:: WAYBEL23 semantic presentation

begin

theorem :: WAYBEL23:1
for L being ( ( non empty reflexive transitive antisymmetric ) ( non empty reflexive transitive antisymmetric ) Poset)
for x being ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) holds compactbelow x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) : ( ( ) ( ) Element of K32( the carrier of b1 : ( ( non empty reflexive transitive antisymmetric ) ( non empty reflexive transitive antisymmetric ) Poset) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty ) set ) ) = (waybelow x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ) : ( ( ) ( lower ) Element of K32( the carrier of b1 : ( ( non empty reflexive transitive antisymmetric ) ( non empty reflexive transitive antisymmetric ) Poset) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty ) set ) ) /\ the carrier of (CompactSublatt L : ( ( non empty reflexive transitive antisymmetric ) ( non empty reflexive transitive antisymmetric ) Poset) ) : ( ( strict full ) ( strict reflexive transitive antisymmetric full ) SubRelStr of b1 : ( ( non empty reflexive transitive antisymmetric ) ( non empty reflexive transitive antisymmetric ) Poset) ) : ( ( ) ( ) set ) : ( ( ) ( ) Element of K32( the carrier of b1 : ( ( non empty reflexive transitive antisymmetric ) ( non empty reflexive transitive antisymmetric ) Poset) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty ) set ) ) ;

definition
let L be ( ( non empty reflexive transitive ) ( non empty reflexive transitive ) RelStr ) ;
let X be ( ( ) ( ) Subset of ) ;
:: original: union
redefine func union X -> ( ( ) ( ) Subset of ) ;
end;

theorem :: WAYBEL23:2
for L being ( ( non empty ) ( non empty ) RelStr )
for X, Y being ( ( ) ( ) Subset of ) st X : ( ( ) ( ) Subset of ) c= Y : ( ( ) ( ) Subset of ) holds
finsups X : ( ( ) ( ) Subset of ) : ( ( ) ( ) Element of K32( the carrier of b1 : ( ( non empty ) ( non empty ) RelStr ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty ) set ) ) c= finsups Y : ( ( ) ( ) Subset of ) : ( ( ) ( ) Element of K32( the carrier of b1 : ( ( non empty ) ( non empty ) RelStr ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty ) set ) ) ;

theorem :: WAYBEL23:3
for L being ( ( non empty transitive ) ( non empty transitive ) RelStr )
for S being ( ( non empty full sups-inheriting ) ( non empty transitive full join-inheriting sups-inheriting directed-sups-inheriting ) SubRelStr of L : ( ( non empty transitive ) ( non empty transitive ) RelStr ) )
for X being ( ( ) ( ) Subset of )
for Y being ( ( ) ( ) Subset of ) st X : ( ( ) ( ) Subset of ) = Y : ( ( ) ( ) Subset of ) holds
finsups X : ( ( ) ( ) Subset of ) : ( ( ) ( ) Element of K32( the carrier of b1 : ( ( non empty transitive ) ( non empty transitive ) RelStr ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty ) set ) ) c= finsups Y : ( ( ) ( ) Subset of ) : ( ( ) ( ) Element of K32( the carrier of b2 : ( ( non empty full sups-inheriting ) ( non empty transitive full join-inheriting sups-inheriting directed-sups-inheriting ) SubRelStr of b1 : ( ( non empty transitive ) ( non empty transitive ) RelStr ) ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty ) set ) ) ;

theorem :: WAYBEL23:4
for L being ( ( non empty transitive antisymmetric complete ) ( non empty transitive antisymmetric lower-bounded upper-bounded bounded with_suprema with_infima complete ) RelStr )
for S being ( ( non empty full sups-inheriting ) ( non empty transitive antisymmetric full join-inheriting sups-inheriting with_suprema directed-sups-inheriting ) SubRelStr of L : ( ( non empty transitive antisymmetric complete ) ( non empty transitive antisymmetric lower-bounded upper-bounded bounded with_suprema with_infima complete ) RelStr ) )
for X being ( ( ) ( ) Subset of )
for Y being ( ( ) ( ) Subset of ) st X : ( ( ) ( ) Subset of ) = Y : ( ( ) ( ) Subset of ) holds
finsups X : ( ( ) ( ) Subset of ) : ( ( ) ( non empty ) Element of K32( the carrier of b1 : ( ( non empty transitive antisymmetric complete ) ( non empty transitive antisymmetric lower-bounded upper-bounded bounded with_suprema with_infima complete ) RelStr ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty ) set ) ) = finsups Y : ( ( ) ( ) Subset of ) : ( ( ) ( ) Element of K32( the carrier of b2 : ( ( non empty full sups-inheriting ) ( non empty transitive antisymmetric full join-inheriting sups-inheriting with_suprema directed-sups-inheriting ) SubRelStr of b1 : ( ( non empty transitive antisymmetric complete ) ( non empty transitive antisymmetric lower-bounded upper-bounded bounded with_suprema with_infima complete ) RelStr ) ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty ) set ) ) ;

theorem :: WAYBEL23:5
for L being ( ( reflexive transitive antisymmetric with_suprema complete ) ( non empty reflexive transitive antisymmetric lower-bounded upper-bounded bounded with_suprema with_infima complete up-complete /\-complete ) sup-Semilattice)
for S being ( ( non empty full join-inheriting ) ( non empty reflexive transitive antisymmetric full join-inheriting with_suprema ) SubRelStr of L : ( ( reflexive transitive antisymmetric with_suprema complete ) ( non empty reflexive transitive antisymmetric lower-bounded upper-bounded bounded with_suprema with_infima complete up-complete /\-complete ) sup-Semilattice) ) st Bottom L : ( ( reflexive transitive antisymmetric with_suprema complete ) ( non empty reflexive transitive antisymmetric lower-bounded upper-bounded bounded with_suprema with_infima complete up-complete /\-complete ) sup-Semilattice) : ( ( ) ( ) Element of the carrier of b1 : ( ( reflexive transitive antisymmetric with_suprema complete ) ( non empty reflexive transitive antisymmetric lower-bounded upper-bounded bounded with_suprema with_infima complete up-complete /\-complete ) sup-Semilattice) : ( ( ) ( non empty ) set ) ) in the carrier of S : ( ( non empty full join-inheriting ) ( non empty reflexive transitive antisymmetric full join-inheriting with_suprema ) SubRelStr of b1 : ( ( reflexive transitive antisymmetric with_suprema complete ) ( non empty reflexive transitive antisymmetric lower-bounded upper-bounded bounded with_suprema with_infima complete up-complete /\-complete ) sup-Semilattice) ) : ( ( ) ( non empty ) set ) holds
for X being ( ( ) ( ) Subset of )
for Y being ( ( ) ( ) Subset of ) st X : ( ( ) ( ) Subset of ) = Y : ( ( ) ( ) Subset of ) holds
finsups Y : ( ( ) ( ) Subset of ) : ( ( ) ( directed ) Element of K32( the carrier of b2 : ( ( non empty full join-inheriting ) ( non empty reflexive transitive antisymmetric full join-inheriting with_suprema ) SubRelStr of b1 : ( ( reflexive transitive antisymmetric with_suprema complete ) ( non empty reflexive transitive antisymmetric lower-bounded upper-bounded bounded with_suprema with_infima complete up-complete /\-complete ) sup-Semilattice) ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty ) set ) ) c= finsups X : ( ( ) ( ) Subset of ) : ( ( ) ( non empty directed ) Element of K32( the carrier of b1 : ( ( reflexive transitive antisymmetric with_suprema complete ) ( non empty reflexive transitive antisymmetric lower-bounded upper-bounded bounded with_suprema with_infima complete up-complete /\-complete ) sup-Semilattice) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty ) set ) ) ;

theorem :: WAYBEL23:6
for L being ( ( reflexive transitive antisymmetric lower-bounded with_suprema ) ( non empty reflexive transitive antisymmetric lower-bounded with_suprema ) sup-Semilattice)
for X being ( ( ) ( ) Subset of ) holds sup X : ( ( ) ( ) Subset of ) : ( ( ) ( ) Element of the carrier of (InclPoset (Ids b1 : ( ( reflexive transitive antisymmetric lower-bounded with_suprema ) ( non empty reflexive transitive antisymmetric lower-bounded with_suprema ) sup-Semilattice) ) : ( ( ) ( non empty ) set ) ) : ( ( strict ) ( non empty strict reflexive transitive antisymmetric lower-bounded upper-bounded bounded with_suprema with_infima complete up-complete /\-complete ) RelStr ) : ( ( ) ( non empty ) set ) ) = downarrow (finsups (union X : ( ( ) ( ) Subset of ) ) : ( ( ) ( ) Subset of ) ) : ( ( ) ( non empty directed ) Element of K32( the carrier of b1 : ( ( reflexive transitive antisymmetric lower-bounded with_suprema ) ( non empty reflexive transitive antisymmetric lower-bounded with_suprema ) sup-Semilattice) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty directed lower ) Element of K32( the carrier of b1 : ( ( reflexive transitive antisymmetric lower-bounded with_suprema ) ( non empty reflexive transitive antisymmetric lower-bounded with_suprema ) sup-Semilattice) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty ) set ) ) ;

theorem :: WAYBEL23:7
for L being ( ( reflexive transitive ) ( reflexive transitive ) RelStr )
for X being ( ( ) ( ) Subset of ) holds downarrow (downarrow X : ( ( ) ( ) Subset of ) ) : ( ( ) ( ) Element of K32( the carrier of b1 : ( ( reflexive transitive ) ( reflexive transitive ) RelStr ) : ( ( ) ( ) set ) ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( ) Element of K32( the carrier of b1 : ( ( reflexive transitive ) ( reflexive transitive ) RelStr ) : ( ( ) ( ) set ) ) : ( ( ) ( non empty ) set ) ) = downarrow X : ( ( ) ( ) Subset of ) : ( ( ) ( ) Element of K32( the carrier of b1 : ( ( reflexive transitive ) ( reflexive transitive ) RelStr ) : ( ( ) ( ) set ) ) : ( ( ) ( non empty ) set ) ) ;

theorem :: WAYBEL23:8
for L being ( ( reflexive transitive ) ( reflexive transitive ) RelStr )
for X being ( ( ) ( ) Subset of ) holds uparrow (uparrow X : ( ( ) ( ) Subset of ) ) : ( ( ) ( ) Element of K32( the carrier of b1 : ( ( reflexive transitive ) ( reflexive transitive ) RelStr ) : ( ( ) ( ) set ) ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( ) Element of K32( the carrier of b1 : ( ( reflexive transitive ) ( reflexive transitive ) RelStr ) : ( ( ) ( ) set ) ) : ( ( ) ( non empty ) set ) ) = uparrow X : ( ( ) ( ) Subset of ) : ( ( ) ( ) Element of K32( the carrier of b1 : ( ( reflexive transitive ) ( reflexive transitive ) RelStr ) : ( ( ) ( ) set ) ) : ( ( ) ( non empty ) set ) ) ;

theorem :: WAYBEL23:9
for L being ( ( non empty reflexive transitive ) ( non empty reflexive transitive ) RelStr )
for x being ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) holds downarrow (downarrow x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ) : ( ( ) ( non empty directed lower ) Element of K32( the carrier of b1 : ( ( non empty reflexive transitive ) ( non empty reflexive transitive ) RelStr ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty directed lower ) Element of K32( the carrier of b1 : ( ( non empty reflexive transitive ) ( non empty reflexive transitive ) RelStr ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty ) set ) ) = downarrow x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty directed lower ) Element of K32( the carrier of b1 : ( ( non empty reflexive transitive ) ( non empty reflexive transitive ) RelStr ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty ) set ) ) ;

theorem :: WAYBEL23:10
for L being ( ( non empty reflexive transitive ) ( non empty reflexive transitive ) RelStr )
for x being ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) holds uparrow (uparrow x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ) : ( ( ) ( non empty filtered upper ) Element of K32( the carrier of b1 : ( ( non empty reflexive transitive ) ( non empty reflexive transitive ) RelStr ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty filtered upper ) Element of K32( the carrier of b1 : ( ( non empty reflexive transitive ) ( non empty reflexive transitive ) RelStr ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty ) set ) ) = uparrow x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty filtered upper ) Element of K32( the carrier of b1 : ( ( non empty reflexive transitive ) ( non empty reflexive transitive ) RelStr ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty ) set ) ) ;

theorem :: WAYBEL23:11
for L being ( ( non empty ) ( non empty ) RelStr )
for S being ( ( non empty ) ( non empty ) SubRelStr of L : ( ( non empty ) ( non empty ) RelStr ) )
for X being ( ( ) ( ) Subset of )
for Y being ( ( ) ( ) Subset of ) st X : ( ( ) ( ) Subset of ) = Y : ( ( ) ( ) Subset of ) holds
downarrow Y : ( ( ) ( ) Subset of ) : ( ( ) ( ) Element of K32( the carrier of b2 : ( ( non empty ) ( non empty ) SubRelStr of b1 : ( ( non empty ) ( non empty ) RelStr ) ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty ) set ) ) c= downarrow X : ( ( ) ( ) Subset of ) : ( ( ) ( ) Element of K32( the carrier of b1 : ( ( non empty ) ( non empty ) RelStr ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty ) set ) ) ;

theorem :: WAYBEL23:12
for L being ( ( non empty ) ( non empty ) RelStr )
for S being ( ( non empty ) ( non empty ) SubRelStr of L : ( ( non empty ) ( non empty ) RelStr ) )
for X being ( ( ) ( ) Subset of )
for Y being ( ( ) ( ) Subset of ) st X : ( ( ) ( ) Subset of ) = Y : ( ( ) ( ) Subset of ) holds
uparrow Y : ( ( ) ( ) Subset of ) : ( ( ) ( ) Element of K32( the carrier of b2 : ( ( non empty ) ( non empty ) SubRelStr of b1 : ( ( non empty ) ( non empty ) RelStr ) ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty ) set ) ) c= uparrow X : ( ( ) ( ) Subset of ) : ( ( ) ( ) Element of K32( the carrier of b1 : ( ( non empty ) ( non empty ) RelStr ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty ) set ) ) ;

theorem :: WAYBEL23:13
for L being ( ( non empty ) ( non empty ) RelStr )
for S being ( ( non empty ) ( non empty ) SubRelStr of L : ( ( non empty ) ( non empty ) RelStr ) )
for x being ( ( ) ( ) Element of ( ( ) ( non empty ) set ) )
for y being ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) st x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) = y : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) holds
downarrow y : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) : ( ( ) ( ) Element of K32( the carrier of b2 : ( ( non empty ) ( non empty ) SubRelStr of b1 : ( ( non empty ) ( non empty ) RelStr ) ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty ) set ) ) c= downarrow x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) : ( ( ) ( ) Element of K32( the carrier of b1 : ( ( non empty ) ( non empty ) RelStr ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty ) set ) ) ;

theorem :: WAYBEL23:14
for L being ( ( non empty ) ( non empty ) RelStr )
for S being ( ( non empty ) ( non empty ) SubRelStr of L : ( ( non empty ) ( non empty ) RelStr ) )
for x being ( ( ) ( ) Element of ( ( ) ( non empty ) set ) )
for y being ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) st x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) = y : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) holds
uparrow y : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) : ( ( ) ( ) Element of K32( the carrier of b2 : ( ( non empty ) ( non empty ) SubRelStr of b1 : ( ( non empty ) ( non empty ) RelStr ) ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty ) set ) ) c= uparrow x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) : ( ( ) ( ) Element of K32( the carrier of b1 : ( ( non empty ) ( non empty ) RelStr ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty ) set ) ) ;

begin

definition
let L be ( ( non empty ) ( non empty ) RelStr ) ;
let S be ( ( ) ( ) Subset of ) ;
attr S is meet-closed means :: WAYBEL23:def 1
subrelstr S : ( ( ) ( ) NetStr over L : ( ( ) ( ) 1-sorted ) ) : ( ( strict full ) ( strict full ) SubRelStr of L : ( ( ) ( ) 1-sorted ) ) is meet-inheriting ;
end;

definition
let L be ( ( non empty ) ( non empty ) RelStr ) ;
let S be ( ( ) ( ) Subset of ) ;
attr S is join-closed means :: WAYBEL23:def 2
subrelstr S : ( ( ) ( ) NetStr over L : ( ( ) ( ) 1-sorted ) ) : ( ( strict full ) ( strict full ) SubRelStr of L : ( ( ) ( ) 1-sorted ) ) is join-inheriting ;
end;

definition
let L be ( ( non empty ) ( non empty ) RelStr ) ;
let S be ( ( ) ( ) Subset of ) ;
attr S is infs-closed means :: WAYBEL23:def 3
subrelstr S : ( ( ) ( ) NetStr over L : ( ( ) ( ) 1-sorted ) ) : ( ( strict full ) ( strict full ) SubRelStr of L : ( ( ) ( ) 1-sorted ) ) is infs-inheriting ;
end;

definition
let L be ( ( non empty ) ( non empty ) RelStr ) ;
let S be ( ( ) ( ) Subset of ) ;
attr S is sups-closed means :: WAYBEL23:def 4
subrelstr S : ( ( ) ( ) NetStr over L : ( ( ) ( ) 1-sorted ) ) : ( ( strict full ) ( strict full ) SubRelStr of L : ( ( ) ( ) 1-sorted ) ) is sups-inheriting ;
end;

registration
let L be ( ( non empty ) ( non empty ) RelStr ) ;
cluster infs-closed -> meet-closed for ( ( ) ( ) Element of K32( the carrier of L : ( ( ) ( ) 1-sorted ) : ( ( ) ( ) set ) ) : ( ( ) ( non empty ) set ) ) ;
cluster sups-closed -> join-closed for ( ( ) ( ) Element of K32( the carrier of L : ( ( ) ( ) 1-sorted ) : ( ( ) ( ) set ) ) : ( ( ) ( non empty ) set ) ) ;
end;

registration
let L be ( ( non empty ) ( non empty ) RelStr ) ;
cluster non empty infs-closed sups-closed for ( ( ) ( ) Element of K32( the carrier of L : ( ( non empty ) ( non empty ) RelStr ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty ) set ) ) ;
end;

theorem :: WAYBEL23:15
for L being ( ( non empty ) ( non empty ) RelStr )
for S being ( ( ) ( ) Subset of ) holds
( S : ( ( ) ( ) Subset of ) is meet-closed iff for x, y being ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) st x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) in S : ( ( ) ( ) Subset of ) & y : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) in S : ( ( ) ( ) Subset of ) & ex_inf_of {x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ,y : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) } : ( ( ) ( finite ) Element of K32( the carrier of b1 : ( ( non empty ) ( non empty ) RelStr ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty ) set ) ) ,L : ( ( non empty ) ( non empty ) RelStr ) holds
inf {x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ,y : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) } : ( ( ) ( finite ) Element of K32( the carrier of b1 : ( ( non empty ) ( non empty ) RelStr ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( ) Element of the carrier of b1 : ( ( non empty ) ( non empty ) RelStr ) : ( ( ) ( non empty ) set ) ) in S : ( ( ) ( ) Subset of ) ) ;

theorem :: WAYBEL23:16
for L being ( ( non empty ) ( non empty ) RelStr )
for S being ( ( ) ( ) Subset of ) holds
( S : ( ( ) ( ) Subset of ) is join-closed iff for x, y being ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) st x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) in S : ( ( ) ( ) Subset of ) & y : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) in S : ( ( ) ( ) Subset of ) & ex_sup_of {x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ,y : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) } : ( ( ) ( finite ) Element of K32( the carrier of b1 : ( ( non empty ) ( non empty ) RelStr ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty ) set ) ) ,L : ( ( non empty ) ( non empty ) RelStr ) holds
sup {x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ,y : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) } : ( ( ) ( finite ) Element of K32( the carrier of b1 : ( ( non empty ) ( non empty ) RelStr ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( ) Element of the carrier of b1 : ( ( non empty ) ( non empty ) RelStr ) : ( ( ) ( non empty ) set ) ) in S : ( ( ) ( ) Subset of ) ) ;

theorem :: WAYBEL23:17
for L being ( ( antisymmetric with_infima ) ( non empty antisymmetric with_infima ) RelStr )
for S being ( ( ) ( ) Subset of ) holds
( S : ( ( ) ( ) Subset of ) is meet-closed iff for x, y being ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) st x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) in S : ( ( ) ( ) Subset of ) & y : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) in S : ( ( ) ( ) Subset of ) holds
inf {x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ,y : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) } : ( ( ) ( finite ) Element of K32( the carrier of b1 : ( ( antisymmetric with_infima ) ( non empty antisymmetric with_infima ) RelStr ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( ) Element of the carrier of b1 : ( ( antisymmetric with_infima ) ( non empty antisymmetric with_infima ) RelStr ) : ( ( ) ( non empty ) set ) ) in S : ( ( ) ( ) Subset of ) ) ;

theorem :: WAYBEL23:18
for L being ( ( antisymmetric with_suprema ) ( non empty antisymmetric with_suprema ) RelStr )
for S being ( ( ) ( ) Subset of ) holds
( S : ( ( ) ( ) Subset of ) is join-closed iff for x, y being ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) st x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) in S : ( ( ) ( ) Subset of ) & y : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) in S : ( ( ) ( ) Subset of ) holds
sup {x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ,y : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) } : ( ( ) ( finite ) Element of K32( the carrier of b1 : ( ( antisymmetric with_suprema ) ( non empty antisymmetric with_suprema ) RelStr ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( ) Element of the carrier of b1 : ( ( antisymmetric with_suprema ) ( non empty antisymmetric with_suprema ) RelStr ) : ( ( ) ( non empty ) set ) ) in S : ( ( ) ( ) Subset of ) ) ;

theorem :: WAYBEL23:19
for L being ( ( non empty ) ( non empty ) RelStr )
for S being ( ( ) ( ) Subset of ) holds
( S : ( ( ) ( ) Subset of ) is infs-closed iff for X being ( ( ) ( ) Subset of ( ( ) ( non empty ) set ) ) st ex_inf_of X : ( ( ) ( ) Subset of ( ( ) ( non empty ) set ) ) ,L : ( ( non empty ) ( non empty ) RelStr ) holds
"/\" (X : ( ( ) ( ) Subset of ( ( ) ( non empty ) set ) ) ,L : ( ( non empty ) ( non empty ) RelStr ) ) : ( ( ) ( ) Element of the carrier of b1 : ( ( non empty ) ( non empty ) RelStr ) : ( ( ) ( non empty ) set ) ) in S : ( ( ) ( ) Subset of ) ) ;

theorem :: WAYBEL23:20
for L being ( ( non empty ) ( non empty ) RelStr )
for S being ( ( ) ( ) Subset of ) holds
( S : ( ( ) ( ) Subset of ) is sups-closed iff for X being ( ( ) ( ) Subset of ( ( ) ( non empty ) set ) ) st ex_sup_of X : ( ( ) ( ) Subset of ( ( ) ( non empty ) set ) ) ,L : ( ( non empty ) ( non empty ) RelStr ) holds
"\/" (X : ( ( ) ( ) Subset of ( ( ) ( non empty ) set ) ) ,L : ( ( non empty ) ( non empty ) RelStr ) ) : ( ( ) ( ) Element of the carrier of b1 : ( ( non empty ) ( non empty ) RelStr ) : ( ( ) ( non empty ) set ) ) in S : ( ( ) ( ) Subset of ) ) ;

theorem :: WAYBEL23:21
for L being ( ( non empty transitive ) ( non empty transitive ) RelStr )
for S being ( ( non empty infs-closed ) ( non empty meet-closed infs-closed ) Subset of )
for X being ( ( ) ( ) Subset of ( ( ) ( non empty ) set ) ) st ex_inf_of X : ( ( ) ( ) Subset of ( ( ) ( non empty ) set ) ) ,L : ( ( non empty transitive ) ( non empty transitive ) RelStr ) holds
( ex_inf_of X : ( ( ) ( ) Subset of ( ( ) ( non empty ) set ) ) , subrelstr S : ( ( non empty infs-closed ) ( non empty meet-closed infs-closed ) Subset of ) : ( ( strict full ) ( non empty strict transitive full ) SubRelStr of b1 : ( ( non empty transitive ) ( non empty transitive ) RelStr ) ) & "/\" (X : ( ( ) ( ) Subset of ( ( ) ( non empty ) set ) ) ,(subrelstr S : ( ( non empty infs-closed ) ( non empty meet-closed infs-closed ) Subset of ) ) : ( ( strict full ) ( non empty strict transitive full ) SubRelStr of b1 : ( ( non empty transitive ) ( non empty transitive ) RelStr ) ) ) : ( ( ) ( ) Element of the carrier of (subrelstr b2 : ( ( non empty infs-closed ) ( non empty meet-closed infs-closed ) Subset of ) ) : ( ( strict full ) ( non empty strict transitive full ) SubRelStr of b1 : ( ( non empty transitive ) ( non empty transitive ) RelStr ) ) : ( ( ) ( non empty ) set ) ) = "/\" (X : ( ( ) ( ) Subset of ( ( ) ( non empty ) set ) ) ,L : ( ( non empty transitive ) ( non empty transitive ) RelStr ) ) : ( ( ) ( ) Element of the carrier of b1 : ( ( non empty transitive ) ( non empty transitive ) RelStr ) : ( ( ) ( non empty ) set ) ) ) ;

