begin
theorem
for
n,
m being ( (
natural ) (
epsilon-transitive epsilon-connected ordinal natural V36()
real ext-real non
negative finite cardinal V61() )
Nat)
for
a being ( (
Function-like V18(
[:(Seg b1 : ( ( natural ) ( epsilon-transitive epsilon-connected ordinal natural V36() real ext-real non negative finite cardinal V61() ) Nat) ) : ( ( ) ( finite b1 : ( ( natural ) ( epsilon-transitive epsilon-connected ordinal natural V36() real ext-real non negative finite cardinal V61() ) Nat) -element V61() V81() V82() V83() V84() V85() V86() ) Element of bool NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal V61() V62() V81() V82() V83() V84() V85() V86() V87() ) Element of bool REAL : ( ( ) ( non empty non trivial non finite V81() V82() V83() V87() ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) : ( ( ) ( non empty non trivial non finite ) set ) ) ,(Seg b2 : ( ( natural ) ( epsilon-transitive epsilon-connected ordinal natural V36() real ext-real non negative finite cardinal V61() ) Nat) ) : ( ( ) ( finite b2 : ( ( natural ) ( epsilon-transitive epsilon-connected ordinal natural V36() real ext-real non negative finite cardinal V61() ) Nat) -element V61() V81() V82() V83() V84() V85() V86() ) Element of bool NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal V61() V62() V81() V82() V83() V84() V85() V86() V87() ) Element of bool REAL : ( ( ) ( non empty non trivial non finite V81() V82() V83() V87() ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) : ( ( ) ( non empty non trivial non finite ) set ) ) :] : ( ( ) (
Relation-like RAT : ( ( ) ( non
empty non
trivial non
finite V81()
V82()
V83()
V84()
V87() )
set )
-valued INT : ( ( ) ( non
empty non
trivial non
finite V81()
V82()
V83()
V84()
V85()
V87() )
set )
-valued finite V61()
V71()
V72()
V73()
V74() )
set ) ,
REAL : ( ( ) ( non
empty non
trivial non
finite V81()
V82()
V83()
V87() )
set ) ) ) (
Relation-like [:(Seg b1 : ( ( natural ) ( epsilon-transitive epsilon-connected ordinal natural V36() real ext-real non negative finite cardinal V61() ) Nat) ) : ( ( ) ( finite b1 : ( ( natural ) ( epsilon-transitive epsilon-connected ordinal natural V36() real ext-real non negative finite cardinal V61() ) Nat) -element V61() V81() V82() V83() V84() V85() V86() ) Element of bool NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal V61() V62() V81() V82() V83() V84() V85() V86() V87() ) Element of bool REAL : ( ( ) ( non empty non trivial non finite V81() V82() V83() V87() ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) : ( ( ) ( non empty non trivial non finite ) set ) ) ,(Seg b2 : ( ( natural ) ( epsilon-transitive epsilon-connected ordinal natural V36() real ext-real non negative finite cardinal V61() ) Nat) ) : ( ( ) ( finite b2 : ( ( natural ) ( epsilon-transitive epsilon-connected ordinal natural V36() real ext-real non negative finite cardinal V61() ) Nat) -element V61() V81() V82() V83() V84() V85() V86() ) Element of bool NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal V61() V62() V81() V82() V83() V84() V85() V86() V87() ) Element of bool REAL : ( ( ) ( non empty non trivial non finite V81() V82() V83() V87() ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) : ( ( ) ( non empty non trivial non finite ) set ) ) :] : ( ( ) (
Relation-like RAT : ( ( ) ( non
empty non
trivial non
finite V81()
V82()
V83()
V84()
V87() )
set )
-valued INT : ( ( ) ( non
empty non
trivial non
finite V81()
V82()
V83()
V84()
V85()
V87() )
set )
-valued finite V61()
V71()
V72()
V73()
V74() )
set )
-defined REAL : ( ( ) ( non
empty non
trivial non
finite V81()
V82()
V83()
V87() )
set )
-valued Function-like total V18(
[:(Seg b1 : ( ( natural ) ( epsilon-transitive epsilon-connected ordinal natural V36() real ext-real non negative finite cardinal V61() ) Nat) ) : ( ( ) ( finite b1 : ( ( natural ) ( epsilon-transitive epsilon-connected ordinal natural V36() real ext-real non negative finite cardinal V61() ) Nat) -element V61() V81() V82() V83() V84() V85() V86() ) Element of bool NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal V61() V62() V81() V82() V83() V84() V85() V86() V87() ) Element of bool REAL : ( ( ) ( non empty non trivial non finite V81() V82() V83() V87() ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) : ( ( ) ( non empty non trivial non finite ) set ) ) ,(Seg b2 : ( ( natural ) ( epsilon-transitive epsilon-connected ordinal natural V36() real ext-real non negative finite cardinal V61() ) Nat) ) : ( ( ) ( finite b2 : ( ( natural ) ( epsilon-transitive epsilon-connected ordinal natural V36() real ext-real non negative finite cardinal V61() ) Nat) -element V61() V81() V82() V83() V84() V85() V86() ) Element of bool NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal V61() V62() V81() V82() V83() V84() V85() V86() V87() ) Element of bool REAL : ( ( ) ( non empty non trivial non finite V81() V82() V83() V87() ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) : ( ( ) ( non empty non trivial non finite ) set ) ) :] : ( ( ) (
Relation-like RAT : ( ( ) ( non
empty non
trivial non
finite V81()
V82()
V83()
V84()
V87() )
set )
-valued INT : ( ( ) ( non
empty non
trivial non
finite V81()
V82()
V83()
V84()
V85()
V87() )
set )
-valued finite V61()
V71()
V72()
V73()
V74() )
set ) ,
REAL : ( ( ) ( non
empty non
trivial non
finite V81()
V82()
V83()
V87() )
set ) )
finite V61()
V71()
V72()
V73() )
