:: ORDINAL3 semantic presentation

begin

theorem :: ORDINAL3:1
for X being ( ( ) ( ) set ) holds X : ( ( ) ( ) set ) c= succ X : ( ( ) ( ) set ) : ( ( ) ( non empty ) set ) ;

theorem :: ORDINAL3:2
for X, Y being ( ( ) ( ) set ) st succ X : ( ( ) ( ) set ) : ( ( ) ( non empty ) set ) c= Y : ( ( ) ( ) set ) holds
X : ( ( ) ( ) set ) c= Y : ( ( ) ( ) set ) ;

theorem :: ORDINAL3:3
for A, B being ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) holds
( A : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) in B : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) iff succ A : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal ) set ) in succ B : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal ) set ) ) ;

theorem :: ORDINAL3:4
for A being ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal)
for X being ( ( ) ( ) set ) st X : ( ( ) ( ) set ) c= A : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) holds
union X : ( ( ) ( ) set ) : ( ( ) ( ) set ) is ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) ;

theorem :: ORDINAL3:5
for X being ( ( ) ( ) set ) holds union (On X : ( ( ) ( ) set ) ) : ( ( ) ( ) set ) : ( ( ) ( ) set ) is ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) ;

theorem :: ORDINAL3:6
for A being ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal)
for X being ( ( ) ( ) set ) st X : ( ( ) ( ) set ) c= A : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) holds
On X : ( ( ) ( ) set ) : ( ( ) ( ) set ) = X : ( ( ) ( ) set ) ;

theorem :: ORDINAL3:7
for A being ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) holds On {A : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) } : ( ( ) ( non empty ) set ) : ( ( ) ( ) set ) = {A : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) } : ( ( ) ( non empty ) set ) ;

theorem :: ORDINAL3:8
for A being ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) st A : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) <> {} : ( ( ) ( empty epsilon-transitive epsilon-connected ordinal T-Sequence-like c=-linear natural ) set ) holds
{} : ( ( ) ( empty epsilon-transitive epsilon-connected ordinal T-Sequence-like c=-linear natural ) set ) in A : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) ;

theorem :: ORDINAL3:9
for A being ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) holds inf A : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) set ) = {} : ( ( ) ( empty epsilon-transitive epsilon-connected ordinal T-Sequence-like c=-linear natural ) set ) ;

theorem :: ORDINAL3:10
for A being ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) holds inf {A : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) } : ( ( ) ( non empty ) set ) : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) set ) = A : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) ;

theorem :: ORDINAL3:11
for A being ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal)
for X being ( ( ) ( ) set ) st X : ( ( ) ( ) set ) c= A : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) holds
meet X : ( ( ) ( ) set ) : ( ( ) ( ) set ) is ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) ;

registration
let A, B be ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) ;
cluster A : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) set ) \/ B : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) set ) : ( ( ) ( ) set ) -> ordinal ;
cluster A : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) set ) /\ B : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) set ) : ( ( ) ( ) set ) -> ordinal ;
end;

theorem :: ORDINAL3:12
for A, B being ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) holds
( A : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) \/ B : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) : ( ( ) ( epsilon-transitive epsilon-connected ordinal ) set ) = A : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) or A : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) \/ B : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) : ( ( ) ( epsilon-transitive epsilon-connected ordinal ) set ) = B : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) ) ;

theorem :: ORDINAL3:13
for A, B being ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) holds
( A : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) /\ B : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) : ( ( ) ( epsilon-transitive epsilon-connected ordinal ) set ) = A : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) or A : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) /\ B : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) : ( ( ) ( epsilon-transitive epsilon-connected ordinal ) set ) = B : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) ) ;

theorem :: ORDINAL3:14
for A being ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) st A : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) in 1 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural ) Element of omega : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal ) set ) ) holds
A : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) = {} : ( ( ) ( empty epsilon-transitive epsilon-connected ordinal T-Sequence-like c=-linear natural ) set ) ;

theorem :: ORDINAL3:15
1 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural ) Element of omega : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal ) set ) ) = {{} : ( ( ) ( empty epsilon-transitive epsilon-connected ordinal T-Sequence-like c=-linear natural ) set ) } : ( ( ) ( non empty ) set ) ;

theorem :: ORDINAL3:16
for A being ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) holds
( not A : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) c= 1 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural ) Element of omega : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal ) set ) ) or A : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) = {} : ( ( ) ( empty epsilon-transitive epsilon-connected ordinal T-Sequence-like c=-linear natural ) set ) or A : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) = 1 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural ) Element of omega : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal ) set ) ) ) ;

theorem :: ORDINAL3:17
for A, B, C, D being ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) st ( A : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) c= B : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) or A : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) in B : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) ) & C : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) in D : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) holds
A : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) +^ C : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) set ) in B : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) +^ D : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) set ) ;

