:: TOPDIM_1 semantic presentation

begin

theorem :: TOPDIM_1:1
for T being ( ( TopSpace-like ) ( TopSpace-like ) TopSpace)
for B, A being ( ( ) ( ) Subset of )
for F being ( ( ) ( ) Subset of ) st F : ( ( ) ( ) Subset of ) = B : ( ( ) ( ) Subset of ) /\ A : ( ( ) ( ) Subset of ) : ( ( ) ( ) Element of bool the carrier of b1 : ( ( TopSpace-like ) ( TopSpace-like ) TopSpace) : ( ( ) ( ) set ) : ( ( ) ( non empty ) set ) ) holds
Fr F : ( ( ) ( ) Subset of ) : ( ( ) ( closed ) Element of bool the carrier of (b1 : ( ( TopSpace-like ) ( TopSpace-like ) TopSpace) | b3 : ( ( ) ( ) Subset of ) ) : ( ( strict ) ( strict TopSpace-like ) SubSpace of b1 : ( ( TopSpace-like ) ( TopSpace-like ) TopSpace) ) : ( ( ) ( ) set ) : ( ( ) ( non empty ) set ) ) c= (Fr B : ( ( ) ( ) Subset of ) ) : ( ( ) ( closed ) Element of bool the carrier of b1 : ( ( TopSpace-like ) ( TopSpace-like ) TopSpace) : ( ( ) ( ) set ) : ( ( ) ( non empty ) set ) ) /\ A : ( ( ) ( ) Subset of ) : ( ( ) ( ) Element of bool the carrier of b1 : ( ( TopSpace-like ) ( TopSpace-like ) TopSpace) : ( ( ) ( ) set ) : ( ( ) ( non empty ) set ) ) ;

theorem :: TOPDIM_1:2
for T being ( ( TopSpace-like ) ( TopSpace-like ) TopSpace) holds
( T : ( ( TopSpace-like ) ( TopSpace-like ) TopSpace) is normal iff for A, B being ( ( closed ) ( closed ) Subset of ) st A : ( ( closed ) ( closed ) Subset of ) misses B : ( ( closed ) ( closed ) Subset of ) holds
ex U, W being ( ( open ) ( open ) Subset of ) st
( A : ( ( closed ) ( closed ) Subset of ) c= U : ( ( open ) ( open ) Subset of ) & B : ( ( closed ) ( closed ) Subset of ) c= W : ( ( open ) ( open ) Subset of ) & Cl U : ( ( open ) ( open ) Subset of ) : ( ( ) ( closed ) Element of bool the carrier of b1 : ( ( TopSpace-like ) ( TopSpace-like ) TopSpace) : ( ( ) ( ) set ) : ( ( ) ( non empty ) set ) ) misses Cl W : ( ( open ) ( open ) Subset of ) : ( ( ) ( closed ) Element of bool the carrier of b1 : ( ( TopSpace-like ) ( TopSpace-like ) TopSpace) : ( ( ) ( ) set ) : ( ( ) ( non empty ) set ) ) ) ) ;

definition
let T be ( ( TopSpace-like ) ( TopSpace-like ) TopSpace) ;
func Seq_of_ind T -> ( ( Function-like quasi_total ) ( non empty Relation-like NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal ) Element of bool REAL : ( ( ) ( ) set ) : ( ( ) ( non empty ) set ) ) -defined bool (bool the carrier of T : ( ( ) ( ) 2-sorted ) : ( ( ) ( ) set ) ) : ( ( ) ( non empty ) Element of bool (bool the carrier of T : ( ( ) ( ) 2-sorted ) : ( ( ) ( ) set ) ) : ( ( ) ( non empty ) set ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty ) Element of bool (bool (bool the carrier of T : ( ( ) ( ) 2-sorted ) : ( ( ) ( ) set ) ) : ( ( ) ( non empty ) Element of bool (bool the carrier of T : ( ( ) ( ) 2-sorted ) : ( ( ) ( ) set ) ) : ( ( ) ( non empty ) set ) : ( ( ) ( non empty ) set ) ) ) : ( ( ) ( non empty ) set ) : ( ( ) ( non empty ) set ) ) -valued Function-like V14( NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal ) Element of bool REAL : ( ( ) ( ) set ) : ( ( ) ( non empty ) set ) ) ) quasi_total ) SetSequence of ( ( ) ( non empty ) Element of bool (bool (bool the carrier of T : ( ( ) ( ) 2-sorted ) : ( ( ) ( ) set ) ) : ( ( ) ( non empty ) Element of bool (bool the carrier of T : ( ( ) ( ) 2-sorted ) : ( ( ) ( ) set ) ) : ( ( ) ( non empty ) set ) : ( ( ) ( non empty ) set ) ) ) : ( ( ) ( non empty ) set ) : ( ( ) ( non empty ) set ) ) ) means :: TOPDIM_1:def 1
for A being ( ( ) ( ) Subset of )
for n being ( ( natural ) ( epsilon-transitive epsilon-connected ordinal natural finite cardinal V89() V90() ext-real non negative integer ) Nat) holds
( it : ( ( ) ( ) set ) . 0 : ( ( ) ( epsilon-transitive epsilon-connected ordinal natural finite cardinal V89() V90() ext-real non negative integer ) Element of NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal ) Element of bool REAL : ( ( ) ( ) set ) : ( ( ) ( non empty ) set ) ) ) : ( ( ) ( ) Element of bool (bool the carrier of T : ( ( ) ( ) 2-sorted ) : ( ( ) ( ) set ) ) : ( ( ) ( non empty ) set ) : ( ( ) ( non empty ) set ) ) = {({} T : ( ( ) ( ) 2-sorted ) ) : ( ( ) ( empty Relation-like non-empty empty-yielding epsilon-transitive epsilon-connected ordinal T-Sequence-like c=-linear natural finite finite-yielding V32() cardinal {} : ( ( ) ( ) set ) -element V89() V90() ext-real non positive non negative integer ) Element of bool the carrier of T : ( ( ) ( ) 2-sorted ) : ( ( ) ( ) set ) : ( ( ) ( non empty ) set ) ) } : ( ( ) ( non empty trivial finite V32() 1 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural finite cardinal V89() V90() ext-real positive non negative integer ) Element of NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal ) Element of bool REAL : ( ( ) ( ) set ) : ( ( ) ( non empty ) set ) ) ) -element ) Element of bool (bool the carrier of T : ( ( ) ( ) 2-sorted ) : ( ( ) ( ) set ) ) : ( ( ) ( non empty ) set ) : ( ( ) ( non empty ) set ) ) & ( not A : ( ( ) ( ) Subset of ) in it : ( ( ) ( ) set ) . (n : ( ( natural ) ( epsilon-transitive epsilon-connected ordinal natural finite cardinal V89() V90() ext-real non negative integer ) Nat) + 1 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural finite cardinal V89() V90() ext-real positive non negative integer ) Element of NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal ) Element of bool REAL : ( ( ) ( ) set ) : ( ( ) ( non empty ) set ) ) ) ) : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural finite cardinal V89() V90() ext-real positive non negative integer ) Element of NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal ) Element of bool REAL : ( ( ) ( ) set ) : ( ( ) ( non empty ) set ) ) ) : ( ( ) ( ) Element of bool (bool the carrier of T : ( ( ) ( ) 2-sorted ) : ( ( ) ( ) set ) ) : ( ( ) ( non empty ) set ) : ( ( ) ( non empty ) set ) ) or A : ( ( ) ( ) Subset of ) in it : ( ( ) ( ) set ) . n : ( ( natural ) ( epsilon-transitive epsilon-connected ordinal natural finite cardinal V89() V90() ext-real non negative integer ) Nat) : ( ( ) ( ) Element of bool (bool the carrier of T : ( ( ) ( ) 2-sorted ) : ( ( ) ( ) set ) ) : ( ( ) ( non empty ) set ) : ( ( ) ( non empty ) set ) ) or for p being ( ( ) ( ) Point of ( ( ) ( ) set ) )
for U being ( ( open ) ( open ) Subset of ) st p : ( ( ) ( ) Point of ( ( ) ( ) set ) ) in U : ( ( open ) ( open ) Subset of ) holds
ex W being ( ( open ) ( open ) Subset of ) st
( p : ( ( ) ( ) Point of ( ( ) ( ) set ) ) in W : ( ( open ) ( open ) Subset of ) & W : ( ( open ) ( open ) Subset of ) c= U : ( ( open ) ( open ) Subset of ) & Fr W : ( ( open ) ( open ) Subset of ) : ( ( ) ( ) Element of bool the carrier of (T : ( ( ) ( ) 2-sorted ) | b1 : ( ( ) ( ) Subset of ) ) : ( ( strict ) ( strict ) SubSpace of T : ( ( ) ( ) 2-sorted ) ) : ( ( ) ( ) set ) : ( ( ) ( non empty ) set ) ) in it : ( ( ) ( ) set ) . n : ( ( natural ) ( epsilon-transitive epsilon-connected ordinal natural finite cardinal V89() V90() ext-real non negative integer ) Nat) : ( ( ) ( ) Element of bool (bool the carrier of T : ( ( ) ( ) 2-sorted ) : ( ( ) ( ) set ) ) : ( ( ) ( non empty ) set ) : ( ( ) ( non empty ) set ) ) ) ) & ( ( A : ( ( ) ( ) Subset of ) in it : ( ( ) ( ) set ) . n : ( ( natural ) ( epsilon-transitive epsilon-connected ordinal natural finite cardinal V89() V90() ext-real non negative integer ) Nat) : ( ( ) ( ) Element of bool (bool the carrier of T : ( ( ) ( ) 2-sorted ) : ( ( ) ( ) set ) ) : ( ( ) ( non empty ) set ) : ( ( ) ( non empty ) set ) ) or for p being ( ( ) ( ) Point of ( ( ) ( ) set ) )
for U being ( ( open ) ( open ) Subset of ) st p : ( ( ) ( ) Point of ( ( ) ( ) set ) ) in U : ( ( open ) ( open ) Subset of ) holds
ex W being ( ( open ) ( open ) Subset of ) st
( p : ( ( ) ( ) Point of ( ( ) ( ) set ) ) in W : ( ( open ) ( open ) Subset of ) & W : ( ( open ) ( open ) Subset of ) c= U : ( ( open ) ( open ) Subset of ) & Fr W : ( ( open ) ( open ) Subset of ) : ( ( ) ( ) Element of bool the carrier of (T : ( ( ) ( ) 2-sorted ) | b1 : ( ( ) ( ) Subset of ) ) : ( ( strict ) ( strict ) SubSpace of T : ( ( ) ( ) 2-sorted ) ) : ( ( ) ( ) set ) : ( ( ) ( non empty ) set ) ) in it : ( ( ) ( ) set ) . n : ( ( natural ) ( epsilon-transitive epsilon-connected ordinal natural finite cardinal V89() V90() ext-real non negative integer ) Nat) : ( ( ) ( ) Element of bool (bool the carrier of T : ( ( ) ( ) 2-sorted ) : ( ( ) ( ) set ) ) : ( ( ) ( non empty ) set ) : ( ( ) ( non empty ) set ) ) ) ) implies A : ( ( ) ( ) Subset of ) in it : ( ( ) ( ) set ) . (n : ( ( natural ) ( epsilon-transitive epsilon-connected ordinal natural finite cardinal V89() V90() ext-real non negative integer ) Nat) + 1 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural finite cardinal V89() V90() ext-real positive non negative integer ) Element of NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal ) Element of bool REAL : ( ( ) ( ) set ) : ( ( ) ( non empty ) set ) ) ) ) : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural finite cardinal V89() V90() ext-real positive non negative integer ) Element of NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal ) Element of bool REAL : ( ( ) ( ) set ) : ( ( ) ( non empty ) set ) ) ) : ( ( ) ( ) Element of bool (bool the carrier of T : ( ( ) ( ) 2-sorted ) : ( ( ) ( ) set ) ) : ( ( ) ( non empty ) set ) : ( ( ) ( non empty ) set ) ) ) );
end;

