:: RMOD_2 semantic presentation

begin

definition
let R be ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring) ;
let V be ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightMod of R : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring) ) ;
let V1 be ( ( ) ( ) Subset of ) ;
attr V1 is linearly-closed means :: RMOD_2:def 1
( ( for v, u being ( ( ) ( right_complementable ) Vector of ( ( ) ( ) set ) ) st v : ( ( ) ( right_complementable ) Scalar of ( ( ) ( non empty ) set ) ) in V1 : ( ( ) ( ) BiModStr over R : ( ( ) ( ) 1-sorted ) ,V : ( ( ) ( ) 1-sorted ) ) & u : ( ( ) ( right_complementable ) Vector of ( ( ) ( non empty ) set ) ) in V1 : ( ( ) ( ) BiModStr over R : ( ( ) ( ) 1-sorted ) ,V : ( ( ) ( ) 1-sorted ) ) holds
v : ( ( ) ( right_complementable ) Scalar of ( ( ) ( non empty ) set ) ) + u : ( ( ) ( right_complementable ) Vector of ( ( ) ( non empty ) set ) ) : ( ( ) ( ) Element of the carrier of V : ( ( ) ( ) 1-sorted ) : ( ( ) ( ) set ) ) in V1 : ( ( ) ( ) BiModStr over R : ( ( ) ( ) 1-sorted ) ,V : ( ( ) ( ) 1-sorted ) ) ) & ( for a being ( ( ) ( right_complementable ) Scalar of ( ( ) ( ) set ) )
for v being ( ( ) ( right_complementable ) Vector of ( ( ) ( ) set ) ) st v : ( ( ) ( right_complementable ) Vector of ( ( ) ( non empty ) set ) ) in V1 : ( ( ) ( ) BiModStr over R : ( ( ) ( ) 1-sorted ) ,V : ( ( ) ( ) 1-sorted ) ) holds
v : ( ( ) ( right_complementable ) Vector of ( ( ) ( non empty ) set ) ) * a : ( ( ) ( right_complementable ) Scalar of ( ( ) ( non empty ) set ) ) : ( ( ) ( ) Element of the carrier of V : ( ( ) ( ) 1-sorted ) : ( ( ) ( ) set ) ) in V1 : ( ( ) ( ) BiModStr over R : ( ( ) ( ) 1-sorted ) ,V : ( ( ) ( ) 1-sorted ) ) ) );
end;

theorem :: RMOD_2:1
for R being ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring)
for V being ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightMod of R : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring) )
for V1 being ( ( ) ( ) Subset of ) st V1 : ( ( ) ( ) Subset of ) <> {} : ( ( ) ( Relation-like non-empty empty-yielding Function-like one-to-one constant functional empty ) set ) & V1 : ( ( ) ( ) Subset of ) is linearly-closed holds
0. V : ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightMod of b1 : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring) ) : ( ( ) ( V49(b2 : ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightMod of b1 : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring) ) ) right_complementable ) Element of the carrier of b2 : ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightMod of b1 : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring) ) : ( ( ) ( non empty ) set ) ) in V1 : ( ( ) ( ) Subset of ) ;

theorem :: RMOD_2:2
for R being ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring)
for V being ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightMod of R : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring) )
for V1 being ( ( ) ( ) Subset of ) st V1 : ( ( ) ( ) Subset of ) is linearly-closed holds
for v being ( ( ) ( right_complementable ) Vector of ( ( ) ( non empty ) set ) ) st v : ( ( ) ( right_complementable ) Vector of ( ( ) ( non empty ) set ) ) in V1 : ( ( ) ( ) Subset of ) holds
- v : ( ( ) ( right_complementable ) Vector of ( ( ) ( non empty ) set ) ) : ( ( ) ( right_complementable ) Element of the carrier of b2 : ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightMod of b1 : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring) ) : ( ( ) ( non empty ) set ) ) in V1 : ( ( ) ( ) Subset of ) ;

theorem :: RMOD_2:3
for R being ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring)
for V being ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightMod of R : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring) )
for V1 being ( ( ) ( ) Subset of ) st V1 : ( ( ) ( ) Subset of ) is linearly-closed holds
for v, u being ( ( ) ( right_complementable ) Vector of ( ( ) ( non empty ) set ) ) st v : ( ( ) ( right_complementable ) Vector of ( ( ) ( non empty ) set ) ) in V1 : ( ( ) ( ) Subset of ) & u : ( ( ) ( right_complementable ) Vector of ( ( ) ( non empty ) set ) ) in V1 : ( ( ) ( ) Subset of ) holds
v : ( ( ) ( right_complementable ) Vector of ( ( ) ( non empty ) set ) ) - u : ( ( ) ( right_complementable ) Vector of ( ( ) ( non empty ) set ) ) : ( ( ) ( right_complementable ) Element of the carrier of b2 : ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightMod of b1 : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring) ) : ( ( ) ( non empty ) set ) ) in V1 : ( ( ) ( ) Subset of ) ;

theorem :: RMOD_2:4
for R being ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring)
for V being ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightMod of R : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring) ) holds {(0. V : ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightMod of b1 : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring) ) ) : ( ( ) ( V49(b2 : ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightMod of b1 : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring) ) ) right_complementable ) Element of the carrier of b2 : ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightMod of b1 : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring) ) : ( ( ) ( non empty ) set ) ) } : ( ( ) ( non empty ) Element of bool the carrier of b2 : ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightMod of b1 : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring) ) : ( ( ) ( non empty ) set ) : ( ( ) ( non empty ) set ) ) is linearly-closed ;

theorem :: RMOD_2:5
for R being ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring)
for V being ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightMod of R : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring) )
for V1 being ( ( ) ( ) Subset of ) st the carrier of V : ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightMod of b1 : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring) ) : ( ( ) ( non empty ) set ) = V1 : ( ( ) ( ) Subset of ) holds
V1 : ( ( ) ( ) Subset of ) is linearly-closed ;

theorem :: RMOD_2:6
for R being ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring)
for V being ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightMod of R : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring) )
for V1, V2, V3 being ( ( ) ( ) Subset of ) st V1 : ( ( ) ( ) Subset of ) is linearly-closed & V2 : ( ( ) ( ) Subset of ) is linearly-closed & V3 : ( ( ) ( ) Subset of ) = { (v : ( ( ) ( right_complementable ) Vector of ( ( ) ( non empty ) set ) ) + u : ( ( ) ( right_complementable ) Vector of ( ( ) ( non empty ) set ) ) ) : ( ( ) ( right_complementable ) Element of the carrier of b2 : ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightMod of b1 : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring) ) : ( ( ) ( non empty ) set ) ) where v, u is ( ( ) ( right_complementable ) Vector of ( ( ) ( non empty ) set ) ) : ( v : ( ( ) ( right_complementable ) Vector of ( ( ) ( non empty ) set ) ) in V1 : ( ( ) ( ) Subset of ) & u : ( ( ) ( right_complementable ) Vector of ( ( ) ( non empty ) set ) ) in V2 : ( ( ) ( ) Subset of ) ) } holds
V3 : ( ( ) ( ) Subset of ) is linearly-closed ;

theorem :: RMOD_2:7
for R being ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring)
for V being ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightMod of R : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring) )
for V1, V2 being ( ( ) ( ) Subset of ) st V1 : ( ( ) ( ) Subset of ) is linearly-closed & V2 : ( ( ) ( ) Subset of ) is linearly-closed holds
V1 : ( ( ) ( ) Subset of ) /\ V2 : ( ( ) ( ) Subset of ) : ( ( ) ( ) Element of bool the carrier of b2 : ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightMod of b1 : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring) ) : ( ( ) ( non empty ) set ) : ( ( ) ( non empty ) set ) ) is linearly-closed ;

definition
let R be ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring) ;
let V be ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightMod of R : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring) ) ;
mode Submodule of V -> ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightMod of R : ( ( ) ( ) 1-sorted ) ) means :: RMOD_2:def 2
( the carrier of it : ( ( ) ( ) BiModStr over R : ( ( ) ( ) 1-sorted ) ,V : ( ( ) ( ) 1-sorted ) ) : ( ( ) ( ) set ) c= the carrier of V : ( ( ) ( ) 1-sorted ) : ( ( ) ( ) set ) & 0. it : ( ( ) ( ) BiModStr over R : ( ( ) ( ) 1-sorted ) ,V : ( ( ) ( ) 1-sorted ) ) : ( ( ) ( V49(it : ( ( ) ( ) BiModStr over R : ( ( ) ( ) 1-sorted ) ,V : ( ( ) ( ) 1-sorted ) ) ) ) Element of the carrier of it : ( ( ) ( ) BiModStr over R : ( ( ) ( ) 1-sorted ) ,V : ( ( ) ( ) 1-sorted ) ) : ( ( ) ( ) set ) ) = 0. V : ( ( ) ( ) 1-sorted ) : ( ( ) ( ) Element of the carrier of V : ( ( ) ( ) 1-sorted ) : ( ( ) ( ) set ) ) & the addF of it : ( ( ) ( ) BiModStr over R : ( ( ) ( ) 1-sorted ) ,V : ( ( ) ( ) 1-sorted ) ) : ( ( Function-like V18([: the carrier of it : ( ( ) ( ) BiModStr over R : ( ( ) ( ) 1-sorted ) ,V : ( ( ) ( ) 1-sorted ) ) : ( ( ) ( ) set ) , the carrier of it : ( ( ) ( ) BiModStr over R : ( ( ) ( ) 1-sorted ) ,V : ( ( ) ( ) 1-sorted ) ) : ( ( ) ( ) set ) :] : ( ( ) ( Relation-like ) set ) , the carrier of it : ( ( ) ( ) BiModStr over R : ( ( ) ( ) 1-sorted ) ,V : ( ( ) ( ) 1-sorted ) ) : ( ( ) ( ) set ) ) ) ( Relation-like Function-like V18([: the carrier of it : ( ( ) ( ) BiModStr over R : ( ( ) ( ) 1-sorted ) ,V : ( ( ) ( ) 1-sorted ) ) : ( ( ) ( ) set ) , the carrier of it : ( ( ) ( ) BiModStr over R : ( ( ) ( ) 1-sorted ) ,V : ( ( ) ( ) 1-sorted ) ) : ( ( ) ( ) set ) :] : ( ( ) ( Relation-like ) set ) , the carrier of it : ( ( ) ( ) BiModStr over R : ( ( ) ( ) 1-sorted ) ,V : ( ( ) ( ) 1-sorted ) ) : ( ( ) ( ) set ) ) ) Element of bool [:[: the carrier of it : ( ( ) ( ) BiModStr over R : ( ( ) ( ) 1-sorted ) ,V : ( ( ) ( ) 1-sorted ) ) : ( ( ) ( ) set ) , the carrier of it : ( ( ) ( ) BiModStr over R : ( ( ) ( ) 1-sorted ) ,V : ( ( ) ( ) 1-sorted ) ) : ( ( ) ( ) set ) :] : ( ( ) ( Relation-like ) set ) , the carrier of it : ( ( ) ( ) BiModStr over R : ( ( ) ( ) 1-sorted ) ,V : ( ( ) ( ) 1-sorted ) ) : ( ( ) ( ) set ) :] : ( ( ) ( Relation-like ) set ) : ( ( ) ( non empty ) set ) ) = the addF of V : ( ( ) ( ) 1-sorted ) : ( ( Function-like V18([: the carrier of V : ( ( ) ( ) 1-sorted ) : ( ( ) ( ) set ) , the carrier of V : ( ( ) ( ) 1-sorted ) : ( ( ) ( ) set ) :] : ( ( ) ( Relation-like ) set ) , the carrier of V : ( ( ) ( ) 1-sorted ) : ( ( ) ( ) set ) ) ) ( Relation-like Function-like V18([: the carrier of V : ( ( ) ( ) 1-sorted ) : ( ( ) ( ) set ) , the carrier of V : ( ( ) ( ) 1-sorted ) : ( ( ) ( ) set ) :] : ( ( ) ( Relation-like ) set ) , the carrier of V : ( ( ) ( ) 1-sorted ) : ( ( ) ( ) set ) ) ) Element of bool [:[: the carrier of V : ( ( ) ( ) 1-sorted ) : ( ( ) ( ) set ) , the carrier of V : ( ( ) ( ) 1-sorted ) : ( ( ) ( ) set ) :] : ( ( ) ( Relation-like ) set ) , the carrier of V : ( ( ) ( ) 1-sorted ) : ( ( ) ( ) set ) :] : ( ( ) ( Relation-like ) set ) : ( ( ) ( non empty ) set ) ) | [: the carrier of it : ( ( ) ( ) BiModStr over R : ( ( ) ( ) 1-sorted ) ,V : ( ( ) ( ) 1-sorted ) ) : ( ( ) ( ) set ) , the carrier of it : ( ( ) ( ) BiModStr over R : ( ( ) ( ) 1-sorted ) ,V : ( ( ) ( ) 1-sorted ) ) : ( ( ) ( ) set ) :] : ( ( ) ( Relation-like ) set ) : ( ( Relation-like ) ( Relation-like Function-like ) set ) & the rmult of it : ( ( ) ( ) BiModStr over R : ( ( ) ( ) 1-sorted ) ,V : ( ( ) ( ) 1-sorted ) ) : ( ( Function-like V18([: the carrier of it : ( ( ) ( ) BiModStr over R : ( ( ) ( ) 1-sorted ) ,V : ( ( ) ( ) 1-sorted ) ) : ( ( ) ( ) set ) , the carrier of R : ( ( ) ( ) 1-sorted ) : ( ( ) ( ) set ) :] : ( ( ) ( Relation-like ) set ) , the carrier of it : ( ( ) ( ) BiModStr over R : ( ( ) ( ) 1-sorted ) ,V : ( ( ) ( ) 1-sorted ) ) : ( ( ) ( ) set ) ) ) ( Relation-like Function-like V18([: the carrier of it : ( ( ) ( ) BiModStr over R : ( ( ) ( ) 1-sorted ) ,V : ( ( ) ( ) 1-sorted ) ) : ( ( ) ( ) set ) , the carrier of R : ( ( ) ( ) 1-sorted ) : ( ( ) ( ) set ) :] : ( ( ) ( Relation-like ) set ) , the carrier of it : ( ( ) ( ) BiModStr over R : ( ( ) ( ) 1-sorted ) ,V : ( ( ) ( ) 1-sorted ) ) : ( ( ) ( ) set ) ) ) Element of bool [:[: the carrier of it : ( ( ) ( ) BiModStr over R : ( ( ) ( ) 1-sorted ) ,V : ( ( ) ( ) 1-sorted ) ) : ( ( ) ( ) set ) , the carrier of R : ( ( ) ( ) 1-sorted ) : ( ( ) ( ) set ) :] : ( ( ) ( Relation-like ) set ) , the carrier of it : ( ( ) ( ) BiModStr over R : ( ( ) ( ) 1-sorted ) ,V : ( ( ) ( ) 1-sorted ) ) : ( ( ) ( ) set ) :] : ( ( ) ( Relation-like ) set ) : ( ( ) ( non empty ) set ) ) = the rmult of V : ( ( ) ( ) 1-sorted ) : ( ( Function-like V18([: the carrier of V : ( ( ) ( ) 1-sorted ) : ( ( ) ( ) set ) , the carrier of R : ( ( ) ( ) 1-sorted ) : ( ( ) ( ) set ) :] : ( ( ) ( Relation-like ) set ) , the carrier of V : ( ( ) ( ) 1-sorted ) : ( ( ) ( ) set ) ) ) ( Relation-like Function-like V18([: the carrier of V : ( ( ) ( ) 1-sorted ) : ( ( ) ( ) set ) , the carrier of R : ( ( ) ( ) 1-sorted ) : ( ( ) ( ) set ) :] : ( ( ) ( Relation-like ) set ) , the carrier of V : ( ( ) ( ) 1-sorted ) : ( ( ) ( ) set ) ) ) Element of bool [:[: the carrier of V : ( ( ) ( ) 1-sorted ) : ( ( ) ( ) set ) , the carrier of R : ( ( ) ( ) 1-sorted ) : ( ( ) ( ) set ) :] : ( ( ) ( Relation-like ) set ) , the carrier of V : ( ( ) ( ) 1-sorted ) : ( ( ) ( ) set ) :] : ( ( ) ( Relation-like ) set ) : ( ( ) ( non empty ) set ) ) | [: the carrier of it : ( ( ) ( ) BiModStr over R : ( ( ) ( ) 1-sorted ) ,V : ( ( ) ( ) 1-sorted ) ) : ( ( ) ( ) set ) , the carrier of R : ( ( ) ( ) 1-sorted ) : ( ( ) ( ) set ) :] : ( ( ) ( Relation-like ) set ) : ( ( Relation-like ) ( Relation-like Function-like ) set ) );
end;