theorem :: WAYBEL23:22
for L being ( ( non empty transitive ) ( non empty transitive ) RelStr )
for S being ( ( non empty sups-closed ) ( non empty join-closed sups-closed ) Subset of )
for X being ( ( ) ( ) Subset of ( ( ) ( non empty ) set ) ) st ex_sup_of X : ( ( ) ( ) Subset of ( ( ) ( non empty ) set ) ) ,L : ( ( non empty transitive ) ( non empty transitive ) RelStr ) holds
( ex_sup_of X : ( ( ) ( ) Subset of ( ( ) ( non empty ) set ) ) , subrelstr S : ( ( non empty sups-closed ) ( non empty join-closed sups-closed ) Subset of ) : ( ( strict full ) ( non empty strict transitive full ) SubRelStr of b1 : ( ( non empty transitive ) ( non empty transitive ) RelStr ) ) & "\/" (X : ( ( ) ( ) Subset of ( ( ) ( non empty ) set ) ) ,(subrelstr S : ( ( non empty sups-closed ) ( non empty join-closed sups-closed ) Subset of ) ) : ( ( strict full ) ( non empty strict transitive full ) SubRelStr of b1 : ( ( non empty transitive ) ( non empty transitive ) RelStr ) ) ) : ( ( ) ( ) Element of the carrier of (subrelstr b2 : ( ( non empty sups-closed ) ( non empty join-closed sups-closed ) Subset of ) ) : ( ( strict full ) ( non empty strict transitive full ) SubRelStr of b1 : ( ( non empty transitive ) ( non empty transitive ) RelStr ) ) : ( ( ) ( non empty ) set ) ) = "\/" (X : ( ( ) ( ) Subset of ( ( ) ( non empty ) set ) ) ,L : ( ( non empty transitive ) ( non empty transitive ) RelStr ) ) : ( ( ) ( ) Element of the carrier of b1 : ( ( non empty transitive ) ( non empty transitive ) RelStr ) : ( ( ) ( non empty ) set ) ) ) ;

theorem :: WAYBEL23:23
for L being ( ( non empty transitive ) ( non empty transitive ) RelStr )
for S being ( ( non empty meet-closed ) ( non empty meet-closed ) Subset of )
for x, y being ( ( ) ( ) Element of S : ( ( non empty meet-closed ) ( non empty meet-closed ) Subset of ) ) st ex_inf_of {x : ( ( ) ( ) Element of b2 : ( ( non empty meet-closed ) ( non empty meet-closed ) Subset of ) ) ,y : ( ( ) ( ) Element of b2 : ( ( non empty meet-closed ) ( non empty meet-closed ) Subset of ) ) } : ( ( ) ( finite ) Element of K32(b2 : ( ( non empty meet-closed ) ( non empty meet-closed ) Subset of ) ) : ( ( ) ( non empty ) set ) ) ,L : ( ( non empty transitive ) ( non empty transitive ) RelStr ) holds
( ex_inf_of {x : ( ( ) ( ) Element of b2 : ( ( non empty meet-closed ) ( non empty meet-closed ) Subset of ) ) ,y : ( ( ) ( ) Element of b2 : ( ( non empty meet-closed ) ( non empty meet-closed ) Subset of ) ) } : ( ( ) ( finite ) Element of K32(b2 : ( ( non empty meet-closed ) ( non empty meet-closed ) Subset of ) ) : ( ( ) ( non empty ) set ) ) , subrelstr S : ( ( non empty meet-closed ) ( non empty meet-closed ) Subset of ) : ( ( strict full ) ( non empty strict transitive full ) SubRelStr of b1 : ( ( non empty transitive ) ( non empty transitive ) RelStr ) ) & "/\" ({x : ( ( ) ( ) Element of b2 : ( ( non empty meet-closed ) ( non empty meet-closed ) Subset of ) ) ,y : ( ( ) ( ) Element of b2 : ( ( non empty meet-closed ) ( non empty meet-closed ) Subset of ) ) } : ( ( ) ( finite ) Element of K32(b2 : ( ( non empty meet-closed ) ( non empty meet-closed ) Subset of ) ) : ( ( ) ( non empty ) set ) ) ,(subrelstr S : ( ( non empty meet-closed ) ( non empty meet-closed ) Subset of ) ) : ( ( strict full ) ( non empty strict transitive full ) SubRelStr of b1 : ( ( non empty transitive ) ( non empty transitive ) RelStr ) ) ) : ( ( ) ( ) Element of the carrier of (subrelstr b2 : ( ( non empty meet-closed ) ( non empty meet-closed ) Subset of ) ) : ( ( strict full ) ( non empty strict transitive full ) SubRelStr of b1 : ( ( non empty transitive ) ( non empty transitive ) RelStr ) ) : ( ( ) ( non empty ) set ) ) = "/\" ({x : ( ( ) ( ) Element of b2 : ( ( non empty meet-closed ) ( non empty meet-closed ) Subset of ) ) ,y : ( ( ) ( ) Element of b2 : ( ( non empty meet-closed ) ( non empty meet-closed ) Subset of ) ) } : ( ( ) ( finite ) Element of K32(b2 : ( ( non empty meet-closed ) ( non empty meet-closed ) Subset of ) ) : ( ( ) ( non empty ) set ) ) ,L : ( ( non empty transitive ) ( non empty transitive ) RelStr ) ) : ( ( ) ( ) Element of the carrier of b1 : ( ( non empty transitive ) ( non empty transitive ) RelStr ) : ( ( ) ( non empty ) set ) ) ) ;

theorem :: WAYBEL23:24
for L being ( ( non empty transitive ) ( non empty transitive ) RelStr )
for S being ( ( non empty join-closed ) ( non empty join-closed ) Subset of )
for x, y being ( ( ) ( ) Element of S : ( ( non empty join-closed ) ( non empty join-closed ) Subset of ) ) st ex_sup_of {x : ( ( ) ( ) Element of b2 : ( ( non empty join-closed ) ( non empty join-closed ) Subset of ) ) ,y : ( ( ) ( ) Element of b2 : ( ( non empty join-closed ) ( non empty join-closed ) Subset of ) ) } : ( ( ) ( finite ) Element of K32(b2 : ( ( non empty join-closed ) ( non empty join-closed ) Subset of ) ) : ( ( ) ( non empty ) set ) ) ,L : ( ( non empty transitive ) ( non empty transitive ) RelStr ) holds
( ex_sup_of {x : ( ( ) ( ) Element of b2 : ( ( non empty join-closed ) ( non empty join-closed ) Subset of ) ) ,y : ( ( ) ( ) Element of b2 : ( ( non empty join-closed ) ( non empty join-closed ) Subset of ) ) } : ( ( ) ( finite ) Element of K32(b2 : ( ( non empty join-closed ) ( non empty join-closed ) Subset of ) ) : ( ( ) ( non empty ) set ) ) , subrelstr S : ( ( non empty join-closed ) ( non empty join-closed ) Subset of ) : ( ( strict full ) ( non empty strict transitive full ) SubRelStr of b1 : ( ( non empty transitive ) ( non empty transitive ) RelStr ) ) & "\/" ({x : ( ( ) ( ) Element of b2 : ( ( non empty join-closed ) ( non empty join-closed ) Subset of ) ) ,y : ( ( ) ( ) Element of b2 : ( ( non empty join-closed ) ( non empty join-closed ) Subset of ) ) } : ( ( ) ( finite ) Element of K32(b2 : ( ( non empty join-closed ) ( non empty join-closed ) Subset of ) ) : ( ( ) ( non empty ) set ) ) ,(subrelstr S : ( ( non empty join-closed ) ( non empty join-closed ) Subset of ) ) : ( ( strict full ) ( non empty strict transitive full ) SubRelStr of b1 : ( ( non empty transitive ) ( non empty transitive ) RelStr ) ) ) : ( ( ) ( ) Element of the carrier of (subrelstr b2 : ( ( non empty join-closed ) ( non empty join-closed ) Subset of ) ) : ( ( strict full ) ( non empty strict transitive full ) SubRelStr of b1 : ( ( non empty transitive ) ( non empty transitive ) RelStr ) ) : ( ( ) ( non empty ) set ) ) = "\/" ({x : ( ( ) ( ) Element of b2 : ( ( non empty join-closed ) ( non empty join-closed ) Subset of ) ) ,y : ( ( ) ( ) Element of b2 : ( ( non empty join-closed ) ( non empty join-closed ) Subset of ) ) } : ( ( ) ( finite ) Element of K32(b2 : ( ( non empty join-closed ) ( non empty join-closed ) Subset of ) ) : ( ( ) ( non empty ) set ) ) ,L : ( ( non empty transitive ) ( non empty transitive ) RelStr ) ) : ( ( ) ( ) Element of the carrier of b1 : ( ( non empty transitive ) ( non empty transitive ) RelStr ) : ( ( ) ( non empty ) set ) ) ) ;

theorem :: WAYBEL23:25
for L being ( ( transitive antisymmetric with_infima ) ( non empty transitive antisymmetric with_infima ) RelStr )
for S being ( ( non empty meet-closed ) ( non empty meet-closed ) Subset of ) holds subrelstr S : ( ( non empty meet-closed ) ( non empty meet-closed ) Subset of ) : ( ( strict full ) ( non empty strict transitive antisymmetric full ) SubRelStr of b1 : ( ( transitive antisymmetric with_infima ) ( non empty transitive antisymmetric with_infima ) RelStr ) ) is with_infima ;

theorem :: WAYBEL23:26
for L being ( ( transitive antisymmetric with_suprema ) ( non empty transitive antisymmetric with_suprema ) RelStr )
for S being ( ( non empty join-closed ) ( non empty join-closed ) Subset of ) holds subrelstr S : ( ( non empty join-closed ) ( non empty join-closed ) Subset of ) : ( ( strict full ) ( non empty strict transitive antisymmetric full ) SubRelStr of b1 : ( ( transitive antisymmetric with_suprema ) ( non empty transitive antisymmetric with_suprema ) RelStr ) ) is with_suprema ;

registration
let L be ( ( transitive antisymmetric with_infima ) ( non empty transitive antisymmetric with_infima ) RelStr ) ;
let S be ( ( non empty meet-closed ) ( non empty meet-closed ) Subset of ) ;
cluster subrelstr S : ( ( non empty meet-closed ) ( non empty meet-closed ) Element of K32( the carrier of L : ( ( transitive antisymmetric with_infima ) ( non empty transitive antisymmetric with_infima ) RelStr ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty ) set ) ) : ( ( strict full ) ( non empty strict transitive antisymmetric full ) SubRelStr of L : ( ( transitive antisymmetric with_infima ) ( non empty transitive antisymmetric with_infima ) RelStr ) ) -> strict full with_infima ;
end;

registration
let L be ( ( transitive antisymmetric with_suprema ) ( non empty transitive antisymmetric with_suprema ) RelStr ) ;
let S be ( ( non empty join-closed ) ( non empty join-closed ) Subset of ) ;
cluster subrelstr S : ( ( non empty join-closed ) ( non empty join-closed ) Element of K32( the carrier of L : ( ( transitive antisymmetric with_suprema ) ( non empty transitive antisymmetric with_suprema ) RelStr ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty ) set ) ) : ( ( strict full ) ( non empty strict transitive antisymmetric full ) SubRelStr of L : ( ( transitive antisymmetric with_suprema ) ( non empty transitive antisymmetric with_suprema ) RelStr ) ) -> strict full with_suprema ;
end;

theorem :: WAYBEL23:27
for L being ( ( non empty transitive antisymmetric complete ) ( non empty transitive antisymmetric lower-bounded upper-bounded bounded with_suprema with_infima complete ) RelStr )
for S being ( ( non empty infs-closed ) ( non empty meet-closed infs-closed ) Subset of )
for X being ( ( ) ( ) Subset of ( ( ) ( non empty ) set ) ) holds "/\" (X : ( ( ) ( ) Subset of ( ( ) ( non empty ) set ) ) ,(subrelstr S : ( ( non empty infs-closed ) ( non empty meet-closed infs-closed ) Subset of ) ) : ( ( strict full ) ( non empty strict transitive antisymmetric full with_infima ) SubRelStr of b1 : ( ( non empty transitive antisymmetric complete ) ( non empty transitive antisymmetric lower-bounded upper-bounded bounded with_suprema with_infima complete ) RelStr ) ) ) : ( ( ) ( ) Element of the carrier of (subrelstr b2 : ( ( non empty infs-closed ) ( non empty meet-closed infs-closed ) Subset of ) ) : ( ( strict full ) ( non empty strict transitive antisymmetric full with_infima ) SubRelStr of b1 : ( ( non empty transitive antisymmetric complete ) ( non empty transitive antisymmetric lower-bounded upper-bounded bounded with_suprema with_infima complete ) RelStr ) ) : ( ( ) ( non empty ) set ) ) = "/\" (X : ( ( ) ( ) Subset of ( ( ) ( non empty ) set ) ) ,L : ( ( non empty transitive antisymmetric complete ) ( non empty transitive antisymmetric lower-bounded upper-bounded bounded with_suprema with_infima complete ) RelStr ) ) : ( ( ) ( ) Element of the carrier of b1 : ( ( non empty transitive antisymmetric complete ) ( non empty transitive antisymmetric lower-bounded upper-bounded bounded with_suprema with_infima complete ) RelStr ) : ( ( ) ( non empty ) set ) ) ;

theorem :: WAYBEL23:28
for L being ( ( non empty transitive antisymmetric complete ) ( non empty transitive antisymmetric lower-bounded upper-bounded bounded with_suprema with_infima complete ) RelStr )
for S being ( ( non empty sups-closed ) ( non empty join-closed sups-closed ) Subset of )
for X being ( ( ) ( ) Subset of ( ( ) ( non empty ) set ) ) holds "\/" (X : ( ( ) ( ) Subset of ( ( ) ( non empty ) set ) ) ,(subrelstr S : ( ( non empty sups-closed ) ( non empty join-closed sups-closed ) Subset of ) ) : ( ( strict full ) ( non empty strict transitive antisymmetric full with_suprema ) SubRelStr of b1 : ( ( non empty transitive antisymmetric complete ) ( non empty transitive antisymmetric lower-bounded upper-bounded bounded with_suprema with_infima complete ) RelStr ) ) ) : ( ( ) ( ) Element of the carrier of (subrelstr b2 : ( ( non empty sups-closed ) ( non empty join-closed sups-closed ) Subset of ) ) : ( ( strict full ) ( non empty strict transitive antisymmetric full with_suprema ) SubRelStr of b1 : ( ( non empty transitive antisymmetric complete ) ( non empty transitive antisymmetric lower-bounded upper-bounded bounded with_suprema with_infima complete ) RelStr ) ) : ( ( ) ( non empty ) set ) ) = "\/" (X : ( ( ) ( ) Subset of ( ( ) ( non empty ) set ) ) ,L : ( ( non empty transitive antisymmetric complete ) ( non empty transitive antisymmetric lower-bounded upper-bounded bounded with_suprema with_infima complete ) RelStr ) ) : ( ( ) ( ) Element of the carrier of b1 : ( ( non empty transitive antisymmetric complete ) ( non empty transitive antisymmetric lower-bounded upper-bounded bounded with_suprema with_infima complete ) RelStr ) : ( ( ) ( non empty ) set ) ) ;

theorem :: WAYBEL23:29
for L being ( ( reflexive transitive antisymmetric with_infima ) ( non empty reflexive transitive antisymmetric with_infima ) Semilattice)
for S being ( ( meet-closed ) ( meet-closed ) Subset of ) holds S : ( ( meet-closed ) ( meet-closed ) Subset of ) is filtered ;

theorem :: WAYBEL23:30
for L being ( ( reflexive transitive antisymmetric with_suprema ) ( non empty reflexive transitive antisymmetric with_suprema ) sup-Semilattice)
for S being ( ( join-closed ) ( join-closed ) Subset of ) holds S : ( ( join-closed ) ( join-closed ) Subset of ) is directed ;

registration
let L be ( ( reflexive transitive antisymmetric with_infima ) ( non empty reflexive transitive antisymmetric with_infima ) Semilattice) ;
cluster meet-closed -> filtered for ( ( ) ( ) Element of K32( the carrier of L : ( ( non empty ) ( non empty ) RelStr ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty ) set ) ) ;
end;

registration
let L be ( ( reflexive transitive antisymmetric with_suprema ) ( non empty reflexive transitive antisymmetric with_suprema ) sup-Semilattice) ;
cluster join-closed -> directed for ( ( ) ( ) Element of K32( the carrier of L : ( ( non empty ) ( non empty ) RelStr ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty ) set ) ) ;
end;

theorem :: WAYBEL23:31
for L being ( ( reflexive transitive antisymmetric with_infima ) ( non empty reflexive transitive antisymmetric with_infima ) Semilattice)
for S being ( ( non empty upper ) ( non empty upper ) Subset of ) holds
( S : ( ( non empty upper ) ( non empty upper ) Subset of ) is ( ( non empty filtered upper ) ( non empty filtered upper ) Filter of L : ( ( reflexive transitive antisymmetric with_infima ) ( non empty reflexive transitive antisymmetric with_infima ) Semilattice) ) iff S : ( ( non empty upper ) ( non empty upper ) Subset of ) is meet-closed ) ;

theorem :: WAYBEL23:32
for L being ( ( reflexive transitive antisymmetric with_suprema ) ( non empty reflexive transitive antisymmetric with_suprema ) sup-Semilattice)
for S being ( ( non empty lower ) ( non empty lower ) Subset of ) holds
( S : ( ( non empty lower ) ( non empty lower ) Subset of ) is ( ( non empty directed lower ) ( non empty directed lower ) Ideal of L : ( ( reflexive transitive antisymmetric with_suprema ) ( non empty reflexive transitive antisymmetric with_suprema ) sup-Semilattice) ) iff S : ( ( non empty lower ) ( non empty lower ) Subset of ) is join-closed ) ;

theorem :: WAYBEL23:33
for L being ( ( non empty ) ( non empty ) RelStr )
for S1, S2 being ( ( join-closed ) ( join-closed ) Subset of ) holds S1 : ( ( join-closed ) ( join-closed ) Subset of ) /\ S2 : ( ( join-closed ) ( join-closed ) Subset of ) : ( ( ) ( ) Element of K32( the carrier of b1 : ( ( non empty ) ( non empty ) RelStr ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty ) set ) ) is join-closed ;

theorem :: WAYBEL23:34
for L being ( ( non empty ) ( non empty ) RelStr )
for S1, S2 being ( ( meet-closed ) ( meet-closed ) Subset of ) holds S1 : ( ( meet-closed ) ( meet-closed ) Subset of ) /\ S2 : ( ( meet-closed ) ( meet-closed ) Subset of ) : ( ( ) ( ) Element of K32( the carrier of b1 : ( ( non empty ) ( non empty ) RelStr ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty ) set ) ) is meet-closed ;

theorem :: WAYBEL23:35
for L being ( ( reflexive transitive antisymmetric with_suprema ) ( non empty reflexive transitive antisymmetric with_suprema ) sup-Semilattice)
for x being ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) holds downarrow x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty directed lower ) Element of K32( the carrier of b1 : ( ( reflexive transitive antisymmetric with_suprema ) ( non empty reflexive transitive antisymmetric with_suprema ) sup-Semilattice) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty ) set ) ) is join-closed ;

theorem :: WAYBEL23:36
for L being ( ( reflexive transitive antisymmetric with_infima ) ( non empty reflexive transitive antisymmetric with_infima ) Semilattice)
for x being ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) holds downarrow x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty directed lower ) Element of K32( the carrier of b1 : ( ( reflexive transitive antisymmetric with_infima ) ( non empty reflexive transitive antisymmetric with_infima ) Semilattice) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty ) set ) ) is meet-closed ;

theorem :: WAYBEL23:37
for L being ( ( reflexive transitive antisymmetric with_suprema ) ( non empty reflexive transitive antisymmetric with_suprema ) sup-Semilattice)
for x being ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) holds uparrow x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty filtered upper ) Element of K32( the carrier of b1 : ( ( reflexive transitive antisymmetric with_suprema ) ( non empty reflexive transitive antisymmetric with_suprema ) sup-Semilattice) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty ) set ) ) is join-closed ;

theorem :: WAYBEL23:38
for L being ( ( reflexive transitive antisymmetric with_infima ) ( non empty reflexive transitive antisymmetric with_infima ) Semilattice)
for x being ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) holds uparrow x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty filtered upper ) Element of K32( the carrier of b1 : ( ( reflexive transitive antisymmetric with_infima ) ( non empty reflexive transitive antisymmetric with_infima ) Semilattice) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty ) set ) ) is meet-closed ;

registration
let L be ( ( reflexive transitive antisymmetric with_suprema ) ( non empty reflexive transitive antisymmetric with_suprema ) sup-Semilattice) ;
let x be ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ;
cluster downarrow x : ( ( ) ( ) Element of the carrier of L : ( ( reflexive transitive antisymmetric with_suprema ) ( non empty reflexive transitive antisymmetric with_suprema ) RelStr ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty directed lower ) Element of K32( the carrier of L : ( ( reflexive transitive antisymmetric with_suprema ) ( non empty reflexive transitive antisymmetric with_suprema ) RelStr ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty ) set ) ) -> join-closed ;
cluster uparrow x : ( ( ) ( ) Element of the carrier of L : ( ( reflexive transitive antisymmetric with_suprema ) ( non empty reflexive transitive antisymmetric with_suprema ) RelStr ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty filtered upper ) Element of K32( the carrier of L : ( ( reflexive transitive antisymmetric with_suprema ) ( non empty reflexive transitive antisymmetric with_suprema ) RelStr ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty ) set ) ) -> join-closed ;
end;

registration
let L be ( ( reflexive transitive antisymmetric with_infima ) ( non empty reflexive transitive antisymmetric with_infima ) Semilattice) ;
let x be ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ;
cluster downarrow x : ( ( ) ( ) Element of the carrier of L : ( ( reflexive transitive antisymmetric with_infima ) ( non empty reflexive transitive antisymmetric with_infima ) RelStr ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty directed lower ) Element of K32( the carrier of L : ( ( reflexive transitive antisymmetric with_infima ) ( non empty reflexive transitive antisymmetric with_infima ) RelStr ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty ) set ) ) -> meet-closed ;
cluster uparrow x : ( ( ) ( ) Element of the carrier of L : ( ( reflexive transitive antisymmetric with_infima ) ( non empty reflexive transitive antisymmetric with_infima ) RelStr ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty filtered upper ) Element of K32( the carrier of L : ( ( reflexive transitive antisymmetric with_infima ) ( non empty reflexive transitive antisymmetric with_infima ) RelStr ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty ) set ) ) -> meet-closed ;
end;

theorem :: WAYBEL23:39
for L being ( ( reflexive transitive antisymmetric with_suprema ) ( non empty reflexive transitive antisymmetric with_suprema ) sup-Semilattice)
for x being ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) holds waybelow x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) : ( ( ) ( directed lower ) Element of K32( the carrier of b1 : ( ( reflexive transitive antisymmetric with_suprema ) ( non empty reflexive transitive antisymmetric with_suprema ) sup-Semilattice) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty ) set ) ) is join-closed ;

theorem :: WAYBEL23:40
for L being ( ( reflexive transitive antisymmetric with_infima ) ( non empty reflexive transitive antisymmetric with_infima ) Semilattice)
for x being ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) holds waybelow x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) : ( ( ) ( lower ) Element of K32( the carrier of b1 : ( ( reflexive transitive antisymmetric with_infima ) ( non empty reflexive transitive antisymmetric with_infima ) Semilattice) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty ) set ) ) is meet-closed ;

theorem :: WAYBEL23:41
for L being ( ( reflexive transitive antisymmetric with_suprema ) ( non empty reflexive transitive antisymmetric with_suprema ) sup-Semilattice)
for x being ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) holds wayabove x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) : ( ( ) ( upper ) Element of K32( the carrier of b1 : ( ( reflexive transitive antisymmetric with_suprema ) ( non empty reflexive transitive antisymmetric with_suprema ) sup-Semilattice) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty ) set ) ) is join-closed ;

registration
let L be ( ( reflexive transitive antisymmetric with_suprema ) ( non empty reflexive transitive antisymmetric with_suprema ) sup-Semilattice) ;
let x be ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ;
cluster waybelow x : ( ( ) ( ) Element of the carrier of L : ( ( reflexive transitive antisymmetric with_suprema ) ( non empty reflexive transitive antisymmetric with_suprema ) RelStr ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( directed lower ) Element of K32( the carrier of L : ( ( reflexive transitive antisymmetric with_suprema ) ( non empty reflexive transitive antisymmetric with_suprema ) RelStr ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty ) set ) ) -> join-closed ;
cluster wayabove x : ( ( ) ( ) Element of the carrier of L : ( ( reflexive transitive antisymmetric with_suprema ) ( non empty reflexive transitive antisymmetric with_suprema ) RelStr ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( upper ) Element of K32( the carrier of L : ( ( reflexive transitive antisymmetric with_suprema ) ( non empty reflexive transitive antisymmetric with_suprema ) RelStr ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty ) set ) ) -> join-closed ;
end;