registration
let T be ( ( TopSpace-like ) ( TopSpace-like ) TopSpace) ;
cluster Seq_of_ind T : ( ( TopSpace-like ) ( TopSpace-like ) TopStruct ) : ( ( Function-like quasi_total ) ( non empty Relation-like NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal ) Element of bool REAL : ( ( ) ( ) set ) : ( ( ) ( non empty ) set ) ) -defined bool (bool the carrier of T : ( ( TopSpace-like ) ( TopSpace-like ) TopStruct ) : ( ( ) ( ) set ) ) : ( ( ) ( non empty ) Element of bool (bool the carrier of T : ( ( TopSpace-like ) ( TopSpace-like ) TopStruct ) : ( ( ) ( ) set ) ) : ( ( ) ( non empty ) set ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty ) Element of bool (bool (bool the carrier of T : ( ( TopSpace-like ) ( TopSpace-like ) TopStruct ) : ( ( ) ( ) set ) ) : ( ( ) ( non empty ) Element of bool (bool the carrier of T : ( ( TopSpace-like ) ( TopSpace-like ) TopStruct ) : ( ( ) ( ) set ) ) : ( ( ) ( non empty ) set ) : ( ( ) ( non empty ) set ) ) ) : ( ( ) ( non empty ) set ) : ( ( ) ( non empty ) set ) ) -valued Function-like V14( NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal ) Element of bool REAL : ( ( ) ( ) set ) : ( ( ) ( non empty ) set ) ) ) quasi_total ) SetSequence of ( ( ) ( non empty ) Element of bool (bool (bool the carrier of T : ( ( TopSpace-like ) ( TopSpace-like ) TopStruct ) : ( ( ) ( ) set ) ) : ( ( ) ( non empty ) Element of bool (bool the carrier of T : ( ( TopSpace-like ) ( TopSpace-like ) TopStruct ) : ( ( ) ( ) set ) ) : ( ( ) ( non empty ) set ) : ( ( ) ( non empty ) set ) ) ) : ( ( ) ( non empty ) set ) : ( ( ) ( non empty ) set ) ) ) -> Function-like quasi_total non-descending ;
end;

theorem :: TOPDIM_1:3
for T being ( ( TopSpace-like ) ( TopSpace-like ) TopSpace)
for A, B being ( ( ) ( ) Subset of )
for n being ( ( natural ) ( epsilon-transitive epsilon-connected ordinal natural finite cardinal V89() V90() ext-real non negative integer ) Nat)
for F being ( ( ) ( ) Subset of ) st F : ( ( ) ( ) Subset of ) = B : ( ( ) ( ) Subset of ) holds
( F : ( ( ) ( ) Subset of ) in (Seq_of_ind (T : ( ( TopSpace-like ) ( TopSpace-like ) TopSpace) | A : ( ( ) ( ) Subset of ) ) : ( ( strict ) ( strict TopSpace-like ) SubSpace of b1 : ( ( TopSpace-like ) ( TopSpace-like ) TopSpace) ) ) : ( ( Function-like quasi_total ) ( non empty Relation-like NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal ) Element of bool REAL : ( ( ) ( ) set ) : ( ( ) ( non empty ) set ) ) -defined bool (bool the carrier of (b1 : ( ( TopSpace-like ) ( TopSpace-like ) TopSpace) | b2 : ( ( ) ( ) Subset of ) ) : ( ( strict ) ( strict TopSpace-like ) SubSpace of b1 : ( ( TopSpace-like ) ( TopSpace-like ) TopSpace) ) : ( ( ) ( ) set ) ) : ( ( ) ( non empty ) Element of bool (bool the carrier of (b1 : ( ( TopSpace-like ) ( TopSpace-like ) TopSpace) | b2 : ( ( ) ( ) Subset of ) ) : ( ( strict ) ( strict TopSpace-like ) SubSpace of b1 : ( ( TopSpace-like ) ( TopSpace-like ) TopSpace) ) : ( ( ) ( ) set ) ) : ( ( ) ( non empty ) set ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty ) Element of bool (bool (bool the carrier of (b1 : ( ( TopSpace-like ) ( TopSpace-like ) TopSpace) | b2 : ( ( ) ( ) Subset of ) ) : ( ( strict ) ( strict TopSpace-like ) SubSpace of b1 : ( ( TopSpace-like ) ( TopSpace-like ) TopSpace) ) : ( ( ) ( ) set ) ) : ( ( ) ( non empty ) Element of bool (bool the carrier of (b1 : ( ( TopSpace-like ) ( TopSpace-like ) TopSpace) | b2 : ( ( ) ( ) Subset of ) ) : ( ( strict ) ( strict TopSpace-like ) SubSpace of b1 : ( ( TopSpace-like ) ( TopSpace-like ) TopSpace) ) : ( ( ) ( ) set ) ) : ( ( ) ( non empty ) set ) : ( ( ) ( non empty ) set ) ) ) : ( ( ) ( non empty ) set ) : ( ( ) ( non empty ) set ) ) -valued Function-like V14( NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal ) Element of bool REAL : ( ( ) ( ) set ) : ( ( ) ( non empty ) set ) ) ) quasi_total non-descending ) SetSequence of ( ( ) ( non empty ) Element of bool (bool (bool the carrier of (b1 : ( ( TopSpace-like ) ( TopSpace-like ) TopSpace) | b2 : ( ( ) ( ) Subset of ) ) : ( ( strict ) ( strict TopSpace-like ) SubSpace of b1 : ( ( TopSpace-like ) ( TopSpace-like ) TopSpace) ) : ( ( ) ( ) set ) ) : ( ( ) ( non empty ) Element of bool (bool the carrier of (b1 : ( ( TopSpace-like ) ( TopSpace-like ) TopSpace) | b2 : ( ( ) ( ) Subset of ) ) : ( ( strict ) ( strict TopSpace-like ) SubSpace of b1 : ( ( TopSpace-like ) ( TopSpace-like ) TopSpace) ) : ( ( ) ( ) set ) ) : ( ( ) ( non empty ) set ) : ( ( ) ( non empty ) set ) ) ) : ( ( ) ( non empty ) set ) : ( ( ) ( non empty ) set ) ) ) . n : ( ( natural ) ( epsilon-transitive epsilon-connected ordinal natural finite cardinal V89() V90() ext-real non negative integer ) Nat) : ( ( ) ( ) Element of bool (bool the carrier of (b1 : ( ( TopSpace-like ) ( TopSpace-like ) TopSpace) | b2 : ( ( ) ( ) Subset of ) ) : ( ( strict ) ( strict TopSpace-like ) SubSpace of b1 : ( ( TopSpace-like ) ( TopSpace-like ) TopSpace) ) : ( ( ) ( ) set ) ) : ( ( ) ( non empty ) set ) : ( ( ) ( non empty ) set ) ) iff B : ( ( ) ( ) Subset of ) in (Seq_of_ind T : ( ( TopSpace-like ) ( TopSpace-like ) TopSpace) ) : ( ( Function-like quasi_total ) ( non empty Relation-like NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal ) Element of bool REAL : ( ( ) ( ) set ) : ( ( ) ( non empty ) set ) ) -defined bool (bool the carrier of b1 : ( ( TopSpace-like ) ( TopSpace-like ) TopSpace) : ( ( ) ( ) set ) ) : ( ( ) ( non empty ) Element of bool (bool the carrier of b1 : ( ( TopSpace-like ) ( TopSpace-like ) TopSpace) : ( ( ) ( ) set ) ) : ( ( ) ( non empty ) set ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty ) Element of bool (bool (bool the carrier of b1 : ( ( TopSpace-like ) ( TopSpace-like ) TopSpace) : ( ( ) ( ) set ) ) : ( ( ) ( non empty ) Element of bool (bool the carrier of b1 : ( ( TopSpace-like ) ( TopSpace-like ) TopSpace) : ( ( ) ( ) set ) ) : ( ( ) ( non empty ) set ) : ( ( ) ( non empty ) set ) ) ) : ( ( ) ( non empty ) set ) : ( ( ) ( non empty ) set ) ) -valued Function-like V14( NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal ) Element of bool REAL : ( ( ) ( ) set ) : ( ( ) ( non empty ) set ) ) ) quasi_total non-descending ) SetSequence of ( ( ) ( non empty ) Element of bool (bool (bool the carrier of b1 : ( ( TopSpace-like ) ( TopSpace-like ) TopSpace) : ( ( ) ( ) set ) ) : ( ( ) ( non empty ) Element of bool (bool the carrier of b1 : ( ( TopSpace-like ) ( TopSpace-like ) TopSpace) : ( ( ) ( ) set ) ) : ( ( ) ( non empty ) set ) : ( ( ) ( non empty ) set ) ) ) : ( ( ) ( non empty ) set ) : ( ( ) ( non empty ) set ) ) ) . n : ( ( natural ) ( epsilon-transitive epsilon-connected ordinal natural finite cardinal V89() V90() ext-real non negative integer ) Nat) : ( ( ) ( ) Element of bool (bool the carrier of b1 : ( ( TopSpace-like ) ( TopSpace-like ) TopSpace) : ( ( ) ( ) set ) ) : ( ( ) ( non empty ) set ) : ( ( ) ( non empty ) set ) ) ) ;

definition
let T be ( ( TopSpace-like ) ( TopSpace-like ) TopSpace) ;
let A be ( ( ) ( ) Subset of ) ;
attr A is with_finite_small_inductive_dimension means :: TOPDIM_1:def 2
ex n being ( ( natural ) ( epsilon-transitive epsilon-connected ordinal natural finite cardinal V89() V90() ext-real non negative integer ) Nat) st A : ( ( ) ( ) set ) in (Seq_of_ind T : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopStruct ) ) : ( ( Function-like quasi_total ) ( non empty Relation-like NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal ) Element of bool REAL : ( ( ) ( ) set ) : ( ( ) ( non empty ) set ) ) -defined bool (bool the carrier of T : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty ) Element of bool (bool the carrier of T : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty ) set ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty ) Element of bool (bool (bool the carrier of T : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty ) Element of bool (bool the carrier of T : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty ) set ) : ( ( ) ( non empty ) set ) ) ) : ( ( ) ( non empty ) set ) : ( ( ) ( non empty ) set ) ) -valued Function-like V14( NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal ) Element of bool REAL : ( ( ) ( ) set ) : ( ( ) ( non empty ) set ) ) ) quasi_total non-descending ) SetSequence of ( ( ) ( non empty ) Element of bool (bool (bool the carrier of T : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty ) Element of bool (bool the carrier of T : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty ) set ) : ( ( ) ( non empty ) set ) ) ) : ( ( ) ( non empty ) set ) : ( ( ) ( non empty ) set ) ) ) . n : ( ( natural ) ( epsilon-transitive epsilon-connected ordinal natural finite cardinal V89() V90() ext-real non negative integer ) Nat) : ( ( ) ( ) Element of bool (bool the carrier of T : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty ) set ) : ( ( ) ( non empty ) set ) ) ;
end;

notation
let T be ( ( TopSpace-like ) ( TopSpace-like ) TopSpace) ;
let A be ( ( ) ( ) Subset of ) ;
synonym finite-ind A for with_finite_small_inductive_dimension ;
end;

definition
let T be ( ( TopSpace-like ) ( TopSpace-like ) TopSpace) ;
let G be ( ( ) ( ) Subset-Family of ) ;
attr G is with_finite_small_inductive_dimension means :: TOPDIM_1:def 3
ex n being ( ( natural ) ( epsilon-transitive epsilon-connected ordinal natural finite cardinal V89() V90() ext-real non negative integer ) Nat) st G : ( ( ) ( ) set ) c= (Seq_of_ind T : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopStruct ) ) : ( ( Function-like quasi_total ) ( non empty Relation-like NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal ) Element of bool REAL : ( ( ) ( ) set ) : ( ( ) ( non empty ) set ) ) -defined bool (bool the carrier of T : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty ) Element of bool (bool the carrier of T : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty ) set ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty ) Element of bool (bool (bool the carrier of T : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty ) Element of bool (bool the carrier of T : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty ) set ) : ( ( ) ( non empty ) set ) ) ) : ( ( ) ( non empty ) set ) : ( ( ) ( non empty ) set ) ) -valued Function-like V14( NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal ) Element of bool REAL : ( ( ) ( ) set ) : ( ( ) ( non empty ) set ) ) ) quasi_total non-descending ) SetSequence of ( ( ) ( non empty ) Element of bool (bool (bool the carrier of T : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty ) Element of bool (bool the carrier of T : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty ) set ) : ( ( ) ( non empty ) set ) ) ) : ( ( ) ( non empty ) set ) : ( ( ) ( non empty ) set ) ) ) . n : ( ( natural ) ( epsilon-transitive epsilon-connected ordinal natural finite cardinal V89() V90() ext-real non negative integer ) Nat) : ( ( ) ( ) Element of bool (bool the carrier of T : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty ) set ) : ( ( ) ( non empty ) set ) ) ;
end;

notation
let T be ( ( TopSpace-like ) ( TopSpace-like ) TopSpace) ;
let G be ( ( ) ( ) Subset-Family of ) ;
synonym finite-ind G for with_finite_small_inductive_dimension ;
end;

