:: NAGATA_2 semantic presentation

begin

theorem :: NAGATA_2:1
for i being ( ( ) ( epsilon-transitive epsilon-connected ordinal natural V35() real V37() ext-real non negative finite cardinal V65() V76() V77() V78() V79() V80() V81() ) Element of NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal V76() V77() V78() V79() V80() V81() V82() ) Element of bool REAL : ( ( ) ( non empty non trivial non finite V76() V77() V78() V82() ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) ) st i : ( ( ) ( epsilon-transitive epsilon-connected ordinal natural V35() real V37() ext-real non negative finite cardinal V65() V76() V77() V78() V79() V80() V81() ) Element of NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal V76() V77() V78() V79() V80() V81() V82() ) Element of bool REAL : ( ( ) ( non empty non trivial non finite V76() V77() V78() V82() ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) ) > 0 : ( ( ) ( epsilon-transitive epsilon-connected ordinal natural V35() real V37() ext-real non negative finite cardinal V65() V76() V77() V78() V79() V80() V81() ) Element of NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal V76() V77() V78() V79() V80() V81() V82() ) Element of bool REAL : ( ( ) ( non empty non trivial non finite V76() V77() V78() V82() ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) ) holds
ex n, m being ( ( ) ( epsilon-transitive epsilon-connected ordinal natural V35() real V37() ext-real non negative finite cardinal V65() V76() V77() V78() V79() V80() V81() ) Element of NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal V76() V77() V78() V79() V80() V81() V82() ) Element of bool REAL : ( ( ) ( non empty non trivial non finite V76() V77() V78() V82() ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) ) st i : ( ( ) ( epsilon-transitive epsilon-connected ordinal natural V35() real V37() ext-real non negative finite cardinal V65() V76() V77() V78() V79() V80() V81() ) Element of NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal V76() V77() V78() V79() V80() V81() V82() ) Element of bool REAL : ( ( ) ( non empty non trivial non finite V76() V77() V78() V82() ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) ) = (2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V35() real V37() ext-real positive non negative finite cardinal V65() V76() V77() V78() V79() V80() V81() ) Element of NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal V76() V77() V78() V79() V80() V81() V82() ) Element of bool REAL : ( ( ) ( non empty non trivial non finite V76() V77() V78() V82() ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) ) |^ n : ( ( ) ( epsilon-transitive epsilon-connected ordinal natural V35() real V37() ext-real non negative finite cardinal V65() V76() V77() V78() V79() V80() V81() ) Element of NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal V76() V77() V78() V79() V80() V81() V82() ) Element of bool REAL : ( ( ) ( non empty non trivial non finite V76() V77() V78() V82() ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) ) ) : ( ( ) ( epsilon-transitive epsilon-connected ordinal natural V35() real V37() ext-real non negative finite cardinal V65() V76() V77() V78() V79() V80() V81() ) Element of NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal V76() V77() V78() V79() V80() V81() V82() ) Element of bool REAL : ( ( ) ( non empty non trivial non finite V76() V77() V78() V82() ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) ) * ((2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V35() real V37() ext-real positive non negative finite cardinal V65() V76() V77() V78() V79() V80() V81() ) Element of NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal V76() V77() V78() V79() V80() V81() V82() ) Element of bool REAL : ( ( ) ( non empty non trivial non finite V76() V77() V78() V82() ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) ) * m : ( ( ) ( epsilon-transitive epsilon-connected ordinal natural V35() real V37() ext-real non negative finite cardinal V65() V76() V77() V78() V79() V80() V81() ) Element of NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal V76() V77() V78() V79() V80() V81() V82() ) Element of bool REAL : ( ( ) ( non empty non trivial non finite V76() V77() V78() V82() ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) ) ) : ( ( ) ( epsilon-transitive epsilon-connected ordinal natural V35() real V37() ext-real non negative finite cardinal V65() V76() V77() V78() V79() V80() V81() ) Element of NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal V76() V77() V78() V79() V80() V81() V82() ) Element of bool REAL : ( ( ) ( non empty non trivial non finite V76() V77() V78() V82() ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) ) + 1 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V35() real V37() ext-real positive non negative finite cardinal V65() V76() V77() V78() V79() V80() V81() ) Element of NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal V76() V77() V78() V79() V80() V81() V82() ) Element of bool REAL : ( ( ) ( non empty non trivial non finite V76() V77() V78() V82() ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) ) ) : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V35() real V37() ext-real positive non negative finite cardinal V65() V76() V77() V78() V79() V80() V81() ) Element of NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal V76() V77() V78() V79() V80() V81() V82() ) Element of bool REAL : ( ( ) ( non empty non trivial non finite V76() V77() V78() V82() ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) ) : ( ( ) ( epsilon-transitive epsilon-connected ordinal natural V35() real V37() ext-real non negative finite cardinal V65() V76() V77() V78() V79() V80() V81() ) Element of NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal V76() V77() V78() V79() V80() V81() V82() ) Element of bool REAL : ( ( ) ( non empty non trivial non finite V76() V77() V78() V82() ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) ) ;

definition
func PairFunc -> ( ( Function-like quasi_total ) ( Relation-like [:NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal V76() V77() V78() V79() V80() V81() V82() ) Element of bool REAL : ( ( ) ( non empty non trivial non finite V76() V77() V78() V82() ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) ,NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal V76() V77() V78() V79() V80() V81() V82() ) Element of bool REAL : ( ( ) ( non empty non trivial non finite V76() V77() V78() V82() ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) :] : ( ( ) ( RAT : ( ( ) ( non empty non trivial non finite V76() V77() V78() V79() V82() ) set ) -valued INT : ( ( ) ( non empty non trivial non finite V76() V77() V78() V79() V80() V82() ) set ) -valued non empty non trivial non finite complex-valued ext-real-valued real-valued natural-valued ) set ) -defined NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal V76() V77() V78() V79() V80() V81() V82() ) Element of bool REAL : ( ( ) ( non empty non trivial non finite V76() V77() V78() V82() ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) -valued Function-like non empty total quasi_total complex-valued ext-real-valued real-valued natural-valued ) Function of [:NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal V76() V77() V78() V79() V80() V81() V82() ) Element of bool REAL : ( ( ) ( non empty non trivial non finite V76() V77() V78() V82() ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) ,NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal V76() V77() V78() V79() V80() V81() V82() ) Element of bool REAL : ( ( ) ( non empty non trivial non finite V76() V77() V78() V82() ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) :] : ( ( ) ( RAT : ( ( ) ( non empty non trivial non finite V76() V77() V78() V79() V82() ) set ) -valued INT : ( ( ) ( non empty non trivial non finite V76() V77() V78() V79() V80() V82() ) set ) -valued non empty non trivial non finite complex-valued ext-real-valued real-valued natural-valued ) set ) , NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal V76() V77() V78() V79() V80() V81() V82() ) Element of bool REAL : ( ( ) ( non empty non trivial non finite V76() V77() V78() V82() ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) ) means :: NAGATA_2:def 1
for n, m being ( ( ) ( epsilon-transitive epsilon-connected ordinal natural V35() real V37() ext-real non negative finite cardinal V65() V76() V77() V78() V79() V80() V81() ) Element of NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal V76() V77() V78() V79() V80() V81() V82() ) Element of bool REAL : ( ( ) ( non empty non trivial non finite V76() V77() V78() V82() ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) ) holds it : ( ( ) ( ) MetrStruct ) . [n : ( ( ) ( epsilon-transitive epsilon-connected ordinal natural V35() real V37() ext-real non negative finite cardinal V65() V76() V77() V78() V79() V80() V81() ) Element of NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal V76() V77() V78() V79() V80() V81() V82() ) Element of bool REAL : ( ( ) ( non empty non trivial non finite V76() V77() V78() V82() ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) ) ,m : ( ( ) ( epsilon-transitive epsilon-connected ordinal natural V35() real V37() ext-real non negative finite cardinal V65() V76() V77() V78() V79() V80() V81() ) Element of NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal V76() V77() V78() V79() V80() V81() V82() ) Element of bool REAL : ( ( ) ( non empty non trivial non finite V76() V77() V78() V82() ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) ) ] : ( ( ) ( ) Element of [:NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal V76() V77() V78() V79() V80() V81() V82() ) Element of bool REAL : ( ( ) ( non empty non trivial non finite V76() V77() V78() V82() ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) ,NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal V76() V77() V78() V79() V80() V81() V82() ) Element of bool REAL : ( ( ) ( non empty non trivial non finite V76() V77() V78() V82() ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) :] : ( ( ) ( RAT : ( ( ) ( non empty non trivial non finite V76() V77() V78() V79() V82() ) set ) -valued INT : ( ( ) ( non empty non trivial non finite V76() V77() V78() V79() V80() V82() ) set ) -valued non empty non trivial non finite complex-valued ext-real-valued real-valued natural-valued ) set ) ) : ( ( ) ( epsilon-transitive epsilon-connected ordinal natural V35() real V37() ext-real non negative finite cardinal V65() V76() V77() V78() V79() V80() V81() ) Element of NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal V76() V77() V78() V79() V80() V81() V82() ) Element of bool REAL : ( ( ) ( non empty non trivial non finite V76() V77() V78() V82() ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) ) = ((2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V35() real V37() ext-real positive non negative finite cardinal V65() V76() V77() V78() V79() V80() V81() ) Element of NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal V76() V77() V78() V79() V80() V81() V82() ) Element of bool REAL : ( ( ) ( non empty non trivial non finite V76() V77() V78() V82() ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) ) |^ n : ( ( ) ( epsilon-transitive epsilon-connected ordinal natural V35() real V37() ext-real non negative finite cardinal V65() V76() V77() V78() V79() V80() V81() ) Element of NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal V76() V77() V78() V79() V80() V81() V82() ) Element of bool REAL : ( ( ) ( non empty non trivial non finite V76() V77() V78() V82() ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) ) ) : ( ( ) ( epsilon-transitive epsilon-connected ordinal natural V35() real V37() ext-real non negative finite cardinal V65() V76() V77() V78() V79() V80() V81() ) Element of NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal V76() V77() V78() V79() V80() V81() V82() ) Element of bool REAL : ( ( ) ( non empty non trivial non finite V76() V77() V78() V82() ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) ) * ((2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V35() real V37() ext-real positive non negative finite cardinal V65() V76() V77() V78() V79() V80() V81() ) Element of NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal V76() V77() V78() V79() V80() V81() V82() ) Element of bool REAL : ( ( ) ( non empty non trivial non finite V76() V77() V78() V82() ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) ) * m : ( ( ) ( epsilon-transitive epsilon-connected ordinal natural V35() real V37() ext-real non negative finite cardinal V65() V76() V77() V78() V79() V80() V81() ) Element of NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal V76() V77() V78() V79() V80() V81() V82() ) Element of bool REAL : ( ( ) ( non empty non trivial non finite V76() V77() V78() V82() ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) ) ) : ( ( ) ( epsilon-transitive epsilon-connected ordinal natural V35() real V37() ext-real non negative finite cardinal V65() V76() V77() V78() V79() V80() V81() ) Element of NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal V76() V77() V78() V79() V80() V81() V82() ) Element of bool REAL : ( ( ) ( non empty non trivial non finite V76() V77() V78() V82() ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) ) + 1 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V35() real V37() ext-real positive non negative finite cardinal V65() V76() V77() V78() V79() V80() V81() ) Element of NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal V76() V77() V78() V79() V80() V81() V82() ) Element of bool REAL : ( ( ) ( non empty non trivial non finite V76() V77() V78() V82() ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) ) ) : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V35() real V37() ext-real positive non negative finite cardinal V65() V76() V77() V78() V79() V80() V81() ) Element of NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal V76() V77() V78() V79() V80() V81() V82() ) Element of bool REAL : ( ( ) ( non empty non trivial non finite V76() V77() V78() V82() ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) ) ) : ( ( ) ( epsilon-transitive epsilon-connected ordinal natural V35() real V37() ext-real non negative finite cardinal V65() V76() V77() V78() V79() V80() V81() ) Element of NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal V76() V77() V78() V79() V80() V81() V82() ) Element of bool REAL : ( ( ) ( non empty non trivial non finite V76() V77() V78() V82() ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) ) - 1 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V35() real V37() ext-real positive non negative finite cardinal V65() V76() V77() V78() V79() V80() V81() ) Element of NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal V76() V77() V78() V79() V80() V81() V82() ) Element of bool REAL : ( ( ) ( non empty non trivial non finite V76() V77() V78() V82() ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) ) : ( ( ) ( V35() real ext-real ) Element of REAL : ( ( ) ( non empty non trivial non finite V76() V77() V78() V82() ) set ) ) ;
end;

theorem :: NAGATA_2:2
PairFunc : ( ( Function-like quasi_total ) ( Relation-like [:NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal V76() V77() V78() V79() V80() V81() V82() ) Element of bool REAL : ( ( ) ( non empty non trivial non finite V76() V77() V78() V82() ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) ,NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal V76() V77() V78() V79() V80() V81() V82() ) Element of bool REAL : ( ( ) ( non empty non trivial non finite V76() V77() V78() V82() ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) :] : ( ( ) ( RAT : ( ( ) ( non empty non trivial non finite V76() V77() V78() V79() V82() ) set ) -valued INT : ( ( ) ( non empty non trivial non finite V76() V77() V78() V79() V80() V82() ) set ) -valued non empty non trivial non finite complex-valued ext-real-valued real-valued natural-valued ) set ) -defined NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal V76() V77() V78() V79() V80() V81() V82() ) Element of bool REAL : ( ( ) ( non empty non trivial non finite V76() V77() V78() V82() ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) -valued Function-like non empty total quasi_total complex-valued ext-real-valued real-valued natural-valued ) Function of [:NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal V76() V77() V78() V79() V80() V81() V82() ) Element of bool REAL : ( ( ) ( non empty non trivial non finite V76() V77() V78() V82() ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) ,NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal V76() V77() V78() V79() V80() V81() V82() ) Element of bool REAL : ( ( ) ( non empty non trivial non finite V76() V77() V78() V82() ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) :] : ( ( ) ( RAT : ( ( ) ( non empty non trivial non finite V76() V77() V78() V79() V82() ) set ) -valued INT : ( ( ) ( non empty non trivial non finite V76() V77() V78() V79() V80() V82() ) set ) -valued non empty non trivial non finite complex-valued ext-real-valued real-valued natural-valued ) set ) , NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal V76() V77() V78() V79() V80() V81() V82() ) Element of bool REAL : ( ( ) ( non empty non trivial non finite V76() V77() V78() V82() ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) ) is bijective ;

definition
let X be ( ( ) ( ) set ) ;
let f be ( ( Function-like quasi_total ) ( Relation-like [:X : ( ( ) ( ) set ) ,X : ( ( ) ( ) set ) :] : ( ( ) ( ) set ) -defined REAL : ( ( ) ( non empty non trivial non finite V76() V77() V78() V82() ) set ) -valued Function-like total quasi_total complex-valued ext-real-valued real-valued ) Function of [:X : ( ( ) ( ) set ) ,X : ( ( ) ( ) set ) :] : ( ( ) ( ) set ) , REAL : ( ( ) ( non empty non trivial non finite V76() V77() V78() V82() ) set ) ) ;
let x be ( ( ) ( ) Element of X : ( ( ) ( ) set ) ) ;
func dist (f,x) -> ( ( Function-like quasi_total ) ( Relation-like X : ( ( ) ( ) MetrStruct ) -defined REAL : ( ( ) ( non empty non trivial non finite V76() V77() V78() V82() ) set ) -valued Function-like total quasi_total complex-valued ext-real-valued real-valued ) Function of X : ( ( ) ( ) MetrStruct ) , REAL : ( ( ) ( non empty non trivial non finite V76() V77() V78() V82() ) set ) ) means :: NAGATA_2:def 2
for y being ( ( ) ( ) Element of X : ( ( ) ( ) MetrStruct ) ) holds it : ( ( ) ( ) Element of X : ( ( ) ( ) MetrStruct ) ) . y : ( ( ) ( ) Element of X : ( ( ) ( ) set ) ) : ( ( ) ( V35() real ext-real ) Element of REAL : ( ( ) ( non empty non trivial non finite V76() V77() V78() V82() ) set ) ) = f : ( ( Function-like quasi_total ) ( Relation-like [:X : ( ( ) ( ) MetrStruct ) ,X : ( ( ) ( ) MetrStruct ) :] : ( ( ) ( ) set ) -defined REAL : ( ( ) ( non empty non trivial non finite V76() V77() V78() V82() ) set ) -valued Function-like total quasi_total complex-valued ext-real-valued real-valued ) Element of bool [:[:X : ( ( ) ( ) MetrStruct ) ,X : ( ( ) ( ) MetrStruct ) :] : ( ( ) ( ) set ) ,REAL : ( ( ) ( non empty non trivial non finite V76() V77() V78() V82() ) set ) :] : ( ( ) ( complex-valued ext-real-valued real-valued ) set ) : ( ( ) ( non empty ) set ) ) . (x : ( ( ) ( ) Element of X : ( ( ) ( ) MetrStruct ) ) ,y : ( ( ) ( ) Element of X : ( ( ) ( ) set ) ) ) : ( ( ) ( V35() real ext-real ) Element of REAL : ( ( ) ( non empty non trivial non finite V76() V77() V78() V82() ) set ) ) ;
end;

