:: RUSUB_5 semantic presentation

begin

definition
let V be ( ( non empty ) ( non empty ) RLSStruct ) ;
let M, N be ( ( Affine ) ( Affine ) Subset of ) ;
pred M is_parallel_to N means :: RUSUB_5:def 1
ex v being ( ( ) ( ) VECTOR of ( ( ) ( ) set ) ) st M : ( ( ) ( ) Element of V : ( ( ) ( ) UNITSTR ) ) = N : ( ( V31() V40(K11(V : ( ( ) ( ) UNITSTR ) ,V : ( ( ) ( ) UNITSTR ) ) : ( ( ) ( ) set ) ,V : ( ( ) ( ) UNITSTR ) ) ) ( V31() V40(K11(V : ( ( ) ( ) UNITSTR ) ,V : ( ( ) ( ) UNITSTR ) ) : ( ( ) ( ) set ) ,V : ( ( ) ( ) UNITSTR ) ) ) Element of K10(K11(K11(V : ( ( ) ( ) UNITSTR ) ,V : ( ( ) ( ) UNITSTR ) ) : ( ( ) ( ) set ) ,V : ( ( ) ( ) UNITSTR ) ) : ( ( ) ( ) set ) ) : ( ( ) ( non empty ) set ) ) + {v : ( ( ) ( ) VECTOR of ( ( ) ( non empty ) set ) ) } : ( ( ) ( non empty ) Element of K10( the carrier of V : ( ( ) ( ) UNITSTR ) : ( ( ) ( ) set ) ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( ) Element of K10( the carrier of V : ( ( ) ( ) UNITSTR ) : ( ( ) ( ) set ) ) : ( ( ) ( non empty ) set ) ) ;
end;

theorem :: RUSUB_5:1
for V being ( ( non empty right_zeroed ) ( non empty right_zeroed ) RLSStruct )
for M being ( ( Affine ) ( Affine ) Subset of ) holds M : ( ( Affine ) ( Affine ) Subset of ) is_parallel_to M : ( ( Affine ) ( Affine ) Subset of ) ;

theorem :: RUSUB_5:2
for V being ( ( non empty right_complementable add-associative right_zeroed ) ( non empty right_complementable add-associative right_zeroed ) RLSStruct )
for M, N being ( ( Affine ) ( Affine ) Subset of ) st M : ( ( Affine ) ( Affine ) Subset of ) is_parallel_to N : ( ( Affine ) ( Affine ) Subset of ) holds
N : ( ( Affine ) ( Affine ) Subset of ) is_parallel_to M : ( ( Affine ) ( Affine ) Subset of ) ;

theorem :: RUSUB_5:3
for V being ( ( non empty right_complementable Abelian add-associative right_zeroed ) ( non empty left_complementable right_complementable Abelian add-associative right_zeroed V125() ) RLSStruct )
for M, L, N being ( ( Affine ) ( Affine ) Subset of ) st M : ( ( Affine ) ( Affine ) Subset of ) is_parallel_to L : ( ( Affine ) ( Affine ) Subset of ) & L : ( ( Affine ) ( Affine ) Subset of ) is_parallel_to N : ( ( Affine ) ( Affine ) Subset of ) holds
M : ( ( Affine ) ( Affine ) Subset of ) is_parallel_to N : ( ( Affine ) ( Affine ) Subset of ) ;

definition
let V be ( ( non empty ) ( non empty ) addLoopStr ) ;
let M, N be ( ( ) ( ) Subset of ) ;
func M - N -> ( ( ) ( ) Subset of ) equals :: RUSUB_5:def 2
{ (u : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) - v : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ) : ( ( ) ( ) Element of the carrier of V : ( ( ) ( ) UNITSTR ) : ( ( ) ( ) set ) ) where u, v is ( ( ) ( ) Element of ( ( ) ( ) set ) ) : ( u : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) in M : ( ( ) ( ) Element of V : ( ( ) ( ) UNITSTR ) ) & v : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) in N : ( ( V31() V40(K11(V : ( ( ) ( ) UNITSTR ) ,V : ( ( ) ( ) UNITSTR ) ) : ( ( ) ( ) set ) ,V : ( ( ) ( ) UNITSTR ) ) ) ( V31() V40(K11(V : ( ( ) ( ) UNITSTR ) ,V : ( ( ) ( ) UNITSTR ) ) : ( ( ) ( ) set ) ,V : ( ( ) ( ) UNITSTR ) ) ) Element of K10(K11(K11(V : ( ( ) ( ) UNITSTR ) ,V : ( ( ) ( ) UNITSTR ) ) : ( ( ) ( ) set ) ,V : ( ( ) ( ) UNITSTR ) ) : ( ( ) ( ) set ) ) : ( ( ) ( non empty ) set ) ) ) } ;
end;

theorem :: RUSUB_5:4
for V being ( ( non empty right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital ) ( non empty left_complementable right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital V125() ) RealLinearSpace)
for M, N being ( ( Affine ) ( Affine ) Subset of ) holds M : ( ( Affine ) ( Affine ) Subset of ) - N : ( ( Affine ) ( Affine ) Subset of ) : ( ( ) ( ) Subset of ) is Affine ;

theorem :: RUSUB_5:5
for V being ( ( non empty ) ( non empty ) addLoopStr )
for M, N being ( ( ) ( ) Subset of ) st ( M : ( ( ) ( ) Subset of ) is empty or N : ( ( ) ( ) Subset of ) is empty ) holds
M : ( ( ) ( ) Subset of ) + N : ( ( ) ( ) Subset of ) : ( ( ) ( ) Element of K10( the carrier of b1 : ( ( non empty ) ( non empty ) addLoopStr ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty ) set ) ) is empty ;

theorem :: RUSUB_5:6
for V being ( ( non empty ) ( non empty ) addLoopStr )
for M, N being ( ( non empty ) ( non empty ) Subset of ) holds not M : ( ( non empty ) ( non empty ) Subset of ) + N : ( ( non empty ) ( non empty ) Subset of ) : ( ( ) ( ) Element of K10( the carrier of b1 : ( ( non empty ) ( non empty ) addLoopStr ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty ) set ) ) is empty ;

theorem :: RUSUB_5:7
for V being ( ( non empty ) ( non empty ) addLoopStr )
for M, N being ( ( ) ( ) Subset of ) st ( M : ( ( ) ( ) Subset of ) is empty or N : ( ( ) ( ) Subset of ) is empty ) holds
M : ( ( ) ( ) Subset of ) - N : ( ( ) ( ) Subset of ) : ( ( ) ( ) Subset of ) is empty ;

theorem :: RUSUB_5:8
for V being ( ( non empty ) ( non empty ) addLoopStr )
for M, N being ( ( non empty ) ( non empty ) Subset of ) holds not M : ( ( non empty ) ( non empty ) Subset of ) - N : ( ( non empty ) ( non empty ) Subset of ) : ( ( ) ( ) Subset of ) is empty ;

theorem :: RUSUB_5:9
for V being ( ( non empty right_complementable Abelian add-associative right_zeroed ) ( non empty left_complementable right_complementable Abelian add-associative right_zeroed V125() ) addLoopStr )
for M, N being ( ( ) ( ) Subset of )
for v being ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) holds
( M : ( ( ) ( ) Subset of ) = N : ( ( ) ( ) Subset of ) + {v : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) } : ( ( ) ( non empty ) Element of K10( the carrier of b1 : ( ( non empty right_complementable Abelian add-associative right_zeroed ) ( non empty left_complementable right_complementable Abelian add-associative right_zeroed V125() ) addLoopStr ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( ) Element of K10( the carrier of b1 : ( ( non empty right_complementable Abelian add-associative right_zeroed ) ( non empty left_complementable right_complementable Abelian add-associative right_zeroed V125() ) addLoopStr ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty ) set ) ) iff M : ( ( ) ( ) Subset of ) - {v : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) } : ( ( ) ( non empty ) Element of K10( the carrier of b1 : ( ( non empty right_complementable Abelian add-associative right_zeroed ) ( non empty left_complementable right_complementable Abelian add-associative right_zeroed V125() ) addLoopStr ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( ) Subset of ) = N : ( ( ) ( ) Subset of ) ) ;

theorem :: RUSUB_5:10
for V being ( ( non empty right_complementable Abelian add-associative right_zeroed ) ( non empty left_complementable right_complementable Abelian add-associative right_zeroed V125() ) addLoopStr )
for M, N being ( ( ) ( ) Subset of )
for v being ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) st v : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) in N : ( ( ) ( ) Subset of ) holds
M : ( ( ) ( ) Subset of ) + {v : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) } : ( ( ) ( non empty ) Element of K10( the carrier of b1 : ( ( non empty right_complementable Abelian add-associative right_zeroed ) ( non empty left_complementable right_complementable Abelian add-associative right_zeroed V125() ) addLoopStr ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( ) Element of K10( the carrier of b1 : ( ( non empty right_complementable Abelian add-associative right_zeroed ) ( non empty left_complementable right_complementable Abelian add-associative right_zeroed V125() ) addLoopStr ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty ) set ) ) c= M : ( ( ) ( ) Subset of ) + N : ( ( ) ( ) Subset of ) : ( ( ) ( ) Element of K10( the carrier of b1 : ( ( non empty right_complementable Abelian add-associative right_zeroed ) ( non empty left_complementable right_complementable Abelian add-associative right_zeroed V125() ) addLoopStr ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty ) set ) ) ;

theorem :: RUSUB_5:11
for V being ( ( non empty right_complementable Abelian add-associative right_zeroed ) ( non empty left_complementable right_complementable Abelian add-associative right_zeroed V125() ) addLoopStr )
for M, N being ( ( ) ( ) Subset of )
for v being ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) st v : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) in N : ( ( ) ( ) Subset of ) holds
M : ( ( ) ( ) Subset of ) - {v : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) } : ( ( ) ( non empty ) Element of K10( the carrier of b1 : ( ( non empty right_complementable Abelian add-associative right_zeroed ) ( non empty left_complementable right_complementable Abelian add-associative right_zeroed V125() ) addLoopStr ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( ) Subset of ) c= M : ( ( ) ( ) Subset of ) - N : ( ( ) ( ) Subset of ) : ( ( ) ( ) Subset of ) ;

theorem :: RUSUB_5:12
for V being ( ( non empty right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital ) ( non empty left_complementable right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital V125() ) RealLinearSpace)
for M being ( ( non empty ) ( non empty ) Subset of ) holds 0. V : ( ( non empty right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital ) ( non empty left_complementable right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital V125() ) RealLinearSpace) : ( ( ) ( V59(b1 : ( ( non empty right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital ) ( non empty left_complementable right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital V125() ) RealLinearSpace) ) ) Element of the carrier of b1 : ( ( non empty right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital ) ( non empty left_complementable right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital V125() ) RealLinearSpace) : ( ( ) ( non empty ) set ) ) in M : ( ( non empty ) ( non empty ) Subset of ) - M : ( ( non empty ) ( non empty ) Subset of ) : ( ( ) ( ) Subset of ) ;