theorem :: TOPDIM_1:4
for T being ( ( TopSpace-like ) ( TopSpace-like ) TopSpace)
for A being ( ( ) ( ) Subset of )
for G being ( ( ) ( ) Subset-Family of ) st A : ( ( ) ( ) Subset of ) in G : ( ( ) ( ) Subset-Family of ) & G : ( ( ) ( ) Subset-Family of ) is finite-ind holds
A : ( ( ) ( ) Subset of ) is finite-ind ;

registration
let T be ( ( TopSpace-like ) ( TopSpace-like ) TopSpace) ;
cluster finite -> finite-ind for ( ( ) ( ) Element of bool the carrier of T : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopStruct ) : ( ( ) ( non empty ) set ) : ( ( ) ( non empty ) set ) ) ;
cluster empty -> finite-ind for ( ( ) ( ) Element of bool (bool the carrier of T : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty ) set ) : ( ( ) ( non empty ) set ) ) ;
cluster non empty finite-ind for ( ( ) ( ) Element of bool (bool the carrier of T : ( ( TopSpace-like ) ( TopSpace-like ) TopStruct ) : ( ( ) ( ) set ) ) : ( ( ) ( non empty ) set ) : ( ( ) ( non empty ) set ) ) ;
end;

registration
let T be ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) ;
cluster non empty finite-ind for ( ( ) ( ) Element of bool the carrier of T : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopStruct ) : ( ( ) ( non empty ) set ) : ( ( ) ( non empty ) set ) ) ;
end;

definition
let T be ( ( TopSpace-like ) ( TopSpace-like ) TopSpace) ;
attr T is with_finite_small_inductive_dimension means :: TOPDIM_1:def 4
[#] T : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopStruct ) : ( ( ) ( non empty non proper open closed dense non boundary ) Element of bool the carrier of T : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopStruct ) : ( ( ) ( non empty ) set ) : ( ( ) ( non empty ) set ) ) is with_finite_small_inductive_dimension ;
end;

notation
let T be ( ( TopSpace-like ) ( TopSpace-like ) TopSpace) ;
synonym finite-ind T for with_finite_small_inductive_dimension ;
end;

registration
cluster empty TopSpace-like -> TopSpace-like finite-ind for ( ( ) ( ) TopStruct ) ;
end;

registration
let X be ( ( ) ( ) set ) ;
cluster 1TopSp X : ( ( ) ( ) set ) : ( ( ) ( strict TopSpace-like ) TopStruct ) -> finite-ind ;
end;

registration
cluster non empty TopSpace-like finite-ind for ( ( ) ( ) TopStruct ) ;
end;

begin

definition
let T be ( ( TopSpace-like ) ( TopSpace-like ) TopSpace) ;
let A be ( ( ) ( ) Subset of ) ;
assume A : ( ( ) ( ) Subset of ) is finite-ind ;
func ind A -> ( ( integer ) ( V89() V90() ext-real integer ) Integer) means :: TOPDIM_1:def 5
( A : ( ( ) ( ) set ) in (Seq_of_ind T : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopStruct ) ) : ( ( Function-like quasi_total ) ( non empty Relation-like NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal ) Element of bool REAL : ( ( ) ( ) set ) : ( ( ) ( non empty ) set ) ) -defined bool (bool the carrier of T : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty ) Element of bool (bool the carrier of T : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty ) set ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty ) Element of bool (bool (bool the carrier of T : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty ) Element of bool (bool the carrier of T : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty ) set ) : ( ( ) ( non empty ) set ) ) ) : ( ( ) ( non empty ) set ) : ( ( ) ( non empty ) set ) ) -valued Function-like V14( NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal ) Element of bool REAL : ( ( ) ( ) set ) : ( ( ) ( non empty ) set ) ) ) quasi_total non-descending ) SetSequence of ( ( ) ( non empty ) Element of bool (bool (bool the carrier of T : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty ) Element of bool (bool the carrier of T : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty ) set ) : ( ( ) ( non empty ) set ) ) ) : ( ( ) ( non empty ) set ) : ( ( ) ( non empty ) set ) ) ) . (it : ( ( ) ( ) Element of T : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopStruct ) ) + 1 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural finite cardinal V89() V90() ext-real positive non negative integer ) Element of NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal ) Element of bool REAL : ( ( ) ( ) set ) : ( ( ) ( non empty ) set ) ) ) ) : ( ( ) ( V89() V90() ext-real ) Element of REAL : ( ( ) ( ) set ) ) : ( ( ) ( ) Element of bool (bool the carrier of T : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty ) set ) : ( ( ) ( non empty ) set ) ) & not A : ( ( ) ( ) set ) in (Seq_of_ind T : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopStruct ) ) : ( ( Function-like quasi_total ) ( non empty Relation-like NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal ) Element of bool REAL : ( ( ) ( ) set ) : ( ( ) ( non empty ) set ) ) -defined bool (bool the carrier of T : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty ) Element of bool (bool the carrier of T : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty ) set ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty ) Element of bool (bool (bool the carrier of T : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty ) Element of bool (bool the carrier of T : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty ) set ) : ( ( ) ( non empty ) set ) ) ) : ( ( ) ( non empty ) set ) : ( ( ) ( non empty ) set ) ) -valued Function-like V14( NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal ) Element of bool REAL : ( ( ) ( ) set ) : ( ( ) ( non empty ) set ) ) ) quasi_total non-descending ) SetSequence of ( ( ) ( non empty ) Element of bool (bool (bool the carrier of T : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty ) Element of bool (bool the carrier of T : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty ) set ) : ( ( ) ( non empty ) set ) ) ) : ( ( ) ( non empty ) set ) : ( ( ) ( non empty ) set ) ) ) . it : ( ( ) ( ) Element of T : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopStruct ) ) : ( ( ) ( ) Element of bool (bool the carrier of T : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty ) set ) : ( ( ) ( non empty ) set ) ) );
end;

theorem :: TOPDIM_1:5
for T being ( ( TopSpace-like ) ( TopSpace-like ) TopSpace)
for Af being ( ( finite-ind ) ( finite-ind ) Subset of ) holds - 1 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural finite cardinal V89() V90() ext-real positive non negative integer ) Element of NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal ) Element of bool REAL : ( ( ) ( ) set ) : ( ( ) ( non empty ) set ) ) ) : ( ( ) ( non empty V89() V90() ext-real non positive negative integer ) Element of REAL : ( ( ) ( ) set ) ) <= ind Af : ( ( finite-ind ) ( finite-ind ) Subset of ) : ( ( integer ) ( V89() V90() ext-real integer ) Integer) ;

theorem :: TOPDIM_1:6
for T being ( ( TopSpace-like ) ( TopSpace-like ) TopSpace)
for Af being ( ( finite-ind ) ( finite-ind ) Subset of ) holds
( ind Af : ( ( finite-ind ) ( finite-ind ) Subset of ) : ( ( integer ) ( V89() V90() ext-real integer ) Integer) = - 1 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural finite cardinal V89() V90() ext-real positive non negative integer ) Element of NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal ) Element of bool REAL : ( ( ) ( ) set ) : ( ( ) ( non empty ) set ) ) ) : ( ( ) ( non empty V89() V90() ext-real non positive negative integer ) Element of REAL : ( ( ) ( ) set ) ) iff Af : ( ( finite-ind ) ( finite-ind ) Subset of ) is empty ) ;

registration
let T be ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) ;
let A be ( ( non empty finite-ind ) ( non empty finite-ind ) Subset of ) ;
cluster ind A : ( ( non empty finite-ind ) ( non empty finite-ind ) Element of bool the carrier of T : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopStruct ) : ( ( ) ( non empty ) set ) : ( ( ) ( non empty ) set ) ) : ( ( integer ) ( V89() V90() ext-real integer ) Integer) -> natural integer ;
end;

theorem :: TOPDIM_1:7
for T being ( ( TopSpace-like ) ( TopSpace-like ) TopSpace)
for n being ( ( natural ) ( epsilon-transitive epsilon-connected ordinal natural finite cardinal V89() V90() ext-real non negative integer ) Nat)
for Af being ( ( finite-ind ) ( finite-ind ) Subset of ) holds
( ind Af : ( ( finite-ind ) ( finite-ind ) Subset of ) : ( ( integer ) ( V89() V90() ext-real integer ) Integer) <= n : ( ( natural ) ( epsilon-transitive epsilon-connected ordinal natural finite cardinal V89() V90() ext-real non negative integer ) Nat) - 1 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural finite cardinal V89() V90() ext-real positive non negative integer ) Element of NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal ) Element of bool REAL : ( ( ) ( ) set ) : ( ( ) ( non empty ) set ) ) ) : ( ( ) ( V89() V90() ext-real integer ) Element of REAL : ( ( ) ( ) set ) ) iff Af : ( ( finite-ind ) ( finite-ind ) Subset of ) in (Seq_of_ind T : ( ( TopSpace-like ) ( TopSpace-like ) TopSpace) ) : ( ( Function-like quasi_total ) ( non empty Relation-like NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal ) Element of bool REAL : ( ( ) ( ) set ) : ( ( ) ( non empty ) set ) ) -defined bool (bool the carrier of b1 : ( ( TopSpace-like ) ( TopSpace-like ) TopSpace) : ( ( ) ( ) set ) ) : ( ( ) ( non empty ) Element of bool (bool the carrier of b1 : ( ( TopSpace-like ) ( TopSpace-like ) TopSpace) : ( ( ) ( ) set ) ) : ( ( ) ( non empty ) set ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty ) Element of bool (bool (bool the carrier of b1 : ( ( TopSpace-like ) ( TopSpace-like ) TopSpace) : ( ( ) ( ) set ) ) : ( ( ) ( non empty ) Element of bool (bool the carrier of b1 : ( ( TopSpace-like ) ( TopSpace-like ) TopSpace) : ( ( ) ( ) set ) ) : ( ( ) ( non empty ) set ) : ( ( ) ( non empty ) set ) ) ) : ( ( ) ( non empty ) set ) : ( ( ) ( non empty ) set ) ) -valued Function-like V14( NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal ) Element of bool REAL : ( ( ) ( ) set ) : ( ( ) ( non empty ) set ) ) ) quasi_total non-descending ) SetSequence of ( ( ) ( non empty ) Element of bool (bool (bool the carrier of b1 : ( ( TopSpace-like ) ( TopSpace-like ) TopSpace) : ( ( ) ( ) set ) ) : ( ( ) ( non empty ) Element of bool (bool the carrier of b1 : ( ( TopSpace-like ) ( TopSpace-like ) TopSpace) : ( ( ) ( ) set ) ) : ( ( ) ( non empty ) set ) : ( ( ) ( non empty ) set ) ) ) : ( ( ) ( non empty ) set ) : ( ( ) ( non empty ) set ) ) ) . n : ( ( natural ) ( epsilon-transitive epsilon-connected ordinal natural finite cardinal V89() V90() ext-real non negative integer ) Nat) : ( ( ) ( ) Element of bool (bool the carrier of b1 : ( ( TopSpace-like ) ( TopSpace-like ) TopSpace) : ( ( ) ( ) set ) ) : ( ( ) ( non empty ) set ) : ( ( ) ( non empty ) set ) ) ) ;

theorem :: TOPDIM_1:8
for T being ( ( TopSpace-like ) ( TopSpace-like ) TopSpace)
for A being ( ( finite ) ( finite compact finite-ind ) Subset of ) holds ind A : ( ( finite ) ( finite compact finite-ind ) Subset of ) : ( ( integer ) ( V89() V90() ext-real integer ) Integer) < card A : ( ( finite ) ( finite compact finite-ind ) Subset of ) : ( ( ) ( epsilon-transitive epsilon-connected ordinal natural finite cardinal V89() V90() ext-real non negative integer ) Element of omega : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal ) set ) ) ;