theorem :: NAGATA_2:3
for T1, T2 being ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace)
for D being ( ( ) ( ) Subset of ) st D : ( ( ) ( ) Subset of ) is open holds
for x1 being ( ( ) ( ) Point of ( ( ) ( non empty ) set ) )
for x2 being ( ( ) ( ) Point of ( ( ) ( non empty ) set ) )
for X1 being ( ( ) ( ) Subset of )
for X2 being ( ( ) ( ) Subset of ) holds
( ( X1 : ( ( ) ( ) Subset of ) = (pr1 ( the carrier of T1 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) , the carrier of T2 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) )) : ( ( Function-like quasi_total ) ( Relation-like [: the carrier of b1 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) , the carrier of b2 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) :] : ( ( ) ( non empty ) set ) -defined the carrier of b1 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) -valued Function-like non empty total quasi_total ) Element of bool [:[: the carrier of b1 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) , the carrier of b2 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) :] : ( ( ) ( non empty ) set ) , the carrier of b1 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) :] : ( ( ) ( non empty ) set ) : ( ( ) ( non empty ) set ) ) .: (D : ( ( ) ( ) Subset of ) /\ [: the carrier of T1 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) ,{x2 : ( ( ) ( ) Point of ( ( ) ( non empty ) set ) ) } : ( ( ) ( non empty trivial finite 1 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V35() real V37() ext-real positive non negative finite cardinal V65() V76() V77() V78() V79() V80() V81() ) Element of NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal V76() V77() V78() V79() V80() V81() V82() ) Element of bool REAL : ( ( ) ( non empty non trivial non finite V76() V77() V78() V82() ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) ) -element ) Element of bool the carrier of b2 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) : ( ( ) ( non empty ) set ) ) :] : ( ( ) ( non empty ) set ) ) : ( ( ) ( ) Element of bool the carrier of [:b1 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) ,b2 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) :] : ( ( strict TopSpace-like ) ( non empty strict TopSpace-like ) TopStruct ) : ( ( ) ( non empty ) set ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( ) Element of bool the carrier of b1 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) : ( ( ) ( non empty ) set ) ) implies X1 : ( ( ) ( ) Subset of ) is open ) & ( X2 : ( ( ) ( ) Subset of ) = (pr2 ( the carrier of T1 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) , the carrier of T2 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) )) : ( ( Function-like quasi_total ) ( Relation-like [: the carrier of b1 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) , the carrier of b2 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) :] : ( ( ) ( non empty ) set ) -defined the carrier of b2 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) -valued Function-like non empty total quasi_total ) Element of bool [:[: the carrier of b1 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) , the carrier of b2 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) :] : ( ( ) ( non empty ) set ) , the carrier of b2 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) :] : ( ( ) ( non empty ) set ) : ( ( ) ( non empty ) set ) ) .: (D : ( ( ) ( ) Subset of ) /\ [:{x1 : ( ( ) ( ) Point of ( ( ) ( non empty ) set ) ) } : ( ( ) ( non empty trivial finite 1 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V35() real V37() ext-real positive non negative finite cardinal V65() V76() V77() V78() V79() V80() V81() ) Element of NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal V76() V77() V78() V79() V80() V81() V82() ) Element of bool REAL : ( ( ) ( non empty non trivial non finite V76() V77() V78() V82() ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) ) -element ) Element of bool the carrier of b1 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) : ( ( ) ( non empty ) set ) ) , the carrier of T2 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) :] : ( ( ) ( non empty ) set ) ) : ( ( ) ( ) Element of bool the carrier of [:b1 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) ,b2 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) :] : ( ( strict TopSpace-like ) ( non empty strict TopSpace-like ) TopStruct ) : ( ( ) ( non empty ) set ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( ) Element of bool the carrier of b2 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) : ( ( ) ( non empty ) set ) ) implies X2 : ( ( ) ( ) Subset of ) is open ) ) ;

theorem :: NAGATA_2:4
for T being ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace)
for pmet being ( ( Function-like quasi_total ) ( Relation-like [: the carrier of b1 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) , the carrier of b1 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) :] : ( ( ) ( non empty ) set ) -defined REAL : ( ( ) ( non empty non trivial non finite V76() V77() V78() V82() ) set ) -valued Function-like non empty total quasi_total complex-valued ext-real-valued real-valued ) Function of [: the carrier of T : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) , the carrier of T : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) :] : ( ( ) ( non empty ) set ) , REAL : ( ( ) ( non empty non trivial non finite V76() V77() V78() V82() ) set ) ) st ( for pmet9 being ( ( Function-like quasi_total ) ( Relation-like the carrier of [:b1 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) ,b1 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) :] : ( ( strict TopSpace-like ) ( non empty strict TopSpace-like ) TopStruct ) : ( ( ) ( non empty ) set ) -defined REAL : ( ( ) ( non empty non trivial non finite V76() V77() V78() V82() ) set ) -valued Function-like non empty total quasi_total complex-valued ext-real-valued real-valued ) RealMap of ( ( ) ( non empty ) set ) ) st pmet : ( ( Function-like quasi_total ) ( Relation-like [: the carrier of b1 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) , the carrier of b1 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) :] : ( ( ) ( non empty ) set ) -defined REAL : ( ( ) ( non empty non trivial non finite V76() V77() V78() V82() ) set ) -valued Function-like non empty total quasi_total complex-valued ext-real-valued real-valued ) Function of [: the carrier of b1 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) , the carrier of b1 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) :] : ( ( ) ( non empty ) set ) , REAL : ( ( ) ( non empty non trivial non finite V76() V77() V78() V82() ) set ) ) = pmet9 : ( ( ) ( ) Point of ( ( ) ( non empty ) set ) ) holds
pmet9 : ( ( ) ( ) Point of ( ( ) ( non empty ) set ) ) is continuous ) holds
for x being ( ( ) ( ) Point of ( ( ) ( non empty ) set ) ) holds dist (pmet : ( ( Function-like quasi_total ) ( Relation-like [: the carrier of b1 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) , the carrier of b1 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) :] : ( ( ) ( non empty ) set ) -defined REAL : ( ( ) ( non empty non trivial non finite V76() V77() V78() V82() ) set ) -valued Function-like non empty total quasi_total complex-valued ext-real-valued real-valued ) Function of [: the carrier of b1 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) , the carrier of b1 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) :] : ( ( ) ( non empty ) set ) , REAL : ( ( ) ( non empty non trivial non finite V76() V77() V78() V82() ) set ) ) ,x : ( ( ) ( ) Point of ( ( ) ( non empty ) set ) ) ) : ( ( Function-like quasi_total ) ( Relation-like the carrier of b1 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) -defined REAL : ( ( ) ( non empty non trivial non finite V76() V77() V78() V82() ) set ) -valued Function-like non empty total quasi_total complex-valued ext-real-valued real-valued ) Function of the carrier of b1 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) , REAL : ( ( ) ( non empty non trivial non finite V76() V77() V78() V82() ) set ) ) is continuous ;

definition
let X be ( ( non empty ) ( non empty ) set ) ;
let f be ( ( Function-like quasi_total ) ( Relation-like [:X : ( ( non empty ) ( non empty ) set ) ,X : ( ( non empty ) ( non empty ) set ) :] : ( ( ) ( non empty ) set ) -defined REAL : ( ( ) ( non empty non trivial non finite V76() V77() V78() V82() ) set ) -valued Function-like non empty total quasi_total complex-valued ext-real-valued real-valued ) Function of [:X : ( ( non empty ) ( non empty ) set ) ,X : ( ( non empty ) ( non empty ) set ) :] : ( ( ) ( non empty ) set ) , REAL : ( ( ) ( non empty non trivial non finite V76() V77() V78() V82() ) set ) ) ;
let A be ( ( ) ( ) Subset of ( ( ) ( non empty ) set ) ) ;
func lower_bound (f,A) -> ( ( Function-like quasi_total ) ( Relation-like X : ( ( ) ( ) MetrStruct ) -defined REAL : ( ( ) ( non empty non trivial non finite V76() V77() V78() V82() ) set ) -valued Function-like non empty total quasi_total complex-valued ext-real-valued real-valued ) Function of X : ( ( ) ( ) MetrStruct ) , REAL : ( ( ) ( non empty non trivial non finite V76() V77() V78() V82() ) set ) ) means :: NAGATA_2:def 3
for x being ( ( ) ( ) Element of X : ( ( ) ( ) MetrStruct ) ) holds it : ( ( ) ( ) Element of X : ( ( ) ( ) MetrStruct ) ) . x : ( ( ) ( ) Element of X : ( ( non empty ) ( non empty ) set ) ) : ( ( ) ( V35() real ext-real ) Element of REAL : ( ( ) ( non empty non trivial non finite V76() V77() V78() V82() ) set ) ) = lower_bound ((dist (f : ( ( Function-like quasi_total ) ( Relation-like [:X : ( ( ) ( ) MetrStruct ) ,X : ( ( ) ( ) MetrStruct ) :] : ( ( ) ( ) set ) -defined REAL : ( ( ) ( non empty non trivial non finite V76() V77() V78() V82() ) set ) -valued Function-like total quasi_total complex-valued ext-real-valued real-valued ) Element of bool [:[:X : ( ( ) ( ) MetrStruct ) ,X : ( ( ) ( ) MetrStruct ) :] : ( ( ) ( ) set ) ,REAL : ( ( ) ( non empty non trivial non finite V76() V77() V78() V82() ) set ) :] : ( ( ) ( complex-valued ext-real-valued real-valued ) set ) : ( ( ) ( non empty ) set ) ) ,x : ( ( ) ( ) Element of X : ( ( non empty ) ( non empty ) set ) ) )) : ( ( Function-like quasi_total ) ( Relation-like X : ( ( ) ( ) MetrStruct ) -defined REAL : ( ( ) ( non empty non trivial non finite V76() V77() V78() V82() ) set ) -valued Function-like total quasi_total complex-valued ext-real-valued real-valued ) Function of X : ( ( ) ( ) MetrStruct ) , REAL : ( ( ) ( non empty non trivial non finite V76() V77() V78() V82() ) set ) ) .: A : ( ( ) ( ) Element of X : ( ( ) ( ) MetrStruct ) ) ) : ( ( ) ( V76() V77() V78() ) Element of bool REAL : ( ( ) ( non empty non trivial non finite V76() V77() V78() V82() ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) : ( ( ) ( V35() real ext-real ) Element of REAL : ( ( ) ( non empty non trivial non finite V76() V77() V78() V82() ) set ) ) ;
end;

theorem :: NAGATA_2:5
for X being ( ( non empty ) ( non empty ) set )
for f being ( ( Function-like quasi_total ) ( Relation-like [:b1 : ( ( non empty ) ( non empty ) set ) ,b1 : ( ( non empty ) ( non empty ) set ) :] : ( ( ) ( non empty ) set ) -defined REAL : ( ( ) ( non empty non trivial non finite V76() V77() V78() V82() ) set ) -valued Function-like non empty total quasi_total complex-valued ext-real-valued real-valued ) Function of [:X : ( ( non empty ) ( non empty ) set ) ,X : ( ( non empty ) ( non empty ) set ) :] : ( ( ) ( non empty ) set ) , REAL : ( ( ) ( non empty non trivial non finite V76() V77() V78() V82() ) set ) ) st f : ( ( Function-like quasi_total ) ( Relation-like [:b1 : ( ( non empty ) ( non empty ) set ) ,b1 : ( ( non empty ) ( non empty ) set ) :] : ( ( ) ( non empty ) set ) -defined REAL : ( ( ) ( non empty non trivial non finite V76() V77() V78() V82() ) set ) -valued Function-like non empty total quasi_total complex-valued ext-real-valued real-valued ) Function of [:b1 : ( ( non empty ) ( non empty ) set ) ,b1 : ( ( non empty ) ( non empty ) set ) :] : ( ( ) ( non empty ) set ) , REAL : ( ( ) ( non empty non trivial non finite V76() V77() V78() V82() ) set ) ) is_a_pseudometric_of X : ( ( non empty ) ( non empty ) set ) holds
for A being ( ( non empty ) ( non empty ) Subset of ( ( ) ( non empty ) set ) )
for x being ( ( ) ( ) Element of X : ( ( non empty ) ( non empty ) set ) ) holds (lower_bound (f : ( ( Function-like quasi_total ) ( Relation-like [:b1 : ( ( non empty ) ( non empty ) set ) ,b1 : ( ( non empty ) ( non empty ) set ) :] : ( ( ) ( non empty ) set ) -defined REAL : ( ( ) ( non empty non trivial non finite V76() V77() V78() V82() ) set ) -valued Function-like non empty total quasi_total complex-valued ext-real-valued real-valued ) Function of [:b1 : ( ( non empty ) ( non empty ) set ) ,b1 : ( ( non empty ) ( non empty ) set ) :] : ( ( ) ( non empty ) set ) , REAL : ( ( ) ( non empty non trivial non finite V76() V77() V78() V82() ) set ) ) ,A : ( ( non empty ) ( non empty ) Subset of ( ( ) ( non empty ) set ) ) )) : ( ( Function-like quasi_total ) ( Relation-like b1 : ( ( non empty ) ( non empty ) set ) -defined REAL : ( ( ) ( non empty non trivial non finite V76() V77() V78() V82() ) set ) -valued Function-like non empty total quasi_total complex-valued ext-real-valued real-valued ) Function of b1 : ( ( non empty ) ( non empty ) set ) , REAL : ( ( ) ( non empty non trivial non finite V76() V77() V78() V82() ) set ) ) . x : ( ( ) ( ) Element of b1 : ( ( non empty ) ( non empty ) set ) ) : ( ( ) ( V35() real ext-real ) Element of REAL : ( ( ) ( non empty non trivial non finite V76() V77() V78() V82() ) set ) ) >= 0 : ( ( ) ( epsilon-transitive epsilon-connected ordinal natural V35() real V37() ext-real non negative finite cardinal V65() V76() V77() V78() V79() V80() V81() ) Element of NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal V76() V77() V78() V79() V80() V81() V82() ) Element of bool REAL : ( ( ) ( non empty non trivial non finite V76() V77() V78() V82() ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) ) ;

theorem :: NAGATA_2:6
for X being ( ( non empty ) ( non empty ) set )
for f being ( ( Function-like quasi_total ) ( Relation-like [:b1 : ( ( non empty ) ( non empty ) set ) ,b1 : ( ( non empty ) ( non empty ) set ) :] : ( ( ) ( non empty ) set ) -defined REAL : ( ( ) ( non empty non trivial non finite V76() V77() V78() V82() ) set ) -valued Function-like non empty total quasi_total complex-valued ext-real-valued real-valued ) Function of [:X : ( ( non empty ) ( non empty ) set ) ,X : ( ( non empty ) ( non empty ) set ) :] : ( ( ) ( non empty ) set ) , REAL : ( ( ) ( non empty non trivial non finite V76() V77() V78() V82() ) set ) ) st f : ( ( Function-like quasi_total ) ( Relation-like [:b1 : ( ( non empty ) ( non empty ) set ) ,b1 : ( ( non empty ) ( non empty ) set ) :] : ( ( ) ( non empty ) set ) -defined REAL : ( ( ) ( non empty non trivial non finite V76() V77() V78() V82() ) set ) -valued Function-like non empty total quasi_total complex-valued ext-real-valued real-valued ) Function of [:b1 : ( ( non empty ) ( non empty ) set ) ,b1 : ( ( non empty ) ( non empty ) set ) :] : ( ( ) ( non empty ) set ) , REAL : ( ( ) ( non empty non trivial non finite V76() V77() V78() V82() ) set ) ) is_a_pseudometric_of X : ( ( non empty ) ( non empty ) set ) holds
for A being ( ( ) ( ) Subset of ( ( ) ( non empty ) set ) )
for x being ( ( ) ( ) Element of X : ( ( non empty ) ( non empty ) set ) ) st x : ( ( ) ( ) Element of b1 : ( ( non empty ) ( non empty ) set ) ) in A : ( ( ) ( ) Subset of ( ( ) ( non empty ) set ) ) holds
(lower_bound (f : ( ( Function-like quasi_total ) ( Relation-like [:b1 : ( ( non empty ) ( non empty ) set ) ,b1 : ( ( non empty ) ( non empty ) set ) :] : ( ( ) ( non empty ) set ) -defined REAL : ( ( ) ( non empty non trivial non finite V76() V77() V78() V82() ) set ) -valued Function-like non empty total quasi_total complex-valued ext-real-valued real-valued ) Function of [:b1 : ( ( non empty ) ( non empty ) set ) ,b1 : ( ( non empty ) ( non empty ) set ) :] : ( ( ) ( non empty ) set ) , REAL : ( ( ) ( non empty non trivial non finite V76() V77() V78() V82() ) set ) ) ,A : ( ( ) ( ) Subset of ( ( ) ( non empty ) set ) ) )) : ( ( Function-like quasi_total ) ( Relation-like b1 : ( ( non empty ) ( non empty ) set ) -defined REAL : ( ( ) ( non empty non trivial non finite V76() V77() V78() V82() ) set ) -valued Function-like non empty total quasi_total complex-valued ext-real-valued real-valued ) Function of b1 : ( ( non empty ) ( non empty ) set ) , REAL : ( ( ) ( non empty non trivial non finite V76() V77() V78() V82() ) set ) ) . x : ( ( ) ( ) Element of b1 : ( ( non empty ) ( non empty ) set ) ) : ( ( ) ( V35() real ext-real ) Element of REAL : ( ( ) ( non empty non trivial non finite V76() V77() V78() V82() ) set ) ) = 0 : ( ( ) ( epsilon-transitive epsilon-connected ordinal natural V35() real V37() ext-real non negative finite cardinal V65() V76() V77() V78() V79() V80() V81() ) Element of NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal V76() V77() V78() V79() V80() V81() V82() ) Element of bool REAL : ( ( ) ( non empty non trivial non finite V76() V77() V78() V82() ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) ) ;

