natural V36() real ext-real non negative finite cardinal V61() ) Nat) -element V61() V81() V82() V83() V84() V85() V86() ) Element of bool NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal V61() V62() V81() V82() V83() V84() V85() V86() V87() ) Element of bool REAL : ( ( ) ( non empty non trivial non finite V81() V82() V83() V87() ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) : ( ( ) ( non empty non trivial non finite ) set ) ) :] : ( ( ) ( Relation-like RAT : ( ( ) ( non empty non trivial non finite V81() V82() V83() V84() V87() ) set ) -valued INT : ( ( ) ( non empty non trivial non finite V81() V82() V83() V84() V85() V87() ) set ) -valued finite V61() V71() V72() V73() V74() ) set ) , REAL : ( ( ) ( non empty non trivial non finite V81() V82() V83() V87() ) set ) ) ) ( Relation-like [:(Seg b1 : ( ( natural ) ( epsilon-transitive epsilon-connected ordinal natural V36() real ext-real non negative finite cardinal V61() ) Nat) ) : ( ( ) ( finite b1 : ( ( natural ) ( epsilon-transitive epsilon-connected ordinal natural V36() real ext-real non negative finite cardinal V61() ) Nat) -element V61() V81() V82() V83() V84() V85() V86() ) Element of bool NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal V61() V62() V81() V82() V83() V84() V85() V86() V87() ) Element of bool REAL : ( ( ) ( non empty non trivial non finite V81() V82() V83() V87() ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) : ( ( ) ( non empty non trivial non finite ) set ) ) ,(Seg b2 : ( ( natural ) ( epsilon-transitive epsilon-connected ordinal natural V36() real ext-real non negative finite cardinal V61() ) Nat) ) : ( ( ) ( finite b2 : ( ( natural ) ( epsilon-transitive epsilon-connected ordinal natural V36() real ext-real non negative finite cardinal V61() ) Nat) -element V61() V81() V82() V83() V84() V85() V86() ) Element of bool NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal V61() V62() V81() V82() V83() V84() V85() V86() V87() ) Element of bool REAL : ( ( ) ( non empty non trivial non finite V81() V82() V83() V87() ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) : ( ( ) ( non empty non trivial non finite ) set ) ) :] : ( ( ) ( Relation-like RAT : ( ( ) ( non empty non trivial non finite V81() V82() V83() V84() V87() ) set ) -valued INT : ( ( ) ( non empty non trivial non finite V81() V82() V83() V84() V85() V87() ) set ) -valued finite V61() V71() V72() V73() V74() ) set ) -defined REAL : ( ( ) ( non empty non trivial non finite V81() V82() V83() V87() ) set ) -valued Function-like total V18([:(Seg b1 : ( ( natural ) ( epsilon-transitive epsilon-connected ordinal natural V36() real ext-real non negative finite cardinal V61() ) Nat) ) : ( ( ) ( finite b1 : ( ( natural ) ( epsilon-transitive epsilon-connected ordinal natural V36() real ext-real non negative finite cardinal V61() ) Nat) -element V61() V81() V82() V83() V84() V85() V86() ) Element of bool NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal V61() V62() V81() V82() V83() V84() V85() V86() V87() ) Element of bool REAL : ( ( ) ( non empty non trivial non finite V81() V82() V83() V87() ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) : ( ( ) ( non empty non trivial non finite ) set ) ) ,(Seg b2 : ( ( natural ) ( epsilon-transitive epsilon-connected ordinal natural V36() real ext-real non negative finite cardinal V61() ) Nat) ) : ( ( ) ( finite b2 : ( ( natural ) ( epsilon-transitive epsilon-connected ordinal natural V36() real ext-real non negative finite cardinal V61() ) Nat) -element V61() V81() V82() V83() V84() V85() V86() ) Element of bool NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal V61() V62() V81() V82() V83() V84() V85() V86() V87() ) Element of bool REAL : ( ( ) ( non empty non trivial non finite V81() V82() V83() V87() ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) : ( ( ) ( non empty non trivial non finite ) set ) ) :] : ( ( ) ( Relation-like RAT : ( ( ) ( non empty non trivial non finite V81() V82() V83() V84() V87() ) set ) -valued INT : ( ( ) ( non empty non trivial non finite V81() V82() V83() V84() V85() V87() ) set ) -valued finite V61() V71() V72() V73() V74() ) set ) , REAL : ( ( ) ( non empty non trivial non finite V81() V82() V83() V87() ) set ) ) finite V61() V71() V72() V73() ) Function of [:(Seg b1 : ( ( natural ) ( epsilon-transitive epsilon-connected ordinal natural V36() real ext-real non negative finite cardinal V61() ) Nat) ) : ( ( ) ( finite b1 : ( ( natural ) ( epsilon-transitive epsilon-connected ordinal natural V36() real ext-real non negative finite cardinal V61() ) Nat) -element V61() V81() V82() V83() V84() V85() V86() ) Element of bool NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal V61() V62() V81() V82() V83() V84() V85() V86() V87() ) Element of bool REAL : ( ( ) ( non empty non trivial non finite V81() V82() V83() V87() ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) : ( ( ) ( non empty non trivial non finite ) set ) ) ,(Seg b2 : ( ( natural ) ( epsilon-transitive epsilon-connected ordinal natural V36() real ext-real non negative finite cardinal V61() ) Nat) ) : ( ( ) ( finite b2 : ( ( natural ) ( epsilon-transitive epsilon-connected ordinal natural V36() real ext-real non negative finite cardinal V61() ) Nat) -element V61() V81() V82() V83() V84() V85() V86() ) Element of bool NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal V61() V62() V81() V82() V83() V84() V85() V86() V87() ) Element of bool REAL : ( ( ) ( non empty non trivial non finite V81() V82() V83() V87() ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) : ( ( ) ( non empty non trivial non finite ) set ) ) :] : ( ( ) ( Relation-like RAT : ( ( ) ( non empty non trivial non finite V81() V82() V83() V84() V87() ) set ) -valued INT : ( ( ) ( non empty non trivial non finite V81() V82() V83() V84() V85() V87() ) set ) -valued finite V61() V71() V72() V73() V74() ) set ) , REAL : ( ( ) ( non empty non trivial non finite V81() V82() V83() V87() ) set ) ) . [i : ( ( natural ) ( epsilon-transitive epsilon-connected ordinal natural V36() real ext-real non negative finite cardinal V61() ) Nat) ,j : ( ( natural ) ( epsilon-transitive epsilon-connected ordinal natural V36() real ext-real non negative finite cardinal V61() ) Nat) ] : ( ( ) ( ) set ) : ( ( ) ( V36() real ext-real ) Element of REAL : ( ( ) ( non empty non trivial non finite V81() V82() V83() V87() ) set ) ) ) ) ) holds
Sum p : ( ( ) ( Relation-like NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal V61() V62() V81() V82() V83() V84() V85() V86() V87() ) Element of bool REAL : ( ( ) ( non empty non trivial non finite V81() V82() V83() V87() ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) -defined REAL : ( ( ) ( non empty non trivial non finite V81() V82() V83() V87() ) set ) -valued Function-like finite FinSequence-like FinSubsequence-like V61() V71() V72() V73() ) FinSequence of REAL : ( ( ) ( non empty non trivial non finite V81() V82() V83() V87() ) set ) ) : ( ( ) ( V36() real ext-real ) Element of REAL : ( ( ) ( non empty non trivial non finite V81() V82() V83() V87() ) set ) ) = Sum q : ( ( ) ( Relation-like NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal V61() V62() V81() V82() V83() V84() V85() V86() V87() ) Element of bool REAL : ( ( ) ( non empty non trivial non finite V81() V82() V83() V87() ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) -defined REAL : ( ( ) ( non empty non trivial non finite V81() V82() V83() V87() ) set ) -valued Function-like finite FinSequence-like FinSubsequence-like V61() V71() V72() V73() ) FinSequence of REAL : ( ( ) ( non empty non trivial non finite V81() V82() V83() V87() ) set ) ) : ( ( ) ( V36() real ext-real ) Element of REAL : ( ( ) ( non empty non trivial non finite V81() V82() V83() V87() ) set ) ) ;

theorem :: MESFUNC3:2
for F being ( ( ) ( Relation-like NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal V61() V62() V81() V82() V83() V84() V85() V86() V87() ) Element of bool REAL : ( ( ) ( non empty non trivial non finite V81() V82() V83() V87() ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) -defined ExtREAL : ( ( ) ( non empty V82() ) set ) -valued Function-like finite FinSequence-like FinSubsequence-like V61() V72() ) FinSequence of ExtREAL : ( ( ) ( non empty V82() ) set ) )
for f being ( ( ) ( Relation-like NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal V61() V62() V81() V82() V83() V84() V85() V86() V87() ) Element of bool REAL : ( ( ) ( non empty non trivial non finite V81() V82() V83() V87() ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) -defined REAL : ( ( ) ( non empty non trivial non finite V81() V82() V83() V87() ) set ) -valued Function-like finite FinSequence-like FinSubsequence-like V61() V71() V72() V73() ) FinSequence of REAL : ( ( ) ( non empty non trivial non finite V81() V82() V83() V87() ) set ) ) st F : ( ( ) ( Relation-like NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal V61() V62() V81() V82() V83() V84() V85() V86() V87() ) Element of bool REAL : ( ( ) ( non empty non trivial non finite V81() V82() V83() V87() ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) -defined ExtREAL : ( ( ) ( non empty V82() ) set ) -valued Function-like finite FinSequence-like FinSubsequence-like V61() V72() ) FinSequence of ExtREAL : ( ( ) ( non empty V82() ) set ) ) = f : ( ( ) ( Relation-like NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal V61() V62() V81() V82() V83() V84() V85() V86() V87() ) Element of bool REAL : ( ( ) ( non empty non trivial non finite V81() V82() V83() V87() ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) -defined REAL : ( ( ) ( non empty non trivial non finite V81() V82() V83() V87() ) set ) -valued Function-like finite FinSequence-like FinSubsequence-like V61() V71() V72() V73() ) FinSequence of REAL : ( ( ) ( non empty non trivial non finite V81() V82() V83() V87() ) set ) ) holds
Sum F : ( ( ) ( Relation-like NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal V61() V62() V81() V82() V83() V84() V85() V86() V87() ) Element of bool REAL : ( ( ) ( non empty non trivial non finite V81() V82() V83() V87() ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) -defined ExtREAL : ( ( ) ( non empty V82() ) set ) -valued Function-like finite FinSequence-like FinSubsequence-like V61() V72() ) FinSequence of ExtREAL : ( ( ) ( non empty V82() ) set ) ) : ( ( ) ( ext-real ) Element of ExtREAL : ( ( ) ( non empty V82() ) set ) ) = Sum f : ( ( ) ( Relation-like NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal V61() V62() V81() V82() V83() V84() V85() V86() V87() ) Element of bool REAL : ( ( ) ( non empty non trivial non finite V81() V82() V83() V87() ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) -defined REAL : ( ( ) ( non empty non trivial non finite V81() V82() V83() V87() ) set ) -valued Function-like finite FinSequence-like FinSubsequence-like V61() V71() V72() V73() ) FinSequence of REAL : ( ( ) ( non empty non trivial non finite V81() V82() V83() V87() ) set ) ) : ( ( ) ( V36() real ext-real ) Element of REAL : ( ( ) ( non empty non trivial non finite V81() V82() V83() V87() ) set ) ) ;