theorem :: TOPDIM_1:9
for T being ( ( TopSpace-like ) ( TopSpace-like ) TopSpace)
for n being ( ( natural ) ( epsilon-transitive epsilon-connected ordinal natural finite cardinal V89() V90() ext-real non negative integer ) Nat)
for Af being ( ( finite-ind ) ( finite-ind ) Subset of ) holds
( ind Af : ( ( finite-ind ) ( finite-ind ) Subset of ) : ( ( integer ) ( V89() V90() ext-real integer ) Integer) <= n : ( ( natural ) ( epsilon-transitive epsilon-connected ordinal natural finite cardinal V89() V90() ext-real non negative integer ) Nat) iff for p being ( ( ) ( ) Point of ( ( ) ( ) set ) )
for U being ( ( open ) ( open ) Subset of ) st p : ( ( ) ( ) Point of ( ( ) ( ) set ) ) in U : ( ( open ) ( open ) Subset of ) holds
ex W being ( ( open ) ( open ) Subset of ) st
( p : ( ( ) ( ) Point of ( ( ) ( ) set ) ) in W : ( ( open ) ( open ) Subset of ) & W : ( ( open ) ( open ) Subset of ) c= U : ( ( open ) ( open ) Subset of ) & Fr W : ( ( open ) ( open ) Subset of ) : ( ( ) ( closed boundary nowhere_dense ) Element of bool the carrier of (b1 : ( ( TopSpace-like ) ( TopSpace-like ) TopSpace) | b3 : ( ( finite-ind ) ( finite-ind ) Subset of ) ) : ( ( strict ) ( strict TopSpace-like ) SubSpace of b1 : ( ( TopSpace-like ) ( TopSpace-like ) TopSpace) ) : ( ( ) ( ) set ) : ( ( ) ( non empty ) set ) ) is finite-ind & ind (Fr W : ( ( open ) ( open ) Subset of ) ) : ( ( ) ( closed boundary nowhere_dense ) Element of bool the carrier of (b1 : ( ( TopSpace-like ) ( TopSpace-like ) TopSpace) | b3 : ( ( finite-ind ) ( finite-ind ) Subset of ) ) : ( ( strict ) ( strict TopSpace-like ) SubSpace of b1 : ( ( TopSpace-like ) ( TopSpace-like ) TopSpace) ) : ( ( ) ( ) set ) : ( ( ) ( non empty ) set ) ) : ( ( integer ) ( V89() V90() ext-real integer ) Integer) <= n : ( ( natural ) ( epsilon-transitive epsilon-connected ordinal natural finite cardinal V89() V90() ext-real non negative integer ) Nat) - 1 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural finite cardinal V89() V90() ext-real positive non negative integer ) Element of NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal ) Element of bool REAL : ( ( ) ( ) set ) : ( ( ) ( non empty ) set ) ) ) : ( ( ) ( V89() V90() ext-real integer ) Element of REAL : ( ( ) ( ) set ) ) ) ) ;

definition
let T be ( ( TopSpace-like ) ( TopSpace-like ) TopSpace) ;
let G be ( ( ) ( ) Subset-Family of ) ;
assume G : ( ( ) ( ) Subset-Family of ) is finite-ind ;
func ind G -> ( ( integer ) ( V89() V90() ext-real integer ) Integer) means :: TOPDIM_1:def 6
( G : ( ( ) ( ) set ) c= (Seq_of_ind T : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopStruct ) ) : ( ( Function-like quasi_total ) ( non empty Relation-like NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal ) Element of bool REAL : ( ( ) ( ) set ) : ( ( ) ( non empty ) set ) ) -defined bool (bool the carrier of T : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty ) Element of bool (bool the carrier of T : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty ) set ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty ) Element of bool (bool (bool the carrier of T : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty ) Element of bool (bool the carrier of T : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty ) set ) : ( ( ) ( non empty ) set ) ) ) : ( ( ) ( non empty ) set ) : ( ( ) ( non empty ) set ) ) -valued Function-like V14( NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal ) Element of bool REAL : ( ( ) ( ) set ) : ( ( ) ( non empty ) set ) ) ) quasi_total non-descending ) SetSequence of ( ( ) ( non empty ) Element of bool (bool (bool the carrier of T : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty ) Element of bool (bool the carrier of T : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty ) set ) : ( ( ) ( non empty ) set ) ) ) : ( ( ) ( non empty ) set ) : ( ( ) ( non empty ) set ) ) ) . (it : ( ( ) ( ) Element of T : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopStruct ) ) + 1 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural finite cardinal V89() V90() ext-real positive non negative integer ) Element of NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal ) Element of bool REAL : ( ( ) ( ) set ) : ( ( ) ( non empty ) set ) ) ) ) : ( ( ) ( V89() V90() ext-real ) Element of REAL : ( ( ) ( ) set ) ) : ( ( ) ( ) Element of bool (bool the carrier of T : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty ) set ) : ( ( ) ( non empty ) set ) ) & - 1 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural finite cardinal V89() V90() ext-real positive non negative integer ) Element of NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal ) Element of bool REAL : ( ( ) ( ) set ) : ( ( ) ( non empty ) set ) ) ) : ( ( ) ( non empty V89() V90() ext-real non positive negative integer ) Element of REAL : ( ( ) ( ) set ) ) <= it : ( ( ) ( ) Element of T : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopStruct ) ) & ( for i being ( ( integer ) ( V89() V90() ext-real integer ) Integer) st - 1 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural finite cardinal V89() V90() ext-real positive non negative integer ) Element of NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal ) Element of bool REAL : ( ( ) ( ) set ) : ( ( ) ( non empty ) set ) ) ) : ( ( ) ( non empty V89() V90() ext-real non positive negative integer ) Element of REAL : ( ( ) ( ) set ) ) <= i : ( ( integer ) ( V89() V90() ext-real integer ) Integer) & G : ( ( ) ( ) set ) c= (Seq_of_ind T : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopStruct ) ) : ( ( Function-like quasi_total ) ( non empty Relation-like NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal ) Element of bool REAL : ( ( ) ( ) set ) : ( ( ) ( non empty ) set ) ) -defined bool (bool the carrier of T : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty ) Element of bool (bool the carrier of T : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty ) set ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty ) Element of bool (bool (bool the carrier of T : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty ) Element of bool (bool the carrier of T : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty ) set ) : ( ( ) ( non empty ) set ) ) ) : ( ( ) ( non empty ) set ) : ( ( ) ( non empty ) set ) ) -valued Function-like V14( NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal ) Element of bool REAL : ( ( ) ( ) set ) : ( ( ) ( non empty ) set ) ) ) quasi_total non-descending ) SetSequence of ( ( ) ( non empty ) Element of bool (bool (bool the carrier of T : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty ) Element of bool (bool the carrier of T : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty ) set ) : ( ( ) ( non empty ) set ) ) ) : ( ( ) ( non empty ) set ) : ( ( ) ( non empty ) set ) ) ) . (i : ( ( integer ) ( V89() V90() ext-real integer ) Integer) + 1 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural finite cardinal V89() V90() ext-real positive non negative integer ) Element of NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal ) Element of bool REAL : ( ( ) ( ) set ) : ( ( ) ( non empty ) set ) ) ) ) : ( ( ) ( V89() V90() ext-real integer ) Element of REAL : ( ( ) ( ) set ) ) : ( ( ) ( ) Element of bool (bool the carrier of T : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty ) set ) : ( ( ) ( non empty ) set ) ) holds
it : ( ( ) ( ) Element of T : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopStruct ) ) <= i : ( ( integer ) ( V89() V90() ext-real integer ) Integer) ) );
end;

theorem :: TOPDIM_1:10
for T being ( ( TopSpace-like ) ( TopSpace-like ) TopSpace)
for G being ( ( ) ( ) Subset-Family of ) holds
( ( ind G : ( ( ) ( ) Subset-Family of ) : ( ( integer ) ( V89() V90() ext-real integer ) Integer) = - 1 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural finite cardinal V89() V90() ext-real positive non negative integer ) Element of NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal ) Element of bool REAL : ( ( ) ( ) set ) : ( ( ) ( non empty ) set ) ) ) : ( ( ) ( non empty V89() V90() ext-real non positive negative integer ) Element of REAL : ( ( ) ( ) set ) ) & G : ( ( ) ( ) Subset-Family of ) is finite-ind ) iff G : ( ( ) ( ) Subset-Family of ) c= {({} T : ( ( TopSpace-like ) ( TopSpace-like ) TopSpace) ) : ( ( ) ( empty Relation-like non-empty empty-yielding epsilon-transitive epsilon-connected ordinal T-Sequence-like c=-linear natural finite finite-yielding V32() cardinal {} : ( ( ) ( ) set ) -element open closed boundary nowhere_dense V89() V90() compact ext-real non positive non negative integer finite-ind ) Element of bool the carrier of b1 : ( ( TopSpace-like ) ( TopSpace-like ) TopSpace) : ( ( ) ( ) set ) : ( ( ) ( non empty ) set ) ) } : ( ( ) ( non empty trivial finite V32() 1 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural finite cardinal V89() V90() ext-real positive non negative integer ) Element of NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal ) Element of bool REAL : ( ( ) ( ) set ) : ( ( ) ( non empty ) set ) ) ) -element ) Element of bool (bool the carrier of b1 : ( ( TopSpace-like ) ( TopSpace-like ) TopSpace) : ( ( ) ( ) set ) ) : ( ( ) ( non empty ) set ) : ( ( ) ( non empty ) set ) ) ) ;

theorem :: TOPDIM_1:11
for T being ( ( TopSpace-like ) ( TopSpace-like ) TopSpace)
for G being ( ( ) ( ) Subset-Family of )
for I being ( ( integer ) ( V89() V90() ext-real integer ) Integer) holds
( G : ( ( ) ( ) Subset-Family of ) is finite-ind & ind G : ( ( ) ( ) Subset-Family of ) : ( ( integer ) ( V89() V90() ext-real integer ) Integer) <= I : ( ( integer ) ( V89() V90() ext-real integer ) Integer) iff ( - 1 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural finite cardinal V89() V90() ext-real positive non negative integer ) Element of NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal ) Element of bool REAL : ( ( ) ( ) set ) : ( ( ) ( non empty ) set ) ) ) : ( ( ) ( non empty V89() V90() ext-real non positive negative integer ) Element of REAL : ( ( ) ( ) set ) ) <= I : ( ( integer ) ( V89() V90() ext-real integer ) Integer) & ( for A being ( ( ) ( ) Subset of ) st A : ( ( ) ( ) Subset of ) in G : ( ( ) ( ) Subset-Family of ) holds
( A : ( ( ) ( ) Subset of ) is finite-ind & ind A : ( ( ) ( ) Subset of ) : ( ( integer ) ( V89() V90() ext-real integer ) Integer) <= I : ( ( integer ) ( V89() V90() ext-real integer ) Integer) ) ) ) ) ;

theorem :: TOPDIM_1:12
for T being ( ( TopSpace-like ) ( TopSpace-like ) TopSpace)
for G1, G2 being ( ( ) ( ) Subset-Family of ) st G1 : ( ( ) ( ) Subset-Family of ) is finite-ind & G2 : ( ( ) ( ) Subset-Family of ) c= G1 : ( ( ) ( ) Subset-Family of ) holds
( G2 : ( ( ) ( ) Subset-Family of ) is finite-ind & ind G2 : ( ( ) ( ) Subset-Family of ) : ( ( integer ) ( V89() V90() ext-real integer ) Integer) <= ind G1 : ( ( ) ( ) Subset-Family of ) : ( ( integer ) ( V89() V90() ext-real integer ) Integer) ) ;

registration
let T be ( ( TopSpace-like ) ( TopSpace-like ) TopSpace) ;
let G1, G2 be ( ( finite-ind ) ( finite-ind ) Subset-Family of ) ;
cluster G1 : ( ( finite-ind ) ( finite-ind ) Element of bool (bool the carrier of T : ( ( TopSpace-like ) ( TopSpace-like ) TopStruct ) : ( ( ) ( ) set ) ) : ( ( ) ( non empty ) set ) : ( ( ) ( non empty ) set ) ) \/ G2 : ( ( finite-ind ) ( finite-ind ) Element of bool (bool the carrier of T : ( ( TopSpace-like ) ( TopSpace-like ) TopStruct ) : ( ( ) ( ) set ) ) : ( ( ) ( non empty ) set ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( ) set ) -> finite-ind for ( ( ) ( ) Subset-Family of ) ;
end;

theorem :: TOPDIM_1:13
for T being ( ( TopSpace-like ) ( TopSpace-like ) TopSpace)
for G, G1 being ( ( ) ( ) Subset-Family of )
for I being ( ( integer ) ( V89() V90() ext-real integer ) Integer) st G : ( ( ) ( ) Subset-Family of ) is finite-ind & G1 : ( ( ) ( ) Subset-Family of ) is finite-ind & ind G : ( ( ) ( ) Subset-Family of ) : ( ( integer ) ( V89() V90() ext-real integer ) Integer) <= I : ( ( integer ) ( V89() V90() ext-real integer ) Integer) & ind G1 : ( ( ) ( ) Subset-Family of ) : ( ( integer ) ( V89() V90() ext-real integer ) Integer) <= I : ( ( integer ) ( V89() V90() ext-real integer ) Integer) holds
ind (G : ( ( ) ( ) Subset-Family of ) \/ G1 : ( ( ) ( ) Subset-Family of ) ) : ( ( ) ( ) Element of bool (bool the carrier of b1 : ( ( TopSpace-like ) ( TopSpace-like ) TopSpace) : ( ( ) ( ) set ) ) : ( ( ) ( non empty ) set ) : ( ( ) ( non empty ) set ) ) : ( ( integer ) ( V89() V90() ext-real integer ) Integer) <= I : ( ( integer ) ( V89() V90() ext-real integer ) Integer) ;