registration
let L be ( ( reflexive transitive antisymmetric with_infima ) ( non empty reflexive transitive antisymmetric with_infima ) Semilattice) ;
let x be ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ;
cluster waybelow x : ( ( ) ( ) Element of the carrier of L : ( ( reflexive transitive antisymmetric with_infima ) ( non empty reflexive transitive antisymmetric with_infima ) RelStr ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( lower ) Element of K32( the carrier of L : ( ( reflexive transitive antisymmetric with_infima ) ( non empty reflexive transitive antisymmetric with_infima ) RelStr ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty ) set ) ) -> meet-closed ;
end;

begin

definition
let T be ( ( ) ( ) TopStruct ) ;
func weight T -> ( ( cardinal ) ( ordinal cardinal ) Cardinal) equals :: WAYBEL23:def 5
meet { (card B : ( ( V63(T : ( ( ) ( ) TopStruct ) ) V231(T : ( ( ) ( ) TopStruct ) ) ) ( V63(T : ( ( ) ( ) TopStruct ) ) V231(T : ( ( ) ( ) TopStruct ) ) ) Basis of T : ( ( ) ( ) TopStruct ) ) ) : ( ( cardinal ) ( ordinal cardinal ) set ) where B is ( ( V63(T : ( ( non empty ) ( non empty ) RelStr ) ) V231(T : ( ( non empty ) ( non empty ) RelStr ) ) ) ( V63(T : ( ( non empty ) ( non empty ) RelStr ) ) V231(T : ( ( non empty ) ( non empty ) RelStr ) ) ) Basis of T : ( ( non empty ) ( non empty ) RelStr ) ) : verum } : ( ( ) ( ) set ) ;
end;

definition
let T be ( ( ) ( ) TopStruct ) ;
attr T is second-countable means :: WAYBEL23:def 6
weight T : ( ( non empty ) ( non empty ) RelStr ) : ( ( cardinal ) ( ordinal cardinal ) Cardinal) c= omega : ( ( ) ( non trivial ordinal non finite cardinal limit_cardinal ) set ) ;
end;

definition
let L be ( ( reflexive transitive antisymmetric with_suprema continuous ) ( non empty reflexive transitive antisymmetric upper-bounded with_suprema up-complete satisfying_axiom_of_approximation continuous ) sup-Semilattice) ;
mode CLbasis of L -> ( ( ) ( ) Subset of ) means :: WAYBEL23:def 7
( it : ( ( Function-like quasi_total closure ) ( V7() V10( the carrier of L : ( ( non empty ) ( non empty ) RelStr ) : ( ( ) ( non empty ) set ) ) V11( the carrier of L : ( ( non empty ) ( non empty ) RelStr ) : ( ( ) ( non empty ) set ) ) Function-like quasi_total closure ) Element of K32(K33( the carrier of L : ( ( non empty ) ( non empty ) RelStr ) : ( ( ) ( non empty ) set ) , the carrier of L : ( ( non empty ) ( non empty ) RelStr ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty ) set ) ) is join-closed & ( for x being ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) holds x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) = sup ((waybelow x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ) : ( ( ) ( ) Element of K32( the carrier of L : ( ( non empty ) ( non empty ) RelStr ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty ) set ) ) /\ it : ( ( Function-like quasi_total closure ) ( V7() V10( the carrier of L : ( ( non empty ) ( non empty ) RelStr ) : ( ( ) ( non empty ) set ) ) V11( the carrier of L : ( ( non empty ) ( non empty ) RelStr ) : ( ( ) ( non empty ) set ) ) Function-like quasi_total closure ) Element of K32(K33( the carrier of L : ( ( non empty ) ( non empty ) RelStr ) : ( ( ) ( non empty ) set ) , the carrier of L : ( ( non empty ) ( non empty ) RelStr ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty ) set ) ) ) : ( ( ) ( ) Element of K32( the carrier of L : ( ( non empty ) ( non empty ) RelStr ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( ) Element of the carrier of L : ( ( non empty ) ( non empty ) RelStr ) : ( ( ) ( non empty ) set ) ) ) );
end;

definition
let L be ( ( non empty ) ( non empty ) RelStr ) ;
let S be ( ( ) ( ) Subset of ) ;
attr S is with_bottom means :: WAYBEL23:def 8
Bottom L : ( ( non empty ) ( non empty ) RelStr ) : ( ( ) ( ) Element of the carrier of L : ( ( non empty ) ( non empty ) RelStr ) : ( ( ) ( non empty ) set ) ) in S : ( ( Function-like quasi_total closure ) ( V7() V10( the carrier of L : ( ( non empty ) ( non empty ) RelStr ) : ( ( ) ( non empty ) set ) ) V11( the carrier of L : ( ( non empty ) ( non empty ) RelStr ) : ( ( ) ( non empty ) set ) ) Function-like quasi_total closure ) Element of K32(K33( the carrier of L : ( ( non empty ) ( non empty ) RelStr ) : ( ( ) ( non empty ) set ) , the carrier of L : ( ( non empty ) ( non empty ) RelStr ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty ) set ) ) ;
end;

definition
let L be ( ( non empty ) ( non empty ) RelStr ) ;
let S be ( ( ) ( ) Subset of ) ;
attr S is with_top means :: WAYBEL23:def 9
Top L : ( ( non empty ) ( non empty ) RelStr ) : ( ( ) ( ) Element of the carrier of L : ( ( non empty ) ( non empty ) RelStr ) : ( ( ) ( non empty ) set ) ) in S : ( ( Function-like quasi_total closure ) ( V7() V10( the carrier of L : ( ( non empty ) ( non empty ) RelStr ) : ( ( ) ( non empty ) set ) ) V11( the carrier of L : ( ( non empty ) ( non empty ) RelStr ) : ( ( ) ( non empty ) set ) ) Function-like quasi_total closure ) Element of K32(K33( the carrier of L : ( ( non empty ) ( non empty ) RelStr ) : ( ( ) ( non empty ) set ) , the carrier of L : ( ( non empty ) ( non empty ) RelStr ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty ) set ) ) ;
end;

registration
let L be ( ( non empty ) ( non empty ) RelStr ) ;
cluster with_bottom -> non empty for ( ( ) ( ) Element of K32( the carrier of L : ( ( non empty ) ( non empty ) RelStr ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty ) set ) ) ;
end;

registration
let L be ( ( non empty ) ( non empty ) RelStr ) ;
cluster with_top -> non empty for ( ( ) ( ) Element of K32( the carrier of L : ( ( non empty ) ( non empty ) RelStr ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty ) set ) ) ;
end;

registration
let L be ( ( non empty ) ( non empty ) RelStr ) ;
cluster with_bottom for ( ( ) ( ) Element of K32( the carrier of L : ( ( non empty ) ( non empty ) RelStr ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty ) set ) ) ;
cluster with_top for ( ( ) ( ) Element of K32( the carrier of L : ( ( non empty ) ( non empty ) RelStr ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty ) set ) ) ;
end;

registration
let L be ( ( reflexive transitive antisymmetric with_suprema continuous ) ( non empty reflexive transitive antisymmetric upper-bounded with_suprema up-complete satisfying_axiom_of_approximation continuous ) sup-Semilattice) ;
cluster with_bottom for ( ( ) ( ) CLbasis of L : ( ( reflexive transitive antisymmetric with_suprema continuous ) ( non empty reflexive transitive antisymmetric upper-bounded with_suprema up-complete satisfying_axiom_of_approximation continuous ) RelStr ) ) ;
cluster with_top for ( ( ) ( ) CLbasis of L : ( ( reflexive transitive antisymmetric with_suprema continuous ) ( non empty reflexive transitive antisymmetric upper-bounded with_suprema up-complete satisfying_axiom_of_approximation continuous ) RelStr ) ) ;
end;

theorem :: WAYBEL23:42
for L being ( ( non empty antisymmetric lower-bounded ) ( non empty antisymmetric lower-bounded ) RelStr )
for S being ( ( with_bottom ) ( non empty with_bottom ) Subset of ) holds subrelstr S : ( ( with_bottom ) ( non empty with_bottom ) Subset of ) : ( ( strict full ) ( non empty strict antisymmetric full ) SubRelStr of b1 : ( ( non empty antisymmetric lower-bounded ) ( non empty antisymmetric lower-bounded ) RelStr ) ) is lower-bounded ;

registration
let L be ( ( non empty antisymmetric lower-bounded ) ( non empty antisymmetric lower-bounded ) RelStr ) ;
let S be ( ( with_bottom ) ( non empty with_bottom ) Subset of ) ;
cluster subrelstr S : ( ( with_bottom ) ( non empty with_bottom ) Element of K32( the carrier of L : ( ( non empty antisymmetric lower-bounded ) ( non empty antisymmetric lower-bounded ) RelStr ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty ) set ) ) : ( ( strict full ) ( non empty strict antisymmetric full ) SubRelStr of L : ( ( non empty antisymmetric lower-bounded ) ( non empty antisymmetric lower-bounded ) RelStr ) ) -> strict lower-bounded full ;
end;

registration
let L be ( ( reflexive transitive antisymmetric with_suprema continuous ) ( non empty reflexive transitive antisymmetric upper-bounded with_suprema up-complete satisfying_axiom_of_approximation continuous ) sup-Semilattice) ;
cluster -> join-closed for ( ( ) ( ) CLbasis of L : ( ( reflexive transitive antisymmetric with_suprema continuous ) ( non empty reflexive transitive antisymmetric upper-bounded with_suprema up-complete satisfying_axiom_of_approximation continuous ) RelStr ) ) ;
end;

registration
cluster non empty non trivial reflexive transitive antisymmetric upper-bounded bounded with_suprema with_infima up-complete satisfying_axiom_of_approximation continuous for ( ( ) ( ) RelStr ) ;
end;

registration
let L be ( ( non trivial reflexive transitive antisymmetric lower-bounded with_suprema continuous ) ( non empty non trivial reflexive transitive antisymmetric lower-bounded upper-bounded bounded with_suprema with_infima complete up-complete /\-complete satisfying_axiom_of_approximation continuous ) sup-Semilattice) ;
cluster -> non empty for ( ( ) ( ) CLbasis of L : ( ( reflexive transitive antisymmetric with_suprema continuous ) ( non empty reflexive transitive antisymmetric upper-bounded with_suprema up-complete satisfying_axiom_of_approximation continuous ) RelStr ) ) ;
end;

theorem :: WAYBEL23:43
for L being ( ( reflexive transitive antisymmetric with_suprema ) ( non empty reflexive transitive antisymmetric with_suprema ) sup-Semilattice) holds the carrier of (CompactSublatt L : ( ( reflexive transitive antisymmetric with_suprema ) ( non empty reflexive transitive antisymmetric with_suprema ) sup-Semilattice) ) : ( ( strict full ) ( strict reflexive transitive antisymmetric full join-inheriting ) SubRelStr of b1 : ( ( reflexive transitive antisymmetric with_suprema ) ( non empty reflexive transitive antisymmetric with_suprema ) sup-Semilattice) ) : ( ( ) ( ) set ) is ( ( join-closed ) ( directed join-closed ) Subset of ) ;

theorem :: WAYBEL23:44
for L being ( ( reflexive transitive antisymmetric lower-bounded algebraic with_suprema with_infima ) ( non empty reflexive transitive antisymmetric lower-bounded upper-bounded bounded satisfying_axiom_K algebraic with_suprema with_infima complete up-complete /\-complete satisfying_axiom_of_approximation continuous ) LATTICE) holds the carrier of (CompactSublatt L : ( ( reflexive transitive antisymmetric lower-bounded algebraic with_suprema with_infima ) ( non empty reflexive transitive antisymmetric lower-bounded upper-bounded bounded satisfying_axiom_K algebraic with_suprema with_infima complete up-complete /\-complete satisfying_axiom_of_approximation continuous ) LATTICE) ) : ( ( strict full ) ( non empty strict reflexive transitive antisymmetric full join-inheriting with_suprema ) SubRelStr of b1 : ( ( reflexive transitive antisymmetric lower-bounded algebraic with_suprema with_infima ) ( non empty reflexive transitive antisymmetric lower-bounded upper-bounded bounded satisfying_axiom_K algebraic with_suprema with_infima complete up-complete /\-complete satisfying_axiom_of_approximation continuous ) LATTICE) ) : ( ( ) ( ) set ) is ( ( with_bottom ) ( non empty directed join-closed with_bottom ) CLbasis of L : ( ( reflexive transitive antisymmetric lower-bounded algebraic with_suprema with_infima ) ( non empty reflexive transitive antisymmetric lower-bounded upper-bounded bounded satisfying_axiom_K algebraic with_suprema with_infima complete up-complete /\-complete satisfying_axiom_of_approximation continuous ) LATTICE) ) ;

theorem :: WAYBEL23:45
for L being ( ( reflexive transitive antisymmetric lower-bounded with_suprema continuous ) ( non empty reflexive transitive antisymmetric lower-bounded upper-bounded bounded with_suprema with_infima complete up-complete /\-complete satisfying_axiom_of_approximation continuous ) sup-Semilattice) st the carrier of (CompactSublatt L : ( ( reflexive transitive antisymmetric lower-bounded with_suprema continuous ) ( non empty reflexive transitive antisymmetric lower-bounded upper-bounded bounded with_suprema with_infima complete up-complete /\-complete satisfying_axiom_of_approximation continuous ) sup-Semilattice) ) : ( ( strict full ) ( non empty strict reflexive transitive antisymmetric full join-inheriting with_suprema ) SubRelStr of b1 : ( ( reflexive transitive antisymmetric lower-bounded with_suprema continuous ) ( non empty reflexive transitive antisymmetric lower-bounded upper-bounded bounded with_suprema with_infima complete up-complete /\-complete satisfying_axiom_of_approximation continuous ) sup-Semilattice) ) : ( ( ) ( ) set ) is ( ( ) ( directed join-closed ) CLbasis of L : ( ( reflexive transitive antisymmetric lower-bounded with_suprema continuous ) ( non empty reflexive transitive antisymmetric lower-bounded upper-bounded bounded with_suprema with_infima complete up-complete /\-complete satisfying_axiom_of_approximation continuous ) sup-Semilattice) ) holds
L : ( ( reflexive transitive antisymmetric lower-bounded with_suprema continuous ) ( non empty reflexive transitive antisymmetric lower-bounded upper-bounded bounded with_suprema with_infima complete up-complete /\-complete satisfying_axiom_of_approximation continuous ) sup-Semilattice) is algebraic ;

theorem :: WAYBEL23:46
for L being ( ( reflexive transitive antisymmetric lower-bounded with_suprema with_infima continuous ) ( non empty reflexive transitive antisymmetric lower-bounded upper-bounded bounded with_suprema with_infima complete up-complete /\-complete satisfying_axiom_of_approximation continuous ) LATTICE)
for B being ( ( join-closed ) ( directed join-closed ) Subset of ) holds
( B : ( ( join-closed ) ( directed join-closed ) Subset of ) is ( ( ) ( directed join-closed ) CLbasis of L : ( ( reflexive transitive antisymmetric lower-bounded with_suprema with_infima continuous ) ( non empty reflexive transitive antisymmetric lower-bounded upper-bounded bounded with_suprema with_infima complete up-complete /\-complete satisfying_axiom_of_approximation continuous ) LATTICE) ) iff for x, y being ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) st not y : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) <= x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) holds
ex b being ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) st
( b : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) in B : ( ( join-closed ) ( directed join-closed ) Subset of ) & not b : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) <= x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) & b : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) << y : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ) ) ;

theorem :: WAYBEL23:47
for L being ( ( reflexive transitive antisymmetric lower-bounded with_suprema with_infima continuous ) ( non empty reflexive transitive antisymmetric lower-bounded upper-bounded bounded with_suprema with_infima complete up-complete /\-complete satisfying_axiom_of_approximation continuous ) LATTICE)
for B being ( ( join-closed ) ( directed join-closed ) Subset of ) st Bottom L : ( ( reflexive transitive antisymmetric lower-bounded with_suprema with_infima continuous ) ( non empty reflexive transitive antisymmetric lower-bounded upper-bounded bounded with_suprema with_infima complete up-complete /\-complete satisfying_axiom_of_approximation continuous ) LATTICE) : ( ( ) ( ) Element of the carrier of b1 : ( ( reflexive transitive antisymmetric lower-bounded with_suprema with_infima continuous ) ( non empty reflexive transitive antisymmetric lower-bounded upper-bounded bounded with_suprema with_infima complete up-complete /\-complete satisfying_axiom_of_approximation continuous ) LATTICE) : ( ( ) ( non empty ) set ) ) in B : ( ( join-closed ) ( directed join-closed ) Subset of ) holds
( B : ( ( join-closed ) ( directed join-closed ) Subset of ) is ( ( ) ( directed join-closed ) CLbasis of L : ( ( reflexive transitive antisymmetric lower-bounded with_suprema with_infima continuous ) ( non empty reflexive transitive antisymmetric lower-bounded upper-bounded bounded with_suprema with_infima complete up-complete /\-complete satisfying_axiom_of_approximation continuous ) LATTICE) ) iff for x, y being ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) st x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) << y : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) holds
ex b being ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) st
( b : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) in B : ( ( join-closed ) ( directed join-closed ) Subset of ) & x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) <= b : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) & b : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) << y : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ) ) ;

theorem :: WAYBEL23:48
for L being ( ( reflexive transitive antisymmetric lower-bounded with_suprema with_infima continuous ) ( non empty reflexive transitive antisymmetric lower-bounded upper-bounded bounded with_suprema with_infima complete up-complete /\-complete satisfying_axiom_of_approximation continuous ) LATTICE)
for B being ( ( join-closed ) ( directed join-closed ) Subset of ) st Bottom L : ( ( reflexive transitive antisymmetric lower-bounded with_suprema with_infima continuous ) ( non empty reflexive transitive antisymmetric lower-bounded upper-bounded bounded with_suprema with_infima complete up-complete /\-complete satisfying_axiom_of_approximation continuous ) LATTICE) : ( ( ) ( ) Element of the carrier of b1 : ( ( reflexive transitive antisymmetric lower-bounded with_suprema with_infima continuous ) ( non empty reflexive transitive antisymmetric lower-bounded upper-bounded bounded with_suprema with_infima complete up-complete /\-complete satisfying_axiom_of_approximation continuous ) LATTICE) : ( ( ) ( non empty ) set ) ) in B : ( ( join-closed ) ( directed join-closed ) Subset of ) holds
( B : ( ( join-closed ) ( directed join-closed ) Subset of ) is ( ( ) ( directed join-closed ) CLbasis of L : ( ( reflexive transitive antisymmetric lower-bounded with_suprema with_infima continuous ) ( non empty reflexive transitive antisymmetric lower-bounded upper-bounded bounded with_suprema with_infima complete up-complete /\-complete satisfying_axiom_of_approximation continuous ) LATTICE) ) iff ( the carrier of (CompactSublatt L : ( ( reflexive transitive antisymmetric lower-bounded with_suprema with_infima continuous ) ( non empty reflexive transitive antisymmetric lower-bounded upper-bounded bounded with_suprema with_infima complete up-complete /\-complete satisfying_axiom_of_approximation continuous ) LATTICE) ) : ( ( strict full ) ( non empty strict reflexive transitive antisymmetric full join-inheriting with_suprema ) SubRelStr of b1 : ( ( reflexive transitive antisymmetric lower-bounded with_suprema with_infima continuous ) ( non empty reflexive transitive antisymmetric lower-bounded upper-bounded bounded with_suprema with_infima complete up-complete /\-complete satisfying_axiom_of_approximation continuous ) LATTICE) ) : ( ( ) ( ) set ) c= B : ( ( join-closed ) ( directed join-closed ) Subset of ) & ( for x, y being ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) st not y : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) <= x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) holds
ex b being ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) st
( b : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) in B : ( ( join-closed ) ( directed join-closed ) Subset of ) & not b : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) <= x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) & b : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) <= y : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ) ) ) ) ;

theorem :: WAYBEL23:49
for L being ( ( reflexive transitive antisymmetric lower-bounded with_suprema with_infima continuous ) ( non empty reflexive transitive antisymmetric lower-bounded upper-bounded bounded with_suprema with_infima complete up-complete /\-complete satisfying_axiom_of_approximation continuous ) LATTICE)
for B being ( ( join-closed ) ( directed join-closed ) Subset of ) st Bottom L : ( ( reflexive transitive antisymmetric lower-bounded with_suprema with_infima continuous ) ( non empty reflexive transitive antisymmetric lower-bounded upper-bounded bounded with_suprema with_infima complete up-complete /\-complete satisfying_axiom_of_approximation continuous ) LATTICE) : ( ( ) ( ) Element of the carrier of b1 : ( ( reflexive transitive antisymmetric lower-bounded with_suprema with_infima continuous ) ( non empty reflexive transitive antisymmetric lower-bounded upper-bounded bounded with_suprema with_infima complete up-complete /\-complete satisfying_axiom_of_approximation continuous ) LATTICE) : ( ( ) ( non empty ) set ) ) in B : ( ( join-closed ) ( directed join-closed ) Subset of ) holds
( B : ( ( join-closed ) ( directed join-closed ) Subset of ) is ( ( ) ( directed join-closed ) CLbasis of L : ( ( reflexive transitive antisymmetric lower-bounded with_suprema with_infima continuous ) ( non empty reflexive transitive antisymmetric lower-bounded upper-bounded bounded with_suprema with_infima complete up-complete /\-complete satisfying_axiom_of_approximation continuous ) LATTICE) ) iff for x, y being ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) st not y : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) <= x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) holds
ex b being ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) st
( b : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) in B : ( ( join-closed ) ( directed join-closed ) Subset of ) & not b : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) <= x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) & b : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) <= y : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ) ) ;

theorem :: WAYBEL23:50
for L being ( ( reflexive transitive antisymmetric lower-bounded with_suprema ) ( non empty reflexive transitive antisymmetric lower-bounded with_suprema ) sup-Semilattice)
for S being ( ( non empty full ) ( non empty reflexive transitive antisymmetric full ) SubRelStr of L : ( ( reflexive transitive antisymmetric lower-bounded with_suprema ) ( non empty reflexive transitive antisymmetric lower-bounded with_suprema ) sup-Semilattice) ) st Bottom L : ( ( reflexive transitive antisymmetric lower-bounded with_suprema ) ( non empty reflexive transitive antisymmetric lower-bounded with_suprema ) sup-Semilattice) : ( ( ) ( ) Element of the carrier of b1 : ( ( reflexive transitive antisymmetric lower-bounded with_suprema ) ( non empty reflexive transitive antisymmetric lower-bounded with_suprema ) sup-Semilattice) : ( ( ) ( non empty ) set ) ) in the carrier of S : ( ( non empty full ) ( non empty reflexive transitive antisymmetric full ) SubRelStr of b1 : ( ( reflexive transitive antisymmetric lower-bounded with_suprema ) ( non empty reflexive transitive antisymmetric lower-bounded with_suprema ) sup-Semilattice) ) : ( ( ) ( non empty ) set ) & the carrier of S : ( ( non empty full ) ( non empty reflexive transitive antisymmetric full ) SubRelStr of b1 : ( ( reflexive transitive antisymmetric lower-bounded with_suprema ) ( non empty reflexive transitive antisymmetric lower-bounded with_suprema ) sup-Semilattice) ) : ( ( ) ( non empty ) set ) is ( ( join-closed ) ( directed join-closed ) Subset of ) holds
for x being ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) holds (waybelow x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ) : ( ( ) ( non empty directed lower join-closed ) Element of K32( the carrier of b1 : ( ( reflexive transitive antisymmetric lower-bounded with_suprema ) ( non empty reflexive transitive antisymmetric lower-bounded with_suprema ) sup-Semilattice) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty ) set ) ) /\ the carrier of S : ( ( non empty full ) ( non empty reflexive transitive antisymmetric full ) SubRelStr of b1 : ( ( reflexive transitive antisymmetric lower-bounded with_suprema ) ( non empty reflexive transitive antisymmetric lower-bounded with_suprema ) sup-Semilattice) ) : ( ( ) ( non empty ) set ) : ( ( ) ( ) Element of K32( the carrier of b1 : ( ( reflexive transitive antisymmetric lower-bounded with_suprema ) ( non empty reflexive transitive antisymmetric lower-bounded with_suprema ) sup-Semilattice) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty ) set ) ) is ( ( non empty directed lower ) ( non empty directed lower ) Ideal of S : ( ( non empty full ) ( non empty reflexive transitive antisymmetric full ) SubRelStr of b1 : ( ( reflexive transitive antisymmetric lower-bounded with_suprema ) ( non empty reflexive transitive antisymmetric lower-bounded with_suprema ) sup-Semilattice) ) ) ;