theorem :: RMOD_2:8
for x being ( ( ) ( ) set )
for R being ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring)
for V being ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightMod of R : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring) )
for W1, W2 being ( ( ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) Submodule of V : ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightMod of b2 : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring) ) ) st x : ( ( ) ( ) set ) in W1 : ( ( ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) Submodule of b3 : ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightMod of b2 : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring) ) ) & W1 : ( ( ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) Submodule of b3 : ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightMod of b2 : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring) ) ) is ( ( ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) Submodule of W2 : ( ( ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) Submodule of b3 : ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightMod of b2 : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring) ) ) ) holds
x : ( ( ) ( ) set ) in W2 : ( ( ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) Submodule of b3 : ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightMod of b2 : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring) ) ) ;

theorem :: RMOD_2:9
for x being ( ( ) ( ) set )
for R being ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring)
for V being ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightMod of R : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring) )
for W being ( ( ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) Submodule of V : ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightMod of b2 : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring) ) ) st x : ( ( ) ( ) set ) in W : ( ( ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) Submodule of b3 : ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightMod of b2 : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring) ) ) holds
x : ( ( ) ( ) set ) in V : ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightMod of b2 : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring) ) ;

theorem :: RMOD_2:10
for R being ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring)
for V being ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightMod of R : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring) )
for W being ( ( ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) Submodule of V : ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightMod of b1 : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring) ) )
for w being ( ( ) ( right_complementable ) Vector of ( ( ) ( non empty ) set ) ) holds w : ( ( ) ( right_complementable ) Vector of ( ( ) ( non empty ) set ) ) is ( ( ) ( right_complementable ) Vector of ( ( ) ( non empty ) set ) ) ;

theorem :: RMOD_2:11
for R being ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring)
for V being ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightMod of R : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring) )
for W being ( ( ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) Submodule of V : ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightMod of b1 : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring) ) ) holds 0. W : ( ( ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) Submodule of b2 : ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightMod of b1 : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring) ) ) : ( ( ) ( V49(b3 : ( ( ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) Submodule of b2 : ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightMod of b1 : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring) ) ) ) right_complementable ) Element of the carrier of b3 : ( ( ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) Submodule of b2 : ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightMod of b1 : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring) ) ) : ( ( ) ( non empty ) set ) ) = 0. V : ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightMod of b1 : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring) ) : ( ( ) ( V49(b2 : ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightMod of b1 : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring) ) ) right_complementable ) Element of the carrier of b2 : ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightMod of b1 : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring) ) : ( ( ) ( non empty ) set ) ) ;

theorem :: RMOD_2:12
for R being ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring)
for V being ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightMod of R : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring) )
for W1, W2 being ( ( ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) Submodule of V : ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightMod of b1 : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring) ) ) holds 0. W1 : ( ( ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) Submodule of b2 : ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightMod of b1 : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring) ) ) : ( ( ) ( V49(b3 : ( ( ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) Submodule of b2 : ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightMod of b1 : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring) ) ) ) right_complementable ) Element of the carrier of b3 : ( ( ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) Submodule of b2 : ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightMod of b1 : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring) ) ) : ( ( ) ( non empty ) set ) ) = 0. W2 : ( ( ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) Submodule of b2 : ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightMod of b1 : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring) ) ) : ( ( ) ( V49(b4 : ( ( ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) Submodule of b2 : ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightMod of b1 : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring) ) ) ) right_complementable ) Element of the carrier of b4 : ( ( ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) Submodule of b2 : ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightMod of b1 : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring) ) ) : ( ( ) ( non empty ) set ) ) ;

theorem :: RMOD_2:13
for R being ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring)
for V being ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightMod of R : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring) )
for v, u being ( ( ) ( right_complementable ) Vector of ( ( ) ( non empty ) set ) )
for W being ( ( ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) Submodule of V : ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightMod of b1 : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring) ) )
for w1, w2 being ( ( ) ( right_complementable ) Vector of ( ( ) ( non empty ) set ) ) st w1 : ( ( ) ( right_complementable ) Vector of ( ( ) ( non empty ) set ) ) = v : ( ( ) ( right_complementable ) Vector of ( ( ) ( non empty ) set ) ) & w2 : ( ( ) ( right_complementable ) Vector of ( ( ) ( non empty ) set ) ) = u : ( ( ) ( right_complementable ) Vector of ( ( ) ( non empty ) set ) ) holds
w1 : ( ( ) ( right_complementable ) Vector of ( ( ) ( non empty ) set ) ) + w2 : ( ( ) ( right_complementable ) Vector of ( ( ) ( non empty ) set ) ) : ( ( ) ( right_complementable ) Element of the carrier of b5 : ( ( ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) Submodule of b2 : ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightMod of b1 : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring) ) ) : ( ( ) ( non empty ) set ) ) = v : ( ( ) ( right_complementable ) Vector of ( ( ) ( non empty ) set ) ) + u : ( ( ) ( right_complementable ) Vector of ( ( ) ( non empty ) set ) ) : ( ( ) ( right_complementable ) Element of the carrier of b2 : ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightMod of b1 : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring) ) : ( ( ) ( non empty ) set ) ) ;

theorem :: RMOD_2:14
for R being ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring)
for a being ( ( ) ( right_complementable ) Scalar of ( ( ) ( non empty ) set ) )
for V being ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightMod of R : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring) )
for v being ( ( ) ( right_complementable ) Vector of ( ( ) ( non empty ) set ) )
for W being ( ( ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) Submodule of V : ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightMod of b1 : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring) ) )
for w being ( ( ) ( right_complementable ) Vector of ( ( ) ( non empty ) set ) ) st w : ( ( ) ( right_complementable ) Vector of ( ( ) ( non empty ) set ) ) = v : ( ( ) ( right_complementable ) Vector of ( ( ) ( non empty ) set ) ) holds
w : ( ( ) ( right_complementable ) Vector of ( ( ) ( non empty ) set ) ) * a : ( ( ) ( right_complementable ) Scalar of ( ( ) ( non empty ) set ) ) : ( ( ) ( right_complementable ) Element of the carrier of b5 : ( ( ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) Submodule of b3 : ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightMod of b1 : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring) ) ) : ( ( ) ( non empty ) set ) ) = v : ( ( ) ( right_complementable ) Vector of ( ( ) ( non empty ) set ) ) * a : ( ( ) ( right_complementable ) Scalar of ( ( ) ( non empty ) set ) ) : ( ( ) ( right_complementable ) Element of the carrier of b3 : ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightMod of b1 : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring) ) : ( ( ) ( non empty ) set ) ) ;

theorem :: RMOD_2:15
for R being ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring)
for V being ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightMod of R : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring) )
for v being ( ( ) ( right_complementable ) Vector of ( ( ) ( non empty ) set ) )
for W being ( ( ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) Submodule of V : ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightMod of b1 : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring) ) )
for w being ( ( ) ( right_complementable ) Vector of ( ( ) ( non empty ) set ) ) st w : ( ( ) ( right_complementable ) Vector of ( ( ) ( non empty ) set ) ) = v : ( ( ) ( right_complementable ) Vector of ( ( ) ( non empty ) set ) ) holds
- v : ( ( ) ( right_complementable ) Vector of ( ( ) ( non empty ) set ) ) : ( ( ) ( right_complementable ) Element of the carrier of b2 : ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightMod of b1 : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring) ) : ( ( ) ( non empty ) set ) ) = - w : ( ( ) ( right_complementable ) Vector of ( ( ) ( non empty ) set ) ) : ( ( ) ( right_complementable ) Element of the carrier of b4 : ( ( ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) Submodule of b2 : ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightMod of b1 : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring) ) ) : ( ( ) ( non empty ) set ) ) ;