Function of
[:(Seg n : ( ( natural ) ( epsilon-transitive epsilon-connected ordinal natural V36() real ext-real non negative finite cardinal V61() ) Nat) ) : ( ( ) ( finite b1 : ( ( natural ) ( epsilon-transitive epsilon-connected ordinal natural V36() real ext-real non negative finite cardinal V61() ) Nat) -element V61() V81() V82() V83() V84() V85() V86() ) Element of bool NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal V61() V62() V81() V82() V83() V84() V85() V86() V87() ) Element of bool REAL : ( ( ) ( non empty non trivial non finite V81() V82() V83() V87() ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) : ( ( ) ( non empty non trivial non finite ) set ) ) ,(Seg m : ( ( natural ) ( epsilon-transitive epsilon-connected ordinal natural V36() real ext-real non negative finite cardinal V61() ) Nat) ) : ( ( ) ( finite b2 : ( ( natural ) ( epsilon-transitive epsilon-connected ordinal natural V36() real ext-real non negative finite cardinal V61() ) Nat) -element V61() V81() V82() V83() V84() V85() V86() ) Element of bool NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal V61() V62() V81() V82() V83() V84() V85() V86() V87() ) Element of bool REAL : ( ( ) ( non empty non trivial non finite V81() V82() V83() V87() ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) : ( ( ) ( non empty non trivial non finite ) set ) ) :] : ( ( ) (
Relation-like RAT : ( ( ) ( non
empty non
trivial non
finite V81()
V82()
V83()
V84()
V87() )
set )
-valued INT : ( ( ) ( non
empty non
trivial non
finite V81()
V82()
V83()
V84()
V85()
V87() )
set )
-valued finite V61()
V71()
V72()
V73()
V74() )
set ) ,
REAL : ( ( ) ( non
empty non
trivial non
finite V81()
V82()
V83()
V87() )
set ) )
for
p,
q being ( ( ) (
Relation-like NAT : ( ( ) ( non
empty non
trivial epsilon-transitive epsilon-connected ordinal non
finite cardinal limit_cardinal V61()
V62()
V81()
V82()
V83()
V84()
V85()
V86()
V87() )
Element of
bool REAL : ( ( ) ( non
empty non
trivial non
finite V81()
V82()
V83()
V87() )
set ) : ( ( ) ( non
empty non
trivial non
finite )
set ) )
-defined REAL : ( ( ) ( non
empty non
trivial non
finite V81()
V82()
V83()
V87() )
set )
-valued Function-like finite FinSequence-like FinSubsequence-like V61()
V71()
V72()
V73() )
FinSequence of
REAL : ( ( ) ( non
empty non
trivial non
finite V81()
V82()
V83()
V87() )
set ) ) st
dom p : ( ( ) (
Relation-like NAT : ( ( ) ( non
empty non
trivial epsilon-transitive epsilon-connected ordinal non
finite cardinal limit_cardinal V61()
V62()
V81()
V82()
V83()
V84()
V85()
V86()
V87() )
Element of
bool REAL : ( ( ) ( non
empty non
trivial non
finite V81()
V82()
V83()
V87() )
set ) : ( ( ) ( non
empty non
trivial non
finite )
set ) )
-defined REAL : ( ( ) ( non
empty non
trivial non
finite V81()
V82()
V83()
V87() )
set )
-valued Function-like finite FinSequence-like FinSubsequence-like V61()
V71()
V72()
V73() )
FinSequence of
REAL : ( ( ) ( non
empty non
trivial non
finite V81()
V82()
V83()
V87() )
set ) ) : ( ( ) (
finite V61()
V81()
V82()
V83()
V84()
V85()
V86() )
Element of
bool NAT : ( ( ) ( non
empty non
trivial epsilon-transitive epsilon-connected ordinal non
finite cardinal limit_cardinal V61()
V62()
V81()
V82()
V83()
V84()
V85()
V86()
V87() )
Element of
bool REAL : ( ( ) ( non
empty non
trivial non
finite V81()
V82()
V83()
V87() )
set ) : ( ( ) ( non
empty non
trivial non
finite )
set ) ) : ( ( ) ( non
empty non
trivial non
finite )
set ) )
= Seg n : ( (
natural ) (
epsilon-transitive epsilon-connected ordinal natural V36()
real ext-real non
negative finite cardinal V61() )
Nat) : ( ( ) (
finite b1 : ( (
natural ) (
epsilon-transitive epsilon-connected ordinal natural V36()
real ext-real non
negative finite cardinal V61() )
Nat)
-element V61()
V81()
V82()
V83()
V84()
V85()
V86() )
Element of
bool NAT : ( ( ) ( non
empty non
trivial epsilon-transitive epsilon-connected ordinal non
finite cardinal limit_cardinal V61()
V62()
V81()
V82()
V83()
V84()
V85()
V86()
V87() )
Element of
bool REAL : ( ( ) ( non
empty non
trivial non
finite V81()
V82()
V83()
V87() )
set ) : ( ( ) ( non
empty non
trivial non
finite )
set ) ) : ( ( ) ( non
empty non
trivial non
finite )
set ) ) & ( for
i being ( (
natural ) (
epsilon-transitive epsilon-connected ordinal natural V36()
real ext-real non
negative finite cardinal V61() )
Nat) st
i : ( (
natural ) (
epsilon-transitive epsilon-connected ordinal natural V36()
real ext-real non
negative finite cardinal V61() )
Nat)
in dom p : ( ( ) (
Relation-like NAT : ( ( ) ( non
empty non
trivial epsilon-transitive epsilon-connected ordinal non
finite cardinal limit_cardinal V61()
V62()
V81()
V82()
V83()
V84()
V85()
V86()
V87() )
Element of
bool REAL : ( ( ) ( non
empty non
trivial non
finite V81()
V82()
V83()
V87() )
set ) : ( ( ) ( non
empty non
trivial non
finite )
set ) )
-defined REAL : ( ( ) ( non
empty non
trivial non
finite V81()
V82()
V83()
V87() )
set )
-valued Function-like finite FinSequence-like FinSubsequence-like V61()
V71()
V72()
V73() )
FinSequence of
REAL : ( ( ) ( non
empty non
trivial non
finite V81()
V82()
V83()
V87() )
set ) ) : ( ( ) (
finite V61()
V81()
V82()
V83()
V84()
V85()
V86() )
Element of
bool NAT : ( ( ) ( non
empty non
trivial epsilon-transitive epsilon-connected ordinal non
finite cardinal limit_cardinal V61()
V62()
V81()
V82()
V83()
V84()
V85()
V86()
V87() )
Element of
bool REAL : ( ( ) ( non
empty non
trivial non