theorem :: MESFUNC3:3
for X being ( ( non empty ) ( non empty ) set )
for S being ( ( non empty compl-closed sigma-multiplicative ) ( non empty V24() V25() V26() compl-closed sigma-multiplicative sigma-additive ) SigmaField of X : ( ( non empty ) ( non empty ) set ) )
for f being ( ( Function-like ) ( Relation-like b1 : ( ( non empty ) ( non empty ) set ) -defined ExtREAL : ( ( ) ( non empty V82() ) set ) -valued Function-like V72() ) PartFunc of ,) st f : ( ( Function-like ) ( Relation-like b1 : ( ( non empty ) ( non empty ) set ) -defined ExtREAL : ( ( ) ( non empty V82() ) set ) -valued Function-like V72() ) PartFunc of ,) is_simple_func_in S : ( ( non empty compl-closed sigma-multiplicative ) ( non empty V24() V25() V26() compl-closed sigma-multiplicative sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) holds
ex F being ( ( disjoint_valued ) ( Relation-like NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal V61() V62() V81() V82() V83() V84() V85() V86() V87() ) Element of bool REAL : ( ( ) ( non empty non trivial non finite V81() V82() V83() V87() ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) -defined b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty V24() V25() V26() compl-closed sigma-multiplicative sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) -valued Function-like finite FinSequence-like FinSubsequence-like V61() disjoint_valued ) Finite_Sep_Sequence of S : ( ( non empty compl-closed sigma-multiplicative ) ( non empty V24() V25() V26() compl-closed sigma-multiplicative sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) ) ex a being ( ( ) ( Relation-like NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal V61() V62() V81() V82() V83() V84() V85() V86() V87() ) Element of bool REAL : ( ( ) ( non empty non trivial non finite V81() V82() V83() V87() ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) -defined ExtREAL : ( ( ) ( non empty V82() ) set ) -valued Function-like finite FinSequence-like FinSubsequence-like V61() V72() ) FinSequence of ExtREAL : ( ( ) ( non empty V82() ) set ) ) st
( dom f : ( ( Function-like ) ( Relation-like b1 : ( ( non empty ) ( non empty ) set ) -defined ExtREAL : ( ( ) ( non empty V82() ) set ) -valued Function-like V72() ) PartFunc of ,) : ( ( ) ( ) Element of bool b1 : ( ( non empty ) ( non empty ) set ) : ( ( ) ( non empty ) set ) ) = union (rng F : ( ( disjoint_valued ) ( Relation-like NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal V61() V62() V81() V82() V83() V84() V85() V86() V87() ) Element of bool REAL : ( ( ) ( non empty non trivial non finite V81() V82() V83() V87() ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) -defined b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty V24() V25() V26() compl-closed sigma-multiplicative sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) -valued Function-like finite FinSequence-like FinSubsequence-like V61() disjoint_valued ) Finite_Sep_Sequence of b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty V24() V25() V26() compl-closed sigma-multiplicative sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) ) ) : ( ( ) ( finite V61() ) Element of bool b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty V24() V25() V26() compl-closed sigma-multiplicative sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( ) set ) & dom F : ( ( disjoint_valued ) ( Relation-like NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal V61() V62() V81() V82() V83() V84() V85() V86() V87() ) Element of bool REAL : ( ( ) ( non empty non trivial non finite V81() V82() V83() V87() ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) -defined b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty V24() V25() V26() compl-closed sigma-multiplicative sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) -valued Function-like finite FinSequence-like FinSubsequence-like V61() disjoint_valued ) Finite_Sep_Sequence of b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty V24() V25() V26() compl-closed sigma-multiplicative sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) ) : ( ( ) ( finite V61() V81() V82() V83() V84() V85() V86() ) Element of bool NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal V61() V62() V81() V82() V83() V84() V85() V86() V87() ) Element of bool REAL : ( ( ) ( non empty non trivial non finite V81() V82() V83() V87() ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) : ( ( ) ( non empty non trivial non finite ) set ) ) = dom a : ( ( ) ( Relation-like NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal V61() V62() V81() V82() V83() V84() V85() V86() V87() ) Element of bool REAL : ( ( ) ( non empty non trivial non finite V81() V82() V83() V87() ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) -defined ExtREAL : ( ( ) ( non empty V82() ) set ) -valued Function-like finite FinSequence-like FinSubsequence-like V61() V72() ) FinSequence of ExtREAL : ( ( ) ( non empty V82() ) set ) ) : ( ( ) ( finite V61() V81() V82() V83() V84() V85() V86() ) Element of bool NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal V61() V62() V81() V82() V83() V84() V85() V86() V87() ) Element of bool REAL : ( ( ) ( non empty non trivial non finite V81() V82() V83() V87() ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) : ( ( ) ( non empty non trivial non finite ) set ) ) & ( for n being ( ( natural ) ( epsilon-transitive epsilon-connected ordinal natural V36() real ext-real non negative finite cardinal V61() ) Nat) st n : ( ( ) ( ) set ) in dom F : ( ( disjoint_valued ) ( Relation-like NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal V61() V62() V81() V82() V83() V84() V85() V86() V87() ) Element of bool REAL : ( ( ) ( non empty non trivial non finite V81() V82() V83() V87() ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) -defined b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty V24() V25() V26() compl-closed sigma-multiplicative sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) -valued Function-like finite FinSequence-like FinSubsequence-like V61() disjoint_valued ) Finite_Sep_Sequence of b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty V24() V25() V26() compl-closed sigma-multiplicative sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) ) : ( ( ) ( finite V61() V81() V82() V83() V84() V85() V86() ) Element of bool NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal V61() V62() V81() V82() V83() V84() V85() V86() V87() ) Element of bool REAL : ( ( ) ( non empty non trivial non finite V81() V82() V83() V87() ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) : ( ( ) ( non empty non trivial non finite ) set ) ) holds
for x being ( ( ) ( ) set ) st x : ( ( ) ( Relation-like NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal V61() V62() V81() V82() V83() V84() V85() V86() V87() ) Element of bool REAL : ( ( ) ( non empty non trivial non finite V81() V82() V83() V87() ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) -defined ExtREAL : ( ( ) ( non empty V82() ) set ) -valued Function-like finite FinSequence-like FinSubsequence-like V61() V72() ) FinSequence of ExtREAL : ( ( ) ( non empty V82() ) set ) ) in F : ( ( disjoint_valued ) ( Relation-like NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal V61() V62() V81() V82() V83() V84() V85() V86() V87() ) Element of bool REAL : ( ( ) ( non empty non trivial non finite V81() V82() V83() V87() ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) -defined b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty V24() V25() V26() compl-closed sigma-multiplicative sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) -valued Function-like finite FinSequence-like FinSubsequence-like V61() disjoint_valued ) Finite_Sep_Sequence of b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty V24() V25() V26() compl-closed sigma-multiplicative sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) ) . n : ( ( ) ( ) set ) : ( ( ) ( ) set ) holds
f : ( ( Function-like ) ( Relation-like b1 : ( ( non empty ) ( non empty ) set ) -defined ExtREAL : ( ( ) ( non empty V82() ) set ) -valued Function-like V72() ) PartFunc of ,) . x : ( ( ) ( Relation-like NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal V61() V62() V81() V82() V83() V84() V85() V86() V87() ) Element of bool REAL : ( ( ) ( non empty non trivial non finite V81() V82() V83() V87() ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) -defined ExtREAL : ( ( ) ( non empty V82() ) set ) -valued Function-like finite FinSequence-like FinSubsequence-like V61() V72() ) FinSequence of ExtREAL : ( ( ) ( non empty V82() ) set ) ) : ( ( ) ( ext-real ) Element of ExtREAL : ( ( ) ( non empty V82() ) set ) ) = a : ( ( ) ( Relation-like NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal V61() V62() V81() V82() V83() V84() V85() V86() V87() ) Element of bool REAL : ( ( ) ( non empty non trivial non finite V81() V82() V83() V87() ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) -defined ExtREAL : ( ( ) ( non empty V82() ) set ) -valued Function-like finite FinSequence-like FinSubsequence-like V61() V72() ) FinSequence of ExtREAL : ( ( ) ( non empty V82() ) set ) ) . n : ( ( ) ( ) set ) : ( ( ) ( ext-real ) Element of ExtREAL : ( ( ) ( non empty V82() ) set ) ) ) & ( for x being ( ( ) ( ) set ) st x : ( ( ) ( ) set ) in dom f : ( ( Function-like ) ( Relation-like b1 : ( ( non empty ) ( non empty ) set ) -defined ExtREAL : ( ( ) ( non empty V82() ) set ) -valued Function-like V72() ) PartFunc of ,) : ( ( ) ( ) Element of bool b1 : ( ( non empty ) ( non empty ) set ) : ( ( ) ( non empty ) set ) ) holds
ex ax being ( ( ) ( Relation-like NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal V61() V62() V81() V82() V83() V84() V85() V86() V87() ) Element of bool REAL : ( ( ) ( non empty non trivial non finite V81() V82() V83() V87() ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) -defined ExtREAL : ( ( ) ( non empty V82() ) set ) -valued Function-like finite FinSequence-like FinSubsequence-like V61() V72() ) FinSequence of ExtREAL : ( ( ) ( non empty V82() ) set ) ) st
( dom ax : ( ( ) ( Relation-like NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal V61() V62() V81() V82() V83() V84() V85() V86() V87() ) Element of bool REAL : ( ( ) ( non empty non trivial non finite V81() V82() V83() V87() ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) -defined ExtREAL : ( ( ) ( non empty V82() ) set ) -valued Function-like finite FinSequence-like FinSubsequence-like V61() V72() ) FinSequence of ExtREAL : ( ( ) ( non empty V82() ) set ) ) : ( ( ) ( finite V61() V81() V82() V83() V84() V85() V86() ) Element of bool NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal V61() V62() V81() V82() V83() V84() V85() V86() V87() ) Element of bool REAL : ( ( ) ( non empty non trivial non finite V81() V82() V83() V87() ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) : ( ( ) ( non empty non trivial non finite ) set ) ) = dom a : ( ( ) ( Relation-like NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal V61() V62() V81() V82() V83() V84() V85() V86() V87() ) Element of bool REAL : ( ( ) ( non empty non trivial non finite V81() V82() V83() V87() ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) -defined ExtREAL : ( ( ) ( non empty V82() ) set ) -valued Function-like finite FinSequence-like FinSubsequence-like V61() V72() ) FinSequence of ExtREAL : ( ( ) ( non empty V82() ) set ) ) : ( ( ) ( finite V61() V81() V82() V83() V84() V85() V86() ) Element of bool NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal V61() V62() V81() V82() V83() V84() V85() V86() V87() ) Element of bool REAL : ( ( ) ( non empty non trivial non finite V81() V82() V83() V87() ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) : ( ( ) ( non empty non trivial non finite ) set ) ) & ( for n being ( ( natural ) ( epsilon-transitive epsilon-connected ordinal natural V36() real ext-real non negative finite cardinal V61() ) Nat) st n : ( ( natural ) ( epsilon-transitive epsilon-connected ordinal natural V36() real ext-real non negative finite cardinal V61() ) Nat) in dom ax : ( ( ) ( Relation-like NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal V61() V62() V81() V82() V83() V84() V85() V86() V87() ) Element of bool REAL : ( ( ) ( non empty non trivial non finite V81() V82() V83() V87() ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) -defined ExtREAL : ( ( ) ( non empty V82() ) set ) -valued Function-like finite FinSequence-like FinSubsequence-like V61() V72() ) FinSequence of ExtREAL : ( ( ) ( non empty V82() ) set ) ) : ( ( ) ( finite V61() V81() V82() V83() V84() V85() V86() ) Element of bool NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal V61() V62() V81() V82() V83() V84() V85() V86() V87() ) Element of bool REAL : ( ( ) ( non empty non trivial non finite V81() V82() V83() V87() ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) : ( ( ) ( non empty non trivial non finite ) set ) ) holds
ax : ( ( ) ( Relation-like NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal V61() V62() V81() V82() V83() V84() V85() V86() V87() ) Element of bool REAL : ( ( ) ( non empty non trivial non finite V81() V82() V83() V87() ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) -defined ExtREAL : ( ( ) ( non empty V82() ) set ) -valued Function-like finite FinSequence-like FinSubsequence-like V61() V72() ) FinSequence of ExtREAL : ( ( ) ( non empty V82() ) set ) ) . n : ( ( natural ) ( epsilon-transitive epsilon-connected ordinal natural V36() real ext-real non negative finite cardinal V61() ) Nat) : ( ( ) ( ext-real ) Element of ExtREAL : ( ( ) ( non empty V82() ) set ) ) = (a : ( ( ) ( Relation-like NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal V61() V62() V81() V82() V83() V84() V85() V86() V87() ) Element of bool REAL : ( ( ) ( non empty non trivial non finite V81() V82() V83() V87() ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) -defined ExtREAL : ( ( ) ( non empty V82() ) set ) -valued Function-like finite FinSequence-like FinSubsequence-like V61() V72() ) FinSequence of ExtREAL : ( ( ) ( non empty V82() ) set ) ) . n : ( ( natural ) ( epsilon-transitive epsilon-connected ordinal natural V36() real ext-real non negative finite cardinal V61() ) Nat) ) : ( ( ) ( ext-real ) Element of ExtREAL : ( ( ) ( non empty V82() ) set ) ) * ((chi ((F : ( ( disjoint_valued ) ( Relation-like NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal V61() V62() V81() V82() V83() V84() V85() V86() V87() ) Element of bool REAL : ( ( ) ( non empty non trivial non finite V81() V82() V83() V87() ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) -defined b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty V24() V25() V26() compl-closed sigma-multiplicative sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) -valued Function-like finite FinSequence-like FinSubsequence-like V61() disjoint_valued ) Finite_Sep_Sequence of b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty V24() V25() V26() compl-closed sigma-multiplicative sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) ) . n : ( ( natural ) ( epsilon-transitive epsilon-connected ordinal natural V36() real ext-real non negative finite cardinal V61() ) Nat) ) : ( ( ) ( ) set ) ,X : ( ( non empty ) ( non empty ) set ) )) : ( ( Function-like ) ( Relation-like b1 : ( ( non empty ) ( non empty ) set ) -defined ExtREAL : ( ( ) ( non empty V82() ) set ) -valued Function-like V72() ) Element of bool [:b1 : ( ( non empty ) ( non empty ) set ) ,ExtREAL : ( ( ) ( non empty V82() ) set ) :] : ( ( ) ( Relation-like non empty V72() ) set ) : ( ( ) ( non empty ) set ) ) . x : ( ( ) ( ) set ) ) : ( ( ) ( ext-real ) Element of ExtREAL : ( ( ) ( non empty V82() ) set ) ) : ( ( ) ( ext-real ) Element of ExtREAL : ( ( ) ( non empty V82() ) set ) ) ) ) ) ) ;

theorem :: MESFUNC3:4
for X being ( ( ) ( ) set )
for F being ( ( ) ( Relation-like NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal V61() V62() V81() V82() V83() V84() V85() V86() V87() ) Element of bool REAL : ( ( ) ( non empty non trivial non finite V81() V82() V83() V87() ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) -defined b1 : ( ( ) ( ) set ) -valued Function-like finite FinSequence-like FinSubsequence-like V61() ) FinSequence of X : ( ( ) ( ) set ) ) holds
( F : ( ( ) ( Relation-like NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal V61() V62() V81() V82() V83() V84() V85() V86() V87() ) Element of bool REAL : ( ( ) ( non empty non trivial non finite V81() V82() V83() V87() ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) -defined b1 : ( ( ) ( ) set ) -valued Function-like finite FinSequence-like FinSubsequence-like V61() ) FinSequence of b1 : ( ( ) ( ) set ) ) is disjoint_valued iff for i, j being ( ( natural ) ( epsilon-transitive epsilon-connected ordinal natural V36() real ext-real non negative finite cardinal V61() ) Nat) st i : ( ( natural ) ( epsilon-transitive epsilon-connected ordinal natural V36() real ext-real non negative finite cardinal V61() ) Nat) in dom F : ( ( ) ( Relation-like NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal V61() V62() V81() V82() V83() V84() V85() V86() V87() ) Element of bool REAL : ( ( ) ( non empty non trivial non finite V81() V82() V83() V87() ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) -defined b1 : ( ( ) ( ) set ) -valued Function-like finite FinSequence-like FinSubsequence-like V61() ) FinSequence of b1 : ( ( ) ( ) set ) ) : ( ( ) ( finite V61() V81() V82() V83() V84() V85() V86() ) Element of bool NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal V61() V62() V81() V82() V83() V84() V85() V86() V87() ) Element of bool REAL : ( ( ) ( non empty non trivial non finite V81() V82() V83() V87() ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) : ( ( ) ( non empty non trivial non finite ) set ) ) & j : ( ( natural ) ( epsilon-transitive epsilon-connected ordinal natural V36() real ext-real non negative finite cardinal V61() ) Nat) in dom F : ( ( ) ( Relation-like NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal V61() V62() V81() V82() V83() V84() V85() V86() V87() ) Element of bool REAL : ( ( ) ( non empty non trivial non finite V81() V82() V83() V87() ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) -defined b1 : ( ( ) ( ) set ) -valued Function-like finite FinSequence-like FinSubsequence-like V61() ) FinSequence of b1 : ( ( ) ( ) set ) ) : ( ( ) ( finite V61() V81() V82() V83() V84() V85() V86() ) Element of bool NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal V61() V62() V81() V82() V83() V84() V85() V86() V87() ) Element of bool REAL : ( ( ) ( non empty non trivial non finite V81() V82() V83() V87() ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) : ( ( ) ( non empty non trivial non finite ) set ) ) & i : ( ( natural ) ( epsilon-transitive epsilon-connected ordinal natural V36() real ext-real non negative finite cardinal V61() ) Nat) <> j : ( ( natural ) ( epsilon-transitive epsilon-connected ordinal natural V36() real ext-real non negative finite cardinal V61() ) Nat) holds
F : ( ( ) ( Relation-like NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal V61() V62() V81() V82() V83() V84() V85() V86() V87() ) Element of bool REAL : ( ( ) ( non empty non trivial non finite V81() V82() V83() V87() ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) -defined b1 : ( ( ) ( ) set ) -valued Function-like finite FinSequence-like FinSubsequence-like V61() ) FinSequence of b1 : ( ( ) ( ) set ) ) . i : ( ( natural ) ( epsilon-transitive epsilon-connected ordinal natural V36() real ext-real non negative finite cardinal V61() ) Nat) : ( ( ) ( ) set ) misses F : ( ( ) ( Relation-like NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal V61() V62() V81() V82() V83() V84() V85() V86() V87() ) Element of bool REAL : ( ( ) ( non empty non trivial non finite V81() V82() V83() V87() ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) -defined b1 : ( ( ) ( ) set ) -valued Function-like finite FinSequence-like FinSubsequence-like V61() ) FinSequence of b1 : ( ( ) ( ) set ) ) . j : ( ( natural ) ( epsilon-transitive epsilon-connected ordinal natural V36() real ext-real non negative finite cardinal V61() ) Nat) : ( ( ) ( ) set ) ) ;