theorem :: NAGATA_2:7
for T being ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace)
for pmet being ( ( Function-like quasi_total ) ( Relation-like [: the carrier of b1 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) , the carrier of b1 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) :] : ( ( ) ( non empty ) set ) -defined REAL : ( ( ) ( non empty non trivial non finite V76() V77() V78() V82() ) set ) -valued Function-like non empty total quasi_total complex-valued ext-real-valued real-valued ) Function of [: the carrier of T : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) , the carrier of T : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) :] : ( ( ) ( non empty ) set ) , REAL : ( ( ) ( non empty non trivial non finite V76() V77() V78() V82() ) set ) ) st pmet : ( ( Function-like quasi_total ) ( Relation-like [: the carrier of b1 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) , the carrier of b1 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) :] : ( ( ) ( non empty ) set ) -defined REAL : ( ( ) ( non empty non trivial non finite V76() V77() V78() V82() ) set ) -valued Function-like non empty total quasi_total complex-valued ext-real-valued real-valued ) Function of [: the carrier of b1 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) , the carrier of b1 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) :] : ( ( ) ( non empty ) set ) , REAL : ( ( ) ( non empty non trivial non finite V76() V77() V78() V82() ) set ) ) is_a_pseudometric_of the carrier of T : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) holds
for x, y being ( ( ) ( ) Point of ( ( ) ( non empty ) set ) )
for A being ( ( non empty ) ( non empty ) Subset of ) holds abs (((lower_bound (pmet : ( ( Function-like quasi_total ) ( Relation-like [: the carrier of b1 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) , the carrier of b1 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) :] : ( ( ) ( non empty ) set ) -defined REAL : ( ( ) ( non empty non trivial non finite V76() V77() V78() V82() ) set ) -valued Function-like non empty total quasi_total complex-valued ext-real-valued real-valued ) Function of [: the carrier of b1 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) , the carrier of b1 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) :] : ( ( ) ( non empty ) set ) , REAL : ( ( ) ( non empty non trivial non finite V76() V77() V78() V82() ) set ) ) ,A : ( ( non empty ) ( non empty ) Subset of ) )) : ( ( Function-like quasi_total ) ( Relation-like the carrier of b1 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) -defined REAL : ( ( ) ( non empty non trivial non finite V76() V77() V78() V82() ) set ) -valued Function-like non empty total quasi_total complex-valued ext-real-valued real-valued ) Function of the carrier of b1 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) , REAL : ( ( ) ( non empty non trivial non finite V76() V77() V78() V82() ) set ) ) . x : ( ( ) ( ) Point of ( ( ) ( non empty ) set ) ) ) : ( ( ) ( V35() real ext-real ) Element of REAL : ( ( ) ( non empty non trivial non finite V76() V77() V78() V82() ) set ) ) - ((lower_bound (pmet : ( ( Function-like quasi_total ) ( Relation-like [: the carrier of b1 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) , the carrier of b1 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) :] : ( ( ) ( non empty ) set ) -defined REAL : ( ( ) ( non empty non trivial non finite V76() V77() V78() V82() ) set ) -valued Function-like non empty total quasi_total complex-valued ext-real-valued real-valued ) Function of [: the carrier of b1 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) , the carrier of b1 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) :] : ( ( ) ( non empty ) set ) , REAL : ( ( ) ( non empty non trivial non finite V76() V77() V78() V82() ) set ) ) ,A : ( ( non empty ) ( non empty ) Subset of ) )) : ( ( Function-like quasi_total ) ( Relation-like the carrier of b1 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) -defined REAL : ( ( ) ( non empty non trivial non finite V76() V77() V78() V82() ) set ) -valued Function-like non empty total quasi_total complex-valued ext-real-valued real-valued ) Function of the carrier of b1 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) , REAL : ( ( ) ( non empty non trivial non finite V76() V77() V78() V82() ) set ) ) . y : ( ( ) ( ) Point of ( ( ) ( non empty ) set ) ) ) : ( ( ) ( V35() real ext-real ) Element of REAL : ( ( ) ( non empty non trivial non finite V76() V77() V78() V82() ) set ) ) ) : ( ( ) ( V35() real ext-real ) Element of REAL : ( ( ) ( non empty non trivial non finite V76() V77() V78() V82() ) set ) ) : ( ( ) ( V35() real ext-real ) Element of REAL : ( ( ) ( non empty non trivial non finite V76() V77() V78() V82() ) set ) ) <= pmet : ( ( Function-like quasi_total ) ( Relation-like [: the carrier of b1 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) , the carrier of b1 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) :] : ( ( ) ( non empty ) set ) -defined REAL : ( ( ) ( non empty non trivial non finite V76() V77() V78() V82() ) set ) -valued Function-like non empty total quasi_total complex-valued ext-real-valued real-valued ) Function of [: the carrier of b1 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) , the carrier of b1 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) :] : ( ( ) ( non empty ) set ) , REAL : ( ( ) ( non empty non trivial non finite V76() V77() V78() V82() ) set ) ) . (x : ( ( ) ( ) Point of ( ( ) ( non empty ) set ) ) ,y : ( ( ) ( ) Point of ( ( ) ( non empty ) set ) ) ) : ( ( ) ( V35() real ext-real ) Element of REAL : ( ( ) ( non empty non trivial non finite V76() V77() V78() V82() ) set ) ) ;

theorem :: NAGATA_2:8
for T being ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace)
for pmet being ( ( Function-like quasi_total ) ( Relation-like [: the carrier of b1 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) , the carrier of b1 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) :] : ( ( ) ( non empty ) set ) -defined REAL : ( ( ) ( non empty non trivial non finite V76() V77() V78() V82() ) set ) -valued Function-like non empty total quasi_total complex-valued ext-real-valued real-valued ) Function of [: the carrier of T : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) , the carrier of T : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) :] : ( ( ) ( non empty ) set ) , REAL : ( ( ) ( non empty non trivial non finite V76() V77() V78() V82() ) set ) ) st pmet : ( ( Function-like quasi_total ) ( Relation-like [: the carrier of b1 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) , the carrier of b1 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) :] : ( ( ) ( non empty ) set ) -defined REAL : ( ( ) ( non empty non trivial non finite V76() V77() V78() V82() ) set ) -valued Function-like non empty total quasi_total complex-valued ext-real-valued real-valued ) Function of [: the carrier of b1 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) , the carrier of b1 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) :] : ( ( ) ( non empty ) set ) , REAL : ( ( ) ( non empty non trivial non finite V76() V77() V78() V82() ) set ) ) is_a_pseudometric_of the carrier of T : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) & ( for p being ( ( ) ( ) Point of ( ( ) ( non empty ) set ) ) holds dist (pmet : ( ( Function-like quasi_total ) ( Relation-like [: the carrier of b1 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) , the carrier of b1 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) :] : ( ( ) ( non empty ) set ) -defined REAL : ( ( ) ( non empty non trivial non finite V76() V77() V78() V82() ) set ) -valued Function-like non empty total quasi_total complex-valued ext-real-valued real-valued ) Function of [: the carrier of b1 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) , the carrier of b1 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) :] : ( ( ) ( non empty ) set ) , REAL : ( ( ) ( non empty non trivial non finite V76() V77() V78() V82() ) set ) ) ,p : ( ( non empty ) ( non empty ) Subset of ) ) : ( ( Function-like quasi_total ) ( Relation-like the carrier of b1 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) -defined REAL : ( ( ) ( non empty non trivial non finite V76() V77() V78() V82() ) set ) -valued Function-like non empty total quasi_total complex-valued ext-real-valued real-valued ) Function of the carrier of b1 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) , REAL : ( ( ) ( non empty non trivial non finite V76() V77() V78() V82() ) set ) ) is continuous ) holds
for A being ( ( non empty ) ( non empty ) Subset of ) holds lower_bound (pmet : ( ( Function-like quasi_total ) ( Relation-like [: the carrier of b1 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) , the carrier of b1 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) :] : ( ( ) ( non empty ) set ) -defined REAL : ( ( ) ( non empty non trivial non finite V76() V77() V78() V82() ) set ) -valued Function-like non empty total quasi_total complex-valued ext-real-valued real-valued ) Function of [: the carrier of b1 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) , the carrier of b1 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) :] : ( ( ) ( non empty ) set ) , REAL : ( ( ) ( non empty non trivial non finite V76() V77() V78() V82() ) set ) ) ,A : ( ( non empty ) ( non empty ) Subset of ) ) : ( ( Function-like quasi_total ) ( Relation-like the carrier of b1 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) -defined REAL : ( ( ) ( non empty non trivial non finite V76() V77() V78() V82() ) set ) -valued Function-like non empty total quasi_total complex-valued ext-real-valued real-valued ) Function of the carrier of b1 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) , REAL : ( ( ) ( non empty non trivial non finite V76() V77() V78() V82() ) set ) ) is continuous ;

theorem :: NAGATA_2:9
for X being ( ( ) ( ) set )
for f being ( ( Function-like quasi_total ) ( Relation-like [:b1 : ( ( ) ( ) set ) ,b1 : ( ( ) ( ) set ) :] : ( ( ) ( ) set ) -defined REAL : ( ( ) ( non empty non trivial non finite V76() V77() V78() V82() ) set ) -valued Function-like non empty total quasi_total complex-valued ext-real-valued real-valued ) Function of [:X : ( ( ) ( ) set ) ,X : ( ( ) ( ) set ) :] : ( ( ) ( ) set ) , REAL : ( ( ) ( non empty non trivial non finite V76() V77() V78() V82() ) set ) ) st f : ( ( Function-like quasi_total ) ( Relation-like [:b1 : ( ( ) ( ) set ) ,b1 : ( ( ) ( ) set ) :] : ( ( ) ( ) set ) -defined REAL : ( ( ) ( non empty non trivial non finite V76() V77() V78() V82() ) set ) -valued Function-like non empty total quasi_total complex-valued ext-real-valued real-valued ) Function of [:b1 : ( ( ) ( ) set ) ,b1 : ( ( ) ( ) set ) :] : ( ( ) ( ) set ) , REAL : ( ( ) ( non empty non trivial non finite V76() V77() V78() V82() ) set ) ) is_metric_of X : ( ( ) ( ) set ) holds
f : ( ( Function-like quasi_total ) ( Relation-like [:b1 : ( ( ) ( ) set ) ,b1 : ( ( ) ( ) set ) :] : ( ( ) ( ) set ) -defined REAL : ( ( ) ( non empty non trivial non finite V76() V77() V78() V82() ) set ) -valued Function-like non empty total quasi_total complex-valued ext-real-valued real-valued ) Function of [:b1 : ( ( ) ( ) set ) ,b1 : ( ( ) ( ) set ) :] : ( ( ) ( ) set ) , REAL : ( ( ) ( non empty non trivial non finite V76() V77() V78() V82() ) set ) ) is_a_pseudometric_of X : ( ( ) ( ) set ) ;

theorem :: NAGATA_2:10
for T being ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace)
for pmet being ( ( Function-like quasi_total ) ( Relation-like [: the carrier of b1 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) , the carrier of b1 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) :] : ( ( ) ( non empty ) set ) -defined REAL : ( ( ) ( non empty non trivial non finite V76() V77() V78() V82() ) set ) -valued Function-like non empty total quasi_total complex-valued ext-real-valued real-valued ) Function of [: the carrier of T : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) , the carrier of T : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) :] : ( ( ) ( non empty ) set ) , REAL : ( ( ) ( non empty non trivial non finite V76() V77() V78() V82() ) set ) ) st pmet : ( ( Function-like quasi_total ) ( Relation-like [: the carrier of b1 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) , the carrier of b1 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) :] : ( ( ) ( non empty ) set ) -defined REAL : ( ( ) ( non empty non trivial non finite V76() V77() V78() V82() ) set ) -valued Function-like non empty total quasi_total complex-valued ext-real-valued real-valued ) Function of [: the carrier of b1 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) , the carrier of b1 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) :] : ( ( ) ( non empty ) set ) , REAL : ( ( ) ( non empty non trivial non finite V76() V77() V78() V82() ) set ) ) is_metric_of the carrier of T : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) & ( for A being ( ( non empty ) ( non empty ) Subset of ) holds Cl A : ( ( non empty ) ( non empty ) Subset of ) : ( ( ) ( closed ) Element of bool the carrier of b1 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) : ( ( ) ( non empty ) set ) ) = { p : ( ( ) ( ) Point of ( ( ) ( non empty ) set ) ) where p is ( ( ) ( ) Point of ( ( ) ( non empty ) set ) ) : (lower_bound (pmet : ( ( Function-like quasi_total ) ( Relation-like [: the carrier of b1 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) , the carrier of b1 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) :] : ( ( ) ( non empty ) set ) -defined REAL : ( ( ) ( non empty non trivial non finite V76() V77() V78() V82() ) set ) -valued Function-like non empty total quasi_total complex-valued ext-real-valued real-valued ) Function of [: the carrier of b1 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) , the carrier of b1 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) :] : ( ( ) ( non empty ) set ) , REAL : ( ( ) ( non empty non trivial non finite V76() V77() V78() V82() ) set ) ) ,A : ( ( non empty ) ( non empty ) Subset of ) )) : ( ( Function-like quasi_total ) ( Relation-like the carrier of b1 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) -defined REAL : ( ( ) ( non empty non trivial non finite V76() V77() V78() V82() ) set ) -valued Function-like non empty total quasi_total complex-valued ext-real-valued real-valued ) Function of the carrier of b1 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) , REAL : ( ( ) ( non empty non trivial non finite V76() V77() V78() V82() ) set ) ) . p : ( ( ) ( ) Point of ( ( ) ( non empty ) set ) ) : ( ( ) ( V35() real ext-real ) Element of REAL : ( ( ) ( non empty non trivial non finite V76() V77() V78() V82() ) set ) ) = 0 : ( ( ) ( epsilon-transitive epsilon-connected ordinal natural V35() real V37() ext-real non negative finite cardinal V65() V76() V77() V78() V79() V80() V81() ) Element of NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal V76() V77() V78() V79() V80() V81() V82() ) Element of bool REAL : ( ( ) ( non empty non trivial non finite V76() V77() V78() V82() ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) ) } ) holds
T : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) is metrizable ;

