:: YELLOW12 semantic presentation

begin

registration
let X be ( ( empty ) ( empty ) set ) ;
cluster union X : ( ( empty ) ( empty ) set ) : ( ( ) ( ) set ) -> empty ;
end;

theorem :: YELLOW12:1
for X, A being ( ( ) ( ) set ) holds (delta X : ( ( ) ( ) set ) ) : ( ( Function-like quasi_total ) ( Relation-like b1 : ( ( ) ( ) set ) -defined [:b1 : ( ( ) ( ) set ) ,b1 : ( ( ) ( ) set ) :] : ( ( ) ( ) set ) -valued Function-like quasi_total ) Element of bool [:b1 : ( ( ) ( ) set ) ,[:b1 : ( ( ) ( ) set ) ,b1 : ( ( ) ( ) set ) :] : ( ( ) ( ) set ) :] : ( ( ) ( ) set ) : ( ( ) ( non empty ) set ) ) .: A : ( ( ) ( ) set ) : ( ( ) ( Relation-like b1 : ( ( ) ( ) set ) -defined b1 : ( ( ) ( ) set ) -valued ) Element of bool [:b1 : ( ( ) ( ) set ) ,b1 : ( ( ) ( ) set ) :] : ( ( ) ( ) set ) : ( ( ) ( non empty ) set ) ) c= [:A : ( ( ) ( ) set ) ,A : ( ( ) ( ) set ) :] : ( ( ) ( ) set ) ;

theorem :: YELLOW12:2
for X, A being ( ( ) ( ) set ) holds (delta X : ( ( ) ( ) set ) ) : ( ( Function-like quasi_total ) ( Relation-like b1 : ( ( ) ( ) set ) -defined [:b1 : ( ( ) ( ) set ) ,b1 : ( ( ) ( ) set ) :] : ( ( ) ( ) set ) -valued Function-like quasi_total ) Element of bool [:b1 : ( ( ) ( ) set ) ,[:b1 : ( ( ) ( ) set ) ,b1 : ( ( ) ( ) set ) :] : ( ( ) ( ) set ) :] : ( ( ) ( ) set ) : ( ( ) ( non empty ) set ) ) " [:A : ( ( ) ( ) set ) ,A : ( ( ) ( ) set ) :] : ( ( ) ( ) set ) : ( ( ) ( ) Element of bool b1 : ( ( ) ( ) set ) : ( ( ) ( non empty ) set ) ) c= A : ( ( ) ( ) set ) ;

theorem :: YELLOW12:3
for X being ( ( ) ( ) set )
for A being ( ( ) ( ) Subset of ( ( ) ( non empty ) set ) ) holds (delta X : ( ( ) ( ) set ) ) : ( ( Function-like quasi_total ) ( Relation-like b1 : ( ( ) ( ) set ) -defined [:b1 : ( ( ) ( ) set ) ,b1 : ( ( ) ( ) set ) :] : ( ( ) ( ) set ) -valued Function-like quasi_total ) Element of bool [:b1 : ( ( ) ( ) set ) ,[:b1 : ( ( ) ( ) set ) ,b1 : ( ( ) ( ) set ) :] : ( ( ) ( ) set ) :] : ( ( ) ( ) set ) : ( ( ) ( non empty ) set ) ) " [:A : ( ( ) ( ) Subset of ( ( ) ( non empty ) set ) ) ,A : ( ( ) ( ) Subset of ( ( ) ( non empty ) set ) ) :] : ( ( ) ( Relation-like b1 : ( ( ) ( ) set ) -defined b1 : ( ( ) ( ) set ) -valued ) Element of bool [:b1 : ( ( ) ( ) set ) ,b1 : ( ( ) ( ) set ) :] : ( ( ) ( ) set ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( ) Element of bool b1 : ( ( ) ( ) set ) : ( ( ) ( non empty ) set ) ) = A : ( ( ) ( ) Subset of ( ( ) ( non empty ) set ) ) ;

theorem :: YELLOW12:4
for X, Y being ( ( ) ( ) set ) holds
( dom <:(pr2 (X : ( ( ) ( ) set ) ,Y : ( ( ) ( ) set ) )) : ( ( Function-like quasi_total ) ( Relation-like [:b1 : ( ( ) ( ) set ) ,b2 : ( ( ) ( ) set ) :] : ( ( ) ( ) set ) -defined b2 : ( ( ) ( ) set ) -valued Function-like quasi_total ) Element of bool [:[:b1 : ( ( ) ( ) set ) ,b2 : ( ( ) ( ) set ) :] : ( ( ) ( ) set ) ,b2 : ( ( ) ( ) set ) :] : ( ( ) ( ) set ) : ( ( ) ( non empty ) set ) ) ,(pr1 (X : ( ( ) ( ) set ) ,Y : ( ( ) ( ) set ) )) : ( ( Function-like quasi_total ) ( Relation-like [:b1 : ( ( ) ( ) set ) ,b2 : ( ( ) ( ) set ) :] : ( ( ) ( ) set ) -defined b1 : ( ( ) ( ) set ) -valued Function-like quasi_total ) Element of bool [:[:b1 : ( ( ) ( ) set ) ,b2 : ( ( ) ( ) set ) :] : ( ( ) ( ) set ) ,b1 : ( ( ) ( ) set ) :] : ( ( ) ( ) set ) : ( ( ) ( non empty ) set ) ) :> : ( ( Relation-like Function-like ) ( Relation-like Function-like ) set ) : ( ( ) ( ) set ) = [:X : ( ( ) ( ) set ) ,Y : ( ( ) ( ) set ) :] : ( ( ) ( ) set ) & rng <:(pr2 (X : ( ( ) ( ) set ) ,Y : ( ( ) ( ) set ) )) : ( ( Function-like quasi_total ) ( Relation-like [:b1 : ( ( ) ( ) set ) ,b2 : ( ( ) ( ) set ) :] : ( ( ) ( ) set ) -defined b2 : ( ( ) ( ) set ) -valued Function-like quasi_total ) Element of bool [:[:b1 : ( ( ) ( ) set ) ,b2 : ( ( ) ( ) set ) :] : ( ( ) ( ) set ) ,b2 : ( ( ) ( ) set ) :] : ( ( ) ( ) set ) : ( ( ) ( non empty ) set ) ) ,(pr1 (X : ( ( ) ( ) set ) ,Y : ( ( ) ( ) set ) )) : ( ( Function-like quasi_total ) ( Relation-like [:b1 : ( ( ) ( ) set ) ,b2 : ( ( ) ( ) set ) :] : ( ( ) ( ) set ) -defined b1 : ( ( ) ( ) set ) -valued Function-like quasi_total ) Element of bool [:[:b1 : ( ( ) ( ) set ) ,b2 : ( ( ) ( ) set ) :] : ( ( ) ( ) set ) ,b1 : ( ( ) ( ) set ) :] : ( ( ) ( ) set ) : ( ( ) ( non empty ) set ) ) :> : ( ( Relation-like Function-like ) ( Relation-like Function-like ) set ) : ( ( ) ( ) set ) = [:Y : ( ( ) ( ) set ) ,X : ( ( ) ( ) set ) :] : ( ( ) ( ) set ) ) ;

theorem :: YELLOW12:5
for X, Y, A, B being ( ( ) ( ) set ) holds <:(pr2 (X : ( ( ) ( ) set ) ,Y : ( ( ) ( ) set ) )) : ( ( Function-like quasi_total ) ( Relation-like [:b1 : ( ( ) ( ) set ) ,b2 : ( ( ) ( ) set ) :] : ( ( ) ( ) set ) -defined b2 : ( ( ) ( ) set ) -valued Function-like quasi_total ) Element of bool [:[:b1 : ( ( ) ( ) set ) ,b2 : ( ( ) ( ) set ) :] : ( ( ) ( ) set ) ,b2 : ( ( ) ( ) set ) :] : ( ( ) ( ) set ) : ( ( ) ( non empty ) set ) ) ,(pr1 (X : ( ( ) ( ) set ) ,Y : ( ( ) ( ) set ) )) : ( ( Function-like quasi_total ) ( Relation-like [:b1 : ( ( ) ( ) set ) ,b2 : ( ( ) ( ) set ) :] : ( ( ) ( ) set ) -defined b1 : ( ( ) ( ) set ) -valued Function-like quasi_total ) Element of bool [:[:b1 : ( ( ) ( ) set ) ,b2 : ( ( ) ( ) set ) :] : ( ( ) ( ) set ) ,b1 : ( ( ) ( ) set ) :] : ( ( ) ( ) set ) : ( ( ) ( non empty ) set ) ) :> : ( ( Relation-like Function-like ) ( Relation-like Function-like ) set ) .: [:A : ( ( ) ( ) set ) ,B : ( ( ) ( ) set ) :] : ( ( ) ( ) set ) : ( ( ) ( ) set ) c= [:B : ( ( ) ( ) set ) ,A : ( ( ) ( ) set ) :] : ( ( ) ( ) set ) ;

theorem :: YELLOW12:6
for X, Y being ( ( ) ( ) set )
for A being ( ( ) ( ) Subset of ( ( ) ( non empty ) set ) )
for B being ( ( ) ( ) Subset of ( ( ) ( non empty ) set ) ) holds <:(pr2 (X : ( ( ) ( ) set ) ,Y : ( ( ) ( ) set ) )) : ( ( Function-like quasi_total ) ( Relation-like [:b1 : ( ( ) ( ) set ) ,b2 : ( ( ) ( ) set ) :] : ( ( ) ( ) set ) -defined b2 : ( ( ) ( ) set ) -valued Function-like quasi_total ) Element of bool [:[:b1 : ( ( ) ( ) set ) ,b2 : ( ( ) ( ) set ) :] : ( ( ) ( ) set ) ,b2 : ( ( ) ( ) set ) :] : ( ( ) ( ) set ) : ( ( ) ( non empty ) set ) ) ,(pr1 (X : ( ( ) ( ) set ) ,Y : ( ( ) ( ) set ) )) : ( ( Function-like quasi_total ) ( Relation-like [:b1 : ( ( ) ( ) set ) ,b2 : ( ( ) ( ) set ) :] : ( ( ) ( ) set ) -defined b1 : ( ( ) ( ) set ) -valued Function-like quasi_total ) Element of bool [:[:b1 : ( ( ) ( ) set ) ,b2 : ( ( ) ( ) set ) :] : ( ( ) ( ) set ) ,b1 : ( ( ) ( ) set ) :] : ( ( ) ( ) set ) : ( ( ) ( non empty ) set ) ) :> : ( ( Relation-like Function-like ) ( Relation-like Function-like ) set ) .: [:A : ( ( ) ( ) Subset of ( ( ) ( non empty ) set ) ) ,B : ( ( ) ( ) Subset of ( ( ) ( non empty ) set ) ) :] : ( ( ) ( Relation-like b1 : ( ( ) ( ) set ) -defined b2 : ( ( ) ( ) set ) -valued ) Element of bool [:b1 : ( ( ) ( ) set ) ,b2 : ( ( ) ( ) set ) :] : ( ( ) ( ) set ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( ) set ) = [:B : ( ( ) ( ) Subset of ( ( ) ( non empty ) set ) ) ,A : ( ( ) ( ) Subset of ( ( ) ( non empty ) set ) ) :] : ( ( ) ( Relation-like b2 : ( ( ) ( ) set ) -defined b1 : ( ( ) ( ) set ) -valued ) Element of bool [:b2 : ( ( ) ( ) set ) ,b1 : ( ( ) ( ) set ) :] : ( ( ) ( ) set ) : ( ( ) ( non empty ) set ) ) ;