finite V81()
V82()
V83()
V87() )
set ) : ( ( ) ( non
empty non
trivial non
finite )
set ) ) : ( ( ) ( non
empty non
trivial non
finite )
set ) ) holds
ex
r being ( ( ) (
Relation-like NAT : ( ( ) ( non
empty non
trivial epsilon-transitive epsilon-connected ordinal non
finite cardinal limit_cardinal V61()
V62()
V81()
V82()
V83()
V84()
V85()
V86()
V87() )
Element of
bool REAL : ( ( ) ( non
empty non
trivial non
finite V81()
V82()
V83()
V87() )
set ) : ( ( ) ( non
empty non
trivial non
finite )
set ) )
-defined REAL : ( ( ) ( non
empty non
trivial non
finite V81()
V82()
V83()
V87() )
set )
-valued Function-like finite FinSequence-like FinSubsequence-like V61()
V71()
V72()
V73() )
FinSequence of
REAL : ( ( ) ( non
empty non
trivial non
finite V81()
V82()
V83()
V87() )
set ) ) st
(
dom r : ( ( ) (
Relation-like NAT : ( ( ) ( non
empty non
trivial epsilon-transitive epsilon-connected ordinal non
finite cardinal limit_cardinal V61()
V62()
V81()
V82()
V83()
V84()
V85()
V86()
V87() )
Element of
bool REAL : ( ( ) ( non
empty non
trivial non
finite V81()
V82()
V83()
V87() )
set ) : ( ( ) ( non
empty non
trivial non
finite )
set ) )
-defined REAL : ( ( ) ( non
empty non
trivial non
finite V81()
V82()
V83()
V87() )
set )
-valued Function-like finite FinSequence-like FinSubsequence-like V61()
V71()
V72()
V73() )
FinSequence of
REAL : ( ( ) ( non
empty non
trivial non
finite V81()
V82()
V83()
V87() )
set ) ) : ( ( ) (
finite V61()
V81()
V82()
V83()
V84()
V85()
V86() )
Element of
bool NAT : ( ( ) ( non
empty non
trivial epsilon-transitive epsilon-connected ordinal non
finite cardinal limit_cardinal V61()
V62()
V81()
V82()
V83()
V84()
V85()
V86()
V87() )
Element of
bool REAL : ( ( ) ( non
empty non
trivial non
finite V81()
V82()
V83()
V87() )
set ) : ( ( ) ( non
empty non
trivial non
finite )
set ) ) : ( ( ) ( non
empty non
trivial non
finite )
set ) )
= Seg m : ( (
natural ) (
epsilon-transitive epsilon-connected ordinal natural V36()
real ext-real non
negative finite cardinal V61() )
Nat) : ( ( ) (
finite b2 : ( (
natural ) (
epsilon-transitive epsilon-connected ordinal natural V36()
real ext-real non
negative finite cardinal V61() )
Nat)
-element V61()
V81()
V82()
V83()
V84()
V85()
V86() )
Element of
bool NAT : ( ( ) ( non
empty non
trivial epsilon-transitive epsilon-connected ordinal non
finite cardinal limit_cardinal V61()
V62()
V81()
V82()
V83()
V84()
V85()
V86()
V87() )
Element of
bool REAL : ( ( ) ( non
empty non
trivial non
finite V81()
V82()
V83()
V87() )
set ) : ( ( ) ( non
empty non
trivial non
finite )
set ) ) : ( ( ) ( non
empty non
trivial non
finite )
set ) ) &
p : ( ( ) (
Relation-like NAT : ( ( ) ( non
empty non
trivial epsilon-transitive epsilon-connected ordinal non
finite cardinal limit_cardinal V61()
V62()
V81()
V82()
V83()
V84()
V85()
V86()
V87() )
Element of
bool REAL : ( ( ) ( non
empty non
trivial non
finite V81()
V82()
V83()
V87() )
set ) : ( ( ) ( non
empty non
trivial non
finite )
set ) )
-defined REAL : ( ( ) ( non
empty non
trivial non
finite V81()
V82()
V83()
V87() )
set )
-valued Function-like finite FinSequence-like FinSubsequence-like V61()
V71()
V72()
V73() )
FinSequence of
REAL : ( ( ) ( non
empty non
trivial non
finite V81()
V82()
V83()
V87() )
set ) )
. i : ( (
natural ) (
epsilon-transitive epsilon-connected ordinal natural V36()
real ext-real non
negative finite cardinal V61() )
Nat) : ( ( ) (
V36()
real ext-real )
Element of
REAL : ( ( ) ( non
empty non
trivial non
finite V81()
V82()
V83()
V87() )
set ) )
= Sum r : ( ( ) (
Relation-like NAT : ( ( ) ( non
empty non
trivial epsilon-transitive epsilon-connected ordinal non
finite cardinal limit_cardinal V61()
V62()
V81()
V82()
V83()
V84()
V85()
V86()
V87() )
Element of
bool REAL : ( ( ) ( non
empty non
trivial non
finite V81()
V82()
V83()
V87() )
set ) : ( ( ) ( non
empty non
trivial non
finite )
set ) )
-defined REAL : ( ( ) ( non
empty non
trivial non
finite V81()
V82()
V83()
V87() )
set )
-valued Function-like finite FinSequence-like FinSubsequence-like V61()
V71()
V72()
V73() )
FinSequence of
REAL : ( ( ) ( non
empty non
trivial non
finite V81()
V82()
V83()
V87() )
set ) ) : ( ( ) (
V36()
real ext-real )
Element of
REAL : ( ( ) ( non
empty non
trivial non
finite V81()
V82()
V83()
V87() )
set ) ) & ( for
j being ( (
natural ) (
epsilon-transitive epsilon-connected ordinal natural V36()
real ext-real non
negative finite cardinal V61() )
Nat) st
j : ( (
natural ) (
epsilon-transitive epsilon-connected ordinal natural V36()
real ext-real non
negative finite cardinal V61() )
Nat)
in dom r : ( ( ) (
Relation-like NAT : ( ( ) ( non
empty non
trivial epsilon-transitive epsilon-connected ordinal non
finite cardinal limit_cardinal V61()
V62()
V81()
V82()
V83()
V84()
V85()
V86()
V87() )
Element of
bool REAL : ( ( ) ( non
empty non
trivial non
finite V81()
V82()
V83()
V87() )
set ) : ( ( ) ( non
empty non
trivial non
finite )
set ) )
-defined REAL : ( ( ) ( non
empty non
trivial non
finite V81()
V82()
V83()
V87() )
set )
-valued Function-like finite FinSequence-like FinSubsequence-like V61()
V71()
V72()
V73() )
FinSequence of
REAL : ( ( ) ( non
empty non
trivial non
finite V81()
V82()
V83()
V87() )
set ) ) : ( ( ) (
finite V61()
V81()
V82()
V83()
V84()
V85()
V86() )
Element of
bool NAT : ( ( ) ( non
empty non
trivial epsilon-transitive epsilon-connected ordinal non
finite cardinal limit_cardinal V61()
V62()
V81()