definition
let T be ( ( TopSpace-like ) ( TopSpace-like ) TopSpace) ;
func ind T -> ( ( integer ) ( V89() V90() ext-real integer ) Integer) equals :: TOPDIM_1:def 7
ind ([#] T : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopStruct ) ) : ( ( ) ( non empty non proper open closed dense non boundary ) Element of bool the carrier of T : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopStruct ) : ( ( ) ( non empty ) set ) : ( ( ) ( non empty ) set ) ) : ( ( integer ) ( V89() V90() ext-real integer ) Integer) ;
end;

registration
let T be ( ( non empty TopSpace-like finite-ind ) ( non empty TopSpace-like finite-ind ) TopSpace) ;
cluster ind T : ( ( non empty TopSpace-like finite-ind ) ( non empty TopSpace-like finite-ind ) TopStruct ) : ( ( integer ) ( V89() V90() ext-real integer ) Integer) -> natural integer ;
end;

theorem :: TOPDIM_1:14
for X being ( ( non empty ) ( non empty ) set ) holds ind (1TopSp X : ( ( non empty ) ( non empty ) set ) ) : ( ( ) ( non empty strict TopSpace-like finite-ind ) TopStruct ) : ( ( integer ) ( epsilon-transitive epsilon-connected ordinal natural finite cardinal V89() V90() ext-real non negative integer ) Integer) = 0 : ( ( ) ( epsilon-transitive epsilon-connected ordinal natural finite cardinal V89() V90() ext-real non negative integer ) Element of NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal ) Element of bool REAL : ( ( ) ( ) set ) : ( ( ) ( non empty ) set ) ) ) ;

theorem :: TOPDIM_1:15
for T being ( ( TopSpace-like ) ( TopSpace-like ) TopSpace) st ex n being ( ( natural ) ( epsilon-transitive epsilon-connected ordinal natural finite cardinal V89() V90() ext-real non negative integer ) Nat) st
for p being ( ( ) ( ) Point of ( ( ) ( ) set ) )
for U being ( ( open ) ( open ) Subset of ) st p : ( ( ) ( ) Point of ( ( ) ( ) set ) ) in U : ( ( open ) ( open ) Subset of ) holds
ex W being ( ( open ) ( open ) Subset of ) st
( p : ( ( ) ( ) Point of ( ( ) ( ) set ) ) in W : ( ( open ) ( open ) Subset of ) & W : ( ( open ) ( open ) Subset of ) c= U : ( ( open ) ( open ) Subset of ) & Fr W : ( ( open ) ( open ) Subset of ) : ( ( ) ( closed boundary nowhere_dense ) Element of bool the carrier of b1 : ( ( TopSpace-like ) ( TopSpace-like ) TopSpace) : ( ( ) ( ) set ) : ( ( ) ( non empty ) set ) ) is finite-ind & ind (Fr W : ( ( open ) ( open ) Subset of ) ) : ( ( ) ( closed boundary nowhere_dense ) Element of bool the carrier of b1 : ( ( TopSpace-like ) ( TopSpace-like ) TopSpace) : ( ( ) ( ) set ) : ( ( ) ( non empty ) set ) ) : ( ( integer ) ( V89() V90() ext-real integer ) Integer) <= n : ( ( natural ) ( epsilon-transitive epsilon-connected ordinal natural finite cardinal V89() V90() ext-real non negative integer ) Nat) - 1 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural finite cardinal V89() V90() ext-real positive non negative integer ) Element of NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal ) Element of bool REAL : ( ( ) ( ) set ) : ( ( ) ( non empty ) set ) ) ) : ( ( ) ( V89() V90() ext-real integer ) Element of REAL : ( ( ) ( ) set ) ) ) holds
T : ( ( TopSpace-like ) ( TopSpace-like ) TopSpace) is finite-ind ;

theorem :: TOPDIM_1:16
for n being ( ( natural ) ( epsilon-transitive epsilon-connected ordinal natural finite cardinal V89() V90() ext-real non negative integer ) Nat)
for Tf being ( ( TopSpace-like finite-ind ) ( TopSpace-like finite-ind ) TopSpace) holds
( ind Tf : ( ( TopSpace-like finite-ind ) ( TopSpace-like finite-ind ) TopSpace) : ( ( integer ) ( V89() V90() ext-real integer ) Integer) <= n : ( ( natural ) ( epsilon-transitive epsilon-connected ordinal natural finite cardinal V89() V90() ext-real non negative integer ) Nat) iff for p being ( ( ) ( ) Point of ( ( ) ( ) set ) )
for U being ( ( open ) ( open ) Subset of ) st p : ( ( ) ( ) Point of ( ( ) ( ) set ) ) in U : ( ( open ) ( open ) Subset of ) holds
ex W being ( ( open ) ( open ) Subset of ) st
( p : ( ( ) ( ) Point of ( ( ) ( ) set ) ) in W : ( ( open ) ( open ) Subset of ) & W : ( ( open ) ( open ) Subset of ) c= U : ( ( open ) ( open ) Subset of ) & Fr W : ( ( open ) ( open ) Subset of ) : ( ( ) ( closed boundary nowhere_dense ) Element of bool the carrier of b2 : ( ( TopSpace-like finite-ind ) ( TopSpace-like finite-ind ) TopSpace) : ( ( ) ( ) set ) : ( ( ) ( non empty ) set ) ) is finite-ind & ind (Fr W : ( ( open ) ( open ) Subset of ) ) : ( ( ) ( closed boundary nowhere_dense ) Element of bool the carrier of b2 : ( ( TopSpace-like finite-ind ) ( TopSpace-like finite-ind ) TopSpace) : ( ( ) ( ) set ) : ( ( ) ( non empty ) set ) ) : ( ( integer ) ( V89() V90() ext-real integer ) Integer) <= n : ( ( natural ) ( epsilon-transitive epsilon-connected ordinal natural finite cardinal V89() V90() ext-real non negative integer ) Nat) - 1 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural finite cardinal V89() V90() ext-real positive non negative integer ) Element of NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal ) Element of bool REAL : ( ( ) ( ) set ) : ( ( ) ( non empty ) set ) ) ) : ( ( ) ( V89() V90() ext-real integer ) Element of REAL : ( ( ) ( ) set ) ) ) ) ;

begin

registration
let Tf be ( ( TopSpace-like finite-ind ) ( TopSpace-like finite-ind ) TopSpace) ;
cluster -> finite-ind for ( ( ) ( ) Element of bool the carrier of Tf : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopStruct ) : ( ( ) ( non empty ) set ) : ( ( ) ( non empty ) set ) ) ;
end;

registration
let T be ( ( TopSpace-like ) ( TopSpace-like ) TopSpace) ;
let Af be ( ( finite-ind ) ( finite-ind ) Subset of ) ;
cluster T : ( ( TopSpace-like ) ( TopSpace-like ) TopStruct ) | Af : ( ( finite-ind ) ( finite-ind ) Element of bool the carrier of T : ( ( TopSpace-like ) ( TopSpace-like ) TopStruct ) : ( ( ) ( ) set ) : ( ( ) ( non empty ) set ) ) : ( ( strict ) ( strict TopSpace-like ) SubSpace of T : ( ( TopSpace-like ) ( TopSpace-like ) TopStruct ) ) -> strict finite-ind ;
end;

theorem :: TOPDIM_1:17
for T being ( ( TopSpace-like ) ( TopSpace-like ) TopSpace)
for Af being ( ( finite-ind ) ( finite-ind ) Subset of ) holds ind (T : ( ( TopSpace-like ) ( TopSpace-like ) TopSpace) | Af : ( ( finite-ind ) ( finite-ind ) Subset of ) ) : ( ( strict ) ( strict TopSpace-like finite-ind ) SubSpace of b1 : ( ( TopSpace-like ) ( TopSpace-like ) TopSpace) ) : ( ( integer ) ( V89() V90() ext-real integer ) Integer) = ind Af : ( ( finite-ind ) ( finite-ind ) Subset of ) : ( ( integer ) ( V89() V90() ext-real integer ) Integer) ;

theorem :: TOPDIM_1:18
for T being ( ( TopSpace-like ) ( TopSpace-like ) TopSpace)
for A being ( ( ) ( ) Subset of ) st T : ( ( TopSpace-like ) ( TopSpace-like ) TopSpace) | A : ( ( ) ( ) Subset of ) : ( ( strict ) ( strict TopSpace-like ) SubSpace of b1 : ( ( TopSpace-like ) ( TopSpace-like ) TopSpace) ) is finite-ind holds
A : ( ( ) ( ) Subset of ) is finite-ind ;

theorem :: TOPDIM_1:19
for T being ( ( TopSpace-like ) ( TopSpace-like ) TopSpace)
for A being ( ( ) ( ) Subset of )
for Af being ( ( finite-ind ) ( finite-ind ) Subset of ) st A : ( ( ) ( ) Subset of ) c= Af : ( ( finite-ind ) ( finite-ind ) Subset of ) holds
( A : ( ( ) ( ) Subset of ) is finite-ind & ind A : ( ( ) ( ) Subset of ) : ( ( integer ) ( V89() V90() ext-real integer ) Integer) <= ind Af : ( ( finite-ind ) ( finite-ind ) Subset of ) : ( ( integer ) ( V89() V90() ext-real integer ) Integer) ) ;

theorem :: TOPDIM_1:20
for Tf being ( ( TopSpace-like finite-ind ) ( TopSpace-like finite-ind ) TopSpace)
for A being ( ( ) ( finite-ind ) Subset of ) holds ind A : ( ( ) ( finite-ind ) Subset of ) : ( ( integer ) ( V89() V90() ext-real integer ) Integer) <= ind Tf : ( ( TopSpace-like finite-ind ) ( TopSpace-like finite-ind ) TopSpace) : ( ( integer ) ( V89() V90() ext-real integer ) Integer) ;

theorem :: TOPDIM_1:21
for T being ( ( TopSpace-like ) ( TopSpace-like ) TopSpace)
for A, B being ( ( ) ( ) Subset of )
for F being ( ( ) ( ) Subset of ) st F : ( ( ) ( finite-ind ) Subset of ) = B : ( ( ) ( ) Subset of ) & B : ( ( ) ( ) Subset of ) is finite-ind holds
( F : ( ( ) ( finite-ind ) Subset of ) is finite-ind & ind F : ( ( ) ( finite-ind ) Subset of ) : ( ( integer ) ( V89() V90() ext-real integer ) Integer) = ind B : ( ( ) ( ) Subset of ) : ( ( integer ) ( V89() V90() ext-real integer ) Integer) ) ;

theorem :: TOPDIM_1:22
for T being ( ( TopSpace-like ) ( TopSpace-like ) TopSpace)
for A, B being ( ( ) ( ) Subset of )
for F being ( ( ) ( ) Subset of ) st F : ( ( ) ( finite-ind ) Subset of ) = B : ( ( ) ( ) Subset of ) & F : ( ( ) ( finite-ind ) Subset of ) is finite-ind holds
( B : ( ( ) ( ) Subset of ) is finite-ind & ind F : ( ( ) ( finite-ind ) Subset of ) : ( ( integer ) ( V89() V90() ext-real integer ) Integer) = ind B : ( ( ) ( ) Subset of ) : ( ( integer ) ( V89() V90() ext-real integer ) Integer) ) ;