theorem :: YELLOW12:7
for X, Y being ( ( ) ( ) set ) holds <:(pr2 (X : ( ( ) ( ) set ) ,Y : ( ( ) ( ) set ) )) : ( ( Function-like quasi_total ) ( Relation-like [:b1 : ( ( ) ( ) set ) ,b2 : ( ( ) ( ) set ) :] : ( ( ) ( ) set ) -defined b2 : ( ( ) ( ) set ) -valued Function-like quasi_total ) Element of bool [:[:b1 : ( ( ) ( ) set ) ,b2 : ( ( ) ( ) set ) :] : ( ( ) ( ) set ) ,b2 : ( ( ) ( ) set ) :] : ( ( ) ( ) set ) : ( ( ) ( non empty ) set ) ) ,(pr1 (X : ( ( ) ( ) set ) ,Y : ( ( ) ( ) set ) )) : ( ( Function-like quasi_total ) ( Relation-like [:b1 : ( ( ) ( ) set ) ,b2 : ( ( ) ( ) set ) :] : ( ( ) ( ) set ) -defined b1 : ( ( ) ( ) set ) -valued Function-like quasi_total ) Element of bool [:[:b1 : ( ( ) ( ) set ) ,b2 : ( ( ) ( ) set ) :] : ( ( ) ( ) set ) ,b1 : ( ( ) ( ) set ) :] : ( ( ) ( ) set ) : ( ( ) ( non empty ) set ) ) :> : ( ( Relation-like Function-like ) ( Relation-like Function-like ) set ) is one-to-one ;

registration
let X, Y be ( ( ) ( ) set ) ;
cluster <:(pr2 (X : ( ( ) ( ) set ) ,Y : ( ( ) ( ) set ) )) : ( ( Function-like quasi_total ) ( Relation-like [:X : ( ( ) ( ) set ) ,Y : ( ( ) ( ) set ) :] : ( ( ) ( ) set ) -defined Y : ( ( ) ( ) set ) -valued Function-like quasi_total ) Element of bool [:[:X : ( ( ) ( ) set ) ,Y : ( ( ) ( ) set ) :] : ( ( ) ( ) set ) ,Y : ( ( ) ( ) set ) :] : ( ( ) ( ) set ) : ( ( ) ( non empty ) set ) ) ,(pr1 (X : ( ( ) ( ) set ) ,Y : ( ( ) ( ) set ) )) : ( ( Function-like quasi_total ) ( Relation-like [:X : ( ( ) ( ) set ) ,Y : ( ( ) ( ) set ) :] : ( ( ) ( ) set ) -defined X : ( ( ) ( ) set ) -valued Function-like quasi_total ) Element of bool [:[:X : ( ( ) ( ) set ) ,Y : ( ( ) ( ) set ) :] : ( ( ) ( ) set ) ,X : ( ( ) ( ) set ) :] : ( ( ) ( ) set ) : ( ( ) ( non empty ) set ) ) :> : ( ( Relation-like Function-like ) ( Relation-like Function-like ) set ) -> Relation-like Function-like one-to-one ;
end;

theorem :: YELLOW12:8
for X, Y being ( ( ) ( ) set ) holds <:(pr2 (X : ( ( ) ( ) set ) ,Y : ( ( ) ( ) set ) )) : ( ( Function-like quasi_total ) ( Relation-like [:b1 : ( ( ) ( ) set ) ,b2 : ( ( ) ( ) set ) :] : ( ( ) ( ) set ) -defined b2 : ( ( ) ( ) set ) -valued Function-like quasi_total ) Element of bool [:[:b1 : ( ( ) ( ) set ) ,b2 : ( ( ) ( ) set ) :] : ( ( ) ( ) set ) ,b2 : ( ( ) ( ) set ) :] : ( ( ) ( ) set ) : ( ( ) ( non empty ) set ) ) ,(pr1 (X : ( ( ) ( ) set ) ,Y : ( ( ) ( ) set ) )) : ( ( Function-like quasi_total ) ( Relation-like [:b1 : ( ( ) ( ) set ) ,b2 : ( ( ) ( ) set ) :] : ( ( ) ( ) set ) -defined b1 : ( ( ) ( ) set ) -valued Function-like quasi_total ) Element of bool [:[:b1 : ( ( ) ( ) set ) ,b2 : ( ( ) ( ) set ) :] : ( ( ) ( ) set ) ,b1 : ( ( ) ( ) set ) :] : ( ( ) ( ) set ) : ( ( ) ( non empty ) set ) ) :> : ( ( Relation-like Function-like ) ( Relation-like Function-like one-to-one ) set ) " : ( ( Relation-like Function-like ) ( Relation-like Function-like ) set ) = <:(pr2 (Y : ( ( ) ( ) set ) ,X : ( ( ) ( ) set ) )) : ( ( Function-like quasi_total ) ( Relation-like [:b2 : ( ( ) ( ) set ) ,b1 : ( ( ) ( ) set ) :] : ( ( ) ( ) set ) -defined b1 : ( ( ) ( ) set ) -valued Function-like quasi_total ) Element of bool [:[:b2 : ( ( ) ( ) set ) ,b1 : ( ( ) ( ) set ) :] : ( ( ) ( ) set ) ,b1 : ( ( ) ( ) set ) :] : ( ( ) ( ) set ) : ( ( ) ( non empty ) set ) ) ,(pr1 (Y : ( ( ) ( ) set ) ,X : ( ( ) ( ) set ) )) : ( ( Function-like quasi_total ) ( Relation-like [:b2 : ( ( ) ( ) set ) ,b1 : ( ( ) ( ) set ) :] : ( ( ) ( ) set ) -defined b2 : ( ( ) ( ) set ) -valued Function-like quasi_total ) Element of bool [:[:b2 : ( ( ) ( ) set ) ,b1 : ( ( ) ( ) set ) :] : ( ( ) ( ) set ) ,b2 : ( ( ) ( ) set ) :] : ( ( ) ( ) set ) : ( ( ) ( non empty ) set ) ) :> : ( ( Relation-like Function-like ) ( Relation-like Function-like one-to-one ) set ) ;

begin

theorem :: YELLOW12:9
for L1 being ( ( reflexive transitive antisymmetric with_infima ) ( non empty reflexive transitive antisymmetric with_infima non void ) Semilattice)
for L2 being ( ( non empty ) ( non empty ) RelStr )
for x, y being ( ( ) ( ) Element of ( ( ) ( non empty ) set ) )
for x1, y1 being ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) st RelStr(# the carrier of L1 : ( ( reflexive transitive antisymmetric with_infima ) ( non empty reflexive transitive antisymmetric with_infima non void ) Semilattice) : ( ( ) ( non empty ) set ) , the InternalRel of L1 : ( ( reflexive transitive antisymmetric with_infima ) ( non empty reflexive transitive antisymmetric with_infima non void ) Semilattice) : ( ( ) ( non empty Relation-like the carrier of b1 : ( ( reflexive transitive antisymmetric with_infima ) ( non empty reflexive transitive antisymmetric with_infima non void ) Semilattice) : ( ( ) ( non empty ) set ) -defined the carrier of b1 : ( ( reflexive transitive antisymmetric with_infima ) ( non empty reflexive transitive antisymmetric with_infima non void ) Semilattice) : ( ( ) ( non empty ) set ) -valued ) Element of bool [: the carrier of b1 : ( ( reflexive transitive antisymmetric with_infima ) ( non empty reflexive transitive antisymmetric with_infima non void ) Semilattice) : ( ( ) ( non empty ) set ) , the carrier of b1 : ( ( reflexive transitive antisymmetric with_infima ) ( non empty reflexive transitive antisymmetric with_infima non void ) Semilattice) : ( ( ) ( non empty ) set ) :] : ( ( ) ( non empty ) set ) : ( ( ) ( non empty ) set ) ) #) : ( ( strict ) ( strict ) RelStr ) = RelStr(# the carrier of L2 : ( ( non empty ) ( non empty ) RelStr ) : ( ( ) ( non empty ) set ) , the InternalRel of L2 : ( ( non empty ) ( non empty ) RelStr ) : ( ( ) ( Relation-like the carrier of b2 : ( ( non empty ) ( non empty ) RelStr ) : ( ( ) ( non empty ) set ) -defined the carrier of b2 : ( ( non empty ) ( non empty ) RelStr ) : ( ( ) ( non empty ) set ) -valued ) Element of bool [: the carrier of b2 : ( ( non empty ) ( non empty ) RelStr ) : ( ( ) ( non empty ) set ) , the carrier of b2 : ( ( non empty ) ( non empty ) RelStr ) : ( ( ) ( non empty ) set ) :] : ( ( ) ( non empty ) set ) : ( ( ) ( non empty ) set ) ) #) : ( ( strict ) ( strict ) RelStr ) & x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) = x1 : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) & y : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) = y1 : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) holds
x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) "/\" y : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) : ( ( ) ( ) Element of the carrier of b1 : ( ( reflexive transitive antisymmetric with_infima ) ( non empty reflexive transitive antisymmetric with_infima non void ) Semilattice) : ( ( ) ( non empty ) set ) ) = x1 : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) "/\" y1 : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) : ( ( ) ( ) Element of the carrier of b2 : ( ( non empty ) ( non empty ) RelStr ) : ( ( ) ( non empty ) set ) ) ;

theorem :: YELLOW12:10
for L1 being ( ( reflexive transitive antisymmetric with_suprema ) ( non empty reflexive transitive antisymmetric with_suprema non void ) sup-Semilattice)
for L2 being ( ( non empty ) ( non empty ) RelStr )
for x, y being ( ( ) ( ) Element of ( ( ) ( non empty ) set ) )
for x1, y1 being ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) st RelStr(# the carrier of L1 : ( ( reflexive transitive antisymmetric with_suprema ) ( non empty reflexive transitive antisymmetric with_suprema non void ) sup-Semilattice) : ( ( ) ( non empty ) set ) , the InternalRel of L1 : ( ( reflexive transitive antisymmetric with_suprema ) ( non empty reflexive transitive antisymmetric with_suprema non void ) sup-Semilattice) : ( ( ) ( non empty Relation-like the carrier of b1 : ( ( reflexive transitive antisymmetric with_suprema ) ( non empty reflexive transitive antisymmetric with_suprema non void ) sup-Semilattice) : ( ( ) ( non empty ) set ) -defined the carrier of b1 : ( ( reflexive transitive antisymmetric with_suprema ) ( non empty reflexive transitive antisymmetric with_suprema non void ) sup-Semilattice) : ( ( ) ( non empty ) set ) -valued ) Element of bool [: the carrier of b1 : ( ( reflexive transitive antisymmetric with_suprema ) ( non empty reflexive transitive antisymmetric with_suprema non void ) sup-Semilattice) : ( ( ) ( non empty ) set ) , the carrier of b1 : ( ( reflexive transitive antisymmetric with_suprema ) ( non empty reflexive transitive antisymmetric with_suprema non void ) sup-Semilattice) : ( ( ) ( non empty ) set ) :] : ( ( ) ( non empty ) set ) : ( ( ) ( non empty ) set ) ) #) : ( ( strict ) ( strict ) RelStr ) = RelStr(# the carrier of L2 : ( ( non empty ) ( non empty ) RelStr ) : ( ( ) ( non empty ) set ) , the InternalRel of L2 : ( ( non empty ) ( non empty ) RelStr ) : ( ( ) ( Relation-like the carrier of b2 : ( ( non empty ) ( non empty ) RelStr ) : ( ( ) ( non empty ) set ) -defined the carrier of b2 : ( ( non empty ) ( non empty ) RelStr ) : ( ( ) ( non empty ) set ) -valued ) Element of bool [: the carrier of b2 : ( ( non empty ) ( non empty ) RelStr ) : ( ( ) ( non empty ) set ) , the carrier of b2 : ( ( non empty ) ( non empty ) RelStr ) : ( ( ) ( non empty ) set ) :] : ( ( ) ( non empty ) set ) : ( ( ) ( non empty ) set ) ) #) : ( ( strict ) ( strict ) RelStr ) & x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) = x1 : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) & y : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) = y1 : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) holds
x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) "\/" y : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) : ( ( ) ( ) Element of the carrier of b1 : ( ( reflexive transitive antisymmetric with_suprema ) ( non empty reflexive transitive antisymmetric with_suprema non void ) sup-Semilattice) : ( ( ) ( non empty ) set ) ) = x1 : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) "\/" y1 : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) : ( ( ) ( ) Element of the carrier of b2 : ( ( non empty ) ( non empty ) RelStr ) : ( ( ) ( non empty ) set ) ) ;