V82()
V83()
V84()
V85()
V86()
V87() )
Element of
bool REAL : ( ( ) ( non
empty non
trivial non
finite V81()
V82()
V83()
V87() )
set ) : ( ( ) ( non
empty non
trivial non
finite )
set ) ) : ( ( ) ( non
empty non
trivial non
finite )
set ) ) holds
r : ( ( ) (
Relation-like NAT : ( ( ) ( non
empty non
trivial epsilon-transitive epsilon-connected ordinal non
finite cardinal limit_cardinal V61()
V62()
V81()
V82()
V83()
V84()
V85()
V86()
V87() )
Element of
bool REAL : ( ( ) ( non
empty non
trivial non
finite V81()
V82()
V83()
V87() )
set ) : ( ( ) ( non
empty non
trivial non
finite )
set ) )
-defined REAL : ( ( ) ( non
empty non
trivial non
finite V81()
V82()
V83()
V87() )
set )
-valued Function-like finite FinSequence-like FinSubsequence-like V61()
V71()
V72()
V73() )
FinSequence of
REAL : ( ( ) ( non
empty non
trivial non
finite V81()
V82()
V83()
V87() )
set ) )
. j : ( (
natural ) (
epsilon-transitive epsilon-connected ordinal natural V36()
real ext-real non
negative finite cardinal V61() )
Nat) : ( ( ) (
V36()
real ext-real )
Element of
REAL : ( ( ) ( non
empty non
trivial non
finite V81()
V82()
V83()
V87() )
set ) )
= a : ( (
Function-like V18(
[:(Seg b1 : ( ( natural ) ( epsilon-transitive epsilon-connected ordinal natural V36() real ext-real non negative finite cardinal V61() ) Nat) ) : ( ( ) ( finite b1 : ( ( natural ) ( epsilon-transitive epsilon-connected ordinal natural V36() real ext-real non negative finite cardinal V61() ) Nat) -element V61() V81() V82() V83() V84() V85() V86() ) Element of bool NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal V61() V62() V81() V82() V83() V84() V85() V86() V87() ) Element of bool REAL : ( ( ) ( non empty non trivial non finite V81() V82() V83() V87() ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) : ( ( ) ( non empty non trivial non finite ) set ) ) ,(Seg b2 : ( ( natural ) ( epsilon-transitive epsilon-connected ordinal natural V36() real ext-real non negative finite cardinal V61() ) Nat) ) : ( ( ) ( finite b2 : ( ( natural ) ( epsilon-transitive epsilon-connected ordinal natural V36() real ext-real non negative finite cardinal V61() ) Nat) -element V61() V81() V82() V83() V84() V85() V86() ) Element of bool NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal V61() V62() V81() V82() V83() V84() V85() V86() V87() ) Element of bool REAL : ( ( ) ( non empty non trivial non finite V81() V82() V83() V87() ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) : ( ( ) ( non empty non trivial non finite ) set ) ) :] : ( ( ) (
Relation-like RAT : ( ( ) ( non
empty non
trivial non
finite V81()
V82()
V83()
V84()
V87() )
set )
-valued INT : ( ( ) ( non
empty non
trivial non
finite V81()
V82()
V83()
V84()
V85()
V87() )
set )
-valued finite V61()
V71()
V72()
V73()
V74() )
set ) ,
REAL : ( ( ) ( non
empty non
trivial non
finite V81()
V82()
V83()
V87() )
set ) ) ) (
Relation-like [:(Seg b1 : ( ( natural ) ( epsilon-transitive epsilon-connected ordinal natural V36() real ext-real non negative finite cardinal V61() ) Nat) ) : ( ( ) ( finite b1 : ( ( natural ) ( epsilon-transitive epsilon-connected ordinal natural V36() real ext-real non negative finite cardinal V61() ) Nat) -element V61() V81() V82() V83() V84() V85() V86() ) Element of bool NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal V61() V62() V81() V82() V83() V84() V85() V86() V87() ) Element of bool REAL : ( ( ) ( non empty non trivial non finite V81() V82() V83() V87() ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) : ( ( ) ( non empty non trivial non finite ) set ) ) ,(Seg b2 : ( ( natural ) ( epsilon-transitive epsilon-connected ordinal natural V36() real ext-real non negative finite cardinal V61() ) Nat) ) : ( ( ) ( finite b2 : ( ( natural ) ( epsilon-transitive epsilon-connected ordinal natural V36() real ext-real non negative finite cardinal V61() ) Nat) -element V61() V81() V82() V83() V84() V85() V86() ) Element of bool NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal V61() V62() V81() V82() V83() V84() V85() V86() V87() ) Element of bool REAL : ( ( ) ( non empty non trivial non finite V81() V82() V83() V87() ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) : ( ( ) ( non empty non trivial non finite ) set ) ) :] : ( ( ) (
Relation-like RAT : ( ( ) ( non
empty non
trivial non
finite V81()
V82()
V83()
V84()
V87() )
set )
-valued INT : ( ( ) ( non
empty non
trivial non
finite V81()
V82()
V83()
V84()
V85()
V87() )
set )
-valued finite V61()
V71()
V72()
V73()
V74() )
set )
-defined REAL : ( ( ) ( non
empty non
trivial non
finite V81()
V82()
V83()
V87() )
set )
-valued Function-like total V18(
[:(Seg b1 : ( ( natural ) ( epsilon-transitive epsilon-connected ordinal natural V36() real ext-real non negative finite cardinal V61() ) Nat) ) : ( ( ) ( finite b1 : ( ( natural ) ( epsilon-transitive epsilon-connected ordinal natural V36() real ext-real non negative finite cardinal V61() ) Nat) -element V61() V81() V82() V83() V84() V85() V86() ) Element of bool NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal V61() V62() V81() V82() V83() V84() V85() V86() V87() ) Element of bool REAL : ( ( ) ( non empty non trivial non finite V81() V82() V83() V87() ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) : ( ( ) ( non empty non trivial non finite ) set ) ) ,(Seg b2 : ( ( natural ) ( epsilon-transitive epsilon-connected ordinal natural V36() real ext-real non negative finite cardinal V61() ) Nat) ) : ( ( ) ( finite b2 : ( ( natural ) ( epsilon-transitive epsilon-connected ordinal natural V36() real ext-real non negative finite cardinal V61() ) Nat) -element V61() V81() V82() V83() V84() V85() V86() ) Element of bool NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal V61() V62() V81() V82() V83() V84() V85() V86() V87() ) Element of bool REAL : ( ( ) ( non empty non trivial non finite V81() V82() V83() V87() ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) : ( ( ) ( non empty non trivial non finite ) set ) ) :] : ( ( ) (