theorem :: TOPDIM_1:23
for n being ( ( natural ) ( epsilon-transitive epsilon-connected ordinal natural finite cardinal V89() V90() ext-real non negative integer ) Nat)
for T being ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) st T : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) is regular holds
( ( T : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) is finite-ind & ind T : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( integer ) ( V89() V90() ext-real integer ) Integer) <= n : ( ( natural ) ( epsilon-transitive epsilon-connected ordinal natural finite cardinal V89() V90() ext-real non negative integer ) Nat) ) iff for A being ( ( closed ) ( closed ) Subset of )
for p being ( ( ) ( ) Point of ( ( ) ( non empty ) set ) ) st not p : ( ( ) ( ) Point of ( ( ) ( non empty ) set ) ) in A : ( ( closed ) ( closed ) Subset of ) holds
ex L being ( ( ) ( ) Subset of ) st
( L : ( ( ) ( ) Subset of ) separates {p : ( ( ) ( ) Point of ( ( ) ( non empty ) set ) ) } : ( ( ) ( non empty trivial finite 1 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural finite cardinal V89() V90() ext-real positive non negative integer ) Element of NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal ) Element of bool REAL : ( ( ) ( ) set ) : ( ( ) ( non empty ) set ) ) ) -element compact finite-ind ) Element of bool the carrier of b2 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) : ( ( ) ( non empty ) set ) ) ,A : ( ( closed ) ( closed ) Subset of ) & L : ( ( ) ( ) Subset of ) is finite-ind & ind L : ( ( ) ( ) Subset of ) : ( ( integer ) ( V89() V90() ext-real integer ) Integer) <= n : ( ( natural ) ( epsilon-transitive epsilon-connected ordinal natural finite cardinal V89() V90() ext-real non negative integer ) Nat) - 1 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural finite cardinal V89() V90() ext-real positive non negative integer ) Element of NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal ) Element of bool REAL : ( ( ) ( ) set ) : ( ( ) ( non empty ) set ) ) ) : ( ( ) ( V89() V90() ext-real integer ) Element of REAL : ( ( ) ( ) set ) ) ) ) ;

theorem :: TOPDIM_1:24
for T1, T2 being ( ( TopSpace-like ) ( TopSpace-like ) TopSpace) st T1 : ( ( TopSpace-like ) ( TopSpace-like ) TopSpace) ,T2 : ( ( TopSpace-like ) ( TopSpace-like ) TopSpace) are_homeomorphic holds
( T1 : ( ( TopSpace-like ) ( TopSpace-like ) TopSpace) is finite-ind iff T2 : ( ( TopSpace-like ) ( TopSpace-like ) TopSpace) is finite-ind ) ;

theorem :: TOPDIM_1:25
for T1, T2 being ( ( TopSpace-like ) ( TopSpace-like ) TopSpace) st T1 : ( ( TopSpace-like ) ( TopSpace-like ) TopSpace) ,T2 : ( ( TopSpace-like ) ( TopSpace-like ) TopSpace) are_homeomorphic & T1 : ( ( TopSpace-like ) ( TopSpace-like ) TopSpace) is finite-ind holds
ind T1 : ( ( TopSpace-like ) ( TopSpace-like ) TopSpace) : ( ( integer ) ( V89() V90() ext-real integer ) Integer) = ind T2 : ( ( TopSpace-like ) ( TopSpace-like ) TopSpace) : ( ( integer ) ( V89() V90() ext-real integer ) Integer) ;

theorem :: TOPDIM_1:26
for T1, T2 being ( ( TopSpace-like ) ( TopSpace-like ) TopSpace)
for A1 being ( ( ) ( ) Subset of )
for A2 being ( ( ) ( ) Subset of ) st A1 : ( ( ) ( ) Subset of ) ,A2 : ( ( ) ( ) Subset of ) are_homeomorphic holds
( A1 : ( ( ) ( ) Subset of ) is finite-ind iff A2 : ( ( ) ( ) Subset of ) is finite-ind ) ;

theorem :: TOPDIM_1:27
for T1, T2 being ( ( TopSpace-like ) ( TopSpace-like ) TopSpace)
for A1 being ( ( ) ( ) Subset of )
for A2 being ( ( ) ( ) Subset of ) st A1 : ( ( ) ( ) Subset of ) ,A2 : ( ( ) ( ) Subset of ) are_homeomorphic & A1 : ( ( ) ( ) Subset of ) is finite-ind holds
ind A1 : ( ( ) ( ) Subset of ) : ( ( integer ) ( V89() V90() ext-real integer ) Integer) = ind A2 : ( ( ) ( ) Subset of ) : ( ( integer ) ( V89() V90() ext-real integer ) Integer) ;

theorem :: TOPDIM_1:28
for T1, T2 being ( ( TopSpace-like ) ( TopSpace-like ) TopSpace) st [:T1 : ( ( TopSpace-like ) ( TopSpace-like ) TopSpace) ,T2 : ( ( TopSpace-like ) ( TopSpace-like ) TopSpace) :] : ( ( strict TopSpace-like ) ( strict TopSpace-like ) TopStruct ) is finite-ind holds
( [:T2 : ( ( TopSpace-like ) ( TopSpace-like ) TopSpace) ,T1 : ( ( TopSpace-like ) ( TopSpace-like ) TopSpace) :] : ( ( strict TopSpace-like ) ( strict TopSpace-like ) TopStruct ) is finite-ind & ind [:T1 : ( ( TopSpace-like ) ( TopSpace-like ) TopSpace) ,T2 : ( ( TopSpace-like ) ( TopSpace-like ) TopSpace) :] : ( ( strict TopSpace-like ) ( strict TopSpace-like ) TopStruct ) : ( ( integer ) ( V89() V90() ext-real integer ) Integer) = ind [:T2 : ( ( TopSpace-like ) ( TopSpace-like ) TopSpace) ,T1 : ( ( TopSpace-like ) ( TopSpace-like ) TopSpace) :] : ( ( strict TopSpace-like ) ( strict TopSpace-like ) TopStruct ) : ( ( integer ) ( V89() V90() ext-real integer ) Integer) ) ;

theorem :: TOPDIM_1:29
for T being ( ( TopSpace-like ) ( TopSpace-like ) TopSpace)
for A being ( ( ) ( ) Subset of )
for G being ( ( ) ( ) Subset-Family of )
for Ga being ( ( ) ( ) Subset-Family of ) st Ga : ( ( ) ( ) Subset-Family of ) is finite-ind & Ga : ( ( ) ( ) Subset-Family of ) = G : ( ( ) ( ) Subset-Family of ) holds
( G : ( ( ) ( ) Subset-Family of ) is finite-ind & ind G : ( ( ) ( ) Subset-Family of ) : ( ( integer ) ( V89() V90() ext-real integer ) Integer) = ind Ga : ( ( ) ( ) Subset-Family of ) : ( ( integer ) ( V89() V90() ext-real integer ) Integer) ) ;

theorem :: TOPDIM_1:30
for T being ( ( TopSpace-like ) ( TopSpace-like ) TopSpace)
for A being ( ( ) ( ) Subset of )
for G being ( ( ) ( ) Subset-Family of )
for Ga being ( ( ) ( ) Subset-Family of ) st G : ( ( ) ( ) Subset-Family of ) is finite-ind & Ga : ( ( ) ( ) Subset-Family of ) = G : ( ( ) ( ) Subset-Family of ) holds
( Ga : ( ( ) ( ) Subset-Family of ) is finite-ind & ind G : ( ( ) ( ) Subset-Family of ) : ( ( integer ) ( V89() V90() ext-real integer ) Integer) = ind Ga : ( ( ) ( ) Subset-Family of ) : ( ( integer ) ( V89() V90() ext-real integer ) Integer) ) ;

begin

theorem :: TOPDIM_1:31
for T being ( ( TopSpace-like ) ( TopSpace-like ) TopSpace)
for n being ( ( natural ) ( epsilon-transitive epsilon-connected ordinal natural finite cardinal V89() V90() ext-real non negative integer ) Nat) holds
( ( T : ( ( TopSpace-like ) ( TopSpace-like ) TopSpace) is finite-ind & ind T : ( ( TopSpace-like ) ( TopSpace-like ) TopSpace) : ( ( integer ) ( V89() V90() ext-real integer ) Integer) <= n : ( ( natural ) ( epsilon-transitive epsilon-connected ordinal natural finite cardinal V89() V90() ext-real non negative integer ) Nat) ) iff ex Bas being ( ( open V91(b1 : ( ( TopSpace-like ) ( TopSpace-like ) TopSpace) ) ) ( open V91(b1 : ( ( TopSpace-like ) ( TopSpace-like ) TopSpace) ) ) Basis of T : ( ( TopSpace-like ) ( TopSpace-like ) TopSpace) ) st
for A being ( ( ) ( ) Subset of ) st A : ( ( ) ( ) Subset of ) in Bas : ( ( open V91(b1 : ( ( TopSpace-like ) ( TopSpace-like ) TopSpace) ) ) ( open V91(b1 : ( ( TopSpace-like ) ( TopSpace-like ) TopSpace) ) ) Basis of b1 : ( ( TopSpace-like ) ( TopSpace-like ) TopSpace) ) holds
( Fr A : ( ( ) ( ) Subset of ) : ( ( ) ( closed ) Element of bool the carrier of b1 : ( ( TopSpace-like ) ( TopSpace-like ) TopSpace) : ( ( ) ( ) set ) : ( ( ) ( non empty ) set ) ) is finite-ind & ind (Fr A : ( ( ) ( ) Subset of ) ) : ( ( ) ( closed ) Element of bool the carrier of b1 : ( ( TopSpace-like ) ( TopSpace-like ) TopSpace) : ( ( ) ( ) set ) : ( ( ) ( non empty ) set ) ) : ( ( integer ) ( V89() V90() ext-real integer ) Integer) <= n : ( ( natural ) ( epsilon-transitive epsilon-connected ordinal natural finite cardinal V89() V90() ext-real non negative integer ) Nat) - 1 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural finite cardinal V89() V90() ext-real positive non negative integer ) Element of NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal ) Element of bool REAL : ( ( ) ( ) set ) : ( ( ) ( non empty ) set ) ) ) : ( ( ) ( V89() V90() ext-real integer ) Element of REAL : ( ( ) ( ) set ) ) ) ) ;

theorem :: TOPDIM_1:32
for T being ( ( TopSpace-like ) ( TopSpace-like ) TopSpace) st T : ( ( TopSpace-like ) ( TopSpace-like ) TopSpace) is T_1 & ( for A, B being ( ( closed ) ( closed ) Subset of ) st A : ( ( closed ) ( closed ) Subset of ) misses B : ( ( closed ) ( closed ) Subset of ) holds
ex A9, B9 being ( ( closed ) ( closed ) Subset of ) st
( A9 : ( ( closed ) ( closed ) Subset of ) misses B9 : ( ( closed ) ( closed ) Subset of ) & A9 : ( ( closed ) ( closed ) Subset of ) \/ B9 : ( ( closed ) ( closed ) Subset of ) : ( ( ) ( closed ) Element of bool the carrier of b1 : ( ( TopSpace-like ) ( TopSpace-like ) TopSpace) : ( ( ) ( ) set ) : ( ( ) ( non empty ) set ) ) = [#] T : ( ( TopSpace-like ) ( TopSpace-like ) TopSpace) : ( ( ) ( non proper open closed dense ) Element of bool the carrier of b1 : ( ( TopSpace-like ) ( TopSpace-like ) TopSpace) : ( ( ) ( ) set ) : ( ( ) ( non empty ) set ) ) & A : ( ( closed ) ( closed ) Subset of ) c= A9 : ( ( closed ) ( closed ) Subset of ) & B : ( ( closed ) ( closed ) Subset of ) c= B9 : ( ( closed ) ( closed ) Subset of ) ) ) holds
( T : ( ( TopSpace-like ) ( TopSpace-like ) TopSpace) is finite-ind & ind T : ( ( TopSpace-like ) ( TopSpace-like ) TopSpace) : ( ( integer ) ( V89() V90() ext-real integer ) Integer) <= 0 : ( ( ) ( epsilon-transitive epsilon-connected ordinal natural finite cardinal V89() V90() ext-real non negative integer ) Element of NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal ) Element of bool REAL : ( ( ) ( ) set ) : ( ( ) ( non empty ) set ) ) ) ) ;