theorem :: ORDINAL3:18
for A, B, C, D being ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) st A : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) c= B : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) & C : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) c= D : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) holds
A : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) +^ C : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) set ) c= B : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) +^ D : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) set ) ;

theorem :: ORDINAL3:19
for A, B, C, D being ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) st A : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) in B : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) & ( ( C : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) c= D : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) & D : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) <> {} : ( ( ) ( empty epsilon-transitive epsilon-connected ordinal T-Sequence-like c=-linear natural ) set ) ) or C : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) in D : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) ) holds
A : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) *^ C : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) set ) in B : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) *^ D : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) set ) ;

theorem :: ORDINAL3:20
for A, B, C, D being ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) st A : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) c= B : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) & C : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) c= D : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) holds
A : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) *^ C : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) set ) c= B : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) *^ D : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) set ) ;

theorem :: ORDINAL3:21
for B, C, D being ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) st B : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) +^ C : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) set ) = B : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) +^ D : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) set ) holds
C : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) = D : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) ;

theorem :: ORDINAL3:22
for B, C, D being ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) st B : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) +^ C : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) set ) in B : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) +^ D : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) set ) holds
C : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) in D : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) ;

theorem :: ORDINAL3:23
for B, C, D being ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) st B : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) +^ C : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) set ) c= B : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) +^ D : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) set ) holds
C : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) c= D : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) ;

theorem :: ORDINAL3:24
for A, B being ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) holds
( A : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) c= A : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) +^ B : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) set ) & B : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) c= A : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) +^ B : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) set ) ) ;

theorem :: ORDINAL3:25
for A, B, C being ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) st A : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) in B : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) holds
( A : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) in B : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) +^ C : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) set ) & A : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) in C : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) +^ B : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) set ) ) ;

theorem :: ORDINAL3:26
for A, B being ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) st A : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) +^ B : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) set ) = {} : ( ( ) ( empty epsilon-transitive epsilon-connected ordinal T-Sequence-like c=-linear natural ) set ) holds
( A : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) = {} : ( ( ) ( empty epsilon-transitive epsilon-connected ordinal T-Sequence-like c=-linear natural ) set ) & B : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) = {} : ( ( ) ( empty epsilon-transitive epsilon-connected ordinal T-Sequence-like c=-linear natural ) set ) ) ;

theorem :: ORDINAL3:27
for A, B being ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) st A : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) c= B : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) holds
ex C being ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) st B : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) = A : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) +^ C : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) set ) ;

theorem :: ORDINAL3:28
for A, B being ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) st A : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) in B : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) holds
ex C being ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) st
( B : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) = A : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) +^ C : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) set ) & C : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) <> {} : ( ( ) ( empty epsilon-transitive epsilon-connected ordinal T-Sequence-like c=-linear natural ) set ) ) ;

theorem :: ORDINAL3:29
for A, B being ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) st A : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) <> {} : ( ( ) ( empty epsilon-transitive epsilon-connected ordinal T-Sequence-like c=-linear natural ) set ) & A : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) is limit_ordinal holds
B : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) +^ A : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) set ) is limit_ordinal ;

theorem :: ORDINAL3:30
for A, B, C being ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) holds (A : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) +^ B : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) ) : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) set ) +^ C : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) set ) = A : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) +^ (B : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) +^ C : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) ) : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) set ) : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) set ) ;

theorem :: ORDINAL3:31
for A, B being ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) holds
( not A : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) *^ B : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) set ) = {} : ( ( ) ( empty epsilon-transitive epsilon-connected ordinal T-Sequence-like c=-linear natural ) set ) or A : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) = {} : ( ( ) ( empty epsilon-transitive epsilon-connected ordinal T-Sequence-like c=-linear natural ) set ) or B : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) = {} : ( ( ) ( empty epsilon-transitive epsilon-connected ordinal T-Sequence-like c=-linear natural ) set ) ) ;

theorem :: ORDINAL3:32
for A, B, C being ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) st A : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) in B : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) & C : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) <> {} : ( ( ) ( empty epsilon-transitive epsilon-connected ordinal T-Sequence-like c=-linear natural ) set ) holds
( A : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) in B : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) *^ C : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) set ) & A : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) in C : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) *^ B : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) set ) ) ;

theorem :: ORDINAL3:33
for B, A, C being ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) st B : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) *^ A : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) set ) = C : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) *^ A : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) set ) & A : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) <> {} : ( ( ) ( empty epsilon-transitive epsilon-connected ordinal T-Sequence-like c=-linear natural ) set ) holds
B : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) = C : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) ;