theorem :: RMOD_2:16
for R being ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring)
for V being ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightMod of R : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring) )
for v, u being ( ( ) ( right_complementable ) Vector of ( ( ) ( non empty ) set ) )
for W being ( ( ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) Submodule of V : ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightMod of b1 : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring) ) )
for w1, w2 being ( ( ) ( right_complementable ) Vector of ( ( ) ( non empty ) set ) ) st w1 : ( ( ) ( right_complementable ) Vector of ( ( ) ( non empty ) set ) ) = v : ( ( ) ( right_complementable ) Vector of ( ( ) ( non empty ) set ) ) & w2 : ( ( ) ( right_complementable ) Vector of ( ( ) ( non empty ) set ) ) = u : ( ( ) ( right_complementable ) Vector of ( ( ) ( non empty ) set ) ) holds
w1 : ( ( ) ( right_complementable ) Vector of ( ( ) ( non empty ) set ) ) - w2 : ( ( ) ( right_complementable ) Vector of ( ( ) ( non empty ) set ) ) : ( ( ) ( right_complementable ) Element of the carrier of b5 : ( ( ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) Submodule of b2 : ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightMod of b1 : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring) ) ) : ( ( ) ( non empty ) set ) ) = v : ( ( ) ( right_complementable ) Vector of ( ( ) ( non empty ) set ) ) - u : ( ( ) ( right_complementable ) Vector of ( ( ) ( non empty ) set ) ) : ( ( ) ( right_complementable ) Element of the carrier of b2 : ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightMod of b1 : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring) ) : ( ( ) ( non empty ) set ) ) ;

theorem :: RMOD_2:17
for R being ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring)
for V being ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightMod of R : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring) )
for W being ( ( ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) Submodule of V : ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightMod of b1 : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring) ) ) holds 0. V : ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightMod of b1 : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring) ) : ( ( ) ( V49(b2 : ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightMod of b1 : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring) ) ) right_complementable ) Element of the carrier of b2 : ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightMod of b1 : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring) ) : ( ( ) ( non empty ) set ) ) in W : ( ( ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) Submodule of b2 : ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightMod of b1 : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring) ) ) ;

theorem :: RMOD_2:18
for R being ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring)
for V being ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightMod of R : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring) )
for W1, W2 being ( ( ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) Submodule of V : ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightMod of b1 : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring) ) ) holds 0. W1 : ( ( ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) Submodule of b2 : ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightMod of b1 : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring) ) ) : ( ( ) ( V49(b3 : ( ( ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) Submodule of b2 : ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightMod of b1 : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring) ) ) ) right_complementable ) Element of the carrier of b3 : ( ( ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) Submodule of b2 : ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightMod of b1 : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring) ) ) : ( ( ) ( non empty ) set ) ) in W2 : ( ( ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) Submodule of b2 : ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightMod of b1 : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring) ) ) ;

theorem :: RMOD_2:19
for R being ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring)
for V being ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightMod of R : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring) )
for W being ( ( ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) Submodule of V : ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightMod of b1 : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring) ) ) holds 0. W : ( ( ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) Submodule of b2 : ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightMod of b1 : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring) ) ) : ( ( ) ( V49(b3 : ( ( ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) Submodule of b2 : ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightMod of b1 : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring) ) ) ) right_complementable ) Element of the carrier of b3 : ( ( ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) Submodule of b2 : ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightMod of b1 : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring) ) ) : ( ( ) ( non empty ) set ) ) in V : ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightMod of b1 : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring) ) ;

theorem :: RMOD_2:20
for R being ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring)
for V being ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightMod of R : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring) )
for u, v being ( ( ) ( right_complementable ) Vector of ( ( ) ( non empty ) set ) )
for W being ( ( ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) Submodule of V : ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightMod of b1 : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring) ) ) st u : ( ( ) ( right_complementable ) Vector of ( ( ) ( non empty ) set ) ) in W : ( ( ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) Submodule of b2 : ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightMod of b1 : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring) ) ) & v : ( ( ) ( right_complementable ) Vector of ( ( ) ( non empty ) set ) ) in W : ( ( ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) Submodule of b2 : ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightMod of b1 : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring) ) ) holds
u : ( ( ) ( right_complementable ) Vector of ( ( ) ( non empty ) set ) ) + v : ( ( ) ( right_complementable ) Vector of ( ( ) ( non empty ) set ) ) : ( ( ) ( right_complementable ) Element of the carrier of b2 : ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightMod of b1 : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring) ) : ( ( ) ( non empty ) set ) ) in W : ( ( ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) Submodule of b2 : ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightMod of b1 : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring) ) ) ;

theorem :: RMOD_2:21
for R being ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring)
for a being ( ( ) ( right_complementable ) Scalar of ( ( ) ( non empty ) set ) )
for V being ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightMod of R : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring) )
for v being ( ( ) ( right_complementable ) Vector of ( ( ) ( non empty ) set ) )
for W being ( ( ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) Submodule of V : ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightMod of b1 : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring) ) ) st v : ( ( ) ( right_complementable ) Vector of ( ( ) ( non empty ) set ) ) in W : ( ( ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) Submodule of b3 : ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightMod of b1 : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring) ) ) holds
v : ( ( ) ( right_complementable ) Vector of ( ( ) ( non empty ) set ) ) * a : ( ( ) ( right_complementable ) Scalar of ( ( ) ( non empty ) set ) ) : ( ( ) ( right_complementable ) Element of the carrier of b3 : ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightMod of b1 : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring) ) : ( ( ) ( non empty ) set ) ) in W : ( ( ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) Submodule of b3 : ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightMod of b1 : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring) ) ) ;

theorem :: RMOD_2:22
for R being ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring)
for V being ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightMod of R : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring) )
for v being ( ( ) ( right_complementable ) Vector of ( ( ) ( non empty ) set ) )
for W being ( ( ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) Submodule of V : ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightMod of b1 : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring) ) ) st v : ( ( ) ( right_complementable ) Vector of ( ( ) ( non empty ) set ) ) in W : ( ( ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) Submodule of b2 : ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightMod of b1 : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring) ) ) holds
- v : ( ( ) ( right_complementable ) Vector of ( ( ) ( non empty ) set ) ) : ( ( ) ( right_complementable ) Element of the carrier of b2 : ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightMod of b1 : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring) ) : ( ( ) ( non empty ) set ) ) in W : ( ( ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) Submodule of b2 : ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightMod of b1 : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring) ) ) ;

theorem :: RMOD_2:23
for R being ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring)
for V being ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightMod of R : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring) )
for u, v being ( ( ) ( right_complementable ) Vector of ( ( ) ( non empty ) set ) )
for W being ( ( ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) Submodule of V : ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightMod of b1 : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring) ) ) st u : ( ( ) ( right_complementable ) Vector of ( ( ) ( non empty ) set ) ) in W : ( ( ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) Submodule of b2 : ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightMod of b1 : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring) ) ) & v : ( ( ) ( right_complementable ) Vector of ( ( ) ( non empty ) set ) ) in W : ( ( ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) Submodule of b2 : ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightMod of b1 : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring) ) ) holds
u : ( ( ) ( right_complementable ) Vector of ( ( ) ( non empty ) set ) ) - v : ( ( ) ( right_complementable ) Vector of ( ( ) ( non empty ) set ) ) : ( ( ) ( right_complementable ) Element of the carrier of b2 : ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightMod of b1 : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring) ) : ( ( ) ( non empty ) set ) ) in W : ( ( ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) Submodule of b2 : ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightMod of b1 : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring) ) ) ;

theorem :: RMOD_2:24
for R being ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring)
for V being ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightMod of R : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring) ) holds V : ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightMod of b1 : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring) ) is ( ( ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) Submodule of V : ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightMod of b1 : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring) ) ) ;

theorem :: RMOD_2:25
for R being ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring)
for X, V being ( ( non empty right_complementable Abelian add-associative right_zeroed strict RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed strict RightMod-like ) RightMod of R : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring) ) st V : ( ( non empty right_complementable Abelian add-associative right_zeroed strict RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed strict RightMod-like ) RightMod of b1 : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring) ) is ( ( ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) Submodule of X : ( ( non empty right_complementable Abelian add-associative right_zeroed strict RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed strict RightMod-like ) RightMod of b1 : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring) ) ) & X : ( ( non empty right_complementable Abelian add-associative right_zeroed strict RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed strict RightMod-like ) RightMod of b1 : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring) ) is ( ( ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) Submodule of V : ( ( non empty right_complementable Abelian add-associative right_zeroed strict RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed strict RightMod-like ) RightMod of b1 : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring) ) ) holds
V : ( ( non empty right_complementable Abelian add-associative right_zeroed strict RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed strict RightMod-like ) RightMod of b1 : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring) ) = X : ( ( non empty right_complementable Abelian add-associative right_zeroed strict RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed strict RightMod-like ) RightMod of b1 : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring) ) ;

registration
let R be ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring) ;
let V be ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightMod of R : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring) ) ;
cluster non empty right_complementable Abelian add-associative right_zeroed strict RightMod-like for ( ( ) ( ) Submodule of V : ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightModStr over R : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) doubleLoopStr ) ) ) ;
end;

theorem :: RMOD_2:26
for R being ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring)
for V, X, Y being ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightMod of R : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring) ) st V : ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightMod of b1 : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring) ) is ( ( ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) Submodule of X : ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightMod of b1 : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring) ) ) & X : ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightMod of b1 : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring) ) is ( ( ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) Submodule of Y : ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightMod of b1 : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring) ) ) holds
V : ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightMod of b1 : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring) ) is ( ( ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) Submodule of Y : ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightMod of b1 : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring) ) ) ;

theorem :: RMOD_2:27
for R being ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring)
for V being ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightMod of R : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring) )
for W1, W2 being ( ( ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) Submodule of V : ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightMod of b1 : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring) ) ) st the carrier of W1 : ( ( ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) Submodule of b2 : ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightMod of b1 : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring) ) ) : ( ( ) ( non empty ) set ) c= the carrier of W2 : ( ( ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) Submodule of b2 : ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightMod of b1 : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring) ) ) : ( ( ) ( non empty ) set ) holds
W1 : ( ( ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) Submodule of b2 : ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightMod of b1 : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring) ) ) is ( ( ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) Submodule of W2 : ( ( ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) Submodule of b2 : ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightMod of b1 : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring) ) ) ) ;

theorem :: RMOD_2:28
for R being ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring)
for V being ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightMod of R : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring) )
for W1, W2 being ( ( ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) Submodule of V : ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightMod of b1 : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring) ) ) st ( for v being ( ( ) ( right_complementable ) Vector of ( ( ) ( non empty ) set ) ) st v : ( ( ) ( right_complementable ) Vector of ( ( ) ( non empty ) set ) ) in W1 : ( ( ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) Submodule of b2 : ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightMod of b1 : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring) ) ) holds
v : ( ( ) ( right_complementable ) Vector of ( ( ) ( non empty ) set ) ) in W2 : ( ( ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) Submodule of b2 : ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightMod of b1 : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring) ) ) ) holds
W1 : ( ( ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) Submodule of b2 : ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightMod of b1 : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring) ) ) is ( ( ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) Submodule of W2 : ( ( ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) Submodule of b2 : ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightMod of b1 : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring) ) ) ) ;

theorem :: RMOD_2:29
for R being ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring)
for V being ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightMod of R : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring) )
for W1, W2 being ( ( strict ) ( non empty right_complementable Abelian add-associative right_zeroed strict RightMod-like ) Submodule of V : ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightMod of b1 : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring) ) ) st the carrier of W1 : ( ( strict ) ( non empty right_complementable Abelian add-associative right_zeroed strict RightMod-like ) Submodule of b2 : ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightMod of b1 : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring) ) ) : ( ( ) ( non empty ) set ) = the carrier of W2 : ( ( strict ) ( non empty right_complementable Abelian add-associative right_zeroed strict RightMod-like ) Submodule of b2 : ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightMod of b1 : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring) ) ) : ( ( ) ( non empty ) set ) holds
W1 : ( ( strict ) ( non empty right_complementable Abelian add-associative right_zeroed strict RightMod-like ) Submodule of b2 : ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightMod of b1 : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring) ) ) = W2 : ( ( strict ) ( non empty right_complementable Abelian add-associative right_zeroed strict RightMod-like ) Submodule of b2 : ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightMod of b1 : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring) ) ) ;