theorem :: YELLOW12:11
for L1 being ( ( reflexive transitive antisymmetric with_infima ) ( non empty reflexive transitive antisymmetric with_infima non void ) Semilattice)
for L2 being ( ( non empty ) ( non empty ) RelStr )
for X, Y being ( ( ) ( ) Subset of )
for X1, Y1 being ( ( ) ( ) Subset of ) st RelStr(# the carrier of L1 : ( ( reflexive transitive antisymmetric with_infima ) ( non empty reflexive transitive antisymmetric with_infima non void ) Semilattice) : ( ( ) ( non empty ) set ) , the InternalRel of L1 : ( ( reflexive transitive antisymmetric with_infima ) ( non empty reflexive transitive antisymmetric with_infima non void ) Semilattice) : ( ( ) ( non empty Relation-like the carrier of b1 : ( ( reflexive transitive antisymmetric with_infima ) ( non empty reflexive transitive antisymmetric with_infima non void ) Semilattice) : ( ( ) ( non empty ) set ) -defined the carrier of b1 : ( ( reflexive transitive antisymmetric with_infima ) ( non empty reflexive transitive antisymmetric with_infima non void ) Semilattice) : ( ( ) ( non empty ) set ) -valued ) Element of bool [: the carrier of b1 : ( ( reflexive transitive antisymmetric with_infima ) ( non empty reflexive transitive antisymmetric with_infima non void ) Semilattice) : ( ( ) ( non empty ) set ) , the carrier of b1 : ( ( reflexive transitive antisymmetric with_infima ) ( non empty reflexive transitive antisymmetric with_infima non void ) Semilattice) : ( ( ) ( non empty ) set ) :] : ( ( ) ( non empty ) set ) : ( ( ) ( non empty ) set ) ) #) : ( ( strict ) ( strict ) RelStr ) = RelStr(# the carrier of L2 : ( ( non empty ) ( non empty ) RelStr ) : ( ( ) ( non empty ) set ) , the InternalRel of L2 : ( ( non empty ) ( non empty ) RelStr ) : ( ( ) ( Relation-like the carrier of b2 : ( ( non empty ) ( non empty ) RelStr ) : ( ( ) ( non empty ) set ) -defined the carrier of b2 : ( ( non empty ) ( non empty ) RelStr ) : ( ( ) ( non empty ) set ) -valued ) Element of bool [: the carrier of b2 : ( ( non empty ) ( non empty ) RelStr ) : ( ( ) ( non empty ) set ) , the carrier of b2 : ( ( non empty ) ( non empty ) RelStr ) : ( ( ) ( non empty ) set ) :] : ( ( ) ( non empty ) set ) : ( ( ) ( non empty ) set ) ) #) : ( ( strict ) ( strict ) RelStr ) & X : ( ( ) ( ) Subset of ) = X1 : ( ( ) ( ) Subset of ) & Y : ( ( ) ( ) Subset of ) = Y1 : ( ( ) ( ) Subset of ) holds
X : ( ( ) ( ) Subset of ) "/\" Y : ( ( ) ( ) Subset of ) : ( ( ) ( ) Element of bool the carrier of b1 : ( ( reflexive transitive antisymmetric with_infima ) ( non empty reflexive transitive antisymmetric with_infima non void ) Semilattice) : ( ( ) ( non empty ) set ) : ( ( ) ( non empty ) set ) ) = X1 : ( ( ) ( ) Subset of ) "/\" Y1 : ( ( ) ( ) Subset of ) : ( ( ) ( ) Element of bool the carrier of b2 : ( ( non empty ) ( non empty ) RelStr ) : ( ( ) ( non empty ) set ) : ( ( ) ( non empty ) set ) ) ;

theorem :: YELLOW12:12
for L1 being ( ( reflexive transitive antisymmetric with_suprema ) ( non empty reflexive transitive antisymmetric with_suprema non void ) sup-Semilattice)
for L2 being ( ( non empty ) ( non empty ) RelStr )
for X, Y being ( ( ) ( ) Subset of )
for X1, Y1 being ( ( ) ( ) Subset of ) st RelStr(# the carrier of L1 : ( ( reflexive transitive antisymmetric with_suprema ) ( non empty reflexive transitive antisymmetric with_suprema non void ) sup-Semilattice) : ( ( ) ( non empty ) set ) , the InternalRel of L1 : ( ( reflexive transitive antisymmetric with_suprema ) ( non empty reflexive transitive antisymmetric with_suprema non void ) sup-Semilattice) : ( ( ) ( non empty Relation-like the carrier of b1 : ( ( reflexive transitive antisymmetric with_suprema ) ( non empty reflexive transitive antisymmetric with_suprema non void ) sup-Semilattice) : ( ( ) ( non empty ) set ) -defined the carrier of b1 : ( ( reflexive transitive antisymmetric with_suprema ) ( non empty reflexive transitive antisymmetric with_suprema non void ) sup-Semilattice) : ( ( ) ( non empty ) set ) -valued ) Element of bool [: the carrier of b1 : ( ( reflexive transitive antisymmetric with_suprema ) ( non empty reflexive transitive antisymmetric with_suprema non void ) sup-Semilattice) : ( ( ) ( non empty ) set ) , the carrier of b1 : ( ( reflexive transitive antisymmetric with_suprema ) ( non empty reflexive transitive antisymmetric with_suprema non void ) sup-Semilattice) : ( ( ) ( non empty ) set ) :] : ( ( ) ( non empty ) set ) : ( ( ) ( non empty ) set ) ) #) : ( ( strict ) ( strict ) RelStr ) = RelStr(# the carrier of L2 : ( ( non empty ) ( non empty ) RelStr ) : ( ( ) ( non empty ) set ) , the InternalRel of L2 : ( ( non empty ) ( non empty ) RelStr ) : ( ( ) ( Relation-like the carrier of b2 : ( ( non empty ) ( non empty ) RelStr ) : ( ( ) ( non empty ) set ) -defined the carrier of b2 : ( ( non empty ) ( non empty ) RelStr ) : ( ( ) ( non empty ) set ) -valued ) Element of bool [: the carrier of b2 : ( ( non empty ) ( non empty ) RelStr ) : ( ( ) ( non empty ) set ) , the carrier of b2 : ( ( non empty ) ( non empty ) RelStr ) : ( ( ) ( non empty ) set ) :] : ( ( ) ( non empty ) set ) : ( ( ) ( non empty ) set ) ) #) : ( ( strict ) ( strict ) RelStr ) & X : ( ( ) ( ) Subset of ) = X1 : ( ( ) ( ) Subset of ) & Y : ( ( ) ( ) Subset of ) = Y1 : ( ( ) ( ) Subset of ) holds
X : ( ( ) ( ) Subset of ) "\/" Y : ( ( ) ( ) Subset of ) : ( ( ) ( ) Element of bool the carrier of b1 : ( ( reflexive transitive antisymmetric with_suprema ) ( non empty reflexive transitive antisymmetric with_suprema non void ) sup-Semilattice) : ( ( ) ( non empty ) set ) : ( ( ) ( non empty ) set ) ) = X1 : ( ( ) ( ) Subset of ) "\/" Y1 : ( ( ) ( ) Subset of ) : ( ( ) ( ) Element of bool the carrier of b2 : ( ( non empty ) ( non empty ) RelStr ) : ( ( ) ( non empty ) set ) : ( ( ) ( non empty ) set ) ) ;

theorem :: YELLOW12:13
for L1 being ( ( non empty reflexive antisymmetric up-complete ) ( non empty reflexive antisymmetric up-complete non void ) RelStr )
for L2 being ( ( non empty reflexive ) ( non empty reflexive non void ) RelStr )
for x being ( ( ) ( ) Element of ( ( ) ( non empty ) set ) )
for y being ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) st RelStr(# the carrier of L1 : ( ( non empty reflexive antisymmetric up-complete ) ( non empty reflexive antisymmetric up-complete non void ) RelStr ) : ( ( ) ( non empty ) set ) , the InternalRel of L1 : ( ( non empty reflexive antisymmetric up-complete ) ( non empty reflexive antisymmetric up-complete non void ) RelStr ) : ( ( ) ( non empty Relation-like the carrier of b1 : ( ( non empty reflexive antisymmetric up-complete ) ( non empty reflexive antisymmetric up-complete non void ) RelStr ) : ( ( ) ( non empty ) set ) -defined the carrier of b1 : ( ( non empty reflexive antisymmetric up-complete ) ( non empty reflexive antisymmetric up-complete non void ) RelStr ) : ( ( ) ( non empty ) set ) -valued ) Element of bool [: the carrier of b1 : ( ( non empty reflexive antisymmetric up-complete ) ( non empty reflexive antisymmetric up-complete non void ) RelStr ) : ( ( ) ( non empty ) set ) , the carrier of b1 : ( ( non empty reflexive antisymmetric up-complete ) ( non empty reflexive antisymmetric up-complete non void ) RelStr ) : ( ( ) ( non empty ) set ) :] : ( ( ) ( non empty ) set ) : ( ( ) ( non empty ) set ) ) #) : ( ( strict ) ( strict ) RelStr ) = RelStr(# the carrier of L2 : ( ( non empty reflexive ) ( non empty reflexive non void ) RelStr ) : ( ( ) ( non empty ) set ) , the InternalRel of L2 : ( ( non empty reflexive ) ( non empty reflexive non void ) RelStr ) : ( ( ) ( non empty Relation-like the carrier of b2 : ( ( non empty reflexive ) ( non empty reflexive non void ) RelStr ) : ( ( ) ( non empty ) set ) -defined the carrier of b2 : ( ( non empty reflexive ) ( non empty reflexive non void ) RelStr ) : ( ( ) ( non empty ) set ) -valued ) Element of bool [: the carrier of b2 : ( ( non empty reflexive ) ( non empty reflexive non void ) RelStr ) : ( ( ) ( non empty ) set ) , the carrier of b2 : ( ( non empty reflexive ) ( non empty reflexive non void ) RelStr ) : ( ( ) ( non empty ) set ) :] : ( ( ) ( non empty ) set ) : ( ( ) ( non empty ) set ) ) #) : ( ( strict ) ( strict ) RelStr ) & x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) = y : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) holds
( waybelow x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) : ( ( ) ( ) Element of bool the carrier of b1 : ( ( non empty reflexive antisymmetric up-complete ) ( non empty reflexive antisymmetric up-complete non void ) RelStr ) : ( ( ) ( non empty ) set ) : ( ( ) ( non empty ) set ) ) = waybelow y : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) : ( ( ) ( ) Element of bool the carrier of b2 : ( ( non empty reflexive ) ( non empty reflexive non void ) RelStr ) : ( ( ) ( non empty ) set ) : ( ( ) ( non empty ) set ) ) & wayabove x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) : ( ( ) ( ) Element of bool the carrier of b1 : ( ( non empty reflexive antisymmetric up-complete ) ( non empty reflexive antisymmetric up-complete non void ) RelStr ) : ( ( ) ( non empty ) set ) : ( ( ) ( non empty ) set ) ) = wayabove y : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) : ( ( ) ( ) Element of bool the carrier of b2 : ( ( non empty reflexive ) ( non empty reflexive non void ) RelStr ) : ( ( ) ( non empty ) set ) : ( ( ) ( non empty ) set ) ) ) ;