theorem :: ORDINAL3:34
for B, A, C being ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) st B : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) *^ A : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) set ) in C : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) *^ A : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) set ) holds
B : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) in C : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) ;

theorem :: ORDINAL3:35
for B, A, C being ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) st B : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) *^ A : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) set ) c= C : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) *^ A : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) set ) & A : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) <> {} : ( ( ) ( empty epsilon-transitive epsilon-connected ordinal T-Sequence-like c=-linear natural ) set ) holds
B : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) c= C : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) ;

theorem :: ORDINAL3:36
for B, A being ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) st B : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) <> {} : ( ( ) ( empty epsilon-transitive epsilon-connected ordinal T-Sequence-like c=-linear natural ) set ) holds
( A : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) c= A : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) *^ B : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) set ) & A : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) c= B : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) *^ A : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) set ) ) ;

theorem :: ORDINAL3:37
for A, B being ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) st A : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) *^ B : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) set ) = 1 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural ) Element of omega : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal ) set ) ) holds
( A : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) = 1 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural ) Element of omega : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal ) set ) ) & B : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) = 1 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural ) Element of omega : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal ) set ) ) ) ;

theorem :: ORDINAL3:38
for A, B, C being ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) holds
( not A : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) in B : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) +^ C : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) set ) or A : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) in B : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) or ex D being ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) st
( D : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) in C : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) & A : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) = B : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) +^ D : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) set ) ) ) ;

definition
let C be ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) ;
let fi be ( ( T-Sequence-like Relation-like Function-like Ordinal-yielding ) ( T-Sequence-like Relation-like Function-like Ordinal-yielding ) Ordinal-Sequence) ;
func C +^ fi -> ( ( T-Sequence-like Relation-like Function-like Ordinal-yielding ) ( T-Sequence-like Relation-like Function-like Ordinal-yielding ) Ordinal-Sequence) means :: ORDINAL3:def 1
( dom it : ( ( ) ( ) Element of K10(C : ( ( ) ( ) set ) ) : ( ( ) ( ) set ) ) : ( ( ) ( ) set ) = dom fi : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) set ) : ( ( ) ( ) set ) & ( for A being ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) st A : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) in dom fi : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) set ) : ( ( ) ( ) set ) holds
it : ( ( ) ( ) Element of K10(C : ( ( ) ( ) set ) ) : ( ( ) ( ) set ) ) . A : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) : ( ( ) ( ) set ) = C : ( ( ) ( ) set ) +^ (fi : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) set ) . A : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) ) : ( ( ) ( ) set ) : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) set ) ) );
func fi +^ C -> ( ( T-Sequence-like Relation-like Function-like Ordinal-yielding ) ( T-Sequence-like Relation-like Function-like Ordinal-yielding ) Ordinal-Sequence) means :: ORDINAL3:def 2
( dom it : ( ( ) ( ) Element of K10(C : ( ( ) ( ) set ) ) : ( ( ) ( ) set ) ) : ( ( ) ( ) set ) = dom fi : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) set ) : ( ( ) ( ) set ) & ( for A being ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) st A : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) in dom fi : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) set ) : ( ( ) ( ) set ) holds
it : ( ( ) ( ) Element of K10(C : ( ( ) ( ) set ) ) : ( ( ) ( ) set ) ) . A : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) : ( ( ) ( ) set ) = (fi : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) set ) . A : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) ) : ( ( ) ( ) set ) +^ C : ( ( ) ( ) set ) : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) set ) ) );
func C *^ fi -> ( ( T-Sequence-like Relation-like Function-like Ordinal-yielding ) ( T-Sequence-like Relation-like Function-like Ordinal-yielding ) Ordinal-Sequence) means :: ORDINAL3:def 3
( dom it : ( ( ) ( ) Element of K10(C : ( ( ) ( ) set ) ) : ( ( ) ( ) set ) ) : ( ( ) ( ) set ) = dom fi : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) set ) : ( ( ) ( ) set ) & ( for A being ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) st A : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) in dom fi : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) set ) : ( ( ) ( ) set ) holds
it : ( ( ) ( ) Element of K10(C : ( ( ) ( ) set ) ) : ( ( ) ( ) set ) ) . A : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) : ( ( ) ( ) set ) = C : ( ( ) ( ) set ) *^ (fi : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) set ) . A : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) ) : ( ( ) ( ) set ) : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) set ) ) );
func fi *^ C -> ( ( T-Sequence-like Relation-like Function-like Ordinal-yielding ) ( T-Sequence-like Relation-like Function-like Ordinal-yielding ) Ordinal-Sequence) means :: ORDINAL3:def 4
( dom it : ( ( ) ( ) Element of K10(C : ( ( ) ( ) set ) ) : ( ( ) ( ) set ) ) : ( ( ) ( ) set ) = dom fi : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) set ) : ( ( ) ( ) set ) & ( for A being ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) st A : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) in dom fi : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) set ) : ( ( ) ( ) set ) holds
it : ( ( ) ( ) Element of K10(C : ( ( ) ( ) set ) ) : ( ( ) ( ) set ) ) . A : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) : ( ( ) ( ) set ) = (fi : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) set ) . A : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) ) : ( ( ) ( ) set ) *^ C : ( ( ) ( ) set ) : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) set ) ) );
end;