theorem :: RMOD_2:30
for R being ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring)
for V being ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightMod of R : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring) )
for W1, W2 being ( ( strict ) ( non empty right_complementable Abelian add-associative right_zeroed strict RightMod-like ) Submodule of V : ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightMod of b1 : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring) ) ) st ( for v being ( ( ) ( right_complementable ) Vector of ( ( ) ( non empty ) set ) ) holds
( v : ( ( ) ( right_complementable ) Vector of ( ( ) ( non empty ) set ) ) in W1 : ( ( strict ) ( non empty right_complementable Abelian add-associative right_zeroed strict RightMod-like ) Submodule of b2 : ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightMod of b1 : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring) ) ) iff v : ( ( ) ( right_complementable ) Vector of ( ( ) ( non empty ) set ) ) in W2 : ( ( strict ) ( non empty right_complementable Abelian add-associative right_zeroed strict RightMod-like ) Submodule of b2 : ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightMod of b1 : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring) ) ) ) ) holds
W1 : ( ( strict ) ( non empty right_complementable Abelian add-associative right_zeroed strict RightMod-like ) Submodule of b2 : ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightMod of b1 : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring) ) ) = W2 : ( ( strict ) ( non empty right_complementable Abelian add-associative right_zeroed strict RightMod-like ) Submodule of b2 : ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightMod of b1 : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring) ) ) ;

theorem :: RMOD_2:31
for R being ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring)
for V being ( ( non empty right_complementable Abelian add-associative right_zeroed strict RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed strict RightMod-like ) RightMod of R : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring) )
for W being ( ( strict ) ( non empty right_complementable Abelian add-associative right_zeroed strict RightMod-like ) Submodule of V : ( ( non empty right_complementable Abelian add-associative right_zeroed strict RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed strict RightMod-like ) RightMod of b1 : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring) ) ) st the carrier of W : ( ( strict ) ( non empty right_complementable Abelian add-associative right_zeroed strict RightMod-like ) Submodule of b2 : ( ( non empty right_complementable Abelian add-associative right_zeroed strict RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed strict RightMod-like ) RightMod of b1 : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring) ) ) : ( ( ) ( non empty ) set ) = the carrier of V : ( ( non empty right_complementable Abelian add-associative right_zeroed strict RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed strict RightMod-like ) RightMod of b1 : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring) ) : ( ( ) ( non empty ) set ) holds
W : ( ( strict ) ( non empty right_complementable Abelian add-associative right_zeroed strict RightMod-like ) Submodule of b2 : ( ( non empty right_complementable Abelian add-associative right_zeroed strict RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed strict RightMod-like ) RightMod of b1 : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring) ) ) = V : ( ( non empty right_complementable Abelian add-associative right_zeroed strict RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed strict RightMod-like ) RightMod of b1 : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring) ) ;

theorem :: RMOD_2:32
for R being ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring)
for V being ( ( non empty right_complementable Abelian add-associative right_zeroed strict RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed strict RightMod-like ) RightMod of R : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring) )
for W being ( ( strict ) ( non empty right_complementable Abelian add-associative right_zeroed strict RightMod-like ) Submodule of V : ( ( non empty right_complementable Abelian add-associative right_zeroed strict RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed strict RightMod-like ) RightMod of b1 : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring) ) ) st ( for v being ( ( ) ( right_complementable ) Vector of ( ( ) ( non empty ) set ) ) holds v : ( ( ) ( right_complementable ) Vector of ( ( ) ( non empty ) set ) ) in W : ( ( strict ) ( non empty right_complementable Abelian add-associative right_zeroed strict RightMod-like ) Submodule of b2 : ( ( non empty right_complementable Abelian add-associative right_zeroed strict RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed strict RightMod-like ) RightMod of b1 : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring) ) ) ) holds
W : ( ( strict ) ( non empty right_complementable Abelian add-associative right_zeroed strict RightMod-like ) Submodule of b2 : ( ( non empty right_complementable Abelian add-associative right_zeroed strict RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed strict RightMod-like ) RightMod of b1 : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring) ) ) = V : ( ( non empty right_complementable Abelian add-associative right_zeroed strict RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed strict RightMod-like ) RightMod of b1 : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring) ) ;

theorem :: RMOD_2:33
for R being ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring)
for V being ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightMod of R : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring) )
for V1 being ( ( ) ( ) Subset of )
for W being ( ( ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) Submodule of V : ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightMod of b1 : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring) ) ) st the carrier of W : ( ( ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) Submodule of b2 : ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightMod of b1 : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring) ) ) : ( ( ) ( non empty ) set ) = V1 : ( ( ) ( ) Subset of ) holds
V1 : ( ( ) ( ) Subset of ) is linearly-closed ;

theorem :: RMOD_2:34
for R being ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring)
for V being ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightMod of R : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring) )
for V1 being ( ( ) ( ) Subset of ) st V1 : ( ( ) ( ) Subset of ) <> {} : ( ( ) ( Relation-like non-empty empty-yielding Function-like one-to-one constant functional empty ) set ) & V1 : ( ( ) ( ) Subset of ) is linearly-closed holds
ex W being ( ( strict ) ( non empty right_complementable Abelian add-associative right_zeroed strict RightMod-like ) Submodule of V : ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightMod of b1 : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring) ) ) st V1 : ( ( ) ( ) Subset of ) = the carrier of W : ( ( strict ) ( non empty right_complementable Abelian add-associative right_zeroed strict RightMod-like ) Submodule of b2 : ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightMod of b1 : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring) ) ) : ( ( ) ( non empty ) set ) ;

definition
let R be ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring) ;
let V be ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightMod of R : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring) ) ;
func (0). V -> ( ( strict ) ( non empty right_complementable Abelian add-associative right_zeroed strict RightMod-like ) Submodule of V : ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightModStr over R : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) doubleLoopStr ) ) ) means :: RMOD_2:def 3
the carrier of it : ( ( ) ( ) BiModStr over R : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) doubleLoopStr ) ,V : ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightModStr over R : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) doubleLoopStr ) ) ) : ( ( ) ( ) set ) = {(0. V : ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightModStr over R : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) doubleLoopStr ) ) ) : ( ( ) ( V49(V : ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightModStr over R : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) doubleLoopStr ) ) ) right_complementable ) Element of the carrier of V : ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightModStr over R : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) doubleLoopStr ) ) : ( ( ) ( non empty ) set ) ) } : ( ( ) ( non empty ) Element of bool the carrier of V : ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightModStr over R : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) doubleLoopStr ) ) : ( ( ) ( non empty ) set ) : ( ( ) ( non empty ) set ) ) ;
end;

definition
let R be ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring) ;
let V be ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightMod of R : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring) ) ;
func (Omega). V -> ( ( strict ) ( non empty right_complementable Abelian add-associative right_zeroed strict RightMod-like ) Submodule of V : ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightModStr over R : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) doubleLoopStr ) ) ) equals :: RMOD_2:def 4
RightModStr(# the carrier of V : ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightModStr over R : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) doubleLoopStr ) ) : ( ( ) ( non empty ) set ) , the addF of V : ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightModStr over R : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) doubleLoopStr ) ) : ( ( Function-like V18([: the carrier of V : ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightModStr over R : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) doubleLoopStr ) ) : ( ( ) ( non empty ) set ) , the carrier of V : ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightModStr over R : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) doubleLoopStr ) ) : ( ( ) ( non empty ) set ) :] : ( ( ) ( Relation-like non empty ) set ) , the carrier of V : ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightModStr over R : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) doubleLoopStr ) ) : ( ( ) ( non empty ) set ) ) ) ( Relation-like Function-like V18([: the carrier of V : ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightModStr over R : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) doubleLoopStr ) ) : ( ( ) ( non empty ) set ) , the carrier of V : ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightModStr over R : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) doubleLoopStr ) ) : ( ( ) ( non empty ) set ) :] : ( ( ) ( Relation-like non empty ) set ) , the carrier of V : ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightModStr over R : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) doubleLoopStr ) ) : ( ( ) ( non empty ) set ) ) ) Element of bool [:[: the carrier of V : ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightModStr over R : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) doubleLoopStr ) ) : ( ( ) ( non empty ) set ) , the carrier of V : ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightModStr over R : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) doubleLoopStr ) ) : ( ( ) ( non empty ) set ) :] : ( ( ) ( Relation-like non empty ) set ) , the carrier of V : ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightModStr over R : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) doubleLoopStr ) ) : ( ( ) ( non empty ) set ) :] : ( ( ) ( Relation-like non empty ) set ) : ( ( ) ( non empty ) set ) ) , the ZeroF of V : ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightModStr over R : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) doubleLoopStr ) ) : ( ( ) ( right_complementable ) Element of the carrier of V : ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightModStr over R : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) doubleLoopStr ) ) : ( ( ) ( non empty ) set ) ) , the rmult of V : ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightModStr over R : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) doubleLoopStr ) ) : ( ( Function-like V18([: the carrier of V : ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightModStr over R : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) doubleLoopStr ) ) : ( ( ) ( non empty ) set ) , the carrier of R : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) doubleLoopStr ) : ( ( ) ( non empty ) set ) :] : ( ( ) ( Relation-like non empty ) set ) , the carrier of V : ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightModStr over R : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) doubleLoopStr ) ) : ( ( ) ( non empty ) set ) ) ) ( Relation-like Function-like V18([: the carrier of V : ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightModStr over R : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) doubleLoopStr ) ) : ( ( ) ( non empty ) set ) , the carrier of R : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) doubleLoopStr ) : ( ( ) ( non empty ) set ) :] : ( ( ) ( Relation-like non empty ) set ) , the carrier of V : ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightModStr over R : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) doubleLoopStr ) ) : ( ( ) ( non empty ) set ) ) ) Element of bool [:[: the carrier of V : ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightModStr over R : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) doubleLoopStr ) ) : ( ( ) ( non empty ) set ) , the carrier of R : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) doubleLoopStr ) : ( ( ) ( non empty ) set ) :] : ( ( ) ( Relation-like non empty ) set ) , the carrier of V : ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightModStr over R : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) doubleLoopStr ) ) : ( ( ) ( non empty ) set ) :] : ( ( ) ( Relation-like non empty ) set ) : ( ( ) ( non empty ) set ) ) #) : ( ( strict ) ( non empty strict ) RightModStr over R : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) doubleLoopStr ) ) ;
end;

theorem :: RMOD_2:35
for x being ( ( ) ( ) set )
for R being ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring)
for V being ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightMod of R : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring) ) holds
( x : ( ( ) ( ) set ) in (0). V : ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightMod of b2 : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring) ) : ( ( strict ) ( non empty right_complementable Abelian add-associative right_zeroed strict RightMod-like ) Submodule of b3 : ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightMod of b2 : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring) ) ) iff x : ( ( ) ( ) set ) = 0. V : ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightMod of b2 : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring) ) : ( ( ) ( V49(b3 : ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightMod of b2 : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring) ) ) right_complementable ) Element of the carrier of b3 : ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightMod of b2 : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring) ) : ( ( ) ( non empty ) set ) ) ) ;

theorem :: RMOD_2:36
for R being ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring)
for V being ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightMod of R : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring) )
for W being ( ( ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) Submodule of V : ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightMod of b1 : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring) ) ) holds (0). W : ( ( ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) Submodule of b2 : ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightMod of b1 : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring) ) ) : ( ( strict ) ( non empty right_complementable Abelian add-associative right_zeroed strict RightMod-like ) Submodule of b3 : ( ( ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) Submodule of b2 : ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightMod of b1 : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring) ) ) ) = (0). V : ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightMod of b1 : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring) ) : ( ( strict ) ( non empty right_complementable Abelian add-associative right_zeroed strict RightMod-like ) Submodule of b2 : ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightMod of b1 : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring) ) ) ;

theorem :: RMOD_2:37
for R being ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring)
for V being ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightMod of R : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring) )
for W1, W2 being ( ( ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) Submodule of V : ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightMod of b1 : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring) ) ) holds (0). W1 : ( ( ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) Submodule of b2 : ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightMod of b1 : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring) ) ) : ( ( strict ) ( non empty right_complementable Abelian add-associative right_zeroed strict RightMod-like ) Submodule of b3 : ( ( ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) Submodule of b2 : ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightMod of b1 : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring) ) ) ) = (0). W2 : ( ( ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) Submodule of b2 : ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightMod of b1 : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring) ) ) : ( ( strict ) ( non empty right_complementable Abelian add-associative right_zeroed strict RightMod-like ) Submodule of b4 : ( ( ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) Submodule of b2 : ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightMod of b1 : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring) ) ) ) ;