theorem :: MESFUNC3:5
for X being ( ( non empty ) ( non empty ) set )
for A being ( ( ) ( ) set )
for S being ( ( non empty compl-closed sigma-multiplicative ) ( non empty V24() V25() V26() compl-closed sigma-multiplicative sigma-additive ) SigmaField of X : ( ( non empty ) ( non empty ) set ) )
for F being ( ( disjoint_valued ) ( Relation-like NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal V61() V62() V81() V82() V83() V84() V85() V86() V87() ) Element of bool REAL : ( ( ) ( non empty non trivial non finite V81() V82() V83() V87() ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) -defined b3 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty V24() V25() V26() compl-closed sigma-multiplicative sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) -valued Function-like finite FinSequence-like FinSubsequence-like V61() disjoint_valued ) Finite_Sep_Sequence of S : ( ( non empty compl-closed sigma-multiplicative ) ( non empty V24() V25() V26() compl-closed sigma-multiplicative sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) )
for G being ( ( ) ( Relation-like NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal V61() V62() V81() V82() V83() V84() V85() V86() V87() ) Element of bool REAL : ( ( ) ( non empty non trivial non finite V81() V82() V83() V87() ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) -defined b3 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty V24() V25() V26() compl-closed sigma-multiplicative sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) -valued Function-like finite FinSequence-like FinSubsequence-like V61() ) FinSequence of S : ( ( non empty compl-closed sigma-multiplicative ) ( non empty V24() V25() V26() compl-closed sigma-multiplicative sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) ) st dom G : ( ( ) ( Relation-like NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal V61() V62() V81() V82() V83() V84() V85() V86() V87() ) Element of bool REAL : ( ( ) ( non empty non trivial non finite V81() V82() V83() V87() ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) -defined b3 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty V24() V25() V26() compl-closed sigma-multiplicative sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) -valued Function-like finite FinSequence-like FinSubsequence-like V61() ) FinSequence of b3 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty V24() V25() V26() compl-closed sigma-multiplicative sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) ) : ( ( ) ( finite V61() V81() V82() V83() V84() V85() V86() ) Element of bool NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal V61() V62() V81() V82() V83() V84() V85() V86() V87() ) Element of bool REAL : ( ( ) ( non empty non trivial non finite V81() V82() V83() V87() ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) : ( ( ) ( non empty non trivial non finite ) set ) ) = dom F : ( ( disjoint_valued ) ( Relation-like NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal V61() V62() V81() V82() V83() V84() V85() V86() V87() ) Element of bool REAL : ( ( ) ( non empty non trivial non finite V81() V82() V83() V87() ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) -defined b3 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty V24() V25() V26() compl-closed sigma-multiplicative sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) -valued Function-like finite FinSequence-like FinSubsequence-like V61() disjoint_valued ) Finite_Sep_Sequence of b3 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty V24() V25() V26() compl-closed sigma-multiplicative sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) ) : ( ( ) ( finite V61() V81() V82() V83() V84() V85() V86() ) Element of bool NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal V61() V62() V81() V82() V83() V84() V85() V86() V87() ) Element of bool REAL : ( ( ) ( non empty non trivial non finite V81() V82() V83() V87() ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) : ( ( ) ( non empty non trivial non finite ) set ) ) & ( for i being ( ( natural ) ( epsilon-transitive epsilon-connected ordinal natural V36() real ext-real non negative finite cardinal V61() ) Nat) st i : ( ( natural ) ( epsilon-transitive epsilon-connected ordinal natural V36() real ext-real non negative finite cardinal V61() ) Nat) in dom G : ( ( ) ( Relation-like NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal V61() V62() V81() V82() V83() V84() V85() V86() V87() ) Element of bool REAL : ( ( ) ( non empty non trivial non finite V81() V82() V83() V87() ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) -defined b3 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty V24() V25() V26() compl-closed sigma-multiplicative sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) -valued Function-like finite FinSequence-like FinSubsequence-like V61() ) FinSequence of b3 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty V24() V25() V26() compl-closed sigma-multiplicative sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) ) : ( ( ) ( finite V61() V81() V82() V83() V84() V85() V86() ) Element of bool NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal V61() V62() V81() V82() V83() V84() V85() V86() V87() ) Element of bool REAL : ( ( ) ( non empty non trivial non finite V81() V82() V83() V87() ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) : ( ( ) ( non empty non trivial non finite ) set ) ) holds
G : ( ( ) ( Relation-like NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal V61() V62() V81() V82() V83() V84() V85() V86() V87() ) Element of bool REAL : ( ( ) ( non empty non trivial non finite V81() V82() V83() V87() ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) -defined b3 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty V24() V25() V26() compl-closed sigma-multiplicative sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) -valued Function-like finite FinSequence-like FinSubsequence-like V61() ) FinSequence of b3 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty V24() V25() V26() compl-closed sigma-multiplicative sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) ) . i : ( ( natural ) ( epsilon-transitive epsilon-connected ordinal natural V36() real ext-real non negative finite cardinal V61() ) Nat) : ( ( ) ( ) set ) = A : ( ( ) ( ) set ) /\ (F : ( ( disjoint_valued ) ( Relation-like NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal V61() V62() V81() V82() V83() V84() V85() V86() V87() ) Element of bool REAL : ( ( ) ( non empty non trivial non finite V81() V82() V83() V87() ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) -defined b3 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty V24() V25() V26() compl-closed sigma-multiplicative sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) -valued Function-like finite FinSequence-like FinSubsequence-like V61() disjoint_valued ) Finite_Sep_Sequence of b3 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty V24() V25() V26() compl-closed sigma-multiplicative sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) ) . i : ( ( natural ) ( epsilon-transitive epsilon-connected ordinal natural V36() real ext-real non negative finite cardinal V61() ) Nat) ) : ( ( ) ( ) set ) : ( ( ) ( ) set ) ) holds
G : ( ( ) ( Relation-like NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal V61() V62() V81() V82() V83() V84() V85() V86() V87() ) Element of bool REAL : ( ( ) ( non empty non trivial non finite V81() V82() V83() V87() ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) -defined b3 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty V24() V25() V26() compl-closed sigma-multiplicative sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) -valued Function-like finite FinSequence-like FinSubsequence-like V61() ) FinSequence of b3 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty V24() V25() V26() compl-closed sigma-multiplicative sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) ) is ( ( disjoint_valued ) ( Relation-like NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal V61() V62() V81() V82() V83() V84() V85() V86() V87() ) Element of bool REAL : ( ( ) ( non empty non trivial non finite V81() V82() V83() V87() ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) -defined b3 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty V24() V25() V26() compl-closed sigma-multiplicative sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) -valued Function-like finite FinSequence-like FinSubsequence-like V61() disjoint_valued ) Finite_Sep_Sequence of S : ( ( non empty compl-closed sigma-multiplicative ) ( non empty V24() V25() V26() compl-closed sigma-multiplicative sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) ) ;

theorem :: MESFUNC3:6
for X being ( ( non empty ) ( non empty ) set )
for A being ( ( ) ( ) set )
for F, G being ( ( ) ( Relation-like NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal V61() V62() V81() V82() V83() V84() V85() V86() V87() ) Element of bool REAL : ( ( ) ( non empty non trivial non finite V81() V82() V83() V87() ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) -defined b1 : ( ( non empty ) ( non empty ) set ) -valued Function-like finite FinSequence-like FinSubsequence-like V61() ) FinSequence of X : ( ( non empty ) ( non empty ) set ) ) st dom G : ( ( ) ( Relation-like NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal V61() V62() V81() V82() V83() V84() V85() V86() V87() ) Element of bool REAL : ( ( ) ( non empty non trivial non finite V81() V82() V83() V87() ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) -defined b1 : ( ( non empty ) ( non empty ) set ) -valued Function-like finite FinSequence-like FinSubsequence-like V61() ) FinSequence of b1 : ( ( non empty ) ( non empty ) set ) ) : ( ( ) ( finite V61() V81() V82() V83() V84() V85() V86() ) Element of bool NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal V61() V62() V81() V82() V83() V84() V85() V86() V87() ) Element of bool REAL : ( ( ) ( non empty non trivial non finite V81() V82() V83() V87() ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) : ( ( ) ( non empty non trivial non finite ) set ) ) = dom F : ( ( ) ( Relation-like NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal V61() V62() V81() V82() V83() V84() V85() V86() V87() ) Element of bool REAL : ( ( ) ( non empty non trivial non finite V81() V82() V83() V87() ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) -defined b1 : ( ( non empty ) ( non empty ) set ) -valued Function-like finite FinSequence-like FinSubsequence-like V61() ) FinSequence of b1 : ( ( non empty ) ( non empty ) set ) ) : ( ( ) ( finite V61() V81() V82() V83() V84() V85() V86() ) Element of bool NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal V61() V62() V81() V82() V83() V84() V85() V86() V87() ) Element of bool REAL : ( ( ) ( non empty non trivial non finite V81() V82() V83() V87() ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) : ( ( ) ( non empty non trivial non finite ) set ) ) & ( for i being ( ( natural ) ( epsilon-transitive epsilon-connected ordinal natural V36() real ext-real non negative finite cardinal V61() ) Nat) st i : ( ( natural ) ( epsilon-transitive epsilon-connected ordinal natural V36() real ext-real non negative finite cardinal V61() ) Nat) in dom G : ( ( ) ( Relation-like NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal V61() V62() V81() V82() V83() V84() V85() V86() V87() ) Element of bool REAL : ( ( ) ( non empty non trivial non finite V81() V82() V83() V87() ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) -defined b1 : ( ( non empty ) ( non empty ) set ) -valued Function-like finite FinSequence-like FinSubsequence-like V61() ) FinSequence of b1 : ( ( non empty ) ( non empty ) set ) ) : ( ( ) ( finite V61() V81() V82() V83() V84() V85() V86() ) Element of bool NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal V61() V62() V81() V82() V83() V84() V85() V86() V87() ) Element of bool REAL : ( ( ) ( non empty non trivial non finite V81() V82() V83() V87() ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) : ( ( ) ( non empty non trivial non finite ) set ) ) holds
G : ( ( ) ( Relation-like NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal V61() V62() V81() V82() V83() V84() V85() V86() V87() ) Element of bool REAL : ( ( ) ( non empty non trivial non finite V81() V82() V83() V87() ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) -defined b1 : ( ( non empty ) ( non empty ) set ) -valued Function-like finite FinSequence-like FinSubsequence-like V61() ) FinSequence of b1 : ( ( non empty ) ( non empty ) set ) ) . i : ( ( natural ) ( epsilon-transitive epsilon-connected ordinal natural V36() real ext-real non negative finite cardinal V61() ) Nat) : ( ( ) ( ) set ) = A : ( ( ) ( ) set ) /\ (F : ( ( ) ( Relation-like NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal V61() V62() V81() V82() V83() V84() V85() V86() V87() ) Element of bool REAL : ( ( ) ( non empty non trivial non finite V81() V82() V83() V87() ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) -defined b1 : ( ( non empty ) ( non empty ) set ) -valued Function-like finite FinSequence-like FinSubsequence-like V61() ) FinSequence of b1 : ( ( non empty ) ( non empty ) set ) ) . i : ( ( natural ) ( epsilon-transitive epsilon-connected ordinal natural V36() real ext-real non negative finite cardinal V61() ) Nat) ) : ( ( ) ( ) set ) : ( ( ) ( ) set ) ) holds
union (rng G : ( ( ) ( Relation-like NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal V61() V62() V81() V82() V83() V84() V85() V86() V87() ) Element of bool REAL : ( ( ) ( non empty non trivial non finite V81() V82() V83() V87() ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) -defined b1 : ( ( non empty ) ( non empty ) set ) -valued Function-like finite FinSequence-like FinSubsequence-like V61() ) FinSequence of b1 : ( ( non empty ) ( non empty ) set ) ) ) : ( ( ) ( finite V61() ) Element of bool b1 : ( ( non empty ) ( non empty ) set ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( ) set ) = A : ( ( ) ( ) set ) /\ (union (rng F : ( ( ) ( Relation-like NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal V61() V62() V81() V82() V83() V84() V85() V86() V87() ) Element of bool REAL : ( ( ) ( non empty non trivial non finite V81() V82() V83() V87() ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) -defined b1 : ( ( non empty ) ( non empty ) set ) -valued Function-like finite FinSequence-like FinSubsequence-like V61() ) FinSequence of b1 : ( ( non empty ) ( non empty ) set ) ) ) : ( ( ) ( finite V61() ) Element of bool b1 : ( ( non empty ) ( non empty ) set ) : ( ( ) ( non empty ) set ) ) ) : ( ( ) ( ) set ) : ( ( ) ( ) set ) ;

theorem :: MESFUNC3:7
for X being ( ( ) ( ) set )
for F being ( ( ) ( Relation-like NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal V61() V62() V81() V82() V83() V84() V85() V86() V87() ) Element of bool REAL : ( ( ) ( non empty non trivial non finite V81() V82() V83() V87() ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) -defined b1 : ( ( ) ( ) set ) -valued Function-like finite FinSequence-like FinSubsequence-like V61() ) FinSequence of X : ( ( ) ( ) set ) )
for i being ( ( natural ) ( epsilon-transitive epsilon-connected ordinal natural V36() real ext-real non negative finite cardinal V61() ) Nat) st i : ( ( natural ) ( epsilon-transitive epsilon-connected ordinal natural V36() real ext-real non negative finite cardinal V61() ) Nat) in dom F : ( ( ) ( Relation-like NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal V61() V62() V81() V82() V83() V84() V85() V86() V87() ) Element of bool REAL : ( ( ) ( non empty non trivial non finite V81() V82() V83() V87() ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) -defined b1 : ( ( ) ( ) set ) -valued Function-like finite FinSequence-like FinSubsequence-like V61() ) FinSequence of b1 : ( ( ) ( ) set ) ) : ( ( ) ( finite V61() V81() V82() V83() V84() V85() V86() ) Element of bool NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal V61() V62() V81() V82() V83() V84() V85() V86() V87() ) Element of bool REAL : ( ( ) ( non empty non trivial non finite V81() V82() V83() V87() ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) : ( ( ) ( non empty non trivial non finite ) set ) ) holds
( F : ( ( ) ( Relation-like NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal V61() V62() V81() V82() V83() V84() V85() V86() V87() ) Element of bool REAL : ( ( ) ( non empty non trivial non finite V81() V82() V83() V87() ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) -defined b1 : ( ( ) ( ) set ) -valued Function-like finite FinSequence-like FinSubsequence-like V61() ) FinSequence of b1 : ( ( ) ( ) set ) ) . i : ( ( natural ) ( epsilon-transitive epsilon-connected ordinal natural V36() real ext-real non negative finite cardinal V61() ) Nat) : ( ( ) ( ) set ) c= union (rng F : ( ( ) ( Relation-like NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal V61() V62() V81() V82() V83() V84() V85() V86() V87() ) Element of bool REAL : ( ( ) ( non empty non trivial non finite V81() V82() V83() V87() ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) -defined b1 : ( ( ) ( ) set ) -valued Function-like finite FinSequence-like FinSubsequence-like V61() ) FinSequence of b1 : ( ( ) ( ) set ) ) ) : ( ( ) ( finite V61() ) Element of bool b1 : ( ( ) ( ) set ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( ) set ) & (F : ( ( ) ( Relation-like NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal V61() V62() V81() V82() V83() V84() V85() V86() V87() ) Element of bool REAL : ( ( ) ( non empty non trivial non finite V81() V82() V83() V87() ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) -defined b1 : ( ( ) ( ) set ) -valued Function-like finite FinSequence-like FinSubsequence-like V61() ) FinSequence of b1 : ( ( ) ( ) set ) ) . i : ( ( natural ) ( epsilon-transitive epsilon-connected ordinal natural V36() real ext-real non negative finite cardinal V61() ) Nat) ) : ( ( ) ( ) set ) /\ (union (rng F : ( ( ) ( Relation-like NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal V61() V62() V81() V82() V83() V84() V85() V86() V87() ) Element of bool REAL : ( ( ) ( non empty non trivial non finite V81() V82() V83() V87() ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) -defined b1 : ( ( ) ( ) set ) -valued Function-like finite FinSequence-like FinSubsequence-like V61() ) FinSequence of b1 : ( ( ) ( ) set ) ) ) : ( ( ) ( finite V61() ) Element of bool b1 : ( ( ) ( ) set ) : ( ( ) ( non empty ) set ) ) ) : ( ( ) ( ) set ) : ( ( ) ( ) set ) = F : ( ( ) ( Relation-like NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal V61() V62() V81() V82() V83() V84() V85() V86() V87() ) Element of bool REAL : ( ( ) ( non empty non trivial non finite V81() V82() V83() V87() ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) -defined b1 : ( ( ) ( ) set ) -valued Function-like finite FinSequence-like FinSubsequence-like V61() ) FinSequence of b1 : ( ( ) ( ) set ) ) . i : ( ( natural ) ( epsilon-transitive epsilon-connected ordinal natural V36() real ext-real non negative finite cardinal V61() ) Nat) : ( ( ) ( ) set ) ) ;