theorem :: YELLOW12:14
for L1 being ( ( reflexive transitive antisymmetric with_infima meet-continuous ) ( non empty reflexive transitive antisymmetric with_infima up-complete non void satisfying_MC meet-continuous ) Semilattice)
for L2 being ( ( non empty reflexive ) ( non empty reflexive non void ) RelStr ) st RelStr(# the carrier of L1 : ( ( reflexive transitive antisymmetric with_infima meet-continuous ) ( non empty reflexive transitive antisymmetric with_infima up-complete non void satisfying_MC meet-continuous ) Semilattice) : ( ( ) ( non empty ) set ) , the InternalRel of L1 : ( ( reflexive transitive antisymmetric with_infima meet-continuous ) ( non empty reflexive transitive antisymmetric with_infima up-complete non void satisfying_MC meet-continuous ) Semilattice) : ( ( ) ( non empty Relation-like the carrier of b1 : ( ( reflexive transitive antisymmetric with_infima meet-continuous ) ( non empty reflexive transitive antisymmetric with_infima up-complete non void satisfying_MC meet-continuous ) Semilattice) : ( ( ) ( non empty ) set ) -defined the carrier of b1 : ( ( reflexive transitive antisymmetric with_infima meet-continuous ) ( non empty reflexive transitive antisymmetric with_infima up-complete non void satisfying_MC meet-continuous ) Semilattice) : ( ( ) ( non empty ) set ) -valued ) Element of bool [: the carrier of b1 : ( ( reflexive transitive antisymmetric with_infima meet-continuous ) ( non empty reflexive transitive antisymmetric with_infima up-complete non void satisfying_MC meet-continuous ) Semilattice) : ( ( ) ( non empty ) set ) , the carrier of b1 : ( ( reflexive transitive antisymmetric with_infima meet-continuous ) ( non empty reflexive transitive antisymmetric with_infima up-complete non void satisfying_MC meet-continuous ) Semilattice) : ( ( ) ( non empty ) set ) :] : ( ( ) ( non empty ) set ) : ( ( ) ( non empty ) set ) ) #) : ( ( strict ) ( strict ) RelStr ) = RelStr(# the carrier of L2 : ( ( non empty reflexive ) ( non empty reflexive non void ) RelStr ) : ( ( ) ( non empty ) set ) , the InternalRel of L2 : ( ( non empty reflexive ) ( non empty reflexive non void ) RelStr ) : ( ( ) ( non empty Relation-like the carrier of b2 : ( ( non empty reflexive ) ( non empty reflexive non void ) RelStr ) : ( ( ) ( non empty ) set ) -defined the carrier of b2 : ( ( non empty reflexive ) ( non empty reflexive non void ) RelStr ) : ( ( ) ( non empty ) set ) -valued ) Element of bool [: the carrier of b2 : ( ( non empty reflexive ) ( non empty reflexive non void ) RelStr ) : ( ( ) ( non empty ) set ) , the carrier of b2 : ( ( non empty reflexive ) ( non empty reflexive non void ) RelStr ) : ( ( ) ( non empty ) set ) :] : ( ( ) ( non empty ) set ) : ( ( ) ( non empty ) set ) ) #) : ( ( strict ) ( strict ) RelStr ) holds
L2 : ( ( non empty reflexive ) ( non empty reflexive non void ) RelStr ) is meet-continuous ;

theorem :: YELLOW12:15
for L1 being ( ( non empty reflexive antisymmetric continuous ) ( non empty reflexive antisymmetric satisfying_axiom_of_approximation continuous up-complete non void ) RelStr )
for L2 being ( ( non empty reflexive ) ( non empty reflexive non void ) RelStr ) st RelStr(# the carrier of L1 : ( ( non empty reflexive antisymmetric continuous ) ( non empty reflexive antisymmetric satisfying_axiom_of_approximation continuous up-complete non void ) RelStr ) : ( ( ) ( non empty ) set ) , the InternalRel of L1 : ( ( non empty reflexive antisymmetric continuous ) ( non empty reflexive antisymmetric satisfying_axiom_of_approximation continuous up-complete non void ) RelStr ) : ( ( ) ( non empty Relation-like the carrier of b1 : ( ( non empty reflexive antisymmetric continuous ) ( non empty reflexive antisymmetric satisfying_axiom_of_approximation continuous up-complete non void ) RelStr ) : ( ( ) ( non empty ) set ) -defined the carrier of b1 : ( ( non empty reflexive antisymmetric continuous ) ( non empty reflexive antisymmetric satisfying_axiom_of_approximation continuous up-complete non void ) RelStr ) : ( ( ) ( non empty ) set ) -valued ) Element of bool [: the carrier of b1 : ( ( non empty reflexive antisymmetric continuous ) ( non empty reflexive antisymmetric satisfying_axiom_of_approximation continuous up-complete non void ) RelStr ) : ( ( ) ( non empty ) set ) , the carrier of b1 : ( ( non empty reflexive antisymmetric continuous ) ( non empty reflexive antisymmetric satisfying_axiom_of_approximation continuous up-complete non void ) RelStr ) : ( ( ) ( non empty ) set ) :] : ( ( ) ( non empty ) set ) : ( ( ) ( non empty ) set ) ) #) : ( ( strict ) ( strict ) RelStr ) = RelStr(# the carrier of L2 : ( ( non empty reflexive ) ( non empty reflexive non void ) RelStr ) : ( ( ) ( non empty ) set ) , the InternalRel of L2 : ( ( non empty reflexive ) ( non empty reflexive non void ) RelStr ) : ( ( ) ( non empty Relation-like the carrier of b2 : ( ( non empty reflexive ) ( non empty reflexive non void ) RelStr ) : ( ( ) ( non empty ) set ) -defined the carrier of b2 : ( ( non empty reflexive ) ( non empty reflexive non void ) RelStr ) : ( ( ) ( non empty ) set ) -valued ) Element of bool [: the carrier of b2 : ( ( non empty reflexive ) ( non empty reflexive non void ) RelStr ) : ( ( ) ( non empty ) set ) , the carrier of b2 : ( ( non empty reflexive ) ( non empty reflexive non void ) RelStr ) : ( ( ) ( non empty ) set ) :] : ( ( ) ( non empty ) set ) : ( ( ) ( non empty ) set ) ) #) : ( ( strict ) ( strict ) RelStr ) holds
L2 : ( ( non empty reflexive ) ( non empty reflexive non void ) RelStr ) is continuous ;

theorem :: YELLOW12:16
for L1, L2 being ( ( ) ( ) RelStr )
for A being ( ( ) ( ) Subset of )
for J being ( ( ) ( ) Subset of ) st RelStr(# the carrier of L1 : ( ( ) ( ) RelStr ) : ( ( ) ( ) set ) , the InternalRel of L1 : ( ( ) ( ) RelStr ) : ( ( ) ( Relation-like the carrier of b1 : ( ( ) ( ) RelStr ) : ( ( ) ( ) set ) -defined the carrier of b1 : ( ( ) ( ) RelStr ) : ( ( ) ( ) set ) -valued ) Element of bool [: the carrier of b1 : ( ( ) ( ) RelStr ) : ( ( ) ( ) set ) , the carrier of b1 : ( ( ) ( ) RelStr ) : ( ( ) ( ) set ) :] : ( ( ) ( non empty ) set ) : ( ( ) ( non empty ) set ) ) #) : ( ( strict ) ( strict ) RelStr ) = RelStr(# the carrier of L2 : ( ( ) ( ) RelStr ) : ( ( ) ( ) set ) , the InternalRel of L2 : ( ( ) ( ) RelStr ) : ( ( ) ( Relation-like the carrier of b2 : ( ( ) ( ) RelStr ) : ( ( ) ( ) set ) -defined the carrier of b2 : ( ( ) ( ) RelStr ) : ( ( ) ( ) set ) -valued ) Element of bool [: the carrier of b2 : ( ( ) ( ) RelStr ) : ( ( ) ( ) set ) , the carrier of b2 : ( ( ) ( ) RelStr ) : ( ( ) ( ) set ) :] : ( ( ) ( non empty ) set ) : ( ( ) ( non empty ) set ) ) #) : ( ( strict ) ( strict ) RelStr ) & A : ( ( ) ( ) Subset of ) = J : ( ( ) ( ) Subset of ) holds
subrelstr A : ( ( ) ( ) Subset of ) : ( ( strict V213(b1 : ( ( ) ( ) RelStr ) ) ) ( strict V213(b1 : ( ( ) ( ) RelStr ) ) ) SubRelStr of b1 : ( ( ) ( ) RelStr ) ) = subrelstr J : ( ( ) ( ) Subset of ) : ( ( strict V213(b2 : ( ( ) ( ) RelStr ) ) ) ( strict V213(b2 : ( ( ) ( ) RelStr ) ) ) SubRelStr of b2 : ( ( ) ( ) RelStr ) ) ;