definition
let L be ( ( non empty reflexive transitive ) ( non empty reflexive transitive ) RelStr ) ;
let S be ( ( non empty full ) ( non empty reflexive transitive full ) SubRelStr of L : ( ( non empty reflexive transitive ) ( non empty reflexive transitive ) RelStr ) ) ;
func supMap S -> ( ( Function-like quasi_total ) ( V7() V10( the carrier of (InclPoset (Ids S : ( ( Function-like quasi_total closure ) ( V7() V10( the carrier of L : ( ( reflexive transitive antisymmetric with_suprema continuous ) ( non empty reflexive transitive antisymmetric upper-bounded with_suprema up-complete satisfying_axiom_of_approximation continuous ) RelStr ) : ( ( ) ( non empty ) set ) ) V11( the carrier of L : ( ( reflexive transitive antisymmetric with_suprema continuous ) ( non empty reflexive transitive antisymmetric upper-bounded with_suprema up-complete satisfying_axiom_of_approximation continuous ) RelStr ) : ( ( ) ( non empty ) set ) ) Function-like quasi_total closure ) Element of K32(K33( the carrier of L : ( ( reflexive transitive antisymmetric with_suprema continuous ) ( non empty reflexive transitive antisymmetric upper-bounded with_suprema up-complete satisfying_axiom_of_approximation continuous ) RelStr ) : ( ( ) ( non empty ) set ) , the carrier of L : ( ( reflexive transitive antisymmetric with_suprema continuous ) ( non empty reflexive transitive antisymmetric upper-bounded with_suprema up-complete satisfying_axiom_of_approximation continuous ) RelStr ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty ) set ) ) ) : ( ( ) ( ) set ) ) : ( ( strict ) ( strict reflexive transitive antisymmetric ) RelStr ) : ( ( ) ( ) set ) ) V11( the carrier of L : ( ( reflexive transitive antisymmetric with_suprema continuous ) ( non empty reflexive transitive antisymmetric upper-bounded with_suprema up-complete satisfying_axiom_of_approximation continuous ) RelStr ) : ( ( ) ( non empty ) set ) ) Function-like quasi_total ) Function of ( ( ) ( ) set ) , ( ( ) ( non empty ) set ) ) means :: WAYBEL23:def 10
for I being ( ( non empty directed lower ) ( non empty directed lower ) Ideal of S : ( ( Function-like quasi_total closure ) ( V7() V10( the carrier of L : ( ( reflexive transitive antisymmetric with_suprema continuous ) ( non empty reflexive transitive antisymmetric upper-bounded with_suprema up-complete satisfying_axiom_of_approximation continuous ) RelStr ) : ( ( ) ( non empty ) set ) ) V11( the carrier of L : ( ( reflexive transitive antisymmetric with_suprema continuous ) ( non empty reflexive transitive antisymmetric upper-bounded with_suprema up-complete satisfying_axiom_of_approximation continuous ) RelStr ) : ( ( ) ( non empty ) set ) ) Function-like quasi_total closure ) Element of K32(K33( the carrier of L : ( ( reflexive transitive antisymmetric with_suprema continuous ) ( non empty reflexive transitive antisymmetric upper-bounded with_suprema up-complete satisfying_axiom_of_approximation continuous ) RelStr ) : ( ( ) ( non empty ) set ) , the carrier of L : ( ( reflexive transitive antisymmetric with_suprema continuous ) ( non empty reflexive transitive antisymmetric upper-bounded with_suprema up-complete satisfying_axiom_of_approximation continuous ) RelStr ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty ) set ) ) ) holds it : ( ( ) ( V7() V10(S : ( ( Function-like quasi_total closure ) ( V7() V10( the carrier of L : ( ( reflexive transitive antisymmetric with_suprema continuous ) ( non empty reflexive transitive antisymmetric upper-bounded with_suprema up-complete satisfying_axiom_of_approximation continuous ) RelStr ) : ( ( ) ( non empty ) set ) ) V11( the carrier of L : ( ( reflexive transitive antisymmetric with_suprema continuous ) ( non empty reflexive transitive antisymmetric upper-bounded with_suprema up-complete satisfying_axiom_of_approximation continuous ) RelStr ) : ( ( ) ( non empty ) set ) ) Function-like quasi_total closure ) Element of K32(K33( the carrier of L : ( ( reflexive transitive antisymmetric with_suprema continuous ) ( non empty reflexive transitive antisymmetric upper-bounded with_suprema up-complete satisfying_axiom_of_approximation continuous ) RelStr ) : ( ( ) ( non empty ) set ) , the carrier of L : ( ( reflexive transitive antisymmetric with_suprema continuous ) ( non empty reflexive transitive antisymmetric upper-bounded with_suprema up-complete satisfying_axiom_of_approximation continuous ) RelStr ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty ) set ) ) ) V11(S : ( ( Function-like quasi_total closure ) ( V7() V10( the carrier of L : ( ( reflexive transitive antisymmetric with_suprema continuous ) ( non empty reflexive transitive antisymmetric upper-bounded with_suprema up-complete satisfying_axiom_of_approximation continuous ) RelStr ) : ( ( ) ( non empty ) set ) ) V11( the carrier of L : ( ( reflexive transitive antisymmetric with_suprema continuous ) ( non empty reflexive transitive antisymmetric upper-bounded with_suprema up-complete satisfying_axiom_of_approximation continuous ) RelStr ) : ( ( ) ( non empty ) set ) ) Function-like quasi_total closure ) Element of K32(K33( the carrier of L : ( ( reflexive transitive antisymmetric with_suprema continuous ) ( non empty reflexive transitive antisymmetric upper-bounded with_suprema up-complete satisfying_axiom_of_approximation continuous ) RelStr ) : ( ( ) ( non empty ) set ) , the carrier of L : ( ( reflexive transitive antisymmetric with_suprema continuous ) ( non empty reflexive transitive antisymmetric upper-bounded with_suprema up-complete satisfying_axiom_of_approximation continuous ) RelStr ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty ) set ) ) ) ) Element of K32(K33(S : ( ( Function-like quasi_total closure ) ( V7() V10( the carrier of L : ( ( reflexive transitive antisymmetric with_suprema continuous ) ( non empty reflexive transitive antisymmetric upper-bounded with_suprema up-complete satisfying_axiom_of_approximation continuous ) RelStr ) : ( ( ) ( non empty ) set ) ) V11( the carrier of L : ( ( reflexive transitive antisymmetric with_suprema continuous ) ( non empty reflexive transitive antisymmetric upper-bounded with_suprema up-complete satisfying_axiom_of_approximation continuous ) RelStr ) : ( ( ) ( non empty ) set ) ) Function-like quasi_total closure ) Element of K32(K33( the carrier of L : ( ( reflexive transitive antisymmetric with_suprema continuous ) ( non empty reflexive transitive antisymmetric upper-bounded with_suprema up-complete satisfying_axiom_of_approximation continuous ) RelStr ) : ( ( ) ( non empty ) set ) , the carrier of L : ( ( reflexive transitive antisymmetric with_suprema continuous ) ( non empty reflexive transitive antisymmetric upper-bounded with_suprema up-complete satisfying_axiom_of_approximation continuous ) RelStr ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty ) set ) ) ,S : ( ( Function-like quasi_total closure ) ( V7() V10( the carrier of L : ( ( reflexive transitive antisymmetric with_suprema continuous ) ( non empty reflexive transitive antisymmetric upper-bounded with_suprema up-complete satisfying_axiom_of_approximation continuous ) RelStr ) : ( ( ) ( non empty ) set ) ) V11( the carrier of L : ( ( reflexive transitive antisymmetric with_suprema continuous ) ( non empty reflexive transitive antisymmetric upper-bounded with_suprema up-complete satisfying_axiom_of_approximation continuous ) RelStr ) : ( ( ) ( non empty ) set ) ) Function-like quasi_total closure ) Element of K32(K33( the carrier of L : ( ( reflexive transitive antisymmetric with_suprema continuous ) ( non empty reflexive transitive antisymmetric upper-bounded with_suprema up-complete satisfying_axiom_of_approximation continuous ) RelStr ) : ( ( ) ( non empty ) set ) , the carrier of L : ( ( reflexive transitive antisymmetric with_suprema continuous ) ( non empty reflexive transitive antisymmetric upper-bounded with_suprema up-complete satisfying_axiom_of_approximation continuous ) RelStr ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty ) set ) ) ) : ( ( ) ( ) set ) ) : ( ( ) ( non empty ) set ) ) . I : ( ( non empty directed lower ) ( non empty directed lower ) Ideal of S : ( ( non empty full ) ( non empty reflexive transitive full ) SubRelStr of L : ( ( non empty reflexive transitive ) ( non empty reflexive transitive ) RelStr ) ) ) : ( ( ) ( ) set ) = "\/" (I : ( ( non empty directed lower ) ( non empty directed lower ) Ideal of S : ( ( non empty full ) ( non empty reflexive transitive full ) SubRelStr of L : ( ( non empty reflexive transitive ) ( non empty reflexive transitive ) RelStr ) ) ) ,L : ( ( reflexive transitive antisymmetric with_suprema continuous ) ( non empty reflexive transitive antisymmetric upper-bounded with_suprema up-complete satisfying_axiom_of_approximation continuous ) RelStr ) ) : ( ( ) ( ) Element of the carrier of L : ( ( reflexive transitive antisymmetric with_suprema continuous ) ( non empty reflexive transitive antisymmetric upper-bounded with_suprema up-complete satisfying_axiom_of_approximation continuous ) RelStr ) : ( ( ) ( non empty ) set ) ) ;
end;

definition
let L be ( ( non empty reflexive transitive ) ( non empty reflexive transitive ) RelStr ) ;
let S be ( ( non empty full ) ( non empty reflexive transitive full ) SubRelStr of L : ( ( non empty reflexive transitive ) ( non empty reflexive transitive ) RelStr ) ) ;
func idsMap S -> ( ( Function-like quasi_total ) ( V7() V10( the carrier of (InclPoset (Ids S : ( ( Function-like quasi_total closure ) ( V7() V10( the carrier of L : ( ( reflexive transitive antisymmetric with_suprema continuous ) ( non empty reflexive transitive antisymmetric upper-bounded with_suprema up-complete satisfying_axiom_of_approximation continuous ) RelStr ) : ( ( ) ( non empty ) set ) ) V11( the carrier of L : ( ( reflexive transitive antisymmetric with_suprema continuous ) ( non empty reflexive transitive antisymmetric upper-bounded with_suprema up-complete satisfying_axiom_of_approximation continuous ) RelStr ) : ( ( ) ( non empty ) set ) ) Function-like quasi_total closure ) Element of K32(K33( the carrier of L : ( ( reflexive transitive antisymmetric with_suprema continuous ) ( non empty reflexive transitive antisymmetric upper-bounded with_suprema up-complete satisfying_axiom_of_approximation continuous ) RelStr ) : ( ( ) ( non empty ) set ) , the carrier of L : ( ( reflexive transitive antisymmetric with_suprema continuous ) ( non empty reflexive transitive antisymmetric upper-bounded with_suprema up-complete satisfying_axiom_of_approximation continuous ) RelStr ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty ) set ) ) ) : ( ( ) ( ) set ) ) : ( ( strict ) ( strict reflexive transitive antisymmetric ) RelStr ) : ( ( ) ( ) set ) ) V11( the carrier of (InclPoset (Ids L : ( ( reflexive transitive antisymmetric with_suprema continuous ) ( non empty reflexive transitive antisymmetric upper-bounded with_suprema up-complete satisfying_axiom_of_approximation continuous ) RelStr ) ) : ( ( ) ( non empty ) set ) ) : ( ( strict ) ( non empty strict reflexive transitive antisymmetric with_suprema ) RelStr ) : ( ( ) ( non empty ) set ) ) Function-like quasi_total ) Function of ( ( ) ( ) set ) , ( ( ) ( non empty ) set ) ) means :: WAYBEL23:def 11
for I being ( ( non empty directed lower ) ( non empty directed lower ) Ideal of S : ( ( Function-like quasi_total closure ) ( V7() V10( the carrier of L : ( ( reflexive transitive antisymmetric with_suprema continuous ) ( non empty reflexive transitive antisymmetric upper-bounded with_suprema up-complete satisfying_axiom_of_approximation continuous ) RelStr ) : ( ( ) ( non empty ) set ) ) V11( the carrier of L : ( ( reflexive transitive antisymmetric with_suprema continuous ) ( non empty reflexive transitive antisymmetric upper-bounded with_suprema up-complete satisfying_axiom_of_approximation continuous ) RelStr ) : ( ( ) ( non empty ) set ) ) Function-like quasi_total closure ) Element of K32(K33( the carrier of L : ( ( reflexive transitive antisymmetric with_suprema continuous ) ( non empty reflexive transitive antisymmetric upper-bounded with_suprema up-complete satisfying_axiom_of_approximation continuous ) RelStr ) : ( ( ) ( non empty ) set ) , the carrier of L : ( ( reflexive transitive antisymmetric with_suprema continuous ) ( non empty reflexive transitive antisymmetric upper-bounded with_suprema up-complete satisfying_axiom_of_approximation continuous ) RelStr ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty ) set ) ) ) ex J being ( ( ) ( ) Subset of ) st
( I : ( ( non empty directed lower ) ( non empty directed lower ) Ideal of S : ( ( non empty full ) ( non empty reflexive transitive full ) SubRelStr of L : ( ( non empty reflexive transitive ) ( non empty reflexive transitive ) RelStr ) ) ) = J : ( ( ) ( ) Subset of ) & it : ( ( ) ( V7() V10(S : ( ( Function-like quasi_total closure ) ( V7() V10( the carrier of L : ( ( reflexive transitive antisymmetric with_suprema continuous ) ( non empty reflexive transitive antisymmetric upper-bounded with_suprema up-complete satisfying_axiom_of_approximation continuous ) RelStr ) : ( ( ) ( non empty ) set ) ) V11( the carrier of L : ( ( reflexive transitive antisymmetric with_suprema continuous ) ( non empty reflexive transitive antisymmetric upper-bounded with_suprema up-complete satisfying_axiom_of_approximation continuous ) RelStr ) : ( ( ) ( non empty ) set ) ) Function-like quasi_total closure ) Element of K32(K33( the carrier of L : ( ( reflexive transitive antisymmetric with_suprema continuous ) ( non empty reflexive transitive antisymmetric upper-bounded with_suprema up-complete satisfying_axiom_of_approximation continuous ) RelStr ) : ( ( ) ( non empty ) set ) , the carrier of L : ( ( reflexive transitive antisymmetric with_suprema continuous ) ( non empty reflexive transitive antisymmetric upper-bounded with_suprema up-complete satisfying_axiom_of_approximation continuous ) RelStr ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty ) set ) ) ) V11(S : ( ( Function-like quasi_total closure ) ( V7() V10( the carrier of L : ( ( reflexive transitive antisymmetric with_suprema continuous ) ( non empty reflexive transitive antisymmetric upper-bounded with_suprema up-complete satisfying_axiom_of_approximation continuous ) RelStr ) : ( ( ) ( non empty ) set ) ) V11( the carrier of L : ( ( reflexive transitive antisymmetric with_suprema continuous ) ( non empty reflexive transitive antisymmetric upper-bounded with_suprema up-complete satisfying_axiom_of_approximation continuous ) RelStr ) : ( ( ) ( non empty ) set ) ) Function-like quasi_total closure ) Element of K32(K33( the carrier of L : ( ( reflexive transitive antisymmetric with_suprema continuous ) ( non empty reflexive transitive antisymmetric upper-bounded with_suprema up-complete satisfying_axiom_of_approximation continuous ) RelStr ) : ( ( ) ( non empty ) set ) , the carrier of L : ( ( reflexive transitive antisymmetric with_suprema continuous ) ( non empty reflexive transitive antisymmetric upper-bounded with_suprema up-complete satisfying_axiom_of_approximation continuous ) RelStr ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty ) set ) ) ) ) Element of K32(K33(S : ( ( Function-like quasi_total closure ) ( V7() V10( the carrier of L : ( ( reflexive transitive antisymmetric with_suprema continuous ) ( non empty reflexive transitive antisymmetric upper-bounded with_suprema up-complete satisfying_axiom_of_approximation continuous ) RelStr ) : ( ( ) ( non empty ) set ) ) V11( the carrier of L : ( ( reflexive transitive antisymmetric with_suprema continuous ) ( non empty reflexive transitive antisymmetric upper-bounded with_suprema up-complete satisfying_axiom_of_approximation continuous ) RelStr ) : ( ( ) ( non empty ) set ) ) Function-like quasi_total closure ) Element of K32(K33( the carrier of L : ( ( reflexive transitive antisymmetric with_suprema continuous ) ( non empty reflexive transitive antisymmetric upper-bounded with_suprema up-complete satisfying_axiom_of_approximation continuous ) RelStr ) : ( ( ) ( non empty ) set ) , the carrier of L : ( ( reflexive transitive antisymmetric with_suprema continuous ) ( non empty reflexive transitive antisymmetric upper-bounded with_suprema up-complete satisfying_axiom_of_approximation continuous ) RelStr ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty ) set ) ) ,S : ( ( Function-like quasi_total closure ) ( V7() V10( the carrier of L : ( ( reflexive transitive antisymmetric with_suprema continuous ) ( non empty reflexive transitive antisymmetric upper-bounded with_suprema up-complete satisfying_axiom_of_approximation continuous ) RelStr ) : ( ( ) ( non empty ) set ) ) V11( the carrier of L : ( ( reflexive transitive antisymmetric with_suprema continuous ) ( non empty reflexive transitive antisymmetric upper-bounded with_suprema up-complete satisfying_axiom_of_approximation continuous ) RelStr ) : ( ( ) ( non empty ) set ) ) Function-like quasi_total closure ) Element of K32(K33( the carrier of L : ( ( reflexive transitive antisymmetric with_suprema continuous ) ( non empty reflexive transitive antisymmetric upper-bounded with_suprema up-complete satisfying_axiom_of_approximation continuous ) RelStr ) : ( ( ) ( non empty ) set ) , the carrier of L : ( ( reflexive transitive antisymmetric with_suprema continuous ) ( non empty reflexive transitive antisymmetric upper-bounded with_suprema up-complete satisfying_axiom_of_approximation continuous ) RelStr ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty ) set ) ) ) : ( ( ) ( ) set ) ) : ( ( ) ( non empty ) set ) ) . I : ( ( non empty directed lower ) ( non empty directed lower ) Ideal of S : ( ( non empty full ) ( non empty reflexive transitive full ) SubRelStr of L : ( ( non empty reflexive transitive ) ( non empty reflexive transitive ) RelStr ) ) ) : ( ( ) ( ) set ) = downarrow J : ( ( ) ( ) Subset of ) : ( ( ) ( ) Element of K32( the carrier of L : ( ( reflexive transitive antisymmetric with_suprema continuous ) ( non empty reflexive transitive antisymmetric upper-bounded with_suprema up-complete satisfying_axiom_of_approximation continuous ) RelStr ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty ) set ) ) );
end;

registration
let L be ( ( reflexive ) ( reflexive ) RelStr ) ;
let B be ( ( ) ( ) Subset of ) ;
cluster subrelstr B : ( ( ) ( ) Element of K32( the carrier of L : ( ( reflexive ) ( reflexive ) RelStr ) : ( ( ) ( ) set ) ) : ( ( ) ( non empty ) set ) ) : ( ( strict full ) ( strict reflexive full ) SubRelStr of L : ( ( reflexive ) ( reflexive ) RelStr ) ) -> strict reflexive full ;
end;

registration
let L be ( ( transitive ) ( transitive ) RelStr ) ;
let B be ( ( ) ( ) Subset of ) ;
cluster subrelstr B : ( ( ) ( ) Element of K32( the carrier of L : ( ( transitive ) ( transitive ) RelStr ) : ( ( ) ( ) set ) ) : ( ( ) ( non empty ) set ) ) : ( ( strict full ) ( strict transitive full ) SubRelStr of L : ( ( transitive ) ( transitive ) RelStr ) ) -> strict transitive full ;
end;

registration
let L be ( ( antisymmetric ) ( antisymmetric ) RelStr ) ;
let B be ( ( ) ( ) Subset of ) ;
cluster subrelstr B : ( ( ) ( ) Element of K32( the carrier of L : ( ( antisymmetric ) ( antisymmetric ) RelStr ) : ( ( ) ( ) set ) ) : ( ( ) ( non empty ) set ) ) : ( ( strict full ) ( strict antisymmetric full ) SubRelStr of L : ( ( antisymmetric ) ( antisymmetric ) RelStr ) ) -> strict antisymmetric full ;
end;