theorem :: MESFUNC3:8
for X being ( ( non empty ) ( non empty ) set )
for S being ( ( non empty compl-closed sigma-multiplicative ) ( non empty V24() V25() V26() compl-closed sigma-multiplicative sigma-additive ) SigmaField of X : ( ( non empty ) ( non empty ) set ) )
for M being ( ( Function-like V18(b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty V24() V25() V26() compl-closed sigma-multiplicative sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) , ExtREAL : ( ( ) ( non empty V82() ) set ) ) V80() nonnegative sigma-additive ) ( Relation-like b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty V24() V25() V26() compl-closed sigma-multiplicative sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) -defined ExtREAL : ( ( ) ( non empty V82() ) set ) -valued Function-like non empty total V18(b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty V24() V25() V26() compl-closed sigma-multiplicative sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) , ExtREAL : ( ( ) ( non empty V82() ) set ) ) V72() V80() nonnegative sigma-additive ) sigma_Measure of S : ( ( non empty compl-closed sigma-multiplicative ) ( non empty V24() V25() V26() compl-closed sigma-multiplicative sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) )
for F being ( ( disjoint_valued ) ( Relation-like NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal V61() V62() V81() V82() V83() V84() V85() V86() V87() ) Element of bool REAL : ( ( ) ( non empty non trivial non finite V81() V82() V83() V87() ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) -defined b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty V24() V25() V26() compl-closed sigma-multiplicative sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) -valued Function-like finite FinSequence-like FinSubsequence-like V61() disjoint_valued ) Finite_Sep_Sequence of S : ( ( non empty compl-closed sigma-multiplicative ) ( non empty V24() V25() V26() compl-closed sigma-multiplicative sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) ) holds dom F : ( ( disjoint_valued ) ( Relation-like NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal V61() V62() V81() V82() V83() V84() V85() V86() V87() ) Element of bool REAL : ( ( ) ( non empty non trivial non finite V81() V82() V83() V87() ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) -defined b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty V24() V25() V26() compl-closed sigma-multiplicative sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) -valued Function-like finite FinSequence-like FinSubsequence-like V61() disjoint_valued ) Finite_Sep_Sequence of b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty V24() V25() V26() compl-closed sigma-multiplicative sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) ) : ( ( ) ( finite V61() V81() V82() V83() V84() V85() V86() ) Element of bool NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal V61() V62() V81() V82() V83() V84() V85() V86() V87() ) Element of bool REAL : ( ( ) ( non empty non trivial non finite V81() V82() V83() V87() ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) : ( ( ) ( non empty non trivial non finite ) set ) ) = dom (M : ( ( Function-like V18(b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty V24() V25() V26() compl-closed sigma-multiplicative sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) , ExtREAL : ( ( ) ( non empty V82() ) set ) ) V80() nonnegative sigma-additive ) ( Relation-like b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty V24() V25() V26() compl-closed sigma-multiplicative sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) -defined ExtREAL : ( ( ) ( non empty V82() ) set ) -valued Function-like non empty total V18(b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty V24() V25() V26() compl-closed sigma-multiplicative sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) , ExtREAL : ( ( ) ( non empty V82() ) set ) ) V72() V80() nonnegative sigma-additive ) sigma_Measure of b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty V24() V25() V26() compl-closed sigma-multiplicative sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) ) * F : ( ( disjoint_valued ) ( Relation-like NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal V61() V62() V81() V82() V83() V84() V85() V86() V87() ) Element of bool REAL : ( ( ) ( non empty non trivial non finite V81() V82() V83() V87() ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) -defined b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty V24() V25() V26() compl-closed sigma-multiplicative sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) -valued Function-like finite FinSequence-like FinSubsequence-like V61() disjoint_valued ) Finite_Sep_Sequence of b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty V24() V25() V26() compl-closed sigma-multiplicative sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) ) ) : ( ( ) ( Relation-like NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal V61() V62() V81() V82() V83() V84() V85() V86() V87() ) Element of bool REAL : ( ( ) ( non empty non trivial non finite V81() V82() V83() V87() ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) -defined ExtREAL : ( ( ) ( non empty V82() ) set ) -valued Function-like finite FinSequence-like FinSubsequence-like V61() V72() ) FinSequence of ExtREAL : ( ( ) ( non empty V82() ) set ) ) : ( ( ) ( finite V61() V81() V82() V83() V84() V85() V86() ) Element of bool NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal V61() V62() V81() V82() V83() V84() V85() V86() V87() ) Element of bool REAL : ( ( ) ( non empty non trivial non finite V81() V82() V83() V87() ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) : ( ( ) ( non empty non trivial non finite ) set ) ) ;

theorem :: MESFUNC3:9
for X being ( ( non empty ) ( non empty ) set )
for S being ( ( non empty compl-closed sigma-multiplicative ) ( non empty V24() V25() V26() compl-closed sigma-multiplicative sigma-additive ) SigmaField of X : ( ( non empty ) ( non empty ) set ) )
for M being ( ( Function-like V18(b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty V24() V25() V26() compl-closed sigma-multiplicative sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) , ExtREAL : ( ( ) ( non empty V82() ) set ) ) V80() nonnegative sigma-additive ) ( Relation-like b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty V24() V25() V26() compl-closed sigma-multiplicative sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) -defined ExtREAL : ( ( ) ( non empty V82() ) set ) -valued Function-like non empty total V18(b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty V24() V25() V26() compl-closed sigma-multiplicative sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) , ExtREAL : ( ( ) ( non empty V82() ) set ) ) V72() V80() nonnegative sigma-additive ) sigma_Measure of S : ( ( non empty compl-closed sigma-multiplicative ) ( non empty V24() V25() V26() compl-closed sigma-multiplicative sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) )
for F being ( ( disjoint_valued ) ( Relation-like NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal V61() V62() V81() V82() V83() V84() V85() V86() V87() ) Element of bool REAL : ( ( ) ( non empty non trivial non finite V81() V82() V83() V87() ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) -defined b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty V24() V25() V26() compl-closed sigma-multiplicative sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) -valued Function-like finite FinSequence-like FinSubsequence-like V61() disjoint_valued ) Finite_Sep_Sequence of S : ( ( non empty compl-closed sigma-multiplicative ) ( non empty V24() V25() V26() compl-closed sigma-multiplicative sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) ) holds M : ( ( Function-like V18(b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty V24() V25() V26() compl-closed sigma-multiplicative sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) , ExtREAL : ( ( ) ( non empty V82() ) set ) ) V80() nonnegative sigma-additive ) ( Relation-like b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty V24() V25() V26() compl-closed sigma-multiplicative sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) -defined ExtREAL : ( ( ) ( non empty V82() ) set ) -valued Function-like non empty total V18(b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty V24() V25() V26() compl-closed sigma-multiplicative sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) , ExtREAL : ( ( ) ( non empty V82() ) set ) ) V72() V80() nonnegative sigma-additive ) sigma_Measure of b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty V24() V25() V26() compl-closed sigma-multiplicative sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) ) . (union (rng F : ( ( disjoint_valued ) ( Relation-like NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal V61() V62() V81() V82() V83() V84() V85() V86() V87() ) Element of bool REAL : ( ( ) ( non empty non trivial non finite V81() V82() V83() V87() ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) -defined b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty V24() V25() V26() compl-closed sigma-multiplicative sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) -valued Function-like finite FinSequence-like FinSubsequence-like V61() disjoint_valued ) Finite_Sep_Sequence of b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty V24() V25() V26() compl-closed sigma-multiplicative sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) ) ) : ( ( ) ( finite V61() ) Element of bool b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty V24() V25() V26() compl-closed sigma-multiplicative sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) : ( ( ) ( non empty ) set ) ) ) : ( ( ) ( ) set ) : ( ( ) ( ext-real ) Element of ExtREAL : ( ( ) ( non empty V82() ) set ) ) = Sum (M : ( ( Function-like V18(b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty V24() V25() V26() compl-closed sigma-multiplicative sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) , ExtREAL : ( ( ) ( non empty V82() ) set ) ) V80() nonnegative sigma-additive ) ( Relation-like b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty V24() V25() V26() compl-closed sigma-multiplicative sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) -defined ExtREAL : ( ( ) ( non empty V82() ) set ) -valued Function-like non empty total V18(b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty V24() V25() V26() compl-closed sigma-multiplicative sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) , ExtREAL : ( ( ) ( non empty V82() ) set ) ) V72() V80() nonnegative sigma-additive ) sigma_Measure of b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty V24() V25() V26() compl-closed sigma-multiplicative sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) ) * F : ( ( disjoint_valued ) ( Relation-like NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal V61() V62() V81() V82() V83() V84() V85() V86() V87() ) Element of bool REAL : ( ( ) ( non empty non trivial non finite V81() V82() V83() V87() ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) -defined b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty V24() V25() V26() compl-closed sigma-multiplicative sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) -valued Function-like finite FinSequence-like FinSubsequence-like V61() disjoint_valued ) Finite_Sep_Sequence of b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty V24() V25() V26() compl-closed sigma-multiplicative sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) ) ) : ( ( ) ( Relation-like NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal V61() V62() V81() V82() V83() V84() V85() V86() V87() ) Element of bool REAL : ( ( ) ( non empty non trivial non finite V81() V82() V83() V87() ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) -defined ExtREAL : ( ( ) ( non empty V82() ) set ) -valued Function-like finite FinSequence-like FinSubsequence-like V61() V72() ) FinSequence of ExtREAL : ( ( ) ( non empty V82() ) set ) ) : ( ( ) ( ext-real ) Element of ExtREAL : ( ( ) ( non empty V82() ) set ) ) ;

theorem :: MESFUNC3:10
for F, G being ( ( ) ( Relation-like NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal V61() V62() V81() V82() V83() V84() V85() V86() V87() ) Element of bool REAL : ( ( ) ( non empty non trivial non finite V81() V82() V83() V87() ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) -defined ExtREAL : ( ( ) ( non empty V82() ) set ) -valued Function-like finite FinSequence-like FinSubsequence-like V61() V72() ) FinSequence of ExtREAL : ( ( ) ( non empty V82() ) set ) )
for a being ( ( ) ( ext-real ) R_eal) st ( a : ( ( ) ( ext-real ) R_eal) is real or for i being ( ( natural ) ( epsilon-transitive epsilon-connected ordinal natural V36() real ext-real non negative finite cardinal V61() ) Nat) st i : ( ( natural ) ( epsilon-transitive epsilon-connected ordinal natural V36() real ext-real non negative finite cardinal V61() ) Nat) in dom F : ( ( ) ( Relation-like NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal V61() V62() V81() V82() V83() V84() V85() V86() V87() ) Element of bool REAL : ( ( ) ( non empty non trivial non finite V81() V82() V83() V87() ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) -defined ExtREAL : ( ( ) ( non empty V82() ) set ) -valued Function-like finite FinSequence-like FinSubsequence-like V61() V72() ) FinSequence of ExtREAL : ( ( ) ( non empty V82() ) set ) ) : ( ( ) ( finite V61() V81() V82() V83() V84() V85() V86() ) Element of bool NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal V61() V62() V81() V82() V83() V84() V85() V86() V87() ) Element of bool REAL : ( ( ) ( non empty non trivial non finite V81() V82() V83() V87() ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) : ( ( ) ( non empty non trivial non finite ) set ) ) holds
F : ( ( ) ( Relation-like NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal V61() V62() V81() V82() V83() V84() V85() V86() V87() ) Element of bool REAL : ( ( ) ( non empty non trivial non finite V81() V82() V83() V87() ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) -defined ExtREAL : ( ( ) ( non empty V82() ) set ) -valued Function-like finite FinSequence-like FinSubsequence-like V61() V72() ) FinSequence of ExtREAL : ( ( ) ( non empty V82() ) set ) ) . i : ( ( natural ) ( epsilon-transitive epsilon-connected ordinal natural V36() real ext-real non negative finite cardinal V61() ) Nat) : ( ( ) ( ext-real ) Element of ExtREAL : ( ( ) ( non empty V82() ) set ) ) < 0. : ( ( ) ( ext-real ) Element of ExtREAL : ( ( ) ( non empty V82() ) set ) ) or for i being ( ( natural ) ( epsilon-transitive epsilon-connected ordinal natural V36() real ext-real non negative finite cardinal V61() ) Nat) st i : ( ( natural ) ( epsilon-transitive epsilon-connected ordinal natural V36() real ext-real non negative finite cardinal V61() ) Nat) in dom F : ( ( ) ( Relation-like NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal V61() V62() V81() V82() V83() V84() V85() V86() V87() ) Element of bool REAL : ( ( ) ( non empty non trivial non finite V81() V82() V83() V87() ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) -defined ExtREAL : ( ( ) ( non empty V82() ) set ) -valued Function-like finite FinSequence-like FinSubsequence-like V61() V72() ) FinSequence of ExtREAL : ( ( ) ( non empty V82() ) set ) ) : ( ( ) ( finite V61() V81() V82() V83() V84() V85() V86() ) Element of bool NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal V61() V62() V81() V82() V83() V84() V85() V86() V87() ) Element of bool REAL : ( ( ) ( non empty non trivial non finite V81() V82() V83() V87() ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) : ( ( ) ( non empty non trivial non finite ) set ) ) holds
0. : ( ( ) ( ext-real ) Element of ExtREAL : ( ( ) ( non empty V82() ) set ) ) < F : ( ( ) ( Relation-like NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal V61() V62() V81() V82() V83() V84() V85() V86() V87() ) Element of bool REAL : ( ( ) ( non empty non trivial non finite V81() V82() V83() V87() ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) -defined ExtREAL : ( ( ) ( non empty V82() ) set ) -valued Function-like finite FinSequence-like FinSubsequence-like V61() V72() ) FinSequence of ExtREAL : ( ( ) ( non empty V82() ) set ) ) . i : ( ( natural ) ( epsilon-transitive epsilon-connected ordinal natural V36() real ext-real non negative finite cardinal V61() ) Nat) : ( ( ) ( ext-real ) Element of ExtREAL : ( ( ) ( non empty V82() ) set ) ) ) & dom F : ( ( ) ( Relation-like NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal V61() V62() V81() V82() V83() V84() V85() V86() V87() ) Element of bool REAL : ( ( ) ( non empty non trivial non finite V81() V82() V83() V87() ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) -defined ExtREAL : ( ( ) ( non empty V82() ) set ) -valued Function-like finite FinSequence-like FinSubsequence-like V61() V72() ) FinSequence of ExtREAL : ( ( ) ( non empty V82() ) set ) ) : ( ( ) ( finite V61() V81() V82() V83() V84() V85() V86() ) Element of bool NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal V61() V62() V81() V82() V83() V84() V85() V86() V87() ) Element of bool REAL : ( ( ) ( non empty non trivial non finite V81() V82() V83() V87() ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) : ( ( ) ( non empty non trivial non finite ) set ) ) = dom G : ( ( ) ( Relation-like NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal V61() V62() V81() V82() V83() V84() V85() V86() V87() ) Element of bool REAL : ( ( ) ( non empty non trivial non finite V81() V82() V83() V87() ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) -defined ExtREAL : ( ( ) ( non empty V82() ) set ) -valued Function-like finite FinSequence-like FinSubsequence-like V61() V72() ) FinSequence of ExtREAL : ( ( ) ( non empty V82() ) set ) ) : ( ( ) ( finite V61() V81() V82() V83() V84() V85() V86() ) Element of bool NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal V61() V62() V81() V82() V83() V84() V85() V86() V87() ) Element of bool REAL : ( ( ) ( non empty non trivial non finite V81() V82() V83() V87() ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) : ( ( ) ( non empty non trivial non finite ) set ) ) & ( for i being ( ( natural ) ( epsilon-transitive epsilon-connected ordinal natural V36() real ext-real non negative finite cardinal V61() ) Nat) st i : ( ( natural ) ( epsilon-transitive epsilon-connected ordinal natural V36() real ext-real non negative finite cardinal V61() ) Nat) in dom G : ( ( ) ( Relation-like NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal V61() V62() V81() V82() V83() V84() V85() V86() V87() ) Element of bool REAL : ( ( ) ( non empty non trivial non finite V81() V82() V83() V87() ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) -defined ExtREAL : ( ( ) ( non empty V82() ) set ) -valued Function-like finite FinSequence-like FinSubsequence-like V61() V72() ) FinSequence of ExtREAL : ( ( ) ( non empty V82() ) set ) ) : ( ( ) ( finite V61() V81() V82() V83() V84() V85() V86() ) Element of bool NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal V61() V62() V81() V82() V83() V84() V85() V86() V87() ) Element of bool REAL : ( ( ) ( non empty non trivial non finite V81() V82() V83() V87() ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) : ( ( ) ( non empty non trivial non finite ) set ) ) holds
G : ( ( ) ( Relation-like NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal V61() V62() V81() V82() V83() V84() V85() V86() V87() ) Element of bool REAL : ( ( ) ( non empty non trivial non finite V81() V82() V83() V87() ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) -defined ExtREAL : ( ( ) ( non empty V82() ) set ) -valued Function-like finite FinSequence-like FinSubsequence-like V61() V72() ) FinSequence of ExtREAL : ( ( ) ( non empty V82() ) set ) ) . i : ( ( natural ) ( epsilon-transitive epsilon-connected ordinal natural V36() real ext-real non negative finite cardinal V61() ) Nat) : ( ( ) ( ext-real ) Element of ExtREAL : ( ( ) ( non empty V82() ) set ) ) = a : ( ( ) ( ext-real ) R_eal) * (F : ( ( ) ( Relation-like NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal V61() V62() V81() V82() V83() V84() V85() V86() V87() ) Element of bool REAL : ( ( ) ( non empty non trivial non finite V81() V82() V83() V87() ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) -defined ExtREAL : ( ( ) ( non empty V82() ) set ) -valued Function-like finite FinSequence-like FinSubsequence-like V61() V72() ) FinSequence of ExtREAL : ( ( ) ( non empty V82() ) set ) ) . i : ( ( natural ) ( epsilon-transitive epsilon-connected ordinal natural V36() real ext-real non negative finite cardinal V61() ) Nat) ) : ( ( ) ( ext-real ) Element of ExtREAL : ( ( ) ( non empty V82() ) set ) ) : ( ( ) ( ext-real ) Element of ExtREAL : ( ( ) ( non empty V82() ) set ) ) ) holds
Sum G : ( ( ) ( Relation-like NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal V61() V62() V81() V82() V83() V84() V85() V86() V87() ) Element of bool REAL : ( ( ) ( non empty non trivial non finite V81() V82() V83() V87() ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) -defined ExtREAL : ( ( ) ( non empty V82() ) set ) -valued Function-like finite FinSequence-like FinSubsequence-like V61() V72() ) FinSequence of ExtREAL : ( ( ) ( non empty V82() ) set ) ) : ( ( ) ( ext-real ) Element of ExtREAL : ( ( ) ( non empty V82() ) set ) ) = a : ( ( ) ( ext-real ) R_eal) * (Sum F : ( ( ) ( Relation-like NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal V61() V62() V81() V82() V83() V84() V85() V86() V87() ) Element of bool REAL : ( ( ) ( non empty non trivial non finite V81() V82() V83() V87() ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) -defined ExtREAL : ( ( ) ( non empty V82() ) set ) -valued Function-like finite FinSequence-like FinSubsequence-like V61() V72() ) FinSequence of ExtREAL : ( ( ) ( non empty V82() ) set ) ) ) : ( ( ) ( ext-real ) Element of ExtREAL : ( ( ) ( non empty V82() ) set ) ) : ( ( ) ( ext-real ) Element of ExtREAL : ( ( ) ( non empty V82() ) set ) ) ;