theorem :: YELLOW12:17
for L1, L2 being ( ( non empty ) ( non empty ) RelStr )
for A being ( ( ) ( ) SubRelStr of L1 : ( ( non empty ) ( non empty ) RelStr ) )
for J being ( ( ) ( ) SubRelStr of L2 : ( ( non empty ) ( non empty ) RelStr ) ) st RelStr(# the carrier of L1 : ( ( non empty ) ( non empty ) RelStr ) : ( ( ) ( non empty ) set ) , the InternalRel of L1 : ( ( non empty ) ( non empty ) RelStr ) : ( ( ) ( Relation-like the carrier of b1 : ( ( non empty ) ( non empty ) RelStr ) : ( ( ) ( non empty ) set ) -defined the carrier of b1 : ( ( non empty ) ( non empty ) RelStr ) : ( ( ) ( non empty ) set ) -valued ) Element of bool [: the carrier of b1 : ( ( non empty ) ( non empty ) RelStr ) : ( ( ) ( non empty ) set ) , the carrier of b1 : ( ( non empty ) ( non empty ) RelStr ) : ( ( ) ( non empty ) set ) :] : ( ( ) ( non empty ) set ) : ( ( ) ( non empty ) set ) ) #) : ( ( strict ) ( strict ) RelStr ) = RelStr(# the carrier of L2 : ( ( non empty ) ( non empty ) RelStr ) : ( ( ) ( non empty ) set ) , the InternalRel of L2 : ( ( non empty ) ( non empty ) RelStr ) : ( ( ) ( Relation-like the carrier of b2 : ( ( non empty ) ( non empty ) RelStr ) : ( ( ) ( non empty ) set ) -defined the carrier of b2 : ( ( non empty ) ( non empty ) RelStr ) : ( ( ) ( non empty ) set ) -valued ) Element of bool [: the carrier of b2 : ( ( non empty ) ( non empty ) RelStr ) : ( ( ) ( non empty ) set ) , the carrier of b2 : ( ( non empty ) ( non empty ) RelStr ) : ( ( ) ( non empty ) set ) :] : ( ( ) ( non empty ) set ) : ( ( ) ( non empty ) set ) ) #) : ( ( strict ) ( strict ) RelStr ) & RelStr(# the carrier of A : ( ( ) ( ) SubRelStr of b1 : ( ( non empty ) ( non empty ) RelStr ) ) : ( ( ) ( ) set ) , the InternalRel of A : ( ( ) ( ) SubRelStr of b1 : ( ( non empty ) ( non empty ) RelStr ) ) : ( ( ) ( Relation-like the carrier of b3 : ( ( ) ( ) SubRelStr of b1 : ( ( non empty ) ( non empty ) RelStr ) ) : ( ( ) ( ) set ) -defined the carrier of b3 : ( ( ) ( ) SubRelStr of b1 : ( ( non empty ) ( non empty ) RelStr ) ) : ( ( ) ( ) set ) -valued ) Element of bool [: the carrier of b3 : ( ( ) ( ) SubRelStr of b1 : ( ( non empty ) ( non empty ) RelStr ) ) : ( ( ) ( ) set ) , the carrier of b3 : ( ( ) ( ) SubRelStr of b1 : ( ( non empty ) ( non empty ) RelStr ) ) : ( ( ) ( ) set ) :] : ( ( ) ( ) set ) : ( ( ) ( non empty ) set ) ) #) : ( ( strict ) ( strict ) RelStr ) = RelStr(# the carrier of J : ( ( ) ( ) SubRelStr of b2 : ( ( non empty ) ( non empty ) RelStr ) ) : ( ( ) ( ) set ) , the InternalRel of J : ( ( ) ( ) SubRelStr of b2 : ( ( non empty ) ( non empty ) RelStr ) ) : ( ( ) ( Relation-like the carrier of b4 : ( ( ) ( ) SubRelStr of b2 : ( ( non empty ) ( non empty ) RelStr ) ) : ( ( ) ( ) set ) -defined the carrier of b4 : ( ( ) ( ) SubRelStr of b2 : ( ( non empty ) ( non empty ) RelStr ) ) : ( ( ) ( ) set ) -valued ) Element of bool [: the carrier of b4 : ( ( ) ( ) SubRelStr of b2 : ( ( non empty ) ( non empty ) RelStr ) ) : ( ( ) ( ) set ) , the carrier of b4 : ( ( ) ( ) SubRelStr of b2 : ( ( non empty ) ( non empty ) RelStr ) ) : ( ( ) ( ) set ) :] : ( ( ) ( ) set ) : ( ( ) ( non empty ) set ) ) #) : ( ( strict ) ( strict ) RelStr ) & A : ( ( ) ( ) SubRelStr of b1 : ( ( non empty ) ( non empty ) RelStr ) ) is meet-inheriting holds
J : ( ( ) ( ) SubRelStr of b2 : ( ( non empty ) ( non empty ) RelStr ) ) is meet-inheriting ;

theorem :: YELLOW12:18
for L1, L2 being ( ( non empty ) ( non empty ) RelStr )
for A being ( ( ) ( ) SubRelStr of L1 : ( ( non empty ) ( non empty ) RelStr ) )
for J being ( ( ) ( ) SubRelStr of L2 : ( ( non empty ) ( non empty ) RelStr ) ) st RelStr(# the carrier of L1 : ( ( non empty ) ( non empty ) RelStr ) : ( ( ) ( non empty ) set ) , the InternalRel of L1 : ( ( non empty ) ( non empty ) RelStr ) : ( ( ) ( Relation-like the carrier of b1 : ( ( non empty ) ( non empty ) RelStr ) : ( ( ) ( non empty ) set ) -defined the carrier of b1 : ( ( non empty ) ( non empty ) RelStr ) : ( ( ) ( non empty ) set ) -valued ) Element of bool [: the carrier of b1 : ( ( non empty ) ( non empty ) RelStr ) : ( ( ) ( non empty ) set ) , the carrier of b1 : ( ( non empty ) ( non empty ) RelStr ) : ( ( ) ( non empty ) set ) :] : ( ( ) ( non empty ) set ) : ( ( ) ( non empty ) set ) ) #) : ( ( strict ) ( strict ) RelStr ) = RelStr(# the carrier of L2 : ( ( non empty ) ( non empty ) RelStr ) : ( ( ) ( non empty ) set ) , the InternalRel of L2 : ( ( non empty ) ( non empty ) RelStr ) : ( ( ) ( Relation-like the carrier of b2 : ( ( non empty ) ( non empty ) RelStr ) : ( ( ) ( non empty ) set ) -defined the carrier of b2 : ( ( non empty ) ( non empty ) RelStr ) : ( ( ) ( non empty ) set ) -valued ) Element of bool [: the carrier of b2 : ( ( non empty ) ( non empty ) RelStr ) : ( ( ) ( non empty ) set ) , the carrier of b2 : ( ( non empty ) ( non empty ) RelStr ) : ( ( ) ( non empty ) set ) :] : ( ( ) ( non empty ) set ) : ( ( ) ( non empty ) set ) ) #) : ( ( strict ) ( strict ) RelStr ) & RelStr(# the carrier of A : ( ( ) ( ) SubRelStr of b1 : ( ( non empty ) ( non empty ) RelStr ) ) : ( ( ) ( ) set ) , the InternalRel of A : ( ( ) ( ) SubRelStr of b1 : ( ( non empty ) ( non empty ) RelStr ) ) : ( ( ) ( Relation-like the carrier of b3 : ( ( ) ( ) SubRelStr of b1 : ( ( non empty ) ( non empty ) RelStr ) ) : ( ( ) ( ) set ) -defined the carrier of b3 : ( ( ) ( ) SubRelStr of b1 : ( ( non empty ) ( non empty ) RelStr ) ) : ( ( ) ( ) set ) -valued ) Element of bool [: the carrier of b3 : ( ( ) ( ) SubRelStr of b1 : ( ( non empty ) ( non empty ) RelStr ) ) : ( ( ) ( ) set ) , the carrier of b3 : ( ( ) ( ) SubRelStr of b1 : ( ( non empty ) ( non empty ) RelStr ) ) : ( ( ) ( ) set ) :] : ( ( ) ( ) set ) : ( ( ) ( non empty ) set ) ) #) : ( ( strict ) ( strict ) RelStr ) = RelStr(# the carrier of J : ( ( ) ( ) SubRelStr of b2 : ( ( non empty ) ( non empty ) RelStr ) ) : ( ( ) ( ) set ) , the InternalRel of J : ( ( ) ( ) SubRelStr of b2 : ( ( non empty ) ( non empty ) RelStr ) ) : ( ( ) ( Relation-like the carrier of b4 : ( ( ) ( ) SubRelStr of b2 : ( ( non empty ) ( non empty ) RelStr ) ) : ( ( ) ( ) set ) -defined the carrier of b4 : ( ( ) ( ) SubRelStr of b2 : ( ( non empty ) ( non empty ) RelStr ) ) : ( ( ) ( ) set ) -valued ) Element of bool [: the carrier of b4 : ( ( ) ( ) SubRelStr of b2 : ( ( non empty ) ( non empty ) RelStr ) ) : ( ( ) ( ) set ) , the carrier of b4 : ( ( ) ( ) SubRelStr of b2 : ( ( non empty ) ( non empty ) RelStr ) ) : ( ( ) ( ) set ) :] : ( ( ) ( ) set ) : ( ( ) ( non empty ) set ) ) #) : ( ( strict ) ( strict ) RelStr ) & A : ( ( ) ( ) SubRelStr of b1 : ( ( non empty ) ( non empty ) RelStr ) ) is join-inheriting holds
J : ( ( ) ( ) SubRelStr of b2 : ( ( non empty ) ( non empty ) RelStr ) ) is join-inheriting ;

theorem :: YELLOW12:19
for L1 being ( ( non empty reflexive antisymmetric up-complete ) ( non empty reflexive antisymmetric up-complete non void ) RelStr )
for L2 being ( ( non empty reflexive ) ( non empty reflexive non void ) RelStr )
for X being ( ( ) ( ) Subset of )
for Y being ( ( ) ( ) Subset of ) st RelStr(# the carrier of L1 : ( ( non empty reflexive antisymmetric up-complete ) ( non empty reflexive antisymmetric up-complete non void ) RelStr ) : ( ( ) ( non empty ) set ) , the InternalRel of L1 : ( ( non empty reflexive antisymmetric up-complete ) ( non empty reflexive antisymmetric up-complete non void ) RelStr ) : ( ( ) ( non empty Relation-like the carrier of b1 : ( ( non empty reflexive antisymmetric up-complete ) ( non empty reflexive antisymmetric up-complete non void ) RelStr ) : ( ( ) ( non empty ) set ) -defined the carrier of b1 : ( ( non empty reflexive antisymmetric up-complete ) ( non empty reflexive antisymmetric up-complete non void ) RelStr ) : ( ( ) ( non empty ) set ) -valued ) Element of bool [: the carrier of b1 : ( ( non empty reflexive antisymmetric up-complete ) ( non empty reflexive antisymmetric up-complete non void ) RelStr ) : ( ( ) ( non empty ) set ) , the carrier of b1 : ( ( non empty reflexive antisymmetric up-complete ) ( non empty reflexive antisymmetric up-complete non void ) RelStr ) : ( ( ) ( non empty ) set ) :] : ( ( ) ( non empty ) set ) : ( ( ) ( non empty ) set ) ) #) : ( ( strict ) ( strict ) RelStr ) = RelStr(# the carrier of L2 : ( ( non empty reflexive ) ( non empty reflexive non void ) RelStr ) : ( ( ) ( non empty ) set ) , the InternalRel of L2 : ( ( non empty reflexive ) ( non empty reflexive non void ) RelStr ) : ( ( ) ( non empty Relation-like the carrier of b2 : ( ( non empty reflexive ) ( non empty reflexive non void ) RelStr ) : ( ( ) ( non empty ) set ) -defined the carrier of b2 : ( ( non empty reflexive ) ( non empty reflexive non void ) RelStr ) : ( ( ) ( non empty ) set ) -valued ) Element of bool [: the carrier of b2 : ( ( non empty reflexive ) ( non empty reflexive non void ) RelStr ) : ( ( ) ( non empty ) set ) , the carrier of b2 : ( ( non empty reflexive ) ( non empty reflexive non void ) RelStr ) : ( ( ) ( non empty ) set ) :] : ( ( ) ( non empty ) set ) : ( ( ) ( non empty ) set ) ) #) : ( ( strict ) ( strict ) RelStr ) & X : ( ( ) ( ) Subset of ) = Y : ( ( ) ( ) Subset of ) & X : ( ( ) ( ) Subset of ) is property(S) holds
Y : ( ( ) ( ) Subset of ) is property(S) ;