theorem :: RUSUB_5:13
for V being ( ( non empty right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital ) ( non empty left_complementable right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital V125() ) RealLinearSpace)
for M being ( ( non empty Affine ) ( non empty Affine ) Subset of )
for v being ( ( ) ( ) VECTOR of ( ( ) ( non empty ) set ) ) st M : ( ( non empty Affine ) ( non empty Affine ) Subset of ) is Subspace-like & v : ( ( ) ( ) VECTOR of ( ( ) ( non empty ) set ) ) in M : ( ( non empty Affine ) ( non empty Affine ) Subset of ) holds
M : ( ( non empty Affine ) ( non empty Affine ) Subset of ) + {v : ( ( ) ( ) VECTOR of ( ( ) ( non empty ) set ) ) } : ( ( ) ( non empty ) Element of K10( the carrier of b1 : ( ( non empty right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital ) ( non empty left_complementable right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital V125() ) RealLinearSpace) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( ) Element of K10( the carrier of b1 : ( ( non empty right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital ) ( non empty left_complementable right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital V125() ) RealLinearSpace) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty ) set ) ) c= M : ( ( non empty Affine ) ( non empty Affine ) Subset of ) ;

theorem :: RUSUB_5:14
for V being ( ( non empty right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital ) ( non empty left_complementable right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital V125() ) RealLinearSpace)
for M, N1, N2 being ( ( non empty Affine ) ( non empty Affine ) Subset of ) st N1 : ( ( non empty Affine ) ( non empty Affine ) Subset of ) is Subspace-like & N2 : ( ( non empty Affine ) ( non empty Affine ) Subset of ) is Subspace-like & M : ( ( non empty Affine ) ( non empty Affine ) Subset of ) is_parallel_to N1 : ( ( non empty Affine ) ( non empty Affine ) Subset of ) & M : ( ( non empty Affine ) ( non empty Affine ) Subset of ) is_parallel_to N2 : ( ( non empty Affine ) ( non empty Affine ) Subset of ) holds
N1 : ( ( non empty Affine ) ( non empty Affine ) Subset of ) = N2 : ( ( non empty Affine ) ( non empty Affine ) Subset of ) ;

theorem :: RUSUB_5:15
for V being ( ( non empty right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital ) ( non empty left_complementable right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital V125() ) RealLinearSpace)
for M being ( ( non empty Affine ) ( non empty Affine ) Subset of )
for v being ( ( ) ( ) VECTOR of ( ( ) ( non empty ) set ) ) st v : ( ( ) ( ) VECTOR of ( ( ) ( non empty ) set ) ) in M : ( ( non empty Affine ) ( non empty Affine ) Subset of ) holds
0. V : ( ( non empty right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital ) ( non empty left_complementable right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital V125() ) RealLinearSpace) : ( ( ) ( V59(b1 : ( ( non empty right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital ) ( non empty left_complementable right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital V125() ) RealLinearSpace) ) ) Element of the carrier of b1 : ( ( non empty right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital ) ( non empty left_complementable right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital V125() ) RealLinearSpace) : ( ( ) ( non empty ) set ) ) in M : ( ( non empty Affine ) ( non empty Affine ) Subset of ) - {v : ( ( ) ( ) VECTOR of ( ( ) ( non empty ) set ) ) } : ( ( ) ( non empty ) Element of K10( the carrier of b1 : ( ( non empty right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital ) ( non empty left_complementable right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital V125() ) RealLinearSpace) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( ) Subset of ) ;

theorem :: RUSUB_5:16
for V being ( ( non empty right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital ) ( non empty left_complementable right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital V125() ) RealLinearSpace)
for M being ( ( non empty Affine ) ( non empty Affine ) Subset of )
for v being ( ( ) ( ) VECTOR of ( ( ) ( non empty ) set ) ) st v : ( ( ) ( ) VECTOR of ( ( ) ( non empty ) set ) ) in M : ( ( non empty Affine ) ( non empty Affine ) Subset of ) holds
ex N being ( ( non empty Affine ) ( non empty Affine ) Subset of ) st
( N : ( ( non empty Affine ) ( non empty Affine ) Subset of ) = M : ( ( non empty Affine ) ( non empty Affine ) Subset of ) - {v : ( ( ) ( ) VECTOR of ( ( ) ( non empty ) set ) ) } : ( ( ) ( non empty ) Element of K10( the carrier of b1 : ( ( non empty right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital ) ( non empty left_complementable right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital V125() ) RealLinearSpace) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( ) Subset of ) & M : ( ( non empty Affine ) ( non empty Affine ) Subset of ) is_parallel_to N : ( ( non empty Affine ) ( non empty Affine ) Subset of ) & N : ( ( non empty Affine ) ( non empty Affine ) Subset of ) is Subspace-like ) ;

theorem :: RUSUB_5:17
for V being ( ( non empty right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital ) ( non empty left_complementable right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital V125() ) RealLinearSpace)
for M being ( ( non empty Affine ) ( non empty Affine ) Subset of )
for u, v being ( ( ) ( ) VECTOR of ( ( ) ( non empty ) set ) ) st u : ( ( ) ( ) VECTOR of ( ( ) ( non empty ) set ) ) in M : ( ( non empty Affine ) ( non empty Affine ) Subset of ) & v : ( ( ) ( ) VECTOR of ( ( ) ( non empty ) set ) ) in M : ( ( non empty Affine ) ( non empty Affine ) Subset of ) holds
M : ( ( non empty Affine ) ( non empty Affine ) Subset of ) - {v : ( ( ) ( ) VECTOR of ( ( ) ( non empty ) set ) ) } : ( ( ) ( non empty ) Element of K10( the carrier of b1 : ( ( non empty right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital ) ( non empty left_complementable right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital V125() ) RealLinearSpace) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( ) Subset of ) = M : ( ( non empty Affine ) ( non empty Affine ) Subset of ) - {u : ( ( ) ( ) VECTOR of ( ( ) ( non empty ) set ) ) } : ( ( ) ( non empty ) Element of K10( the carrier of b1 : ( ( non empty right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital ) ( non empty left_complementable right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital V125() ) RealLinearSpace) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( ) Subset of ) ;

theorem :: RUSUB_5:18
for V being ( ( non empty right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital ) ( non empty left_complementable right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital V125() ) RealLinearSpace)
for M being ( ( non empty Affine ) ( non empty Affine ) Subset of ) holds M : ( ( non empty Affine ) ( non empty Affine ) Subset of ) - M : ( ( non empty Affine ) ( non empty Affine ) Subset of ) : ( ( ) ( ) Subset of ) = union { (M : ( ( non empty Affine ) ( non empty Affine ) Subset of ) - {v : ( ( ) ( ) VECTOR of ( ( ) ( non empty ) set ) ) } : ( ( ) ( non empty ) Element of K10( the carrier of b1 : ( ( non empty right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital ) ( non empty left_complementable right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital V125() ) RealLinearSpace) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty ) set ) ) ) : ( ( ) ( ) Subset of ) where v is ( ( ) ( ) VECTOR of ( ( ) ( non empty ) set ) ) : v : ( ( ) ( ) VECTOR of ( ( ) ( non empty ) set ) ) in M : ( ( non empty Affine ) ( non empty Affine ) Subset of ) } : ( ( ) ( ) set ) ;

theorem :: RUSUB_5:19
for V being ( ( non empty right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital ) ( non empty left_complementable right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital V125() ) RealLinearSpace)
for M being ( ( non empty Affine ) ( non empty Affine ) Subset of )
for v being ( ( ) ( ) VECTOR of ( ( ) ( non empty ) set ) ) st v : ( ( ) ( ) VECTOR of ( ( ) ( non empty ) set ) ) in M : ( ( non empty Affine ) ( non empty Affine ) Subset of ) holds
M : ( ( non empty Affine ) ( non empty Affine ) Subset of ) - {v : ( ( ) ( ) VECTOR of ( ( ) ( non empty ) set ) ) } : ( ( ) ( non empty ) Element of K10( the carrier of b1 : ( ( non empty right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital ) ( non empty left_complementable right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital V125() ) RealLinearSpace) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( ) Subset of ) = union { (M : ( ( non empty Affine ) ( non empty Affine ) Subset of ) - {u : ( ( ) ( ) VECTOR of ( ( ) ( non empty ) set ) ) } : ( ( ) ( non empty ) Element of K10( the carrier of b1 : ( ( non empty right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital ) ( non empty left_complementable right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital V125() ) RealLinearSpace) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty ) set ) ) ) : ( ( ) ( ) Subset of ) where u is ( ( ) ( ) VECTOR of ( ( ) ( non empty ) set ) ) : u : ( ( ) ( ) VECTOR of ( ( ) ( non empty ) set ) ) in M : ( ( non empty Affine ) ( non empty Affine ) Subset of ) } : ( ( ) ( ) set ) ;

theorem :: RUSUB_5:20
for V being ( ( non empty right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital ) ( non empty left_complementable right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital V125() ) RealLinearSpace)
for M being ( ( non empty Affine ) ( non empty Affine ) Subset of ) ex L being ( ( non empty Affine ) ( non empty Affine ) Subset of ) st
( L : ( ( non empty Affine ) ( non empty Affine ) Subset of ) = M : ( ( non empty Affine ) ( non empty Affine ) Subset of ) - M : ( ( non empty Affine ) ( non empty Affine ) Subset of ) : ( ( ) ( ) Subset of ) & L : ( ( non empty Affine ) ( non empty Affine ) Subset of ) is Subspace-like & M : ( ( non empty Affine ) ( non empty Affine ) Subset of ) is_parallel_to L : ( ( non empty Affine ) ( non empty Affine ) Subset of ) ) ;

begin

definition
let V be ( ( non empty right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital RealUnitarySpace-like ) ( non empty left_complementable right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital V125() RealUnitarySpace-like ) RealUnitarySpace) ;
let W be ( ( ) ( non empty left_complementable right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital V125() RealUnitarySpace-like ) Subspace of V : ( ( non empty right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital RealUnitarySpace-like ) ( non empty left_complementable right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital V125() RealUnitarySpace-like ) RealUnitarySpace) ) ;
func Ort_Comp W -> ( ( strict ) ( non empty left_complementable right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital V125() strict RealUnitarySpace-like ) Subspace of V : ( ( ) ( ) UNITSTR ) ) means :: RUSUB_5:def 3
the carrier of it : ( ( V31() V40(K11(V : ( ( ) ( ) UNITSTR ) ,V : ( ( ) ( ) UNITSTR ) ) : ( ( ) ( ) set ) ,V : ( ( ) ( ) UNITSTR ) ) ) ( V31() V40(K11(V : ( ( ) ( ) UNITSTR ) ,V : ( ( ) ( ) UNITSTR ) ) : ( ( ) ( ) set ) ,V : ( ( ) ( ) UNITSTR ) ) ) Element of K10(K11(K11(V : ( ( ) ( ) UNITSTR ) ,V : ( ( ) ( ) UNITSTR ) ) : ( ( ) ( ) set ) ,V : ( ( ) ( ) UNITSTR ) ) : ( ( ) ( ) set ) ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( ) set ) = { v : ( ( ) ( ) VECTOR of ( ( ) ( non empty ) set ) ) where v is ( ( ) ( ) VECTOR of ( ( ) ( ) set ) ) : for w being ( ( ) ( ) VECTOR of ( ( ) ( ) set ) ) st w : ( ( ) ( ) VECTOR of ( ( ) ( non empty ) set ) ) in W : ( ( ) ( ) Element of V : ( ( ) ( ) UNITSTR ) ) holds
w : ( ( ) ( ) VECTOR of ( ( ) ( non empty ) set ) ) ,v : ( ( ) ( ) VECTOR of ( ( ) ( non empty ) set ) ) are_orthogonal
}
;
end;