theorem :: NAGATA_2:11
for T being ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace)
for FS2 being ( ( Function-like quasi_total ) ( Relation-like NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal V76() V77() V78() V79() V80() V81() V82() ) Element of bool REAL : ( ( ) ( non empty non trivial non finite V76() V77() V78() V82() ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) -defined PFuncs ([: the carrier of b1 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) , the carrier of b1 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) :] : ( ( ) ( non empty ) set ) ,REAL : ( ( ) ( non empty non trivial non finite V76() V77() V78() V82() ) set ) ) : ( ( ) ( ) set ) -valued Function-like quasi_total ) Functional_Sequence of ( ( ) ( ) set ) ,[: the carrier of T : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) , the carrier of T : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) :] : ( ( ) ( non empty ) set ) ) st ( for n being ( ( ) ( epsilon-transitive epsilon-connected ordinal natural V35() real V37() ext-real non negative finite cardinal V65() V76() V77() V78() V79() V80() V81() ) Element of NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal V76() V77() V78() V79() V80() V81() V82() ) Element of bool REAL : ( ( ) ( non empty non trivial non finite V76() V77() V78() V82() ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) ) ex pmet being ( ( Function-like quasi_total ) ( Relation-like [: the carrier of b1 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) , the carrier of b1 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) :] : ( ( ) ( non empty ) set ) -defined REAL : ( ( ) ( non empty non trivial non finite V76() V77() V78() V82() ) set ) -valued Function-like non empty total quasi_total complex-valued ext-real-valued real-valued ) Function of [: the carrier of T : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) , the carrier of T : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) :] : ( ( ) ( non empty ) set ) , REAL : ( ( ) ( non empty non trivial non finite V76() V77() V78() V82() ) set ) ) st
( FS2 : ( ( Function-like quasi_total ) ( Relation-like NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal V76() V77() V78() V79() V80() V81() V82() ) Element of bool REAL : ( ( ) ( non empty non trivial non finite V76() V77() V78() V82() ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) -defined PFuncs ([: the carrier of b1 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) , the carrier of b1 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) :] : ( ( ) ( non empty ) set ) ,REAL : ( ( ) ( non empty non trivial non finite V76() V77() V78() V82() ) set ) ) : ( ( ) ( ) set ) -valued Function-like quasi_total ) Functional_Sequence of ( ( ) ( ) set ) ,[: the carrier of b1 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) , the carrier of b1 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) :] : ( ( ) ( non empty ) set ) ) . n : ( ( Function-like quasi_total ) ( Relation-like [: the carrier of b1 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) , the carrier of b1 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) :] : ( ( ) ( non empty ) set ) -defined REAL : ( ( ) ( non empty non trivial non finite V76() V77() V78() V82() ) set ) -valued Function-like non empty total quasi_total complex-valued ext-real-valued real-valued ) Function of [: the carrier of b1 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) , the carrier of b1 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) :] : ( ( ) ( non empty ) set ) , REAL : ( ( ) ( non empty non trivial non finite V76() V77() V78() V82() ) set ) ) : ( ( Function-like ) ( Relation-like [: the carrier of b1 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) , the carrier of b1 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) :] : ( ( ) ( non empty ) set ) -defined REAL : ( ( ) ( non empty non trivial non finite V76() V77() V78() V82() ) set ) -valued Function-like complex-valued ext-real-valued real-valued ) Element of bool [:[: the carrier of b1 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) , the carrier of b1 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) :] : ( ( ) ( non empty ) set ) ,REAL : ( ( ) ( non empty non trivial non finite V76() V77() V78() V82() ) set ) :] : ( ( ) ( non empty non trivial non finite complex-valued ext-real-valued real-valued ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) = pmet : ( ( ) ( ) Element of [: the carrier of b1 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) , the carrier of b1 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) :] : ( ( ) ( non empty ) set ) ) & pmet : ( ( ) ( ) Element of [: the carrier of b1 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) , the carrier of b1 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) :] : ( ( ) ( non empty ) set ) ) is_a_pseudometric_of the carrier of T : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) ) ) & ( for pq being ( ( ) ( ) Element of [: the carrier of T : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) , the carrier of T : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) :] : ( ( ) ( non empty ) set ) ) holds FS2 : ( ( Function-like quasi_total ) ( Relation-like NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal V76() V77() V78() V79() V80() V81() V82() ) Element of bool REAL : ( ( ) ( non empty non trivial non finite V76() V77() V78() V82() ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) -defined PFuncs ([: the carrier of b1 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) , the carrier of b1 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) :] : ( ( ) ( non empty ) set ) ,REAL : ( ( ) ( non empty non trivial non finite V76() V77() V78() V82() ) set ) ) : ( ( ) ( ) set ) -valued Function-like quasi_total ) Functional_Sequence of ( ( ) ( ) set ) ,[: the carrier of b1 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) , the carrier of b1 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) :] : ( ( ) ( non empty ) set ) ) # pq : ( ( Function-like quasi_total ) ( Relation-like [: the carrier of b1 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) , the carrier of b1 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) :] : ( ( ) ( non empty ) set ) -defined REAL : ( ( ) ( non empty non trivial non finite V76() V77() V78() V82() ) set ) -valued Function-like non empty total quasi_total complex-valued ext-real-valued real-valued ) Function of [: the carrier of b1 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) , the carrier of b1 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) :] : ( ( ) ( non empty ) set ) , REAL : ( ( ) ( non empty non trivial non finite V76() V77() V78() V82() ) set ) ) : ( ( Function-like quasi_total ) ( Relation-like NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal V76() V77() V78() V79() V80() V81() V82() ) Element of bool REAL : ( ( ) ( non empty non trivial non finite V76() V77() V78() V82() ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) -defined REAL : ( ( ) ( non empty non trivial non finite V76() V77() V78() V82() ) set ) -valued Function-like non empty total quasi_total complex-valued ext-real-valued real-valued ) Element of bool [:NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal V76() V77() V78() V79() V80() V81() V82() ) Element of bool REAL : ( ( ) ( non empty non trivial non finite V76() V77() V78() V82() ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) ,REAL : ( ( ) ( non empty non trivial non finite V76() V77() V78() V82() ) set ) :] : ( ( ) ( non empty non trivial non finite complex-valued ext-real-valued real-valued ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) is summable ) holds
for pmet being ( ( Function-like quasi_total ) ( Relation-like [: the carrier of b1 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) , the carrier of b1 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) :] : ( ( ) ( non empty ) set ) -defined REAL : ( ( ) ( non empty non trivial non finite V76() V77() V78() V82() ) set ) -valued Function-like non empty total quasi_total complex-valued ext-real-valued real-valued ) Function of [: the carrier of T : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) , the carrier of T : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) :] : ( ( ) ( non empty ) set ) , REAL : ( ( ) ( non empty non trivial non finite V76() V77() V78() V82() ) set ) ) st ( for pq being ( ( ) ( ) Element of [: the carrier of T : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) , the carrier of T : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) :] : ( ( ) ( non empty ) set ) ) holds pmet : ( ( Function-like quasi_total ) ( Relation-like [: the carrier of b1 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) , the carrier of b1 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) :] : ( ( ) ( non empty ) set ) -defined REAL : ( ( ) ( non empty non trivial non finite V76() V77() V78() V82() ) set ) -valued Function-like non empty total quasi_total complex-valued ext-real-valued real-valued ) Function of [: the carrier of b1 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) , the carrier of b1 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) :] : ( ( ) ( non empty ) set ) , REAL : ( ( ) ( non empty non trivial non finite V76() V77() V78() V82() ) set ) ) . pq : ( ( ) ( ) Element of [: the carrier of b1 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) , the carrier of b1 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) :] : ( ( ) ( non empty ) set ) ) : ( ( ) ( V35() real ext-real ) Element of REAL : ( ( ) ( non empty non trivial non finite V76() V77() V78() V82() ) set ) ) = Sum (FS2 : ( ( Function-like quasi_total ) ( Relation-like NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal V76() V77() V78() V79() V80() V81() V82() ) Element of bool REAL : ( ( ) ( non empty non trivial non finite V76() V77() V78() V82() ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) -defined PFuncs ([: the carrier of b1 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) , the carrier of b1 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) :] : ( ( ) ( non empty ) set ) ,REAL : ( ( ) ( non empty non trivial non finite V76() V77() V78() V82() ) set ) ) : ( ( ) ( ) set ) -valued Function-like quasi_total ) Functional_Sequence of ( ( ) ( ) set ) ,[: the carrier of b1 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) , the carrier of b1 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) :] : ( ( ) ( non empty ) set ) ) # pq : ( ( ) ( ) Element of [: the carrier of b1 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) , the carrier of b1 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) :] : ( ( ) ( non empty ) set ) ) ) : ( ( Function-like quasi_total ) ( Relation-like NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal V76() V77() V78() V79() V80() V81() V82() ) Element of bool REAL : ( ( ) ( non empty non trivial non finite V76() V77() V78() V82() ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) -defined REAL : ( ( ) ( non empty non trivial non finite V76() V77() V78() V82() ) set ) -valued Function-like non empty total quasi_total complex-valued ext-real-valued real-valued ) Element of bool [:NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal V76() V77() V78() V79() V80() V81() V82() ) Element of bool REAL : ( ( ) ( non empty non trivial non finite V76() V77() V78() V82() ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) ,REAL : ( ( ) ( non empty non trivial non finite V76() V77() V78() V82() ) set ) :] : ( ( ) ( non empty non trivial non finite complex-valued ext-real-valued real-valued ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) : ( ( ) ( V35() real ext-real ) Element of REAL : ( ( ) ( non empty non trivial non finite V76() V77() V78() V82() ) set ) ) ) holds
pmet : ( ( Function-like quasi_total ) ( Relation-like [: the carrier of b1 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) , the carrier of b1 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) :] : ( ( ) ( non empty ) set ) -defined REAL : ( ( ) ( non empty non trivial non finite V76() V77() V78() V82() ) set ) -valued Function-like non empty total quasi_total complex-valued ext-real-valued real-valued ) Function of [: the carrier of b1 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) , the carrier of b1 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) :] : ( ( ) ( non empty ) set ) , REAL : ( ( ) ( non empty non trivial non finite V76() V77() V78() V82() ) set ) ) is_a_pseudometric_of the carrier of T : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) ;

theorem :: NAGATA_2:12
for r being ( ( ) ( V35() real ext-real ) Real)
for n being ( ( ) ( epsilon-transitive epsilon-connected ordinal natural V35() real V37() ext-real non negative finite cardinal V65() V76() V77() V78() V79() V80() V81() ) Element of NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal V76() V77() V78() V79() V80() V81() V82() ) Element of bool REAL : ( ( ) ( non empty non trivial non finite V76() V77() V78() V82() ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) )
for seq being ( ( Function-like quasi_total ) ( Relation-like NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal V76() V77() V78() V79() V80() V81() V82() ) Element of bool REAL : ( ( ) ( non empty non trivial non finite V76() V77() V78() V82() ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) -defined REAL : ( ( ) ( non empty non trivial non finite V76() V77() V78() V82() ) set ) -valued Function-like non empty total quasi_total complex-valued ext-real-valued real-valued ) Real_Sequence) st ( for m being ( ( ) ( epsilon-transitive epsilon-connected ordinal natural V35() real V37() ext-real non negative finite cardinal V65() V76() V77() V78() V79() V80() V81() ) Element of NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal V76() V77() V78() V79() V80() V81() V82() ) Element of bool REAL : ( ( ) ( non empty non trivial non finite V76() V77() V78() V82() ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) ) st m : ( ( ) ( epsilon-transitive epsilon-connected ordinal natural V35() real V37() ext-real non negative finite cardinal V65() V76() V77() V78() V79() V80() V81() ) Element of NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal V76() V77() V78() V79() V80() V81() V82() ) Element of bool REAL : ( ( ) ( non empty non trivial non finite V76() V77() V78() V82() ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) ) <= n : ( ( ) ( epsilon-transitive epsilon-connected ordinal natural V35() real V37() ext-real non negative finite cardinal V65() V76() V77() V78() V79() V80() V81() ) Element of NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal V76() V77() V78() V79() V80() V81() V82() ) Element of bool REAL : ( ( ) ( non empty non trivial non finite V76() V77() V78() V82() ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) ) holds
seq : ( ( Function-like quasi_total ) ( Relation-like NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal V76() V77() V78() V79() V80() V81() V82() ) Element of bool REAL : ( ( ) ( non empty non trivial non finite V76() V77() V78() V82() ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) -defined REAL : ( ( ) ( non empty non trivial non finite V76() V77() V78() V82() ) set ) -valued Function-like non empty total quasi_total complex-valued ext-real-valued real-valued ) Real_Sequence) . m : ( ( ) ( epsilon-transitive epsilon-connected ordinal natural V35() real V37() ext-real non negative finite cardinal V65() V76() V77() V78() V79() V80() V81() ) Element of NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal V76() V77() V78() V79() V80() V81() V82() ) Element of bool REAL : ( ( ) ( non empty non trivial non finite V76() V77() V78() V82() ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) ) : ( ( ) ( V35() real ext-real ) Element of REAL : ( ( ) ( non empty non trivial non finite V76() V77() V78() V82() ) set ) ) <= r : ( ( ) ( V35() real ext-real ) Real) ) holds
for m being ( ( ) ( epsilon-transitive epsilon-connected ordinal natural V35() real V37() ext-real non negative finite cardinal V65() V76() V77() V78() V79() V80() V81() ) Element of NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal V76() V77() V78() V79() V80() V81() V82() ) Element of bool REAL : ( ( ) ( non empty non trivial non finite V76() V77() V78() V82() ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) ) st m : ( ( ) ( epsilon-transitive epsilon-connected ordinal natural V35() real V37() ext-real non negative finite cardinal V65() V76() V77() V78() V79() V80() V81() ) Element of NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal V76() V77() V78() V79() V80() V81() V82() ) Element of bool REAL : ( ( ) ( non empty non trivial non finite V76() V77() V78() V82() ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) ) <= n : ( ( ) ( epsilon-transitive epsilon-connected ordinal natural V35() real V37() ext-real non negative finite cardinal V65() V76() V77() V78() V79() V80() V81() ) Element of NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal V76() V77() V78() V79() V80() V81() V82() ) Element of bool REAL : ( ( ) ( non empty non trivial non finite V76() V77() V78() V82() ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) ) holds
(Partial_Sums seq : ( ( Function-like quasi_total ) ( Relation-like NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal V76() V77() V78() V79() V80() V81() V82() ) Element of bool REAL : ( ( ) ( non empty non trivial non finite V76() V77() V78() V82() ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) -defined REAL : ( ( ) ( non empty non trivial non finite V76() V77() V78() V82() ) set ) -valued Function-like non empty total quasi_total complex-valued ext-real-valued real-valued ) Real_Sequence) ) : ( ( Function-like quasi_total ) ( Relation-like NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal V76() V77() V78() V79() V80() V81() V82() ) Element of bool REAL : ( ( ) ( non empty non trivial non finite V76() V77() V78() V82() ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) -defined REAL : ( ( ) ( non empty non trivial non finite V76() V77() V78() V82() ) set ) -valued Function-like non empty total quasi_total complex-valued ext-real-valued real-valued ) Element of bool [:NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal V76() V77() V78() V79() V80() V81() V82() ) Element of bool REAL : ( ( ) ( non empty non trivial non finite V76() V77() V78() V82() ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) ,REAL : ( ( ) ( non empty non trivial non finite V76() V77() V78() V82() ) set ) :] : ( ( ) ( non empty non trivial non finite complex-valued ext-real-valued real-valued ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) . m : ( ( ) ( epsilon-transitive epsilon-connected ordinal natural V35() real V37() ext-real non negative finite cardinal V65() V76() V77() V78() V79() V80() V81() ) Element of NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal V76() V77() V78() V79() V80() V81() V82() ) Element of bool REAL : ( ( ) ( non empty non trivial non finite V76() V77() V78() V82() ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) ) : ( ( ) ( V35() real ext-real ) Element of REAL : ( ( ) ( non empty non trivial non finite V76() V77() V78() V82() ) set ) ) <= r : ( ( ) ( V35() real ext-real ) Real) * (m : ( ( ) ( epsilon-transitive epsilon-connected ordinal natural V35() real V37() ext-real non negative finite cardinal V65() V76() V77() V78() V79() V80() V81() ) Element of NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal V76() V77() V78() V79() V80() V81() V82() ) Element of bool REAL : ( ( ) ( non empty non trivial non finite V76() V77() V78() V82() ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) ) + 1 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V35() real V37() ext-real positive non negative finite cardinal V65() V76() V77() V78() V79() V80() V81() ) Element of NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal V76() V77() V78() V79() V80() V81() V82() ) Element of bool REAL : ( ( ) ( non empty non trivial non finite V76() V77() V78() V82() ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) ) ) : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V35() real V37() ext-real positive non negative finite cardinal V65() V76() V77() V78() V79() V80() V81() ) Element of NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal V76() V77() V78() V79() V80() V81() V82() ) Element of bool REAL : ( ( ) ( non empty non trivial non finite V76() V77() V78() V82() ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) ) : ( ( ) ( V35() real ext-real ) Element of REAL : ( ( ) ( non empty non trivial non finite V76() V77() V78() V82() ) set ) ) ;

theorem :: NAGATA_2:13
for seq being ( ( Function-like quasi_total ) ( Relation-like NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal V76() V77() V78() V79() V80() V81() V82() ) Element of bool REAL : ( ( ) ( non empty non trivial non finite V76() V77() V78() V82() ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) -defined REAL : ( ( ) ( non empty non trivial non finite V76() V77() V78() V82() ) set ) -valued Function-like non empty total quasi_total complex-valued ext-real-valued real-valued ) Real_Sequence)
for k being ( ( ) ( epsilon-transitive epsilon-connected ordinal natural V35() real V37() ext-real non negative finite cardinal V65() V76() V77() V78() V79() V80() V81() ) Element of NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal V76() V77() V78() V79() V80() V81() V82() ) Element of bool REAL : ( ( ) ( non empty non trivial non finite V76() V77() V78() V82() ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) ) holds abs ((Partial_Sums seq : ( ( Function-like quasi_total ) ( Relation-like NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal V76() V77() V78() V79() V80() V81() V82() ) Element of bool REAL : ( ( ) ( non empty non trivial non finite V76() V77() V78() V82() ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) -defined REAL : ( ( ) ( non empty non trivial non finite V76() V77() V78() V82() ) set ) -valued Function-like non empty total quasi_total complex-valued ext-real-valued real-valued ) Real_Sequence) ) : ( ( Function-like quasi_total ) ( Relation-like NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal V76() V77() V78() V79() V80() V81() V82() ) Element of bool REAL : ( ( ) ( non empty non trivial non finite V76() V77() V78() V82() ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) -defined REAL : ( ( ) ( non empty non trivial non finite V76() V77() V78() V82() ) set ) -valued Function-like non empty total quasi_total complex-valued ext-real-valued real-valued ) Element of bool [:NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal V76() V77() V78() V79() V80() V81() V82() ) Element of bool REAL : ( ( ) ( non empty non trivial non finite V76() V77() V78() V82() ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) ,REAL : ( ( ) ( non empty non trivial non finite V76() V77() V78() V82() ) set ) :] : ( ( ) ( non empty non trivial non finite complex-valued ext-real-valued real-valued ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) . k : ( ( ) ( epsilon-transitive epsilon-connected ordinal natural V35() real V37() ext-real non negative finite cardinal V65() V76() V77() V78() V79() V80() V81() ) Element of NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal V76() V77() V78() V79() V80() V81() V82() ) Element of bool REAL : ( ( ) ( non empty non trivial non finite V76() V77() V78() V82() ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) ) ) : ( ( ) ( V35() real ext-real ) Element of REAL : ( ( ) ( non empty non trivial non finite V76() V77() V78() V82() ) set ) ) : ( ( ) ( V35() real ext-real ) Element of REAL : ( ( ) ( non empty non trivial non finite V76() V77() V78() V82() ) set ) ) <= (Partial_Sums (abs seq : ( ( Function-like quasi_total ) ( Relation-like NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal V76() V77() V78() V79() V80() V81() V82() ) Element of bool REAL : ( ( ) ( non empty non trivial non finite V76() V77() V78() V82() ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) -defined REAL : ( ( ) ( non empty non trivial non finite V76() V77() V78() V82() ) set ) -valued Function-like non empty total quasi_total complex-valued ext-real-valued real-valued ) Real_Sequence) ) : ( ( Function-like ) ( Relation-like NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal V76() V77() V78() V79() V80() V81() V82() ) Element of bool REAL : ( ( ) ( non empty non trivial non finite V76() V77() V78() V82() ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) -defined REAL : ( ( ) ( non empty non trivial non finite V76() V77() V78() V82() ) set ) -valued Function-like non empty total quasi_total complex-valued ext-real-valued real-valued ) Element of bool [:NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal V76() V77() V78() V79() V80() V81() V82() ) Element of bool REAL : ( ( ) ( non empty non trivial non finite V76() V77() V78() V82() ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) ,REAL : ( ( ) ( non empty non trivial non finite V76() V77() V78() V82() ) set ) :] : ( ( ) ( non empty non trivial non finite complex-valued ext-real-valued real-valued ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) ) : ( ( Function-like quasi_total ) ( Relation-like NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal V76() V77() V78() V79() V80() V81() V82() ) Element of bool REAL : ( ( ) ( non empty non trivial non finite V76() V77() V78() V82() ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) -defined REAL : ( ( ) ( non empty non trivial non finite V76() V77() V78() V82() ) set ) -valued Function-like non empty total quasi_total complex-valued ext-real-valued real-valued ) Element of bool [:NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal V76() V77() V78() V79() V80() V81() V82() ) Element of bool REAL : ( ( ) ( non empty non trivial non finite V76() V77() V78() V82() ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) ,REAL : ( ( ) ( non empty non trivial non finite V76() V77() V78() V82() ) set ) :] : ( ( ) ( non empty non trivial non finite complex-valued ext-real-valued real-valued ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) . k : ( ( ) ( epsilon-transitive epsilon-connected ordinal natural V35() real V37() ext-real non negative finite cardinal V65() V76() V77() V78() V79() V80() V81() ) Element of NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal V76() V77() V78() V79() V80() V81() V82() ) Element of bool REAL : ( ( ) ( non empty non trivial non finite V76() V77() V78() V82() ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) ) : ( ( ) ( V35() real ext-real ) Element of REAL : ( ( ) ( non empty non trivial non finite V76() V77() V78() V82() ) set ) ) ;