Relation-like RAT : ( ( ) ( non
empty non
trivial non
finite V81()
V82()
V83()
V84()
V87() )
set )
-valued INT : ( ( ) ( non
empty non
trivial non
finite V81()
V82()
V83()
V84()
V85()
V87() )
set )
-valued finite V61()
V71()
V72()
V73()
V74() )
set ) ,
REAL : ( ( ) ( non
empty non
trivial non
finite V81()
V82()
V83()
V87() )
set ) )
finite V61()
V71()
V72()
V73() )
Function of
[:(Seg b1 : ( ( natural ) ( epsilon-transitive epsilon-connected ordinal natural V36() real ext-real non negative finite cardinal V61() ) Nat) ) : ( ( ) ( finite b1 : ( ( natural ) ( epsilon-transitive epsilon-connected ordinal natural V36() real ext-real non negative finite cardinal V61() ) Nat) -element V61() V81() V82() V83() V84() V85() V86() ) Element of bool NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal V61() V62() V81() V82() V83() V84() V85() V86() V87() ) Element of bool REAL : ( ( ) ( non empty non trivial non finite V81() V82() V83() V87() ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) : ( ( ) ( non empty non trivial non finite ) set ) ) ,(Seg b2 : ( ( natural ) ( epsilon-transitive epsilon-connected ordinal natural V36() real ext-real non negative finite cardinal V61() ) Nat) ) : ( ( ) ( finite b2 : ( ( natural ) ( epsilon-transitive epsilon-connected ordinal natural V36() real ext-real non negative finite cardinal V61() ) Nat) -element V61() V81() V82() V83() V84() V85() V86() ) Element of bool NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal V61() V62() V81() V82() V83() V84() V85() V86() V87() ) Element of bool REAL : ( ( ) ( non empty non trivial non finite V81() V82() V83() V87() ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) : ( ( ) ( non empty non trivial non finite ) set ) ) :] : ( ( ) (
Relation-like RAT : ( ( ) ( non
empty non
trivial non
finite V81()
V82()
V83()
V84()
V87() )
set )
-valued INT : ( ( ) ( non
empty non
trivial non
finite V81()
V82()
V83()
V84()
V85()
V87() )
set )
-valued finite V61()
V71()
V72()
V73()
V74() )
set ) ,
REAL : ( ( ) ( non
empty non
trivial non
finite V81()
V82()
V83()
V87() )
set ) )
. [i : ( ( natural ) ( epsilon-transitive epsilon-connected ordinal natural V36() real ext-real non negative finite cardinal V61() ) Nat) ,j : ( ( natural ) ( epsilon-transitive epsilon-connected ordinal natural V36() real ext-real non negative finite cardinal V61() ) Nat) ] : ( ( ) ( )
set ) : ( ( ) (
V36()
real ext-real )
Element of
REAL : ( ( ) ( non
empty non
trivial non
finite V81()
V82()
V83()
V87() )
set ) ) ) ) ) &
dom q : ( ( ) (
Relation-like NAT : ( ( ) ( non
empty non
trivial epsilon-transitive epsilon-connected ordinal non
finite cardinal limit_cardinal V61()
V62()
V81()
V82()
V83()
V84()
V85()
V86()
V87() )
Element of
bool REAL : ( ( ) ( non
empty non
trivial non
finite V81()
V82()
V83()
V87() )
set ) : ( ( ) ( non
empty non
trivial non
finite )
set ) )
-defined REAL : ( ( ) ( non
empty non
trivial non
finite V81()
V82()
V83()
V87() )
set )
-valued Function-like finite FinSequence-like FinSubsequence-like V61()
V71()
V72()
V73() )
FinSequence of
REAL : ( ( ) ( non
empty non
trivial non
finite V81()
V82()
V83()
V87() )
set ) ) : ( ( ) (
finite V61()
V81()
V82()
V83()
V84()
V85()
V86() )
Element of
bool NAT : ( ( ) ( non
empty non
trivial epsilon-transitive epsilon-connected ordinal non
finite cardinal limit_cardinal V61()
V62()
V81()
V82()
V83()
V84()
V85()
V86()
V87() )
Element of
bool REAL : ( ( ) ( non
empty non
trivial non
finite V81()
V82()
V83()
V87() )
set ) : ( ( ) ( non
empty non
trivial non
finite )
set ) ) : ( ( ) ( non
empty non
trivial non
finite )
set ) )
= Seg m : ( (
natural ) (
epsilon-transitive epsilon-connected ordinal natural V36()
real ext-real non
negative finite cardinal V61() )
Nat) : ( ( ) (
finite b2 : ( (
natural ) (
epsilon-transitive epsilon-connected ordinal natural V36()
real ext-real non
negative finite cardinal V61() )
Nat)
-element V61()
V81()
V82()
V83()
V84()
V85()
V86() )
Element of
bool NAT : ( ( ) ( non
empty non
trivial epsilon-transitive epsilon-connected ordinal non
finite cardinal limit_cardinal V61()
V62()
V81()
V82()
V83()
V84()
V85()
V86()
V87() )
Element of
bool REAL : ( ( ) ( non
empty non
trivial non
finite V81()
V82()
V83()
V87() )
set ) : ( ( ) ( non
empty non
trivial non
finite )
set ) ) : ( ( ) ( non
empty non
trivial non
finite )
set ) ) & ( for
j being ( (
natural ) (
epsilon-transitive epsilon-connected ordinal natural V36()
real ext-real non
negative finite cardinal V61() )
Nat) st
j : ( (
natural ) (
epsilon-transitive epsilon-connected ordinal natural V36()
real ext-real non
negative finite cardinal V61() )
Nat)
in dom q : ( ( ) (
Relation-like NAT : ( ( ) ( non
empty non
trivial epsilon-transitive epsilon-connected ordinal non
finite cardinal limit_cardinal V61()
V62()
V81()
V82()
V83()