definition
let L be ( ( reflexive transitive antisymmetric lower-bounded with_suprema continuous ) ( non empty reflexive transitive antisymmetric lower-bounded upper-bounded bounded with_suprema with_infima complete up-complete /\-complete satisfying_axiom_of_approximation continuous ) sup-Semilattice) ;
let B be ( ( with_bottom ) ( non empty directed join-closed with_bottom ) CLbasis of L : ( ( reflexive transitive antisymmetric lower-bounded with_suprema continuous ) ( non empty reflexive transitive antisymmetric lower-bounded upper-bounded bounded with_suprema with_infima complete up-complete /\-complete satisfying_axiom_of_approximation continuous ) sup-Semilattice) ) ;
func baseMap B -> ( ( Function-like quasi_total ) ( V7() V10( the carrier of L : ( ( reflexive transitive antisymmetric with_suprema continuous ) ( non empty reflexive transitive antisymmetric upper-bounded with_suprema up-complete satisfying_axiom_of_approximation continuous ) RelStr ) : ( ( ) ( non empty ) set ) ) V11( the carrier of (InclPoset (Ids (subrelstr B : ( ( Function-like quasi_total closure ) ( V7() V10( the carrier of L : ( ( reflexive transitive antisymmetric with_suprema continuous ) ( non empty reflexive transitive antisymmetric upper-bounded with_suprema up-complete satisfying_axiom_of_approximation continuous ) RelStr ) : ( ( ) ( non empty ) set ) ) V11( the carrier of L : ( ( reflexive transitive antisymmetric with_suprema continuous ) ( non empty reflexive transitive antisymmetric upper-bounded with_suprema up-complete satisfying_axiom_of_approximation continuous ) RelStr ) : ( ( ) ( non empty ) set ) ) Function-like quasi_total closure ) Element of K32(K33( the carrier of L : ( ( reflexive transitive antisymmetric with_suprema continuous ) ( non empty reflexive transitive antisymmetric upper-bounded with_suprema up-complete satisfying_axiom_of_approximation continuous ) RelStr ) : ( ( ) ( non empty ) set ) , the carrier of L : ( ( reflexive transitive antisymmetric with_suprema continuous ) ( non empty reflexive transitive antisymmetric upper-bounded with_suprema up-complete satisfying_axiom_of_approximation continuous ) RelStr ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty ) set ) ) ) : ( ( strict full ) ( strict reflexive transitive antisymmetric full ) SubRelStr of L : ( ( reflexive transitive antisymmetric with_suprema continuous ) ( non empty reflexive transitive antisymmetric upper-bounded with_suprema up-complete satisfying_axiom_of_approximation continuous ) RelStr ) ) ) : ( ( ) ( ) set ) ) : ( ( strict ) ( strict reflexive transitive antisymmetric ) RelStr ) : ( ( ) ( ) set ) ) Function-like quasi_total ) Function of ( ( ) ( non empty ) set ) , ( ( ) ( ) set ) ) means :: WAYBEL23:def 12
for x being ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) holds it : ( ( ) ( V7() V10(B : ( ( Function-like quasi_total closure ) ( V7() V10( the carrier of L : ( ( reflexive transitive antisymmetric with_suprema continuous ) ( non empty reflexive transitive antisymmetric upper-bounded with_suprema up-complete satisfying_axiom_of_approximation continuous ) RelStr ) : ( ( ) ( non empty ) set ) ) V11( the carrier of L : ( ( reflexive transitive antisymmetric with_suprema continuous ) ( non empty reflexive transitive antisymmetric upper-bounded with_suprema up-complete satisfying_axiom_of_approximation continuous ) RelStr ) : ( ( ) ( non empty ) set ) ) Function-like quasi_total closure ) Element of K32(K33( the carrier of L : ( ( reflexive transitive antisymmetric with_suprema continuous ) ( non empty reflexive transitive antisymmetric upper-bounded with_suprema up-complete satisfying_axiom_of_approximation continuous ) RelStr ) : ( ( ) ( non empty ) set ) , the carrier of L : ( ( reflexive transitive antisymmetric with_suprema continuous ) ( non empty reflexive transitive antisymmetric upper-bounded with_suprema up-complete satisfying_axiom_of_approximation continuous ) RelStr ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty ) set ) ) ) V11(B : ( ( Function-like quasi_total closure ) ( V7() V10( the carrier of L : ( ( reflexive transitive antisymmetric with_suprema continuous ) ( non empty reflexive transitive antisymmetric upper-bounded with_suprema up-complete satisfying_axiom_of_approximation continuous ) RelStr ) : ( ( ) ( non empty ) set ) ) V11( the carrier of L : ( ( reflexive transitive antisymmetric with_suprema continuous ) ( non empty reflexive transitive antisymmetric upper-bounded with_suprema up-complete satisfying_axiom_of_approximation continuous ) RelStr ) : ( ( ) ( non empty ) set ) ) Function-like quasi_total closure ) Element of K32(K33( the carrier of L : ( ( reflexive transitive antisymmetric with_suprema continuous ) ( non empty reflexive transitive antisymmetric upper-bounded with_suprema up-complete satisfying_axiom_of_approximation continuous ) RelStr ) : ( ( ) ( non empty ) set ) , the carrier of L : ( ( reflexive transitive antisymmetric with_suprema continuous ) ( non empty reflexive transitive antisymmetric upper-bounded with_suprema up-complete satisfying_axiom_of_approximation continuous ) RelStr ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty ) set ) ) ) ) Element of K32(K33(B : ( ( Function-like quasi_total closure ) ( V7() V10( the carrier of L : ( ( reflexive transitive antisymmetric with_suprema continuous ) ( non empty reflexive transitive antisymmetric upper-bounded with_suprema up-complete satisfying_axiom_of_approximation continuous ) RelStr ) : ( ( ) ( non empty ) set ) ) V11( the carrier of L : ( ( reflexive transitive antisymmetric with_suprema continuous ) ( non empty reflexive transitive antisymmetric upper-bounded with_suprema up-complete satisfying_axiom_of_approximation continuous ) RelStr ) : ( ( ) ( non empty ) set ) ) Function-like quasi_total closure ) Element of K32(K33( the carrier of L : ( ( reflexive transitive antisymmetric with_suprema continuous ) ( non empty reflexive transitive antisymmetric upper-bounded with_suprema up-complete satisfying_axiom_of_approximation continuous ) RelStr ) : ( ( ) ( non empty ) set ) , the carrier of L : ( ( reflexive transitive antisymmetric with_suprema continuous ) ( non empty reflexive transitive antisymmetric upper-bounded with_suprema up-complete satisfying_axiom_of_approximation continuous ) RelStr ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty ) set ) ) ,B : ( ( Function-like quasi_total closure ) ( V7() V10( the carrier of L : ( ( reflexive transitive antisymmetric with_suprema continuous ) ( non empty reflexive transitive antisymmetric upper-bounded with_suprema up-complete satisfying_axiom_of_approximation continuous ) RelStr ) : ( ( ) ( non empty ) set ) ) V11( the carrier of L : ( ( reflexive transitive antisymmetric with_suprema continuous ) ( non empty reflexive transitive antisymmetric upper-bounded with_suprema up-complete satisfying_axiom_of_approximation continuous ) RelStr ) : ( ( ) ( non empty ) set ) ) Function-like quasi_total closure ) Element of K32(K33( the carrier of L : ( ( reflexive transitive antisymmetric with_suprema continuous ) ( non empty reflexive transitive antisymmetric upper-bounded with_suprema up-complete satisfying_axiom_of_approximation continuous ) RelStr ) : ( ( ) ( non empty ) set ) , the carrier of L : ( ( reflexive transitive antisymmetric with_suprema continuous ) ( non empty reflexive transitive antisymmetric upper-bounded with_suprema up-complete satisfying_axiom_of_approximation continuous ) RelStr ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty ) set ) ) ) : ( ( ) ( ) set ) ) : ( ( ) ( non empty ) set ) ) . x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) : ( ( ) ( ) Element of the carrier of (InclPoset (Ids (subrelstr B : ( ( Function-like quasi_total closure ) ( V7() V10( the carrier of L : ( ( reflexive transitive antisymmetric with_suprema continuous ) ( non empty reflexive transitive antisymmetric upper-bounded with_suprema up-complete satisfying_axiom_of_approximation continuous ) RelStr ) : ( ( ) ( non empty ) set ) ) V11( the carrier of L : ( ( reflexive transitive antisymmetric with_suprema continuous ) ( non empty reflexive transitive antisymmetric upper-bounded with_suprema up-complete satisfying_axiom_of_approximation continuous ) RelStr ) : ( ( ) ( non empty ) set ) ) Function-like quasi_total closure ) Element of K32(K33( the carrier of L : ( ( reflexive transitive antisymmetric with_suprema continuous ) ( non empty reflexive transitive antisymmetric upper-bounded with_suprema up-complete satisfying_axiom_of_approximation continuous ) RelStr ) : ( ( ) ( non empty ) set ) , the carrier of L : ( ( reflexive transitive antisymmetric with_suprema continuous ) ( non empty reflexive transitive antisymmetric upper-bounded with_suprema up-complete satisfying_axiom_of_approximation continuous ) RelStr ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty ) set ) ) ) : ( ( strict full ) ( strict reflexive transitive antisymmetric full ) SubRelStr of L : ( ( reflexive transitive antisymmetric with_suprema continuous ) ( non empty reflexive transitive antisymmetric upper-bounded with_suprema up-complete satisfying_axiom_of_approximation continuous ) RelStr ) ) ) : ( ( ) ( ) set ) ) : ( ( strict ) ( strict reflexive transitive antisymmetric ) RelStr ) : ( ( ) ( ) set ) ) = (waybelow x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ) : ( ( ) ( ) Element of K32( the carrier of L : ( ( reflexive transitive antisymmetric with_suprema continuous ) ( non empty reflexive transitive antisymmetric upper-bounded with_suprema up-complete satisfying_axiom_of_approximation continuous ) RelStr ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty ) set ) ) /\ B : ( ( Function-like quasi_total closure ) ( V7() V10( the carrier of L : ( ( reflexive transitive antisymmetric with_suprema continuous ) ( non empty reflexive transitive antisymmetric upper-bounded with_suprema up-complete satisfying_axiom_of_approximation continuous ) RelStr ) : ( ( ) ( non empty ) set ) ) V11( the carrier of L : ( ( reflexive transitive antisymmetric with_suprema continuous ) ( non empty reflexive transitive antisymmetric upper-bounded with_suprema up-complete satisfying_axiom_of_approximation continuous ) RelStr ) : ( ( ) ( non empty ) set ) ) Function-like quasi_total closure ) Element of K32(K33( the carrier of L : ( ( reflexive transitive antisymmetric with_suprema continuous ) ( non empty reflexive transitive antisymmetric upper-bounded with_suprema up-complete satisfying_axiom_of_approximation continuous ) RelStr ) : ( ( ) ( non empty ) set ) , the carrier of L : ( ( reflexive transitive antisymmetric with_suprema continuous ) ( non empty reflexive transitive antisymmetric upper-bounded with_suprema up-complete satisfying_axiom_of_approximation continuous ) RelStr ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( ) Element of K32( the carrier of L : ( ( reflexive transitive antisymmetric with_suprema continuous ) ( non empty reflexive transitive antisymmetric upper-bounded with_suprema up-complete satisfying_axiom_of_approximation continuous ) RelStr ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty ) set ) ) ;
end;

theorem :: WAYBEL23:51
for L being ( ( non empty reflexive transitive ) ( non empty reflexive transitive ) RelStr )
for S being ( ( non empty full ) ( non empty reflexive transitive full ) SubRelStr of L : ( ( non empty reflexive transitive ) ( non empty reflexive transitive ) RelStr ) ) holds
( dom (supMap S : ( ( non empty full ) ( non empty reflexive transitive full ) SubRelStr of b1 : ( ( non empty reflexive transitive ) ( non empty reflexive transitive ) RelStr ) ) ) : ( ( Function-like quasi_total ) ( V7() V10( the carrier of (InclPoset (Ids b2 : ( ( non empty full ) ( non empty reflexive transitive full ) SubRelStr of b1 : ( ( non empty reflexive transitive ) ( non empty reflexive transitive ) RelStr ) ) ) : ( ( ) ( non empty ) set ) ) : ( ( strict ) ( non empty strict reflexive transitive antisymmetric ) RelStr ) : ( ( ) ( non empty ) set ) ) V11( the carrier of b1 : ( ( non empty reflexive transitive ) ( non empty reflexive transitive ) RelStr ) : ( ( ) ( non empty ) set ) ) Function-like quasi_total ) Function of ( ( ) ( non empty ) set ) , ( ( ) ( non empty ) set ) ) : ( ( ) ( ) Element of K32( the carrier of (InclPoset (Ids b2 : ( ( non empty full ) ( non empty reflexive transitive full ) SubRelStr of b1 : ( ( non empty reflexive transitive ) ( non empty reflexive transitive ) RelStr ) ) ) : ( ( ) ( non empty ) set ) ) : ( ( strict ) ( non empty strict reflexive transitive antisymmetric ) RelStr ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty ) set ) ) = Ids S : ( ( non empty full ) ( non empty reflexive transitive full ) SubRelStr of b1 : ( ( non empty reflexive transitive ) ( non empty reflexive transitive ) RelStr ) ) : ( ( ) ( non empty ) set ) & rng (supMap S : ( ( non empty full ) ( non empty reflexive transitive full ) SubRelStr of b1 : ( ( non empty reflexive transitive ) ( non empty reflexive transitive ) RelStr ) ) ) : ( ( Function-like quasi_total ) ( V7() V10( the carrier of (InclPoset (Ids b2 : ( ( non empty full ) ( non empty reflexive transitive full ) SubRelStr of b1 : ( ( non empty reflexive transitive ) ( non empty reflexive transitive ) RelStr ) ) ) : ( ( ) ( non empty ) set ) ) : ( ( strict ) ( non empty strict reflexive transitive antisymmetric ) RelStr ) : ( ( ) ( non empty ) set ) ) V11( the carrier of b1 : ( ( non empty reflexive transitive ) ( non empty reflexive transitive ) RelStr ) : ( ( ) ( non empty ) set ) ) Function-like quasi_total ) Function of ( ( ) ( non empty ) set ) , ( ( ) ( non empty ) set ) ) : ( ( ) ( ) Element of K32( the carrier of b1 : ( ( non empty reflexive transitive ) ( non empty reflexive transitive ) RelStr ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty ) set ) ) is ( ( ) ( ) Subset of ) ) ;

theorem :: WAYBEL23:52
for L being ( ( non empty reflexive transitive ) ( non empty reflexive transitive ) RelStr )
for S being ( ( non empty full ) ( non empty reflexive transitive full ) SubRelStr of L : ( ( non empty reflexive transitive ) ( non empty reflexive transitive ) RelStr ) )
for x being ( ( ) ( ) set ) holds
( x : ( ( ) ( ) set ) in dom (supMap S : ( ( non empty full ) ( non empty reflexive transitive full ) SubRelStr of b1 : ( ( non empty reflexive transitive ) ( non empty reflexive transitive ) RelStr ) ) ) : ( ( Function-like quasi_total ) ( V7() V10( the carrier of (InclPoset (Ids b2 : ( ( non empty full ) ( non empty reflexive transitive full ) SubRelStr of b1 : ( ( non empty reflexive transitive ) ( non empty reflexive transitive ) RelStr ) ) ) : ( ( ) ( non empty ) set ) ) : ( ( strict ) ( non empty strict reflexive transitive antisymmetric ) RelStr ) : ( ( ) ( non empty ) set ) ) V11( the carrier of b1 : ( ( non empty reflexive transitive ) ( non empty reflexive transitive ) RelStr ) : ( ( ) ( non empty ) set ) ) Function-like quasi_total ) Function of ( ( ) ( non empty ) set ) , ( ( ) ( non empty ) set ) ) : ( ( ) ( ) Element of K32( the carrier of (InclPoset (Ids b2 : ( ( non empty full ) ( non empty reflexive transitive full ) SubRelStr of b1 : ( ( non empty reflexive transitive ) ( non empty reflexive transitive ) RelStr ) ) ) : ( ( ) ( non empty ) set ) ) : ( ( strict ) ( non empty strict reflexive transitive antisymmetric ) RelStr ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty ) set ) ) iff x : ( ( ) ( ) set ) is ( ( non empty directed lower ) ( non empty directed lower ) Ideal of S : ( ( non empty full ) ( non empty reflexive transitive full ) SubRelStr of b1 : ( ( non empty reflexive transitive ) ( non empty reflexive transitive ) RelStr ) ) ) ) ;

theorem :: WAYBEL23:53
for L being ( ( non empty reflexive transitive ) ( non empty reflexive transitive ) RelStr )
for S being ( ( non empty full ) ( non empty reflexive transitive full ) SubRelStr of L : ( ( non empty reflexive transitive ) ( non empty reflexive transitive ) RelStr ) ) holds
( dom (idsMap S : ( ( non empty full ) ( non empty reflexive transitive full ) SubRelStr of b1 : ( ( non empty reflexive transitive ) ( non empty reflexive transitive ) RelStr ) ) ) : ( ( Function-like quasi_total ) ( V7() V10( the carrier of (InclPoset (Ids b2 : ( ( non empty full ) ( non empty reflexive transitive full ) SubRelStr of b1 : ( ( non empty reflexive transitive ) ( non empty reflexive transitive ) RelStr ) ) ) : ( ( ) ( non empty ) set ) ) : ( ( strict ) ( non empty strict reflexive transitive antisymmetric ) RelStr ) : ( ( ) ( non empty ) set ) ) V11( the carrier of (InclPoset (Ids b1 : ( ( non empty reflexive transitive ) ( non empty reflexive transitive ) RelStr ) ) : ( ( ) ( non empty ) set ) ) : ( ( strict ) ( non empty strict reflexive transitive antisymmetric ) RelStr ) : ( ( ) ( non empty ) set ) ) Function-like quasi_total ) Function of ( ( ) ( non empty ) set ) , ( ( ) ( non empty ) set ) ) : ( ( ) ( ) Element of K32( the carrier of (InclPoset (Ids b2 : ( ( non empty full ) ( non empty reflexive transitive full ) SubRelStr of b1 : ( ( non empty reflexive transitive ) ( non empty reflexive transitive ) RelStr ) ) ) : ( ( ) ( non empty ) set ) ) : ( ( strict ) ( non empty strict reflexive transitive antisymmetric ) RelStr ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty ) set ) ) = Ids S : ( ( non empty full ) ( non empty reflexive transitive full ) SubRelStr of b1 : ( ( non empty reflexive transitive ) ( non empty reflexive transitive ) RelStr ) ) : ( ( ) ( non empty ) set ) & rng (idsMap S : ( ( non empty full ) ( non empty reflexive transitive full ) SubRelStr of b1 : ( ( non empty reflexive transitive ) ( non empty reflexive transitive ) RelStr ) ) ) : ( ( Function-like quasi_total ) ( V7() V10( the carrier of (InclPoset (Ids b2 : ( ( non empty full ) ( non empty reflexive transitive full ) SubRelStr of b1 : ( ( non empty reflexive transitive ) ( non empty reflexive transitive ) RelStr ) ) ) : ( ( ) ( non empty ) set ) ) : ( ( strict ) ( non empty strict reflexive transitive antisymmetric ) RelStr ) : ( ( ) ( non empty ) set ) ) V11( the carrier of (InclPoset (Ids b1 : ( ( non empty reflexive transitive ) ( non empty reflexive transitive ) RelStr ) ) : ( ( ) ( non empty ) set ) ) : ( ( strict ) ( non empty strict reflexive transitive antisymmetric ) RelStr ) : ( ( ) ( non empty ) set ) ) Function-like quasi_total ) Function of ( ( ) ( non empty ) set ) , ( ( ) ( non empty ) set ) ) : ( ( ) ( ) Element of K32( the carrier of (InclPoset (Ids b1 : ( ( non empty reflexive transitive ) ( non empty reflexive transitive ) RelStr ) ) : ( ( ) ( non empty ) set ) ) : ( ( strict ) ( non empty strict reflexive transitive antisymmetric ) RelStr ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty ) set ) ) is ( ( ) ( ) Subset of ( ( ) ( non empty ) set ) ) ) ;

theorem :: WAYBEL23:54
for L being ( ( non empty reflexive transitive ) ( non empty reflexive transitive ) RelStr )
for S being ( ( non empty full ) ( non empty reflexive transitive full ) SubRelStr of L : ( ( non empty reflexive transitive ) ( non empty reflexive transitive ) RelStr ) )
for x being ( ( ) ( ) set ) holds
( x : ( ( ) ( ) set ) in dom (idsMap S : ( ( non empty full ) ( non empty reflexive transitive full ) SubRelStr of b1 : ( ( non empty reflexive transitive ) ( non empty reflexive transitive ) RelStr ) ) ) : ( ( Function-like quasi_total ) ( V7() V10( the carrier of (InclPoset (Ids b2 : ( ( non empty full ) ( non empty reflexive transitive full ) SubRelStr of b1 : ( ( non empty reflexive transitive ) ( non empty reflexive transitive ) RelStr ) ) ) : ( ( ) ( non empty ) set ) ) : ( ( strict ) ( non empty strict reflexive transitive antisymmetric ) RelStr ) : ( ( ) ( non empty ) set ) ) V11( the carrier of (InclPoset (Ids b1 : ( ( non empty reflexive transitive ) ( non empty reflexive transitive ) RelStr ) ) : ( ( ) ( non empty ) set ) ) : ( ( strict ) ( non empty strict reflexive transitive antisymmetric ) RelStr ) : ( ( ) ( non empty ) set ) ) Function-like quasi_total ) Function of ( ( ) ( non empty ) set ) , ( ( ) ( non empty ) set ) ) : ( ( ) ( ) Element of K32( the carrier of (InclPoset (Ids b2 : ( ( non empty full ) ( non empty reflexive transitive full ) SubRelStr of b1 : ( ( non empty reflexive transitive ) ( non empty reflexive transitive ) RelStr ) ) ) : ( ( ) ( non empty ) set ) ) : ( ( strict ) ( non empty strict reflexive transitive antisymmetric ) RelStr ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty ) set ) ) iff x : ( ( ) ( ) set ) is ( ( non empty directed lower ) ( non empty directed lower ) Ideal of S : ( ( non empty full ) ( non empty reflexive transitive full ) SubRelStr of b1 : ( ( non empty reflexive transitive ) ( non empty reflexive transitive ) RelStr ) ) ) ) ;

theorem :: WAYBEL23:55
for L being ( ( non empty reflexive transitive ) ( non empty reflexive transitive ) RelStr )
for S being ( ( non empty full ) ( non empty reflexive transitive full ) SubRelStr of L : ( ( non empty reflexive transitive ) ( non empty reflexive transitive ) RelStr ) )
for x being ( ( ) ( ) set ) st x : ( ( ) ( ) set ) in rng (idsMap S : ( ( non empty full ) ( non empty reflexive transitive full ) SubRelStr of b1 : ( ( non empty reflexive transitive ) ( non empty reflexive transitive ) RelStr ) ) ) : ( ( Function-like quasi_total ) ( V7() V10( the carrier of (InclPoset (Ids b2 : ( ( non empty full ) ( non empty reflexive transitive full ) SubRelStr of b1 : ( ( non empty reflexive transitive ) ( non empty reflexive transitive ) RelStr ) ) ) : ( ( ) ( non empty ) set ) ) : ( ( strict ) ( non empty strict reflexive transitive antisymmetric ) RelStr ) : ( ( ) ( non empty ) set ) ) V11( the carrier of (InclPoset (Ids b1 : ( ( non empty reflexive transitive ) ( non empty reflexive transitive ) RelStr ) ) : ( ( ) ( non empty ) set ) ) : ( ( strict ) ( non empty strict reflexive transitive antisymmetric ) RelStr ) : ( ( ) ( non empty ) set ) ) Function-like quasi_total ) Function of ( ( ) ( non empty ) set ) , ( ( ) ( non empty ) set ) ) : ( ( ) ( ) Element of K32( the carrier of (InclPoset (Ids b1 : ( ( non empty reflexive transitive ) ( non empty reflexive transitive ) RelStr ) ) : ( ( ) ( non empty ) set ) ) : ( ( strict ) ( non empty strict reflexive transitive antisymmetric ) RelStr ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty ) set ) ) holds
x : ( ( ) ( ) set ) is ( ( non empty directed lower ) ( non empty directed lower ) Ideal of L : ( ( non empty reflexive transitive ) ( non empty reflexive transitive ) RelStr ) ) ;

theorem :: WAYBEL23:56
for L being ( ( reflexive transitive antisymmetric lower-bounded with_suprema continuous ) ( non empty reflexive transitive antisymmetric lower-bounded upper-bounded bounded with_suprema with_infima complete up-complete /\-complete satisfying_axiom_of_approximation continuous ) sup-Semilattice)
for B being ( ( with_bottom ) ( non empty directed join-closed with_bottom ) CLbasis of L : ( ( reflexive transitive antisymmetric lower-bounded with_suprema continuous ) ( non empty reflexive transitive antisymmetric lower-bounded upper-bounded bounded with_suprema with_infima complete up-complete /\-complete satisfying_axiom_of_approximation continuous ) sup-Semilattice) ) holds
( dom (baseMap B : ( ( with_bottom ) ( non empty directed join-closed with_bottom ) CLbasis of b1 : ( ( reflexive transitive antisymmetric lower-bounded with_suprema continuous ) ( non empty reflexive transitive antisymmetric lower-bounded upper-bounded bounded with_suprema with_infima complete up-complete /\-complete satisfying_axiom_of_approximation continuous ) sup-Semilattice) ) ) : ( ( Function-like quasi_total ) ( V7() V10( the carrier of b1 : ( ( reflexive transitive antisymmetric lower-bounded with_suprema continuous ) ( non empty reflexive transitive antisymmetric lower-bounded upper-bounded bounded with_suprema with_infima complete up-complete /\-complete satisfying_axiom_of_approximation continuous ) sup-Semilattice) : ( ( ) ( non empty ) set ) ) V11( the carrier of (InclPoset (Ids (subrelstr b2 : ( ( with_bottom ) ( non empty directed join-closed with_bottom ) CLbasis of b1 : ( ( reflexive transitive antisymmetric lower-bounded with_suprema continuous ) ( non empty reflexive transitive antisymmetric lower-bounded upper-bounded bounded with_suprema with_infima complete up-complete /\-complete satisfying_axiom_of_approximation continuous ) sup-Semilattice) ) ) : ( ( strict full ) ( non empty strict reflexive transitive antisymmetric lower-bounded full with_suprema ) SubRelStr of b1 : ( ( reflexive transitive antisymmetric lower-bounded with_suprema continuous ) ( non empty reflexive transitive antisymmetric lower-bounded upper-bounded bounded with_suprema with_infima complete up-complete /\-complete satisfying_axiom_of_approximation continuous ) sup-Semilattice) ) ) : ( ( ) ( non empty ) set ) ) : ( ( strict ) ( non empty strict reflexive transitive antisymmetric lower-bounded upper-bounded bounded with_suprema with_infima complete up-complete /\-complete ) RelStr ) : ( ( ) ( non empty ) set ) ) Function-like quasi_total ) Function of ( ( ) ( non empty ) set ) , ( ( ) ( non empty ) set ) ) : ( ( ) ( ) Element of K32( the carrier of b1 : ( ( reflexive transitive antisymmetric lower-bounded with_suprema continuous ) ( non empty reflexive transitive antisymmetric lower-bounded upper-bounded bounded with_suprema with_infima complete up-complete /\-complete satisfying_axiom_of_approximation continuous ) sup-Semilattice) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty ) set ) ) = the carrier of L : ( ( reflexive transitive antisymmetric lower-bounded with_suprema continuous ) ( non empty reflexive transitive antisymmetric lower-bounded upper-bounded bounded with_suprema with_infima complete up-complete /\-complete satisfying_axiom_of_approximation continuous ) sup-Semilattice) : ( ( ) ( non empty ) set ) & rng (baseMap B : ( ( with_bottom ) ( non empty directed join-closed with_bottom ) CLbasis of b1 : ( ( reflexive transitive antisymmetric lower-bounded with_suprema continuous ) ( non empty reflexive transitive antisymmetric lower-bounded upper-bounded bounded with_suprema with_infima complete up-complete /\-complete satisfying_axiom_of_approximation continuous ) sup-Semilattice) ) ) : ( ( Function-like quasi_total ) ( V7() V10( the carrier of b1 : ( ( reflexive transitive antisymmetric lower-bounded with_suprema continuous ) ( non empty reflexive transitive antisymmetric lower-bounded upper-bounded bounded with_suprema with_infima complete up-complete /\-complete satisfying_axiom_of_approximation continuous ) sup-Semilattice) : ( ( ) ( non empty ) set ) ) V11( the carrier of (InclPoset (Ids (subrelstr b2 : ( ( with_bottom ) ( non empty directed join-closed with_bottom ) CLbasis of b1 : ( ( reflexive transitive antisymmetric lower-bounded with_suprema continuous ) ( non empty reflexive transitive antisymmetric lower-bounded upper-bounded bounded with_suprema with_infima complete up-complete /\-complete satisfying_axiom_of_approximation continuous ) sup-Semilattice) ) ) : ( ( strict full ) ( non empty strict reflexive transitive antisymmetric lower-bounded full with_suprema ) SubRelStr of b1 : ( ( reflexive transitive antisymmetric lower-bounded with_suprema continuous ) ( non empty reflexive transitive antisymmetric lower-bounded upper-bounded bounded with_suprema with_infima complete up-complete /\-complete satisfying_axiom_of_approximation continuous ) sup-Semilattice) ) ) : ( ( ) ( non empty ) set ) ) : ( ( strict ) ( non empty strict reflexive transitive antisymmetric lower-bounded upper-bounded bounded with_suprema with_infima complete up-complete /\-complete ) RelStr ) : ( ( ) ( non empty ) set ) ) Function-like quasi_total ) Function of ( ( ) ( non empty ) set ) , ( ( ) ( non empty ) set ) ) : ( ( ) ( ) Element of K32( the carrier of (InclPoset (Ids (subrelstr b2 : ( ( with_bottom ) ( non empty directed join-closed with_bottom ) CLbasis of b1 : ( ( reflexive transitive antisymmetric lower-bounded with_suprema continuous ) ( non empty reflexive transitive antisymmetric lower-bounded upper-bounded bounded with_suprema with_infima complete up-complete /\-complete satisfying_axiom_of_approximation continuous ) sup-Semilattice) ) ) : ( ( strict full ) ( non empty strict reflexive transitive antisymmetric lower-bounded full with_suprema ) SubRelStr of b1 : ( ( reflexive transitive antisymmetric lower-bounded with_suprema continuous ) ( non empty reflexive transitive antisymmetric lower-bounded upper-bounded bounded with_suprema with_infima complete up-complete /\-complete satisfying_axiom_of_approximation continuous ) sup-Semilattice) ) ) : ( ( ) ( non empty ) set ) ) : ( ( strict ) ( non empty strict reflexive transitive antisymmetric lower-bounded upper-bounded bounded with_suprema with_infima complete up-complete /\-complete ) RelStr ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty ) set ) ) is ( ( ) ( ) Subset of ( ( ) ( non empty ) set ) ) ) ;