theorem :: NAGATA_2:14
for T being ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace)
for FS1 being ( ( Function-like quasi_total ) ( Relation-like NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal V76() V77() V78() V79() V80() V81() V82() ) Element of bool REAL : ( ( ) ( non empty non trivial non finite V76() V77() V78() V82() ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) -defined PFuncs ( the carrier of b1 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) ,REAL : ( ( ) ( non empty non trivial non finite V76() V77() V78() V82() ) set ) ) : ( ( ) ( ) set ) -valued Function-like quasi_total ) Functional_Sequence of ( ( ) ( ) set ) , the carrier of T : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) ) st ( for n being ( ( ) ( epsilon-transitive epsilon-connected ordinal natural V35() real V37() ext-real non negative finite cardinal V65() V76() V77() V78() V79() V80() V81() ) Element of NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal V76() V77() V78() V79() V80() V81() V82() ) Element of bool REAL : ( ( ) ( non empty non trivial non finite V76() V77() V78() V82() ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) ) ex f being ( ( Function-like quasi_total ) ( Relation-like the carrier of b1 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) -defined REAL : ( ( ) ( non empty non trivial non finite V76() V77() V78() V82() ) set ) -valued Function-like non empty total quasi_total complex-valued ext-real-valued real-valued ) RealMap of ( ( ) ( non empty ) set ) ) st
( FS1 : ( ( Function-like quasi_total ) ( Relation-like NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal V76() V77() V78() V79() V80() V81() V82() ) Element of bool REAL : ( ( ) ( non empty non trivial non finite V76() V77() V78() V82() ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) -defined PFuncs ( the carrier of b1 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) ,REAL : ( ( ) ( non empty non trivial non finite V76() V77() V78() V82() ) set ) ) : ( ( ) ( ) set ) -valued Function-like quasi_total ) Functional_Sequence of ( ( ) ( ) set ) , the carrier of b1 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) ) . n : ( ( Function-like quasi_total ) ( Relation-like the carrier of b1 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) -defined REAL : ( ( ) ( non empty non trivial non finite V76() V77() V78() V82() ) set ) -valued Function-like non empty total quasi_total complex-valued ext-real-valued real-valued ) RealMap of ( ( ) ( non empty ) set ) ) : ( ( Function-like ) ( Relation-like the carrier of b1 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) -defined REAL : ( ( ) ( non empty non trivial non finite V76() V77() V78() V82() ) set ) -valued Function-like complex-valued ext-real-valued real-valued ) Element of bool [: the carrier of b1 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) ,REAL : ( ( ) ( non empty non trivial non finite V76() V77() V78() V82() ) set ) :] : ( ( ) ( non empty non trivial non finite complex-valued ext-real-valued real-valued ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) = f : ( ( ) ( ) Point of ( ( ) ( non empty ) set ) ) & f : ( ( ) ( ) Point of ( ( ) ( non empty ) set ) ) is continuous & ( for p being ( ( ) ( ) Point of ( ( ) ( non empty ) set ) ) holds f : ( ( ) ( ) Point of ( ( ) ( non empty ) set ) ) . p : ( ( ) ( ) Point of ( ( ) ( non empty ) set ) ) : ( ( ) ( V35() real ext-real ) Element of REAL : ( ( ) ( non empty non trivial non finite V76() V77() V78() V82() ) set ) ) >= 0 : ( ( ) ( epsilon-transitive epsilon-connected ordinal natural V35() real V37() ext-real non negative finite cardinal V65() V76() V77() V78() V79() V80() V81() ) Element of NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal V76() V77() V78() V79() V80() V81() V82() ) Element of bool REAL : ( ( ) ( non empty non trivial non finite V76() V77() V78() V82() ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) ) ) ) ) & ex seq being ( ( Function-like quasi_total ) ( Relation-like NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal V76() V77() V78() V79() V80() V81() V82() ) Element of bool REAL : ( ( ) ( non empty non trivial non finite V76() V77() V78() V82() ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) -defined REAL : ( ( ) ( non empty non trivial non finite V76() V77() V78() V82() ) set ) -valued Function-like non empty total quasi_total complex-valued ext-real-valued real-valued ) Real_Sequence) st
( seq : ( ( Function-like quasi_total ) ( Relation-like the carrier of b1 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) -defined REAL : ( ( ) ( non empty non trivial non finite V76() V77() V78() V82() ) set ) -valued Function-like non empty total quasi_total complex-valued ext-real-valued real-valued ) RealMap of ( ( ) ( non empty ) set ) ) is summable & ( for n being ( ( ) ( epsilon-transitive epsilon-connected ordinal natural V35() real V37() ext-real non negative finite cardinal V65() V76() V77() V78() V79() V80() V81() ) Element of NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal V76() V77() V78() V79() V80() V81() V82() ) Element of bool REAL : ( ( ) ( non empty non trivial non finite V76() V77() V78() V82() ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) )
for p being ( ( ) ( ) Point of ( ( ) ( non empty ) set ) ) holds (FS1 : ( ( Function-like quasi_total ) ( Relation-like NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal V76() V77() V78() V79() V80() V81() V82() ) Element of bool REAL : ( ( ) ( non empty non trivial non finite V76() V77() V78() V82() ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) -defined PFuncs ( the carrier of b1 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) ,REAL : ( ( ) ( non empty non trivial non finite V76() V77() V78() V82() ) set ) ) : ( ( ) ( ) set ) -valued Function-like quasi_total ) Functional_Sequence of ( ( ) ( ) set ) , the carrier of b1 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) ) # p : ( ( ) ( ) Point of ( ( ) ( non empty ) set ) ) ) : ( ( Function-like quasi_total ) ( Relation-like NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal V76() V77() V78() V79() V80() V81() V82() ) Element of bool REAL : ( ( ) ( non empty non trivial non finite V76() V77() V78() V82() ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) -defined REAL : ( ( ) ( non empty non trivial non finite V76() V77() V78() V82() ) set ) -valued Function-like non empty total quasi_total complex-valued ext-real-valued real-valued ) Element of bool [:NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal V76() V77() V78() V79() V80() V81() V82() ) Element of bool REAL : ( ( ) ( non empty non trivial non finite V76() V77() V78() V82() ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) ,REAL : ( ( ) ( non empty non trivial non finite V76() V77() V78() V82() ) set ) :] : ( ( ) ( non empty non trivial non finite complex-valued ext-real-valued real-valued ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) . n : ( ( ) ( ) Point of ( ( ) ( non empty ) set ) ) : ( ( ) ( V35() real ext-real ) Element of REAL : ( ( ) ( non empty non trivial non finite V76() V77() V78() V82() ) set ) ) <= seq : ( ( Function-like quasi_total ) ( Relation-like the carrier of b1 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) -defined REAL : ( ( ) ( non empty non trivial non finite V76() V77() V78() V82() ) set ) -valued Function-like non empty total quasi_total complex-valued ext-real-valued real-valued ) RealMap of ( ( ) ( non empty ) set ) ) . n : ( ( ) ( ) Point of ( ( ) ( non empty ) set ) ) : ( ( ) ( V35() real ext-real ) Element of REAL : ( ( ) ( non empty non trivial non finite V76() V77() V78() V82() ) set ) ) ) ) holds
for f being ( ( Function-like quasi_total ) ( Relation-like the carrier of b1 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) -defined REAL : ( ( ) ( non empty non trivial non finite V76() V77() V78() V82() ) set ) -valued Function-like non empty total quasi_total complex-valued ext-real-valued real-valued ) RealMap of ( ( ) ( non empty ) set ) ) st ( for p being ( ( ) ( ) Point of ( ( ) ( non empty ) set ) ) holds f : ( ( Function-like quasi_total ) ( Relation-like the carrier of b1 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) -defined REAL : ( ( ) ( non empty non trivial non finite V76() V77() V78() V82() ) set ) -valued Function-like non empty total quasi_total complex-valued ext-real-valued real-valued ) RealMap of ( ( ) ( non empty ) set ) ) . p : ( ( ) ( ) Point of ( ( ) ( non empty ) set ) ) : ( ( ) ( V35() real ext-real ) Element of REAL : ( ( ) ( non empty non trivial non finite V76() V77() V78() V82() ) set ) ) = Sum (FS1 : ( ( Function-like quasi_total ) ( Relation-like NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal V76() V77() V78() V79() V80() V81() V82() ) Element of bool REAL : ( ( ) ( non empty non trivial non finite V76() V77() V78() V82() ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) -defined PFuncs ( the carrier of b1 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) ,REAL : ( ( ) ( non empty non trivial non finite V76() V77() V78() V82() ) set ) ) : ( ( ) ( ) set ) -valued Function-like quasi_total ) Functional_Sequence of ( ( ) ( ) set ) , the carrier of b1 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) ) # p : ( ( ) ( ) Point of ( ( ) ( non empty ) set ) ) ) : ( ( Function-like quasi_total ) ( Relation-like NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal V76() V77() V78() V79() V80() V81() V82() ) Element of bool REAL : ( ( ) ( non empty non trivial non finite V76() V77() V78() V82() ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) -defined REAL : ( ( ) ( non empty non trivial non finite V76() V77() V78() V82() ) set ) -valued Function-like non empty total quasi_total complex-valued ext-real-valued real-valued ) Element of bool [:NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal V76() V77() V78() V79() V80() V81() V82() ) Element of bool REAL : ( ( ) ( non empty non trivial non finite V76() V77() V78() V82() ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) ,REAL : ( ( ) ( non empty non trivial non finite V76() V77() V78() V82() ) set ) :] : ( ( ) ( non empty non trivial non finite complex-valued ext-real-valued real-valued ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) : ( ( ) ( V35() real ext-real ) Element of REAL : ( ( ) ( non empty non trivial non finite V76() V77() V78() V82() ) set ) ) ) holds
f : ( ( Function-like quasi_total ) ( Relation-like the carrier of b1 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) -defined REAL : ( ( ) ( non empty non trivial non finite V76() V77() V78() V82() ) set ) -valued Function-like non empty total quasi_total complex-valued ext-real-valued real-valued ) RealMap of ( ( ) ( non empty ) set ) ) is continuous ;