V84()
V85()
V86()
V87() )
Element of
bool REAL : ( ( ) ( non
empty non
trivial non
finite V81()
V82()
V83()
V87() )
set ) : ( ( ) ( non
empty non
trivial non
finite )
set ) )
-defined REAL : ( ( ) ( non
empty non
trivial non
finite V81()
V82()
V83()
V87() )
set )
-valued Function-like finite FinSequence-like FinSubsequence-like V61()
V71()
V72()
V73() )
FinSequence of
REAL : ( ( ) ( non
empty non
trivial non
finite V81()
V82()
V83()
V87() )
set ) ) : ( ( ) (
finite V61()
V81()
V82()
V83()
V84()
V85()
V86() )
Element of
bool NAT : ( ( ) ( non
empty non
trivial epsilon-transitive epsilon-connected ordinal non
finite cardinal limit_cardinal V61()
V62()
V81()
V82()
V83()
V84()
V85()
V86()
V87() )
Element of
bool REAL : ( ( ) ( non
empty non
trivial non
finite V81()
V82()
V83()
V87() )
set ) : ( ( ) ( non
empty non
trivial non
finite )
set ) ) : ( ( ) ( non
empty non
trivial non
finite )
set ) ) holds
ex
s being ( ( ) (
Relation-like NAT : ( ( ) ( non
empty non
trivial epsilon-transitive epsilon-connected ordinal non
finite cardinal limit_cardinal V61()
V62()
V81()
V82()
V83()
V84()
V85()
V86()
V87() )
Element of
bool REAL : ( ( ) ( non
empty non
trivial non
finite V81()
V82()
V83()
V87() )
set ) : ( ( ) ( non
empty non
trivial non
finite )
set ) )
-defined REAL : ( ( ) ( non
empty non
trivial non
finite V81()
V82()
V83()
V87() )
set )
-valued Function-like finite FinSequence-like FinSubsequence-like V61()
V71()
V72()
V73() )
FinSequence of
REAL : ( ( ) ( non
empty non
trivial non
finite V81()
V82()
V83()
V87() )
set ) ) st
(
dom s : ( ( ) (
Relation-like NAT : ( ( ) ( non
empty non
trivial epsilon-transitive epsilon-connected ordinal non
finite cardinal limit_cardinal V61()
V62()
V81()
V82()
V83()
V84()
V85()
V86()
V87() )
Element of
bool REAL : ( ( ) ( non
empty non
trivial non
finite V81()
V82()
V83()
V87() )
set ) : ( ( ) ( non
empty non
trivial non
finite )
set ) )
-defined REAL : ( ( ) ( non
empty non
trivial non
finite V81()
V82()
V83()
V87() )
set )
-valued Function-like finite FinSequence-like FinSubsequence-like V61()
V71()
V72()
V73() )
FinSequence of
REAL : ( ( ) ( non
empty non
trivial non
finite V81()
V82()
V83()
V87() )
set ) ) : ( ( ) (
finite V61()
V81()
V82()
V83()
V84()
V85()
V86() )
Element of
bool NAT : ( ( ) ( non
empty non
trivial epsilon-transitive epsilon-connected ordinal non
finite cardinal limit_cardinal V61()
V62()
V81()
V82()
V83()
V84()
V85()
V86()
V87() )
Element of
bool REAL : ( ( ) ( non
empty non
trivial non
finite V81()
V82()
V83()
V87() )
set ) : ( ( ) ( non
empty non
trivial non
finite )
set ) ) : ( ( ) ( non
empty non
trivial non
finite )
set ) )
= Seg n : ( (
natural ) (
epsilon-transitive epsilon-connected ordinal natural V36()
real ext-real non
negative finite cardinal V61() )
Nat) : ( ( ) (
finite b1 : ( (
natural ) (
epsilon-transitive epsilon-connected ordinal natural V36()
real ext-real non
negative finite cardinal V61() )
Nat)
-element V61()
V81()
V82()
V83()
V84()
V85()
V86() )
Element of
bool NAT : ( ( ) ( non
empty non
trivial epsilon-transitive epsilon-connected ordinal non
finite cardinal limit_cardinal V61()
V62()
V81()
V82()
V83()
V84()
V85()
V86()
V87() )
Element of
bool REAL : ( ( ) ( non
empty non
trivial non
finite V81()
V82()
V83()
V87() )
set ) : ( ( ) ( non
empty non
trivial non
finite )
set ) ) : ( ( ) ( non
empty non
trivial non
finite )
set ) ) &
q : ( ( ) (
Relation-like NAT : ( ( ) ( non
empty non
trivial epsilon-transitive epsilon-connected ordinal non
finite cardinal limit_cardinal V61()
V62()
V81()
V82()
V83()
V84()
V85()
V86()
V87() )
Element of
bool REAL : ( ( ) ( non
empty non
trivial non
finite V81()
V82()
V83()
V87() )
set ) : ( ( ) ( non
empty non
trivial non
finite )
set ) )
-defined REAL : ( ( ) ( non
empty non
trivial non
finite V81()
V82()
V83()
V87() )
set )
-valued Function-like finite FinSequence-like FinSubsequence-like V61()
V71()
V72()
V73() )
FinSequence of
REAL : ( ( ) ( non
empty non
trivial non
finite V81()
V82()
V83()
V87() )
set ) )
. j : ( (
natural ) (
epsilon-transitive epsilon-connected ordinal natural V36()
real ext-real non
negative finite cardinal V61() )
Nat) : ( ( ) (
V36()
real ext-real )
Element of
REAL : ( ( ) ( non
empty non
trivial non
finite V81()
V82()
V83()
V87() )
set ) )
= Sum s : ( ( ) (
Relation-like NAT : ( ( ) ( non
empty non
trivial epsilon-transitive epsilon-connected ordinal non
finite cardinal limit_cardinal V61()
V62()
V81()
V82()
V83()
V84()
V85()
V86()
V87() )
Element of
bool REAL : ( ( ) ( non
empty non
trivial non
finite V81()
V82()
V83()
V87() )
set ) : ( ( ) ( non
empty non
trivial non
finite )
set ) )
-defined REAL : ( ( ) ( non
empty non
trivial non
finite V81()
V82()
V83()
V87() )
set )
-valued Function-like finite FinSequence-like FinSubsequence-like V61()
V71()
V72()
V73() )
FinSequence of
REAL : ( ( ) ( non
empty non
trivial non
finite V81()
V82()
V83()
V87() )
set ) ) : ( ( ) (
V36()
real ext-real )
Element of
REAL : ( ( ) ( non
empty non
trivial non
finite V81()
V82()
V83()
V87() )
set ) ) & ( for
i being ( (
natural ) (
epsilon-transitive epsilon-connected ordinal natural V36()
real ext-real non
negative finite cardinal V61() )
Nat) st
i : ( (
natural ) (
epsilon-transitive epsilon-connected ordinal natural V36()
real ext-real non
negative finite cardinal V61() )
Nat)
in dom s : ( ( ) (
Relation-like NAT : ( ( ) ( non
empty non