theorem :: MESFUNC3:11
for F being ( ( ) ( Relation-like NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal V61() V62() V81() V82() V83() V84() V85() V86() V87() ) Element of bool REAL : ( ( ) ( non empty non trivial non finite V81() V82() V83() V87() ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) -defined REAL : ( ( ) ( non empty non trivial non finite V81() V82() V83() V87() ) set ) -valued Function-like finite FinSequence-like FinSubsequence-like V61() V71() V72() V73() ) FinSequence of REAL : ( ( ) ( non empty non trivial non finite V81() V82() V83() V87() ) set ) ) holds F : ( ( ) ( Relation-like NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal V61() V62() V81() V82() V83() V84() V85() V86() V87() ) Element of bool REAL : ( ( ) ( non empty non trivial non finite V81() V82() V83() V87() ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) -defined REAL : ( ( ) ( non empty non trivial non finite V81() V82() V83() V87() ) set ) -valued Function-like finite FinSequence-like FinSubsequence-like V61() V71() V72() V73() ) FinSequence of REAL : ( ( ) ( non empty non trivial non finite V81() V82() V83() V87() ) set ) ) is ( ( ) ( Relation-like NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal V61() V62() V81() V82() V83() V84() V85() V86() V87() ) Element of bool REAL : ( ( ) ( non empty non trivial non finite V81() V82() V83() V87() ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) -defined ExtREAL : ( ( ) ( non empty V82() ) set ) -valued Function-like finite FinSequence-like FinSubsequence-like V61() V72() ) FinSequence of ExtREAL : ( ( ) ( non empty V82() ) set ) ) ;

definition
let X be ( ( non empty ) ( non empty ) set ) ;
let S be ( ( non empty compl-closed sigma-multiplicative ) ( non empty V24() V25() V26() compl-closed sigma-multiplicative sigma-additive ) SigmaField of X : ( ( non empty ) ( non empty ) set ) ) ;
let f be ( ( Function-like ) ( Relation-like X : ( ( non empty ) ( non empty ) set ) -defined ExtREAL : ( ( ) ( non empty V82() ) set ) -valued Function-like V72() ) PartFunc of ,) ;
let F be ( ( disjoint_valued ) ( Relation-like NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal V61() V62() V81() V82() V83() V84() V85() V86() V87() ) Element of bool REAL : ( ( ) ( non empty non trivial non finite V81() V82() V83() V87() ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) -defined S : ( ( non empty compl-closed sigma-multiplicative ) ( non empty V24() V25() V26() compl-closed sigma-multiplicative sigma-additive ) SigmaField of X : ( ( non empty ) ( non empty ) set ) ) -valued Function-like finite FinSequence-like FinSubsequence-like V61() disjoint_valued ) Finite_Sep_Sequence of S : ( ( non empty compl-closed sigma-multiplicative ) ( non empty V24() V25() V26() compl-closed sigma-multiplicative sigma-additive ) SigmaField of X : ( ( non empty ) ( non empty ) set ) ) ) ;
let a be ( ( ) ( Relation-like NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal V61() V62() V81() V82() V83() V84() V85() V86() V87() ) Element of bool REAL : ( ( ) ( non empty non trivial non finite V81() V82() V83() V87() ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) -defined ExtREAL : ( ( ) ( non empty V82() ) set ) -valued Function-like finite FinSequence-like FinSubsequence-like V61() V72() ) FinSequence of ExtREAL : ( ( ) ( non empty V82() ) set ) ) ;
pred F,a are_Re-presentation_of f means :: MESFUNC3:def 1
( dom f : ( ( ext-real ) ( ext-real ) set ) : ( ( ) ( ) Element of bool X : ( ( ) ( ) set ) : ( ( ) ( non empty ) set ) ) = union (rng F : ( ( ) ( ) Element of X : ( ( ) ( ) set ) ) ) : ( ( ) ( ) Element of bool S : ( ( ) ( ) set ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( ) set ) & dom F : ( ( ) ( ) Element of X : ( ( ) ( ) set ) ) : ( ( ) ( V61() V81() V82() V83() V84() V85() V86() ) Element of bool NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal V61() V62() V81() V82() V83() V84() V85() V86() V87() ) Element of bool REAL : ( ( ) ( non empty non trivial non finite V81() V82() V83() V87() ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) : ( ( ) ( non empty non trivial non finite ) set ) ) = dom a : ( ( ) ( ) Element of X : ( ( ) ( ) set ) ) : ( ( ) ( V61() V81() V82() V83() V84() V85() V86() ) Element of bool NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal V61() V62() V81() V82() V83() V84() V85() V86() V87() ) Element of bool REAL : ( ( ) ( non empty non trivial non finite V81() V82() V83() V87() ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) : ( ( ) ( non empty non trivial non finite ) set ) ) & ( for n being ( ( natural ) ( epsilon-transitive epsilon-connected ordinal natural V36() real ext-real non negative finite cardinal V61() ) Nat) st n : ( ( natural ) ( epsilon-transitive epsilon-connected ordinal natural V36() real ext-real non negative finite cardinal V61() ) Nat) in dom F : ( ( ) ( ) Element of X : ( ( ) ( ) set ) ) : ( ( ) ( V61() V81() V82() V83() V84() V85() V86() ) Element of bool NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal V61() V62() V81() V82() V83() V84() V85() V86() V87() ) Element of bool REAL : ( ( ) ( non empty non trivial non finite V81() V82() V83() V87() ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) : ( ( ) ( non empty non trivial non finite ) set ) ) holds
for x being ( ( ) ( ) set ) st x : ( ( ) ( ) set ) in F : ( ( ) ( ) Element of X : ( ( ) ( ) set ) ) . n : ( ( natural ) ( epsilon-transitive epsilon-connected ordinal natural V36() real ext-real non negative finite cardinal V61() ) Nat) : ( ( ) ( ) set ) holds
f : ( ( ext-real ) ( ext-real ) set ) . x : ( ( ) ( ) set ) : ( ( ) ( ext-real ) Element of ExtREAL : ( ( ) ( non empty V82() ) set ) ) = a : ( ( ) ( ) Element of X : ( ( ) ( ) set ) ) . n : ( ( natural ) ( epsilon-transitive epsilon-connected ordinal natural V36() real ext-real non negative finite cardinal V61() ) Nat) : ( ( ) ( ext-real ) Element of ExtREAL : ( ( ) ( non empty V82() ) set ) ) ) );
end;

theorem :: MESFUNC3:12
for X being ( ( non empty ) ( non empty ) set )
for S being ( ( non empty compl-closed sigma-multiplicative ) ( non empty V24() V25() V26() compl-closed sigma-multiplicative sigma-additive ) SigmaField of X : ( ( non empty ) ( non empty ) set ) )
for f being ( ( Function-like ) ( Relation-like b1 : ( ( non empty ) ( non empty ) set ) -defined ExtREAL : ( ( ) ( non empty V82() ) set ) -valued Function-like V72() ) PartFunc of ,) st f : ( ( Function-like ) ( Relation-like b1 : ( ( non empty ) ( non empty ) set ) -defined ExtREAL : ( ( ) ( non empty V82() ) set ) -valued Function-like V72() ) PartFunc of ,) is_simple_func_in S : ( ( non empty compl-closed sigma-multiplicative ) ( non empty V24() V25() V26() compl-closed sigma-multiplicative sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) holds
ex F being ( ( disjoint_valued ) ( Relation-like NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal V61() V62() V81() V82() V83() V84() V85() V86() V87() ) Element of bool REAL : ( ( ) ( non empty non trivial non finite V81() V82() V83() V87() ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) -defined b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty V24() V25() V26() compl-closed sigma-multiplicative sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) -valued Function-like finite FinSequence-like FinSubsequence-like V61() disjoint_valued ) Finite_Sep_Sequence of S : ( ( non empty compl-closed sigma-multiplicative ) ( non empty V24() V25() V26() compl-closed sigma-multiplicative sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) ) ex a being ( ( ) ( Relation-like NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal V61() V62() V81() V82() V83() V84() V85() V86() V87() ) Element of bool REAL : ( ( ) ( non empty non trivial non finite V81() V82() V83() V87() ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) -defined ExtREAL : ( ( ) ( non empty V82() ) set ) -valued Function-like finite FinSequence-like FinSubsequence-like V61() V72() ) FinSequence of ExtREAL : ( ( ) ( non empty V82() ) set ) ) st F : ( ( disjoint_valued ) ( Relation-like NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal V61() V62() V81() V82() V83() V84() V85() V86() V87() ) Element of bool REAL : ( ( ) ( non empty non trivial non finite V81() V82() V83() V87() ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) -defined b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty V24() V25() V26() compl-closed sigma-multiplicative sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) -valued Function-like finite FinSequence-like FinSubsequence-like V61() disjoint_valued ) Finite_Sep_Sequence of b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty V24() V25() V26() compl-closed sigma-multiplicative sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) ) ,a : ( ( ) ( Relation-like NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal V61() V62() V81() V82() V83() V84() V85() V86() V87() ) Element of bool REAL : ( ( ) ( non empty non trivial non finite V81() V82() V83() V87() ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) -defined ExtREAL : ( ( ) ( non empty V82() ) set ) -valued Function-like finite FinSequence-like FinSubsequence-like V61() V72() ) FinSequence of ExtREAL : ( ( ) ( non empty V82() ) set ) ) are_Re-presentation_of f : ( ( Function-like ) ( Relation-like b1 : ( ( non empty ) ( non empty ) set ) -defined ExtREAL : ( ( ) ( non empty V82() ) set ) -valued Function-like V72() ) PartFunc of ,) ;

theorem :: MESFUNC3:13
for X being ( ( non empty ) ( non empty ) set )
for S being ( ( non empty compl-closed sigma-multiplicative ) ( non empty V24() V25() V26() compl-closed sigma-multiplicative sigma-additive ) SigmaField of X : ( ( non empty ) ( non empty ) set ) )
for F being ( ( disjoint_valued ) ( Relation-like NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal V61() V62() V81() V82() V83() V84() V85() V86() V87() ) Element of bool REAL : ( ( ) ( non empty non trivial non finite V81() V82() V83() V87() ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) -defined b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty V24() V25() V26() compl-closed sigma-multiplicative sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) -valued Function-like finite FinSequence-like FinSubsequence-like V61() disjoint_valued ) Finite_Sep_Sequence of S : ( ( non empty compl-closed sigma-multiplicative ) ( non empty V24() V25() V26() compl-closed sigma-multiplicative sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) ) ex G being ( ( disjoint_valued ) ( Relation-like NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal V61() V62() V81() V82() V83() V84() V85() V86() V87() ) Element of bool REAL : ( ( ) ( non empty non trivial non finite V81() V82() V83() V87() ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) -defined b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty V24() V25() V26() compl-closed sigma-multiplicative sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) -valued Function-like finite FinSequence-like FinSubsequence-like V61() disjoint_valued ) Finite_Sep_Sequence of S : ( ( non empty compl-closed sigma-multiplicative ) ( non empty V24() V25() V26() compl-closed sigma-multiplicative sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) ) st
( union (rng F : ( ( disjoint_valued ) ( Relation-like NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal V61() V62() V81() V82() V83() V84() V85() V86() V87() ) Element of bool REAL : ( ( ) ( non empty non trivial non finite V81() V82() V83() V87() ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) -defined b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty V24() V25() V26() compl-closed sigma-multiplicative sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) -valued Function-like finite FinSequence-like FinSubsequence-like V61() disjoint_valued ) Finite_Sep_Sequence of b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty V24() V25() V26() compl-closed sigma-multiplicative sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) ) ) : ( ( ) ( finite V61() ) Element of bool b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty V24() V25() V26() compl-closed sigma-multiplicative sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( ) set ) = union (rng G : ( ( disjoint_valued ) ( Relation-like NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal V61() V62() V81() V82() V83() V84() V85() V86() V87() ) Element of bool REAL : ( ( ) ( non empty non trivial non finite V81() V82() V83() V87() ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) -defined b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty V24() V25() V26() compl-closed sigma-multiplicative sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) -valued Function-like finite FinSequence-like FinSubsequence-like V61() disjoint_valued ) Finite_Sep_Sequence of b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty V24() V25() V26() compl-closed sigma-multiplicative sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) ) ) : ( ( ) ( finite V61() ) Element of bool b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty V24() V25() V26() compl-closed sigma-multiplicative sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( ) set ) & ( for n being ( ( natural ) ( epsilon-transitive epsilon-connected ordinal natural V36() real ext-real non negative finite cardinal V61() ) Nat) st n : ( ( natural ) ( epsilon-transitive epsilon-connected ordinal natural V36() real ext-real non negative finite cardinal V61() ) Nat) in dom G : ( ( disjoint_valued ) ( Relation-like NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal V61() V62() V81() V82() V83() V84() V85() V86() V87() ) Element of bool REAL : ( ( ) ( non empty non trivial non finite V81() V82() V83() V87() ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) -defined b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty V24() V25() V26() compl-closed sigma-multiplicative sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) -valued Function-like finite FinSequence-like FinSubsequence-like V61() disjoint_valued ) Finite_Sep_Sequence of b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty V24() V25() V26() compl-closed sigma-multiplicative sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) ) : ( ( ) ( finite V61() V81() V82() V83() V84() V85() V86() ) Element of bool NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal V61() V62() V81() V82() V83() V84() V85() V86() V87() ) Element of bool REAL : ( ( ) ( non empty non trivial non finite V81() V82() V83() V87() ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) : ( ( ) ( non empty non trivial non finite ) set ) ) holds
( G : ( ( disjoint_valued ) ( Relation-like NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal V61() V62() V81() V82() V83() V84() V85() V86() V87() ) Element of bool REAL : ( ( ) ( non empty non trivial non finite V81() V82() V83() V87() ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) -defined b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty V24() V25() V26() compl-closed sigma-multiplicative sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) -valued Function-like finite FinSequence-like FinSubsequence-like V61() disjoint_valued ) Finite_Sep_Sequence of b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty V24() V25() V26() compl-closed sigma-multiplicative sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) ) . n : ( ( natural ) ( epsilon-transitive epsilon-connected ordinal natural V36() real ext-real non negative finite cardinal V61() ) Nat) : ( ( ) ( ) set ) <> {} : ( ( ) ( ) set ) & ex m being ( ( natural ) ( epsilon-transitive epsilon-connected ordinal natural V36() real ext-real non negative finite cardinal V61() ) Nat) st
( m : ( ( natural ) ( epsilon-transitive epsilon-connected ordinal natural V36() real ext-real non negative finite cardinal V61() ) Nat) in dom F : ( ( disjoint_valued ) ( Relation-like NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal V61() V62() V81() V82() V83() V84() V85() V86() V87() ) Element of bool REAL : ( ( ) ( non empty non trivial non finite V81() V82() V83() V87() ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) -defined b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty V24() V25() V26() compl-closed sigma-multiplicative sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) -valued Function-like finite FinSequence-like FinSubsequence-like V61() disjoint_valued ) Finite_Sep_Sequence of b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty V24() V25() V26() compl-closed sigma-multiplicative sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) ) : ( ( ) ( finite V61() V81() V82() V83() V84() V85() V86() ) Element of bool NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal V61() V62() V81() V82() V83() V84() V85() V86() V87() ) Element of bool REAL : ( ( ) ( non empty non trivial non finite V81() V82() V83() V87() ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) : ( ( ) ( non empty non trivial non finite ) set ) ) & F : ( ( disjoint_valued ) ( Relation-like NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal V61() V62() V81() V82() V83() V84() V85() V86() V87() ) Element of bool REAL : ( ( ) ( non empty non trivial non finite V81() V82() V83() V87() ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) -defined b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty V24() V25() V26() compl-closed sigma-multiplicative sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) -valued Function-like finite FinSequence-like FinSubsequence-like V61() disjoint_valued ) Finite_Sep_Sequence of b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty V24() V25() V26() compl-closed sigma-multiplicative sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) ) . m : ( ( natural ) ( epsilon-transitive epsilon-connected ordinal natural V36() real ext-real non negative finite cardinal V61() ) Nat) : ( ( ) ( ) set ) = G : ( ( disjoint_valued ) ( Relation-like NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal V61() V62() V81() V82() V83() V84() V85() V86() V87() ) Element of bool REAL : ( ( ) ( non empty non trivial non finite V81() V82() V83() V87() ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) -defined b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty V24() V25() V26() compl-closed sigma-multiplicative sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) -valued Function-like finite FinSequence-like FinSubsequence-like V61() disjoint_valued ) Finite_Sep_Sequence of b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty V24() V25() V26() compl-closed sigma-multiplicative sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) ) . n : ( ( natural ) ( epsilon-transitive epsilon-connected ordinal natural V36() real ext-real non negative finite cardinal V61() ) Nat) : ( ( ) ( ) set ) ) ) ) ) ;