definition
let V be ( ( non empty right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital RealUnitarySpace-like ) ( non empty left_complementable right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital V125() RealUnitarySpace-like ) RealUnitarySpace) ;
let M be ( ( non empty ) ( non empty ) Subset of ) ;
func Ort_Comp M -> ( ( strict ) ( non empty left_complementable right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital V125() strict RealUnitarySpace-like ) Subspace of V : ( ( ) ( ) UNITSTR ) ) means :: RUSUB_5:def 4
the carrier of it : ( ( V31() V40(K11(V : ( ( ) ( ) UNITSTR ) ,V : ( ( ) ( ) UNITSTR ) ) : ( ( ) ( ) set ) ,V : ( ( ) ( ) UNITSTR ) ) ) ( V31() V40(K11(V : ( ( ) ( ) UNITSTR ) ,V : ( ( ) ( ) UNITSTR ) ) : ( ( ) ( ) set ) ,V : ( ( ) ( ) UNITSTR ) ) ) Element of K10(K11(K11(V : ( ( ) ( ) UNITSTR ) ,V : ( ( ) ( ) UNITSTR ) ) : ( ( ) ( ) set ) ,V : ( ( ) ( ) UNITSTR ) ) : ( ( ) ( ) set ) ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( ) set ) = { v : ( ( ) ( ) VECTOR of ( ( ) ( non empty ) set ) ) where v is ( ( ) ( ) VECTOR of ( ( ) ( ) set ) ) : for w being ( ( ) ( ) VECTOR of ( ( ) ( ) set ) ) st w : ( ( ) ( ) VECTOR of ( ( ) ( non empty ) set ) ) in M : ( ( ) ( ) Element of V : ( ( ) ( ) UNITSTR ) ) holds
w : ( ( ) ( ) VECTOR of ( ( ) ( non empty ) set ) ) ,v : ( ( ) ( ) VECTOR of ( ( ) ( non empty ) set ) ) are_orthogonal
}
;
end;

theorem :: RUSUB_5:21
for V being ( ( non empty right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital RealUnitarySpace-like ) ( non empty left_complementable right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital V125() RealUnitarySpace-like ) RealUnitarySpace)
for W being ( ( ) ( non empty left_complementable right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital V125() RealUnitarySpace-like ) Subspace of V : ( ( non empty right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital RealUnitarySpace-like ) ( non empty left_complementable right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital V125() RealUnitarySpace-like ) RealUnitarySpace) ) holds 0. V : ( ( non empty right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital RealUnitarySpace-like ) ( non empty left_complementable right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital V125() RealUnitarySpace-like ) RealUnitarySpace) : ( ( ) ( V59(b1 : ( ( non empty right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital RealUnitarySpace-like ) ( non empty left_complementable right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital V125() RealUnitarySpace-like ) RealUnitarySpace) ) ) Element of the carrier of b1 : ( ( non empty right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital RealUnitarySpace-like ) ( non empty left_complementable right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital V125() RealUnitarySpace-like ) RealUnitarySpace) : ( ( ) ( non empty ) set ) ) in Ort_Comp W : ( ( ) ( non empty left_complementable right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital V125() RealUnitarySpace-like ) Subspace of b1 : ( ( non empty right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital RealUnitarySpace-like ) ( non empty left_complementable right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital V125() RealUnitarySpace-like ) RealUnitarySpace) ) : ( ( strict ) ( non empty left_complementable right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital V125() strict RealUnitarySpace-like ) Subspace of b1 : ( ( non empty right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital RealUnitarySpace-like ) ( non empty left_complementable right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital V125() RealUnitarySpace-like ) RealUnitarySpace) ) ;

theorem :: RUSUB_5:22
for V being ( ( non empty right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital RealUnitarySpace-like ) ( non empty left_complementable right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital V125() RealUnitarySpace-like ) RealUnitarySpace) holds Ort_Comp ((0). V : ( ( non empty right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital RealUnitarySpace-like ) ( non empty left_complementable right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital V125() RealUnitarySpace-like ) RealUnitarySpace) ) : ( ( strict ) ( non empty left_complementable right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital V125() strict RealUnitarySpace-like ) Subspace of b1 : ( ( non empty right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital RealUnitarySpace-like ) ( non empty left_complementable right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital V125() RealUnitarySpace-like ) RealUnitarySpace) ) : ( ( strict ) ( non empty left_complementable right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital V125() strict RealUnitarySpace-like ) Subspace of b1 : ( ( non empty right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital RealUnitarySpace-like ) ( non empty left_complementable right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital V125() RealUnitarySpace-like ) RealUnitarySpace) ) = (Omega). V : ( ( non empty right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital RealUnitarySpace-like ) ( non empty left_complementable right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital V125() RealUnitarySpace-like ) RealUnitarySpace) : ( ( strict ) ( non empty left_complementable right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital V125() strict RealUnitarySpace-like ) Subspace of b1 : ( ( non empty right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital RealUnitarySpace-like ) ( non empty left_complementable right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital V125() RealUnitarySpace-like ) RealUnitarySpace) ) ;

theorem :: RUSUB_5:23
for V being ( ( non empty right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital RealUnitarySpace-like ) ( non empty left_complementable right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital V125() RealUnitarySpace-like ) RealUnitarySpace) holds Ort_Comp ((Omega). V : ( ( non empty right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital RealUnitarySpace-like ) ( non empty left_complementable right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital V125() RealUnitarySpace-like ) RealUnitarySpace) ) : ( ( strict ) ( non empty left_complementable right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital V125() strict RealUnitarySpace-like ) Subspace of b1 : ( ( non empty right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital RealUnitarySpace-like ) ( non empty left_complementable right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital V125() RealUnitarySpace-like ) RealUnitarySpace) ) : ( ( strict ) ( non empty left_complementable right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital V125() strict RealUnitarySpace-like ) Subspace of b1 : ( ( non empty right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital RealUnitarySpace-like ) ( non empty left_complementable right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital V125() RealUnitarySpace-like ) RealUnitarySpace) ) = (0). V : ( ( non empty right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital RealUnitarySpace-like ) ( non empty left_complementable right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital V125() RealUnitarySpace-like ) RealUnitarySpace) : ( ( strict ) ( non empty left_complementable right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital V125() strict RealUnitarySpace-like ) Subspace of b1 : ( ( non empty right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital RealUnitarySpace-like ) ( non empty left_complementable right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital V125() RealUnitarySpace-like ) RealUnitarySpace) ) ;

theorem :: RUSUB_5:24
for V being ( ( non empty right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital RealUnitarySpace-like ) ( non empty left_complementable right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital V125() RealUnitarySpace-like ) RealUnitarySpace)
for W being ( ( ) ( non empty left_complementable right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital V125() RealUnitarySpace-like ) Subspace of V : ( ( non empty right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital RealUnitarySpace-like ) ( non empty left_complementable right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital V125() RealUnitarySpace-like ) RealUnitarySpace) )
for v being ( ( ) ( ) VECTOR of ( ( ) ( non empty ) set ) ) st v : ( ( ) ( ) VECTOR of ( ( ) ( non empty ) set ) ) <> 0. V : ( ( non empty right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital RealUnitarySpace-like ) ( non empty left_complementable right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital V125() RealUnitarySpace-like ) RealUnitarySpace) : ( ( ) ( V59(b1 : ( ( non empty right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital RealUnitarySpace-like ) ( non empty left_complementable right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital V125() RealUnitarySpace-like ) RealUnitarySpace) ) ) Element of the carrier of b1 : ( ( non empty right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital RealUnitarySpace-like ) ( non empty left_complementable right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital V125() RealUnitarySpace-like ) RealUnitarySpace) : ( ( ) ( non empty ) set ) ) & v : ( ( ) ( ) VECTOR of ( ( ) ( non empty ) set ) ) in W : ( ( ) ( non empty left_complementable right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital V125() RealUnitarySpace-like ) Subspace of b1 : ( ( non empty right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital RealUnitarySpace-like ) ( non empty left_complementable right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital V125() RealUnitarySpace-like ) RealUnitarySpace) ) holds
not v : ( ( ) ( ) VECTOR of ( ( ) ( non empty ) set ) ) in Ort_Comp W : ( ( ) ( non empty left_complementable right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital V125() RealUnitarySpace-like ) Subspace of b1 : ( ( non empty right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital RealUnitarySpace-like ) ( non empty left_complementable right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital V125() RealUnitarySpace-like ) RealUnitarySpace) ) : ( ( strict ) ( non empty left_complementable right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital V125() strict RealUnitarySpace-like ) Subspace of b1 : ( ( non empty right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital RealUnitarySpace-like ) ( non empty left_complementable right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital V125() RealUnitarySpace-like ) RealUnitarySpace) ) ;

theorem :: RUSUB_5:25
for V being ( ( non empty right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital RealUnitarySpace-like ) ( non empty left_complementable right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital V125() RealUnitarySpace-like ) RealUnitarySpace)
for M being ( ( non empty ) ( non empty ) Subset of ) holds M : ( ( non empty ) ( non empty ) Subset of ) c= the carrier of (Ort_Comp (Ort_Comp M : ( ( non empty ) ( non empty ) Subset of ) ) : ( ( strict ) ( non empty left_complementable right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital V125() strict RealUnitarySpace-like ) Subspace of b1 : ( ( non empty right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital RealUnitarySpace-like ) ( non empty left_complementable right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital V125() RealUnitarySpace-like ) RealUnitarySpace) ) ) : ( ( strict ) ( non empty left_complementable right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital V125() strict RealUnitarySpace-like ) Subspace of b1 : ( ( non empty right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital RealUnitarySpace-like ) ( non empty left_complementable right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital V125() RealUnitarySpace-like ) RealUnitarySpace) ) : ( ( ) ( non empty ) set ) ;