theorem :: YELLOW12:20
for L1 being ( ( non empty reflexive antisymmetric up-complete ) ( non empty reflexive antisymmetric up-complete non void ) RelStr )
for L2 being ( ( non empty reflexive ) ( non empty reflexive non void ) RelStr )
for X being ( ( ) ( ) Subset of )
for Y being ( ( ) ( ) Subset of ) st RelStr(# the carrier of L1 : ( ( non empty reflexive antisymmetric up-complete ) ( non empty reflexive antisymmetric up-complete non void ) RelStr ) : ( ( ) ( non empty ) set ) , the InternalRel of L1 : ( ( non empty reflexive antisymmetric up-complete ) ( non empty reflexive antisymmetric up-complete non void ) RelStr ) : ( ( ) ( non empty Relation-like the carrier of b1 : ( ( non empty reflexive antisymmetric up-complete ) ( non empty reflexive antisymmetric up-complete non void ) RelStr ) : ( ( ) ( non empty ) set ) -defined the carrier of b1 : ( ( non empty reflexive antisymmetric up-complete ) ( non empty reflexive antisymmetric up-complete non void ) RelStr ) : ( ( ) ( non empty ) set ) -valued ) Element of bool [: the carrier of b1 : ( ( non empty reflexive antisymmetric up-complete ) ( non empty reflexive antisymmetric up-complete non void ) RelStr ) : ( ( ) ( non empty ) set ) , the carrier of b1 : ( ( non empty reflexive antisymmetric up-complete ) ( non empty reflexive antisymmetric up-complete non void ) RelStr ) : ( ( ) ( non empty ) set ) :] : ( ( ) ( non empty ) set ) : ( ( ) ( non empty ) set ) ) #) : ( ( strict ) ( strict ) RelStr ) = RelStr(# the carrier of L2 : ( ( non empty reflexive ) ( non empty reflexive non void ) RelStr ) : ( ( ) ( non empty ) set ) , the InternalRel of L2 : ( ( non empty reflexive ) ( non empty reflexive non void ) RelStr ) : ( ( ) ( non empty Relation-like the carrier of b2 : ( ( non empty reflexive ) ( non empty reflexive non void ) RelStr ) : ( ( ) ( non empty ) set ) -defined the carrier of b2 : ( ( non empty reflexive ) ( non empty reflexive non void ) RelStr ) : ( ( ) ( non empty ) set ) -valued ) Element of bool [: the carrier of b2 : ( ( non empty reflexive ) ( non empty reflexive non void ) RelStr ) : ( ( ) ( non empty ) set ) , the carrier of b2 : ( ( non empty reflexive ) ( non empty reflexive non void ) RelStr ) : ( ( ) ( non empty ) set ) :] : ( ( ) ( non empty ) set ) : ( ( ) ( non empty ) set ) ) #) : ( ( strict ) ( strict ) RelStr ) & X : ( ( ) ( ) Subset of ) = Y : ( ( ) ( ) Subset of ) & X : ( ( ) ( ) Subset of ) is directly_closed holds
Y : ( ( ) ( ) Subset of ) is directly_closed ;

theorem :: YELLOW12:21
for N being ( ( antisymmetric with_infima ) ( non empty antisymmetric with_infima ) RelStr )
for D, E being ( ( ) ( ) Subset of )
for X being ( ( upper ) ( upper ) Subset of ) st D : ( ( ) ( ) Subset of ) misses X : ( ( upper ) ( upper ) Subset of ) holds
D : ( ( ) ( ) Subset of ) "/\" E : ( ( ) ( ) Subset of ) : ( ( ) ( ) Element of bool the carrier of b1 : ( ( antisymmetric with_infima ) ( non empty antisymmetric with_infima ) RelStr ) : ( ( ) ( non empty ) set ) : ( ( ) ( non empty ) set ) ) misses X : ( ( upper ) ( upper ) Subset of ) ;

theorem :: YELLOW12:22
for R being ( ( non empty reflexive ) ( non empty reflexive non void ) RelStr ) holds id the carrier of R : ( ( non empty reflexive ) ( non empty reflexive non void ) RelStr ) : ( ( ) ( non empty ) set ) : ( ( total ) ( non empty Relation-like the carrier of b1 : ( ( non empty reflexive ) ( non empty reflexive non void ) RelStr ) : ( ( ) ( non empty ) set ) -defined the carrier of b1 : ( ( non empty reflexive ) ( non empty reflexive non void ) RelStr ) : ( ( ) ( non empty ) set ) -valued total quasi_total ) Element of bool [: the carrier of b1 : ( ( non empty reflexive ) ( non empty reflexive non void ) RelStr ) : ( ( ) ( non empty ) set ) , the carrier of b1 : ( ( non empty reflexive ) ( non empty reflexive non void ) RelStr ) : ( ( ) ( non empty ) set ) :] : ( ( ) ( non empty ) set ) : ( ( ) ( non empty ) set ) ) c= the InternalRel of R : ( ( non empty reflexive ) ( non empty reflexive non void ) RelStr ) : ( ( ) ( non empty Relation-like the carrier of b1 : ( ( non empty reflexive ) ( non empty reflexive non void ) RelStr ) : ( ( ) ( non empty ) set ) -defined the carrier of b1 : ( ( non empty reflexive ) ( non empty reflexive non void ) RelStr ) : ( ( ) ( non empty ) set ) -valued ) Element of bool [: the carrier of b1 : ( ( non empty reflexive ) ( non empty reflexive non void ) RelStr ) : ( ( ) ( non empty ) set ) , the carrier of b1 : ( ( non empty reflexive ) ( non empty reflexive non void ) RelStr ) : ( ( ) ( non empty ) set ) :] : ( ( ) ( non empty ) set ) : ( ( ) ( non empty ) set ) ) /\ the InternalRel of (R : ( ( non empty reflexive ) ( non empty reflexive non void ) RelStr ) ~) : ( ( strict ) ( non empty strict ) RelStr ) : ( ( ) ( Relation-like the carrier of (b1 : ( ( non empty reflexive ) ( non empty reflexive non void ) RelStr ) ~) : ( ( strict ) ( non empty strict ) RelStr ) : ( ( ) ( non empty ) set ) -defined the carrier of (b1 : ( ( non empty reflexive ) ( non empty reflexive non void ) RelStr ) ~) : ( ( strict ) ( non empty strict ) RelStr ) : ( ( ) ( non empty ) set ) -valued ) Element of bool [: the carrier of (b1 : ( ( non empty reflexive ) ( non empty reflexive non void ) RelStr ) ~) : ( ( strict ) ( non empty strict ) RelStr ) : ( ( ) ( non empty ) set ) , the carrier of (b1 : ( ( non empty reflexive ) ( non empty reflexive non void ) RelStr ) ~) : ( ( strict ) ( non empty strict ) RelStr ) : ( ( ) ( non empty ) set ) :] : ( ( ) ( non empty ) set ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( Relation-like the carrier of b1 : ( ( non empty reflexive ) ( non empty reflexive non void ) RelStr ) : ( ( ) ( non empty ) set ) -defined the carrier of (b1 : ( ( non empty reflexive ) ( non empty reflexive non void ) RelStr ) ~) : ( ( strict ) ( non empty strict ) RelStr ) : ( ( ) ( non empty ) set ) -defined the carrier of b1 : ( ( non empty reflexive ) ( non empty reflexive non void ) RelStr ) : ( ( ) ( non empty ) set ) -valued the carrier of (b1 : ( ( non empty reflexive ) ( non empty reflexive non void ) RelStr ) ~) : ( ( strict ) ( non empty strict ) RelStr ) : ( ( ) ( non empty ) set ) -valued ) Element of bool [: the carrier of (b1 : ( ( non empty reflexive ) ( non empty reflexive non void ) RelStr ) ~) : ( ( strict ) ( non empty strict ) RelStr ) : ( ( ) ( non empty ) set ) , the carrier of (b1 : ( ( non empty reflexive ) ( non empty reflexive non void ) RelStr ) ~) : ( ( strict ) ( non empty strict ) RelStr ) : ( ( ) ( non empty ) set ) :] : ( ( ) ( non empty ) set ) : ( ( ) ( non empty ) set ) ) ;

theorem :: YELLOW12:23
for R being ( ( antisymmetric ) ( antisymmetric ) RelStr ) holds the InternalRel of R : ( ( antisymmetric ) ( antisymmetric ) RelStr ) : ( ( ) ( Relation-like the carrier of b1 : ( ( antisymmetric ) ( antisymmetric ) RelStr ) : ( ( ) ( ) set ) -defined the carrier of b1 : ( ( antisymmetric ) ( antisymmetric ) RelStr ) : ( ( ) ( ) set ) -valued ) Element of bool [: the carrier of b1 : ( ( antisymmetric ) ( antisymmetric ) RelStr ) : ( ( ) ( ) set ) , the carrier of b1 : ( ( antisymmetric ) ( antisymmetric ) RelStr ) : ( ( ) ( ) set ) :] : ( ( ) ( non empty ) set ) : ( ( ) ( non empty ) set ) ) /\ the InternalRel of (R : ( ( antisymmetric ) ( antisymmetric ) RelStr ) ~) : ( ( strict ) ( strict ) RelStr ) : ( ( ) ( Relation-like the carrier of (b1 : ( ( antisymmetric ) ( antisymmetric ) RelStr ) ~) : ( ( strict ) ( strict ) RelStr ) : ( ( ) ( non empty ) set ) -defined the carrier of (b1 : ( ( antisymmetric ) ( antisymmetric ) RelStr ) ~) : ( ( strict ) ( strict ) RelStr ) : ( ( ) ( non empty ) set ) -valued ) Element of bool [: the carrier of (b1 : ( ( antisymmetric ) ( antisymmetric ) RelStr ) ~) : ( ( strict ) ( strict ) RelStr ) : ( ( ) ( non empty ) set ) , the carrier of (b1 : ( ( antisymmetric ) ( antisymmetric ) RelStr ) ~) : ( ( strict ) ( strict ) RelStr ) : ( ( ) ( non empty ) set ) :] : ( ( ) ( non empty ) set ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( Relation-like the carrier of b1 : ( ( antisymmetric ) ( antisymmetric ) RelStr ) : ( ( ) ( ) set ) -defined the carrier of (b1 : ( ( antisymmetric ) ( antisymmetric ) RelStr ) ~) : ( ( strict ) ( strict ) RelStr ) : ( ( ) ( non empty ) set ) -defined the carrier of b1 : ( ( antisymmetric ) ( antisymmetric ) RelStr ) : ( ( ) ( ) set ) -valued the carrier of (b1 : ( ( antisymmetric ) ( antisymmetric ) RelStr ) ~) : ( ( strict ) ( strict ) RelStr ) : ( ( ) ( non empty ) set ) -valued ) Element of bool [: the carrier of (b1 : ( ( antisymmetric ) ( antisymmetric ) RelStr ) ~) : ( ( strict ) ( strict ) RelStr ) : ( ( ) ( non empty ) set ) , the carrier of (b1 : ( ( antisymmetric ) ( antisymmetric ) RelStr ) ~) : ( ( strict ) ( strict ) RelStr ) : ( ( ) ( non empty ) set ) :] : ( ( ) ( non empty ) set ) : ( ( ) ( non empty ) set ) ) c= id the carrier of R : ( ( antisymmetric ) ( antisymmetric ) RelStr ) : ( ( ) ( ) set ) : ( ( total ) ( non empty Relation-like the carrier of b1 : ( ( antisymmetric ) ( antisymmetric ) RelStr ) : ( ( ) ( ) set ) -defined the carrier of b1 : ( ( antisymmetric ) ( antisymmetric ) RelStr ) : ( ( ) ( ) set ) -valued total quasi_total ) Element of bool [: the carrier of b1 : ( ( antisymmetric ) ( antisymmetric ) RelStr ) : ( ( ) ( ) set ) , the carrier of b1 : ( ( antisymmetric ) ( antisymmetric ) RelStr ) : ( ( ) ( ) set ) :] : ( ( ) ( non empty ) set ) : ( ( ) ( non empty ) set ) ) ;