theorem :: MESFUNC3:14
for X being ( ( non empty ) ( non empty ) set )
for S being ( ( non empty compl-closed sigma-multiplicative ) ( non empty V24() V25() V26() compl-closed sigma-multiplicative sigma-additive ) SigmaField of X : ( ( non empty ) ( non empty ) set ) )
for f being ( ( Function-like ) ( Relation-like b1 : ( ( non empty ) ( non empty ) set ) -defined ExtREAL : ( ( ) ( non empty V82() ) set ) -valued Function-like V72() ) PartFunc of ,) st f : ( ( Function-like ) ( Relation-like b1 : ( ( non empty ) ( non empty ) set ) -defined ExtREAL : ( ( ) ( non empty V82() ) set ) -valued Function-like V72() ) PartFunc of ,) is_simple_func_in S : ( ( non empty compl-closed sigma-multiplicative ) ( non empty V24() V25() V26() compl-closed sigma-multiplicative sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) & ( for x being ( ( ) ( ) set ) st x : ( ( disjoint_valued ) ( Relation-like NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal V61() V62() V81() V82() V83() V84() V85() V86() V87() ) Element of bool REAL : ( ( ) ( non empty non trivial non finite V81() V82() V83() V87() ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) -defined b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty V24() V25() V26() compl-closed sigma-multiplicative sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) -valued Function-like finite FinSequence-like FinSubsequence-like V61() disjoint_valued ) Finite_Sep_Sequence of b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty V24() V25() V26() compl-closed sigma-multiplicative sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) ) in dom f : ( ( Function-like ) ( Relation-like b1 : ( ( non empty ) ( non empty ) set ) -defined ExtREAL : ( ( ) ( non empty V82() ) set ) -valued Function-like V72() ) PartFunc of ,) : ( ( ) ( ) Element of bool b1 : ( ( non empty ) ( non empty ) set ) : ( ( ) ( non empty ) set ) ) holds
0. : ( ( ) ( ext-real ) Element of ExtREAL : ( ( ) ( non empty V82() ) set ) ) <= f : ( ( Function-like ) ( Relation-like b1 : ( ( non empty ) ( non empty ) set ) -defined ExtREAL : ( ( ) ( non empty V82() ) set ) -valued Function-like V72() ) PartFunc of ,) . x : ( ( disjoint_valued ) ( Relation-like NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal V61() V62() V81() V82() V83() V84() V85() V86() V87() ) Element of bool REAL : ( ( ) ( non empty non trivial non finite V81() V82() V83() V87() ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) -defined b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty V24() V25() V26() compl-closed sigma-multiplicative sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) -valued Function-like finite FinSequence-like FinSubsequence-like V61() disjoint_valued ) Finite_Sep_Sequence of b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty V24() V25() V26() compl-closed sigma-multiplicative sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) ) : ( ( ) ( ext-real ) Element of ExtREAL : ( ( ) ( non empty V82() ) set ) ) ) holds
ex F being ( ( disjoint_valued ) ( Relation-like NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal V61() V62() V81() V82() V83() V84() V85() V86() V87() ) Element of bool REAL : ( ( ) ( non empty non trivial non finite V81() V82() V83() V87() ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) -defined b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty V24() V25() V26() compl-closed sigma-multiplicative sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) -valued Function-like finite FinSequence-like FinSubsequence-like V61() disjoint_valued ) Finite_Sep_Sequence of S : ( ( non empty compl-closed sigma-multiplicative ) ( non empty V24() V25() V26() compl-closed sigma-multiplicative sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) ) ex a being ( ( ) ( Relation-like NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal V61() V62() V81() V82() V83() V84() V85() V86() V87() ) Element of bool REAL : ( ( ) ( non empty non trivial non finite V81() V82() V83() V87() ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) -defined ExtREAL : ( ( ) ( non empty V82() ) set ) -valued Function-like finite FinSequence-like FinSubsequence-like V61() V72() ) FinSequence of ExtREAL : ( ( ) ( non empty V82() ) set ) ) st
( F : ( ( disjoint_valued ) ( Relation-like NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal V61() V62() V81() V82() V83() V84() V85() V86() V87() ) Element of bool REAL : ( ( ) ( non empty non trivial non finite V81() V82() V83() V87() ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) -defined b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty V24() V25() V26() compl-closed sigma-multiplicative sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) -valued Function-like finite FinSequence-like FinSubsequence-like V61() disjoint_valued ) Finite_Sep_Sequence of b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty V24() V25() V26() compl-closed sigma-multiplicative sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) ) ,a : ( ( ) ( Relation-like NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal V61() V62() V81() V82() V83() V84() V85() V86() V87() ) Element of bool REAL : ( ( ) ( non empty non trivial non finite V81() V82() V83() V87() ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) -defined ExtREAL : ( ( ) ( non empty V82() ) set ) -valued Function-like finite FinSequence-like FinSubsequence-like V61() V72() ) FinSequence of ExtREAL : ( ( ) ( non empty V82() ) set ) ) are_Re-presentation_of f : ( ( Function-like ) ( Relation-like b1 : ( ( non empty ) ( non empty ) set ) -defined ExtREAL : ( ( ) ( non empty V82() ) set ) -valued Function-like V72() ) PartFunc of ,) & a : ( ( ) ( Relation-like NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal V61() V62() V81() V82() V83() V84() V85() V86() V87() ) Element of bool REAL : ( ( ) ( non empty non trivial non finite V81() V82() V83() V87() ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) -defined ExtREAL : ( ( ) ( non empty V82() ) set ) -valued Function-like finite FinSequence-like FinSubsequence-like V61() V72() ) FinSequence of ExtREAL : ( ( ) ( non empty V82() ) set ) ) . 1 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V36() real ext-real positive non negative finite cardinal V61() V69() V70() V81() V82() V83() V84() V85() V86() ) Element of NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal V61() V62() V81() V82() V83() V84() V85() V86() V87() ) Element of bool REAL : ( ( ) ( non empty non trivial non finite V81() V82() V83() V87() ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) ) : ( ( ) ( ext-real ) Element of ExtREAL : ( ( ) ( non empty V82() ) set ) ) = 0. : ( ( ) ( ext-real ) Element of ExtREAL : ( ( ) ( non empty V82() ) set ) ) & ( for n being ( ( natural ) ( epsilon-transitive epsilon-connected ordinal natural V36() real ext-real non negative finite cardinal V61() ) Nat) st 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V36() real ext-real positive non negative finite cardinal V61() V69() V70() V81() V82() V83() V84() V85() V86() ) Element of NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal V61() V62() V81() V82() V83() V84() V85() V86() V87() ) Element of bool REAL : ( ( ) ( non empty non trivial non finite V81() V82() V83() V87() ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) ) <= n : ( ( natural ) ( epsilon-transitive epsilon-connected ordinal natural V36() real ext-real non negative finite cardinal V61() ) Nat) & n : ( ( natural ) ( epsilon-transitive epsilon-connected ordinal natural V36() real ext-real non negative finite cardinal V61() ) Nat) in dom a : ( ( ) ( Relation-like NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal V61() V62() V81() V82() V83() V84() V85() V86() V87() ) Element of bool REAL : ( ( ) ( non empty non trivial non finite V81() V82() V83() V87() ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) -defined ExtREAL : ( ( ) ( non empty V82() ) set ) -valued Function-like finite FinSequence-like FinSubsequence-like V61() V72() ) FinSequence of ExtREAL : ( ( ) ( non empty V82() ) set ) ) : ( ( ) ( finite V61() V81() V82() V83() V84() V85() V86() ) Element of bool NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal V61() V62() V81() V82() V83() V84() V85() V86() V87() ) Element of bool REAL : ( ( ) ( non empty non trivial non finite V81() V82() V83() V87() ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) : ( ( ) ( non empty non trivial non finite ) set ) ) holds
( 0. : ( ( ) ( ext-real ) Element of ExtREAL : ( ( ) ( non empty V82() ) set ) ) < a : ( ( ) ( Relation-like NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal V61() V62() V81() V82() V83() V84() V85() V86() V87() ) Element of bool REAL : ( ( ) ( non empty non trivial non finite V81() V82() V83() V87() ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) -defined ExtREAL : ( ( ) ( non empty V82() ) set ) -valued Function-like finite FinSequence-like FinSubsequence-like V61() V72() ) FinSequence of ExtREAL : ( ( ) ( non empty V82() ) set ) ) . n : ( ( natural ) ( epsilon-transitive epsilon-connected ordinal natural V36() real ext-real non negative finite cardinal V61() ) Nat) : ( ( ) ( ext-real ) Element of ExtREAL : ( ( ) ( non empty V82() ) set ) ) & a : ( ( ) ( Relation-like NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal V61() V62() V81() V82() V83() V84() V85() V86() V87() ) Element of bool REAL : ( ( ) ( non empty non trivial non finite V81() V82() V83() V87() ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) -defined ExtREAL : ( ( ) ( non empty V82() ) set ) -valued Function-like finite FinSequence-like FinSubsequence-like V61() V72() ) FinSequence of ExtREAL : ( ( ) ( non empty V82() ) set ) ) . n : ( ( natural ) ( epsilon-transitive epsilon-connected ordinal natural V36() real ext-real non negative finite cardinal V61() ) Nat) : ( ( ) ( ext-real ) Element of ExtREAL : ( ( ) ( non empty V82() ) set ) ) < +infty : ( ( ) ( non empty non real ext-real positive non negative ) Element of ExtREAL : ( ( ) ( non empty V82() ) set ) ) ) ) ) ;