theorem :: RUSUB_5:26
for V being ( ( non empty right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital RealUnitarySpace-like ) ( non empty left_complementable right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital V125() RealUnitarySpace-like ) RealUnitarySpace)
for M, N being ( ( non empty ) ( non empty ) Subset of ) st M : ( ( non empty ) ( non empty ) Subset of ) c= N : ( ( non empty ) ( non empty ) Subset of ) holds
the carrier of (Ort_Comp N : ( ( non empty ) ( non empty ) Subset of ) ) : ( ( strict ) ( non empty left_complementable right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital V125() strict RealUnitarySpace-like ) Subspace of b1 : ( ( non empty right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital RealUnitarySpace-like ) ( non empty left_complementable right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital V125() RealUnitarySpace-like ) RealUnitarySpace) ) : ( ( ) ( non empty ) set ) c= the carrier of (Ort_Comp M : ( ( non empty ) ( non empty ) Subset of ) ) : ( ( strict ) ( non empty left_complementable right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital V125() strict RealUnitarySpace-like ) Subspace of b1 : ( ( non empty right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital RealUnitarySpace-like ) ( non empty left_complementable right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital V125() RealUnitarySpace-like ) RealUnitarySpace) ) : ( ( ) ( non empty ) set ) ;

theorem :: RUSUB_5:27
for V being ( ( non empty right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital RealUnitarySpace-like ) ( non empty left_complementable right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital V125() RealUnitarySpace-like ) RealUnitarySpace)
for W being ( ( ) ( non empty left_complementable right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital V125() RealUnitarySpace-like ) Subspace of V : ( ( non empty right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital RealUnitarySpace-like ) ( non empty left_complementable right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital V125() RealUnitarySpace-like ) RealUnitarySpace) )
for M being ( ( non empty ) ( non empty ) Subset of ) st M : ( ( non empty ) ( non empty ) Subset of ) = the carrier of W : ( ( ) ( non empty left_complementable right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital V125() RealUnitarySpace-like ) Subspace of b1 : ( ( non empty right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital RealUnitarySpace-like ) ( non empty left_complementable right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital V125() RealUnitarySpace-like ) RealUnitarySpace) ) : ( ( ) ( non empty ) set ) holds
Ort_Comp M : ( ( non empty ) ( non empty ) Subset of ) : ( ( strict ) ( non empty left_complementable right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital V125() strict RealUnitarySpace-like ) Subspace of b1 : ( ( non empty right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital RealUnitarySpace-like ) ( non empty left_complementable right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital V125() RealUnitarySpace-like ) RealUnitarySpace) ) = Ort_Comp W : ( ( ) ( non empty left_complementable right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital V125() RealUnitarySpace-like ) Subspace of b1 : ( ( non empty right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital RealUnitarySpace-like ) ( non empty left_complementable right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital V125() RealUnitarySpace-like ) RealUnitarySpace) ) : ( ( strict ) ( non empty left_complementable right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital V125() strict RealUnitarySpace-like ) Subspace of b1 : ( ( non empty right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital RealUnitarySpace-like ) ( non empty left_complementable right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital V125() RealUnitarySpace-like ) RealUnitarySpace) ) ;

theorem :: RUSUB_5:28
for V being ( ( non empty right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital RealUnitarySpace-like ) ( non empty left_complementable right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital V125() RealUnitarySpace-like ) RealUnitarySpace)
for M being ( ( non empty ) ( non empty ) Subset of ) holds Ort_Comp M : ( ( non empty ) ( non empty ) Subset of ) : ( ( strict ) ( non empty left_complementable right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital V125() strict RealUnitarySpace-like ) Subspace of b1 : ( ( non empty right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital RealUnitarySpace-like ) ( non empty left_complementable right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital V125() RealUnitarySpace-like ) RealUnitarySpace) ) = Ort_Comp (Ort_Comp (Ort_Comp M : ( ( non empty ) ( non empty ) Subset of ) ) : ( ( strict ) ( non empty left_complementable right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital V125() strict RealUnitarySpace-like ) Subspace of b1 : ( ( non empty right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital RealUnitarySpace-like ) ( non empty left_complementable right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital V125() RealUnitarySpace-like ) RealUnitarySpace) ) ) : ( ( strict ) ( non empty left_complementable right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital V125() strict RealUnitarySpace-like ) Subspace of b1 : ( ( non empty right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital RealUnitarySpace-like ) ( non empty left_complementable right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital V125() RealUnitarySpace-like ) RealUnitarySpace) ) : ( ( strict ) ( non empty left_complementable right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital V125() strict RealUnitarySpace-like ) Subspace of b1 : ( ( non empty right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital RealUnitarySpace-like ) ( non empty left_complementable right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital V125() RealUnitarySpace-like ) RealUnitarySpace) ) ;

theorem :: RUSUB_5:29
for V being ( ( non empty right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital RealUnitarySpace-like ) ( non empty left_complementable right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital V125() RealUnitarySpace-like ) RealUnitarySpace)
for x, y being ( ( ) ( ) VECTOR of ( ( ) ( non empty ) set ) ) holds
( ||.(x : ( ( ) ( ) VECTOR of ( ( ) ( non empty ) set ) ) + y : ( ( ) ( ) VECTOR of ( ( ) ( non empty ) set ) ) ) : ( ( ) ( ) Element of the carrier of b1 : ( ( non empty right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital RealUnitarySpace-like ) ( non empty left_complementable right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital V125() RealUnitarySpace-like ) RealUnitarySpace) : ( ( ) ( non empty ) set ) ) .|| : ( ( ) ( V14() real ext-real ) Element of REAL : ( ( ) ( V19() V20() V21() V25() ) set ) ) ^2 : ( ( ) ( V14() real ext-real ) Element of REAL : ( ( ) ( V19() V20() V21() V25() ) set ) ) = ((||.x : ( ( ) ( ) VECTOR of ( ( ) ( non empty ) set ) ) .|| : ( ( ) ( V14() real ext-real ) Element of REAL : ( ( ) ( V19() V20() V21() V25() ) set ) ) ^2) : ( ( ) ( V14() real ext-real ) Element of REAL : ( ( ) ( V19() V20() V21() V25() ) set ) ) + (2 : ( ( ) ( non empty natural V14() real ext-real positive non negative V19() V20() V21() V22() V23() V24() ) Element of NAT : ( ( ) ( V19() V20() V21() V22() V23() V24() V25() ) Element of K10(REAL : ( ( ) ( V19() V20() V21() V25() ) set ) ) : ( ( ) ( non empty ) set ) ) ) * (x : ( ( ) ( ) VECTOR of ( ( ) ( non empty ) set ) ) .|. y : ( ( ) ( ) VECTOR of ( ( ) ( non empty ) set ) ) ) : ( ( ) ( V14() real ext-real ) Element of REAL : ( ( ) ( V19() V20() V21() V25() ) set ) ) ) : ( ( ) ( V14() real ext-real ) Element of REAL : ( ( ) ( V19() V20() V21() V25() ) set ) ) ) : ( ( ) ( V14() real ext-real ) Element of REAL : ( ( ) ( V19() V20() V21() V25() ) set ) ) + (||.y : ( ( ) ( ) VECTOR of ( ( ) ( non empty ) set ) ) .|| : ( ( ) ( V14() real ext-real ) Element of REAL : ( ( ) ( V19() V20() V21() V25() ) set ) ) ^2) : ( ( ) ( V14() real ext-real ) Element of REAL : ( ( ) ( V19() V20() V21() V25() ) set ) ) : ( ( ) ( V14() real ext-real ) Element of REAL : ( ( ) ( V19() V20() V21() V25() ) set ) ) & ||.(x : ( ( ) ( ) VECTOR of ( ( ) ( non empty ) set ) ) - y : ( ( ) ( ) VECTOR of ( ( ) ( non empty ) set ) ) ) : ( ( ) ( ) Element of the carrier of b1 : ( ( non empty right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital RealUnitarySpace-like ) ( non empty left_complementable right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital V125() RealUnitarySpace-like ) RealUnitarySpace) : ( ( ) ( non empty ) set ) ) .|| : ( ( ) ( V14() real ext-real ) Element of REAL : ( ( ) ( V19() V20() V21() V25() ) set ) ) ^2 : ( ( ) ( V14() real ext-real ) Element of REAL : ( ( ) ( V19() V20() V21() V25() ) set ) ) = ((||.x : ( ( ) ( ) VECTOR of ( ( ) ( non empty ) set ) ) .|| : ( ( ) ( V14() real ext-real ) Element of REAL : ( ( ) ( V19() V20() V21() V25() ) set ) ) ^2) : ( ( ) ( V14() real ext-real ) Element of REAL : ( ( ) ( V19() V20() V21() V25() ) set ) ) - (2 : ( ( ) ( non empty natural V14() real ext-real positive non negative V19() V20() V21() V22() V23() V24() ) Element of NAT : ( ( ) ( V19() V20() V21() V22() V23() V24() V25() ) Element of K10(REAL : ( ( ) ( V19() V20() V21() V25() ) set ) ) : ( ( ) ( non empty ) set ) ) ) * (x : ( ( ) ( ) VECTOR of ( ( ) ( non empty ) set ) ) .|. y : ( ( ) ( ) VECTOR of ( ( ) ( non empty ) set ) ) ) : ( ( ) ( V14() real ext-real ) Element of REAL : ( ( ) ( V19() V20() V21() V25() ) set ) ) ) : ( ( ) ( V14() real ext-real ) Element of REAL : ( ( ) ( V19() V20() V21() V25() ) set ) ) ) : ( ( ) ( V14() real ext-real ) Element of REAL : ( ( ) ( V19() V20() V21() V25() ) set ) ) + (||.y : ( ( ) ( ) VECTOR of ( ( ) ( non empty ) set ) ) .|| : ( ( ) ( V14() real ext-real ) Element of REAL : ( ( ) ( V19() V20() V21() V25() ) set ) ) ^2) : ( ( ) ( V14() real ext-real ) Element of REAL : ( ( ) ( V19() V20() V21() V25() ) set ) ) : ( ( ) ( V14() real ext-real ) Element of REAL : ( ( ) ( V19() V20() V21() V25() ) set ) ) ) ;