theorem :: ORDINAL3:39
for fi, psi being ( ( T-Sequence-like Relation-like Function-like Ordinal-yielding ) ( T-Sequence-like Relation-like Function-like Ordinal-yielding ) Ordinal-Sequence)
for C being ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) st {} : ( ( ) ( empty epsilon-transitive epsilon-connected ordinal T-Sequence-like c=-linear natural ) set ) <> dom fi : ( ( T-Sequence-like Relation-like Function-like Ordinal-yielding ) ( T-Sequence-like Relation-like Function-like Ordinal-yielding ) Ordinal-Sequence) : ( ( ) ( epsilon-transitive epsilon-connected ordinal ) set ) & dom fi : ( ( T-Sequence-like Relation-like Function-like Ordinal-yielding ) ( T-Sequence-like Relation-like Function-like Ordinal-yielding ) Ordinal-Sequence) : ( ( ) ( epsilon-transitive epsilon-connected ordinal ) set ) = dom psi : ( ( T-Sequence-like Relation-like Function-like Ordinal-yielding ) ( T-Sequence-like Relation-like Function-like Ordinal-yielding ) Ordinal-Sequence) : ( ( ) ( epsilon-transitive epsilon-connected ordinal ) set ) & ( for A, B being ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) st A : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) in dom fi : ( ( T-Sequence-like Relation-like Function-like Ordinal-yielding ) ( T-Sequence-like Relation-like Function-like Ordinal-yielding ) Ordinal-Sequence) : ( ( ) ( epsilon-transitive epsilon-connected ordinal ) set ) & B : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) = fi : ( ( T-Sequence-like Relation-like Function-like Ordinal-yielding ) ( T-Sequence-like Relation-like Function-like Ordinal-yielding ) Ordinal-Sequence) . A : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) : ( ( ) ( epsilon-transitive epsilon-connected ordinal ) set ) holds
psi : ( ( T-Sequence-like Relation-like Function-like Ordinal-yielding ) ( T-Sequence-like Relation-like Function-like Ordinal-yielding ) Ordinal-Sequence) . A : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) : ( ( ) ( epsilon-transitive epsilon-connected ordinal ) set ) = C : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) +^ B : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) set ) ) holds
sup psi : ( ( T-Sequence-like Relation-like Function-like Ordinal-yielding ) ( T-Sequence-like Relation-like Function-like Ordinal-yielding ) Ordinal-Sequence) : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) set ) = C : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) +^ (sup fi : ( ( T-Sequence-like Relation-like Function-like Ordinal-yielding ) ( T-Sequence-like Relation-like Function-like Ordinal-yielding ) Ordinal-Sequence) ) : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) set ) : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) set ) ;

theorem :: ORDINAL3:40
for A, B being ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) st A : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) is limit_ordinal holds
A : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) *^ B : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) set ) is limit_ordinal ;

theorem :: ORDINAL3:41
for A, B, C being ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) st A : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) in B : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) *^ C : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) set ) & B : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) is limit_ordinal holds
ex D being ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) st
( D : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) in B : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) & A : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) in D : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) *^ C : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) set ) ) ;