trivial epsilon-transitive epsilon-connected ordinal non
finite cardinal limit_cardinal V61()
V62()
V81()
V82()
V83()
V84()
V85()
V86()
V87() )
Element of
bool REAL : ( ( ) ( non
empty non
trivial non
finite V81()
V82()
V83()
V87() )
set ) : ( ( ) ( non
empty non
trivial non
finite )
set ) )
-defined REAL : ( ( ) ( non
empty non
trivial non
finite V81()
V82()
V83()
V87() )
set )
-valued Function-like finite FinSequence-like FinSubsequence-like V61()
V71()
V72()
V73() )
FinSequence of
REAL : ( ( ) ( non
empty non
trivial non
finite V81()
V82()
V83()
V87() )
set ) ) : ( ( ) (
finite V61()
V81()
V82()
V83()
V84()
V85()
V86() )
Element of
bool NAT : ( ( ) ( non
empty non
trivial epsilon-transitive epsilon-connected ordinal non
finite cardinal limit_cardinal V61()
V62()
V81()
V82()
V83()
V84()
V85()
V86()
V87() )
Element of
bool REAL : ( ( ) ( non
empty non
trivial non
finite V81()
V82()
V83()
V87() )
set ) : ( ( ) ( non
empty non
trivial non
finite )
set ) ) : ( ( ) ( non
empty non
trivial non
finite )
set ) ) holds
s : ( ( ) (
Relation-like NAT : ( ( ) ( non
empty non
trivial epsilon-transitive epsilon-connected ordinal non
finite cardinal limit_cardinal V61()
V62()
V81()
V82()
V83()
V84()
V85()
V86()
V87() )
Element of
bool REAL : ( ( ) ( non
empty non
trivial non
finite V81()
V82()
V83()
V87() )
set ) : ( ( ) ( non
empty non
trivial non
finite )
set ) )
-defined REAL : ( ( ) ( non
empty non
trivial non
finite V81()
V82()
V83()
V87() )
set )
-valued Function-like finite FinSequence-like FinSubsequence-like V61()
V71()
V72()
V73() )
FinSequence of
REAL : ( ( ) ( non
empty non
trivial non
finite V81()
V82()
V83()
V87() )
set ) )
. i : ( (
natural ) (
epsilon-transitive epsilon-connected ordinal natural V36()
real ext-real non
negative finite cardinal V61() )
Nat) : ( ( ) (
V36()
real ext-real )
Element of
REAL : ( ( ) ( non
empty non
trivial non
finite V81()
V82()
V83()
V87() )
set ) )
= a : ( (
Function-like V18(
[:(Seg b1 : ( ( natural ) ( epsilon-transitive epsilon-connected ordinal natural V36() real ext-real non negative finite cardinal V61() ) Nat) ) : ( ( ) ( finite b1 : ( ( natural ) ( epsilon-transitive epsilon-connected ordinal natural V36() real ext-real non negative finite cardinal V61() ) Nat) -element V61() V81() V82() V83() V84() V85() V86() ) Element of bool NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal V61() V62() V81() V82() V83() V84() V85() V86() V87() ) Element of bool REAL : ( ( ) ( non empty non trivial non finite V81() V82() V83() V87() ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) : ( ( ) ( non empty non trivial non finite ) set ) ) ,(Seg b2 : ( ( natural ) ( epsilon-transitive epsilon-connected ordinal natural V36() real ext-real non negative finite cardinal V61() ) Nat) ) : ( ( ) ( finite b2 : ( ( natural ) ( epsilon-transitive epsilon-connected ordinal natural V36() real ext-real non negative finite cardinal V61() ) Nat) -element V61() V81() V82() V83() V84() V85() V86() ) Element of bool NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal V61() V62() V81() V82() V83() V84() V85() V86() V87() ) Element of bool REAL : ( ( ) ( non empty non trivial non finite V81() V82() V83() V87() ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) : ( ( ) ( non empty non trivial non finite ) set ) ) :] : ( ( ) (
Relation-like RAT : ( ( ) ( non
empty non
trivial non
finite V81()
V82()
V83()
V84()
V87() )
set )
-valued INT : ( ( ) ( non
empty non
trivial non
finite V81()
V82()
V83()
V84()
V85()
V87() )
set )
-valued finite V61()
V71()
V72()
V73()
V74() )
set ) ,
REAL : ( ( ) ( non
empty non
trivial non
finite V81()
V82()
V83()
V87() )
set ) ) ) (
Relation-like [:(Seg b1 : ( ( natural ) ( epsilon-transitive epsilon-connected ordinal natural V36() real ext-real non negative finite cardinal V61() ) Nat) ) : ( ( ) ( finite b1 : ( ( natural ) ( epsilon-transitive epsilon-connected ordinal natural V36() real ext-real non negative finite cardinal V61() ) Nat) -element V61() V81() V82() V83() V84() V85() V86() ) Element of bool NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal V61() V62() V81() V82() V83() V84() V85() V86() V87() ) Element of bool REAL : ( ( ) ( non empty non trivial non finite V81() V82() V83() V87() ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) : ( ( ) ( non empty non trivial non finite ) set ) ) ,(Seg b2 : ( ( natural ) ( epsilon-transitive epsilon-connected ordinal natural V36() real ext-real non negative finite cardinal V61() ) Nat) ) : ( ( ) ( finite b2 : ( ( natural ) ( epsilon-transitive epsilon-connected ordinal natural V36() real ext-real non negative finite cardinal V61() ) Nat) -element V61() V81() V82() V83() V84() V85() V86() ) Element of bool NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal V61() V62() V81() V82() V83() V84() V85() V86() V87() ) Element of bool REAL : ( ( ) ( non empty non trivial non finite V81() V82() V83() V87() ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) : ( ( ) ( non empty non trivial non finite ) set ) ) :] : ( ( ) (
Relation-like RAT : ( ( ) ( non
empty non
trivial non
finite V81()
V82()
V83()
V84()
V87() )
set )
-valued INT : ( ( ) ( non
empty non
trivial non
finite V81()
V82()
V83()
V84()
V85()
V87() )
set )
-valued finite V61()
V71()
V72()
V73()
V74() )
set )
-defined REAL : ( ( ) ( non
empty non
trivial non
finite V81()
V82()
V83()
V87() )
set )
-valued Function-like total V18(