theorem :: RUSUB_5:30
for V being ( ( non empty right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital RealUnitarySpace-like ) ( non empty left_complementable right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital V125() RealUnitarySpace-like ) RealUnitarySpace)
for x, y being ( ( ) ( ) VECTOR of ( ( ) ( non empty ) set ) ) st x : ( ( ) ( ) VECTOR of ( ( ) ( non empty ) set ) ) ,y : ( ( ) ( ) VECTOR of ( ( ) ( non empty ) set ) ) are_orthogonal holds
||.(x : ( ( ) ( ) VECTOR of ( ( ) ( non empty ) set ) ) + y : ( ( ) ( ) VECTOR of ( ( ) ( non empty ) set ) ) ) : ( ( ) ( ) Element of the carrier of b1 : ( ( non empty right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital RealUnitarySpace-like ) ( non empty left_complementable right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital V125() RealUnitarySpace-like ) RealUnitarySpace) : ( ( ) ( non empty ) set ) ) .|| : ( ( ) ( V14() real ext-real ) Element of REAL : ( ( ) ( V19() V20() V21() V25() ) set ) ) ^2 : ( ( ) ( V14() real ext-real ) Element of REAL : ( ( ) ( V19() V20() V21() V25() ) set ) ) = (||.x : ( ( ) ( ) VECTOR of ( ( ) ( non empty ) set ) ) .|| : ( ( ) ( V14() real ext-real ) Element of REAL : ( ( ) ( V19() V20() V21() V25() ) set ) ) ^2) : ( ( ) ( V14() real ext-real ) Element of REAL : ( ( ) ( V19() V20() V21() V25() ) set ) ) + (||.y : ( ( ) ( ) VECTOR of ( ( ) ( non empty ) set ) ) .|| : ( ( ) ( V14() real ext-real ) Element of REAL : ( ( ) ( V19() V20() V21() V25() ) set ) ) ^2) : ( ( ) ( V14() real ext-real ) Element of REAL : ( ( ) ( V19() V20() V21() V25() ) set ) ) : ( ( ) ( V14() real ext-real ) Element of REAL : ( ( ) ( V19() V20() V21() V25() ) set ) ) ;

theorem :: RUSUB_5:31
for V being ( ( non empty right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital RealUnitarySpace-like ) ( non empty left_complementable right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital V125() RealUnitarySpace-like ) RealUnitarySpace)
for x, y being ( ( ) ( ) VECTOR of ( ( ) ( non empty ) set ) ) holds (||.(x : ( ( ) ( ) VECTOR of ( ( ) ( non empty ) set ) ) + y : ( ( ) ( ) VECTOR of ( ( ) ( non empty ) set ) ) ) : ( ( ) ( ) Element of the carrier of b1 : ( ( non empty right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital RealUnitarySpace-like ) ( non empty left_complementable right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital V125() RealUnitarySpace-like ) RealUnitarySpace) : ( ( ) ( non empty ) set ) ) .|| : ( ( ) ( V14() real ext-real ) Element of REAL : ( ( ) ( V19() V20() V21() V25() ) set ) ) ^2) : ( ( ) ( V14() real ext-real ) Element of REAL : ( ( ) ( V19() V20() V21() V25() ) set ) ) + (||.(x : ( ( ) ( ) VECTOR of ( ( ) ( non empty ) set ) ) - y : ( ( ) ( ) VECTOR of ( ( ) ( non empty ) set ) ) ) : ( ( ) ( ) Element of the carrier of b1 : ( ( non empty right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital RealUnitarySpace-like ) ( non empty left_complementable right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital V125() RealUnitarySpace-like ) RealUnitarySpace) : ( ( ) ( non empty ) set ) ) .|| : ( ( ) ( V14() real ext-real ) Element of REAL : ( ( ) ( V19() V20() V21() V25() ) set ) ) ^2) : ( ( ) ( V14() real ext-real ) Element of REAL : ( ( ) ( V19() V20() V21() V25() ) set ) ) : ( ( ) ( V14() real ext-real ) Element of REAL : ( ( ) ( V19() V20() V21() V25() ) set ) ) = (2 : ( ( ) ( non empty natural V14() real ext-real positive non negative V19() V20() V21() V22() V23() V24() ) Element of NAT : ( ( ) ( V19() V20() V21() V22() V23() V24() V25() ) Element of K10(REAL : ( ( ) ( V19() V20() V21() V25() ) set ) ) : ( ( ) ( non empty ) set ) ) ) * (||.x : ( ( ) ( ) VECTOR of ( ( ) ( non empty ) set ) ) .|| : ( ( ) ( V14() real ext-real ) Element of REAL : ( ( ) ( V19() V20() V21() V25() ) set ) ) ^2) : ( ( ) ( V14() real ext-real ) Element of REAL : ( ( ) ( V19() V20() V21() V25() ) set ) ) ) : ( ( ) ( V14() real ext-real ) Element of REAL : ( ( ) ( V19() V20() V21() V25() ) set ) ) + (2 : ( ( ) ( non empty natural V14() real ext-real positive non negative V19() V20() V21() V22() V23() V24() ) Element of NAT : ( ( ) ( V19() V20() V21() V22() V23() V24() V25() ) Element of K10(REAL : ( ( ) ( V19() V20() V21() V25() ) set ) ) : ( ( ) ( non empty ) set ) ) ) * (||.y : ( ( ) ( ) VECTOR of ( ( ) ( non empty ) set ) ) .|| : ( ( ) ( V14() real ext-real ) Element of REAL : ( ( ) ( V19() V20() V21() V25() ) set ) ) ^2) : ( ( ) ( V14() real ext-real ) Element of REAL : ( ( ) ( V19() V20() V21() V25() ) set ) ) ) : ( ( ) ( V14() real ext-real ) Element of REAL : ( ( ) ( V19() V20() V21() V25() ) set ) ) : ( ( ) ( V14() real ext-real ) Element of REAL : ( ( ) ( V19() V20() V21() V25() ) set ) ) ;

theorem :: RUSUB_5:32
for V being ( ( non empty right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital RealUnitarySpace-like ) ( non empty left_complementable right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital V125() RealUnitarySpace-like ) RealUnitarySpace)
for v being ( ( ) ( ) VECTOR of ( ( ) ( non empty ) set ) ) ex W being ( ( ) ( non empty left_complementable right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital V125() RealUnitarySpace-like ) Subspace of V : ( ( non empty right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital RealUnitarySpace-like ) ( non empty left_complementable right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital V125() RealUnitarySpace-like ) RealUnitarySpace) ) st the carrier of W : ( ( ) ( non empty left_complementable right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital V125() RealUnitarySpace-like ) Subspace of b1 : ( ( non empty right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital RealUnitarySpace-like ) ( non empty left_complementable right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital V125() RealUnitarySpace-like ) RealUnitarySpace) ) : ( ( ) ( non empty ) set ) = { u : ( ( ) ( ) VECTOR of ( ( ) ( non empty ) set ) ) where u is ( ( ) ( ) VECTOR of ( ( ) ( non empty ) set ) ) : u : ( ( ) ( ) VECTOR of ( ( ) ( non empty ) set ) ) .|. v : ( ( ) ( ) VECTOR of ( ( ) ( non empty ) set ) ) : ( ( ) ( V14() real ext-real ) Element of REAL : ( ( ) ( V19() V20() V21() V25() ) set ) ) = 0 : ( ( ) ( empty natural V14() real ext-real non positive non negative V19() V20() V21() V22() V23() V24() V25() ) Element of NAT : ( ( ) ( V19() V20() V21() V22() V23() V24() V25() ) Element of K10(REAL : ( ( ) ( V19() V20() V21() V25() ) set ) ) : ( ( ) ( non empty ) set ) ) ) } ;

begin

definition
let V be ( ( non empty right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital RealUnitarySpace-like ) ( non empty left_complementable right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital V125() RealUnitarySpace-like ) RealUnitarySpace) ;
func Family_open_set V -> ( ( ) ( ) Subset-Family of ) means :: RUSUB_5:def 5
for M being ( ( ) ( ) Subset of ) holds
( M : ( ( ) ( ) Subset of ) in it : ( ( ) ( ) Element of V : ( ( ) ( ) UNITSTR ) ) iff for x being ( ( ) ( ) Point of ( ( ) ( ) set ) ) st x : ( ( ) ( ) Point of ( ( ) ( non empty ) set ) ) in M : ( ( ) ( ) Subset of ) holds
ex r being ( ( ) ( V14() real ext-real ) Real) st
( r : ( ( ) ( V14() real ext-real ) Real) > 0 : ( ( ) ( empty natural V14() real ext-real non positive non negative V19() V20() V21() V22() V23() V24() V25() ) Element of NAT : ( ( ) ( V19() V20() V21() V22() V23() V24() V25() ) Element of K10(REAL : ( ( ) ( V19() V20() V21() V25() ) set ) ) : ( ( ) ( non empty ) set ) ) ) & Ball (x : ( ( ) ( ) Point of ( ( ) ( non empty ) set ) ) ,r : ( ( ) ( V14() real ext-real ) Real) ) : ( ( ) ( ) Element of K10( the carrier of V : ( ( ) ( ) UNITSTR ) : ( ( ) ( ) set ) ) : ( ( ) ( non empty ) set ) ) c= M : ( ( ) ( ) Subset of ) ) );
end;

theorem :: RUSUB_5:33
for V being ( ( non empty right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital RealUnitarySpace-like ) ( non empty left_complementable right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital V125() RealUnitarySpace-like ) RealUnitarySpace)
for v being ( ( ) ( ) Point of ( ( ) ( non empty ) set ) )
for r, p being ( ( ) ( V14() real ext-real ) Real) st r : ( ( ) ( V14() real ext-real ) Real) <= p : ( ( ) ( V14() real ext-real ) Real) holds
Ball (v : ( ( ) ( ) Point of ( ( ) ( non empty ) set ) ) ,r : ( ( ) ( V14() real ext-real ) Real) ) : ( ( ) ( ) Element of K10( the carrier of b1 : ( ( non empty right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital RealUnitarySpace-like ) ( non empty left_complementable right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital V125() RealUnitarySpace-like ) RealUnitarySpace) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty ) set ) ) c= Ball (v : ( ( ) ( ) Point of ( ( ) ( non empty ) set ) ) ,p : ( ( ) ( V14() real ext-real ) Real) ) : ( ( ) ( ) Element of K10( the carrier of b1 : ( ( non empty right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital RealUnitarySpace-like ) ( non empty left_complementable right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital V125() RealUnitarySpace-like ) RealUnitarySpace) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty ) set ) ) ;

theorem :: RUSUB_5:34
for V being ( ( non empty right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital RealUnitarySpace-like ) ( non empty left_complementable right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital V125() RealUnitarySpace-like ) RealUnitarySpace)
for v being ( ( ) ( ) Point of ( ( ) ( non empty ) set ) ) ex r being ( ( ) ( V14() real ext-real ) Real) st
( r : ( ( ) ( V14() real ext-real ) Real) > 0 : ( ( ) ( empty natural V14() real ext-real non positive non negative V19() V20() V21() V22() V23() V24() V25() ) Element of NAT : ( ( ) ( V19() V20() V21() V22() V23() V24() V25() ) Element of K10(REAL : ( ( ) ( V19() V20() V21() V25() ) set ) ) : ( ( ) ( non empty ) set ) ) ) & Ball (v : ( ( ) ( ) Point of ( ( ) ( non empty ) set ) ) ,r : ( ( ) ( V14() real ext-real ) Real) ) : ( ( ) ( ) Element of K10( the carrier of b1 : ( ( non empty right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital RealUnitarySpace-like ) ( non empty left_complementable right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital V125() RealUnitarySpace-like ) RealUnitarySpace) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty ) set ) ) c= the carrier of V : ( ( non empty right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital RealUnitarySpace-like ) ( non empty left_complementable right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital V125() RealUnitarySpace-like ) RealUnitarySpace) : ( ( ) ( non empty ) set ) ) ;