theorem :: RMOD_2:38
for R being ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring)
for V being ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightMod of R : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring) )
for W being ( ( ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) Submodule of V : ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightMod of b1 : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring) ) ) holds (0). W : ( ( ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) Submodule of b2 : ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightMod of b1 : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring) ) ) : ( ( strict ) ( non empty right_complementable Abelian add-associative right_zeroed strict RightMod-like ) Submodule of b3 : ( ( ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) Submodule of b2 : ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightMod of b1 : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring) ) ) ) is ( ( ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) Submodule of V : ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightMod of b1 : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring) ) ) ;

theorem :: RMOD_2:39
for R being ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring)
for V being ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightMod of R : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring) )
for W being ( ( ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) Submodule of V : ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightMod of b1 : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring) ) ) holds (0). V : ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightMod of b1 : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring) ) : ( ( strict ) ( non empty right_complementable Abelian add-associative right_zeroed strict RightMod-like ) Submodule of b2 : ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightMod of b1 : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring) ) ) is ( ( ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) Submodule of W : ( ( ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) Submodule of b2 : ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightMod of b1 : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring) ) ) ) ;

theorem :: RMOD_2:40
for R being ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring)
for V being ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightMod of R : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring) )
for W1, W2 being ( ( ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) Submodule of V : ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightMod of b1 : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring) ) ) holds (0). W1 : ( ( ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) Submodule of b2 : ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightMod of b1 : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring) ) ) : ( ( strict ) ( non empty right_complementable Abelian add-associative right_zeroed strict RightMod-like ) Submodule of b3 : ( ( ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) Submodule of b2 : ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightMod of b1 : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring) ) ) ) is ( ( ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) Submodule of W2 : ( ( ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) Submodule of b2 : ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightMod of b1 : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring) ) ) ) ;

theorem :: RMOD_2:41
for R being ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring)
for V being ( ( non empty right_complementable Abelian add-associative right_zeroed strict RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed strict RightMod-like ) RightMod of R : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring) ) holds V : ( ( non empty right_complementable Abelian add-associative right_zeroed strict RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed strict RightMod-like ) RightMod of b1 : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring) ) is ( ( ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) Submodule of (Omega). V : ( ( non empty right_complementable Abelian add-associative right_zeroed strict RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed strict RightMod-like ) RightMod of b1 : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring) ) : ( ( strict ) ( non empty right_complementable Abelian add-associative right_zeroed strict RightMod-like ) Submodule of b2 : ( ( non empty right_complementable Abelian add-associative right_zeroed strict RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed strict RightMod-like ) RightMod of b1 : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring) ) ) ) ;

definition
let R be ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring) ;
let V be ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightMod of R : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring) ) ;
let v be ( ( ) ( right_complementable ) Vector of ( ( ) ( non empty ) set ) ) ;
let W be ( ( ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) Submodule of V : ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightMod of R : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring) ) ) ;
func v + W -> ( ( ) ( ) Subset of ) equals :: RMOD_2:def 5
{ (v : ( ( ) ( ) BiModStr over R : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) doubleLoopStr ) ,V : ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightModStr over R : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) doubleLoopStr ) ) ) + u : ( ( ) ( right_complementable ) Vector of ( ( ) ( non empty ) set ) ) ) : ( ( ) ( right_complementable ) Element of the carrier of V : ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightModStr over R : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) doubleLoopStr ) ) : ( ( ) ( non empty ) set ) ) where u is ( ( ) ( right_complementable ) Vector of ( ( ) ( non empty ) set ) ) : u : ( ( ) ( right_complementable ) Vector of ( ( ) ( non empty ) set ) ) in W : ( ( Function-like V18([:v : ( ( ) ( ) BiModStr over R : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) doubleLoopStr ) ,V : ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightModStr over R : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) doubleLoopStr ) ) ) ,v : ( ( ) ( ) BiModStr over R : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) doubleLoopStr ) ,V : ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightModStr over R : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) doubleLoopStr ) ) ) :] : ( ( ) ( Relation-like ) set ) ,v : ( ( ) ( ) BiModStr over R : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) doubleLoopStr ) ,V : ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightModStr over R : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) doubleLoopStr ) ) ) ) ) ( Relation-like Function-like V18([:v : ( ( ) ( ) BiModStr over R : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) doubleLoopStr ) ,V : ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightModStr over R : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) doubleLoopStr ) ) ) ,v : ( ( ) ( ) BiModStr over R : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) doubleLoopStr ) ,V : ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightModStr over R : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) doubleLoopStr ) ) ) :] : ( ( ) ( Relation-like ) set ) ,v : ( ( ) ( ) BiModStr over R : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) doubleLoopStr ) ,V : ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightModStr over R : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) doubleLoopStr ) ) ) ) ) Element of bool [:[:v : ( ( ) ( ) BiModStr over R : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) doubleLoopStr ) ,V : ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightModStr over R : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) doubleLoopStr ) ) ) ,v : ( ( ) ( ) BiModStr over R : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) doubleLoopStr ) ,V : ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightModStr over R : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) doubleLoopStr ) ) ) :] : ( ( ) ( Relation-like ) set ) ,v : ( ( ) ( ) BiModStr over R : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) doubleLoopStr ) ,V : ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightModStr over R : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) doubleLoopStr ) ) ) :] : ( ( ) ( Relation-like ) set ) : ( ( ) ( non empty ) set ) ) } ;
end;

definition
let R be ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring) ;
let V be ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightMod of R : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring) ) ;
let W be ( ( ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) Submodule of V : ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightMod of R : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring) ) ) ;
mode Coset of W -> ( ( ) ( ) Subset of ) means :: RMOD_2:def 6
ex v being ( ( ) ( right_complementable ) Vector of ( ( ) ( non empty ) set ) ) st it : ( ( Function-like V18([:W : ( ( ) ( ) BiModStr over R : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) doubleLoopStr ) ,V : ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightModStr over R : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) doubleLoopStr ) ) ) ,W : ( ( ) ( ) BiModStr over R : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) doubleLoopStr ) ,V : ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightModStr over R : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) doubleLoopStr ) ) ) :] : ( ( ) ( Relation-like ) set ) ,W : ( ( ) ( ) BiModStr over R : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) doubleLoopStr ) ,V : ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightModStr over R : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) doubleLoopStr ) ) ) ) ) ( Relation-like Function-like V18([:W : ( ( ) ( ) BiModStr over R : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) doubleLoopStr ) ,V : ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightModStr over R : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) doubleLoopStr ) ) ) ,W : ( ( ) ( ) BiModStr over R : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) doubleLoopStr ) ,V : ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightModStr over R : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) doubleLoopStr ) ) ) :] : ( ( ) ( Relation-like ) set ) ,W : ( ( ) ( ) BiModStr over R : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) doubleLoopStr ) ,V : ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightModStr over R : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) doubleLoopStr ) ) ) ) ) Element of bool [:[:W : ( ( ) ( ) BiModStr over R : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) doubleLoopStr ) ,V : ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightModStr over R : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) doubleLoopStr ) ) ) ,W : ( ( ) ( ) BiModStr over R : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) doubleLoopStr ) ,V : ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightModStr over R : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) doubleLoopStr ) ) ) :] : ( ( ) ( Relation-like ) set ) ,W : ( ( ) ( ) BiModStr over R : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) doubleLoopStr ) ,V : ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightModStr over R : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) doubleLoopStr ) ) ) :] : ( ( ) ( Relation-like ) set ) : ( ( ) ( non empty ) set ) ) = v : ( ( ) ( right_complementable ) Vector of ( ( ) ( non empty ) set ) ) + W : ( ( ) ( ) BiModStr over R : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) doubleLoopStr ) ,V : ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightModStr over R : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) doubleLoopStr ) ) ) : ( ( ) ( ) Subset of ) ;
end;

theorem :: RMOD_2:42
for x being ( ( ) ( ) set )
for R being ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring)
for V being ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightMod of R : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring) )
for v being ( ( ) ( right_complementable ) Vector of ( ( ) ( non empty ) set ) )
for W being ( ( ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) Submodule of V : ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightMod of b2 : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring) ) ) holds
( x : ( ( ) ( ) set ) in v : ( ( ) ( right_complementable ) Vector of ( ( ) ( non empty ) set ) ) + W : ( ( ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) Submodule of b3 : ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightMod of b2 : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring) ) ) : ( ( ) ( ) Subset of ) iff ex u being ( ( ) ( right_complementable ) Vector of ( ( ) ( non empty ) set ) ) st
( u : ( ( ) ( right_complementable ) Vector of ( ( ) ( non empty ) set ) ) in W : ( ( ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) Submodule of b3 : ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightMod of b2 : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring) ) ) & x : ( ( ) ( ) set ) = v : ( ( ) ( right_complementable ) Vector of ( ( ) ( non empty ) set ) ) + u : ( ( ) ( right_complementable ) Vector of ( ( ) ( non empty ) set ) ) : ( ( ) ( right_complementable ) Element of the carrier of b3 : ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightMod of b2 : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring) ) : ( ( ) ( non empty ) set ) ) ) ) ;

theorem :: RMOD_2:43
for R being ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring)
for V being ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightMod of R : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring) )
for v being ( ( ) ( right_complementable ) Vector of ( ( ) ( non empty ) set ) )
for W being ( ( ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) Submodule of V : ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightMod of b1 : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring) ) ) holds
( 0. V : ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightMod of b1 : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring) ) : ( ( ) ( V49(b2 : ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightMod of b1 : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring) ) ) right_complementable ) Element of the carrier of b2 : ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightMod of b1 : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring) ) : ( ( ) ( non empty ) set ) ) in v : ( ( ) ( right_complementable ) Vector of ( ( ) ( non empty ) set ) ) + W : ( ( ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) Submodule of b2 : ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightMod of b1 : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring) ) ) : ( ( ) ( ) Subset of ) iff v : ( ( ) ( right_complementable ) Vector of ( ( ) ( non empty ) set ) ) in W : ( ( ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) Submodule of b2 : ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightMod of b1 : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring) ) ) ) ;

theorem :: RMOD_2:44
for R being ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring)
for V being ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightMod of R : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring) )
for v being ( ( ) ( right_complementable ) Vector of ( ( ) ( non empty ) set ) )
for W being ( ( ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) Submodule of V : ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightMod of b1 : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring) ) ) holds v : ( ( ) ( right_complementable ) Vector of ( ( ) ( non empty ) set ) ) in v : ( ( ) ( right_complementable ) Vector of ( ( ) ( non empty ) set ) ) + W : ( ( ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) Submodule of b2 : ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightMod of b1 : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring) ) ) : ( ( ) ( ) Subset of ) ;

theorem :: RMOD_2:45
for R being ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring)
for V being ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightMod of R : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring) )
for W being ( ( ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) Submodule of V : ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightMod of b1 : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring) ) ) holds (0. V : ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightMod of b1 : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring) ) ) : ( ( ) ( V49(b2 : ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightMod of b1 : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring) ) ) right_complementable ) Element of the carrier of b2 : ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightMod of b1 : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring) ) : ( ( ) ( non empty ) set ) ) + W : ( ( ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) Submodule of b2 : ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightMod of b1 : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring) ) ) : ( ( ) ( ) Subset of ) = the carrier of W : ( ( ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) Submodule of b2 : ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightMod of b1 : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring) ) ) : ( ( ) ( non empty ) set ) ;

theorem :: RMOD_2:46
for R being ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring)
for V being ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightMod of R : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring) )
for v being ( ( ) ( right_complementable ) Vector of ( ( ) ( non empty ) set ) ) holds v : ( ( ) ( right_complementable ) Vector of ( ( ) ( non empty ) set ) ) + ((0). V : ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightMod of b1 : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring) ) ) : ( ( strict ) ( non empty right_complementable Abelian add-associative right_zeroed strict RightMod-like ) Submodule of b2 : ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightMod of b1 : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring) ) ) : ( ( ) ( ) Subset of ) = {v : ( ( ) ( right_complementable ) Vector of ( ( ) ( non empty ) set ) ) } : ( ( ) ( non empty ) Element of bool the carrier of b2 : ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightMod of b1 : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring) ) : ( ( ) ( non empty ) set ) : ( ( ) ( non empty ) set ) ) ;