[:(Seg b1 : ( ( natural ) ( epsilon-transitive epsilon-connected ordinal natural V36() real ext-real non negative finite cardinal V61() ) Nat) ) : ( ( ) ( finite b1 : ( ( natural ) ( epsilon-transitive epsilon-connected ordinal natural V36() real ext-real non negative finite cardinal V61() ) Nat) -element V61() V81() V82() V83() V84() V85() V86() ) Element of bool NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal V61() V62() V81() V82() V83() V84() V85() V86() V87() ) Element of bool REAL : ( ( ) ( non empty non trivial non finite V81() V82() V83() V87() ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) : ( ( ) ( non empty non trivial non finite ) set ) ) ,(Seg b2 : ( ( natural ) ( epsilon-transitive epsilon-connected ordinal natural V36() real ext-real non negative finite cardinal V61() ) Nat) ) : ( ( ) ( finite b2 : ( ( natural ) ( epsilon-transitive epsilon-connected ordinal natural V36() real ext-real non negative finite cardinal V61() ) Nat) -element V61() V81() V82() V83() V84() V85() V86() ) Element of bool NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal V61() V62() V81() V82() V83() V84() V85() V86() V87() ) Element of bool REAL : ( ( ) ( non empty non trivial non finite V81() V82() V83() V87() ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) : ( ( ) ( non empty non trivial non finite ) set ) ) :] : ( ( ) (
Relation-like RAT : ( ( ) ( non
empty non
trivial non
finite V81()
V82()
V83()
V84()
V87() )
set )
-valued INT : ( ( ) ( non
empty non
trivial non
finite V81()
V82()
V83()
V84()
V85()
V87() )
set )
-valued finite V61()
V71()
V72()
V73()
V74() )
set ) ,
REAL : ( ( ) ( non
empty non
trivial non
finite V81()
V82()
V83()
V87() )
set ) )
finite V61()
V71()
V72()
V73() )
Function of
[:(Seg b1 : ( ( natural ) ( epsilon-transitive epsilon-connected ordinal natural V36() real ext-real non negative finite cardinal V61() ) Nat) ) : ( ( ) ( finite b1 : ( ( natural ) ( epsilon-transitive epsilon-connected ordinal natural V36() real ext-real non negative finite cardinal V61() ) Nat) -element V61() V81() V82() V83() V84() V85() V86() ) Element of bool NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal V61() V62() V81() V82() V83() V84() V85() V86() V87() ) Element of bool REAL : ( ( ) ( non empty non trivial non finite V81() V82() V83() V87() ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) : ( ( ) ( non empty non trivial non finite ) set ) ) ,(Seg b2 : ( ( natural ) ( epsilon-transitive epsilon-connected ordinal natural V36() real ext-real non negative finite cardinal V61() ) Nat) ) : ( ( ) ( finite b2 : ( ( natural ) ( epsilon-transitive epsilon-connected ordinal natural V36() real ext-real non negative finite cardinal V61() ) Nat) -element V61() V81() V82() V83() V84() V85() V86() ) Element of bool NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal V61() V62() V81() V82() V83() V84() V85() V86() V87() ) Element of bool REAL : ( ( ) ( non empty non trivial non finite V81() V82() V83() V87() ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) : ( ( ) ( non empty non trivial non finite ) set ) ) :] : ( ( ) (
Relation-like RAT : ( ( ) ( non
empty non
trivial non
finite V81()
V82()
V83()
V84()
V87() )
set )
-valued INT : ( ( ) ( non
empty non
trivial non
finite V81()
V82()
V83()
V84()
V85()
V87() )
set )
-valued finite V61()
V71()
V72()
V73()
V74() )
set ) ,
REAL : ( ( ) ( non
empty non
trivial non
finite V81()
V82()
V83()
V87() )
set ) )
. [i : ( ( natural ) ( epsilon-transitive epsilon-connected ordinal natural V36() real ext-real non negative finite cardinal V61() ) Nat) ,j : ( ( natural ) ( epsilon-transitive epsilon-connected ordinal natural V36() real ext-real non negative finite cardinal V61() ) Nat) ] : ( ( ) ( )
set ) : ( ( ) (
V36()
real ext-real )
Element of
REAL : ( ( ) ( non
empty non
trivial non
finite V81()
V82()
V83()
V87() )
set ) ) ) ) ) holds
Sum p : ( ( ) (
Relation-like NAT : ( ( ) ( non
empty non
trivial epsilon-transitive epsilon-connected ordinal non
finite cardinal limit_cardinal V61()
V62()
V81()
V82()
V83()
V84()
V85()
V86()
V87() )
Element of
bool REAL : ( ( ) ( non
empty non
trivial non
finite V81()
V82()
V83()
V87() )
set ) : ( ( ) ( non
empty non
trivial non
finite )
set ) )
-defined REAL : ( ( ) ( non
empty non
trivial non
finite V81()
V82()
V83()
V87() )
set )
-valued Function-like finite FinSequence-like FinSubsequence-like V61()
V71()
V72()
V73() )
FinSequence of
REAL : ( ( ) ( non
empty non
trivial non
finite V81()
V82()
V83()
V87() )
set ) ) : ( ( ) (
V36()
real ext-real )
Element of
REAL : ( ( ) ( non
empty non
trivial non
finite V81()
V82()
V83()
V87() )
set ) )
= Sum q : ( ( ) (
Relation-like NAT : ( ( ) ( non
empty non
trivial epsilon-transitive epsilon-connected ordinal non
finite cardinal limit_cardinal V61()
V62()
V81()
V82()
V83()
V84()
V85()
V86()
V87() )
Element of
bool REAL : ( ( ) ( non
empty non
trivial non
finite V81()
V82()
V83()
V87() )
set ) : ( ( ) ( non
empty non
trivial non
finite )
set ) )
-defined REAL : ( ( ) ( non
empty non
trivial non
finite V81()
V82()
V83()
V87() )
set )
-valued Function-like finite FinSequence-like FinSubsequence-like V61()
V71()
V72()
V73() )
FinSequence of
REAL : ( ( ) ( non
empty non
trivial non
finite V81()
V82()
V83()
V87() )
set ) ) : ( ( ) (
V36()
real ext-real )
Element of
REAL : ( ( ) ( non
empty non
trivial non
finite V81()
V82()
V83()
V87() )
set ) ) ;
begin