theorem :: NAGATA_2:15
for T being ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace)
for s being ( ( ) ( V35() real ext-real ) Real)
for FS2 being ( ( Function-like quasi_total ) ( Relation-like NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal V76() V77() V78() V79() V80() V81() V82() ) Element of bool REAL : ( ( ) ( non empty non trivial non finite V76() V77() V78() V82() ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) -defined PFuncs ([: the carrier of b1 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) , the carrier of b1 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) :] : ( ( ) ( non empty ) set ) ,REAL : ( ( ) ( non empty non trivial non finite V76() V77() V78() V82() ) set ) ) : ( ( ) ( ) set ) -valued Function-like quasi_total ) Functional_Sequence of ( ( ) ( ) set ) ,[: the carrier of T : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) , the carrier of T : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) :] : ( ( ) ( non empty ) set ) ) st ( for n being ( ( ) ( epsilon-transitive epsilon-connected ordinal natural V35() real V37() ext-real non negative finite cardinal V65() V76() V77() V78() V79() V80() V81() ) Element of NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal V76() V77() V78() V79() V80() V81() V82() ) Element of bool REAL : ( ( ) ( non empty non trivial non finite V76() V77() V78() V82() ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) ) ex pmet being ( ( Function-like quasi_total ) ( Relation-like [: the carrier of b1 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) , the carrier of b1 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) :] : ( ( ) ( non empty ) set ) -defined REAL : ( ( ) ( non empty non trivial non finite V76() V77() V78() V82() ) set ) -valued Function-like non empty total quasi_total complex-valued ext-real-valued real-valued ) Function of [: the carrier of T : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) , the carrier of T : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) :] : ( ( ) ( non empty ) set ) , REAL : ( ( ) ( non empty non trivial non finite V76() V77() V78() V82() ) set ) ) st
( FS2 : ( ( Function-like quasi_total ) ( Relation-like NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal V76() V77() V78() V79() V80() V81() V82() ) Element of bool REAL : ( ( ) ( non empty non trivial non finite V76() V77() V78() V82() ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) -defined PFuncs ([: the carrier of b1 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) , the carrier of b1 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) :] : ( ( ) ( non empty ) set ) ,REAL : ( ( ) ( non empty non trivial non finite V76() V77() V78() V82() ) set ) ) : ( ( ) ( ) set ) -valued Function-like quasi_total ) Functional_Sequence of ( ( ) ( ) set ) ,[: the carrier of b1 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) , the carrier of b1 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) :] : ( ( ) ( non empty ) set ) ) . n : ( ( Function-like quasi_total ) ( Relation-like [: the carrier of b1 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) , the carrier of b1 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) :] : ( ( ) ( non empty ) set ) -defined REAL : ( ( ) ( non empty non trivial non finite V76() V77() V78() V82() ) set ) -valued Function-like non empty total quasi_total complex-valued ext-real-valued real-valued ) Function of [: the carrier of b1 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) , the carrier of b1 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) :] : ( ( ) ( non empty ) set ) , REAL : ( ( ) ( non empty non trivial non finite V76() V77() V78() V82() ) set ) ) : ( ( Function-like ) ( Relation-like [: the carrier of b1 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) , the carrier of b1 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) :] : ( ( ) ( non empty ) set ) -defined REAL : ( ( ) ( non empty non trivial non finite V76() V77() V78() V82() ) set ) -valued Function-like complex-valued ext-real-valued real-valued ) Element of bool [:[: the carrier of b1 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) , the carrier of b1 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) :] : ( ( ) ( non empty ) set ) ,REAL : ( ( ) ( non empty non trivial non finite V76() V77() V78() V82() ) set ) :] : ( ( ) ( non empty non trivial non finite complex-valued ext-real-valued real-valued ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) = pmet : ( ( Function-like quasi_total ) ( Relation-like the carrier of [:b1 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) ,b1 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) :] : ( ( strict TopSpace-like ) ( non empty strict TopSpace-like ) TopStruct ) : ( ( ) ( non empty ) set ) -defined REAL : ( ( ) ( non empty non trivial non finite V76() V77() V78() V82() ) set ) -valued Function-like non empty total quasi_total complex-valued ext-real-valued real-valued ) RealMap of ( ( ) ( non empty ) set ) ) & pmet : ( ( Function-like quasi_total ) ( Relation-like the carrier of [:b1 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) ,b1 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) :] : ( ( strict TopSpace-like ) ( non empty strict TopSpace-like ) TopStruct ) : ( ( ) ( non empty ) set ) -defined REAL : ( ( ) ( non empty non trivial non finite V76() V77() V78() V82() ) set ) -valued Function-like non empty total quasi_total complex-valued ext-real-valued real-valued ) RealMap of ( ( ) ( non empty ) set ) ) is_a_pseudometric_of the carrier of T : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) & ( for pq being ( ( ) ( ) Element of [: the carrier of T : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) , the carrier of T : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) :] : ( ( ) ( non empty ) set ) ) holds pmet : ( ( Function-like quasi_total ) ( Relation-like the carrier of [:b1 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) ,b1 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) :] : ( ( strict TopSpace-like ) ( non empty strict TopSpace-like ) TopStruct ) : ( ( ) ( non empty ) set ) -defined REAL : ( ( ) ( non empty non trivial non finite V76() V77() V78() V82() ) set ) -valued Function-like non empty total quasi_total complex-valued ext-real-valued real-valued ) RealMap of ( ( ) ( non empty ) set ) ) . pq : ( ( Function-like quasi_total ) ( Relation-like the carrier of [:b1 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) ,b1 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) :] : ( ( strict TopSpace-like ) ( non empty strict TopSpace-like ) TopStruct ) : ( ( ) ( non empty ) set ) -defined REAL : ( ( ) ( non empty non trivial non finite V76() V77() V78() V82() ) set ) -valued Function-like non empty total quasi_total complex-valued ext-real-valued real-valued ) RealMap of ( ( ) ( non empty ) set ) ) : ( ( ) ( V35() real ext-real ) Element of REAL : ( ( ) ( non empty non trivial non finite V76() V77() V78() V82() ) set ) ) <= s : ( ( ) ( V35() real ext-real ) Real) ) & ( for pmet9 being ( ( Function-like quasi_total ) ( Relation-like the carrier of [:b1 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) ,b1 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) :] : ( ( strict TopSpace-like ) ( non empty strict TopSpace-like ) TopStruct ) : ( ( ) ( non empty ) set ) -defined REAL : ( ( ) ( non empty non trivial non finite V76() V77() V78() V82() ) set ) -valued Function-like non empty total quasi_total complex-valued ext-real-valued real-valued ) RealMap of ( ( ) ( non empty ) set ) ) st pmet : ( ( Function-like quasi_total ) ( Relation-like the carrier of [:b1 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) ,b1 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) :] : ( ( strict TopSpace-like ) ( non empty strict TopSpace-like ) TopStruct ) : ( ( ) ( non empty ) set ) -defined REAL : ( ( ) ( non empty non trivial non finite V76() V77() V78() V82() ) set ) -valued Function-like non empty total quasi_total complex-valued ext-real-valued real-valued ) RealMap of ( ( ) ( non empty ) set ) ) = pmet9 : ( ( Function-like quasi_total ) ( Relation-like the carrier of [:b1 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) ,b1 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) :] : ( ( strict TopSpace-like ) ( non empty strict TopSpace-like ) TopStruct ) : ( ( ) ( non empty ) set ) -defined REAL : ( ( ) ( non empty non trivial non finite V76() V77() V78() V82() ) set ) -valued Function-like non empty total quasi_total complex-valued ext-real-valued real-valued ) RealMap of ( ( ) ( non empty ) set ) ) holds
pmet9 : ( ( Function-like quasi_total ) ( Relation-like the carrier of [:b1 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) ,b1 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) :] : ( ( strict TopSpace-like ) ( non empty strict TopSpace-like ) TopStruct ) : ( ( ) ( non empty ) set ) -defined REAL : ( ( ) ( non empty non trivial non finite V76() V77() V78() V82() ) set ) -valued Function-like non empty total quasi_total complex-valued ext-real-valued real-valued ) RealMap of ( ( ) ( non empty ) set ) ) is continuous ) ) ) holds
for pmet being ( ( Function-like quasi_total ) ( Relation-like [: the carrier of b1 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) , the carrier of b1 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) :] : ( ( ) ( non empty ) set ) -defined REAL : ( ( ) ( non empty non trivial non finite V76() V77() V78() V82() ) set ) -valued Function-like non empty total quasi_total complex-valued ext-real-valued real-valued ) Function of [: the carrier of T : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) , the carrier of T : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) :] : ( ( ) ( non empty ) set ) , REAL : ( ( ) ( non empty non trivial non finite V76() V77() V78() V82() ) set ) ) st ( for pq being ( ( ) ( ) Element of [: the carrier of T : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) , the carrier of T : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) :] : ( ( ) ( non empty ) set ) ) holds pmet : ( ( Function-like quasi_total ) ( Relation-like [: the carrier of b1 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) , the carrier of b1 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) :] : ( ( ) ( non empty ) set ) -defined REAL : ( ( ) ( non empty non trivial non finite V76() V77() V78() V82() ) set ) -valued Function-like non empty total quasi_total complex-valued ext-real-valued real-valued ) Function of [: the carrier of b1 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) , the carrier of b1 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) :] : ( ( ) ( non empty ) set ) , REAL : ( ( ) ( non empty non trivial non finite V76() V77() V78() V82() ) set ) ) . pq : ( ( Function-like quasi_total ) ( Relation-like the carrier of [:b1 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) ,b1 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) :] : ( ( strict TopSpace-like ) ( non empty strict TopSpace-like ) TopStruct ) : ( ( ) ( non empty ) set ) -defined REAL : ( ( ) ( non empty non trivial non finite V76() V77() V78() V82() ) set ) -valued Function-like non empty total quasi_total complex-valued ext-real-valued real-valued ) RealMap of ( ( ) ( non empty ) set ) ) : ( ( ) ( V35() real ext-real ) Element of REAL : ( ( ) ( non empty non trivial non finite V76() V77() V78() V82() ) set ) ) = Sum (((1 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V35() real V37() ext-real positive non negative finite cardinal V65() V76() V77() V78() V79() V80() V81() ) Element of NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal V76() V77() V78() V79() V80() V81() V82() ) Element of bool REAL : ( ( ) ( non empty non trivial non finite V76() V77() V78() V82() ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) ) / 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V35() real V37() ext-real positive non negative finite cardinal V65() V76() V77() V78() V79() V80() V81() ) Element of NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal V76() V77() V78() V79() V80() V81() V82() ) Element of bool REAL : ( ( ) ( non empty non trivial non finite V76() V77() V78() V82() ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) ) ) : ( ( ) ( V35() real ext-real non negative ) Element of REAL : ( ( ) ( non empty non trivial non finite V76() V77() V78() V82() ) set ) ) GeoSeq) : ( ( Function-like quasi_total ) ( Relation-like NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal V76() V77() V78() V79() V80() V81() V82() ) Element of bool REAL : ( ( ) ( non empty non trivial non finite V76() V77() V78() V82() ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) -defined REAL : ( ( ) ( non empty non trivial non finite V76() V77() V78() V82() ) set ) -valued Function-like non empty total quasi_total complex-valued ext-real-valued real-valued ) Element of bool [:NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal V76() V77() V78() V79() V80() V81() V82() ) Element of bool REAL : ( ( ) ( non empty non trivial non finite V76() V77() V78() V82() ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) ,REAL : ( ( ) ( non empty non trivial non finite V76() V77() V78() V82() ) set ) :] : ( ( ) ( non empty non trivial non finite complex-valued ext-real-valued real-valued ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) (#) (FS2 : ( ( Function-like quasi_total ) ( Relation-like NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal V76() V77() V78() V79() V80() V81() V82() ) Element of bool REAL : ( ( ) ( non empty non trivial non finite V76() V77() V78() V82() ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) -defined PFuncs ([: the carrier of b1 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) , the carrier of b1 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) :] : ( ( ) ( non empty ) set ) ,REAL : ( ( ) ( non empty non trivial non finite V76() V77() V78() V82() ) set ) ) : ( ( ) ( ) set ) -valued Function-like quasi_total ) Functional_Sequence of ( ( ) ( ) set ) ,[: the carrier of b1 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) , the carrier of b1 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) :] : ( ( ) ( non empty ) set ) ) # pq : ( ( Function-like quasi_total ) ( Relation-like the carrier of [:b1 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) ,b1 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) :] : ( ( strict TopSpace-like ) ( non empty strict TopSpace-like ) TopStruct ) : ( ( ) ( non empty ) set ) -defined REAL : ( ( ) ( non empty non trivial non finite V76() V77() V78() V82() ) set ) -valued Function-like non empty total quasi_total complex-valued ext-real-valued real-valued ) RealMap of ( ( ) ( non empty ) set ) ) ) : ( ( Function-like quasi_total ) ( Relation-like NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal V76() V77() V78() V79() V80() V81() V82() ) Element of bool REAL : ( ( ) ( non empty non trivial non finite V76() V77() V78() V82() ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) -defined REAL : ( ( ) ( non empty non trivial non finite V76() V77() V78() V82() ) set ) -valued Function-like non empty total quasi_total complex-valued ext-real-valued real-valued ) Element of bool [:NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal V76() V77() V78() V79() V80() V81() V82() ) Element of bool REAL : ( ( ) ( non empty non trivial non finite V76() V77() V78() V82() ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) ,REAL : ( ( ) ( non empty non trivial non finite V76() V77() V78() V82() ) set ) :] : ( ( ) ( non empty non trivial non finite complex-valued ext-real-valued real-valued ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) ) : ( ( Function-like ) ( Relation-like NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal V76() V77() V78() V79() V80() V81() V82() ) Element of bool REAL : ( ( ) ( non empty non trivial non finite V76() V77() V78() V82() ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) -defined REAL : ( ( ) ( non empty non trivial non finite V76() V77() V78() V82() ) set ) -valued Function-like non empty total quasi_total complex-valued ext-real-valued real-valued ) Element of bool [:NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal V76() V77() V78() V79() V80() V81() V82() ) Element of bool REAL : ( ( ) ( non empty non trivial non finite V76() V77() V78() V82() ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) ,REAL : ( ( ) ( non empty non trivial non finite V76() V77() V78() V82() ) set ) :] : ( ( ) ( non empty non trivial non finite complex-valued ext-real-valued real-valued ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) : ( ( ) ( V35() real ext-real ) Element of REAL : ( ( ) ( non empty non trivial non finite V76() V77() V78() V82() ) set ) ) ) holds
( pmet : ( ( Function-like quasi_total ) ( Relation-like [: the carrier of b1 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) , the carrier of b1 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) :] : ( ( ) ( non empty ) set ) -defined REAL : ( ( ) ( non empty non trivial non finite V76() V77() V78() V82() ) set ) -valued Function-like non empty total quasi_total complex-valued ext-real-valued real-valued ) Function of [: the carrier of b1 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) , the carrier of b1 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) :] : ( ( ) ( non empty ) set ) , REAL : ( ( ) ( non empty non trivial non finite V76() V77() V78() V82() ) set ) ) is_a_pseudometric_of the carrier of T : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) & ( for pmet9 being ( ( Function-like quasi_total ) ( Relation-like the carrier of [:b1 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) ,b1 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) :] : ( ( strict TopSpace-like ) ( non empty strict TopSpace-like ) TopStruct ) : ( ( ) ( non empty ) set ) -defined REAL : ( ( ) ( non empty non trivial non finite V76() V77() V78() V82() ) set ) -valued Function-like non empty total quasi_total complex-valued ext-real-valued real-valued ) RealMap of ( ( ) ( non empty ) set ) ) st pmet : ( ( Function-like quasi_total ) ( Relation-like [: the carrier of b1 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) , the carrier of b1 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) :] : ( ( ) ( non empty ) set ) -defined REAL : ( ( ) ( non empty non trivial non finite V76() V77() V78() V82() ) set ) -valued Function-like non empty total quasi_total complex-valued ext-real-valued real-valued ) Function of [: the carrier of b1 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) , the carrier of b1 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) :] : ( ( ) ( non empty ) set ) , REAL : ( ( ) ( non empty non trivial non finite V76() V77() V78() V82() ) set ) ) = pmet9 : ( ( Function-like quasi_total ) ( Relation-like the carrier of [:b1 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) ,b1 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) :] : ( ( strict TopSpace-like ) ( non empty strict TopSpace-like ) TopStruct ) : ( ( ) ( non empty ) set ) -defined REAL : ( ( ) ( non empty non trivial non finite V76() V77() V78() V82() ) set ) -valued Function-like non empty total quasi_total complex-valued ext-real-valued real-valued ) RealMap of ( ( ) ( non empty ) set ) ) holds
pmet9 : ( ( Function-like quasi_total ) ( Relation-like the carrier of [:b1 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) ,b1 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) :] : ( ( strict TopSpace-like ) ( non empty strict TopSpace-like ) TopStruct ) : ( ( ) ( non empty ) set ) -defined REAL : ( ( ) ( non empty non trivial non finite V76() V77() V78() V82() ) set ) -valued Function-like non empty total quasi_total complex-valued ext-real-valued real-valued ) RealMap of ( ( ) ( non empty ) set ) ) is continuous ) ) ;

theorem :: NAGATA_2:16
for T being ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace)
for pmet being ( ( Function-like quasi_total ) ( Relation-like [: the carrier of b1 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) , the carrier of b1 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) :] : ( ( ) ( non empty ) set ) -defined REAL : ( ( ) ( non empty non trivial non finite V76() V77() V78() V82() ) set ) -valued Function-like non empty total quasi_total complex-valued ext-real-valued real-valued ) Function of [: the carrier of T : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) , the carrier of T : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) :] : ( ( ) ( non empty ) set ) , REAL : ( ( ) ( non empty non trivial non finite V76() V77() V78() V82() ) set ) ) st pmet : ( ( Function-like quasi_total ) ( Relation-like [: the carrier of b1 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) , the carrier of b1 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) :] : ( ( ) ( non empty ) set ) -defined REAL : ( ( ) ( non empty non trivial non finite V76() V77() V78() V82() ) set ) -valued Function-like non empty total quasi_total complex-valued ext-real-valued real-valued ) Function of [: the carrier of b1 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) , the carrier of b1 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) :] : ( ( ) ( non empty ) set ) , REAL : ( ( ) ( non empty non trivial non finite V76() V77() V78() V82() ) set ) ) is_a_pseudometric_of the carrier of T : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) & ( for pmet9 being ( ( Function-like quasi_total ) ( Relation-like the carrier of [:b1 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) ,b1 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) :] : ( ( strict TopSpace-like ) ( non empty strict TopSpace-like ) TopStruct ) : ( ( ) ( non empty ) set ) -defined REAL : ( ( ) ( non empty non trivial non finite V76() V77() V78() V82() ) set ) -valued Function-like non empty total quasi_total complex-valued ext-real-valued real-valued ) RealMap of ( ( ) ( non empty ) set ) ) st pmet : ( ( Function-like quasi_total ) ( Relation-like [: the carrier of b1 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) , the carrier of b1 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) :] : ( ( ) ( non empty ) set ) -defined REAL : ( ( ) ( non empty non trivial non finite V76() V77() V78() V82() ) set ) -valued Function-like non empty total quasi_total complex-valued ext-real-valued real-valued ) Function of [: the carrier of b1 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) , the carrier of b1 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) :] : ( ( ) ( non empty ) set ) , REAL : ( ( ) ( non empty non trivial non finite V76() V77() V78() V82() ) set ) ) = pmet9 : ( ( non empty ) ( non empty ) Subset of ) holds
pmet9 : ( ( non empty ) ( non empty ) Subset of ) is continuous ) holds
for A being ( ( non empty ) ( non empty ) Subset of )
for p being ( ( ) ( ) Point of ( ( ) ( non empty ) set ) ) st p : ( ( ) ( ) Point of ( ( ) ( non empty ) set ) ) in Cl A : ( ( non empty ) ( non empty ) Subset of ) : ( ( ) ( closed ) Element of bool the carrier of b1 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) : ( ( ) ( non empty ) set ) ) holds
(lower_bound (pmet : ( ( Function-like quasi_total ) ( Relation-like [: the carrier of b1 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) , the carrier of b1 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) :] : ( ( ) ( non empty ) set ) -defined REAL : ( ( ) ( non empty non trivial non finite V76() V77() V78() V82() ) set ) -valued Function-like non empty total quasi_total complex-valued ext-real-valued real-valued ) Function of [: the carrier of b1 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) , the carrier of b1 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) :] : ( ( ) ( non empty ) set ) , REAL : ( ( ) ( non empty non trivial non finite V76() V77() V78() V82() ) set ) ) ,A : ( ( non empty ) ( non empty ) Subset of ) )) : ( ( Function-like quasi_total ) ( Relation-like the carrier of b1 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) -defined REAL : ( ( ) ( non empty non trivial non finite V76() V77() V78() V82() ) set ) -valued Function-like non empty total quasi_total complex-valued ext-real-valued real-valued ) Function of the carrier of b1 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) , REAL : ( ( ) ( non empty non trivial non finite V76() V77() V78() V82() ) set ) ) . p : ( ( ) ( ) Point of ( ( ) ( non empty ) set ) ) : ( ( ) ( V35() real ext-real ) Element of REAL : ( ( ) ( non empty non trivial non finite V76() V77() V78() V82() ) set ) ) = 0 : ( ( ) ( epsilon-transitive epsilon-connected ordinal natural V35() real V37() ext-real non negative finite cardinal V65() V76() V77() V78() V79() V80() V81() ) Element of NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal V76() V77() V78() V79() V80() V81() V82() ) Element of bool REAL : ( ( ) ( non empty non trivial non finite V76() V77() V78() V82() ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) ) ;