theorem :: MESFUNC3:15
for X being ( ( non empty ) ( non empty ) set )
for S being ( ( non empty compl-closed sigma-multiplicative ) ( non empty V24() V25() V26() compl-closed sigma-multiplicative sigma-additive ) SigmaField of X : ( ( non empty ) ( non empty ) set ) )
for f being ( ( Function-like ) ( Relation-like b1 : ( ( non empty ) ( non empty ) set ) -defined ExtREAL : ( ( ) ( non empty V82() ) set ) -valued Function-like V72() ) PartFunc of ,)
for F being ( ( disjoint_valued ) ( Relation-like NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal V61() V62() V81() V82() V83() V84() V85() V86() V87() ) Element of bool REAL : ( ( ) ( non empty non trivial non finite V81() V82() V83() V87() ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) -defined b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty V24() V25() V26() compl-closed sigma-multiplicative sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) -valued Function-like finite FinSequence-like FinSubsequence-like V61() disjoint_valued ) Finite_Sep_Sequence of S : ( ( non empty compl-closed sigma-multiplicative ) ( non empty V24() V25() V26() compl-closed sigma-multiplicative sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) )
for a being ( ( ) ( Relation-like NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal V61() V62() V81() V82() V83() V84() V85() V86() V87() ) Element of bool REAL : ( ( ) ( non empty non trivial non finite V81() V82() V83() V87() ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) -defined ExtREAL : ( ( ) ( non empty V82() ) set ) -valued Function-like finite FinSequence-like FinSubsequence-like V61() V72() ) FinSequence of ExtREAL : ( ( ) ( non empty V82() ) set ) )
for x being ( ( ) ( ) Element of X : ( ( non empty ) ( non empty ) set ) ) st F : ( ( disjoint_valued ) ( Relation-like NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal V61() V62() V81() V82() V83() V84() V85() V86() V87() ) Element of bool REAL : ( ( ) ( non empty non trivial non finite V81() V82() V83() V87() ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) -defined b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty V24() V25() V26() compl-closed sigma-multiplicative sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) -valued Function-like finite FinSequence-like FinSubsequence-like V61() disjoint_valued ) Finite_Sep_Sequence of b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty V24() V25() V26() compl-closed sigma-multiplicative sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) ) ,a : ( ( ) ( Relation-like NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal V61() V62() V81() V82() V83() V84() V85() V86() V87() ) Element of bool REAL : ( ( ) ( non empty non trivial non finite V81() V82() V83() V87() ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) -defined ExtREAL : ( ( ) ( non empty V82() ) set ) -valued Function-like finite FinSequence-like FinSubsequence-like V61() V72() ) FinSequence of ExtREAL : ( ( ) ( non empty V82() ) set ) ) are_Re-presentation_of f : ( ( Function-like ) ( Relation-like b1 : ( ( non empty ) ( non empty ) set ) -defined ExtREAL : ( ( ) ( non empty V82() ) set ) -valued Function-like V72() ) PartFunc of ,) & x : ( ( ) ( ) Element of b1 : ( ( non empty ) ( non empty ) set ) ) in dom f : ( ( Function-like ) ( Relation-like b1 : ( ( non empty ) ( non empty ) set ) -defined ExtREAL : ( ( ) ( non empty V82() ) set ) -valued Function-like V72() ) PartFunc of ,) : ( ( ) ( ) Element of bool b1 : ( ( non empty ) ( non empty ) set ) : ( ( ) ( non empty ) set ) ) holds
ex ax being ( ( ) ( Relation-like NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal V61() V62() V81() V82() V83() V84() V85() V86() V87() ) Element of bool REAL : ( ( ) ( non empty non trivial non finite V81() V82() V83() V87() ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) -defined ExtREAL : ( ( ) ( non empty V82() ) set ) -valued Function-like finite FinSequence-like FinSubsequence-like V61() V72() ) FinSequence of ExtREAL : ( ( ) ( non empty V82() ) set ) ) st
( dom ax : ( ( ) ( Relation-like NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal V61() V62() V81() V82() V83() V84() V85() V86() V87() ) Element of bool REAL : ( ( ) ( non empty non trivial non finite V81() V82() V83() V87() ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) -defined ExtREAL : ( ( ) ( non empty V82() ) set ) -valued Function-like finite FinSequence-like FinSubsequence-like V61() V72() ) FinSequence of ExtREAL : ( ( ) ( non empty V82() ) set ) ) : ( ( ) ( finite V61() V81() V82() V83() V84() V85() V86() ) Element of bool NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal V61() V62() V81() V82() V83() V84() V85() V86() V87() ) Element of bool REAL : ( ( ) ( non empty non trivial non finite V81() V82() V83() V87() ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) : ( ( ) ( non empty non trivial non finite ) set ) ) = dom a : ( ( ) ( Relation-like NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal V61() V62() V81() V82() V83() V84() V85() V86() V87() ) Element of bool REAL : ( ( ) ( non empty non trivial non finite V81() V82() V83() V87() ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) -defined ExtREAL : ( ( ) ( non empty V82() ) set ) -valued Function-like finite FinSequence-like FinSubsequence-like V61() V72() ) FinSequence of ExtREAL : ( ( ) ( non empty V82() ) set ) ) : ( ( ) ( finite V61() V81() V82() V83() V84() V85() V86() ) Element of bool NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal V61() V62() V81() V82() V83() V84() V85() V86() V87() ) Element of bool REAL : ( ( ) ( non empty non trivial non finite V81() V82() V83() V87() ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) : ( ( ) ( non empty non trivial non finite ) set ) ) & ( for n being ( ( natural ) ( epsilon-transitive epsilon-connected ordinal natural V36() real ext-real non negative finite cardinal V61() ) Nat) st n : ( ( natural ) ( epsilon-transitive epsilon-connected ordinal natural V36() real ext-real non negative finite cardinal V61() ) Nat) in dom ax : ( ( ) ( Relation-like NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal V61() V62() V81() V82() V83() V84() V85() V86() V87() ) Element of bool REAL : ( ( ) ( non empty non trivial non finite V81() V82() V83() V87() ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) -defined ExtREAL : ( ( ) ( non empty V82() ) set ) -valued Function-like finite FinSequence-like FinSubsequence-like V61() V72() ) FinSequence of ExtREAL : ( ( ) ( non empty V82() ) set ) ) : ( ( ) ( finite V61() V81() V82() V83() V84() V85() V86() ) Element of bool NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal V61() V62() V81() V82() V83() V84() V85() V86() V87() ) Element of bool REAL : ( ( ) ( non empty non trivial non finite V81() V82() V83() V87() ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) : ( ( ) ( non empty non trivial non finite ) set ) ) holds
ax : ( ( ) ( Relation-like NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal V61() V62() V81() V82() V83() V84() V85() V86() V87() ) Element of bool REAL : ( ( ) ( non empty non trivial non finite V81() V82() V83() V87() ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) -defined ExtREAL : ( ( ) ( non empty V82() ) set ) -valued Function-like finite FinSequence-like FinSubsequence-like V61() V72() ) FinSequence of ExtREAL : ( ( ) ( non empty V82() ) set ) ) . n : ( ( natural ) ( epsilon-transitive epsilon-connected ordinal natural V36() real ext-real non negative finite cardinal V61() ) Nat) : ( ( ) ( ext-real ) Element of ExtREAL : ( ( ) ( non empty V82() ) set ) ) = (a : ( ( ) ( Relation-like NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal V61() V62() V81() V82() V83() V84() V85() V86() V87() ) Element of bool REAL : ( ( ) ( non empty non trivial non finite V81() V82() V83() V87() ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) -defined ExtREAL : ( ( ) ( non empty V82() ) set ) -valued Function-like finite FinSequence-like FinSubsequence-like V61() V72() ) FinSequence of ExtREAL : ( ( ) ( non empty V82() ) set ) ) . n : ( ( natural ) ( epsilon-transitive epsilon-connected ordinal natural V36() real ext-real non negative finite cardinal V61() ) Nat) ) : ( ( ) ( ext-real ) Element of ExtREAL : ( ( ) ( non empty V82() ) set ) ) * ((chi ((F : ( ( disjoint_valued ) ( Relation-like NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal V61() V62() V81() V82() V83() V84() V85() V86() V87() ) Element of bool REAL : ( ( ) ( non empty non trivial non finite V81() V82() V83() V87() ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) -defined b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty V24() V25() V26() compl-closed sigma-multiplicative sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) -valued Function-like finite FinSequence-like FinSubsequence-like V61() disjoint_valued ) Finite_Sep_Sequence of b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty V24() V25() V26() compl-closed sigma-multiplicative sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) ) . n : ( ( natural ) ( epsilon-transitive epsilon-connected ordinal natural V36() real ext-real non negative finite cardinal V61() ) Nat) ) : ( ( ) ( ) set ) ,X : ( ( non empty ) ( non empty ) set ) )) : ( ( Function-like ) ( Relation-like b1 : ( ( non empty ) ( non empty ) set ) -defined ExtREAL : ( ( ) ( non empty V82() ) set ) -valued Function-like V72() ) Element of bool [:b1 : ( ( non empty ) ( non empty ) set ) ,ExtREAL : ( ( ) ( non empty V82() ) set ) :] : ( ( ) ( Relation-like non empty V72() ) set ) : ( ( ) ( non empty ) set ) ) . x : ( ( ) ( ) Element of b1 : ( ( non empty ) ( non empty ) set ) ) ) : ( ( ) ( ext-real ) Element of ExtREAL : ( ( ) ( non empty V82() ) set ) ) : ( ( ) ( ext-real ) Element of ExtREAL : ( ( ) ( non empty V82() ) set ) ) ) & f : ( ( Function-like ) ( Relation-like b1 : ( ( non empty ) ( non empty ) set ) -defined ExtREAL : ( ( ) ( non empty V82() ) set ) -valued Function-like V72() ) PartFunc of ,) . x : ( ( ) ( ) Element of b1 : ( ( non empty ) ( non empty ) set ) ) : ( ( ) ( ext-real ) Element of ExtREAL : ( ( ) ( non empty V82() ) set ) ) = Sum ax : ( ( ) ( Relation-like NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal V61() V62() V81() V82() V83() V84() V85() V86() V87() ) Element of bool REAL : ( ( ) ( non empty non trivial non finite V81() V82() V83() V87() ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) -defined ExtREAL : ( ( ) ( non empty V82() ) set ) -valued Function-like finite FinSequence-like FinSubsequence-like V61() V72() ) FinSequence of ExtREAL : ( ( ) ( non empty V82() ) set ) ) : ( ( ) ( ext-real ) Element of ExtREAL : ( ( ) ( non empty V82() ) set ) ) ) ;

theorem :: MESFUNC3:16
for p being ( ( ) ( Relation-like NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal V61() V62() V81() V82() V83() V84() V85() V86() V87() ) Element of bool REAL : ( ( ) ( non empty non trivial non finite V81() V82() V83() V87() ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) -defined ExtREAL : ( ( ) ( non empty V82() ) set ) -valued Function-like finite FinSequence-like FinSubsequence-like V61() V72() ) FinSequence of ExtREAL : ( ( ) ( non empty V82() ) set ) )
for q being ( ( ) ( Relation-like NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal V61() V62() V81() V82() V83() V84() V85() V86() V87() ) Element of bool REAL : ( ( ) ( non empty non trivial non finite V81() V82() V83() V87() ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) -defined REAL : ( ( ) ( non empty non trivial non finite V81() V82() V83() V87() ) set ) -valued Function-like finite FinSequence-like FinSubsequence-like V61() V71() V72() V73() ) FinSequence of REAL : ( ( ) ( non empty non trivial non finite V81() V82() V83() V87() ) set ) ) st p : ( ( ) ( Relation-like NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal V61() V62() V81() V82() V83() V84() V85() V86() V87() ) Element of bool REAL : ( ( ) ( non empty non trivial non finite V81() V82() V83() V87() ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) -defined ExtREAL : ( ( ) ( non empty V82() ) set ) -valued Function-like finite FinSequence-like FinSubsequence-like V61() V72() ) FinSequence of ExtREAL : ( ( ) ( non empty V82() ) set ) ) = q : ( ( ) ( Relation-like NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal V61() V62() V81() V82() V83() V84() V85() V86() V87() ) Element of bool REAL : ( ( ) ( non empty non trivial non finite V81() V82() V83() V87() ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) -defined REAL : ( ( ) ( non empty non trivial non finite V81() V82() V83() V87() ) set ) -valued Function-like finite FinSequence-like FinSubsequence-like V61() V71() V72() V73() ) FinSequence of REAL : ( ( ) ( non empty non trivial non finite V81() V82() V83() V87() ) set ) ) holds
Sum p : ( ( ) ( Relation-like NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal V61() V62() V81() V82() V83() V84() V85() V86() V87() ) Element of bool REAL : ( ( ) ( non empty non trivial non finite V81() V82() V83() V87() ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) -defined ExtREAL : ( ( ) ( non empty V82() ) set ) -valued Function-like finite FinSequence-like FinSubsequence-like V61() V72() ) FinSequence of ExtREAL : ( ( ) ( non empty V82() ) set ) ) : ( ( ) ( ext-real ) Element of ExtREAL : ( ( ) ( non empty V82() ) set ) ) = Sum q : ( ( ) ( Relation-like NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal V61() V62() V81() V82() V83() V84() V85() V86() V87() ) Element of bool REAL : ( ( ) ( non empty non trivial non finite V81() V82() V83() V87() ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) -defined REAL : ( ( ) ( non empty non trivial non finite V81() V82() V83() V87() ) set ) -valued Function-like finite FinSequence-like FinSubsequence-like V61() V71() V72() V73() ) FinSequence of REAL : ( ( ) ( non empty non trivial non finite V81() V82() V83() V87() ) set ) ) : ( ( ) ( V36() real ext-real ) Element of REAL : ( ( ) ( non empty non trivial non finite V81() V82() V83() V87() ) set ) ) ;

theorem :: MESFUNC3:17
for p being ( ( ) ( Relation-like NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal V61() V62() V81() V82() V83() V84() V85() V86() V87() ) Element of bool REAL : ( ( ) ( non empty non trivial non finite V81() V82() V83() V87() ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) -defined ExtREAL : ( ( ) ( non empty V82() ) set ) -valued Function-like finite FinSequence-like FinSubsequence-like V61() V72() ) FinSequence of ExtREAL : ( ( ) ( non empty V82() ) set ) ) st not -infty : ( ( ) ( non empty non real ext-real non positive negative ) Element of ExtREAL : ( ( ) ( non empty V82() ) set ) ) in rng p : ( ( ) ( Relation-like NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal V61() V62() V81() V82() V83() V84() V85() V86() V87() ) Element of bool REAL : ( ( ) ( non empty non trivial non finite V81() V82() V83() V87() ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) -defined ExtREAL : ( ( ) ( non empty V82() ) set ) -valued Function-like finite FinSequence-like FinSubsequence-like V61() V72() ) FinSequence of ExtREAL : ( ( ) ( non empty V82() ) set ) ) : ( ( ) ( finite V61() V82() ) Element of bool ExtREAL : ( ( ) ( non empty V82() ) set ) : ( ( ) ( non empty ) set ) ) & +infty : ( ( ) ( non empty non real ext-real positive non negative ) Element of ExtREAL : ( ( ) ( non empty V82() ) set ) ) in rng p : ( ( ) ( Relation-like NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal V61() V62() V81() V82() V83() V84() V85() V86() V87() ) Element of bool REAL : ( ( ) ( non empty non trivial non finite V81() V82() V83() V87() ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) -defined ExtREAL : ( ( ) ( non empty V82() ) set ) -valued Function-like finite FinSequence-like FinSubsequence-like V61() V72() ) FinSequence of ExtREAL : ( ( ) ( non empty V82() ) set ) ) : ( ( ) ( finite V61() V82() ) Element of bool ExtREAL : ( ( ) ( non empty V82() ) set ) : ( ( ) ( non empty ) set ) ) holds
Sum p : ( ( ) ( Relation-like NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal V61() V62() V81() V82() V83() V84() V85() V86() V87() ) Element of bool REAL : ( ( ) ( non empty non trivial non finite V81() V82() V83() V87() ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) -defined ExtREAL : ( ( ) ( non empty V82() ) set ) -valued Function-like finite FinSequence-like FinSubsequence-like V61() V72() ) FinSequence of ExtREAL : ( ( ) ( non empty V82() ) set ) ) : ( ( ) ( ext-real ) Element of ExtREAL : ( ( ) ( non empty V82() ) set ) ) = +infty : ( ( ) ( non empty non real ext-real positive non negative ) Element of ExtREAL : ( ( ) ( non empty V82() ) set ) ) ;