theorem :: RUSUB_5:35
for V being ( ( non empty right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital RealUnitarySpace-like ) ( non empty left_complementable right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital V125() RealUnitarySpace-like ) RealUnitarySpace)
for v, u being ( ( ) ( ) Point of ( ( ) ( non empty ) set ) )
for r being ( ( ) ( V14() real ext-real ) Real) st u : ( ( ) ( ) Point of ( ( ) ( non empty ) set ) ) in Ball (v : ( ( ) ( ) Point of ( ( ) ( non empty ) set ) ) ,r : ( ( ) ( V14() real ext-real ) Real) ) : ( ( ) ( ) Element of K10( the carrier of b1 : ( ( non empty right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital RealUnitarySpace-like ) ( non empty left_complementable right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital V125() RealUnitarySpace-like ) RealUnitarySpace) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty ) set ) ) holds
ex p being ( ( ) ( V14() real ext-real ) Real) st
( p : ( ( ) ( V14() real ext-real ) Real) > 0 : ( ( ) ( empty natural V14() real ext-real non positive non negative V19() V20() V21() V22() V23() V24() V25() ) Element of NAT : ( ( ) ( V19() V20() V21() V22() V23() V24() V25() ) Element of K10(REAL : ( ( ) ( V19() V20() V21() V25() ) set ) ) : ( ( ) ( non empty ) set ) ) ) & Ball (u : ( ( ) ( ) Point of ( ( ) ( non empty ) set ) ) ,p : ( ( ) ( V14() real ext-real ) Real) ) : ( ( ) ( ) Element of K10( the carrier of b1 : ( ( non empty right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital RealUnitarySpace-like ) ( non empty left_complementable right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital V125() RealUnitarySpace-like ) RealUnitarySpace) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty ) set ) ) c= Ball (v : ( ( ) ( ) Point of ( ( ) ( non empty ) set ) ) ,r : ( ( ) ( V14() real ext-real ) Real) ) : ( ( ) ( ) Element of K10( the carrier of b1 : ( ( non empty right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital RealUnitarySpace-like ) ( non empty left_complementable right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital V125() RealUnitarySpace-like ) RealUnitarySpace) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty ) set ) ) ) ;

theorem :: RUSUB_5:36
for V being ( ( non empty right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital RealUnitarySpace-like ) ( non empty left_complementable right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital V125() RealUnitarySpace-like ) RealUnitarySpace)
for u, v, w being ( ( ) ( ) Point of ( ( ) ( non empty ) set ) )
for r, p being ( ( ) ( V14() real ext-real ) Real) st v : ( ( ) ( ) Point of ( ( ) ( non empty ) set ) ) in (Ball (u : ( ( ) ( ) Point of ( ( ) ( non empty ) set ) ) ,r : ( ( ) ( V14() real ext-real ) Real) )) : ( ( ) ( ) Element of K10( the carrier of b1 : ( ( non empty right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital RealUnitarySpace-like ) ( non empty left_complementable right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital V125() RealUnitarySpace-like ) RealUnitarySpace) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty ) set ) ) /\ (Ball (w : ( ( ) ( ) Point of ( ( ) ( non empty ) set ) ) ,p : ( ( ) ( V14() real ext-real ) Real) )) : ( ( ) ( ) Element of K10( the carrier of b1 : ( ( non empty right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital RealUnitarySpace-like ) ( non empty left_complementable right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital V125() RealUnitarySpace-like ) RealUnitarySpace) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( ) Element of K10( the carrier of b1 : ( ( non empty right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital RealUnitarySpace-like ) ( non empty left_complementable right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital V125() RealUnitarySpace-like ) RealUnitarySpace) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty ) set ) ) holds
ex q being ( ( ) ( V14() real ext-real ) Real) st
( Ball (v : ( ( ) ( ) Point of ( ( ) ( non empty ) set ) ) ,q : ( ( ) ( V14() real ext-real ) Real) ) : ( ( ) ( ) Element of K10( the carrier of b1 : ( ( non empty right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital RealUnitarySpace-like ) ( non empty left_complementable right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital V125() RealUnitarySpace-like ) RealUnitarySpace) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty ) set ) ) c= Ball (u : ( ( ) ( ) Point of ( ( ) ( non empty ) set ) ) ,r : ( ( ) ( V14() real ext-real ) Real) ) : ( ( ) ( ) Element of K10( the carrier of b1 : ( ( non empty right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital RealUnitarySpace-like ) ( non empty left_complementable right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital V125() RealUnitarySpace-like ) RealUnitarySpace) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty ) set ) ) & Ball (v : ( ( ) ( ) Point of ( ( ) ( non empty ) set ) ) ,q : ( ( ) ( V14() real ext-real ) Real) ) : ( ( ) ( ) Element of K10( the carrier of b1 : ( ( non empty right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital RealUnitarySpace-like ) ( non empty left_complementable right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital V125() RealUnitarySpace-like ) RealUnitarySpace) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty ) set ) ) c= Ball (w : ( ( ) ( ) Point of ( ( ) ( non empty ) set ) ) ,p : ( ( ) ( V14() real ext-real ) Real) ) : ( ( ) ( ) Element of K10( the carrier of b1 : ( ( non empty right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital RealUnitarySpace-like ) ( non empty left_complementable right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital V125() RealUnitarySpace-like ) RealUnitarySpace) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty ) set ) ) ) ;

theorem :: RUSUB_5:37
for V being ( ( non empty right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital RealUnitarySpace-like ) ( non empty left_complementable right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital V125() RealUnitarySpace-like ) RealUnitarySpace)
for v being ( ( ) ( ) Point of ( ( ) ( non empty ) set ) )
for r being ( ( ) ( V14() real ext-real ) Real) holds Ball (v : ( ( ) ( ) Point of ( ( ) ( non empty ) set ) ) ,r : ( ( ) ( V14() real ext-real ) Real) ) : ( ( ) ( ) Element of K10( the carrier of b1 : ( ( non empty right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital RealUnitarySpace-like ) ( non empty left_complementable right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital V125() RealUnitarySpace-like ) RealUnitarySpace) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty ) set ) ) in Family_open_set V : ( ( non empty right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital RealUnitarySpace-like ) ( non empty left_complementable right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital V125() RealUnitarySpace-like ) RealUnitarySpace) : ( ( ) ( ) Subset-Family of ) ;

theorem :: RUSUB_5:38
for V being ( ( non empty right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital RealUnitarySpace-like ) ( non empty left_complementable right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital V125() RealUnitarySpace-like ) RealUnitarySpace) holds the carrier of V : ( ( non empty right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital RealUnitarySpace-like ) ( non empty left_complementable right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital V125() RealUnitarySpace-like ) RealUnitarySpace) : ( ( ) ( non empty ) set ) in Family_open_set V : ( ( non empty right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital RealUnitarySpace-like ) ( non empty left_complementable right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital V125() RealUnitarySpace-like ) RealUnitarySpace) : ( ( ) ( ) Subset-Family of ) ;

theorem :: RUSUB_5:39
for V being ( ( non empty right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital RealUnitarySpace-like ) ( non empty left_complementable right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital V125() RealUnitarySpace-like ) RealUnitarySpace)
for M, N being ( ( ) ( ) Subset of ) st M : ( ( ) ( ) Subset of ) in Family_open_set V : ( ( non empty right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital RealUnitarySpace-like ) ( non empty left_complementable right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital V125() RealUnitarySpace-like ) RealUnitarySpace) : ( ( ) ( ) Subset-Family of ) & N : ( ( ) ( ) Subset of ) in Family_open_set V : ( ( non empty right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital RealUnitarySpace-like ) ( non empty left_complementable right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital V125() RealUnitarySpace-like ) RealUnitarySpace) : ( ( ) ( ) Subset-Family of ) holds
M : ( ( ) ( ) Subset of ) /\ N : ( ( ) ( ) Subset of ) : ( ( ) ( ) Element of K10( the carrier of b1 : ( ( non empty right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital RealUnitarySpace-like ) ( non empty left_complementable right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital V125() RealUnitarySpace-like ) RealUnitarySpace) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty ) set ) ) in Family_open_set V : ( ( non empty right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital RealUnitarySpace-like ) ( non empty left_complementable right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital V125() RealUnitarySpace-like ) RealUnitarySpace) : ( ( ) ( ) Subset-Family of ) ;

theorem :: RUSUB_5:40
for V being ( ( non empty right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital RealUnitarySpace-like ) ( non empty left_complementable right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital V125() RealUnitarySpace-like ) RealUnitarySpace)
for A being ( ( ) ( ) Subset-Family of ) st A : ( ( ) ( ) Subset-Family of ) c= Family_open_set V : ( ( non empty right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital RealUnitarySpace-like ) ( non empty left_complementable right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital V125() RealUnitarySpace-like ) RealUnitarySpace) : ( ( ) ( ) Subset-Family of ) holds
union A : ( ( ) ( ) Subset-Family of ) : ( ( ) ( ) Element of K10( the carrier of b1 : ( ( non empty right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital RealUnitarySpace-like ) ( non empty left_complementable right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital V125() RealUnitarySpace-like ) RealUnitarySpace) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty ) set ) ) in Family_open_set V : ( ( non empty right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital RealUnitarySpace-like ) ( non empty left_complementable right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital V125() RealUnitarySpace-like ) RealUnitarySpace) : ( ( ) ( ) Subset-Family of ) ;

theorem :: RUSUB_5:41
for V being ( ( non empty right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital RealUnitarySpace-like ) ( non empty left_complementable right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital V125() RealUnitarySpace-like ) RealUnitarySpace) holds TopStruct(# the carrier of V : ( ( non empty right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital RealUnitarySpace-like ) ( non empty left_complementable right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital V125() RealUnitarySpace-like ) RealUnitarySpace) : ( ( ) ( non empty ) set ) ,(Family_open_set V : ( ( non empty right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital RealUnitarySpace-like ) ( non empty left_complementable right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital V125() RealUnitarySpace-like ) RealUnitarySpace) ) : ( ( ) ( ) Subset-Family of ) #) : ( ( strict ) ( non empty strict ) TopStruct ) is ( ( TopSpace-like ) ( TopSpace-like ) TopSpace) ;

definition
let V be ( ( non empty right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital RealUnitarySpace-like ) ( non empty left_complementable right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital V125() RealUnitarySpace-like ) RealUnitarySpace) ;
func TopUnitSpace V -> ( ( ) ( ) TopStruct ) equals :: RUSUB_5:def 6
TopStruct(# the carrier of V : ( ( ) ( ) UNITSTR ) : ( ( ) ( ) set ) ,(Family_open_set V : ( ( ) ( ) UNITSTR ) ) : ( ( ) ( ) Subset-Family of ) #) : ( ( strict ) ( strict ) TopStruct ) ;
end;