theorem :: ORDINAL3:42
for fi, psi being ( ( T-Sequence-like Relation-like Function-like Ordinal-yielding ) ( T-Sequence-like Relation-like Function-like Ordinal-yielding ) Ordinal-Sequence)
for C being ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) st dom fi : ( ( T-Sequence-like Relation-like Function-like Ordinal-yielding ) ( T-Sequence-like Relation-like Function-like Ordinal-yielding ) Ordinal-Sequence) : ( ( ) ( epsilon-transitive epsilon-connected ordinal ) set ) = dom psi : ( ( T-Sequence-like Relation-like Function-like Ordinal-yielding ) ( T-Sequence-like Relation-like Function-like Ordinal-yielding ) Ordinal-Sequence) : ( ( ) ( epsilon-transitive epsilon-connected ordinal ) set ) & C : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) <> {} : ( ( ) ( empty epsilon-transitive epsilon-connected ordinal T-Sequence-like c=-linear natural ) set ) & sup fi : ( ( T-Sequence-like Relation-like Function-like Ordinal-yielding ) ( T-Sequence-like Relation-like Function-like Ordinal-yielding ) Ordinal-Sequence) : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) set ) is limit_ordinal & ( for A, B being ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) st A : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) in dom fi : ( ( T-Sequence-like Relation-like Function-like Ordinal-yielding ) ( T-Sequence-like Relation-like Function-like Ordinal-yielding ) Ordinal-Sequence) : ( ( ) ( epsilon-transitive epsilon-connected ordinal ) set ) & B : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) = fi : ( ( T-Sequence-like Relation-like Function-like Ordinal-yielding ) ( T-Sequence-like Relation-like Function-like Ordinal-yielding ) Ordinal-Sequence) . A : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) : ( ( ) ( epsilon-transitive epsilon-connected ordinal ) set ) holds
psi : ( ( T-Sequence-like Relation-like Function-like Ordinal-yielding ) ( T-Sequence-like Relation-like Function-like Ordinal-yielding ) Ordinal-Sequence) . A : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) : ( ( ) ( epsilon-transitive epsilon-connected ordinal ) set ) = B : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) *^ C : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) set ) ) holds
sup psi : ( ( T-Sequence-like Relation-like Function-like Ordinal-yielding ) ( T-Sequence-like Relation-like Function-like Ordinal-yielding ) Ordinal-Sequence) : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) set ) = (sup fi : ( ( T-Sequence-like Relation-like Function-like Ordinal-yielding ) ( T-Sequence-like Relation-like Function-like Ordinal-yielding ) Ordinal-Sequence) ) : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) set ) *^ C : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) set ) ;

theorem :: ORDINAL3:43
for fi being ( ( T-Sequence-like Relation-like Function-like Ordinal-yielding ) ( T-Sequence-like Relation-like Function-like Ordinal-yielding ) Ordinal-Sequence)
for C being ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) st {} : ( ( ) ( empty epsilon-transitive epsilon-connected ordinal T-Sequence-like c=-linear natural ) set ) <> dom fi : ( ( T-Sequence-like Relation-like Function-like Ordinal-yielding ) ( T-Sequence-like Relation-like Function-like Ordinal-yielding ) Ordinal-Sequence) : ( ( ) ( epsilon-transitive epsilon-connected ordinal ) set ) holds
sup (C : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) +^ fi : ( ( T-Sequence-like Relation-like Function-like Ordinal-yielding ) ( T-Sequence-like Relation-like Function-like Ordinal-yielding ) Ordinal-Sequence) ) : ( ( T-Sequence-like Relation-like Function-like Ordinal-yielding ) ( T-Sequence-like Relation-like Function-like Ordinal-yielding ) Ordinal-Sequence) : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) set ) = C : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) +^ (sup fi : ( ( T-Sequence-like Relation-like Function-like Ordinal-yielding ) ( T-Sequence-like Relation-like Function-like Ordinal-yielding ) Ordinal-Sequence) ) : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) set ) : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) set ) ;

theorem :: ORDINAL3:44
for fi being ( ( T-Sequence-like Relation-like Function-like Ordinal-yielding ) ( T-Sequence-like Relation-like Function-like Ordinal-yielding ) Ordinal-Sequence)
for C being ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) st {} : ( ( ) ( empty epsilon-transitive epsilon-connected ordinal T-Sequence-like c=-linear natural ) set ) <> dom fi : ( ( T-Sequence-like Relation-like Function-like Ordinal-yielding ) ( T-Sequence-like Relation-like Function-like Ordinal-yielding ) Ordinal-Sequence) : ( ( ) ( epsilon-transitive epsilon-connected ordinal ) set ) & C : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) <> {} : ( ( ) ( empty epsilon-transitive epsilon-connected ordinal T-Sequence-like c=-linear natural ) set ) & sup fi : ( ( T-Sequence-like Relation-like Function-like Ordinal-yielding ) ( T-Sequence-like Relation-like Function-like Ordinal-yielding ) Ordinal-Sequence) : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) set ) is limit_ordinal holds
sup (fi : ( ( T-Sequence-like Relation-like Function-like Ordinal-yielding ) ( T-Sequence-like Relation-like Function-like Ordinal-yielding ) Ordinal-Sequence) *^ C : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) ) : ( ( T-Sequence-like Relation-like Function-like Ordinal-yielding ) ( T-Sequence-like Relation-like Function-like Ordinal-yielding ) Ordinal-Sequence) : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) set ) = (sup fi : ( ( T-Sequence-like Relation-like Function-like Ordinal-yielding ) ( T-Sequence-like Relation-like Function-like Ordinal-yielding ) Ordinal-Sequence) ) : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) set ) *^ C : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) set ) ;