theorem :: RMOD_2:47
for R being ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring)
for V being ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightMod of R : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring) )
for v being ( ( ) ( right_complementable ) Vector of ( ( ) ( non empty ) set ) ) holds v : ( ( ) ( right_complementable ) Vector of ( ( ) ( non empty ) set ) ) + ((Omega). V : ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightMod of b1 : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring) ) ) : ( ( strict ) ( non empty right_complementable Abelian add-associative right_zeroed strict RightMod-like ) Submodule of b2 : ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightMod of b1 : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring) ) ) : ( ( ) ( ) Subset of ) = the carrier of V : ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightMod of b1 : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring) ) : ( ( ) ( non empty ) set ) ;

theorem :: RMOD_2:48
for R being ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring)
for V being ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightMod of R : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring) )
for v being ( ( ) ( right_complementable ) Vector of ( ( ) ( non empty ) set ) )
for W being ( ( ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) Submodule of V : ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightMod of b1 : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring) ) ) holds
( 0. V : ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightMod of b1 : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring) ) : ( ( ) ( V49(b2 : ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightMod of b1 : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring) ) ) right_complementable ) Element of the carrier of b2 : ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightMod of b1 : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring) ) : ( ( ) ( non empty ) set ) ) in v : ( ( ) ( right_complementable ) Vector of ( ( ) ( non empty ) set ) ) + W : ( ( ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) Submodule of b2 : ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightMod of b1 : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring) ) ) : ( ( ) ( ) Subset of ) iff v : ( ( ) ( right_complementable ) Vector of ( ( ) ( non empty ) set ) ) + W : ( ( ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) Submodule of b2 : ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightMod of b1 : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring) ) ) : ( ( ) ( ) Subset of ) = the carrier of W : ( ( ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) Submodule of b2 : ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightMod of b1 : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring) ) ) : ( ( ) ( non empty ) set ) ) ;

theorem :: RMOD_2:49
for R being ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring)
for V being ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightMod of R : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring) )
for v being ( ( ) ( right_complementable ) Vector of ( ( ) ( non empty ) set ) )
for W being ( ( ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) Submodule of V : ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightMod of b1 : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring) ) ) holds
( v : ( ( ) ( right_complementable ) Vector of ( ( ) ( non empty ) set ) ) in W : ( ( ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) Submodule of b2 : ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightMod of b1 : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring) ) ) iff v : ( ( ) ( right_complementable ) Vector of ( ( ) ( non empty ) set ) ) + W : ( ( ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) Submodule of b2 : ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightMod of b1 : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring) ) ) : ( ( ) ( ) Subset of ) = the carrier of W : ( ( ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) Submodule of b2 : ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightMod of b1 : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring) ) ) : ( ( ) ( non empty ) set ) ) ;

theorem :: RMOD_2:50
for R being ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring)
for a being ( ( ) ( right_complementable ) Scalar of ( ( ) ( non empty ) set ) )
for V being ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightMod of R : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring) )
for v being ( ( ) ( right_complementable ) Vector of ( ( ) ( non empty ) set ) )
for W being ( ( ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) Submodule of V : ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightMod of b1 : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring) ) ) st v : ( ( ) ( right_complementable ) Vector of ( ( ) ( non empty ) set ) ) in W : ( ( ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) Submodule of b3 : ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightMod of b1 : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring) ) ) holds
(v : ( ( ) ( right_complementable ) Vector of ( ( ) ( non empty ) set ) ) * a : ( ( ) ( right_complementable ) Scalar of ( ( ) ( non empty ) set ) ) ) : ( ( ) ( right_complementable ) Element of the carrier of b3 : ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightMod of b1 : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring) ) : ( ( ) ( non empty ) set ) ) + W : ( ( ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) Submodule of b3 : ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightMod of b1 : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring) ) ) : ( ( ) ( ) Subset of ) = the carrier of W : ( ( ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) Submodule of b3 : ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightMod of b1 : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring) ) ) : ( ( ) ( non empty ) set ) ;

theorem :: RMOD_2:51
for R being ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring)
for V being ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightMod of R : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring) )
for u, v being ( ( ) ( right_complementable ) Vector of ( ( ) ( non empty ) set ) )
for W being ( ( ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) Submodule of V : ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightMod of b1 : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring) ) ) holds
( u : ( ( ) ( right_complementable ) Vector of ( ( ) ( non empty ) set ) ) in W : ( ( ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) Submodule of b2 : ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightMod of b1 : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring) ) ) iff v : ( ( ) ( right_complementable ) Vector of ( ( ) ( non empty ) set ) ) + W : ( ( ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) Submodule of b2 : ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightMod of b1 : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring) ) ) : ( ( ) ( ) Subset of ) = (v : ( ( ) ( right_complementable ) Vector of ( ( ) ( non empty ) set ) ) + u : ( ( ) ( right_complementable ) Vector of ( ( ) ( non empty ) set ) ) ) : ( ( ) ( right_complementable ) Element of the carrier of b2 : ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightMod of b1 : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring) ) : ( ( ) ( non empty ) set ) ) + W : ( ( ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) Submodule of b2 : ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightMod of b1 : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring) ) ) : ( ( ) ( ) Subset of ) ) ;

theorem :: RMOD_2:52
for R being ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring)
for V being ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightMod of R : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring) )
for u, v being ( ( ) ( right_complementable ) Vector of ( ( ) ( non empty ) set ) )
for W being ( ( ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) Submodule of V : ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightMod of b1 : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring) ) ) holds
( u : ( ( ) ( right_complementable ) Vector of ( ( ) ( non empty ) set ) ) in W : ( ( ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) Submodule of b2 : ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightMod of b1 : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring) ) ) iff v : ( ( ) ( right_complementable ) Vector of ( ( ) ( non empty ) set ) ) + W : ( ( ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) Submodule of b2 : ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightMod of b1 : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring) ) ) : ( ( ) ( ) Subset of ) = (v : ( ( ) ( right_complementable ) Vector of ( ( ) ( non empty ) set ) ) - u : ( ( ) ( right_complementable ) Vector of ( ( ) ( non empty ) set ) ) ) : ( ( ) ( right_complementable ) Element of the carrier of b2 : ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightMod of b1 : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring) ) : ( ( ) ( non empty ) set ) ) + W : ( ( ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) Submodule of b2 : ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightMod of b1 : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring) ) ) : ( ( ) ( ) Subset of ) ) ;

theorem :: RMOD_2:53
for R being ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring)
for V being ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightMod of R : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring) )
for v, u being ( ( ) ( right_complementable ) Vector of ( ( ) ( non empty ) set ) )
for W being ( ( ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) Submodule of V : ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightMod of b1 : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring) ) ) holds
( v : ( ( ) ( right_complementable ) Vector of ( ( ) ( non empty ) set ) ) in u : ( ( ) ( right_complementable ) Vector of ( ( ) ( non empty ) set ) ) + W : ( ( ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) Submodule of b2 : ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightMod of b1 : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring) ) ) : ( ( ) ( ) Subset of ) iff u : ( ( ) ( right_complementable ) Vector of ( ( ) ( non empty ) set ) ) + W : ( ( ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) Submodule of b2 : ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightMod of b1 : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring) ) ) : ( ( ) ( ) Subset of ) = v : ( ( ) ( right_complementable ) Vector of ( ( ) ( non empty ) set ) ) + W : ( ( ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) Submodule of b2 : ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightMod of b1 : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring) ) ) : ( ( ) ( ) Subset of ) ) ;

theorem :: RMOD_2:54
for R being ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring)
for V being ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightMod of R : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring) )
for u, v1, v2 being ( ( ) ( right_complementable ) Vector of ( ( ) ( non empty ) set ) )
for W being ( ( ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) Submodule of V : ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightMod of b1 : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring) ) ) st u : ( ( ) ( right_complementable ) Vector of ( ( ) ( non empty ) set ) ) in v1 : ( ( ) ( right_complementable ) Vector of ( ( ) ( non empty ) set ) ) + W : ( ( ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) Submodule of b2 : ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightMod of b1 : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring) ) ) : ( ( ) ( ) Subset of ) & u : ( ( ) ( right_complementable ) Vector of ( ( ) ( non empty ) set ) ) in v2 : ( ( ) ( right_complementable ) Vector of ( ( ) ( non empty ) set ) ) + W : ( ( ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) Submodule of b2 : ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightMod of b1 : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring) ) ) : ( ( ) ( ) Subset of ) holds
v1 : ( ( ) ( right_complementable ) Vector of ( ( ) ( non empty ) set ) ) + W : ( ( ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) Submodule of b2 : ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightMod of b1 : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring) ) ) : ( ( ) ( ) Subset of ) = v2 : ( ( ) ( right_complementable ) Vector of ( ( ) ( non empty ) set ) ) + W : ( ( ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) Submodule of b2 : ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightMod of b1 : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring) ) ) : ( ( ) ( ) Subset of ) ;

theorem :: RMOD_2:55
for R being ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring)
for a being ( ( ) ( right_complementable ) Scalar of ( ( ) ( non empty ) set ) )
for V being ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightMod of R : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring) )
for v being ( ( ) ( right_complementable ) Vector of ( ( ) ( non empty ) set ) )
for W being ( ( ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) Submodule of V : ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightMod of b1 : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring) ) ) st v : ( ( ) ( right_complementable ) Vector of ( ( ) ( non empty ) set ) ) in W : ( ( ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) Submodule of b3 : ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightMod of b1 : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring) ) ) holds
v : ( ( ) ( right_complementable ) Vector of ( ( ) ( non empty ) set ) ) * a : ( ( ) ( right_complementable ) Scalar of ( ( ) ( non empty ) set ) ) : ( ( ) ( right_complementable ) Element of the carrier of b3 : ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightMod of b1 : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring) ) : ( ( ) ( non empty ) set ) ) in v : ( ( ) ( right_complementable ) Vector of ( ( ) ( non empty ) set ) ) + W : ( ( ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) Submodule of b3 : ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightMod of b1 : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring) ) ) : ( ( ) ( ) Subset of ) ;

theorem :: RMOD_2:56
for R being ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring)
for V being ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightMod of R : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring) )
for v being ( ( ) ( right_complementable ) Vector of ( ( ) ( non empty ) set ) )
for W being ( ( ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) Submodule of V : ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightMod of b1 : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring) ) ) st v : ( ( ) ( right_complementable ) Vector of ( ( ) ( non empty ) set ) ) in W : ( ( ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) Submodule of b2 : ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightMod of b1 : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring) ) ) holds
- v : ( ( ) ( right_complementable ) Vector of ( ( ) ( non empty ) set ) ) : ( ( ) ( right_complementable ) Element of the carrier of b2 : ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightMod of b1 : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring) ) : ( ( ) ( non empty ) set ) ) in v : ( ( ) ( right_complementable ) Vector of ( ( ) ( non empty ) set ) ) + W : ( ( ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) Submodule of b2 : ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightMod of b1 : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring) ) ) : ( ( ) ( ) Subset of ) ;

theorem :: RMOD_2:57
for R being ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring)
for V being ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightMod of R : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring) )
for u, v being ( ( ) ( right_complementable ) Vector of ( ( ) ( non empty ) set ) )
for W being ( ( ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) Submodule of V : ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightMod of b1 : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring) ) ) holds
( u : ( ( ) ( right_complementable ) Vector of ( ( ) ( non empty ) set ) ) + v : ( ( ) ( right_complementable ) Vector of ( ( ) ( non empty ) set ) ) : ( ( ) ( right_complementable ) Element of the carrier of b2 : ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightMod of b1 : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring) ) : ( ( ) ( non empty ) set ) ) in v : ( ( ) ( right_complementable ) Vector of ( ( ) ( non empty ) set ) ) + W : ( ( ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) Submodule of b2 : ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightMod of b1 : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring) ) ) : ( ( ) ( ) Subset of ) iff u : ( ( ) ( right_complementable ) Vector of ( ( ) ( non empty ) set ) ) in W : ( ( ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) Submodule of b2 : ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightMod of b1 : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring) ) ) ) ;