theorem :: TOPDIM_1:33
for X being ( ( ) ( ) set )
for f being ( ( Function-like quasi_total ) ( non empty Relation-like NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal ) Element of bool REAL : ( ( ) ( ) set ) : ( ( ) ( non empty ) set ) ) -defined bool b1 : ( ( ) ( ) set ) : ( ( ) ( non empty ) Element of bool (bool b1 : ( ( ) ( ) set ) ) : ( ( ) ( non empty ) set ) : ( ( ) ( non empty ) set ) ) -valued Function-like V14( NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal ) Element of bool REAL : ( ( ) ( ) set ) : ( ( ) ( non empty ) set ) ) ) quasi_total ) SetSequence of ( ( ) ( non empty ) Element of bool (bool X : ( ( ) ( ) set ) ) : ( ( ) ( non empty ) set ) : ( ( ) ( non empty ) set ) ) ) ex g being ( ( Function-like quasi_total ) ( non empty Relation-like NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal ) Element of bool REAL : ( ( ) ( ) set ) : ( ( ) ( non empty ) set ) ) -defined bool b1 : ( ( ) ( ) set ) : ( ( ) ( non empty ) Element of bool (bool b1 : ( ( ) ( ) set ) ) : ( ( ) ( non empty ) set ) : ( ( ) ( non empty ) set ) ) -valued Function-like V14( NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal ) Element of bool REAL : ( ( ) ( ) set ) : ( ( ) ( non empty ) set ) ) ) quasi_total ) SetSequence of ( ( ) ( non empty ) Element of bool (bool X : ( ( ) ( ) set ) ) : ( ( ) ( non empty ) set ) : ( ( ) ( non empty ) set ) ) ) st
( union (rng f : ( ( Function-like quasi_total ) ( non empty Relation-like NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal ) Element of bool REAL : ( ( ) ( ) set ) : ( ( ) ( non empty ) set ) ) -defined bool b1 : ( ( ) ( ) set ) : ( ( ) ( non empty ) Element of bool (bool b1 : ( ( ) ( ) set ) ) : ( ( ) ( non empty ) set ) : ( ( ) ( non empty ) set ) ) -valued Function-like V14( NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal ) Element of bool REAL : ( ( ) ( ) set ) : ( ( ) ( non empty ) set ) ) ) quasi_total ) SetSequence of ( ( ) ( non empty ) Element of bool (bool b1 : ( ( ) ( ) set ) ) : ( ( ) ( non empty ) set ) : ( ( ) ( non empty ) set ) ) ) ) : ( ( ) ( non empty ) Element of bool (bool b1 : ( ( ) ( ) set ) ) : ( ( ) ( non empty ) Element of bool (bool b1 : ( ( ) ( ) set ) ) : ( ( ) ( non empty ) set ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( ) Element of bool b1 : ( ( ) ( ) set ) : ( ( ) ( non empty ) set ) ) = union (rng g : ( ( Function-like quasi_total ) ( non empty Relation-like NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal ) Element of bool REAL : ( ( ) ( ) set ) : ( ( ) ( non empty ) set ) ) -defined bool b1 : ( ( ) ( ) set ) : ( ( ) ( non empty ) Element of bool (bool b1 : ( ( ) ( ) set ) ) : ( ( ) ( non empty ) set ) : ( ( ) ( non empty ) set ) ) -valued Function-like V14( NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal ) Element of bool REAL : ( ( ) ( ) set ) : ( ( ) ( non empty ) set ) ) ) quasi_total ) SetSequence of ( ( ) ( non empty ) Element of bool (bool b1 : ( ( ) ( ) set ) ) : ( ( ) ( non empty ) set ) : ( ( ) ( non empty ) set ) ) ) ) : ( ( ) ( non empty ) Element of bool (bool b1 : ( ( ) ( ) set ) ) : ( ( ) ( non empty ) Element of bool (bool b1 : ( ( ) ( ) set ) ) : ( ( ) ( non empty ) set ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( ) Element of bool b1 : ( ( ) ( ) set ) : ( ( ) ( non empty ) set ) ) & ( for i, j being ( ( natural ) ( epsilon-transitive epsilon-connected ordinal natural finite cardinal V89() V90() ext-real non negative integer ) Nat) st i : ( ( natural ) ( epsilon-transitive epsilon-connected ordinal natural finite cardinal V89() V90() ext-real non negative integer ) Nat) <> j : ( ( finite ) ( finite ) Subset-Family of ) holds
g : ( ( Function-like quasi_total ) ( non empty Relation-like NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal ) Element of bool REAL : ( ( ) ( ) set ) : ( ( ) ( non empty ) set ) ) -defined bool b1 : ( ( ) ( ) set ) : ( ( ) ( non empty ) Element of bool (bool b1 : ( ( ) ( ) set ) ) : ( ( ) ( non empty ) set ) : ( ( ) ( non empty ) set ) ) -valued Function-like V14( NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal ) Element of bool REAL : ( ( ) ( ) set ) : ( ( ) ( non empty ) set ) ) ) quasi_total ) SetSequence of ( ( ) ( non empty ) Element of bool (bool b1 : ( ( ) ( ) set ) ) : ( ( ) ( non empty ) set ) : ( ( ) ( non empty ) set ) ) ) . i : ( ( natural ) ( epsilon-transitive epsilon-connected ordinal natural finite cardinal V89() V90() ext-real non negative integer ) Nat) : ( ( ) ( ) Element of bool b1 : ( ( ) ( ) set ) : ( ( ) ( non empty ) Element of bool (bool b1 : ( ( ) ( ) set ) ) : ( ( ) ( non empty ) set ) : ( ( ) ( non empty ) set ) ) ) misses g : ( ( Function-like quasi_total ) ( non empty Relation-like NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal ) Element of bool REAL : ( ( ) ( ) set ) : ( ( ) ( non empty ) set ) ) -defined bool b1 : ( ( ) ( ) set ) : ( ( ) ( non empty ) Element of bool (bool b1 : ( ( ) ( ) set ) ) : ( ( ) ( non empty ) set ) : ( ( ) ( non empty ) set ) ) -valued Function-like V14( NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal ) Element of bool REAL : ( ( ) ( ) set ) : ( ( ) ( non empty ) set ) ) ) quasi_total ) SetSequence of ( ( ) ( non empty ) Element of bool (bool b1 : ( ( ) ( ) set ) ) : ( ( ) ( non empty ) set ) : ( ( ) ( non empty ) set ) ) ) . j : ( ( finite ) ( finite ) Subset-Family of ) : ( ( ) ( ) Element of bool b1 : ( ( ) ( ) set ) : ( ( ) ( non empty ) Element of bool (bool b1 : ( ( ) ( ) set ) ) : ( ( ) ( non empty ) set ) : ( ( ) ( non empty ) set ) ) ) ) & ( for n being ( ( natural ) ( epsilon-transitive epsilon-connected ordinal natural finite cardinal V89() V90() ext-real non negative integer ) Nat) ex fn being ( ( finite ) ( finite ) Subset-Family of ) st
( fn : ( ( finite ) ( finite ) Subset-Family of ) = { (f : ( ( Function-like quasi_total ) ( non empty Relation-like NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal ) Element of bool REAL : ( ( ) ( ) set ) : ( ( ) ( non empty ) set ) ) -defined bool b1 : ( ( ) ( ) set ) : ( ( ) ( non empty ) Element of bool (bool b1 : ( ( ) ( ) set ) ) : ( ( ) ( non empty ) set ) : ( ( ) ( non empty ) set ) ) -valued Function-like V14( NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal ) Element of bool REAL : ( ( ) ( ) set ) : ( ( ) ( non empty ) set ) ) ) quasi_total ) SetSequence of ( ( ) ( non empty ) Element of bool (bool b1 : ( ( ) ( ) set ) ) : ( ( ) ( non empty ) set ) : ( ( ) ( non empty ) set ) ) ) . i : ( ( ) ( epsilon-transitive epsilon-connected ordinal natural finite cardinal V89() V90() ext-real non negative integer ) Element of NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal ) Element of bool REAL : ( ( ) ( ) set ) : ( ( ) ( non empty ) set ) ) ) ) : ( ( ) ( ) Element of bool b1 : ( ( ) ( ) set ) : ( ( ) ( non empty ) Element of bool (bool b1 : ( ( ) ( ) set ) ) : ( ( ) ( non empty ) set ) : ( ( ) ( non empty ) set ) ) ) where i is ( ( ) ( epsilon-transitive epsilon-connected ordinal natural finite cardinal V89() V90() ext-real non negative integer ) Element of NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal ) Element of bool REAL : ( ( ) ( ) set ) : ( ( ) ( non empty ) set ) ) ) : i : ( ( ) ( epsilon-transitive epsilon-connected ordinal natural finite cardinal V89() V90() ext-real non negative integer ) Element of NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal ) Element of bool REAL : ( ( ) ( ) set ) : ( ( ) ( non empty ) set ) ) ) < n : ( ( natural ) ( epsilon-transitive epsilon-connected ordinal natural finite cardinal V89() V90() ext-real non negative integer ) Nat) } & g : ( ( Function-like quasi_total ) ( non empty Relation-like NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal ) Element of bool REAL : ( ( ) ( ) set ) : ( ( ) ( non empty ) set ) ) -defined bool b1 : ( ( ) ( ) set ) : ( ( ) ( non empty ) Element of bool (bool b1 : ( ( ) ( ) set ) ) : ( ( ) ( non empty ) set ) : ( ( ) ( non empty ) set ) ) -valued Function-like V14( NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal ) Element of bool REAL : ( ( ) ( ) set ) : ( ( ) ( non empty ) set ) ) ) quasi_total ) SetSequence of ( ( ) ( non empty ) Element of bool (bool b1 : ( ( ) ( ) set ) ) : ( ( ) ( non empty ) set ) : ( ( ) ( non empty ) set ) ) ) . n : ( ( natural ) ( epsilon-transitive epsilon-connected ordinal natural finite cardinal V89() V90() ext-real non negative integer ) Nat) : ( ( ) ( ) Element of bool b1 : ( ( ) ( ) set ) : ( ( ) ( non empty ) Element of bool (bool b1 : ( ( ) ( ) set ) ) : ( ( ) ( non empty ) set ) : ( ( ) ( non empty ) set ) ) ) = (f : ( ( Function-like quasi_total ) ( non empty Relation-like NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal ) Element of bool REAL : ( ( ) ( ) set ) : ( ( ) ( non empty ) set ) ) -defined bool b1 : ( ( ) ( ) set ) : ( ( ) ( non empty ) Element of bool (bool b1 : ( ( ) ( ) set ) ) : ( ( ) ( non empty ) set ) : ( ( ) ( non empty ) set ) ) -valued Function-like V14( NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal ) Element of bool REAL : ( ( ) ( ) set ) : ( ( ) ( non empty ) set ) ) ) quasi_total ) SetSequence of ( ( ) ( non empty ) Element of bool (bool b1 : ( ( ) ( ) set ) ) : ( ( ) ( non empty ) set ) : ( ( ) ( non empty ) set ) ) ) . n : ( ( natural ) ( epsilon-transitive epsilon-connected ordinal natural finite cardinal V89() V90() ext-real non negative integer ) Nat) ) : ( ( ) ( ) Element of bool b1 : ( ( ) ( ) set ) : ( ( ) ( non empty ) Element of bool (bool b1 : ( ( ) ( ) set ) ) : ( ( ) ( non empty ) set ) : ( ( ) ( non empty ) set ) ) ) \ (union fn : ( ( finite ) ( finite ) Subset-Family of ) ) : ( ( ) ( ) Element of bool b1 : ( ( ) ( ) set ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( ) Element of bool b1 : ( ( ) ( ) set ) : ( ( ) ( non empty ) set ) ) ) ) ) ;

theorem :: TOPDIM_1:34
for T being ( ( TopSpace-like ) ( TopSpace-like ) TopSpace) st T : ( ( TopSpace-like ) ( TopSpace-like ) TopSpace) is finite-ind & ind T : ( ( TopSpace-like ) ( TopSpace-like ) TopSpace) : ( ( integer ) ( V89() V90() ext-real integer ) Integer) <= 0 : ( ( ) ( epsilon-transitive epsilon-connected ordinal natural finite cardinal V89() V90() ext-real non negative integer ) Element of NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal ) Element of bool REAL : ( ( ) ( ) set ) : ( ( ) ( non empty ) set ) ) ) & T : ( ( TopSpace-like ) ( TopSpace-like ) TopSpace) is Lindelof holds
for A, B being ( ( closed ) ( closed ) Subset of ) st A : ( ( closed ) ( closed ) Subset of ) misses B : ( ( closed ) ( closed ) Subset of ) holds
ex A9, B9 being ( ( closed ) ( closed ) Subset of ) st
( A9 : ( ( closed ) ( closed ) Subset of ) misses B9 : ( ( closed ) ( closed ) Subset of ) & A9 : ( ( closed ) ( closed ) Subset of ) \/ B9 : ( ( closed ) ( closed ) Subset of ) : ( ( ) ( closed ) Element of bool the carrier of b1 : ( ( TopSpace-like ) ( TopSpace-like ) TopSpace) : ( ( ) ( ) set ) : ( ( ) ( non empty ) set ) ) = [#] T : ( ( TopSpace-like ) ( TopSpace-like ) TopSpace) : ( ( ) ( non proper open closed dense ) Element of bool the carrier of b1 : ( ( TopSpace-like ) ( TopSpace-like ) TopSpace) : ( ( ) ( ) set ) : ( ( ) ( non empty ) set ) ) & A : ( ( closed ) ( closed ) Subset of ) c= A9 : ( ( closed ) ( closed ) Subset of ) & B : ( ( closed ) ( closed ) Subset of ) c= B9 : ( ( closed ) ( closed ) Subset of ) ) ;