theorem :: NAGATA_2:17
for T being ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) st T : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) is T_1 holds
for s being ( ( ) ( V35() real ext-real ) Real)
for FS2 being ( ( Function-like quasi_total ) ( Relation-like NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal V76() V77() V78() V79() V80() V81() V82() ) Element of bool REAL : ( ( ) ( non empty non trivial non finite V76() V77() V78() V82() ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) -defined PFuncs ([: the carrier of b1 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) , the carrier of b1 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) :] : ( ( ) ( non empty ) set ) ,REAL : ( ( ) ( non empty non trivial non finite V76() V77() V78() V82() ) set ) ) : ( ( ) ( ) set ) -valued Function-like quasi_total ) Functional_Sequence of ( ( ) ( ) set ) ,[: the carrier of T : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) , the carrier of T : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) :] : ( ( ) ( non empty ) set ) ) st ( for n being ( ( ) ( epsilon-transitive epsilon-connected ordinal natural V35() real V37() ext-real non negative finite cardinal V65() V76() V77() V78() V79() V80() V81() ) Element of NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal V76() V77() V78() V79() V80() V81() V82() ) Element of bool REAL : ( ( ) ( non empty non trivial non finite V76() V77() V78() V82() ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) ) ex pmet being ( ( Function-like quasi_total ) ( Relation-like [: the carrier of b1 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) , the carrier of b1 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) :] : ( ( ) ( non empty ) set ) -defined REAL : ( ( ) ( non empty non trivial non finite V76() V77() V78() V82() ) set ) -valued Function-like non empty total quasi_total complex-valued ext-real-valued real-valued ) Function of [: the carrier of T : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) , the carrier of T : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) :] : ( ( ) ( non empty ) set ) , REAL : ( ( ) ( non empty non trivial non finite V76() V77() V78() V82() ) set ) ) st
( FS2 : ( ( Function-like quasi_total ) ( Relation-like NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal V76() V77() V78() V79() V80() V81() V82() ) Element of bool REAL : ( ( ) ( non empty non trivial non finite V76() V77() V78() V82() ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) -defined PFuncs ([: the carrier of b1 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) , the carrier of b1 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) :] : ( ( ) ( non empty ) set ) ,REAL : ( ( ) ( non empty non trivial non finite V76() V77() V78() V82() ) set ) ) : ( ( ) ( ) set ) -valued Function-like quasi_total ) Functional_Sequence of ( ( ) ( ) set ) ,[: the carrier of b1 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) , the carrier of b1 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) :] : ( ( ) ( non empty ) set ) ) . n : ( ( Function-like quasi_total ) ( Relation-like [: the carrier of b1 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) , the carrier of b1 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) :] : ( ( ) ( non empty ) set ) -defined REAL : ( ( ) ( non empty non trivial non finite V76() V77() V78() V82() ) set ) -valued Function-like non empty total quasi_total complex-valued ext-real-valued real-valued ) Function of [: the carrier of b1 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) , the carrier of b1 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) :] : ( ( ) ( non empty ) set ) , REAL : ( ( ) ( non empty non trivial non finite V76() V77() V78() V82() ) set ) ) : ( ( Function-like ) ( Relation-like [: the carrier of b1 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) , the carrier of b1 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) :] : ( ( ) ( non empty ) set ) -defined REAL : ( ( ) ( non empty non trivial non finite V76() V77() V78() V82() ) set ) -valued Function-like complex-valued ext-real-valued real-valued ) Element of bool [:[: the carrier of b1 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) , the carrier of b1 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) :] : ( ( ) ( non empty ) set ) ,REAL : ( ( ) ( non empty non trivial non finite V76() V77() V78() V82() ) set ) :] : ( ( ) ( non empty non trivial non finite complex-valued ext-real-valued real-valued ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) = pmet : ( ( ) ( ) Element of [: the carrier of b1 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) , the carrier of b1 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) :] : ( ( ) ( non empty ) set ) ) & pmet : ( ( ) ( ) Element of [: the carrier of b1 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) , the carrier of b1 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) :] : ( ( ) ( non empty ) set ) ) is_a_pseudometric_of the carrier of T : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) & ( for pq being ( ( ) ( ) Element of [: the carrier of T : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) , the carrier of T : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) :] : ( ( ) ( non empty ) set ) ) holds pmet : ( ( ) ( ) Element of [: the carrier of b1 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) , the carrier of b1 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) :] : ( ( ) ( non empty ) set ) ) . pq : ( ( ) ( epsilon-transitive epsilon-connected ordinal natural V35() real V37() ext-real non negative finite cardinal V65() V76() V77() V78() V79() V80() V81() ) Element of NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal V76() V77() V78() V79() V80() V81() V82() ) Element of bool REAL : ( ( ) ( non empty non trivial non finite V76() V77() V78() V82() ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) ) : ( ( ) ( V35() real ext-real ) Element of REAL : ( ( ) ( non empty non trivial non finite V76() V77() V78() V82() ) set ) ) <= s : ( ( ) ( V35() real ext-real ) Real) ) & ( for pmet9 being ( ( Function-like quasi_total ) ( Relation-like the carrier of [:b1 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) ,b1 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) :] : ( ( strict TopSpace-like ) ( non empty strict TopSpace-like ) TopStruct ) : ( ( ) ( non empty ) set ) -defined REAL : ( ( ) ( non empty non trivial non finite V76() V77() V78() V82() ) set ) -valued Function-like non empty total quasi_total complex-valued ext-real-valued real-valued ) RealMap of ( ( ) ( non empty ) set ) ) st pmet : ( ( ) ( ) Element of [: the carrier of b1 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) , the carrier of b1 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) :] : ( ( ) ( non empty ) set ) ) = pmet9 : ( ( ) ( epsilon-transitive epsilon-connected ordinal natural V35() real V37() ext-real non negative finite cardinal V65() V76() V77() V78() V79() V80() V81() ) Element of NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal V76() V77() V78() V79() V80() V81() V82() ) Element of bool REAL : ( ( ) ( non empty non trivial non finite V76() V77() V78() V82() ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) ) holds
pmet9 : ( ( ) ( epsilon-transitive epsilon-connected ordinal natural V35() real V37() ext-real non negative finite cardinal V65() V76() V77() V78() V79() V80() V81() ) Element of NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal V76() V77() V78() V79() V80() V81() V82() ) Element of bool REAL : ( ( ) ( non empty non trivial non finite V76() V77() V78() V82() ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) ) is continuous ) ) ) & ( for p being ( ( ) ( ) Point of ( ( ) ( non empty ) set ) )
for A9 being ( ( non empty ) ( non empty ) Subset of ) st not p : ( ( Function-like quasi_total ) ( Relation-like [: the carrier of b1 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) , the carrier of b1 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) :] : ( ( ) ( non empty ) set ) -defined REAL : ( ( ) ( non empty non trivial non finite V76() V77() V78() V82() ) set ) -valued Function-like non empty total quasi_total complex-valued ext-real-valued real-valued ) Function of [: the carrier of b1 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) , the carrier of b1 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) :] : ( ( ) ( non empty ) set ) , REAL : ( ( ) ( non empty non trivial non finite V76() V77() V78() V82() ) set ) ) in A9 : ( ( ) ( ) Element of [: the carrier of b1 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) , the carrier of b1 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) :] : ( ( ) ( non empty ) set ) ) & A9 : ( ( ) ( ) Element of [: the carrier of b1 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) , the carrier of b1 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) :] : ( ( ) ( non empty ) set ) ) is closed holds
ex n being ( ( ) ( epsilon-transitive epsilon-connected ordinal natural V35() real V37() ext-real non negative finite cardinal V65() V76() V77() V78() V79() V80() V81() ) Element of NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal V76() V77() V78() V79() V80() V81() V82() ) Element of bool REAL : ( ( ) ( non empty non trivial non finite V76() V77() V78() V82() ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) ) st
for pmet being ( ( Function-like quasi_total ) ( Relation-like [: the carrier of b1 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) , the carrier of b1 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) :] : ( ( ) ( non empty ) set ) -defined REAL : ( ( ) ( non empty non trivial non finite V76() V77() V78() V82() ) set ) -valued Function-like non empty total quasi_total complex-valued ext-real-valued real-valued ) Function of [: the carrier of T : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) , the carrier of T : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) :] : ( ( ) ( non empty ) set ) , REAL : ( ( ) ( non empty non trivial non finite V76() V77() V78() V82() ) set ) ) st FS2 : ( ( Function-like quasi_total ) ( Relation-like NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal V76() V77() V78() V79() V80() V81() V82() ) Element of bool REAL : ( ( ) ( non empty non trivial non finite V76() V77() V78() V82() ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) -defined PFuncs ([: the carrier of b1 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) , the carrier of b1 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) :] : ( ( ) ( non empty ) set ) ,REAL : ( ( ) ( non empty non trivial non finite V76() V77() V78() V82() ) set ) ) : ( ( ) ( ) set ) -valued Function-like quasi_total ) Functional_Sequence of ( ( ) ( ) set ) ,[: the carrier of b1 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) , the carrier of b1 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) :] : ( ( ) ( non empty ) set ) ) . n : ( ( ) ( epsilon-transitive epsilon-connected ordinal natural V35() real V37() ext-real non negative finite cardinal V65() V76() V77() V78() V79() V80() V81() ) Element of NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal V76() V77() V78() V79() V80() V81() V82() ) Element of bool REAL : ( ( ) ( non empty non trivial non finite V76() V77() V78() V82() ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) ) : ( ( Function-like ) ( Relation-like [: the carrier of b1 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) , the carrier of b1 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) :] : ( ( ) ( non empty ) set ) -defined REAL : ( ( ) ( non empty non trivial non finite V76() V77() V78() V82() ) set ) -valued Function-like complex-valued ext-real-valued real-valued ) Element of bool [:[: the carrier of b1 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) , the carrier of b1 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) :] : ( ( ) ( non empty ) set ) ,REAL : ( ( ) ( non empty non trivial non finite V76() V77() V78() V82() ) set ) :] : ( ( ) ( non empty non trivial non finite complex-valued ext-real-valued real-valued ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) = pmet : ( ( Function-like quasi_total ) ( Relation-like [: the carrier of b1 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) , the carrier of b1 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) :] : ( ( ) ( non empty ) set ) -defined REAL : ( ( ) ( non empty non trivial non finite V76() V77() V78() V82() ) set ) -valued Function-like non empty total quasi_total complex-valued ext-real-valued real-valued ) Function of [: the carrier of b1 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) , the carrier of b1 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) :] : ( ( ) ( non empty ) set ) , REAL : ( ( ) ( non empty non trivial non finite V76() V77() V78() V82() ) set ) ) holds
(lower_bound (pmet : ( ( Function-like quasi_total ) ( Relation-like [: the carrier of b1 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) , the carrier of b1 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) :] : ( ( ) ( non empty ) set ) -defined REAL : ( ( ) ( non empty non trivial non finite V76() V77() V78() V82() ) set ) -valued Function-like non empty total quasi_total complex-valued ext-real-valued real-valued ) Function of [: the carrier of b1 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) , the carrier of b1 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) :] : ( ( ) ( non empty ) set ) , REAL : ( ( ) ( non empty non trivial non finite V76() V77() V78() V82() ) set ) ) ,A9 : ( ( ) ( ) Element of [: the carrier of b1 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) , the carrier of b1 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) :] : ( ( ) ( non empty ) set ) ) )) : ( ( Function-like quasi_total ) ( Relation-like the carrier of b1 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) -defined REAL : ( ( ) ( non empty non trivial non finite V76() V77() V78() V82() ) set ) -valued Function-like non empty total quasi_total complex-valued ext-real-valued real-valued ) Function of the carrier of b1 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) , REAL : ( ( ) ( non empty non trivial non finite V76() V77() V78() V82() ) set ) ) . p : ( ( Function-like quasi_total ) ( Relation-like [: the carrier of b1 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) , the carrier of b1 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) :] : ( ( ) ( non empty ) set ) -defined REAL : ( ( ) ( non empty non trivial non finite V76() V77() V78() V82() ) set ) -valued Function-like non empty total quasi_total complex-valued ext-real-valued real-valued ) Function of [: the carrier of b1 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) , the carrier of b1 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) :] : ( ( ) ( non empty ) set ) , REAL : ( ( ) ( non empty non trivial non finite V76() V77() V78() V82() ) set ) ) : ( ( ) ( V35() real ext-real ) Element of REAL : ( ( ) ( non empty non trivial non finite V76() V77() V78() V82() ) set ) ) > 0 : ( ( ) ( epsilon-transitive epsilon-connected ordinal natural V35() real V37() ext-real non negative finite cardinal V65() V76() V77() V78() V79() V80() V81() ) Element of NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal V76() V77() V78() V79() V80() V81() V82() ) Element of bool REAL : ( ( ) ( non empty non trivial non finite V76() V77() V78() V82() ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) ) ) holds
( ex pmet being ( ( Function-like quasi_total ) ( Relation-like [: the carrier of b1 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) , the carrier of b1 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) :] : ( ( ) ( non empty ) set ) -defined REAL : ( ( ) ( non empty non trivial non finite V76() V77() V78() V82() ) set ) -valued Function-like non empty total quasi_total complex-valued ext-real-valued real-valued ) Function of [: the carrier of T : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) , the carrier of T : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) :] : ( ( ) ( non empty ) set ) , REAL : ( ( ) ( non empty non trivial non finite V76() V77() V78() V82() ) set ) ) st
( pmet : ( ( Function-like quasi_total ) ( Relation-like [: the carrier of b1 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) , the carrier of b1 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) :] : ( ( ) ( non empty ) set ) -defined REAL : ( ( ) ( non empty non trivial non finite V76() V77() V78() V82() ) set ) -valued Function-like non empty total quasi_total complex-valued ext-real-valued real-valued ) Function of [: the carrier of b1 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) , the carrier of b1 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) :] : ( ( ) ( non empty ) set ) , REAL : ( ( ) ( non empty non trivial non finite V76() V77() V78() V82() ) set ) ) is_metric_of the carrier of T : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) & ( for pq being ( ( ) ( ) Element of [: the carrier of T : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) , the carrier of T : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) :] : ( ( ) ( non empty ) set ) ) holds pmet : ( ( Function-like quasi_total ) ( Relation-like [: the carrier of b1 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) , the carrier of b1 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) :] : ( ( ) ( non empty ) set ) -defined REAL : ( ( ) ( non empty non trivial non finite V76() V77() V78() V82() ) set ) -valued Function-like non empty total quasi_total complex-valued ext-real-valued real-valued ) Function of [: the carrier of b1 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) , the carrier of b1 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) :] : ( ( ) ( non empty ) set ) , REAL : ( ( ) ( non empty non trivial non finite V76() V77() V78() V82() ) set ) ) . pq : ( ( ) ( ) Element of [: the carrier of b1 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) , the carrier of b1 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) :] : ( ( ) ( non empty ) set ) ) : ( ( ) ( V35() real ext-real ) Element of REAL : ( ( ) ( non empty non trivial non finite V76() V77() V78() V82() ) set ) ) = Sum (((1 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V35() real V37() ext-real positive non negative finite cardinal V65() V76() V77() V78() V79() V80() V81() ) Element of NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal V76() V77() V78() V79() V80() V81() V82() ) Element of bool REAL : ( ( ) ( non empty non trivial non finite V76() V77() V78() V82() ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) ) / 2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V35() real V37() ext-real positive non negative finite cardinal V65() V76() V77() V78() V79() V80() V81() ) Element of NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal V76() V77() V78() V79() V80() V81() V82() ) Element of bool REAL : ( ( ) ( non empty non trivial non finite V76() V77() V78() V82() ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) ) ) : ( ( ) ( V35() real ext-real non negative ) Element of REAL : ( ( ) ( non empty non trivial non finite V76() V77() V78() V82() ) set ) ) GeoSeq) : ( ( Function-like quasi_total ) ( Relation-like NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal V76() V77() V78() V79() V80() V81() V82() ) Element of bool REAL : ( ( ) ( non empty non trivial non finite V76() V77() V78() V82() ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) -defined REAL : ( ( ) ( non empty non trivial non finite V76() V77() V78() V82() ) set ) -valued Function-like non empty total quasi_total complex-valued ext-real-valued real-valued ) Element of bool [:NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal V76() V77() V78() V79() V80() V81() V82() ) Element of bool REAL : ( ( ) ( non empty non trivial non finite V76() V77() V78() V82() ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) ,REAL : ( ( ) ( non empty non trivial non finite V76() V77() V78() V82() ) set ) :] : ( ( ) ( non empty non trivial non finite complex-valued ext-real-valued real-valued ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) (#) (FS2 : ( ( Function-like quasi_total ) ( Relation-like NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal V76() V77() V78() V79() V80() V81() V82() ) Element of bool REAL : ( ( ) ( non empty non trivial non finite V76() V77() V78() V82() ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) -defined PFuncs ([: the carrier of b1 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) , the carrier of b1 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) :] : ( ( ) ( non empty ) set ) ,REAL : ( ( ) ( non empty non trivial non finite V76() V77() V78() V82() ) set ) ) : ( ( ) ( ) set ) -valued Function-like quasi_total ) Functional_Sequence of ( ( ) ( ) set ) ,[: the carrier of b1 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) , the carrier of b1 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) :] : ( ( ) ( non empty ) set ) ) # pq : ( ( ) ( ) Element of [: the carrier of b1 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) , the carrier of b1 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) :] : ( ( ) ( non empty ) set ) ) ) : ( ( Function-like quasi_total ) ( Relation-like NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal V76() V77() V78() V79() V80() V81() V82() ) Element of bool REAL : ( ( ) ( non empty non trivial non finite V76() V77() V78() V82() ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) -defined REAL : ( ( ) ( non empty non trivial non finite V76() V77() V78() V82() ) set ) -valued Function-like non empty total quasi_total complex-valued ext-real-valued real-valued ) Element of bool [:NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal V76() V77() V78() V79() V80() V81() V82() ) Element of bool REAL : ( ( ) ( non empty non trivial non finite V76() V77() V78() V82() ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) ,REAL : ( ( ) ( non empty non trivial non finite V76() V77() V78() V82() ) set ) :] : ( ( ) ( non empty non trivial non finite complex-valued ext-real-valued real-valued ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) ) : ( ( Function-like ) ( Relation-like NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal V76() V77() V78() V79() V80() V81() V82() ) Element of bool REAL : ( ( ) ( non empty non trivial non finite V76() V77() V78() V82() ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) -defined REAL : ( ( ) ( non empty non trivial non finite V76() V77() V78() V82() ) set ) -valued Function-like non empty total quasi_total complex-valued ext-real-valued real-valued ) Element of bool [:NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal V76() V77() V78() V79() V80() V81() V82() ) Element of bool REAL : ( ( ) ( non empty non trivial non finite V76() V77() V78() V82() ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) ,REAL : ( ( ) ( non empty non trivial non finite V76() V77() V78() V82() ) set ) :] : ( ( ) ( non empty non trivial non finite complex-valued ext-real-valued real-valued ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) : ( ( ) ( V35() real ext-real ) Element of REAL : ( ( ) ( non empty non trivial non finite V76() V77() V78() V82() ) set ) ) ) ) & T : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) is metrizable ) ;