registration
let V be ( ( non empty right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital RealUnitarySpace-like ) ( non empty left_complementable right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital V125() RealUnitarySpace-like ) RealUnitarySpace) ;
cluster TopUnitSpace V : ( ( non empty right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital RealUnitarySpace-like ) ( non empty left_complementable right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital V125() RealUnitarySpace-like ) UNITSTR ) : ( ( ) ( ) TopStruct ) -> TopSpace-like ;
end;

registration
let V be ( ( non empty right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital RealUnitarySpace-like ) ( non empty left_complementable right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital V125() RealUnitarySpace-like ) RealUnitarySpace) ;
cluster TopUnitSpace V : ( ( non empty right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital RealUnitarySpace-like ) ( non empty left_complementable right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital V125() RealUnitarySpace-like ) UNITSTR ) : ( ( ) ( TopSpace-like ) TopStruct ) -> non empty ;
end;

theorem :: RUSUB_5:42
for V being ( ( non empty right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital RealUnitarySpace-like ) ( non empty left_complementable right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital V125() RealUnitarySpace-like ) RealUnitarySpace)
for M being ( ( ) ( ) Subset of ) st M : ( ( ) ( ) Subset of ) = [#] V : ( ( non empty right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital RealUnitarySpace-like ) ( non empty left_complementable right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital V125() RealUnitarySpace-like ) RealUnitarySpace) : ( ( ) ( non empty non proper ) Element of K10( the carrier of b1 : ( ( non empty right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital RealUnitarySpace-like ) ( non empty left_complementable right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital V125() RealUnitarySpace-like ) RealUnitarySpace) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty ) set ) ) holds
( M : ( ( ) ( ) Subset of ) is open & M : ( ( ) ( ) Subset of ) is closed ) ;

theorem :: RUSUB_5:43
for V being ( ( non empty right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital RealUnitarySpace-like ) ( non empty left_complementable right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital V125() RealUnitarySpace-like ) RealUnitarySpace)
for M being ( ( ) ( ) Subset of ) st M : ( ( ) ( ) Subset of ) = {} V : ( ( non empty right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital RealUnitarySpace-like ) ( non empty left_complementable right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital V125() RealUnitarySpace-like ) RealUnitarySpace) : ( ( ) ( empty proper V19() V20() V21() V22() V23() V24() V25() ) Element of K10( the carrier of b1 : ( ( non empty right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital RealUnitarySpace-like ) ( non empty left_complementable right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital V125() RealUnitarySpace-like ) RealUnitarySpace) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty ) set ) ) holds
( M : ( ( ) ( ) Subset of ) is open & M : ( ( ) ( ) Subset of ) is closed ) ;

theorem :: RUSUB_5:44
for V being ( ( non empty right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital RealUnitarySpace-like ) ( non empty left_complementable right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital V125() RealUnitarySpace-like ) RealUnitarySpace)
for v being ( ( ) ( ) VECTOR of ( ( ) ( non empty ) set ) )
for r being ( ( ) ( V14() real ext-real ) Real) st the carrier of V : ( ( non empty right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital RealUnitarySpace-like ) ( non empty left_complementable right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital V125() RealUnitarySpace-like ) RealUnitarySpace) : ( ( ) ( non empty ) set ) = {(0. V : ( ( non empty right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital RealUnitarySpace-like ) ( non empty left_complementable right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital V125() RealUnitarySpace-like ) RealUnitarySpace) ) : ( ( ) ( V59(b1 : ( ( non empty right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital RealUnitarySpace-like ) ( non empty left_complementable right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital V125() RealUnitarySpace-like ) RealUnitarySpace) ) ) Element of the carrier of b1 : ( ( non empty right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital RealUnitarySpace-like ) ( non empty left_complementable right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital V125() RealUnitarySpace-like ) RealUnitarySpace) : ( ( ) ( non empty ) set ) ) } : ( ( ) ( non empty ) Element of K10( the carrier of b1 : ( ( non empty right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital RealUnitarySpace-like ) ( non empty left_complementable right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital V125() RealUnitarySpace-like ) RealUnitarySpace) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty ) set ) ) & r : ( ( ) ( V14() real ext-real ) Real) <> 0 : ( ( ) ( empty natural V14() real ext-real non positive non negative V19() V20() V21() V22() V23() V24() V25() ) Element of NAT : ( ( ) ( V19() V20() V21() V22() V23() V24() V25() ) Element of K10(REAL : ( ( ) ( V19() V20() V21() V25() ) set ) ) : ( ( ) ( non empty ) set ) ) ) holds
Sphere (v : ( ( ) ( ) VECTOR of ( ( ) ( non empty ) set ) ) ,r : ( ( ) ( V14() real ext-real ) Real) ) : ( ( ) ( ) Element of K10( the carrier of b1 : ( ( non empty right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital RealUnitarySpace-like ) ( non empty left_complementable right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital V125() RealUnitarySpace-like ) RealUnitarySpace) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty ) set ) ) is empty ;

theorem :: RUSUB_5:45
for V being ( ( non empty right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital RealUnitarySpace-like ) ( non empty left_complementable right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital V125() RealUnitarySpace-like ) RealUnitarySpace)
for v being ( ( ) ( ) VECTOR of ( ( ) ( non empty ) set ) )
for r being ( ( ) ( V14() real ext-real ) Real) st the carrier of V : ( ( non empty right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital RealUnitarySpace-like ) ( non empty left_complementable right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital V125() RealUnitarySpace-like ) RealUnitarySpace) : ( ( ) ( non empty ) set ) <> {(0. V : ( ( non empty right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital RealUnitarySpace-like ) ( non empty left_complementable right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital V125() RealUnitarySpace-like ) RealUnitarySpace) ) : ( ( ) ( V59(b1 : ( ( non empty right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital RealUnitarySpace-like ) ( non empty left_complementable right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital V125() RealUnitarySpace-like ) RealUnitarySpace) ) ) Element of the carrier of b1 : ( ( non empty right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital RealUnitarySpace-like ) ( non empty left_complementable right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital V125() RealUnitarySpace-like ) RealUnitarySpace) : ( ( ) ( non empty ) set ) ) } : ( ( ) ( non empty ) Element of K10( the carrier of b1 : ( ( non empty right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital RealUnitarySpace-like ) ( non empty left_complementable right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital V125() RealUnitarySpace-like ) RealUnitarySpace) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty ) set ) ) & r : ( ( ) ( V14() real ext-real ) Real) > 0 : ( ( ) ( empty natural V14() real ext-real non positive non negative V19() V20() V21() V22() V23() V24() V25() ) Element of NAT : ( ( ) ( V19() V20() V21() V22() V23() V24() V25() ) Element of K10(REAL : ( ( ) ( V19() V20() V21() V25() ) set ) ) : ( ( ) ( non empty ) set ) ) ) holds
not Sphere (v : ( ( ) ( ) VECTOR of ( ( ) ( non empty ) set ) ) ,r : ( ( ) ( V14() real ext-real ) Real) ) : ( ( ) ( ) Element of K10( the carrier of b1 : ( ( non empty right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital RealUnitarySpace-like ) ( non empty left_complementable right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital V125() RealUnitarySpace-like ) RealUnitarySpace) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty ) set ) ) is empty ;

theorem :: RUSUB_5:46
for V being ( ( non empty right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital RealUnitarySpace-like ) ( non empty left_complementable right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital V125() RealUnitarySpace-like ) RealUnitarySpace)
for v being ( ( ) ( ) VECTOR of ( ( ) ( non empty ) set ) )
for r being ( ( ) ( V14() real ext-real ) Real) st r : ( ( ) ( V14() real ext-real ) Real) = 0 : ( ( ) ( empty natural V14() real ext-real non positive non negative V19() V20() V21() V22() V23() V24() V25() ) Element of NAT : ( ( ) ( V19() V20() V21() V22() V23() V24() V25() ) Element of K10(REAL : ( ( ) ( V19() V20() V21() V25() ) set ) ) : ( ( ) ( non empty ) set ) ) ) holds
Ball (v : ( ( ) ( ) VECTOR of ( ( ) ( non empty ) set ) ) ,r : ( ( ) ( V14() real ext-real ) Real) ) : ( ( ) ( ) Element of K10( the carrier of b1 : ( ( non empty right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital RealUnitarySpace-like ) ( non empty left_complementable right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital V125() RealUnitarySpace-like ) RealUnitarySpace) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty ) set ) ) is empty ;

theorem :: RUSUB_5:47
for V being ( ( non empty right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital RealUnitarySpace-like ) ( non empty left_complementable right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital V125() RealUnitarySpace-like ) RealUnitarySpace)
for v being ( ( ) ( ) VECTOR of ( ( ) ( non empty ) set ) )
for r being ( ( ) ( V14() real ext-real ) Real) st the carrier of V : ( ( non empty right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital RealUnitarySpace-like ) ( non empty left_complementable right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital V125() RealUnitarySpace-like ) RealUnitarySpace) : ( ( ) ( non empty ) set ) = {(0. V : ( ( non empty right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital RealUnitarySpace-like ) ( non empty left_complementable right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital V125() RealUnitarySpace-like ) RealUnitarySpace) ) : ( ( ) ( V59(b1 : ( ( non empty right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital RealUnitarySpace-like ) ( non empty left_complementable right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital V125() RealUnitarySpace-like ) RealUnitarySpace) ) ) Element of the carrier of b1 : ( ( non empty right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital RealUnitarySpace-like ) ( non empty left_complementable right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital V125() RealUnitarySpace-like ) RealUnitarySpace) : ( ( ) ( non empty ) set ) ) } : ( ( ) ( non empty ) Element of K10( the carrier of b1 : ( ( non empty right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital RealUnitarySpace-like ) ( non empty left_complementable right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital V125() RealUnitarySpace-like ) RealUnitarySpace) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty ) set ) ) & r : ( ( ) ( V14() real ext-real ) Real) > 0 : ( ( ) ( empty natural V14() real ext-real non positive non negative V19() V20() V21() V22() V23() V24() V25() ) Element of NAT : ( ( ) ( V19() V20() V21() V22() V23() V24() V25() ) Element of K10(REAL : ( ( ) ( V19() V20() V21() V25() ) set ) ) : ( ( ) ( non empty ) set ) ) ) holds
Ball (v : ( ( ) ( ) VECTOR of ( ( ) ( non empty ) set ) ) ,r : ( ( ) ( V14() real ext-real ) Real) ) : ( ( ) ( ) Element of K10( the carrier of b1 : ( ( non empty right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital RealUnitarySpace-like ) ( non empty left_complementable right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital V125() RealUnitarySpace-like ) RealUnitarySpace) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty ) set ) ) = {(0. V : ( ( non empty right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital RealUnitarySpace-like ) ( non empty left_complementable right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital V125() RealUnitarySpace-like ) RealUnitarySpace) ) : ( ( ) ( V59(b1 : ( ( non empty right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital RealUnitarySpace-like ) ( non empty left_complementable right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital V125() RealUnitarySpace-like ) RealUnitarySpace) ) ) Element of the carrier of b1 : ( ( non empty right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital RealUnitarySpace-like ) ( non empty left_complementable right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital V125() RealUnitarySpace-like ) RealUnitarySpace) : ( ( ) ( non empty ) set ) ) } : ( ( ) ( non empty ) Element of K10( the carrier of b1 : ( ( non empty right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital RealUnitarySpace-like ) ( non empty left_complementable right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital V125() RealUnitarySpace-like ) RealUnitarySpace) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty ) set ) ) ;