theorem :: RMOD_2:58
for R being ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring)
for V being ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightMod of R : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring) )
for v, u being ( ( ) ( right_complementable ) Vector of ( ( ) ( non empty ) set ) )
for W being ( ( ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) Submodule of V : ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightMod of b1 : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring) ) ) holds
( v : ( ( ) ( right_complementable ) Vector of ( ( ) ( non empty ) set ) ) - u : ( ( ) ( right_complementable ) Vector of ( ( ) ( non empty ) set ) ) : ( ( ) ( right_complementable ) Element of the carrier of b2 : ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightMod of b1 : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring) ) : ( ( ) ( non empty ) set ) ) in v : ( ( ) ( right_complementable ) Vector of ( ( ) ( non empty ) set ) ) + W : ( ( ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) Submodule of b2 : ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightMod of b1 : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring) ) ) : ( ( ) ( ) Subset of ) iff u : ( ( ) ( right_complementable ) Vector of ( ( ) ( non empty ) set ) ) in W : ( ( ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) Submodule of b2 : ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightMod of b1 : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring) ) ) ) ;

theorem :: RMOD_2:59
for R being ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring)
for V being ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightMod of R : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring) )
for u, v being ( ( ) ( right_complementable ) Vector of ( ( ) ( non empty ) set ) )
for W being ( ( ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) Submodule of V : ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightMod of b1 : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring) ) ) holds
( u : ( ( ) ( right_complementable ) Vector of ( ( ) ( non empty ) set ) ) in v : ( ( ) ( right_complementable ) Vector of ( ( ) ( non empty ) set ) ) + W : ( ( ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) Submodule of b2 : ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightMod of b1 : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring) ) ) : ( ( ) ( ) Subset of ) iff ex v1 being ( ( ) ( right_complementable ) Vector of ( ( ) ( non empty ) set ) ) st
( v1 : ( ( ) ( right_complementable ) Vector of ( ( ) ( non empty ) set ) ) in W : ( ( ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) Submodule of b2 : ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightMod of b1 : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring) ) ) & u : ( ( ) ( right_complementable ) Vector of ( ( ) ( non empty ) set ) ) = v : ( ( ) ( right_complementable ) Vector of ( ( ) ( non empty ) set ) ) - v1 : ( ( ) ( right_complementable ) Vector of ( ( ) ( non empty ) set ) ) : ( ( ) ( right_complementable ) Element of the carrier of b2 : ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightMod of b1 : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring) ) : ( ( ) ( non empty ) set ) ) ) ) ;

theorem :: RMOD_2:60
for R being ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring)
for V being ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightMod of R : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring) )
for v1, v2 being ( ( ) ( right_complementable ) Vector of ( ( ) ( non empty ) set ) )
for W being ( ( ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) Submodule of V : ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightMod of b1 : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring) ) ) holds
( ex v being ( ( ) ( right_complementable ) Vector of ( ( ) ( non empty ) set ) ) st
( v1 : ( ( ) ( right_complementable ) Vector of ( ( ) ( non empty ) set ) ) in v : ( ( ) ( right_complementable ) Vector of ( ( ) ( non empty ) set ) ) + W : ( ( ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) Submodule of b2 : ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightMod of b1 : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring) ) ) : ( ( ) ( ) Subset of ) & v2 : ( ( ) ( right_complementable ) Vector of ( ( ) ( non empty ) set ) ) in v : ( ( ) ( right_complementable ) Vector of ( ( ) ( non empty ) set ) ) + W : ( ( ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) Submodule of b2 : ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightMod of b1 : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring) ) ) : ( ( ) ( ) Subset of ) ) iff v1 : ( ( ) ( right_complementable ) Vector of ( ( ) ( non empty ) set ) ) - v2 : ( ( ) ( right_complementable ) Vector of ( ( ) ( non empty ) set ) ) : ( ( ) ( right_complementable ) Element of the carrier of b2 : ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightMod of b1 : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring) ) : ( ( ) ( non empty ) set ) ) in W : ( ( ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) Submodule of b2 : ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightMod of b1 : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring) ) ) ) ;

theorem :: RMOD_2:61
for R being ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring)
for V being ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightMod of R : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring) )
for v, u being ( ( ) ( right_complementable ) Vector of ( ( ) ( non empty ) set ) )
for W being ( ( ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) Submodule of V : ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightMod of b1 : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring) ) ) st v : ( ( ) ( right_complementable ) Vector of ( ( ) ( non empty ) set ) ) + W : ( ( ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) Submodule of b2 : ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightMod of b1 : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring) ) ) : ( ( ) ( ) Subset of ) = u : ( ( ) ( right_complementable ) Vector of ( ( ) ( non empty ) set ) ) + W : ( ( ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) Submodule of b2 : ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightMod of b1 : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring) ) ) : ( ( ) ( ) Subset of ) holds
ex v1 being ( ( ) ( right_complementable ) Vector of ( ( ) ( non empty ) set ) ) st
( v1 : ( ( ) ( right_complementable ) Vector of ( ( ) ( non empty ) set ) ) in W : ( ( ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) Submodule of b2 : ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightMod of b1 : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring) ) ) & v : ( ( ) ( right_complementable ) Vector of ( ( ) ( non empty ) set ) ) + v1 : ( ( ) ( right_complementable ) Vector of ( ( ) ( non empty ) set ) ) : ( ( ) ( right_complementable ) Element of the carrier of b2 : ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightMod of b1 : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring) ) : ( ( ) ( non empty ) set ) ) = u : ( ( ) ( right_complementable ) Vector of ( ( ) ( non empty ) set ) ) ) ;

theorem :: RMOD_2:62
for R being ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring)
for V being ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightMod of R : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring) )
for v, u being ( ( ) ( right_complementable ) Vector of ( ( ) ( non empty ) set ) )
for W being ( ( ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) Submodule of V : ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightMod of b1 : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring) ) ) st v : ( ( ) ( right_complementable ) Vector of ( ( ) ( non empty ) set ) ) + W : ( ( ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) Submodule of b2 : ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightMod of b1 : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring) ) ) : ( ( ) ( ) Subset of ) = u : ( ( ) ( right_complementable ) Vector of ( ( ) ( non empty ) set ) ) + W : ( ( ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) Submodule of b2 : ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightMod of b1 : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring) ) ) : ( ( ) ( ) Subset of ) holds
ex v1 being ( ( ) ( right_complementable ) Vector of ( ( ) ( non empty ) set ) ) st
( v1 : ( ( ) ( right_complementable ) Vector of ( ( ) ( non empty ) set ) ) in W : ( ( ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) Submodule of b2 : ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightMod of b1 : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring) ) ) & v : ( ( ) ( right_complementable ) Vector of ( ( ) ( non empty ) set ) ) - v1 : ( ( ) ( right_complementable ) Vector of ( ( ) ( non empty ) set ) ) : ( ( ) ( right_complementable ) Element of the carrier of b2 : ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightMod of b1 : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring) ) : ( ( ) ( non empty ) set ) ) = u : ( ( ) ( right_complementable ) Vector of ( ( ) ( non empty ) set ) ) ) ;

theorem :: RMOD_2:63
for R being ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring)
for V being ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightMod of R : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring) )
for v being ( ( ) ( right_complementable ) Vector of ( ( ) ( non empty ) set ) )
for W1, W2 being ( ( strict ) ( non empty right_complementable Abelian add-associative right_zeroed strict RightMod-like ) Submodule of V : ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightMod of b1 : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring) ) ) holds
( v : ( ( ) ( right_complementable ) Vector of ( ( ) ( non empty ) set ) ) + W1 : ( ( strict ) ( non empty right_complementable Abelian add-associative right_zeroed strict RightMod-like ) Submodule of b2 : ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightMod of b1 : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring) ) ) : ( ( ) ( ) Subset of ) = v : ( ( ) ( right_complementable ) Vector of ( ( ) ( non empty ) set ) ) + W2 : ( ( strict ) ( non empty right_complementable Abelian add-associative right_zeroed strict RightMod-like ) Submodule of b2 : ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightMod of b1 : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring) ) ) : ( ( ) ( ) Subset of ) iff W1 : ( ( strict ) ( non empty right_complementable Abelian add-associative right_zeroed strict RightMod-like ) Submodule of b2 : ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightMod of b1 : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring) ) ) = W2 : ( ( strict ) ( non empty right_complementable Abelian add-associative right_zeroed strict RightMod-like ) Submodule of b2 : ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightMod of b1 : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring) ) ) ) ;

theorem :: RMOD_2:64
for R being ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring)
for V being ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightMod of R : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring) )
for v, u being ( ( ) ( right_complementable ) Vector of ( ( ) ( non empty ) set ) )
for W1, W2 being ( ( strict ) ( non empty right_complementable Abelian add-associative right_zeroed strict RightMod-like ) Submodule of V : ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightMod of b1 : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring) ) ) st v : ( ( ) ( right_complementable ) Vector of ( ( ) ( non empty ) set ) ) + W1 : ( ( strict ) ( non empty right_complementable Abelian add-associative right_zeroed strict RightMod-like ) Submodule of b2 : ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightMod of b1 : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring) ) ) : ( ( ) ( ) Subset of ) = u : ( ( ) ( right_complementable ) Vector of ( ( ) ( non empty ) set ) ) + W2 : ( ( strict ) ( non empty right_complementable Abelian add-associative right_zeroed strict RightMod-like ) Submodule of b2 : ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightMod of b1 : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring) ) ) : ( ( ) ( ) Subset of ) holds
W1 : ( ( strict ) ( non empty right_complementable Abelian add-associative right_zeroed strict RightMod-like ) Submodule of b2 : ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightMod of b1 : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring) ) ) = W2 : ( ( strict ) ( non empty right_complementable Abelian add-associative right_zeroed strict RightMod-like ) Submodule of b2 : ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightMod of b1 : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring) ) ) ;

theorem :: RMOD_2:65
for R being ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring)
for V being ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightMod of R : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring) )
for v being ( ( ) ( right_complementable ) Vector of ( ( ) ( non empty ) set ) )
for W being ( ( ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) Submodule of V : ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightMod of b1 : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring) ) ) ex C being ( ( ) ( ) Coset of W : ( ( ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) Submodule of b2 : ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightMod of b1 : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring) ) ) ) st v : ( ( ) ( right_complementable ) Vector of ( ( ) ( non empty ) set ) ) in C : ( ( ) ( ) Coset of b4 : ( ( ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) Submodule of b2 : ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightMod of b1 : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring) ) ) ) ;

theorem :: RMOD_2:66
for R being ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring)
for V being ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightMod of R : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring) )
for W being ( ( ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) Submodule of V : ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightMod of b1 : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring) ) )
for C being ( ( ) ( ) Coset of W : ( ( ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) Submodule of b2 : ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightMod of b1 : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring) ) ) ) holds
( C : ( ( ) ( ) Coset of b3 : ( ( ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) Submodule of b2 : ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightMod of b1 : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring) ) ) ) is linearly-closed iff C : ( ( ) ( ) Coset of b3 : ( ( ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) Submodule of b2 : ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightMod of b1 : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring) ) ) ) = the carrier of W : ( ( ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) Submodule of b2 : ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightMod of b1 : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring) ) ) : ( ( ) ( non empty ) set ) ) ;

theorem :: RMOD_2:67
for R being ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring)
for V being ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightMod of R : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring) )
for W1, W2 being ( ( strict ) ( non empty right_complementable Abelian add-associative right_zeroed strict RightMod-like ) Submodule of V : ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightMod of b1 : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring) ) )
for C1 being ( ( ) ( ) Coset of W1 : ( ( strict ) ( non empty right_complementable Abelian add-associative right_zeroed strict RightMod-like ) Submodule of b2 : ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightMod of b1 : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring) ) ) )
for C2 being ( ( ) ( ) Coset of W2 : ( ( strict ) ( non empty right_complementable Abelian add-associative right_zeroed strict RightMod-like ) Submodule of b2 : ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightMod of b1 : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring) ) ) ) st C1 : ( ( ) ( ) Coset of b3 : ( ( strict ) ( non empty right_complementable Abelian add-associative right_zeroed strict RightMod-like ) Submodule of b2 : ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightMod of b1 : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring) ) ) ) = C2 : ( ( ) ( ) Coset of b4 : ( ( strict ) ( non empty right_complementable Abelian add-associative right_zeroed strict RightMod-like ) Submodule of b2 : ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightMod of b1 : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring) ) ) ) holds
W1 : ( ( strict ) ( non empty right_complementable Abelian add-associative right_zeroed strict RightMod-like ) Submodule of b2 : ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightMod of b1 : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring) ) ) = W2 : ( ( strict ) ( non empty right_complementable Abelian add-associative right_zeroed strict RightMod-like ) Submodule of b2 : ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightMod of b1 : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring) ) ) ;