definition
let L be ( ( non empty ) ( non empty ) RelStr ) ;
let f be ( ( Function-like quasi_total ) ( non empty Relation-like the carrier of [:L : ( ( non empty ) ( non empty ) RelStr ) ,L : ( ( non empty ) ( non empty ) RelStr ) :] : ( ( strict ) ( non empty strict ) RelStr ) : ( ( ) ( non empty ) set ) -defined the carrier of L : ( ( non empty ) ( non empty ) RelStr ) : ( ( ) ( non empty ) set ) -valued Function-like total quasi_total ) Function of ( ( ) ( non empty ) set ) , ( ( ) ( non empty ) set ) ) ;
let a, b be ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ;
:: original: .
redefine func f . (a,b) -> ( ( ) ( ) Element of ( ( ) ( ) set ) ) ;
end;

theorem :: YELLOW12:24
for R being ( ( reflexive transitive antisymmetric with_infima upper-bounded ) ( non empty reflexive transitive antisymmetric with_infima upper-bounded non void ) Semilattice)
for X being ( ( ) ( ) Subset of ) st ex_inf_of (inf_op R : ( ( reflexive transitive antisymmetric with_infima upper-bounded ) ( non empty reflexive transitive antisymmetric with_infima upper-bounded non void ) Semilattice) ) : ( ( Function-like quasi_total ) ( non empty Relation-like the carrier of [:b1 : ( ( reflexive transitive antisymmetric with_infima upper-bounded ) ( non empty reflexive transitive antisymmetric with_infima upper-bounded non void ) Semilattice) ,b1 : ( ( reflexive transitive antisymmetric with_infima upper-bounded ) ( non empty reflexive transitive antisymmetric with_infima upper-bounded non void ) Semilattice) :] : ( ( strict ) ( non empty strict reflexive transitive antisymmetric with_infima non void ) RelStr ) : ( ( ) ( non empty ) set ) -defined the carrier of b1 : ( ( reflexive transitive antisymmetric with_infima upper-bounded ) ( non empty reflexive transitive antisymmetric with_infima upper-bounded non void ) Semilattice) : ( ( ) ( non empty ) set ) -valued Function-like total quasi_total V177([:b1 : ( ( reflexive transitive antisymmetric with_infima upper-bounded ) ( non empty reflexive transitive antisymmetric with_infima upper-bounded non void ) Semilattice) ,b1 : ( ( reflexive transitive antisymmetric with_infima upper-bounded ) ( non empty reflexive transitive antisymmetric with_infima upper-bounded non void ) Semilattice) :] : ( ( strict ) ( non empty strict reflexive transitive antisymmetric with_infima non void ) RelStr ) ,b1 : ( ( reflexive transitive antisymmetric with_infima upper-bounded ) ( non empty reflexive transitive antisymmetric with_infima upper-bounded non void ) Semilattice) ) ) Element of bool [: the carrier of [:b1 : ( ( reflexive transitive antisymmetric with_infima upper-bounded ) ( non empty reflexive transitive antisymmetric with_infima upper-bounded non void ) Semilattice) ,b1 : ( ( reflexive transitive antisymmetric with_infima upper-bounded ) ( non empty reflexive transitive antisymmetric with_infima upper-bounded non void ) Semilattice) :] : ( ( strict ) ( non empty strict reflexive transitive antisymmetric with_infima non void ) RelStr ) : ( ( ) ( non empty ) set ) , the carrier of b1 : ( ( reflexive transitive antisymmetric with_infima upper-bounded ) ( non empty reflexive transitive antisymmetric with_infima upper-bounded non void ) Semilattice) : ( ( ) ( non empty ) set ) :] : ( ( ) ( non empty ) set ) : ( ( ) ( non empty ) set ) ) .: X : ( ( ) ( ) Subset of ) : ( ( ) ( ) Element of bool the carrier of b1 : ( ( reflexive transitive antisymmetric with_infima upper-bounded ) ( non empty reflexive transitive antisymmetric with_infima upper-bounded non void ) Semilattice) : ( ( ) ( non empty ) set ) : ( ( ) ( non empty ) set ) ) ,R : ( ( reflexive transitive antisymmetric with_infima upper-bounded ) ( non empty reflexive transitive antisymmetric with_infima upper-bounded non void ) Semilattice) holds
inf_op R : ( ( reflexive transitive antisymmetric with_infima upper-bounded ) ( non empty reflexive transitive antisymmetric with_infima upper-bounded non void ) Semilattice) : ( ( Function-like quasi_total ) ( non empty Relation-like the carrier of [:b1 : ( ( reflexive transitive antisymmetric with_infima upper-bounded ) ( non empty reflexive transitive antisymmetric with_infima upper-bounded non void ) Semilattice) ,b1 : ( ( reflexive transitive antisymmetric with_infima upper-bounded ) ( non empty reflexive transitive antisymmetric with_infima upper-bounded non void ) Semilattice) :] : ( ( strict ) ( non empty strict reflexive transitive antisymmetric with_infima non void ) RelStr ) : ( ( ) ( non empty ) set ) -defined the carrier of b1 : ( ( reflexive transitive antisymmetric with_infima upper-bounded ) ( non empty reflexive transitive antisymmetric with_infima upper-bounded non void ) Semilattice) : ( ( ) ( non empty ) set ) -valued Function-like total quasi_total V177([:b1 : ( ( reflexive transitive antisymmetric with_infima upper-bounded ) ( non empty reflexive transitive antisymmetric with_infima upper-bounded non void ) Semilattice) ,b1 : ( ( reflexive transitive antisymmetric with_infima upper-bounded ) ( non empty reflexive transitive antisymmetric with_infima upper-bounded non void ) Semilattice) :] : ( ( strict ) ( non empty strict reflexive transitive antisymmetric with_infima non void ) RelStr ) ,b1 : ( ( reflexive transitive antisymmetric with_infima upper-bounded ) ( non empty reflexive transitive antisymmetric with_infima upper-bounded non void ) Semilattice) ) ) Element of bool [: the carrier of [:b1 : ( ( reflexive transitive antisymmetric with_infima upper-bounded ) ( non empty reflexive transitive antisymmetric with_infima upper-bounded non void ) Semilattice) ,b1 : ( ( reflexive transitive antisymmetric with_infima upper-bounded ) ( non empty reflexive transitive antisymmetric with_infima upper-bounded non void ) Semilattice) :] : ( ( strict ) ( non empty strict reflexive transitive antisymmetric with_infima non void ) RelStr ) : ( ( ) ( non empty ) set ) , the carrier of b1 : ( ( reflexive transitive antisymmetric with_infima upper-bounded ) ( non empty reflexive transitive antisymmetric with_infima upper-bounded non void ) Semilattice) : ( ( ) ( non empty ) set ) :] : ( ( ) ( non empty ) set ) : ( ( ) ( non empty ) set ) ) preserves_inf_of X : ( ( ) ( ) Subset of ) ;

registration
let R be ( ( reflexive transitive antisymmetric with_infima complete ) ( non empty reflexive transitive antisymmetric with_suprema with_infima complete lower-bounded upper-bounded V212() up-complete /\-complete non void ) Semilattice) ;
cluster inf_op R : ( ( reflexive transitive antisymmetric with_infima complete ) ( non empty reflexive transitive antisymmetric with_suprema with_infima complete lower-bounded upper-bounded V212() up-complete /\-complete non void ) RelStr ) : ( ( Function-like quasi_total ) ( non empty Relation-like the carrier of [:R : ( ( reflexive transitive antisymmetric with_infima complete ) ( non empty reflexive transitive antisymmetric with_suprema with_infima complete lower-bounded upper-bounded V212() up-complete /\-complete non void ) RelStr ) ,R : ( ( reflexive transitive antisymmetric with_infima complete ) ( non empty reflexive transitive antisymmetric with_suprema with_infima complete lower-bounded upper-bounded V212() up-complete /\-complete non void ) RelStr ) :] : ( ( strict ) ( non empty strict reflexive transitive antisymmetric with_suprema with_infima complete lower-bounded upper-bounded V212() up-complete /\-complete non void ) RelStr ) : ( ( ) ( non empty ) set ) -defined the carrier of R : ( ( reflexive transitive antisymmetric with_infima complete ) ( non empty reflexive transitive antisymmetric with_suprema with_infima complete lower-bounded upper-bounded V212() up-complete /\-complete non void ) RelStr ) : ( ( ) ( non empty ) set ) -valued Function-like total quasi_total V177([:R : ( ( reflexive transitive antisymmetric with_infima complete ) ( non empty reflexive transitive antisymmetric with_suprema with_infima complete lower-bounded upper-bounded V212() up-complete /\-complete non void ) RelStr ) ,R : ( ( reflexive transitive antisymmetric with_infima complete ) ( non empty reflexive transitive antisymmetric with_suprema with_infima complete lower-bounded upper-bounded V212() up-complete /\-complete non void ) RelStr ) :] : ( ( strict ) ( non empty strict reflexive transitive antisymmetric with_suprema with_infima complete lower-bounded upper-bounded V212() up-complete /\-complete non void ) RelStr ) ,R : ( ( reflexive transitive antisymmetric with_infima complete ) ( non empty reflexive transitive antisymmetric with_suprema with_infima complete lower-bounded upper-bounded V212() up-complete /\-complete non void ) RelStr ) ) ) Element of bool [: the carrier of [:R : ( ( reflexive transitive antisymmetric with_infima complete ) ( non empty reflexive transitive antisymmetric with_suprema with_infima complete lower-bounded upper-bounded V212() up-complete /\-complete non void ) RelStr ) ,R : ( ( reflexive transitive antisymmetric with_infima complete ) ( non empty reflexive transitive antisymmetric with_suprema with_infima complete lower-bounded upper-bounded V212() up-complete /\-complete non void ) RelStr ) :] : ( ( strict ) ( non empty strict reflexive transitive antisymmetric with_suprema with_infima complete lower-bounded upper-bounded V212() up-complete /\-complete non void ) RelStr ) : ( ( ) ( non empty ) set ) , the carrier of R : ( ( reflexive transitive antisymmetric with_infima complete ) ( non empty reflexive transitive antisymmetric with_suprema with_infima complete lower-bounded upper-bounded V212() up-complete /\-complete non void ) RelStr ) : ( ( ) ( non empty ) set ) :] : ( ( ) ( non empty ) set ) : ( ( ) ( non empty ) set ) ) -> Function-like quasi_total infs-preserving ;
end;