theorem :: WAYBEL23:57
for L being ( ( reflexive transitive antisymmetric lower-bounded with_suprema continuous ) ( non empty reflexive transitive antisymmetric lower-bounded upper-bounded bounded with_suprema with_infima complete up-complete /\-complete satisfying_axiom_of_approximation continuous ) sup-Semilattice)
for B being ( ( with_bottom ) ( non empty directed join-closed with_bottom ) CLbasis of L : ( ( reflexive transitive antisymmetric lower-bounded with_suprema continuous ) ( non empty reflexive transitive antisymmetric lower-bounded upper-bounded bounded with_suprema with_infima complete up-complete /\-complete satisfying_axiom_of_approximation continuous ) sup-Semilattice) )
for x being ( ( ) ( ) set ) st x : ( ( ) ( ) set ) in rng (baseMap B : ( ( with_bottom ) ( non empty directed join-closed with_bottom ) CLbasis of b1 : ( ( reflexive transitive antisymmetric lower-bounded with_suprema continuous ) ( non empty reflexive transitive antisymmetric lower-bounded upper-bounded bounded with_suprema with_infima complete up-complete /\-complete satisfying_axiom_of_approximation continuous ) sup-Semilattice) ) ) : ( ( Function-like quasi_total ) ( V7() V10( the carrier of b1 : ( ( reflexive transitive antisymmetric lower-bounded with_suprema continuous ) ( non empty reflexive transitive antisymmetric lower-bounded upper-bounded bounded with_suprema with_infima complete up-complete /\-complete satisfying_axiom_of_approximation continuous ) sup-Semilattice) : ( ( ) ( non empty ) set ) ) V11( the carrier of (InclPoset (Ids (subrelstr b2 : ( ( with_bottom ) ( non empty directed join-closed with_bottom ) CLbasis of b1 : ( ( reflexive transitive antisymmetric lower-bounded with_suprema continuous ) ( non empty reflexive transitive antisymmetric lower-bounded upper-bounded bounded with_suprema with_infima complete up-complete /\-complete satisfying_axiom_of_approximation continuous ) sup-Semilattice) ) ) : ( ( strict full ) ( non empty strict reflexive transitive antisymmetric lower-bounded full with_suprema ) SubRelStr of b1 : ( ( reflexive transitive antisymmetric lower-bounded with_suprema continuous ) ( non empty reflexive transitive antisymmetric lower-bounded upper-bounded bounded with_suprema with_infima complete up-complete /\-complete satisfying_axiom_of_approximation continuous ) sup-Semilattice) ) ) : ( ( ) ( non empty ) set ) ) : ( ( strict ) ( non empty strict reflexive transitive antisymmetric lower-bounded upper-bounded bounded with_suprema with_infima complete up-complete /\-complete ) RelStr ) : ( ( ) ( non empty ) set ) ) Function-like quasi_total ) Function of ( ( ) ( non empty ) set ) , ( ( ) ( non empty ) set ) ) : ( ( ) ( ) Element of K32( the carrier of (InclPoset (Ids (subrelstr b2 : ( ( with_bottom ) ( non empty directed join-closed with_bottom ) CLbasis of b1 : ( ( reflexive transitive antisymmetric lower-bounded with_suprema continuous ) ( non empty reflexive transitive antisymmetric lower-bounded upper-bounded bounded with_suprema with_infima complete up-complete /\-complete satisfying_axiom_of_approximation continuous ) sup-Semilattice) ) ) : ( ( strict full ) ( non empty strict reflexive transitive antisymmetric lower-bounded full with_suprema ) SubRelStr of b1 : ( ( reflexive transitive antisymmetric lower-bounded with_suprema continuous ) ( non empty reflexive transitive antisymmetric lower-bounded upper-bounded bounded with_suprema with_infima complete up-complete /\-complete satisfying_axiom_of_approximation continuous ) sup-Semilattice) ) ) : ( ( ) ( non empty ) set ) ) : ( ( strict ) ( non empty strict reflexive transitive antisymmetric lower-bounded upper-bounded bounded with_suprema with_infima complete up-complete /\-complete ) RelStr ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty ) set ) ) holds
x : ( ( ) ( ) set ) is ( ( non empty directed lower ) ( non empty directed lower ) Ideal of subrelstr B : ( ( with_bottom ) ( non empty directed join-closed with_bottom ) CLbasis of b1 : ( ( reflexive transitive antisymmetric lower-bounded with_suprema continuous ) ( non empty reflexive transitive antisymmetric lower-bounded upper-bounded bounded with_suprema with_infima complete up-complete /\-complete satisfying_axiom_of_approximation continuous ) sup-Semilattice) ) : ( ( strict full ) ( non empty strict reflexive transitive antisymmetric lower-bounded full with_suprema ) SubRelStr of b1 : ( ( reflexive transitive antisymmetric lower-bounded with_suprema continuous ) ( non empty reflexive transitive antisymmetric lower-bounded upper-bounded bounded with_suprema with_infima complete up-complete /\-complete satisfying_axiom_of_approximation continuous ) sup-Semilattice) ) ) ;

theorem :: WAYBEL23:58
for L being ( ( non empty reflexive transitive antisymmetric up-complete ) ( non empty reflexive transitive antisymmetric up-complete ) Poset)
for S being ( ( non empty full ) ( non empty reflexive transitive antisymmetric full ) SubRelStr of L : ( ( non empty reflexive transitive antisymmetric up-complete ) ( non empty reflexive transitive antisymmetric up-complete ) Poset) ) holds supMap S : ( ( non empty full ) ( non empty reflexive transitive antisymmetric full ) SubRelStr of b1 : ( ( non empty reflexive transitive antisymmetric up-complete ) ( non empty reflexive transitive antisymmetric up-complete ) Poset) ) : ( ( Function-like quasi_total ) ( V7() V10( the carrier of (InclPoset (Ids b2 : ( ( non empty full ) ( non empty reflexive transitive antisymmetric full ) SubRelStr of b1 : ( ( non empty reflexive transitive antisymmetric up-complete ) ( non empty reflexive transitive antisymmetric up-complete ) Poset) ) ) : ( ( ) ( non empty ) set ) ) : ( ( strict ) ( non empty strict reflexive transitive antisymmetric ) RelStr ) : ( ( ) ( non empty ) set ) ) V11( the carrier of b1 : ( ( non empty reflexive transitive antisymmetric up-complete ) ( non empty reflexive transitive antisymmetric up-complete ) Poset) : ( ( ) ( non empty ) set ) ) Function-like quasi_total ) Function of ( ( ) ( non empty ) set ) , ( ( ) ( non empty ) set ) ) is monotone ;

theorem :: WAYBEL23:59
for L being ( ( non empty reflexive transitive ) ( non empty reflexive transitive ) RelStr )
for S being ( ( non empty full ) ( non empty reflexive transitive full ) SubRelStr of L : ( ( non empty reflexive transitive ) ( non empty reflexive transitive ) RelStr ) ) holds idsMap S : ( ( non empty full ) ( non empty reflexive transitive full ) SubRelStr of b1 : ( ( non empty reflexive transitive ) ( non empty reflexive transitive ) RelStr ) ) : ( ( Function-like quasi_total ) ( V7() V10( the carrier of (InclPoset (Ids b2 : ( ( non empty full ) ( non empty reflexive transitive full ) SubRelStr of b1 : ( ( non empty reflexive transitive ) ( non empty reflexive transitive ) RelStr ) ) ) : ( ( ) ( non empty ) set ) ) : ( ( strict ) ( non empty strict reflexive transitive antisymmetric ) RelStr ) : ( ( ) ( non empty ) set ) ) V11( the carrier of (InclPoset (Ids b1 : ( ( non empty reflexive transitive ) ( non empty reflexive transitive ) RelStr ) ) : ( ( ) ( non empty ) set ) ) : ( ( strict ) ( non empty strict reflexive transitive antisymmetric ) RelStr ) : ( ( ) ( non empty ) set ) ) Function-like quasi_total ) Function of ( ( ) ( non empty ) set ) , ( ( ) ( non empty ) set ) ) is monotone ;

theorem :: WAYBEL23:60
for L being ( ( reflexive transitive antisymmetric lower-bounded with_suprema continuous ) ( non empty reflexive transitive antisymmetric lower-bounded upper-bounded bounded with_suprema with_infima complete up-complete /\-complete satisfying_axiom_of_approximation continuous ) sup-Semilattice)
for B being ( ( with_bottom ) ( non empty directed join-closed with_bottom ) CLbasis of L : ( ( reflexive transitive antisymmetric lower-bounded with_suprema continuous ) ( non empty reflexive transitive antisymmetric lower-bounded upper-bounded bounded with_suprema with_infima complete up-complete /\-complete satisfying_axiom_of_approximation continuous ) sup-Semilattice) ) holds baseMap B : ( ( with_bottom ) ( non empty directed join-closed with_bottom ) CLbasis of b1 : ( ( reflexive transitive antisymmetric lower-bounded with_suprema continuous ) ( non empty reflexive transitive antisymmetric lower-bounded upper-bounded bounded with_suprema with_infima complete up-complete /\-complete satisfying_axiom_of_approximation continuous ) sup-Semilattice) ) : ( ( Function-like quasi_total ) ( V7() V10( the carrier of b1 : ( ( reflexive transitive antisymmetric lower-bounded with_suprema continuous ) ( non empty reflexive transitive antisymmetric lower-bounded upper-bounded bounded with_suprema with_infima complete up-complete /\-complete satisfying_axiom_of_approximation continuous ) sup-Semilattice) : ( ( ) ( non empty ) set ) ) V11( the carrier of (InclPoset (Ids (subrelstr b2 : ( ( with_bottom ) ( non empty directed join-closed with_bottom ) CLbasis of b1 : ( ( reflexive transitive antisymmetric lower-bounded with_suprema continuous ) ( non empty reflexive transitive antisymmetric lower-bounded upper-bounded bounded with_suprema with_infima complete up-complete /\-complete satisfying_axiom_of_approximation continuous ) sup-Semilattice) ) ) : ( ( strict full ) ( non empty strict reflexive transitive antisymmetric lower-bounded full with_suprema ) SubRelStr of b1 : ( ( reflexive transitive antisymmetric lower-bounded with_suprema continuous ) ( non empty reflexive transitive antisymmetric lower-bounded upper-bounded bounded with_suprema with_infima complete up-complete /\-complete satisfying_axiom_of_approximation continuous ) sup-Semilattice) ) ) : ( ( ) ( non empty ) set ) ) : ( ( strict ) ( non empty strict reflexive transitive antisymmetric lower-bounded upper-bounded bounded with_suprema with_infima complete up-complete /\-complete ) RelStr ) : ( ( ) ( non empty ) set ) ) Function-like quasi_total ) Function of ( ( ) ( non empty ) set ) , ( ( ) ( non empty ) set ) ) is monotone ;

registration
let L be ( ( non empty reflexive transitive antisymmetric up-complete ) ( non empty reflexive transitive antisymmetric up-complete ) Poset) ;
let S be ( ( non empty full ) ( non empty reflexive transitive antisymmetric full ) SubRelStr of L : ( ( non empty reflexive transitive antisymmetric up-complete ) ( non empty reflexive transitive antisymmetric up-complete ) Poset) ) ;
cluster supMap S : ( ( non empty full ) ( non empty reflexive transitive antisymmetric full ) SubRelStr of L : ( ( non empty reflexive transitive antisymmetric up-complete ) ( non empty reflexive transitive antisymmetric up-complete ) RelStr ) ) : ( ( Function-like quasi_total ) ( V7() V10( the carrier of (InclPoset (Ids S : ( ( non empty full ) ( non empty reflexive transitive antisymmetric full ) SubRelStr of L : ( ( non empty reflexive transitive antisymmetric up-complete ) ( non empty reflexive transitive antisymmetric up-complete ) RelStr ) ) ) : ( ( ) ( non empty ) set ) ) : ( ( strict ) ( non empty strict reflexive transitive antisymmetric ) RelStr ) : ( ( ) ( non empty ) set ) ) V11( the carrier of L : ( ( non empty reflexive transitive antisymmetric up-complete ) ( non empty reflexive transitive antisymmetric up-complete ) RelStr ) : ( ( ) ( non empty ) set ) ) Function-like quasi_total ) Function of ( ( ) ( non empty ) set ) , ( ( ) ( non empty ) set ) ) -> Function-like quasi_total monotone ;
end;

registration
let L be ( ( non empty reflexive transitive ) ( non empty reflexive transitive ) RelStr ) ;
let S be ( ( non empty full ) ( non empty reflexive transitive full ) SubRelStr of L : ( ( non empty reflexive transitive ) ( non empty reflexive transitive ) RelStr ) ) ;
cluster idsMap S : ( ( non empty full ) ( non empty reflexive transitive full ) SubRelStr of L : ( ( non empty reflexive transitive ) ( non empty reflexive transitive ) RelStr ) ) : ( ( Function-like quasi_total ) ( V7() V10( the carrier of (InclPoset (Ids S : ( ( non empty full ) ( non empty reflexive transitive full ) SubRelStr of L : ( ( non empty reflexive transitive ) ( non empty reflexive transitive ) RelStr ) ) ) : ( ( ) ( non empty ) set ) ) : ( ( strict ) ( non empty strict reflexive transitive antisymmetric ) RelStr ) : ( ( ) ( non empty ) set ) ) V11( the carrier of (InclPoset (Ids L : ( ( non empty reflexive transitive ) ( non empty reflexive transitive ) RelStr ) ) : ( ( ) ( non empty ) set ) ) : ( ( strict ) ( non empty strict reflexive transitive antisymmetric ) RelStr ) : ( ( ) ( non empty ) set ) ) Function-like quasi_total ) Function of ( ( ) ( non empty ) set ) , ( ( ) ( non empty ) set ) ) -> Function-like quasi_total monotone ;
end;

registration
let L be ( ( reflexive transitive antisymmetric lower-bounded with_suprema continuous ) ( non empty reflexive transitive antisymmetric lower-bounded upper-bounded bounded with_suprema with_infima complete up-complete /\-complete satisfying_axiom_of_approximation continuous ) sup-Semilattice) ;
let B be ( ( with_bottom ) ( non empty directed join-closed with_bottom ) CLbasis of L : ( ( reflexive transitive antisymmetric lower-bounded with_suprema continuous ) ( non empty reflexive transitive antisymmetric lower-bounded upper-bounded bounded with_suprema with_infima complete up-complete /\-complete satisfying_axiom_of_approximation continuous ) sup-Semilattice) ) ;
cluster baseMap B : ( ( with_bottom ) ( non empty directed join-closed with_bottom ) CLbasis of L : ( ( reflexive transitive antisymmetric lower-bounded with_suprema continuous ) ( non empty reflexive transitive antisymmetric lower-bounded upper-bounded bounded with_suprema with_infima complete up-complete /\-complete satisfying_axiom_of_approximation continuous ) RelStr ) ) : ( ( Function-like quasi_total ) ( V7() V10( the carrier of L : ( ( reflexive transitive antisymmetric lower-bounded with_suprema continuous ) ( non empty reflexive transitive antisymmetric lower-bounded upper-bounded bounded with_suprema with_infima complete up-complete /\-complete satisfying_axiom_of_approximation continuous ) RelStr ) : ( ( ) ( non empty ) set ) ) V11( the carrier of (InclPoset (Ids (subrelstr B : ( ( with_bottom ) ( non empty directed join-closed with_bottom ) CLbasis of L : ( ( reflexive transitive antisymmetric lower-bounded with_suprema continuous ) ( non empty reflexive transitive antisymmetric lower-bounded upper-bounded bounded with_suprema with_infima complete up-complete /\-complete satisfying_axiom_of_approximation continuous ) RelStr ) ) ) : ( ( strict full ) ( non empty strict reflexive transitive antisymmetric lower-bounded full with_suprema ) SubRelStr of L : ( ( reflexive transitive antisymmetric lower-bounded with_suprema continuous ) ( non empty reflexive transitive antisymmetric lower-bounded upper-bounded bounded with_suprema with_infima complete up-complete /\-complete satisfying_axiom_of_approximation continuous ) RelStr ) ) ) : ( ( ) ( non empty ) set ) ) : ( ( strict ) ( non empty strict reflexive transitive antisymmetric lower-bounded upper-bounded bounded with_suprema with_infima complete up-complete /\-complete ) RelStr ) : ( ( ) ( non empty ) set ) ) Function-like quasi_total ) Function of ( ( ) ( non empty ) set ) , ( ( ) ( non empty ) set ) ) -> Function-like quasi_total monotone ;
end;

theorem :: WAYBEL23:61
for L being ( ( reflexive transitive antisymmetric lower-bounded with_suprema continuous ) ( non empty reflexive transitive antisymmetric lower-bounded upper-bounded bounded with_suprema with_infima complete up-complete /\-complete satisfying_axiom_of_approximation continuous ) sup-Semilattice)
for B being ( ( with_bottom ) ( non empty directed join-closed with_bottom ) CLbasis of L : ( ( reflexive transitive antisymmetric lower-bounded with_suprema continuous ) ( non empty reflexive transitive antisymmetric lower-bounded upper-bounded bounded with_suprema with_infima complete up-complete /\-complete satisfying_axiom_of_approximation continuous ) sup-Semilattice) ) holds idsMap (subrelstr B : ( ( with_bottom ) ( non empty directed join-closed with_bottom ) CLbasis of b1 : ( ( reflexive transitive antisymmetric lower-bounded with_suprema continuous ) ( non empty reflexive transitive antisymmetric lower-bounded upper-bounded bounded with_suprema with_infima complete up-complete /\-complete satisfying_axiom_of_approximation continuous ) sup-Semilattice) ) ) : ( ( strict full ) ( non empty strict reflexive transitive antisymmetric lower-bounded full with_suprema ) SubRelStr of b1 : ( ( reflexive transitive antisymmetric lower-bounded with_suprema continuous ) ( non empty reflexive transitive antisymmetric lower-bounded upper-bounded bounded with_suprema with_infima complete up-complete /\-complete satisfying_axiom_of_approximation continuous ) sup-Semilattice) ) : ( ( Function-like quasi_total ) ( V7() V10( the carrier of (InclPoset (Ids (subrelstr b2 : ( ( with_bottom ) ( non empty directed join-closed with_bottom ) CLbasis of b1 : ( ( reflexive transitive antisymmetric lower-bounded with_suprema continuous ) ( non empty reflexive transitive antisymmetric lower-bounded upper-bounded bounded with_suprema with_infima complete up-complete /\-complete satisfying_axiom_of_approximation continuous ) sup-Semilattice) ) ) : ( ( strict full ) ( non empty strict reflexive transitive antisymmetric lower-bounded full with_suprema ) SubRelStr of b1 : ( ( reflexive transitive antisymmetric lower-bounded with_suprema continuous ) ( non empty reflexive transitive antisymmetric lower-bounded upper-bounded bounded with_suprema with_infima complete up-complete /\-complete satisfying_axiom_of_approximation continuous ) sup-Semilattice) ) ) : ( ( ) ( non empty ) set ) ) : ( ( strict ) ( non empty strict reflexive transitive antisymmetric lower-bounded upper-bounded bounded with_suprema with_infima complete up-complete /\-complete ) RelStr ) : ( ( ) ( non empty ) set ) ) V11( the carrier of (InclPoset (Ids b1 : ( ( reflexive transitive antisymmetric lower-bounded with_suprema continuous ) ( non empty reflexive transitive antisymmetric lower-bounded upper-bounded bounded with_suprema with_infima complete up-complete /\-complete satisfying_axiom_of_approximation continuous ) sup-Semilattice) ) : ( ( ) ( non empty ) set ) ) : ( ( strict ) ( non empty strict reflexive transitive antisymmetric lower-bounded upper-bounded bounded with_suprema with_infima complete up-complete /\-complete ) RelStr ) : ( ( ) ( non empty ) set ) ) Function-like quasi_total monotone ) Function of ( ( ) ( non empty ) set ) , ( ( ) ( non empty ) set ) ) is sups-preserving ;

theorem :: WAYBEL23:62
for L being ( ( non empty reflexive transitive antisymmetric up-complete ) ( non empty reflexive transitive antisymmetric up-complete ) Poset)
for S being ( ( non empty full ) ( non empty reflexive transitive antisymmetric full ) SubRelStr of L : ( ( non empty reflexive transitive antisymmetric up-complete ) ( non empty reflexive transitive antisymmetric up-complete ) Poset) ) holds supMap S : ( ( non empty full ) ( non empty reflexive transitive antisymmetric full ) SubRelStr of b1 : ( ( non empty reflexive transitive antisymmetric up-complete ) ( non empty reflexive transitive antisymmetric up-complete ) Poset) ) : ( ( Function-like quasi_total ) ( V7() V10( the carrier of (InclPoset (Ids b2 : ( ( non empty full ) ( non empty reflexive transitive antisymmetric full ) SubRelStr of b1 : ( ( non empty reflexive transitive antisymmetric up-complete ) ( non empty reflexive transitive antisymmetric up-complete ) Poset) ) ) : ( ( ) ( non empty ) set ) ) : ( ( strict ) ( non empty strict reflexive transitive antisymmetric ) RelStr ) : ( ( ) ( non empty ) set ) ) V11( the carrier of b1 : ( ( non empty reflexive transitive antisymmetric up-complete ) ( non empty reflexive transitive antisymmetric up-complete ) Poset) : ( ( ) ( non empty ) set ) ) Function-like quasi_total monotone ) Function of ( ( ) ( non empty ) set ) , ( ( ) ( non empty ) set ) ) = (SupMap L : ( ( non empty reflexive transitive antisymmetric up-complete ) ( non empty reflexive transitive antisymmetric up-complete ) Poset) ) : ( ( Function-like quasi_total ) ( V7() V10( the carrier of (InclPoset (Ids b1 : ( ( non empty reflexive transitive antisymmetric up-complete ) ( non empty reflexive transitive antisymmetric up-complete ) Poset) ) : ( ( ) ( non empty ) set ) ) : ( ( strict ) ( non empty strict reflexive transitive antisymmetric ) RelStr ) : ( ( ) ( non empty ) set ) ) V11( the carrier of b1 : ( ( non empty reflexive transitive antisymmetric up-complete ) ( non empty reflexive transitive antisymmetric up-complete ) Poset) : ( ( ) ( non empty ) set ) ) Function-like quasi_total monotone ) Element of K32(K33( the carrier of (InclPoset (Ids b1 : ( ( non empty reflexive transitive antisymmetric up-complete ) ( non empty reflexive transitive antisymmetric up-complete ) Poset) ) : ( ( ) ( non empty ) set ) ) : ( ( strict ) ( non empty strict reflexive transitive antisymmetric ) RelStr ) : ( ( ) ( non empty ) set ) , the carrier of b1 : ( ( non empty reflexive transitive antisymmetric up-complete ) ( non empty reflexive transitive antisymmetric up-complete ) Poset) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty ) set ) ) * (idsMap S : ( ( non empty full ) ( non empty reflexive transitive antisymmetric full ) SubRelStr of b1 : ( ( non empty reflexive transitive antisymmetric up-complete ) ( non empty reflexive transitive antisymmetric up-complete ) Poset) ) ) : ( ( Function-like quasi_total ) ( V7() V10( the carrier of (InclPoset (Ids b2 : ( ( non empty full ) ( non empty reflexive transitive antisymmetric full ) SubRelStr of b1 : ( ( non empty reflexive transitive antisymmetric up-complete ) ( non empty reflexive transitive antisymmetric up-complete ) Poset) ) ) : ( ( ) ( non empty ) set ) ) : ( ( strict ) ( non empty strict reflexive transitive antisymmetric ) RelStr ) : ( ( ) ( non empty ) set ) ) V11( the carrier of (InclPoset (Ids b1 : ( ( non empty reflexive transitive antisymmetric up-complete ) ( non empty reflexive transitive antisymmetric up-complete ) Poset) ) : ( ( ) ( non empty ) set ) ) : ( ( strict ) ( non empty strict reflexive transitive antisymmetric ) RelStr ) : ( ( ) ( non empty ) set ) ) Function-like quasi_total monotone ) Function of ( ( ) ( non empty ) set ) , ( ( ) ( non empty ) set ) ) : ( ( Function-like ) ( V7() V10( the carrier of (InclPoset (Ids b2 : ( ( non empty full ) ( non empty reflexive transitive antisymmetric full ) SubRelStr of b1 : ( ( non empty reflexive transitive antisymmetric up-complete ) ( non empty reflexive transitive antisymmetric up-complete ) Poset) ) ) : ( ( ) ( non empty ) set ) ) : ( ( strict ) ( non empty strict reflexive transitive antisymmetric ) RelStr ) : ( ( ) ( non empty ) set ) ) V11( the carrier of b1 : ( ( non empty reflexive transitive antisymmetric up-complete ) ( non empty reflexive transitive antisymmetric up-complete ) Poset) : ( ( ) ( non empty ) set ) ) Function-like ) Element of K32(K33( the carrier of (InclPoset (Ids b2 : ( ( non empty full ) ( non empty reflexive transitive antisymmetric full ) SubRelStr of b1 : ( ( non empty reflexive transitive antisymmetric up-complete ) ( non empty reflexive transitive antisymmetric up-complete ) Poset) ) ) : ( ( ) ( non empty ) set ) ) : ( ( strict ) ( non empty strict reflexive transitive antisymmetric ) RelStr ) : ( ( ) ( non empty ) set ) , the carrier of b1 : ( ( non empty reflexive transitive antisymmetric up-complete ) ( non empty reflexive transitive antisymmetric up-complete ) Poset) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty ) set ) ) ;