theorem :: ORDINAL3:45
for B, A being ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) st B : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) <> {} : ( ( ) ( empty epsilon-transitive epsilon-connected ordinal T-Sequence-like c=-linear natural ) set ) holds
union (A : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) +^ B : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) ) : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) set ) : ( ( ) ( epsilon-transitive epsilon-connected ordinal ) set ) = A : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) +^ (union B : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) ) : ( ( ) ( epsilon-transitive epsilon-connected ordinal ) set ) : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) set ) ;

theorem :: ORDINAL3:46
for A, B, C being ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) holds (A : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) +^ B : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) ) : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) set ) *^ C : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) set ) = (A : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) *^ C : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) ) : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) set ) +^ (B : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) *^ C : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) ) : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) set ) : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) set ) ;

theorem :: ORDINAL3:47
for A, B being ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) st A : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) <> {} : ( ( ) ( empty epsilon-transitive epsilon-connected ordinal T-Sequence-like c=-linear natural ) set ) holds
ex C, D being ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) st
( B : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) = (C : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) *^ A : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) ) : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) set ) +^ D : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) set ) & D : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) in A : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) ) ;

theorem :: ORDINAL3:48
for A, C1, D1, C2, D2 being ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) st (C1 : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) *^ A : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) ) : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) set ) +^ D1 : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) set ) = (C2 : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) *^ A : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) ) : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) set ) +^ D2 : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) set ) & D1 : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) in A : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) & D2 : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) in A : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) holds
( C1 : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) = C2 : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) & D1 : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) = D2 : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) ) ;

theorem :: ORDINAL3:49
for B, A being ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) st 1 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural ) Element of omega : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal ) set ) ) in B : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) & A : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) <> {} : ( ( ) ( empty epsilon-transitive epsilon-connected ordinal T-Sequence-like c=-linear natural ) set ) & A : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) is limit_ordinal holds
for fi being ( ( T-Sequence-like Relation-like Function-like Ordinal-yielding ) ( T-Sequence-like Relation-like Function-like Ordinal-yielding ) Ordinal-Sequence) st dom fi : ( ( T-Sequence-like Relation-like Function-like Ordinal-yielding ) ( T-Sequence-like Relation-like Function-like Ordinal-yielding ) Ordinal-Sequence) : ( ( ) ( epsilon-transitive epsilon-connected ordinal ) set ) = A : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) & ( for C being ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) st C : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) in A : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) holds
fi : ( ( T-Sequence-like Relation-like Function-like Ordinal-yielding ) ( T-Sequence-like Relation-like Function-like Ordinal-yielding ) Ordinal-Sequence) . C : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) : ( ( ) ( epsilon-transitive epsilon-connected ordinal ) set ) = C : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) *^ B : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) set ) ) holds
A : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) *^ B : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) set ) = sup fi : ( ( T-Sequence-like Relation-like Function-like Ordinal-yielding ) ( T-Sequence-like Relation-like Function-like Ordinal-yielding ) Ordinal-Sequence) : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) set ) ;

theorem :: ORDINAL3:50
for A, B, C being ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) holds (A : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) *^ B : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) ) : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) set ) *^ C : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) set ) = A : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) *^ (B : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) *^ C : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) ) : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) set ) : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) set ) ;

definition
let A, B be ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) ;
func A -^ B -> ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) means :: ORDINAL3:def 5
A : ( ( ) ( ) set ) = B : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) set ) +^ it : ( ( ) ( ) Element of K10(A : ( ( ) ( ) set ) ) : ( ( ) ( ) set ) ) : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) set ) if B : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) set ) c= A : ( ( ) ( ) set )
otherwise it : ( ( ) ( ) Element of K10(A : ( ( ) ( ) set ) ) : ( ( ) ( ) set ) ) = {} : ( ( ) ( empty epsilon-transitive epsilon-connected ordinal T-Sequence-like c=-linear natural ) set ) ;
func A div^ B -> ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) means :: ORDINAL3:def 6
ex C being ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) st
( A : ( ( ) ( ) set ) = (it : ( ( ) ( ) Element of K10(A : ( ( ) ( ) set ) ) : ( ( ) ( ) set ) ) *^ B : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) set ) ) : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) set ) +^ C : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) set ) & C : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) in B : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) set ) ) if B : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) set ) <> {} : ( ( ) ( empty epsilon-transitive epsilon-connected ordinal T-Sequence-like c=-linear natural ) set )
otherwise it : ( ( ) ( ) Element of K10(A : ( ( ) ( ) set ) ) : ( ( ) ( ) set ) ) = {} : ( ( ) ( empty epsilon-transitive epsilon-connected ordinal T-Sequence-like c=-linear natural ) set ) ;
end;