definition
let X be ( ( non empty ) ( non empty ) set ) ;
let S be ( ( non empty compl-closed sigma-multiplicative ) ( non empty V24() V25() V26() compl-closed sigma-multiplicative sigma-additive ) SigmaField of X : ( ( non empty ) ( non empty ) set ) ) ;
let M be ( ( Function-like V18(S : ( ( non empty compl-closed sigma-multiplicative ) ( non empty V24() V25() V26() compl-closed sigma-multiplicative sigma-additive ) SigmaField of X : ( ( non empty ) ( non empty ) set ) ) , ExtREAL : ( ( ) ( non empty V82() ) set ) ) V80() nonnegative sigma-additive ) ( Relation-like S : ( ( non empty compl-closed sigma-multiplicative ) ( non empty V24() V25() V26() compl-closed sigma-multiplicative sigma-additive ) SigmaField of X : ( ( non empty ) ( non empty ) set ) ) -defined ExtREAL : ( ( ) ( non empty V82() ) set ) -valued Function-like non empty total V18(S : ( ( non empty compl-closed sigma-multiplicative ) ( non empty V24() V25() V26() compl-closed sigma-multiplicative sigma-additive ) SigmaField of X : ( ( non empty ) ( non empty ) set ) ) , ExtREAL : ( ( ) ( non empty V82() ) set ) ) V72() V80() nonnegative sigma-additive ) sigma_Measure of S : ( ( non empty compl-closed sigma-multiplicative ) ( non empty V24() V25() V26() compl-closed sigma-multiplicative sigma-additive ) SigmaField of X : ( ( non empty ) ( non empty ) set ) ) ) ;
let f be ( ( Function-like ) ( Relation-like X : ( ( non empty ) ( non empty ) set ) -defined ExtREAL : ( ( ) ( non empty V82() ) set ) -valued Function-like V72() ) PartFunc of ,) ;
assume ( f : ( ( Function-like ) ( Relation-like X : ( ( non empty ) ( non empty ) set ) -defined ExtREAL : ( ( ) ( non empty V82() ) set ) -valued Function-like V72() ) PartFunc of ,) is_simple_func_in S : ( ( non empty compl-closed sigma-multiplicative ) ( non empty V24() V25() V26() compl-closed sigma-multiplicative sigma-additive ) SigmaField of X : ( ( non empty ) ( non empty ) set ) ) & ( for x being ( ( ) ( ) set ) st x : ( ( ) ( ) set ) in dom f : ( ( Function-like ) ( Relation-like X : ( ( non empty ) ( non empty ) set ) -defined ExtREAL : ( ( ) ( non empty V82() ) set ) -valued Function-like V72() ) PartFunc of ,) : ( ( ) ( ) Element of bool X : ( ( non empty ) ( non empty ) set ) : ( ( ) ( non empty ) set ) ) holds
0. : ( ( ) ( ext-real ) Element of ExtREAL : ( ( ) ( non empty V82() ) set ) ) <= f : ( ( Function-like ) ( Relation-like X : ( ( non empty ) ( non empty ) set ) -defined ExtREAL : ( ( ) ( non empty V82() ) set ) -valued Function-like V72() ) PartFunc of ,) . x : ( ( ) ( ) set ) : ( ( ) ( ext-real ) Element of ExtREAL : ( ( ) ( non empty V82() ) set ) ) ) ) ;
func integral (X,S,M,f) -> ( ( ) ( ext-real ) Element of ExtREAL : ( ( ) ( non empty V82() ) set ) ) means :: MESFUNC3:def 2
ex F being ( ( disjoint_valued ) ( Relation-like NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal V61() V62() V81() V82() V83() V84() V85() V86() V87() ) Element of bool REAL : ( ( ) ( non empty non trivial non finite V81() V82() V83() V87() ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) -defined S : ( ( ) ( ) set ) -valued Function-like finite FinSequence-like FinSubsequence-like V61() disjoint_valued ) Finite_Sep_Sequence of S : ( ( ) ( ) set ) ) ex a, x being ( ( ) ( Relation-like NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal V61() V62() V81() V82() V83() V84() V85() V86() V87() ) Element of bool REAL : ( ( ) ( non empty non trivial non finite V81() V82() V83() V87() ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) -defined ExtREAL : ( ( ) ( non empty V82() ) set ) -valued Function-like finite FinSequence-like FinSubsequence-like V61() V72() ) FinSequence of ExtREAL : ( ( ) ( non empty V82() ) set ) ) st
( F : ( ( disjoint_valued ) ( Relation-like NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal V61() V62() V81() V82() V83() V84() V85() V86() V87() ) Element of bool REAL : ( ( ) ( non empty non trivial non finite V81() V82() V83() V87() ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) -defined S : ( ( non empty compl-closed sigma-multiplicative ) ( non empty V24() V25() V26() compl-closed sigma-multiplicative sigma-additive ) SigmaField of X : ( ( non empty ) ( non empty ) set ) ) -valued Function-like finite FinSequence-like FinSubsequence-like V61() disjoint_valued ) Finite_Sep_Sequence of S : ( ( non empty compl-closed sigma-multiplicative ) ( non empty V24() V25() V26() compl-closed sigma-multiplicative sigma-additive ) SigmaField of X : ( ( non empty ) ( non empty ) set ) ) ) ,a : ( ( ) ( Relation-like NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal V61() V62() V81() V82() V83() V84() V85() V86() V87() ) Element of bool REAL : ( ( ) ( non empty non trivial non finite V81() V82() V83() V87() ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) -defined ExtREAL : ( ( ) ( non empty V82() ) set ) -valued Function-like finite FinSequence-like FinSubsequence-like V61() V72() ) FinSequence of ExtREAL : ( ( ) ( non empty V82() ) set ) ) are_Re-presentation_of f : ( ( ) ( ) Element of X : ( ( ) ( ) set ) ) & a : ( ( ) ( Relation-like NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal V61() V62() V81() V82() V83() V84() V85() V86() V87() ) Element of bool REAL : ( ( ) ( non empty non trivial non finite V81() V82() V83() V87() ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) -defined ExtREAL : ( ( ) ( non empty V82() ) set ) -valued Function-like finite FinSequence-like FinSubsequence-like V61() V72() ) FinSequence of ExtREAL : ( ( ) ( non empty V82() ) set ) ) . 1 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V36() real ext-real positive non negative finite cardinal V61() V69() V70() V81() V82() V83() V84() V85() V86() ) Element of NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal V61() V62() V81() V82() V83() V84() V85() V86() V87() ) Element of bool REAL : ( ( ) ( non empty non trivial non finite V81() V82() V83() V87() ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) ) : ( ( ) ( ext-real ) Element of ExtREAL : ( ( ) ( non empty V82() ) set ) ) = 0. : ( ( ) ( ext-real ) Element of ExtREAL : ( ( ) ( non empty V82() ) set ) ) & ( for n being ( ( natural ) ( epsilon-transitive epsilon-connected ordinal natural V36() real ext-real non negative finite cardinal V61() ) Nat) st 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V36() real ext-real positive non negative finite cardinal V61() V69() V70() V81() V82() V83() V84() V85() V86() ) Element of NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal V61() V62() V81() V82() V83() V84() V85() V86() V87() ) Element of bool REAL : ( ( ) ( non empty non trivial non finite V81() V82() V83() V87() ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) ) <= n : ( ( natural ) ( epsilon-transitive epsilon-connected ordinal natural V36() real ext-real non negative finite cardinal V61() ) Nat) & n : ( ( natural ) ( epsilon-transitive epsilon-connected ordinal natural V36() real ext-real non negative finite cardinal V61() ) Nat) in dom a : ( ( ) ( Relation-like NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal V61() V62() V81() V82() V83() V84() V85() V86() V87() ) Element of bool REAL : ( ( ) ( non empty non trivial non finite V81() V82() V83() V87() ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) -defined ExtREAL : ( ( ) ( non empty V82() ) set ) -valued Function-like finite FinSequence-like FinSubsequence-like V61() V72() ) FinSequence of ExtREAL : ( ( ) ( non empty V82() ) set ) ) : ( ( ) ( finite V61() V81() V82() V83() V84() V85() V86() ) Element of bool NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal V61() V62() V81() V82() V83() V84() V85() V86() V87() ) Element of bool REAL : ( ( ) ( non empty non trivial non finite V81() V82() V83() V87() ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) : ( ( ) ( non empty non trivial non finite ) set ) ) holds
( 0. : ( ( ) ( ext-real ) Element of ExtREAL : ( ( ) ( non empty V82() ) set ) ) < a : ( ( ) ( Relation-like NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal V61() V62() V81() V82() V83() V84() V85() V86() V87() ) Element of bool REAL : ( ( ) ( non empty non trivial non finite V81() V82() V83() V87() ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) -defined ExtREAL : ( ( ) ( non empty V82() ) set ) -valued Function-like finite FinSequence-like FinSubsequence-like V61() V72() ) FinSequence of ExtREAL : ( ( ) ( non empty V82() ) set ) ) . n : ( ( natural ) ( epsilon-transitive epsilon-connected ordinal natural V36() real ext-real non negative finite cardinal V61() ) Nat) : ( ( ) ( ext-real ) Element of ExtREAL : ( ( ) ( non empty V82() ) set ) ) & a : ( ( ) ( Relation-like NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal V61() V62() V81() V82() V83() V84() V85() V86() V87() ) Element of bool REAL : ( ( ) ( non empty non trivial non finite V81() V82() V83() V87() ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) -defined ExtREAL : ( ( ) ( non empty V82() ) set ) -valued Function-like finite FinSequence-like FinSubsequence-like V61() V72() ) FinSequence of ExtREAL : ( ( ) ( non empty V82() ) set ) ) . n : ( ( natural ) ( epsilon-transitive epsilon-connected ordinal natural V36() real ext-real non negative finite cardinal V61() ) Nat) : ( ( ) ( ext-real ) Element of ExtREAL : ( ( ) ( non empty V82() ) set ) ) < +infty : ( ( ) ( non empty non real ext-real positive non negative ) Element of ExtREAL : ( ( ) ( non empty V82() ) set ) ) ) ) & dom x : ( ( ) ( Relation-like NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal V61() V62() V81() V82() V83() V84() V85() V86() V87() ) Element of bool REAL : ( ( ) ( non empty non trivial non finite V81() V82() V83() V87() ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) -defined ExtREAL : ( ( ) ( non empty V82() ) set ) -valued Function-like finite FinSequence-like FinSubsequence-like V61() V72() ) FinSequence of ExtREAL : ( ( ) ( non empty V82() ) set ) ) : ( ( ) ( finite V61() V81() V82() V83() V84() V85() V86() ) Element of bool NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal V61() V62() V81() V82() V83() V84() V85() V86() V87() ) Element of bool REAL : ( ( ) ( non empty non trivial non finite V81() V82() V83() V87() ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) : ( ( ) ( non empty non trivial non finite ) set ) ) = dom F : ( ( disjoint_valued ) ( Relation-like NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal V61() V62() V81() V82() V83() V84() V85() V86() V87() ) Element of bool REAL : ( ( ) ( non empty non trivial non finite V81() V82() V83() V87() ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) -defined S : ( ( non empty compl-closed sigma-multiplicative ) ( non empty V24() V25() V26() compl-closed sigma-multiplicative sigma-additive ) SigmaField of X : ( ( non empty ) ( non empty ) set ) ) -valued Function-like finite FinSequence-like FinSubsequence-like V61() disjoint_valued ) Finite_Sep_Sequence of S : ( ( non empty compl-closed sigma-multiplicative ) ( non empty V24() V25() V26() compl-closed sigma-multiplicative sigma-additive ) SigmaField of X : ( ( non empty ) ( non empty ) set ) ) ) : ( ( ) ( finite V61() V81() V82() V83() V84() V85() V86() ) Element of bool NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal V61() V62() V81() V82() V83() V84() V85() V86() V87() ) Element of bool REAL : ( ( ) ( non empty non trivial non finite V81() V82() V83() V87() ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) : ( ( ) ( non empty non trivial non finite ) set ) ) & ( for n being ( ( natural ) ( epsilon-transitive epsilon-connected ordinal natural V36() real ext-real non negative finite cardinal V61() ) Nat) st n : ( ( natural ) ( epsilon-transitive epsilon-connected ordinal natural V36() real ext-real non negative finite cardinal V61() ) Nat) in dom x : ( ( ) ( Relation-like NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal V61() V62() V81() V82() V83() V84() V85() V86() V87() ) Element of bool REAL : ( ( ) ( non empty non trivial non finite V81() V82() V83() V87() ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) -defined ExtREAL : ( ( ) ( non empty V82() ) set ) -valued Function-like finite FinSequence-like FinSubsequence-like V61() V72() ) FinSequence of ExtREAL : ( ( ) ( non empty V82() ) set ) ) : ( ( ) ( finite V61() V81() V82() V83() V84() V85() V86() ) Element of bool NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal V61() V62() V81() V82() V83() V84() V85() V86() V87() ) Element of bool REAL : ( ( ) ( non empty non trivial non finite V81() V82() V83() V87() ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) : ( ( ) ( non empty non trivial non finite ) set ) ) holds
x : ( ( ) ( Relation-like NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal V61() V62() V81() V82() V83() V84() V85() V86() V87() ) Element of bool REAL : ( ( ) ( non empty non trivial non finite V81() V82() V83() V87() ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) -defined ExtREAL : ( ( ) ( non empty V82() ) set ) -valued Function-like finite FinSequence-like FinSubsequence-like V61() V72() ) FinSequence of ExtREAL : ( ( ) ( non empty V82() ) set ) ) . n : ( ( natural ) ( epsilon-transitive epsilon-connected ordinal natural V36() real ext-real non negative finite cardinal V61() ) Nat) : ( ( ) ( ext-real ) Element of ExtREAL : ( ( ) ( non empty V82() ) set ) ) = (a : ( ( ) ( Relation-like NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal V61() V62() V81() V82() V83() V84() V85() V86() V87() ) Element of bool REAL : ( ( ) ( non empty non trivial non finite V81() V82() V83() V87() ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) -defined ExtREAL : ( ( ) ( non empty V82() ) set ) -valued Function-like finite FinSequence-like FinSubsequence-like V61() V72() ) FinSequence of ExtREAL : ( ( ) ( non empty V82() ) set ) ) . n : ( ( natural ) ( epsilon-transitive epsilon-connected ordinal natural V36() real ext-real non negative finite cardinal V61() ) Nat) ) : ( ( ) ( ext-real ) Element of ExtREAL : ( ( ) ( non empty V82() ) set ) ) * ((M : ( ( ext-real ) ( ext-real ) set ) * F : ( ( disjoint_valued ) ( Relation-like NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal V61() V62() V81() V82() V83() V84() V85() V86() V87() ) Element of bool REAL : ( ( ) ( non empty non trivial non finite V81() V82() V83() V87() ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) -defined S : ( ( non empty compl-closed sigma-multiplicative ) ( non empty V24() V25() V26() compl-closed sigma-multiplicative sigma-additive ) SigmaField of X : ( ( non empty ) ( non empty ) set ) ) -valued Function-like finite FinSequence-like FinSubsequence-like V61() disjoint_valued ) Finite_Sep_Sequence of S : ( ( non empty compl-closed sigma-multiplicative ) ( non empty V24() V25() V26() compl-closed sigma-multiplicative sigma-additive ) SigmaField of X : ( ( non empty ) ( non empty ) set ) ) ) ) : ( ( ) ( Relation-like NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal V61() V62() V81() V82() V83() V84() V85() V86() V87() ) Element of bool REAL : ( ( ) ( non empty non trivial non finite V81() V82() V83() V87() ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) -defined ExtREAL : ( ( ) ( non empty V82() ) set ) -valued Function-like finite FinSequence-like FinSubsequence-like V61() V72() ) FinSequence of ExtREAL : ( ( ) ( non empty V82() ) set ) ) . n : ( ( natural ) ( epsilon-transitive epsilon-connected ordinal natural V36() real ext-real non negative finite cardinal V61() ) Nat) ) : ( ( ) ( ext-real ) Element of ExtREAL : ( ( ) ( non empty V82() ) set ) ) : ( ( ) ( ext-real ) Element of ExtREAL : ( ( ) ( non empty V82() ) set ) ) ) & it : ( ( ) ( ) Element of X : ( ( ) ( ) set ) ) = Sum x : ( ( ) ( Relation-like NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal V61() V62() V81() V82() V83() V84() V85() V86() V87() ) Element of bool REAL : ( ( ) ( non empty non trivial non finite V81() V82() V83() V87() ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) -defined ExtREAL : ( ( ) ( non empty V82() ) set ) -valued Function-like finite FinSequence-like FinSubsequence-like V61() V72() ) FinSequence of ExtREAL : ( ( ) ( non empty V82() ) set ) ) : ( ( ) ( ext-real ) Element of ExtREAL : ( ( ) ( non empty V82() ) set ) ) );
end;

begin

theorem :: MESFUNC3:18
for a being ( ( ) ( Relation-like NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal V61() V62() V81() V82() V83() V84() V85() V86() V87() ) Element of bool REAL : ( ( ) ( non empty non trivial non finite V81() V82() V83() V87() ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) -defined ExtREAL : ( ( ) ( non empty V82() ) set ) -valued Function-like finite FinSequence-like FinSubsequence-like V61() V72() ) FinSequence of ExtREAL : ( ( ) ( non empty V82() ) set ) )
for p, N being ( ( ) ( ext-real ) Element of ExtREAL : ( ( ) ( non empty V82() ) set ) ) st N : ( ( ) ( ext-real ) Element of ExtREAL : ( ( ) ( non empty V82() ) set ) ) = len a : ( ( ) ( Relation-like NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal V61() V62() V81() V82() V83() V84() V85() V86() V87() ) Element of bool REAL : ( ( ) ( non empty non trivial non finite V81() V82() V83() V87() ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) -defined ExtREAL : ( ( ) ( non empty V82() ) set ) -valued Function-like finite FinSequence-like FinSubsequence-like V61() V72() ) FinSequence of ExtREAL : ( ( ) ( non empty V82() ) set ) ) : ( ( ) ( epsilon-transitive epsilon-connected ordinal natural V36() real ext-real non negative finite cardinal V61() V69() V70() V81() V82() V83() V84() V85() V86() ) Element of NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal V61() V62() V81() V82() V83() V84() V85() V86() V87() ) Element of bool REAL : ( ( ) ( non empty non trivial non finite V81() V82() V83() V87() ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) ) & ( for n being ( ( natural ) ( epsilon-transitive epsilon-connected ordinal natural V36() real ext-real non negative finite cardinal V61() ) Nat) st n : ( ( natural ) ( epsilon-transitive epsilon-connected ordinal natural V36() real ext-real non negative finite cardinal V61() ) Nat) in dom a : ( ( ) ( Relation-like NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal V61() V62() V81() V82() V83() V84() V85() V86() V87() ) Element of bool REAL : ( ( ) ( non empty non trivial non finite V81() V82() V83() V87() ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) -defined ExtREAL : ( ( ) ( non empty V82() ) set ) -valued Function-like finite FinSequence-like FinSubsequence-like V61() V72() ) FinSequence of ExtREAL : ( ( ) ( non empty V82() ) set ) ) : ( ( ) ( finite V61() V81() V82() V83() V84() V85() V86() ) Element of bool NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal V61() V62() V81() V82() V83() V84() V85() V86() V87() ) Element of bool REAL : ( ( ) ( non empty non trivial non finite V81() V82() V83() V87() ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) : ( ( ) ( non empty non trivial non finite ) set ) ) holds
a : ( ( ) ( Relation-like NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal V61() V62() V81() V82() V83() V84() V85() V86() V87() ) Element of bool REAL : ( ( ) ( non empty non trivial non finite V81() V82() V83() V87() ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) -defined ExtREAL : ( ( ) ( non empty V82() ) set ) -valued Function-like finite FinSequence-like FinSubsequence-like V61() V72() ) FinSequence of ExtREAL : ( ( ) ( non empty V82() ) set ) ) . n : ( ( natural ) ( epsilon-transitive epsilon-connected ordinal natural V36() real ext-real non negative finite cardinal V61() ) Nat) : ( ( ) ( ext-real ) Element of ExtREAL : ( ( ) ( non empty V82() ) set ) ) = p : ( ( ) ( ext-real ) Element of ExtREAL : ( ( ) ( non empty V82() ) set ) ) ) holds
Sum a : ( ( ) ( Relation-like NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal V61() V62() V81() V82() V83() V84() V85() V86() V87() ) Element of bool REAL : ( ( ) ( non empty non trivial non finite V81() V82() V83() V87() ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) -defined ExtREAL : ( ( ) ( non empty V82() ) set ) -valued Function-like finite FinSequence-like FinSubsequence-like V61() V72() ) FinSequence of ExtREAL : ( ( ) ( non empty V82() ) set ) ) : ( ( ) ( ext-real ) Element of ExtREAL : ( ( ) ( non empty V82() ) set ) ) = N : ( ( ) ( ext-real ) Element of ExtREAL : ( ( ) ( non empty V82() ) set ) ) * p : ( ( ) ( ext-real ) Element of ExtREAL : ( ( ) ( non empty V82() ) set ) ) : ( ( ) ( ext-real ) Element of ExtREAL : ( ( ) ( non empty V82() ) set ) ) ;