theorem :: WAYBEL23:63
for L being ( ( reflexive transitive antisymmetric lower-bounded with_suprema continuous ) ( non empty reflexive transitive antisymmetric lower-bounded upper-bounded bounded with_suprema with_infima complete up-complete /\-complete satisfying_axiom_of_approximation continuous ) sup-Semilattice)
for B being ( ( with_bottom ) ( non empty directed join-closed with_bottom ) CLbasis of L : ( ( reflexive transitive antisymmetric lower-bounded with_suprema continuous ) ( non empty reflexive transitive antisymmetric lower-bounded upper-bounded bounded with_suprema with_infima complete up-complete /\-complete satisfying_axiom_of_approximation continuous ) sup-Semilattice) ) holds [(supMap (subrelstr B : ( ( with_bottom ) ( non empty directed join-closed with_bottom ) CLbasis of b1 : ( ( reflexive transitive antisymmetric lower-bounded with_suprema continuous ) ( non empty reflexive transitive antisymmetric lower-bounded upper-bounded bounded with_suprema with_infima complete up-complete /\-complete satisfying_axiom_of_approximation continuous ) sup-Semilattice) ) ) : ( ( strict full ) ( non empty strict reflexive transitive antisymmetric lower-bounded full with_suprema ) SubRelStr of b1 : ( ( reflexive transitive antisymmetric lower-bounded with_suprema continuous ) ( non empty reflexive transitive antisymmetric lower-bounded upper-bounded bounded with_suprema with_infima complete up-complete /\-complete satisfying_axiom_of_approximation continuous ) sup-Semilattice) ) ) : ( ( Function-like quasi_total ) ( V7() V10( the carrier of (InclPoset (Ids (subrelstr b2 : ( ( with_bottom ) ( non empty directed join-closed with_bottom ) CLbasis of b1 : ( ( reflexive transitive antisymmetric lower-bounded with_suprema continuous ) ( non empty reflexive transitive antisymmetric lower-bounded upper-bounded bounded with_suprema with_infima complete up-complete /\-complete satisfying_axiom_of_approximation continuous ) sup-Semilattice) ) ) : ( ( strict full ) ( non empty strict reflexive transitive antisymmetric lower-bounded full with_suprema ) SubRelStr of b1 : ( ( reflexive transitive antisymmetric lower-bounded with_suprema continuous ) ( non empty reflexive transitive antisymmetric lower-bounded upper-bounded bounded with_suprema with_infima complete up-complete /\-complete satisfying_axiom_of_approximation continuous ) sup-Semilattice) ) ) : ( ( ) ( non empty ) set ) ) : ( ( strict ) ( non empty strict reflexive transitive antisymmetric lower-bounded upper-bounded bounded with_suprema with_infima complete up-complete /\-complete ) RelStr ) : ( ( ) ( non empty ) set ) ) V11( the carrier of b1 : ( ( reflexive transitive antisymmetric lower-bounded with_suprema continuous ) ( non empty reflexive transitive antisymmetric lower-bounded upper-bounded bounded with_suprema with_infima complete up-complete /\-complete satisfying_axiom_of_approximation continuous ) sup-Semilattice) : ( ( ) ( non empty ) set ) ) Function-like quasi_total monotone ) Function of ( ( ) ( non empty ) set ) , ( ( ) ( non empty ) set ) ) ,(baseMap B : ( ( with_bottom ) ( non empty directed join-closed with_bottom ) CLbasis of b1 : ( ( reflexive transitive antisymmetric lower-bounded with_suprema continuous ) ( non empty reflexive transitive antisymmetric lower-bounded upper-bounded bounded with_suprema with_infima complete up-complete /\-complete satisfying_axiom_of_approximation continuous ) sup-Semilattice) ) ) : ( ( Function-like quasi_total ) ( V7() V10( the carrier of b1 : ( ( reflexive transitive antisymmetric lower-bounded with_suprema continuous ) ( non empty reflexive transitive antisymmetric lower-bounded upper-bounded bounded with_suprema with_infima complete up-complete /\-complete satisfying_axiom_of_approximation continuous ) sup-Semilattice) : ( ( ) ( non empty ) set ) ) V11( the carrier of (InclPoset (Ids (subrelstr b2 : ( ( with_bottom ) ( non empty directed join-closed with_bottom ) CLbasis of b1 : ( ( reflexive transitive antisymmetric lower-bounded with_suprema continuous ) ( non empty reflexive transitive antisymmetric lower-bounded upper-bounded bounded with_suprema with_infima complete up-complete /\-complete satisfying_axiom_of_approximation continuous ) sup-Semilattice) ) ) : ( ( strict full ) ( non empty strict reflexive transitive antisymmetric lower-bounded full with_suprema ) SubRelStr of b1 : ( ( reflexive transitive antisymmetric lower-bounded with_suprema continuous ) ( non empty reflexive transitive antisymmetric lower-bounded upper-bounded bounded with_suprema with_infima complete up-complete /\-complete satisfying_axiom_of_approximation continuous ) sup-Semilattice) ) ) : ( ( ) ( non empty ) set ) ) : ( ( strict ) ( non empty strict reflexive transitive antisymmetric lower-bounded upper-bounded bounded with_suprema with_infima complete up-complete /\-complete ) RelStr ) : ( ( ) ( non empty ) set ) ) Function-like quasi_total monotone ) Function of ( ( ) ( non empty ) set ) , ( ( ) ( non empty ) set ) ) ] : ( ( ) ( ) Connection of InclPoset (Ids (subrelstr b2 : ( ( with_bottom ) ( non empty directed join-closed with_bottom ) CLbasis of b1 : ( ( reflexive transitive antisymmetric lower-bounded with_suprema continuous ) ( non empty reflexive transitive antisymmetric lower-bounded upper-bounded bounded with_suprema with_infima complete up-complete /\-complete satisfying_axiom_of_approximation continuous ) sup-Semilattice) ) ) : ( ( strict full ) ( non empty strict reflexive transitive antisymmetric lower-bounded full with_suprema ) SubRelStr of b1 : ( ( reflexive transitive antisymmetric lower-bounded with_suprema continuous ) ( non empty reflexive transitive antisymmetric lower-bounded upper-bounded bounded with_suprema with_infima complete up-complete /\-complete satisfying_axiom_of_approximation continuous ) sup-Semilattice) ) ) : ( ( ) ( non empty ) set ) : ( ( strict ) ( non empty strict reflexive transitive antisymmetric lower-bounded upper-bounded bounded with_suprema with_infima complete up-complete /\-complete ) RelStr ) ,b1 : ( ( reflexive transitive antisymmetric lower-bounded with_suprema continuous ) ( non empty reflexive transitive antisymmetric lower-bounded upper-bounded bounded with_suprema with_infima complete up-complete /\-complete satisfying_axiom_of_approximation continuous ) sup-Semilattice) ) is Galois ;

theorem :: WAYBEL23:64
for L being ( ( reflexive transitive antisymmetric lower-bounded with_suprema continuous ) ( non empty reflexive transitive antisymmetric lower-bounded upper-bounded bounded with_suprema with_infima complete up-complete /\-complete satisfying_axiom_of_approximation continuous ) sup-Semilattice)
for B being ( ( with_bottom ) ( non empty directed join-closed with_bottom ) CLbasis of L : ( ( reflexive transitive antisymmetric lower-bounded with_suprema continuous ) ( non empty reflexive transitive antisymmetric lower-bounded upper-bounded bounded with_suprema with_infima complete up-complete /\-complete satisfying_axiom_of_approximation continuous ) sup-Semilattice) ) holds
( supMap (subrelstr B : ( ( with_bottom ) ( non empty directed join-closed with_bottom ) CLbasis of b1 : ( ( reflexive transitive antisymmetric lower-bounded with_suprema continuous ) ( non empty reflexive transitive antisymmetric lower-bounded upper-bounded bounded with_suprema with_infima complete up-complete /\-complete satisfying_axiom_of_approximation continuous ) sup-Semilattice) ) ) : ( ( strict full ) ( non empty strict reflexive transitive antisymmetric lower-bounded full with_suprema ) SubRelStr of b1 : ( ( reflexive transitive antisymmetric lower-bounded with_suprema continuous ) ( non empty reflexive transitive antisymmetric lower-bounded upper-bounded bounded with_suprema with_infima complete up-complete /\-complete satisfying_axiom_of_approximation continuous ) sup-Semilattice) ) : ( ( Function-like quasi_total ) ( V7() V10( the carrier of (InclPoset (Ids (subrelstr b2 : ( ( with_bottom ) ( non empty directed join-closed with_bottom ) CLbasis of b1 : ( ( reflexive transitive antisymmetric lower-bounded with_suprema continuous ) ( non empty reflexive transitive antisymmetric lower-bounded upper-bounded bounded with_suprema with_infima complete up-complete /\-complete satisfying_axiom_of_approximation continuous ) sup-Semilattice) ) ) : ( ( strict full ) ( non empty strict reflexive transitive antisymmetric lower-bounded full with_suprema ) SubRelStr of b1 : ( ( reflexive transitive antisymmetric lower-bounded with_suprema continuous ) ( non empty reflexive transitive antisymmetric lower-bounded upper-bounded bounded with_suprema with_infima complete up-complete /\-complete satisfying_axiom_of_approximation continuous ) sup-Semilattice) ) ) : ( ( ) ( non empty ) set ) ) : ( ( strict ) ( non empty strict reflexive transitive antisymmetric lower-bounded upper-bounded bounded with_suprema with_infima complete up-complete /\-complete ) RelStr ) : ( ( ) ( non empty ) set ) ) V11( the carrier of b1 : ( ( reflexive transitive antisymmetric lower-bounded with_suprema continuous ) ( non empty reflexive transitive antisymmetric lower-bounded upper-bounded bounded with_suprema with_infima complete up-complete /\-complete satisfying_axiom_of_approximation continuous ) sup-Semilattice) : ( ( ) ( non empty ) set ) ) Function-like quasi_total monotone ) Function of ( ( ) ( non empty ) set ) , ( ( ) ( non empty ) set ) ) is upper_adjoint & baseMap B : ( ( with_bottom ) ( non empty directed join-closed with_bottom ) CLbasis of b1 : ( ( reflexive transitive antisymmetric lower-bounded with_suprema continuous ) ( non empty reflexive transitive antisymmetric lower-bounded upper-bounded bounded with_suprema with_infima complete up-complete /\-complete satisfying_axiom_of_approximation continuous ) sup-Semilattice) ) : ( ( Function-like quasi_total ) ( V7() V10( the carrier of b1 : ( ( reflexive transitive antisymmetric lower-bounded with_suprema continuous ) ( non empty reflexive transitive antisymmetric lower-bounded upper-bounded bounded with_suprema with_infima complete up-complete /\-complete satisfying_axiom_of_approximation continuous ) sup-Semilattice) : ( ( ) ( non empty ) set ) ) V11( the carrier of (InclPoset (Ids (subrelstr b2 : ( ( with_bottom ) ( non empty directed join-closed with_bottom ) CLbasis of b1 : ( ( reflexive transitive antisymmetric lower-bounded with_suprema continuous ) ( non empty reflexive transitive antisymmetric lower-bounded upper-bounded bounded with_suprema with_infima complete up-complete /\-complete satisfying_axiom_of_approximation continuous ) sup-Semilattice) ) ) : ( ( strict full ) ( non empty strict reflexive transitive antisymmetric lower-bounded full with_suprema ) SubRelStr of b1 : ( ( reflexive transitive antisymmetric lower-bounded with_suprema continuous ) ( non empty reflexive transitive antisymmetric lower-bounded upper-bounded bounded with_suprema with_infima complete up-complete /\-complete satisfying_axiom_of_approximation continuous ) sup-Semilattice) ) ) : ( ( ) ( non empty ) set ) ) : ( ( strict ) ( non empty strict reflexive transitive antisymmetric lower-bounded upper-bounded bounded with_suprema with_infima complete up-complete /\-complete ) RelStr ) : ( ( ) ( non empty ) set ) ) Function-like quasi_total monotone ) Function of ( ( ) ( non empty ) set ) , ( ( ) ( non empty ) set ) ) is lower_adjoint ) ;

theorem :: WAYBEL23:65
for L being ( ( reflexive transitive antisymmetric lower-bounded with_suprema continuous ) ( non empty reflexive transitive antisymmetric lower-bounded upper-bounded bounded with_suprema with_infima complete up-complete /\-complete satisfying_axiom_of_approximation continuous ) sup-Semilattice)
for B being ( ( with_bottom ) ( non empty directed join-closed with_bottom ) CLbasis of L : ( ( reflexive transitive antisymmetric lower-bounded with_suprema continuous ) ( non empty reflexive transitive antisymmetric lower-bounded upper-bounded bounded with_suprema with_infima complete up-complete /\-complete satisfying_axiom_of_approximation continuous ) sup-Semilattice) ) holds rng (supMap (subrelstr B : ( ( with_bottom ) ( non empty directed join-closed with_bottom ) CLbasis of b1 : ( ( reflexive transitive antisymmetric lower-bounded with_suprema continuous ) ( non empty reflexive transitive antisymmetric lower-bounded upper-bounded bounded with_suprema with_infima complete up-complete /\-complete satisfying_axiom_of_approximation continuous ) sup-Semilattice) ) ) : ( ( strict full ) ( non empty strict reflexive transitive antisymmetric lower-bounded full with_suprema ) SubRelStr of b1 : ( ( reflexive transitive antisymmetric lower-bounded with_suprema continuous ) ( non empty reflexive transitive antisymmetric lower-bounded upper-bounded bounded with_suprema with_infima complete up-complete /\-complete satisfying_axiom_of_approximation continuous ) sup-Semilattice) ) ) : ( ( Function-like quasi_total ) ( V7() V10( the carrier of (InclPoset (Ids (subrelstr b2 : ( ( with_bottom ) ( non empty directed join-closed with_bottom ) CLbasis of b1 : ( ( reflexive transitive antisymmetric lower-bounded with_suprema continuous ) ( non empty reflexive transitive antisymmetric lower-bounded upper-bounded bounded with_suprema with_infima complete up-complete /\-complete satisfying_axiom_of_approximation continuous ) sup-Semilattice) ) ) : ( ( strict full ) ( non empty strict reflexive transitive antisymmetric lower-bounded full with_suprema ) SubRelStr of b1 : ( ( reflexive transitive antisymmetric lower-bounded with_suprema continuous ) ( non empty reflexive transitive antisymmetric lower-bounded upper-bounded bounded with_suprema with_infima complete up-complete /\-complete satisfying_axiom_of_approximation continuous ) sup-Semilattice) ) ) : ( ( ) ( non empty ) set ) ) : ( ( strict ) ( non empty strict reflexive transitive antisymmetric lower-bounded upper-bounded bounded with_suprema with_infima complete up-complete /\-complete ) RelStr ) : ( ( ) ( non empty ) set ) ) V11( the carrier of b1 : ( ( reflexive transitive antisymmetric lower-bounded with_suprema continuous ) ( non empty reflexive transitive antisymmetric lower-bounded upper-bounded bounded with_suprema with_infima complete up-complete /\-complete satisfying_axiom_of_approximation continuous ) sup-Semilattice) : ( ( ) ( non empty ) set ) ) Function-like quasi_total monotone ) Function of ( ( ) ( non empty ) set ) , ( ( ) ( non empty ) set ) ) : ( ( ) ( ) Element of K32( the carrier of b1 : ( ( reflexive transitive antisymmetric lower-bounded with_suprema continuous ) ( non empty reflexive transitive antisymmetric lower-bounded upper-bounded bounded with_suprema with_infima complete up-complete /\-complete satisfying_axiom_of_approximation continuous ) sup-Semilattice) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty ) set ) ) = the carrier of L : ( ( reflexive transitive antisymmetric lower-bounded with_suprema continuous ) ( non empty reflexive transitive antisymmetric lower-bounded upper-bounded bounded with_suprema with_infima complete up-complete /\-complete satisfying_axiom_of_approximation continuous ) sup-Semilattice) : ( ( ) ( non empty ) set ) ;

theorem :: WAYBEL23:66
for L being ( ( reflexive transitive antisymmetric lower-bounded with_suprema continuous ) ( non empty reflexive transitive antisymmetric lower-bounded upper-bounded bounded with_suprema with_infima complete up-complete /\-complete satisfying_axiom_of_approximation continuous ) sup-Semilattice)
for B being ( ( with_bottom ) ( non empty directed join-closed with_bottom ) CLbasis of L : ( ( reflexive transitive antisymmetric lower-bounded with_suprema continuous ) ( non empty reflexive transitive antisymmetric lower-bounded upper-bounded bounded with_suprema with_infima complete up-complete /\-complete satisfying_axiom_of_approximation continuous ) sup-Semilattice) ) holds
( supMap (subrelstr B : ( ( with_bottom ) ( non empty directed join-closed with_bottom ) CLbasis of b1 : ( ( reflexive transitive antisymmetric lower-bounded with_suprema continuous ) ( non empty reflexive transitive antisymmetric lower-bounded upper-bounded bounded with_suprema with_infima complete up-complete /\-complete satisfying_axiom_of_approximation continuous ) sup-Semilattice) ) ) : ( ( strict full ) ( non empty strict reflexive transitive antisymmetric lower-bounded full with_suprema ) SubRelStr of b1 : ( ( reflexive transitive antisymmetric lower-bounded with_suprema continuous ) ( non empty reflexive transitive antisymmetric lower-bounded upper-bounded bounded with_suprema with_infima complete up-complete /\-complete satisfying_axiom_of_approximation continuous ) sup-Semilattice) ) : ( ( Function-like quasi_total ) ( V7() V10( the carrier of (InclPoset (Ids (subrelstr b2 : ( ( with_bottom ) ( non empty directed join-closed with_bottom ) CLbasis of b1 : ( ( reflexive transitive antisymmetric lower-bounded with_suprema continuous ) ( non empty reflexive transitive antisymmetric lower-bounded upper-bounded bounded with_suprema with_infima complete up-complete /\-complete satisfying_axiom_of_approximation continuous ) sup-Semilattice) ) ) : ( ( strict full ) ( non empty strict reflexive transitive antisymmetric lower-bounded full with_suprema ) SubRelStr of b1 : ( ( reflexive transitive antisymmetric lower-bounded with_suprema continuous ) ( non empty reflexive transitive antisymmetric lower-bounded upper-bounded bounded with_suprema with_infima complete up-complete /\-complete satisfying_axiom_of_approximation continuous ) sup-Semilattice) ) ) : ( ( ) ( non empty ) set ) ) : ( ( strict ) ( non empty strict reflexive transitive antisymmetric lower-bounded upper-bounded bounded with_suprema with_infima complete up-complete /\-complete ) RelStr ) : ( ( ) ( non empty ) set ) ) V11( the carrier of b1 : ( ( reflexive transitive antisymmetric lower-bounded with_suprema continuous ) ( non empty reflexive transitive antisymmetric lower-bounded upper-bounded bounded with_suprema with_infima complete up-complete /\-complete satisfying_axiom_of_approximation continuous ) sup-Semilattice) : ( ( ) ( non empty ) set ) ) Function-like quasi_total monotone ) Function of ( ( ) ( non empty ) set ) , ( ( ) ( non empty ) set ) ) is infs-preserving & supMap (subrelstr B : ( ( with_bottom ) ( non empty directed join-closed with_bottom ) CLbasis of b1 : ( ( reflexive transitive antisymmetric lower-bounded with_suprema continuous ) ( non empty reflexive transitive antisymmetric lower-bounded upper-bounded bounded with_suprema with_infima complete up-complete /\-complete satisfying_axiom_of_approximation continuous ) sup-Semilattice) ) ) : ( ( strict full ) ( non empty strict reflexive transitive antisymmetric lower-bounded full with_suprema ) SubRelStr of b1 : ( ( reflexive transitive antisymmetric lower-bounded with_suprema continuous ) ( non empty reflexive transitive antisymmetric lower-bounded upper-bounded bounded with_suprema with_infima complete up-complete /\-complete satisfying_axiom_of_approximation continuous ) sup-Semilattice) ) : ( ( Function-like quasi_total ) ( V7() V10( the carrier of (InclPoset (Ids (subrelstr b2 : ( ( with_bottom ) ( non empty directed join-closed with_bottom ) CLbasis of b1 : ( ( reflexive transitive antisymmetric lower-bounded with_suprema continuous ) ( non empty reflexive transitive antisymmetric lower-bounded upper-bounded bounded with_suprema with_infima complete up-complete /\-complete satisfying_axiom_of_approximation continuous ) sup-Semilattice) ) ) : ( ( strict full ) ( non empty strict reflexive transitive antisymmetric lower-bounded full with_suprema ) SubRelStr of b1 : ( ( reflexive transitive antisymmetric lower-bounded with_suprema continuous ) ( non empty reflexive transitive antisymmetric lower-bounded upper-bounded bounded with_suprema with_infima complete up-complete /\-complete satisfying_axiom_of_approximation continuous ) sup-Semilattice) ) ) : ( ( ) ( non empty ) set ) ) : ( ( strict ) ( non empty strict reflexive transitive antisymmetric lower-bounded upper-bounded bounded with_suprema with_infima complete up-complete /\-complete ) RelStr ) : ( ( ) ( non empty ) set ) ) V11( the carrier of b1 : ( ( reflexive transitive antisymmetric lower-bounded with_suprema continuous ) ( non empty reflexive transitive antisymmetric lower-bounded upper-bounded bounded with_suprema with_infima complete up-complete /\-complete satisfying_axiom_of_approximation continuous ) sup-Semilattice) : ( ( ) ( non empty ) set ) ) Function-like quasi_total monotone ) Function of ( ( ) ( non empty ) set ) , ( ( ) ( non empty ) set ) ) is sups-preserving ) ;

theorem :: WAYBEL23:67
for L being ( ( reflexive transitive antisymmetric lower-bounded with_suprema continuous ) ( non empty reflexive transitive antisymmetric lower-bounded upper-bounded bounded with_suprema with_infima complete up-complete /\-complete satisfying_axiom_of_approximation continuous ) sup-Semilattice)
for B being ( ( with_bottom ) ( non empty directed join-closed with_bottom ) CLbasis of L : ( ( reflexive transitive antisymmetric lower-bounded with_suprema continuous ) ( non empty reflexive transitive antisymmetric lower-bounded upper-bounded bounded with_suprema with_infima complete up-complete /\-complete satisfying_axiom_of_approximation continuous ) sup-Semilattice) ) holds baseMap B : ( ( with_bottom ) ( non empty directed join-closed with_bottom ) CLbasis of b1 : ( ( reflexive transitive antisymmetric lower-bounded with_suprema continuous ) ( non empty reflexive transitive antisymmetric lower-bounded upper-bounded bounded with_suprema with_infima complete up-complete /\-complete satisfying_axiom_of_approximation continuous ) sup-Semilattice) ) : ( ( Function-like quasi_total ) ( V7() V10( the carrier of b1 : ( ( reflexive transitive antisymmetric lower-bounded with_suprema continuous ) ( non empty reflexive transitive antisymmetric lower-bounded upper-bounded bounded with_suprema with_infima complete up-complete /\-complete satisfying_axiom_of_approximation continuous ) sup-Semilattice) : ( ( ) ( non empty ) set ) ) V11( the carrier of (InclPoset (Ids (subrelstr b2 : ( ( with_bottom ) ( non empty directed join-closed with_bottom ) CLbasis of b1 : ( ( reflexive transitive antisymmetric lower-bounded with_suprema continuous ) ( non empty reflexive transitive antisymmetric lower-bounded upper-bounded bounded with_suprema with_infima complete up-complete /\-complete satisfying_axiom_of_approximation continuous ) sup-Semilattice) ) ) : ( ( strict full ) ( non empty strict reflexive transitive antisymmetric lower-bounded full with_suprema ) SubRelStr of b1 : ( ( reflexive transitive antisymmetric lower-bounded with_suprema continuous ) ( non empty reflexive transitive antisymmetric lower-bounded upper-bounded bounded with_suprema with_infima complete up-complete /\-complete satisfying_axiom_of_approximation continuous ) sup-Semilattice) ) ) : ( ( ) ( non empty ) set ) ) : ( ( strict ) ( non empty strict reflexive transitive antisymmetric lower-bounded upper-bounded bounded with_suprema with_infima complete up-complete /\-complete ) RelStr ) : ( ( ) ( non empty ) set ) ) Function-like quasi_total monotone ) Function of ( ( ) ( non empty ) set ) , ( ( ) ( non empty ) set ) ) is sups-preserving ;