definition
let A, B be ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) ;
func A mod^ B -> ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) equals :: ORDINAL3:def 7
A : ( ( ) ( ) set ) -^ ((A : ( ( ) ( ) set ) div^ B : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) set ) ) : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) *^ B : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) set ) ) : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) set ) : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) ;
end;

theorem :: ORDINAL3:51
for A, B being ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) st A : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) in B : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) holds
B : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) = A : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) +^ (B : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) -^ A : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) ) : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) set ) ;

theorem :: ORDINAL3:52
for A, B being ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) holds (A : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) +^ B : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) ) : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) set ) -^ A : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) = B : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) ;

theorem :: ORDINAL3:53
for A, B, C being ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) st A : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) in B : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) & ( C : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) c= A : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) or C : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) in A : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) ) holds
A : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) -^ C : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) in B : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) -^ C : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) ;

theorem :: ORDINAL3:54
for A being ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) holds A : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) -^ A : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) = {} : ( ( ) ( empty epsilon-transitive epsilon-connected ordinal T-Sequence-like c=-linear natural ) set ) ;

theorem :: ORDINAL3:55
for A, B being ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) st A : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) in B : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) holds
( B : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) -^ A : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) <> {} : ( ( ) ( empty epsilon-transitive epsilon-connected ordinal T-Sequence-like c=-linear natural ) set ) & {} : ( ( ) ( empty epsilon-transitive epsilon-connected ordinal T-Sequence-like c=-linear natural ) set ) in B : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) -^ A : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) ) ;

theorem :: ORDINAL3:56
for A being ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) holds
( A : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) -^ {} : ( ( ) ( empty epsilon-transitive epsilon-connected ordinal T-Sequence-like c=-linear natural ) set ) : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) = A : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) & {} : ( ( ) ( empty epsilon-transitive epsilon-connected ordinal T-Sequence-like c=-linear natural ) set ) -^ A : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) = {} : ( ( ) ( empty epsilon-transitive epsilon-connected ordinal T-Sequence-like c=-linear natural ) set ) ) ;

theorem :: ORDINAL3:57
for A, B, C being ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) holds A : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) -^ (B : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) +^ C : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) ) : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) set ) : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) = (A : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) -^ B : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) ) : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) -^ C : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) ;

theorem :: ORDINAL3:58
for A, B, C being ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) st A : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) c= B : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) holds
C : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) -^ B : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) c= C : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) -^ A : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) ;

theorem :: ORDINAL3:59
for A, B, C being ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) st A : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) c= B : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) holds
A : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) -^ C : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) c= B : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) -^ C : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) ;

theorem :: ORDINAL3:60
for C, A, B being ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) st C : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) <> {} : ( ( ) ( empty epsilon-transitive epsilon-connected ordinal T-Sequence-like c=-linear natural ) set ) & A : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) in B : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) +^ C : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) set ) holds
A : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) -^ B : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) in C : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) ;

theorem :: ORDINAL3:61
for A, B, C being ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) st A : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) +^ B : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) set ) in C : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) holds
B : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) in C : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) -^ A : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) ;

theorem :: ORDINAL3:62
for A, B being ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) holds A : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) c= B : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) +^ (A : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) -^ B : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) ) : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) set ) ;

theorem :: ORDINAL3:63
for A, C, B being ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) holds (A : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) *^ C : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) ) : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) set ) -^ (B : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) *^ C : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) ) : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) set ) : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) = (A : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) -^ B : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) ) : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) *^ C : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) set ) ;

theorem :: ORDINAL3:64
for A, B being ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) holds (A : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) div^ B : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) ) : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) *^ B : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) set ) c= A : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) ;

theorem :: ORDINAL3:65
for A, B being ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) holds A : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) = ((A : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) div^ B : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) ) : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) *^ B : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) ) : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) set ) +^ (A : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) mod^ B : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) ) : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) set ) ;

theorem :: ORDINAL3:66
for A, B, C, D being ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) st A : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) = (B : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) *^ C : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) ) : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) set ) +^ D : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) set ) & D : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) in C : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) holds
( B : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) = A : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) div^ C : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) & D : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) = A : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) mod^ C : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) ) ;

theorem :: ORDINAL3:67
for A, B, C being ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) st A : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) in B : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) *^ C : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) set ) holds
( A : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) div^ C : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) in B : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) & A : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) mod^ C : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) in C : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) ) ;

theorem :: ORDINAL3:68
for B, A being ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) st B : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) <> {} : ( ( ) ( empty epsilon-transitive epsilon-connected ordinal T-Sequence-like c=-linear natural ) set ) holds
(A : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) *^ B : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) ) : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) set ) div^ B : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) = A : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) ;

theorem :: ORDINAL3:69
for A, B being ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) holds (A : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) *^ B : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) ) : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) set ) mod^ B : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) = {} : ( ( ) ( empty epsilon-transitive epsilon-connected ordinal T-Sequence-like c=-linear natural ) set ) ;