theorem :: TOPDIM_1:35
for T being ( ( TopSpace-like ) ( TopSpace-like ) TopSpace) st T : ( ( TopSpace-like ) ( TopSpace-like ) TopSpace) is T_1 & T : ( ( TopSpace-like ) ( TopSpace-like ) TopSpace) is Lindelof holds
( ( T : ( ( TopSpace-like ) ( TopSpace-like ) TopSpace) is finite-ind & ind T : ( ( TopSpace-like ) ( TopSpace-like ) TopSpace) : ( ( integer ) ( V89() V90() ext-real integer ) Integer) <= 0 : ( ( ) ( epsilon-transitive epsilon-connected ordinal natural finite cardinal V89() V90() ext-real non negative integer ) Element of NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal ) Element of bool REAL : ( ( ) ( ) set ) : ( ( ) ( non empty ) set ) ) ) ) iff for A, B being ( ( closed ) ( closed ) Subset of ) st A : ( ( closed ) ( closed ) Subset of ) misses B : ( ( closed ) ( closed ) Subset of ) holds
{} T : ( ( TopSpace-like ) ( TopSpace-like ) TopSpace) : ( ( ) ( empty Relation-like non-empty empty-yielding epsilon-transitive epsilon-connected ordinal T-Sequence-like c=-linear natural finite finite-yielding V32() cardinal {} : ( ( ) ( ) set ) -element open closed boundary nowhere_dense V89() V90() compact ext-real non positive non negative integer finite-ind ) Element of bool the carrier of b1 : ( ( TopSpace-like ) ( TopSpace-like ) TopSpace) : ( ( ) ( ) set ) : ( ( ) ( non empty ) set ) ) separates A : ( ( closed ) ( closed ) Subset of ) ,B : ( ( closed ) ( closed ) Subset of ) ) ;

theorem :: TOPDIM_1:36
for T being ( ( TopSpace-like ) ( TopSpace-like ) TopSpace) st T : ( ( TopSpace-like ) ( TopSpace-like ) TopSpace) is T_4 & T : ( ( TopSpace-like ) ( TopSpace-like ) TopSpace) is Lindelof & ex F being ( ( ) ( ) Subset-Family of ) st
( F : ( ( ) ( ) Subset-Family of ) is closed & F : ( ( ) ( ) Subset-Family of ) is ( ( ) ( ) Cover of ( ( ) ( ) set ) ) & F : ( ( ) ( ) Subset-Family of ) is countable & F : ( ( ) ( ) Subset-Family of ) is finite-ind & ind F : ( ( ) ( ) Subset-Family of ) : ( ( integer ) ( V89() V90() ext-real integer ) Integer) <= 0 : ( ( ) ( epsilon-transitive epsilon-connected ordinal natural finite cardinal V89() V90() ext-real non negative integer ) Element of NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal ) Element of bool REAL : ( ( ) ( ) set ) : ( ( ) ( non empty ) set ) ) ) ) holds
( T : ( ( TopSpace-like ) ( TopSpace-like ) TopSpace) is finite-ind & ind T : ( ( TopSpace-like ) ( TopSpace-like ) TopSpace) : ( ( integer ) ( V89() V90() ext-real integer ) Integer) <= 0 : ( ( ) ( epsilon-transitive epsilon-connected ordinal natural finite cardinal V89() V90() ext-real non negative integer ) Element of NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal ) Element of bool REAL : ( ( ) ( ) set ) : ( ( ) ( non empty ) set ) ) ) ) ;

theorem :: TOPDIM_1:37
for TM being ( ( TopSpace-like metrizable ) ( TopSpace-like T_0 T_1 normal T_4 metrizable ) TopSpace)
for A, B being ( ( closed ) ( closed ) Subset of ) st A : ( ( closed ) ( closed ) Subset of ) misses B : ( ( closed ) ( closed ) Subset of ) holds
for Null being ( ( finite-ind ) ( finite-ind ) Subset of ) st ind Null : ( ( finite-ind ) ( finite-ind ) Subset of ) : ( ( integer ) ( V89() V90() ext-real integer ) Integer) <= 0 : ( ( ) ( epsilon-transitive epsilon-connected ordinal natural finite cardinal V89() V90() ext-real non negative integer ) Element of NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal ) Element of bool REAL : ( ( ) ( ) set ) : ( ( ) ( non empty ) set ) ) ) & TM : ( ( TopSpace-like metrizable ) ( TopSpace-like T_0 T_1 normal T_4 metrizable ) TopSpace) | Null : ( ( finite-ind ) ( finite-ind ) Subset of ) : ( ( strict ) ( strict TopSpace-like T_0 T_1 normal T_4 metrizable finite-ind ) SubSpace of b1 : ( ( TopSpace-like metrizable ) ( TopSpace-like T_0 T_1 normal T_4 metrizable ) TopSpace) ) is second-countable holds
ex L being ( ( ) ( ) Subset of ) st
( L : ( ( ) ( ) Subset of ) separates A : ( ( closed ) ( closed ) Subset of ) ,B : ( ( closed ) ( closed ) Subset of ) & L : ( ( ) ( ) Subset of ) misses Null : ( ( finite-ind ) ( finite-ind ) Subset of ) ) ;

theorem :: TOPDIM_1:38
for TM being ( ( TopSpace-like metrizable ) ( TopSpace-like T_0 T_1 normal T_4 metrizable ) TopSpace)
for Null being ( ( ) ( ) Subset of ) st TM : ( ( TopSpace-like metrizable ) ( TopSpace-like T_0 T_1 normal T_4 metrizable ) TopSpace) | Null : ( ( ) ( ) Subset of ) : ( ( strict ) ( strict TopSpace-like T_0 T_1 normal T_4 metrizable ) SubSpace of b1 : ( ( TopSpace-like metrizable ) ( TopSpace-like T_0 T_1 normal T_4 metrizable ) TopSpace) ) is second-countable holds
( ( Null : ( ( ) ( ) Subset of ) is finite-ind & ind Null : ( ( ) ( ) Subset of ) : ( ( integer ) ( V89() V90() ext-real integer ) Integer) <= 0 : ( ( ) ( epsilon-transitive epsilon-connected ordinal natural finite cardinal V89() V90() ext-real non negative integer ) Element of NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal ) Element of bool REAL : ( ( ) ( ) set ) : ( ( ) ( non empty ) set ) ) ) ) iff for p being ( ( ) ( ) Point of ( ( ) ( ) set ) )
for U being ( ( open ) ( open ) Subset of ) st p : ( ( ) ( ) Point of ( ( ) ( ) set ) ) in U : ( ( open ) ( open ) Subset of ) holds
ex W being ( ( open ) ( open ) Subset of ) st
( p : ( ( ) ( ) Point of ( ( ) ( ) set ) ) in W : ( ( open ) ( open ) Subset of ) & W : ( ( open ) ( open ) Subset of ) c= U : ( ( open ) ( open ) Subset of ) & Null : ( ( ) ( ) Subset of ) misses Fr W : ( ( open ) ( open ) Subset of ) : ( ( ) ( closed boundary nowhere_dense ) Element of bool the carrier of b1 : ( ( TopSpace-like metrizable ) ( TopSpace-like T_0 T_1 normal T_4 metrizable ) TopSpace) : ( ( ) ( ) set ) : ( ( ) ( non empty ) set ) ) ) ) ;

theorem :: TOPDIM_1:39
for TM being ( ( TopSpace-like metrizable ) ( TopSpace-like T_0 T_1 normal T_4 metrizable ) TopSpace)
for Null being ( ( ) ( ) Subset of ) st TM : ( ( TopSpace-like metrizable ) ( TopSpace-like T_0 T_1 normal T_4 metrizable ) TopSpace) | Null : ( ( ) ( ) Subset of ) : ( ( strict ) ( strict TopSpace-like T_0 T_1 normal T_4 metrizable ) SubSpace of b1 : ( ( TopSpace-like metrizable ) ( TopSpace-like T_0 T_1 normal T_4 metrizable ) TopSpace) ) is second-countable holds
( ( Null : ( ( ) ( ) Subset of ) is finite-ind & ind Null : ( ( ) ( ) Subset of ) : ( ( integer ) ( V89() V90() ext-real integer ) Integer) <= 0 : ( ( ) ( epsilon-transitive epsilon-connected ordinal natural finite cardinal V89() V90() ext-real non negative integer ) Element of NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal ) Element of bool REAL : ( ( ) ( ) set ) : ( ( ) ( non empty ) set ) ) ) ) iff ex B being ( ( open V91(b1 : ( ( TopSpace-like metrizable ) ( TopSpace-like T_0 T_1 normal T_4 metrizable ) TopSpace) ) ) ( open V91(b1 : ( ( TopSpace-like metrizable ) ( TopSpace-like T_0 T_1 normal T_4 metrizable ) TopSpace) ) ) Basis of TM : ( ( TopSpace-like metrizable ) ( TopSpace-like T_0 T_1 normal T_4 metrizable ) TopSpace) ) st
for A being ( ( ) ( ) Subset of ) st A : ( ( ) ( ) Subset of ) in B : ( ( open V91(b1 : ( ( TopSpace-like metrizable ) ( TopSpace-like T_0 T_1 normal T_4 metrizable ) TopSpace) ) ) ( open V91(b1 : ( ( TopSpace-like metrizable ) ( TopSpace-like T_0 T_1 normal T_4 metrizable ) TopSpace) ) ) Basis of b1 : ( ( TopSpace-like metrizable ) ( TopSpace-like T_0 T_1 normal T_4 metrizable ) TopSpace) ) holds
Null : ( ( ) ( ) Subset of ) misses Fr A : ( ( ) ( ) Subset of ) : ( ( ) ( closed ) Element of bool the carrier of b1 : ( ( TopSpace-like metrizable ) ( TopSpace-like T_0 T_1 normal T_4 metrizable ) TopSpace) : ( ( ) ( ) set ) : ( ( ) ( non empty ) set ) ) ) ;

theorem :: TOPDIM_1:40
for TM being ( ( TopSpace-like metrizable ) ( TopSpace-like T_0 T_1 normal T_4 metrizable ) TopSpace)
for Null, A being ( ( ) ( ) Subset of ) st TM : ( ( TopSpace-like metrizable ) ( TopSpace-like T_0 T_1 normal T_4 metrizable ) TopSpace) | Null : ( ( ) ( ) Subset of ) : ( ( strict ) ( strict TopSpace-like T_0 T_1 normal T_4 metrizable ) SubSpace of b1 : ( ( TopSpace-like metrizable ) ( TopSpace-like T_0 T_1 normal T_4 metrizable ) TopSpace) ) is second-countable & Null : ( ( ) ( ) Subset of ) is finite-ind & A : ( ( ) ( ) Subset of ) is finite-ind & ind Null : ( ( ) ( ) Subset of ) : ( ( integer ) ( V89() V90() ext-real integer ) Integer) <= 0 : ( ( ) ( epsilon-transitive epsilon-connected ordinal natural finite cardinal V89() V90() ext-real non negative integer ) Element of NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal ) Element of bool REAL : ( ( ) ( ) set ) : ( ( ) ( non empty ) set ) ) ) holds
( A : ( ( ) ( ) Subset of ) \/ Null : ( ( ) ( ) Subset of ) : ( ( ) ( ) Element of bool the carrier of b1 : ( ( TopSpace-like metrizable ) ( TopSpace-like T_0 T_1 normal T_4 metrizable ) TopSpace) : ( ( ) ( ) set ) : ( ( ) ( non empty ) set ) ) is finite-ind & ind (A : ( ( ) ( ) Subset of ) \/ Null : ( ( ) ( ) Subset of ) ) : ( ( ) ( ) Element of bool the carrier of b1 : ( ( TopSpace-like metrizable ) ( TopSpace-like T_0 T_1 normal T_4 metrizable ) TopSpace) : ( ( ) ( ) set ) : ( ( ) ( non empty ) set ) ) : ( ( integer ) ( V89() V90() ext-real integer ) Integer) <= (ind A : ( ( ) ( ) Subset of ) ) : ( ( integer ) ( V89() V90() ext-real integer ) Integer) + 1 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural finite cardinal V89() V90() ext-real positive non negative integer ) Element of NAT : ( ( ) ( non empty non trivial epsilon-transitive epsilon-connected ordinal non finite cardinal limit_cardinal ) Element of bool REAL : ( ( ) ( ) set ) : ( ( ) ( non empty ) set ) ) ) : ( ( ) ( V89() V90() ext-real integer ) Element of REAL : ( ( ) ( ) set ) ) ) ;