theorem :: NAGATA_2:18
for D being ( ( non empty ) ( non empty ) set )
for p, q being ( ( ) ( Relation-like NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal V76() V77() V78() V79() V80() V81() V82() ) Element of bool REAL : ( ( ) ( non empty non trivial non finite V76() V77() V78() V82() ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) -defined b1 : ( ( non empty ) ( non empty ) set ) -valued Function-like finite FinSequence-like FinSubsequence-like ) FinSequence of D : ( ( non empty ) ( non empty ) set ) )
for B being ( ( Function-like quasi_total ) ( Relation-like [:b1 : ( ( non empty ) ( non empty ) set ) ,b1 : ( ( non empty ) ( non empty ) set ) :] : ( ( ) ( non empty ) set ) -defined b1 : ( ( non empty ) ( non empty ) set ) -valued Function-like non empty total quasi_total ) BinOp of D : ( ( non empty ) ( non empty ) set ) ) st p : ( ( ) ( Relation-like NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal V76() V77() V78() V79() V80() V81() V82() ) Element of bool REAL : ( ( ) ( non empty non trivial non finite V76() V77() V78() V82() ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) -defined b1 : ( ( non empty ) ( non empty ) set ) -valued Function-like finite FinSequence-like FinSubsequence-like ) FinSequence of b1 : ( ( non empty ) ( non empty ) set ) ) is one-to-one & q : ( ( ) ( Relation-like NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal V76() V77() V78() V79() V80() V81() V82() ) Element of bool REAL : ( ( ) ( non empty non trivial non finite V76() V77() V78() V82() ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) -defined b1 : ( ( non empty ) ( non empty ) set ) -valued Function-like finite FinSequence-like FinSubsequence-like ) FinSequence of b1 : ( ( non empty ) ( non empty ) set ) ) is one-to-one & rng q : ( ( ) ( Relation-like NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal V76() V77() V78() V79() V80() V81() V82() ) Element of bool REAL : ( ( ) ( non empty non trivial non finite V76() V77() V78() V82() ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) -defined b1 : ( ( non empty ) ( non empty ) set ) -valued Function-like finite FinSequence-like FinSubsequence-like ) FinSequence of b1 : ( ( non empty ) ( non empty ) set ) ) : ( ( ) ( finite ) Element of bool b1 : ( ( non empty ) ( non empty ) set ) : ( ( ) ( non empty ) set ) ) c= rng p : ( ( ) ( Relation-like NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal V76() V77() V78() V79() V80() V81() V82() ) Element of bool REAL : ( ( ) ( non empty non trivial non finite V76() V77() V78() V82() ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) -defined b1 : ( ( non empty ) ( non empty ) set ) -valued Function-like finite FinSequence-like FinSubsequence-like ) FinSequence of b1 : ( ( non empty ) ( non empty ) set ) ) : ( ( ) ( finite ) Element of bool b1 : ( ( non empty ) ( non empty ) set ) : ( ( ) ( non empty ) set ) ) & B : ( ( Function-like quasi_total ) ( Relation-like [:b1 : ( ( non empty ) ( non empty ) set ) ,b1 : ( ( non empty ) ( non empty ) set ) :] : ( ( ) ( non empty ) set ) -defined b1 : ( ( non empty ) ( non empty ) set ) -valued Function-like non empty total quasi_total ) BinOp of b1 : ( ( non empty ) ( non empty ) set ) ) is commutative & B : ( ( Function-like quasi_total ) ( Relation-like [:b1 : ( ( non empty ) ( non empty ) set ) ,b1 : ( ( non empty ) ( non empty ) set ) :] : ( ( ) ( non empty ) set ) -defined b1 : ( ( non empty ) ( non empty ) set ) -valued Function-like non empty total quasi_total ) BinOp of b1 : ( ( non empty ) ( non empty ) set ) ) is associative & ( B : ( ( Function-like quasi_total ) ( Relation-like [:b1 : ( ( non empty ) ( non empty ) set ) ,b1 : ( ( non empty ) ( non empty ) set ) :] : ( ( ) ( non empty ) set ) -defined b1 : ( ( non empty ) ( non empty ) set ) -valued Function-like non empty total quasi_total ) BinOp of b1 : ( ( non empty ) ( non empty ) set ) ) is having_a_unity or ( len q : ( ( ) ( Relation-like NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal V76() V77() V78() V79() V80() V81() V82() ) Element of bool REAL : ( ( ) ( non empty non trivial non finite V76() V77() V78() V82() ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) -defined b1 : ( ( non empty ) ( non empty ) set ) -valued Function-like finite FinSequence-like FinSubsequence-like ) FinSequence of b1 : ( ( non empty ) ( non empty ) set ) ) : ( ( ) ( epsilon-transitive epsilon-connected ordinal natural V35() real V37() ext-real non negative finite cardinal V65() V76() V77() V78() V79() V80() V81() ) Element of NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal V76() V77() V78() V79() V80() V81() V82() ) Element of bool REAL : ( ( ) ( non empty non trivial non finite V76() V77() V78() V82() ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) ) >= 1 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural V35() real V37() ext-real positive non negative finite cardinal V65() V76() V77() V78() V79() V80() V81() ) Element of NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal V76() V77() V78() V79() V80() V81() V82() ) Element of bool REAL : ( ( ) ( non empty non trivial non finite V76() V77() V78() V82() ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) ) & len p : ( ( ) ( Relation-like NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal V76() V77() V78() V79() V80() V81() V82() ) Element of bool REAL : ( ( ) ( non empty non trivial non finite V76() V77() V78() V82() ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) -defined b1 : ( ( non empty ) ( non empty ) set ) -valued Function-like finite FinSequence-like FinSubsequence-like ) FinSequence of b1 : ( ( non empty ) ( non empty ) set ) ) : ( ( ) ( epsilon-transitive epsilon-connected ordinal natural V35() real V37() ext-real non negative finite cardinal V65() V76() V77() V78() V79() V80() V81() ) Element of NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal V76() V77() V78() V79() V80() V81() V82() ) Element of bool REAL : ( ( ) ( non empty non trivial non finite V76() V77() V78() V82() ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) ) > len q : ( ( ) ( Relation-like NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal V76() V77() V78() V79() V80() V81() V82() ) Element of bool REAL : ( ( ) ( non empty non trivial non finite V76() V77() V78() V82() ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) -defined b1 : ( ( non empty ) ( non empty ) set ) -valued Function-like finite FinSequence-like FinSubsequence-like ) FinSequence of b1 : ( ( non empty ) ( non empty ) set ) ) : ( ( ) ( epsilon-transitive epsilon-connected ordinal natural V35() real V37() ext-real non negative finite cardinal V65() V76() V77() V78() V79() V80() V81() ) Element of NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal V76() V77() V78() V79() V80() V81() V82() ) Element of bool REAL : ( ( ) ( non empty non trivial non finite V76() V77() V78() V82() ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) ) ) ) holds
ex r being ( ( ) ( Relation-like NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal V76() V77() V78() V79() V80() V81() V82() ) Element of bool REAL : ( ( ) ( non empty non trivial non finite V76() V77() V78() V82() ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) -defined b1 : ( ( non empty ) ( non empty ) set ) -valued Function-like finite FinSequence-like FinSubsequence-like ) FinSequence of D : ( ( non empty ) ( non empty ) set ) ) st
( r : ( ( ) ( Relation-like NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal V76() V77() V78() V79() V80() V81() V82() ) Element of bool REAL : ( ( ) ( non empty non trivial non finite V76() V77() V78() V82() ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) -defined b1 : ( ( non empty ) ( non empty ) set ) -valued Function-like finite FinSequence-like FinSubsequence-like ) FinSequence of b1 : ( ( non empty ) ( non empty ) set ) ) is one-to-one & rng r : ( ( ) ( Relation-like NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal V76() V77() V78() V79() V80() V81() V82() ) Element of bool REAL : ( ( ) ( non empty non trivial non finite V76() V77() V78() V82() ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) -defined b1 : ( ( non empty ) ( non empty ) set ) -valued Function-like finite FinSequence-like FinSubsequence-like ) FinSequence of b1 : ( ( non empty ) ( non empty ) set ) ) : ( ( ) ( finite ) Element of bool b1 : ( ( non empty ) ( non empty ) set ) : ( ( ) ( non empty ) set ) ) = (rng p : ( ( ) ( Relation-like NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal V76() V77() V78() V79() V80() V81() V82() ) Element of bool REAL : ( ( ) ( non empty non trivial non finite V76() V77() V78() V82() ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) -defined b1 : ( ( non empty ) ( non empty ) set ) -valued Function-like finite FinSequence-like FinSubsequence-like ) FinSequence of b1 : ( ( non empty ) ( non empty ) set ) ) ) : ( ( ) ( finite ) Element of bool b1 : ( ( non empty ) ( non empty ) set ) : ( ( ) ( non empty ) set ) ) \ (rng q : ( ( ) ( Relation-like NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal V76() V77() V78() V79() V80() V81() V82() ) Element of bool REAL : ( ( ) ( non empty non trivial non finite V76() V77() V78() V82() ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) -defined b1 : ( ( non empty ) ( non empty ) set ) -valued Function-like finite FinSequence-like FinSubsequence-like ) FinSequence of b1 : ( ( non empty ) ( non empty ) set ) ) ) : ( ( ) ( finite ) Element of bool b1 : ( ( non empty ) ( non empty ) set ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( finite ) Element of bool b1 : ( ( non empty ) ( non empty ) set ) : ( ( ) ( non empty ) set ) ) & B : ( ( Function-like quasi_total ) ( Relation-like [:b1 : ( ( non empty ) ( non empty ) set ) ,b1 : ( ( non empty ) ( non empty ) set ) :] : ( ( ) ( non empty ) set ) -defined b1 : ( ( non empty ) ( non empty ) set ) -valued Function-like non empty total quasi_total ) BinOp of b1 : ( ( non empty ) ( non empty ) set ) ) "**" p : ( ( ) ( Relation-like NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal V76() V77() V78() V79() V80() V81() V82() ) Element of bool REAL : ( ( ) ( non empty non trivial non finite V76() V77() V78() V82() ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) -defined b1 : ( ( non empty ) ( non empty ) set ) -valued Function-like finite FinSequence-like FinSubsequence-like ) FinSequence of b1 : ( ( non empty ) ( non empty ) set ) ) : ( ( ) ( ) Element of b1 : ( ( non empty ) ( non empty ) set ) ) = B : ( ( Function-like quasi_total ) ( Relation-like [:b1 : ( ( non empty ) ( non empty ) set ) ,b1 : ( ( non empty ) ( non empty ) set ) :] : ( ( ) ( non empty ) set ) -defined b1 : ( ( non empty ) ( non empty ) set ) -valued Function-like non empty total quasi_total ) BinOp of b1 : ( ( non empty ) ( non empty ) set ) ) . ((B : ( ( Function-like quasi_total ) ( Relation-like [:b1 : ( ( non empty ) ( non empty ) set ) ,b1 : ( ( non empty ) ( non empty ) set ) :] : ( ( ) ( non empty ) set ) -defined b1 : ( ( non empty ) ( non empty ) set ) -valued Function-like non empty total quasi_total ) BinOp of b1 : ( ( non empty ) ( non empty ) set ) ) "**" q : ( ( ) ( Relation-like NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal V76() V77() V78() V79() V80() V81() V82() ) Element of bool REAL : ( ( ) ( non empty non trivial non finite V76() V77() V78() V82() ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) -defined b1 : ( ( non empty ) ( non empty ) set ) -valued Function-like finite FinSequence-like FinSubsequence-like ) FinSequence of b1 : ( ( non empty ) ( non empty ) set ) ) ) : ( ( ) ( ) Element of b1 : ( ( non empty ) ( non empty ) set ) ) ,(B : ( ( Function-like quasi_total ) ( Relation-like [:b1 : ( ( non empty ) ( non empty ) set ) ,b1 : ( ( non empty ) ( non empty ) set ) :] : ( ( ) ( non empty ) set ) -defined b1 : ( ( non empty ) ( non empty ) set ) -valued Function-like non empty total quasi_total ) BinOp of b1 : ( ( non empty ) ( non empty ) set ) ) "**" r : ( ( ) ( Relation-like NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal V76() V77() V78() V79() V80() V81() V82() ) Element of bool REAL : ( ( ) ( non empty non trivial non finite V76() V77() V78() V82() ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) -defined b1 : ( ( non empty ) ( non empty ) set ) -valued Function-like finite FinSequence-like FinSubsequence-like ) FinSequence of b1 : ( ( non empty ) ( non empty ) set ) ) ) : ( ( ) ( ) Element of b1 : ( ( non empty ) ( non empty ) set ) ) ) : ( ( ) ( ) Element of b1 : ( ( non empty ) ( non empty ) set ) ) ) ;

registration
let T1, T2 be ( ( TopSpace-like ) ( TopSpace-like ) TopSpace) ;
let f be ( ( Function-like quasi_total ) ( Relation-like the carrier of [:T1 : ( ( TopSpace-like ) ( TopSpace-like ) TopSpace) ,T2 : ( ( TopSpace-like ) ( TopSpace-like ) TopSpace) :] : ( ( strict TopSpace-like ) ( strict TopSpace-like ) TopStruct ) : ( ( ) ( ) set ) -defined REAL : ( ( ) ( non empty non trivial non finite V76() V77() V78() V82() ) set ) -valued Function-like total quasi_total complex-valued ext-real-valued real-valued ) RealMap of ( ( ) ( ) set ) ) ;
let t1 be ( ( ) ( ) Point of ( ( ) ( ) set ) ) ;
let t2 be ( ( ) ( ) Point of ( ( ) ( ) set ) ) ;
cluster f : ( ( Function-like quasi_total ) ( Relation-like the carrier of [:T1 : ( ( TopSpace-like ) ( TopSpace-like ) TopStruct ) ,T2 : ( ( TopSpace-like ) ( TopSpace-like ) TopStruct ) :] : ( ( strict TopSpace-like ) ( strict TopSpace-like ) TopStruct ) : ( ( ) ( ) set ) -defined REAL : ( ( ) ( non empty non trivial non finite V76() V77() V78() V82() ) set ) -valued Function-like total quasi_total complex-valued ext-real-valued real-valued ) Element of bool [: the carrier of [:T1 : ( ( TopSpace-like ) ( TopSpace-like ) TopStruct ) ,T2 : ( ( TopSpace-like ) ( TopSpace-like ) TopStruct ) :] : ( ( strict TopSpace-like ) ( strict TopSpace-like ) TopStruct ) : ( ( ) ( ) set ) ,REAL : ( ( ) ( non empty non trivial non finite V76() V77() V78() V82() ) set ) :] : ( ( ) ( complex-valued ext-real-valued real-valued ) set ) : ( ( ) ( non empty ) set ) ) . (t1 : ( ( ) ( ) Element of the carrier of T1 : ( ( TopSpace-like ) ( TopSpace-like ) TopStruct ) : ( ( ) ( ) set ) ) ,t2 : ( ( ) ( ) Element of the carrier of T2 : ( ( TopSpace-like ) ( TopSpace-like ) TopStruct ) : ( ( ) ( ) set ) ) ) : ( ( ) ( ) set ) -> real ;
end;

theorem :: NAGATA_2:19
for T being ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) holds
( ( T : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) is regular & T : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) is T_1 & ex Bn being ( ( Function-like quasi_total ) ( Relation-like NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal V76() V77() V78() V79() V80() V81() V82() ) Element of bool REAL : ( ( ) ( non empty non trivial non finite V76() V77() V78() V82() ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) -defined bool (bool the carrier of b1 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty ) set ) : ( ( ) ( non empty ) set ) -valued Function-like non empty total quasi_total ) FamilySequence of ) st Bn : ( ( Function-like quasi_total ) ( Relation-like NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal V76() V77() V78() V79() V80() V81() V82() ) Element of bool REAL : ( ( ) ( non empty non trivial non finite V76() V77() V78() V82() ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) -defined bool (bool the carrier of b1 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty ) set ) : ( ( ) ( non empty ) set ) -valued Function-like non empty total quasi_total ) FamilySequence of ) is Basis_sigma_locally_finite ) iff T : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) is metrizable ) ;

theorem :: NAGATA_2:20
for T being ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) st T : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) is metrizable holds
for FX being ( ( ) ( ) Subset-Family of ) st FX : ( ( ) ( ) Subset-Family of ) is ( ( ) ( ) Cover of ( ( ) ( non empty ) set ) ) & FX : ( ( ) ( ) Subset-Family of ) is open holds
ex Un being ( ( Function-like quasi_total ) ( Relation-like NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal V76() V77() V78() V79() V80() V81() V82() ) Element of bool REAL : ( ( ) ( non empty non trivial non finite V76() V77() V78() V82() ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) -defined bool (bool the carrier of b1 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty ) set ) : ( ( ) ( non empty ) set ) -valued Function-like non empty total quasi_total ) FamilySequence of ) st
( Union Un : ( ( Function-like quasi_total ) ( Relation-like NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal V76() V77() V78() V79() V80() V81() V82() ) Element of bool REAL : ( ( ) ( non empty non trivial non finite V76() V77() V78() V82() ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) -defined bool (bool the carrier of b1 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty ) set ) : ( ( ) ( non empty ) set ) -valued Function-like non empty total quasi_total ) FamilySequence of ) : ( ( ) ( ) Element of bool (bool the carrier of b1 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty ) set ) : ( ( ) ( non empty ) set ) ) is open & Union Un : ( ( Function-like quasi_total ) ( Relation-like NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal V76() V77() V78() V79() V80() V81() V82() ) Element of bool REAL : ( ( ) ( non empty non trivial non finite V76() V77() V78() V82() ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) -defined bool (bool the carrier of b1 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty ) set ) : ( ( ) ( non empty ) set ) -valued Function-like non empty total quasi_total ) FamilySequence of ) : ( ( ) ( ) Element of bool (bool the carrier of b1 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty ) set ) : ( ( ) ( non empty ) set ) ) is ( ( ) ( ) Cover of ( ( ) ( non empty ) set ) ) & Union Un : ( ( Function-like quasi_total ) ( Relation-like NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal V76() V77() V78() V79() V80() V81() V82() ) Element of bool REAL : ( ( ) ( non empty non trivial non finite V76() V77() V78() V82() ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) -defined bool (bool the carrier of b1 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty ) set ) : ( ( ) ( non empty ) set ) -valued Function-like non empty total quasi_total ) FamilySequence of ) : ( ( ) ( ) Element of bool (bool the carrier of b1 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty ) set ) : ( ( ) ( non empty ) set ) ) is_finer_than FX : ( ( ) ( ) Subset-Family of ) & Un : ( ( Function-like quasi_total ) ( Relation-like NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal V76() V77() V78() V79() V80() V81() V82() ) Element of bool REAL : ( ( ) ( non empty non trivial non finite V76() V77() V78() V82() ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) -defined bool (bool the carrier of b1 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty ) set ) : ( ( ) ( non empty ) set ) -valued Function-like non empty total quasi_total ) FamilySequence of ) is sigma_discrete ) ;

theorem :: NAGATA_2:21
for T being ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) st T : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) is metrizable holds
ex Un being ( ( Function-like quasi_total ) ( Relation-like NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal V76() V77() V78() V79() V80() V81() V82() ) Element of bool REAL : ( ( ) ( non empty non trivial non finite V76() V77() V78() V82() ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) -defined bool (bool the carrier of b1 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty ) set ) : ( ( ) ( non empty ) set ) -valued Function-like non empty total quasi_total ) FamilySequence of ) st Un : ( ( Function-like quasi_total ) ( Relation-like NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal V76() V77() V78() V79() V80() V81() V82() ) Element of bool REAL : ( ( ) ( non empty non trivial non finite V76() V77() V78() V82() ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) -defined bool (bool the carrier of b1 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty ) set ) : ( ( ) ( non empty ) set ) -valued Function-like non empty total quasi_total ) FamilySequence of ) is Basis_sigma_discrete ;

theorem :: NAGATA_2:22
for T being ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) holds
( ( T : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) is regular & T : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) is T_1 & ex Bn being ( ( Function-like quasi_total ) ( Relation-like NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal V76() V77() V78() V79() V80() V81() V82() ) Element of bool REAL : ( ( ) ( non empty non trivial non finite V76() V77() V78() V82() ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) -defined bool (bool the carrier of b1 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty ) set ) : ( ( ) ( non empty ) set ) -valued Function-like non empty total quasi_total ) FamilySequence of ) st Bn : ( ( Function-like quasi_total ) ( Relation-like NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal V76() V77() V78() V79() V80() V81() V82() ) Element of bool REAL : ( ( ) ( non empty non trivial non finite V76() V77() V78() V82() ) set ) : ( ( ) ( non empty non trivial non finite ) set ) ) -defined bool (bool the carrier of b1 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty ) set ) : ( ( ) ( non empty ) set ) -valued Function-like non empty total quasi_total ) FamilySequence of ) is Basis_sigma_discrete ) iff T : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) is metrizable ) ;