theorem :: RUSUB_5:48
for V being ( ( non empty right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital RealUnitarySpace-like ) ( non empty left_complementable right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital V125() RealUnitarySpace-like ) RealUnitarySpace)
for v being ( ( ) ( ) VECTOR of ( ( ) ( non empty ) set ) )
for r being ( ( ) ( V14() real ext-real ) Real) st the carrier of V : ( ( non empty right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital RealUnitarySpace-like ) ( non empty left_complementable right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital V125() RealUnitarySpace-like ) RealUnitarySpace) : ( ( ) ( non empty ) set ) <> {(0. V : ( ( non empty right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital RealUnitarySpace-like ) ( non empty left_complementable right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital V125() RealUnitarySpace-like ) RealUnitarySpace) ) : ( ( ) ( V59(b1 : ( ( non empty right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital RealUnitarySpace-like ) ( non empty left_complementable right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital V125() RealUnitarySpace-like ) RealUnitarySpace) ) ) Element of the carrier of b1 : ( ( non empty right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital RealUnitarySpace-like ) ( non empty left_complementable right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital V125() RealUnitarySpace-like ) RealUnitarySpace) : ( ( ) ( non empty ) set ) ) } : ( ( ) ( non empty ) Element of K10( the carrier of b1 : ( ( non empty right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital RealUnitarySpace-like ) ( non empty left_complementable right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital V125() RealUnitarySpace-like ) RealUnitarySpace) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty ) set ) ) & r : ( ( ) ( V14() real ext-real ) Real) > 0 : ( ( ) ( empty natural V14() real ext-real non positive non negative V19() V20() V21() V22() V23() V24() V25() ) Element of NAT : ( ( ) ( V19() V20() V21() V22() V23() V24() V25() ) Element of K10(REAL : ( ( ) ( V19() V20() V21() V25() ) set ) ) : ( ( ) ( non empty ) set ) ) ) holds
ex w being ( ( ) ( ) VECTOR of ( ( ) ( non empty ) set ) ) st
( w : ( ( ) ( ) VECTOR of ( ( ) ( non empty ) set ) ) <> v : ( ( ) ( ) VECTOR of ( ( ) ( non empty ) set ) ) & w : ( ( ) ( ) VECTOR of ( ( ) ( non empty ) set ) ) in Ball (v : ( ( ) ( ) VECTOR of ( ( ) ( non empty ) set ) ) ,r : ( ( ) ( V14() real ext-real ) Real) ) : ( ( ) ( ) Element of K10( the carrier of b1 : ( ( non empty right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital RealUnitarySpace-like ) ( non empty left_complementable right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital V125() RealUnitarySpace-like ) RealUnitarySpace) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty ) set ) ) ) ;

theorem :: RUSUB_5:49
for V being ( ( non empty right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital RealUnitarySpace-like ) ( non empty left_complementable right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital V125() RealUnitarySpace-like ) RealUnitarySpace) holds
( the carrier of V : ( ( non empty right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital RealUnitarySpace-like ) ( non empty left_complementable right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital V125() RealUnitarySpace-like ) RealUnitarySpace) : ( ( ) ( non empty ) set ) = the carrier of (TopUnitSpace V : ( ( non empty right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital RealUnitarySpace-like ) ( non empty left_complementable right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital V125() RealUnitarySpace-like ) RealUnitarySpace) ) : ( ( ) ( non empty TopSpace-like ) TopStruct ) : ( ( ) ( non empty ) set ) & the topology of (TopUnitSpace V : ( ( non empty right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital RealUnitarySpace-like ) ( non empty left_complementable right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital V125() RealUnitarySpace-like ) RealUnitarySpace) ) : ( ( ) ( non empty TopSpace-like ) TopStruct ) : ( ( ) ( non empty ) Element of K10(K10( the carrier of (TopUnitSpace b1 : ( ( non empty right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital RealUnitarySpace-like ) ( non empty left_complementable right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital V125() RealUnitarySpace-like ) RealUnitarySpace) ) : ( ( ) ( non empty TopSpace-like ) TopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty ) set ) ) = Family_open_set V : ( ( non empty right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital RealUnitarySpace-like ) ( non empty left_complementable right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital V125() RealUnitarySpace-like ) RealUnitarySpace) : ( ( ) ( ) Subset-Family of ) ) ;

theorem :: RUSUB_5:50
for V being ( ( non empty right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital RealUnitarySpace-like ) ( non empty left_complementable right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital V125() RealUnitarySpace-like ) RealUnitarySpace)
for M being ( ( ) ( ) Subset of )
for r being ( ( ) ( V14() real ext-real ) Real)
for v being ( ( ) ( ) Point of ( ( ) ( non empty ) set ) ) st M : ( ( ) ( ) Subset of ) = Ball (v : ( ( ) ( ) Point of ( ( ) ( non empty ) set ) ) ,r : ( ( ) ( V14() real ext-real ) Real) ) : ( ( ) ( ) Element of K10( the carrier of b1 : ( ( non empty right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital RealUnitarySpace-like ) ( non empty left_complementable right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital V125() RealUnitarySpace-like ) RealUnitarySpace) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty ) set ) ) holds
M : ( ( ) ( ) Subset of ) is open ;

theorem :: RUSUB_5:51
for V being ( ( non empty right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital RealUnitarySpace-like ) ( non empty left_complementable right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital V125() RealUnitarySpace-like ) RealUnitarySpace)
for M being ( ( ) ( ) Subset of ) holds
( M : ( ( ) ( ) Subset of ) is open iff for v being ( ( ) ( ) Point of ( ( ) ( non empty ) set ) ) st v : ( ( ) ( ) Point of ( ( ) ( non empty ) set ) ) in M : ( ( ) ( ) Subset of ) holds
ex r being ( ( ) ( V14() real ext-real ) Real) st
( r : ( ( ) ( V14() real ext-real ) Real) > 0 : ( ( ) ( empty natural V14() real ext-real non positive non negative V19() V20() V21() V22() V23() V24() V25() ) Element of NAT : ( ( ) ( V19() V20() V21() V22() V23() V24() V25() ) Element of K10(REAL : ( ( ) ( V19() V20() V21() V25() ) set ) ) : ( ( ) ( non empty ) set ) ) ) & Ball (v : ( ( ) ( ) Point of ( ( ) ( non empty ) set ) ) ,r : ( ( ) ( V14() real ext-real ) Real) ) : ( ( ) ( ) Element of K10( the carrier of b1 : ( ( non empty right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital RealUnitarySpace-like ) ( non empty left_complementable right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital V125() RealUnitarySpace-like ) RealUnitarySpace) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty ) set ) ) c= M : ( ( ) ( ) Subset of ) ) ) ;

theorem :: RUSUB_5:52
for V being ( ( non empty right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital RealUnitarySpace-like ) ( non empty left_complementable right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital V125() RealUnitarySpace-like ) RealUnitarySpace)
for v1, v2 being ( ( ) ( ) Point of ( ( ) ( non empty ) set ) )
for r1, r2 being ( ( ) ( V14() real ext-real ) Real) ex u being ( ( ) ( ) Point of ( ( ) ( non empty ) set ) ) ex r being ( ( ) ( V14() real ext-real ) Real) st (Ball (v1 : ( ( ) ( ) Point of ( ( ) ( non empty ) set ) ) ,r1 : ( ( ) ( V14() real ext-real ) Real) )) : ( ( ) ( ) Element of K10( the carrier of b1 : ( ( non empty right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital RealUnitarySpace-like ) ( non empty left_complementable right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital V125() RealUnitarySpace-like ) RealUnitarySpace) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty ) set ) ) \/ (Ball (v2 : ( ( ) ( ) Point of ( ( ) ( non empty ) set ) ) ,r2 : ( ( ) ( V14() real ext-real ) Real) )) : ( ( ) ( ) Element of K10( the carrier of b1 : ( ( non empty right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital RealUnitarySpace-like ) ( non empty left_complementable right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital V125() RealUnitarySpace-like ) RealUnitarySpace) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( ) Element of K10( the carrier of b1 : ( ( non empty right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital RealUnitarySpace-like ) ( non empty left_complementable right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital V125() RealUnitarySpace-like ) RealUnitarySpace) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty ) set ) ) c= Ball (u : ( ( ) ( ) Point of ( ( ) ( non empty ) set ) ) ,r : ( ( ) ( V14() real ext-real ) Real) ) : ( ( ) ( ) Element of K10( the carrier of b1 : ( ( non empty right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital RealUnitarySpace-like ) ( non empty left_complementable right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital V125() RealUnitarySpace-like ) RealUnitarySpace) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty ) set ) ) ;

theorem :: RUSUB_5:53
for V being ( ( non empty right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital RealUnitarySpace-like ) ( non empty left_complementable right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital V125() RealUnitarySpace-like ) RealUnitarySpace)
for M being ( ( ) ( ) Subset of )
for v being ( ( ) ( ) VECTOR of ( ( ) ( non empty ) set ) )
for r being ( ( ) ( V14() real ext-real ) Real) st M : ( ( ) ( ) Subset of ) = cl_Ball (v : ( ( ) ( ) VECTOR of ( ( ) ( non empty ) set ) ) ,r : ( ( ) ( V14() real ext-real ) Real) ) : ( ( ) ( ) Element of K10( the carrier of b1 : ( ( non empty right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital RealUnitarySpace-like ) ( non empty left_complementable right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital V125() RealUnitarySpace-like ) RealUnitarySpace) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty ) set ) ) holds
M : ( ( ) ( ) Subset of ) is closed ;

theorem :: RUSUB_5:54
for V being ( ( non empty right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital RealUnitarySpace-like ) ( non empty left_complementable right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital V125() RealUnitarySpace-like ) RealUnitarySpace)
for M being ( ( ) ( ) Subset of )
for v being ( ( ) ( ) VECTOR of ( ( ) ( non empty ) set ) )
for r being ( ( ) ( V14() real ext-real ) Real) st M : ( ( ) ( ) Subset of ) = Sphere (v : ( ( ) ( ) VECTOR of ( ( ) ( non empty ) set ) ) ,r : ( ( ) ( V14() real ext-real ) Real) ) : ( ( ) ( ) Element of K10( the carrier of b1 : ( ( non empty right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital RealUnitarySpace-like ) ( non empty left_complementable right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital V125() RealUnitarySpace-like ) RealUnitarySpace) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty ) set ) ) holds
M : ( ( ) ( ) Subset of ) is closed ;