theorem :: ORDINAL3:70
for A being ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) holds
( {} : ( ( ) ( empty epsilon-transitive epsilon-connected ordinal T-Sequence-like c=-linear natural ) set ) div^ A : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) = {} : ( ( ) ( empty epsilon-transitive epsilon-connected ordinal T-Sequence-like c=-linear natural ) set ) & {} : ( ( ) ( empty epsilon-transitive epsilon-connected ordinal T-Sequence-like c=-linear natural ) set ) mod^ A : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) = {} : ( ( ) ( empty epsilon-transitive epsilon-connected ordinal T-Sequence-like c=-linear natural ) set ) & A : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) mod^ {} : ( ( ) ( empty epsilon-transitive epsilon-connected ordinal T-Sequence-like c=-linear natural ) set ) : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) = A : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) ) ;

theorem :: ORDINAL3:71
for A being ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) holds
( A : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) div^ 1 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural ) Element of omega : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal ) set ) ) : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) = A : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) & A : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) mod^ 1 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural ) Element of omega : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal ) set ) ) : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) = {} : ( ( ) ( empty epsilon-transitive epsilon-connected ordinal T-Sequence-like c=-linear natural ) set ) ) ;

begin

theorem :: ORDINAL3:72
for X being ( ( ) ( ) set ) holds sup X : ( ( ) ( ) set ) : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) set ) c= succ (union (On X : ( ( ) ( ) set ) ) : ( ( ) ( ) set ) ) : ( ( ) ( ) set ) : ( ( ) ( non empty ) set ) ;

theorem :: ORDINAL3:73
for A being ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) holds succ A : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal ) set ) is_cofinal_with 1 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural ) Element of omega : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal ) set ) ) ;

theorem :: ORDINAL3:74
for a, b being ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) st a : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) +^ b : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) set ) is natural holds
( a : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) in omega : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal ) set ) & b : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) in omega : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal ) set ) ) ;

registration
let a, b be ( ( ordinal natural ) ( epsilon-transitive epsilon-connected ordinal natural ) Ordinal) ;
cluster a : ( ( ordinal natural ) ( epsilon-transitive epsilon-connected ordinal natural ) set ) -^ b : ( ( ordinal natural ) ( epsilon-transitive epsilon-connected ordinal natural ) set ) : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) -> ordinal natural ;
cluster a : ( ( ordinal natural ) ( epsilon-transitive epsilon-connected ordinal natural ) set ) *^ b : ( ( ordinal natural ) ( epsilon-transitive epsilon-connected ordinal natural ) set ) : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) set ) -> ordinal natural ;
end;

theorem :: ORDINAL3:75
for a, b being ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) st a : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) *^ b : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) set ) is natural & not a : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) *^ b : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) set ) is empty holds
( a : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) in omega : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal ) set ) & b : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) Ordinal) in omega : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal ) set ) ) ;

definition
let a, b be ( ( ordinal natural ) ( epsilon-transitive epsilon-connected ordinal natural ) Ordinal) ;
:: original: +^
redefine func a +^ b -> ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) set ) ;
commutativity
for a, b being ( ( ordinal natural ) ( epsilon-transitive epsilon-connected ordinal natural ) Ordinal) holds a : ( ( ordinal natural ) ( epsilon-transitive epsilon-connected ordinal natural ) set ) +^ b : ( ( ordinal natural ) ( epsilon-transitive epsilon-connected ordinal natural ) set ) : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal natural ) set ) = b : ( ( ordinal natural ) ( epsilon-transitive epsilon-connected ordinal natural ) set ) +^ a : ( ( ordinal natural ) ( epsilon-transitive epsilon-connected ordinal natural ) set ) : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal natural ) set )
;
end;

definition
let a, b be ( ( ordinal natural ) ( epsilon-transitive epsilon-connected ordinal natural ) Ordinal) ;
:: original: *^
redefine func a *^ b -> ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal ) set ) ;
commutativity
for a, b being ( ( ordinal natural ) ( epsilon-transitive epsilon-connected ordinal natural ) Ordinal) holds a : ( ( ordinal natural ) ( epsilon-transitive epsilon-connected ordinal natural ) set ) *^ b : ( ( ordinal natural ) ( epsilon-transitive epsilon-connected ordinal natural ) set ) : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal natural ) set ) = b : ( ( ordinal natural ) ( epsilon-transitive epsilon-connected ordinal natural ) set ) *^ a : ( ( ordinal natural ) ( epsilon-transitive epsilon-connected ordinal natural ) set ) : ( ( ordinal ) ( epsilon-transitive epsilon-connected ordinal natural ) set )
;
end;