registration
let L be ( ( reflexive transitive antisymmetric lower-bounded with_suprema continuous ) ( non empty reflexive transitive antisymmetric lower-bounded upper-bounded bounded with_suprema with_infima complete up-complete /\-complete satisfying_axiom_of_approximation continuous ) sup-Semilattice) ;
let B be ( ( with_bottom ) ( non empty directed join-closed with_bottom ) CLbasis of L : ( ( reflexive transitive antisymmetric lower-bounded with_suprema continuous ) ( non empty reflexive transitive antisymmetric lower-bounded upper-bounded bounded with_suprema with_infima complete up-complete /\-complete satisfying_axiom_of_approximation continuous ) sup-Semilattice) ) ;
cluster supMap (subrelstr B : ( ( with_bottom ) ( non empty directed join-closed with_bottom ) CLbasis of L : ( ( reflexive transitive antisymmetric lower-bounded with_suprema continuous ) ( non empty reflexive transitive antisymmetric lower-bounded upper-bounded bounded with_suprema with_infima complete up-complete /\-complete satisfying_axiom_of_approximation continuous ) RelStr ) ) ) : ( ( strict full ) ( non empty strict reflexive transitive antisymmetric lower-bounded full with_suprema ) SubRelStr of L : ( ( reflexive transitive antisymmetric lower-bounded with_suprema continuous ) ( non empty reflexive transitive antisymmetric lower-bounded upper-bounded bounded with_suprema with_infima complete up-complete /\-complete satisfying_axiom_of_approximation continuous ) RelStr ) ) : ( ( Function-like quasi_total ) ( V7() V10( the carrier of (InclPoset (Ids (subrelstr B : ( ( with_bottom ) ( non empty directed join-closed with_bottom ) CLbasis of L : ( ( reflexive transitive antisymmetric lower-bounded with_suprema continuous ) ( non empty reflexive transitive antisymmetric lower-bounded upper-bounded bounded with_suprema with_infima complete up-complete /\-complete satisfying_axiom_of_approximation continuous ) RelStr ) ) ) : ( ( strict full ) ( non empty strict reflexive transitive antisymmetric lower-bounded full with_suprema ) SubRelStr of L : ( ( reflexive transitive antisymmetric lower-bounded with_suprema continuous ) ( non empty reflexive transitive antisymmetric lower-bounded upper-bounded bounded with_suprema with_infima complete up-complete /\-complete satisfying_axiom_of_approximation continuous ) RelStr ) ) ) : ( ( ) ( non empty ) set ) ) : ( ( strict ) ( non empty strict reflexive transitive antisymmetric lower-bounded upper-bounded bounded with_suprema with_infima complete up-complete /\-complete ) RelStr ) : ( ( ) ( non empty ) set ) ) V11( the carrier of L : ( ( reflexive transitive antisymmetric lower-bounded with_suprema continuous ) ( non empty reflexive transitive antisymmetric lower-bounded upper-bounded bounded with_suprema with_infima complete up-complete /\-complete satisfying_axiom_of_approximation continuous ) RelStr ) : ( ( ) ( non empty ) set ) ) Function-like quasi_total monotone ) Function of ( ( ) ( non empty ) set ) , ( ( ) ( non empty ) set ) ) -> Function-like quasi_total infs-preserving sups-preserving ;
cluster baseMap B : ( ( with_bottom ) ( non empty directed join-closed with_bottom ) CLbasis of L : ( ( reflexive transitive antisymmetric lower-bounded with_suprema continuous ) ( non empty reflexive transitive antisymmetric lower-bounded upper-bounded bounded with_suprema with_infima complete up-complete /\-complete satisfying_axiom_of_approximation continuous ) RelStr ) ) : ( ( Function-like quasi_total ) ( V7() V10( the carrier of L : ( ( reflexive transitive antisymmetric lower-bounded with_suprema continuous ) ( non empty reflexive transitive antisymmetric lower-bounded upper-bounded bounded with_suprema with_infima complete up-complete /\-complete satisfying_axiom_of_approximation continuous ) RelStr ) : ( ( ) ( non empty ) set ) ) V11( the carrier of (InclPoset (Ids (subrelstr B : ( ( with_bottom ) ( non empty directed join-closed with_bottom ) CLbasis of L : ( ( reflexive transitive antisymmetric lower-bounded with_suprema continuous ) ( non empty reflexive transitive antisymmetric lower-bounded upper-bounded bounded with_suprema with_infima complete up-complete /\-complete satisfying_axiom_of_approximation continuous ) RelStr ) ) ) : ( ( strict full ) ( non empty strict reflexive transitive antisymmetric lower-bounded full with_suprema ) SubRelStr of L : ( ( reflexive transitive antisymmetric lower-bounded with_suprema continuous ) ( non empty reflexive transitive antisymmetric lower-bounded upper-bounded bounded with_suprema with_infima complete up-complete /\-complete satisfying_axiom_of_approximation continuous ) RelStr ) ) ) : ( ( ) ( non empty ) set ) ) : ( ( strict ) ( non empty strict reflexive transitive antisymmetric lower-bounded upper-bounded bounded with_suprema with_infima complete up-complete /\-complete ) RelStr ) : ( ( ) ( non empty ) set ) ) Function-like quasi_total monotone ) Function of ( ( ) ( non empty ) set ) , ( ( ) ( non empty ) set ) ) -> Function-like quasi_total sups-preserving ;
end;

theorem :: WAYBEL23:68
for L being ( ( reflexive transitive antisymmetric lower-bounded with_suprema continuous ) ( non empty reflexive transitive antisymmetric lower-bounded upper-bounded bounded with_suprema with_infima complete up-complete /\-complete satisfying_axiom_of_approximation continuous ) sup-Semilattice)
for B being ( ( with_bottom ) ( non empty directed join-closed with_bottom ) CLbasis of L : ( ( reflexive transitive antisymmetric lower-bounded with_suprema continuous ) ( non empty reflexive transitive antisymmetric lower-bounded upper-bounded bounded with_suprema with_infima complete up-complete /\-complete satisfying_axiom_of_approximation continuous ) sup-Semilattice) ) holds the carrier of (CompactSublatt (InclPoset (Ids (subrelstr B : ( ( with_bottom ) ( non empty directed join-closed with_bottom ) CLbasis of b1 : ( ( reflexive transitive antisymmetric lower-bounded with_suprema continuous ) ( non empty reflexive transitive antisymmetric lower-bounded upper-bounded bounded with_suprema with_infima complete up-complete /\-complete satisfying_axiom_of_approximation continuous ) sup-Semilattice) ) ) : ( ( strict full ) ( non empty strict reflexive transitive antisymmetric lower-bounded full with_suprema ) SubRelStr of b1 : ( ( reflexive transitive antisymmetric lower-bounded with_suprema continuous ) ( non empty reflexive transitive antisymmetric lower-bounded upper-bounded bounded with_suprema with_infima complete up-complete /\-complete satisfying_axiom_of_approximation continuous ) sup-Semilattice) ) ) : ( ( ) ( non empty ) set ) ) : ( ( strict ) ( non empty strict reflexive transitive antisymmetric lower-bounded upper-bounded bounded with_suprema with_infima complete up-complete /\-complete ) RelStr ) ) : ( ( strict full ) ( non empty strict reflexive transitive antisymmetric full join-inheriting with_suprema ) SubRelStr of InclPoset (Ids (subrelstr b2 : ( ( with_bottom ) ( non empty directed join-closed with_bottom ) CLbasis of b1 : ( ( reflexive transitive antisymmetric lower-bounded with_suprema continuous ) ( non empty reflexive transitive antisymmetric lower-bounded upper-bounded bounded with_suprema with_infima complete up-complete /\-complete satisfying_axiom_of_approximation continuous ) sup-Semilattice) ) ) : ( ( strict full ) ( non empty strict reflexive transitive antisymmetric lower-bounded full with_suprema ) SubRelStr of b1 : ( ( reflexive transitive antisymmetric lower-bounded with_suprema continuous ) ( non empty reflexive transitive antisymmetric lower-bounded upper-bounded bounded with_suprema with_infima complete up-complete /\-complete satisfying_axiom_of_approximation continuous ) sup-Semilattice) ) ) : ( ( ) ( non empty ) set ) : ( ( strict ) ( non empty strict reflexive transitive antisymmetric lower-bounded upper-bounded bounded with_suprema with_infima complete up-complete /\-complete ) RelStr ) ) : ( ( ) ( non empty ) set ) = { (downarrow b : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ) : ( ( ) ( non empty directed lower join-closed ) Element of K32( the carrier of (subrelstr b2 : ( ( with_bottom ) ( non empty directed join-closed with_bottom ) CLbasis of b1 : ( ( reflexive transitive antisymmetric lower-bounded with_suprema continuous ) ( non empty reflexive transitive antisymmetric lower-bounded upper-bounded bounded with_suprema with_infima complete up-complete /\-complete satisfying_axiom_of_approximation continuous ) sup-Semilattice) ) ) : ( ( strict full ) ( non empty strict reflexive transitive antisymmetric lower-bounded full with_suprema ) SubRelStr of b1 : ( ( reflexive transitive antisymmetric lower-bounded with_suprema continuous ) ( non empty reflexive transitive antisymmetric lower-bounded upper-bounded bounded with_suprema with_infima complete up-complete /\-complete satisfying_axiom_of_approximation continuous ) sup-Semilattice) ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty ) set ) ) where b is ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) : verum } ;

theorem :: WAYBEL23:69
for L being ( ( reflexive transitive antisymmetric lower-bounded with_suprema continuous ) ( non empty reflexive transitive antisymmetric lower-bounded upper-bounded bounded with_suprema with_infima complete up-complete /\-complete satisfying_axiom_of_approximation continuous ) sup-Semilattice)
for B being ( ( with_bottom ) ( non empty directed join-closed with_bottom ) CLbasis of L : ( ( reflexive transitive antisymmetric lower-bounded with_suprema continuous ) ( non empty reflexive transitive antisymmetric lower-bounded upper-bounded bounded with_suprema with_infima complete up-complete /\-complete satisfying_axiom_of_approximation continuous ) sup-Semilattice) ) holds CompactSublatt (InclPoset (Ids (subrelstr B : ( ( with_bottom ) ( non empty directed join-closed with_bottom ) CLbasis of b1 : ( ( reflexive transitive antisymmetric lower-bounded with_suprema continuous ) ( non empty reflexive transitive antisymmetric lower-bounded upper-bounded bounded with_suprema with_infima complete up-complete /\-complete satisfying_axiom_of_approximation continuous ) sup-Semilattice) ) ) : ( ( strict full ) ( non empty strict reflexive transitive antisymmetric lower-bounded full with_suprema ) SubRelStr of b1 : ( ( reflexive transitive antisymmetric lower-bounded with_suprema continuous ) ( non empty reflexive transitive antisymmetric lower-bounded upper-bounded bounded with_suprema with_infima complete up-complete /\-complete satisfying_axiom_of_approximation continuous ) sup-Semilattice) ) ) : ( ( ) ( non empty ) set ) ) : ( ( strict ) ( non empty strict reflexive transitive antisymmetric lower-bounded upper-bounded bounded with_suprema with_infima complete up-complete /\-complete ) RelStr ) : ( ( strict full ) ( non empty strict reflexive transitive antisymmetric full join-inheriting with_suprema ) SubRelStr of InclPoset (Ids (subrelstr b2 : ( ( with_bottom ) ( non empty directed join-closed with_bottom ) CLbasis of b1 : ( ( reflexive transitive antisymmetric lower-bounded with_suprema continuous ) ( non empty reflexive transitive antisymmetric lower-bounded upper-bounded bounded with_suprema with_infima complete up-complete /\-complete satisfying_axiom_of_approximation continuous ) sup-Semilattice) ) ) : ( ( strict full ) ( non empty strict reflexive transitive antisymmetric lower-bounded full with_suprema ) SubRelStr of b1 : ( ( reflexive transitive antisymmetric lower-bounded with_suprema continuous ) ( non empty reflexive transitive antisymmetric lower-bounded upper-bounded bounded with_suprema with_infima complete up-complete /\-complete satisfying_axiom_of_approximation continuous ) sup-Semilattice) ) ) : ( ( ) ( non empty ) set ) : ( ( strict ) ( non empty strict reflexive transitive antisymmetric lower-bounded upper-bounded bounded with_suprema with_infima complete up-complete /\-complete ) RelStr ) ) , subrelstr B : ( ( with_bottom ) ( non empty directed join-closed with_bottom ) CLbasis of b1 : ( ( reflexive transitive antisymmetric lower-bounded with_suprema continuous ) ( non empty reflexive transitive antisymmetric lower-bounded upper-bounded bounded with_suprema with_infima complete up-complete /\-complete satisfying_axiom_of_approximation continuous ) sup-Semilattice) ) : ( ( strict full ) ( non empty strict reflexive transitive antisymmetric lower-bounded full with_suprema ) SubRelStr of b1 : ( ( reflexive transitive antisymmetric lower-bounded with_suprema continuous ) ( non empty reflexive transitive antisymmetric lower-bounded upper-bounded bounded with_suprema with_infima complete up-complete /\-complete satisfying_axiom_of_approximation continuous ) sup-Semilattice) ) are_isomorphic ;

theorem :: WAYBEL23:70
for L being ( ( reflexive transitive antisymmetric lower-bounded with_suprema with_infima continuous ) ( non empty reflexive transitive antisymmetric lower-bounded upper-bounded bounded with_suprema with_infima complete up-complete /\-complete satisfying_axiom_of_approximation continuous ) LATTICE)
for B being ( ( with_bottom ) ( non empty directed join-closed with_bottom ) CLbasis of L : ( ( reflexive transitive antisymmetric lower-bounded with_suprema with_infima continuous ) ( non empty reflexive transitive antisymmetric lower-bounded upper-bounded bounded with_suprema with_infima complete up-complete /\-complete satisfying_axiom_of_approximation continuous ) LATTICE) ) st ( for B1 being ( ( with_bottom ) ( non empty directed join-closed with_bottom ) CLbasis of L : ( ( reflexive transitive antisymmetric lower-bounded with_suprema with_infima continuous ) ( non empty reflexive transitive antisymmetric lower-bounded upper-bounded bounded with_suprema with_infima complete up-complete /\-complete satisfying_axiom_of_approximation continuous ) LATTICE) ) holds B : ( ( with_bottom ) ( non empty directed join-closed with_bottom ) CLbasis of b1 : ( ( reflexive transitive antisymmetric lower-bounded with_suprema with_infima continuous ) ( non empty reflexive transitive antisymmetric lower-bounded upper-bounded bounded with_suprema with_infima complete up-complete /\-complete satisfying_axiom_of_approximation continuous ) LATTICE) ) c= B1 : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ) holds
for J being ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) holds J : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) = (waybelow ("\/" (J : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ,L : ( ( reflexive transitive antisymmetric lower-bounded with_suprema with_infima continuous ) ( non empty reflexive transitive antisymmetric lower-bounded upper-bounded bounded with_suprema with_infima complete up-complete /\-complete satisfying_axiom_of_approximation continuous ) LATTICE) )) : ( ( ) ( ) Element of the carrier of b1 : ( ( reflexive transitive antisymmetric lower-bounded with_suprema with_infima continuous ) ( non empty reflexive transitive antisymmetric lower-bounded upper-bounded bounded with_suprema with_infima complete up-complete /\-complete satisfying_axiom_of_approximation continuous ) LATTICE) : ( ( ) ( non empty ) set ) ) ) : ( ( ) ( non empty directed filtered lower meet-closed join-closed ) Element of K32( the carrier of b1 : ( ( reflexive transitive antisymmetric lower-bounded with_suprema with_infima continuous ) ( non empty reflexive transitive antisymmetric lower-bounded upper-bounded bounded with_suprema with_infima complete up-complete /\-complete satisfying_axiom_of_approximation continuous ) LATTICE) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty ) set ) ) /\ B : ( ( with_bottom ) ( non empty directed join-closed with_bottom ) CLbasis of b1 : ( ( reflexive transitive antisymmetric lower-bounded with_suprema with_infima continuous ) ( non empty reflexive transitive antisymmetric lower-bounded upper-bounded bounded with_suprema with_infima complete up-complete /\-complete satisfying_axiom_of_approximation continuous ) LATTICE) ) : ( ( ) ( ) Element of K32( the carrier of b1 : ( ( reflexive transitive antisymmetric lower-bounded with_suprema with_infima continuous ) ( non empty reflexive transitive antisymmetric lower-bounded upper-bounded bounded with_suprema with_infima complete up-complete /\-complete satisfying_axiom_of_approximation continuous ) LATTICE) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty ) set ) ) ;

theorem :: WAYBEL23:71
for L being ( ( reflexive transitive antisymmetric lower-bounded with_suprema with_infima continuous ) ( non empty reflexive transitive antisymmetric lower-bounded upper-bounded bounded with_suprema with_infima complete up-complete /\-complete satisfying_axiom_of_approximation continuous ) LATTICE) holds
( L : ( ( reflexive transitive antisymmetric lower-bounded with_suprema with_infima continuous ) ( non empty reflexive transitive antisymmetric lower-bounded upper-bounded bounded with_suprema with_infima complete up-complete /\-complete satisfying_axiom_of_approximation continuous ) LATTICE) is algebraic iff ( the carrier of (CompactSublatt L : ( ( reflexive transitive antisymmetric lower-bounded with_suprema with_infima continuous ) ( non empty reflexive transitive antisymmetric lower-bounded upper-bounded bounded with_suprema with_infima complete up-complete /\-complete satisfying_axiom_of_approximation continuous ) LATTICE) ) : ( ( strict full ) ( non empty strict reflexive transitive antisymmetric full join-inheriting with_suprema ) SubRelStr of b1 : ( ( reflexive transitive antisymmetric lower-bounded with_suprema with_infima continuous ) ( non empty reflexive transitive antisymmetric lower-bounded upper-bounded bounded with_suprema with_infima complete up-complete /\-complete satisfying_axiom_of_approximation continuous ) LATTICE) ) : ( ( ) ( non empty ) set ) is ( ( with_bottom ) ( non empty directed join-closed with_bottom ) CLbasis of L : ( ( reflexive transitive antisymmetric lower-bounded with_suprema with_infima continuous ) ( non empty reflexive transitive antisymmetric lower-bounded upper-bounded bounded with_suprema with_infima complete up-complete /\-complete satisfying_axiom_of_approximation continuous ) LATTICE) ) & ( for B being ( ( with_bottom ) ( non empty directed join-closed with_bottom ) CLbasis of L : ( ( reflexive transitive antisymmetric lower-bounded with_suprema with_infima continuous ) ( non empty reflexive transitive antisymmetric lower-bounded upper-bounded bounded with_suprema with_infima complete up-complete /\-complete satisfying_axiom_of_approximation continuous ) LATTICE) ) holds the carrier of (CompactSublatt L : ( ( reflexive transitive antisymmetric lower-bounded with_suprema with_infima continuous ) ( non empty reflexive transitive antisymmetric lower-bounded upper-bounded bounded with_suprema with_infima complete up-complete /\-complete satisfying_axiom_of_approximation continuous ) LATTICE) ) : ( ( strict full ) ( non empty strict reflexive transitive antisymmetric full join-inheriting with_suprema ) SubRelStr of b1 : ( ( reflexive transitive antisymmetric lower-bounded with_suprema with_infima continuous ) ( non empty reflexive transitive antisymmetric lower-bounded upper-bounded bounded with_suprema with_infima complete up-complete /\-complete satisfying_axiom_of_approximation continuous ) LATTICE) ) : ( ( ) ( non empty ) set ) c= B : ( ( with_bottom ) ( non empty directed join-closed with_bottom ) CLbasis of b1 : ( ( reflexive transitive antisymmetric lower-bounded with_suprema with_infima continuous ) ( non empty reflexive transitive antisymmetric lower-bounded upper-bounded bounded with_suprema with_infima complete up-complete /\-complete satisfying_axiom_of_approximation continuous ) LATTICE) ) ) ) ) ;

theorem :: WAYBEL23:72
for L being ( ( reflexive transitive antisymmetric lower-bounded with_suprema with_infima continuous ) ( non empty reflexive transitive antisymmetric lower-bounded upper-bounded bounded with_suprema with_infima complete up-complete /\-complete satisfying_axiom_of_approximation continuous ) LATTICE) holds
( L : ( ( reflexive transitive antisymmetric lower-bounded with_suprema with_infima continuous ) ( non empty reflexive transitive antisymmetric lower-bounded upper-bounded bounded with_suprema with_infima complete up-complete /\-complete satisfying_axiom_of_approximation continuous ) LATTICE) is algebraic iff ex B being ( ( with_bottom ) ( non empty directed join-closed with_bottom ) CLbasis of L : ( ( reflexive transitive antisymmetric lower-bounded with_suprema with_infima continuous ) ( non empty reflexive transitive antisymmetric lower-bounded upper-bounded bounded with_suprema with_infima complete up-complete /\-complete satisfying_axiom_of_approximation continuous ) LATTICE) ) st
for B1 being ( ( with_bottom ) ( non empty directed join-closed with_bottom ) CLbasis of L : ( ( reflexive transitive antisymmetric lower-bounded with_suprema with_infima continuous ) ( non empty reflexive transitive antisymmetric lower-bounded upper-bounded bounded with_suprema with_infima complete up-complete /\-complete satisfying_axiom_of_approximation continuous ) LATTICE) ) holds B : ( ( with_bottom ) ( non empty directed join-closed with_bottom ) CLbasis of b1 : ( ( reflexive transitive antisymmetric lower-bounded with_suprema with_infima continuous ) ( non empty reflexive transitive antisymmetric lower-bounded upper-bounded bounded with_suprema with_infima complete up-complete /\-complete satisfying_axiom_of_approximation continuous ) LATTICE) ) c= B1 : ( ( with_bottom ) ( non empty directed join-closed with_bottom ) CLbasis of b1 : ( ( reflexive transitive antisymmetric lower-bounded with_suprema with_infima continuous ) ( non empty reflexive transitive antisymmetric lower-bounded upper-bounded bounded with_suprema with_infima complete up-complete /\-complete satisfying_axiom_of_approximation continuous ) LATTICE) ) ) ;

theorem :: WAYBEL23:73
for T being ( ( ) ( ) TopStruct )
for b being ( ( V63(b1 : ( ( ) ( ) TopStruct ) ) V231(b1 : ( ( ) ( ) TopStruct ) ) ) ( V63(b1 : ( ( ) ( ) TopStruct ) ) V231(b1 : ( ( ) ( ) TopStruct ) ) ) Basis of T : ( ( ) ( ) TopStruct ) ) holds weight T : ( ( ) ( ) TopStruct ) : ( ( cardinal ) ( ordinal cardinal ) Cardinal) c= card b : ( ( V63(b1 : ( ( ) ( ) TopStruct ) ) V231(b1 : ( ( ) ( ) TopStruct ) ) ) ( V63(b1 : ( ( ) ( ) TopStruct ) ) V231(b1 : ( ( ) ( ) TopStruct ) ) ) Basis of b1 : ( ( ) ( ) TopStruct ) ) : ( ( cardinal ) ( ordinal cardinal ) set ) ;

theorem :: WAYBEL23:74
for T being ( ( ) ( ) TopStruct ) ex b being ( ( V63(b1 : ( ( ) ( ) TopStruct ) ) V231(b1 : ( ( ) ( ) TopStruct ) ) ) ( V63(b1 : ( ( ) ( ) TopStruct ) ) V231(b1 : ( ( ) ( ) TopStruct ) ) ) Basis of T : ( ( ) ( ) TopStruct ) ) st card b : ( ( V63(b1 : ( ( ) ( ) TopStruct ) ) V231(b1 : ( ( ) ( ) TopStruct ) ) ) ( V63(b1 : ( ( ) ( ) TopStruct ) ) V231(b1 : ( ( ) ( ) TopStruct ) ) ) Basis of b1 : ( ( ) ( ) TopStruct ) ) : ( ( cardinal ) ( ordinal cardinal ) set ) = weight T : ( ( ) ( ) TopStruct ) : ( ( cardinal ) ( ordinal cardinal ) Cardinal) ;