theorem :: RMOD_2:68
for R being ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring)
for V being ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightMod of R : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring) )
for v being ( ( ) ( right_complementable ) Vector of ( ( ) ( non empty ) set ) ) holds {v : ( ( ) ( right_complementable ) Vector of ( ( ) ( non empty ) set ) ) } : ( ( ) ( non empty ) Element of bool the carrier of b2 : ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightMod of b1 : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring) ) : ( ( ) ( non empty ) set ) : ( ( ) ( non empty ) set ) ) is ( ( ) ( ) Coset of (0). V : ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightMod of b1 : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring) ) : ( ( strict ) ( non empty right_complementable Abelian add-associative right_zeroed strict RightMod-like ) Submodule of b2 : ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightMod of b1 : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring) ) ) ) ;

theorem :: RMOD_2:69
for R being ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring)
for V being ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightMod of R : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring) )
for V1 being ( ( ) ( ) Subset of ) st V1 : ( ( ) ( ) Subset of ) is ( ( ) ( ) Coset of (0). V : ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightMod of b1 : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring) ) : ( ( strict ) ( non empty right_complementable Abelian add-associative right_zeroed strict RightMod-like ) Submodule of b2 : ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightMod of b1 : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring) ) ) ) holds
ex v being ( ( ) ( right_complementable ) Vector of ( ( ) ( non empty ) set ) ) st V1 : ( ( ) ( ) Subset of ) = {v : ( ( ) ( right_complementable ) Vector of ( ( ) ( non empty ) set ) ) } : ( ( ) ( non empty ) Element of bool the carrier of b2 : ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightMod of b1 : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring) ) : ( ( ) ( non empty ) set ) : ( ( ) ( non empty ) set ) ) ;

theorem :: RMOD_2:70
for R being ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring)
for V being ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightMod of R : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring) )
for W being ( ( ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) Submodule of V : ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightMod of b1 : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring) ) ) holds the carrier of W : ( ( ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) Submodule of b2 : ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightMod of b1 : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring) ) ) : ( ( ) ( non empty ) set ) is ( ( ) ( ) Coset of W : ( ( ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) Submodule of b2 : ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightMod of b1 : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring) ) ) ) ;

theorem :: RMOD_2:71
for R being ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring)
for V being ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightMod of R : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring) ) holds the carrier of V : ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightMod of b1 : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring) ) : ( ( ) ( non empty ) set ) is ( ( ) ( ) Coset of (Omega). V : ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightMod of b1 : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring) ) : ( ( strict ) ( non empty right_complementable Abelian add-associative right_zeroed strict RightMod-like ) Submodule of b2 : ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightMod of b1 : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring) ) ) ) ;

theorem :: RMOD_2:72
for R being ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring)
for V being ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightMod of R : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring) )
for V1 being ( ( ) ( ) Subset of ) st V1 : ( ( ) ( ) Subset of ) is ( ( ) ( ) Coset of (Omega). V : ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightMod of b1 : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring) ) : ( ( strict ) ( non empty right_complementable Abelian add-associative right_zeroed strict RightMod-like ) Submodule of b2 : ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightMod of b1 : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring) ) ) ) holds
V1 : ( ( ) ( ) Subset of ) = the carrier of V : ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightMod of b1 : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring) ) : ( ( ) ( non empty ) set ) ;

theorem :: RMOD_2:73
for R being ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring)
for V being ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightMod of R : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring) )
for W being ( ( ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) Submodule of V : ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightMod of b1 : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring) ) )
for C being ( ( ) ( ) Coset of W : ( ( ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) Submodule of b2 : ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightMod of b1 : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring) ) ) ) holds
( 0. V : ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightMod of b1 : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring) ) : ( ( ) ( V49(b2 : ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightMod of b1 : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring) ) ) right_complementable ) Element of the carrier of b2 : ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightMod of b1 : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring) ) : ( ( ) ( non empty ) set ) ) in C : ( ( ) ( ) Coset of b3 : ( ( ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) Submodule of b2 : ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightMod of b1 : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring) ) ) ) iff C : ( ( ) ( ) Coset of b3 : ( ( ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) Submodule of b2 : ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightMod of b1 : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring) ) ) ) = the carrier of W : ( ( ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) Submodule of b2 : ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightMod of b1 : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring) ) ) : ( ( ) ( non empty ) set ) ) ;

theorem :: RMOD_2:74
for R being ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring)
for V being ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightMod of R : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring) )
for u being ( ( ) ( right_complementable ) Vector of ( ( ) ( non empty ) set ) )
for W being ( ( ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) Submodule of V : ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightMod of b1 : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring) ) )
for C being ( ( ) ( ) Coset of W : ( ( ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) Submodule of b2 : ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightMod of b1 : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring) ) ) ) holds
( u : ( ( ) ( right_complementable ) Vector of ( ( ) ( non empty ) set ) ) in C : ( ( ) ( ) Coset of b4 : ( ( ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) Submodule of b2 : ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightMod of b1 : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring) ) ) ) iff C : ( ( ) ( ) Coset of b4 : ( ( ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) Submodule of b2 : ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightMod of b1 : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring) ) ) ) = u : ( ( ) ( right_complementable ) Vector of ( ( ) ( non empty ) set ) ) + W : ( ( ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) Submodule of b2 : ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightMod of b1 : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring) ) ) : ( ( ) ( ) Subset of ) ) ;

theorem :: RMOD_2:75
for R being ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring)
for V being ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightMod of R : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring) )
for u, v being ( ( ) ( right_complementable ) Vector of ( ( ) ( non empty ) set ) )
for W being ( ( ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) Submodule of V : ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightMod of b1 : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring) ) )
for C being ( ( ) ( ) Coset of W : ( ( ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) Submodule of b2 : ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightMod of b1 : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring) ) ) ) st u : ( ( ) ( right_complementable ) Vector of ( ( ) ( non empty ) set ) ) in C : ( ( ) ( ) Coset of b5 : ( ( ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) Submodule of b2 : ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightMod of b1 : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring) ) ) ) & v : ( ( ) ( right_complementable ) Vector of ( ( ) ( non empty ) set ) ) in C : ( ( ) ( ) Coset of b5 : ( ( ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) Submodule of b2 : ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightMod of b1 : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring) ) ) ) holds
ex v1 being ( ( ) ( right_complementable ) Vector of ( ( ) ( non empty ) set ) ) st
( v1 : ( ( ) ( right_complementable ) Vector of ( ( ) ( non empty ) set ) ) in W : ( ( ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) Submodule of b2 : ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightMod of b1 : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring) ) ) & u : ( ( ) ( right_complementable ) Vector of ( ( ) ( non empty ) set ) ) + v1 : ( ( ) ( right_complementable ) Vector of ( ( ) ( non empty ) set ) ) : ( ( ) ( right_complementable ) Element of the carrier of b2 : ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightMod of b1 : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring) ) : ( ( ) ( non empty ) set ) ) = v : ( ( ) ( right_complementable ) Vector of ( ( ) ( non empty ) set ) ) ) ;

theorem :: RMOD_2:76
for R being ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring)
for V being ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightMod of R : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring) )
for u, v being ( ( ) ( right_complementable ) Vector of ( ( ) ( non empty ) set ) )
for W being ( ( ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) Submodule of V : ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightMod of b1 : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring) ) )
for C being ( ( ) ( ) Coset of W : ( ( ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) Submodule of b2 : ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightMod of b1 : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring) ) ) ) st u : ( ( ) ( right_complementable ) Vector of ( ( ) ( non empty ) set ) ) in C : ( ( ) ( ) Coset of b5 : ( ( ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) Submodule of b2 : ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightMod of b1 : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring) ) ) ) & v : ( ( ) ( right_complementable ) Vector of ( ( ) ( non empty ) set ) ) in C : ( ( ) ( ) Coset of b5 : ( ( ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) Submodule of b2 : ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightMod of b1 : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring) ) ) ) holds
ex v1 being ( ( ) ( right_complementable ) Vector of ( ( ) ( non empty ) set ) ) st
( v1 : ( ( ) ( right_complementable ) Vector of ( ( ) ( non empty ) set ) ) in W : ( ( ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) Submodule of b2 : ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightMod of b1 : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring) ) ) & u : ( ( ) ( right_complementable ) Vector of ( ( ) ( non empty ) set ) ) - v1 : ( ( ) ( right_complementable ) Vector of ( ( ) ( non empty ) set ) ) : ( ( ) ( right_complementable ) Element of the carrier of b2 : ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightMod of b1 : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring) ) : ( ( ) ( non empty ) set ) ) = v : ( ( ) ( right_complementable ) Vector of ( ( ) ( non empty ) set ) ) ) ;

theorem :: RMOD_2:77
for R being ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring)
for V being ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightMod of R : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring) )
for v1, v2 being ( ( ) ( right_complementable ) Vector of ( ( ) ( non empty ) set ) )
for W being ( ( ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) Submodule of V : ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightMod of b1 : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring) ) ) holds
( ex C being ( ( ) ( ) Coset of W : ( ( ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) Submodule of b2 : ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightMod of b1 : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring) ) ) ) st
( v1 : ( ( ) ( right_complementable ) Vector of ( ( ) ( non empty ) set ) ) in C : ( ( ) ( ) Coset of b5 : ( ( ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) Submodule of b2 : ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightMod of b1 : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring) ) ) ) & v2 : ( ( ) ( right_complementable ) Vector of ( ( ) ( non empty ) set ) ) in C : ( ( ) ( ) Coset of b5 : ( ( ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) Submodule of b2 : ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightMod of b1 : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring) ) ) ) ) iff v1 : ( ( ) ( right_complementable ) Vector of ( ( ) ( non empty ) set ) ) - v2 : ( ( ) ( right_complementable ) Vector of ( ( ) ( non empty ) set ) ) : ( ( ) ( right_complementable ) Element of the carrier of b2 : ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightMod of b1 : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring) ) : ( ( ) ( non empty ) set ) ) in W : ( ( ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) Submodule of b2 : ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightMod of b1 : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring) ) ) ) ;

theorem :: RMOD_2:78
for R being ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring)
for V being ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightMod of R : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring) )
for u being ( ( ) ( right_complementable ) Vector of ( ( ) ( non empty ) set ) )
for W being ( ( ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) Submodule of V : ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightMod of b1 : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring) ) )
for B, C being ( ( ) ( ) Coset of W : ( ( ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) Submodule of b2 : ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightMod of b1 : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring) ) ) ) st u : ( ( ) ( right_complementable ) Vector of ( ( ) ( non empty ) set ) ) in B : ( ( ) ( ) Coset of b4 : ( ( ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) Submodule of b2 : ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightMod of b1 : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring) ) ) ) & u : ( ( ) ( right_complementable ) Vector of ( ( ) ( non empty ) set ) ) in C : ( ( ) ( ) Coset of b4 : ( ( ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) Submodule of b2 : ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightMod of b1 : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring) ) ) ) holds
B : ( ( ) ( ) Coset of b4 : ( ( ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) Submodule of b2 : ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightMod of b1 : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring) ) ) ) = C : ( ( ) ( ) Coset of b4 : ( ( ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) Submodule of b2 : ( ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) ( non empty right_complementable Abelian add-associative right_zeroed RightMod-like ) RightMod of b1 : ( ( non empty right_complementable associative well-unital V102() Abelian add-associative right_zeroed ) ( non empty right_complementable unital associative right-distributive left-distributive right_unital well-unital V102() left_unital Abelian add-associative right_zeroed ) Ring) ) ) ) ;