theorem :: YELLOW12:25
for R being ( ( reflexive transitive antisymmetric with_suprema lower-bounded ) ( non empty reflexive transitive antisymmetric with_suprema lower-bounded non void ) sup-Semilattice)
for X being ( ( ) ( ) Subset of ) st ex_sup_of (sup_op R : ( ( reflexive transitive antisymmetric with_suprema lower-bounded ) ( non empty reflexive transitive antisymmetric with_suprema lower-bounded non void ) sup-Semilattice) ) : ( ( Function-like quasi_total ) ( non empty Relation-like the carrier of [:b1 : ( ( reflexive transitive antisymmetric with_suprema lower-bounded ) ( non empty reflexive transitive antisymmetric with_suprema lower-bounded non void ) sup-Semilattice) ,b1 : ( ( reflexive transitive antisymmetric with_suprema lower-bounded ) ( non empty reflexive transitive antisymmetric with_suprema lower-bounded non void ) sup-Semilattice) :] : ( ( strict ) ( non empty strict reflexive transitive antisymmetric with_suprema non void ) RelStr ) : ( ( ) ( non empty ) set ) -defined the carrier of b1 : ( ( reflexive transitive antisymmetric with_suprema lower-bounded ) ( non empty reflexive transitive antisymmetric with_suprema lower-bounded non void ) sup-Semilattice) : ( ( ) ( non empty ) set ) -valued Function-like total quasi_total V177([:b1 : ( ( reflexive transitive antisymmetric with_suprema lower-bounded ) ( non empty reflexive transitive antisymmetric with_suprema lower-bounded non void ) sup-Semilattice) ,b1 : ( ( reflexive transitive antisymmetric with_suprema lower-bounded ) ( non empty reflexive transitive antisymmetric with_suprema lower-bounded non void ) sup-Semilattice) :] : ( ( strict ) ( non empty strict reflexive transitive antisymmetric with_suprema non void ) RelStr ) ,b1 : ( ( reflexive transitive antisymmetric with_suprema lower-bounded ) ( non empty reflexive transitive antisymmetric with_suprema lower-bounded non void ) sup-Semilattice) ) ) Element of bool [: the carrier of [:b1 : ( ( reflexive transitive antisymmetric with_suprema lower-bounded ) ( non empty reflexive transitive antisymmetric with_suprema lower-bounded non void ) sup-Semilattice) ,b1 : ( ( reflexive transitive antisymmetric with_suprema lower-bounded ) ( non empty reflexive transitive antisymmetric with_suprema lower-bounded non void ) sup-Semilattice) :] : ( ( strict ) ( non empty strict reflexive transitive antisymmetric with_suprema non void ) RelStr ) : ( ( ) ( non empty ) set ) , the carrier of b1 : ( ( reflexive transitive antisymmetric with_suprema lower-bounded ) ( non empty reflexive transitive antisymmetric with_suprema lower-bounded non void ) sup-Semilattice) : ( ( ) ( non empty ) set ) :] : ( ( ) ( non empty ) set ) : ( ( ) ( non empty ) set ) ) .: X : ( ( ) ( ) Subset of ) : ( ( ) ( ) Element of bool the carrier of b1 : ( ( reflexive transitive antisymmetric with_suprema lower-bounded ) ( non empty reflexive transitive antisymmetric with_suprema lower-bounded non void ) sup-Semilattice) : ( ( ) ( non empty ) set ) : ( ( ) ( non empty ) set ) ) ,R : ( ( reflexive transitive antisymmetric with_suprema lower-bounded ) ( non empty reflexive transitive antisymmetric with_suprema lower-bounded non void ) sup-Semilattice) holds
sup_op R : ( ( reflexive transitive antisymmetric with_suprema lower-bounded ) ( non empty reflexive transitive antisymmetric with_suprema lower-bounded non void ) sup-Semilattice) : ( ( Function-like quasi_total ) ( non empty Relation-like the carrier of [:b1 : ( ( reflexive transitive antisymmetric with_suprema lower-bounded ) ( non empty reflexive transitive antisymmetric with_suprema lower-bounded non void ) sup-Semilattice) ,b1 : ( ( reflexive transitive antisymmetric with_suprema lower-bounded ) ( non empty reflexive transitive antisymmetric with_suprema lower-bounded non void ) sup-Semilattice) :] : ( ( strict ) ( non empty strict reflexive transitive antisymmetric with_suprema non void ) RelStr ) : ( ( ) ( non empty ) set ) -defined the carrier of b1 : ( ( reflexive transitive antisymmetric with_suprema lower-bounded ) ( non empty reflexive transitive antisymmetric with_suprema lower-bounded non void ) sup-Semilattice) : ( ( ) ( non empty ) set ) -valued Function-like total quasi_total V177([:b1 : ( ( reflexive transitive antisymmetric with_suprema lower-bounded ) ( non empty reflexive transitive antisymmetric with_suprema lower-bounded non void ) sup-Semilattice) ,b1 : ( ( reflexive transitive antisymmetric with_suprema lower-bounded ) ( non empty reflexive transitive antisymmetric with_suprema lower-bounded non void ) sup-Semilattice) :] : ( ( strict ) ( non empty strict reflexive transitive antisymmetric with_suprema non void ) RelStr ) ,b1 : ( ( reflexive transitive antisymmetric with_suprema lower-bounded ) ( non empty reflexive transitive antisymmetric with_suprema lower-bounded non void ) sup-Semilattice) ) ) Element of bool [: the carrier of [:b1 : ( ( reflexive transitive antisymmetric with_suprema lower-bounded ) ( non empty reflexive transitive antisymmetric with_suprema lower-bounded non void ) sup-Semilattice) ,b1 : ( ( reflexive transitive antisymmetric with_suprema lower-bounded ) ( non empty reflexive transitive antisymmetric with_suprema lower-bounded non void ) sup-Semilattice) :] : ( ( strict ) ( non empty strict reflexive transitive antisymmetric with_suprema non void ) RelStr ) : ( ( ) ( non empty ) set ) , the carrier of b1 : ( ( reflexive transitive antisymmetric with_suprema lower-bounded ) ( non empty reflexive transitive antisymmetric with_suprema lower-bounded non void ) sup-Semilattice) : ( ( ) ( non empty ) set ) :] : ( ( ) ( non empty ) set ) : ( ( ) ( non empty ) set ) ) preserves_sup_of X : ( ( ) ( ) Subset of ) ;

registration
let R be ( ( reflexive transitive antisymmetric with_suprema complete ) ( non empty reflexive transitive antisymmetric with_suprema with_infima complete lower-bounded upper-bounded V212() up-complete /\-complete non void ) sup-Semilattice) ;
cluster sup_op R : ( ( reflexive transitive antisymmetric with_suprema complete ) ( non empty reflexive transitive antisymmetric with_suprema with_infima complete lower-bounded upper-bounded V212() up-complete /\-complete non void ) RelStr ) : ( ( Function-like quasi_total ) ( non empty Relation-like the carrier of [:R : ( ( reflexive transitive antisymmetric with_suprema complete ) ( non empty reflexive transitive antisymmetric with_suprema with_infima complete lower-bounded upper-bounded V212() up-complete /\-complete non void ) RelStr ) ,R : ( ( reflexive transitive antisymmetric with_suprema complete ) ( non empty reflexive transitive antisymmetric with_suprema with_infima complete lower-bounded upper-bounded V212() up-complete /\-complete non void ) RelStr ) :] : ( ( strict ) ( non empty strict reflexive transitive antisymmetric with_suprema with_infima complete lower-bounded upper-bounded V212() up-complete /\-complete non void ) RelStr ) : ( ( ) ( non empty ) set ) -defined the carrier of R : ( ( reflexive transitive antisymmetric with_suprema complete ) ( non empty reflexive transitive antisymmetric with_suprema with_infima complete lower-bounded upper-bounded V212() up-complete /\-complete non void ) RelStr ) : ( ( ) ( non empty ) set ) -valued Function-like total quasi_total V177([:R : ( ( reflexive transitive antisymmetric with_suprema complete ) ( non empty reflexive transitive antisymmetric with_suprema with_infima complete lower-bounded upper-bounded V212() up-complete /\-complete non void ) RelStr ) ,R : ( ( reflexive transitive antisymmetric with_suprema complete ) ( non empty reflexive transitive antisymmetric with_suprema with_infima complete lower-bounded upper-bounded V212() up-complete /\-complete non void ) RelStr ) :] : ( ( strict ) ( non empty strict reflexive transitive antisymmetric with_suprema with_infima complete lower-bounded upper-bounded V212() up-complete /\-complete non void ) RelStr ) ,R : ( ( reflexive transitive antisymmetric with_suprema complete ) ( non empty reflexive transitive antisymmetric with_suprema with_infima complete lower-bounded upper-bounded V212() up-complete /\-complete non void ) RelStr ) ) ) Element of bool [: the carrier of [:R : ( ( reflexive transitive antisymmetric with_suprema complete ) ( non empty reflexive transitive antisymmetric with_suprema with_infima complete lower-bounded upper-bounded V212() up-complete /\-complete non void ) RelStr ) ,R : ( ( reflexive transitive antisymmetric with_suprema complete ) ( non empty reflexive transitive antisymmetric with_suprema with_infima complete lower-bounded upper-bounded V212() up-complete /\-complete non void ) RelStr ) :] : ( ( strict ) ( non empty strict reflexive transitive antisymmetric with_suprema with_infima complete lower-bounded upper-bounded V212() up-complete /\-complete non void ) RelStr ) : ( ( ) ( non empty ) set ) , the carrier of R : ( ( reflexive transitive antisymmetric with_suprema complete ) ( non empty reflexive transitive antisymmetric with_suprema with_infima complete lower-bounded upper-bounded V212() up-complete /\-complete non void ) RelStr ) : ( ( ) ( non empty ) set ) :] : ( ( ) ( non empty ) set ) : ( ( ) ( non empty ) set ) ) -> Function-like quasi_total sups-preserving ;
end;

theorem :: YELLOW12:26
for N being ( ( reflexive transitive antisymmetric with_infima ) ( non empty reflexive transitive antisymmetric with_infima non void ) Semilattice)
for A being ( ( ) ( ) Subset of ) st subrelstr A : ( ( ) ( ) Subset of ) : ( ( strict V213(b1 : ( ( reflexive transitive antisymmetric with_infima ) ( non empty reflexive transitive antisymmetric with_infima non void ) Semilattice) ) ) ( strict reflexive transitive antisymmetric V213(b1 : ( ( reflexive transitive antisymmetric with_infima ) ( non empty reflexive transitive antisymmetric with_infima non void ) Semilattice) ) ) SubRelStr of b1 : ( ( reflexive transitive antisymmetric with_infima ) ( non empty reflexive transitive antisymmetric with_infima non void ) Semilattice) ) is meet-inheriting holds
A : ( ( ) ( ) Subset of ) is filtered ;

theorem :: YELLOW12:27
for N being ( ( reflexive transitive antisymmetric with_suprema ) ( non empty reflexive transitive antisymmetric with_suprema non void ) sup-Semilattice)
for A being ( ( ) ( ) Subset of ) st subrelstr A : ( ( ) ( ) Subset of ) : ( ( strict V213(b1 : ( ( reflexive transitive antisymmetric with_suprema ) ( non empty reflexive transitive antisymmetric with_suprema non void ) sup-Semilattice) ) ) ( strict reflexive transitive antisymmetric V213(b1 : ( ( reflexive transitive antisymmetric with_suprema ) ( non empty reflexive transitive antisymmetric with_suprema non void ) sup-Semilattice) ) ) SubRelStr of b1 : ( ( reflexive transitive antisymmetric with_suprema ) ( non empty reflexive transitive antisymmetric with_suprema non void ) sup-Semilattice) ) is join-inheriting holds
A : ( ( ) ( ) Subset of ) is directed ;

theorem :: YELLOW12:28
for N being ( ( transitive ) ( transitive ) RelStr )
for A, J being ( ( ) ( ) Subset of ) st A : ( ( ) ( ) Subset of ) is_coarser_than uparrow J : ( ( ) ( ) Subset of ) : ( ( ) ( ) Element of bool the carrier of b1 : ( ( transitive ) ( transitive ) RelStr ) : ( ( ) ( ) set ) : ( ( ) ( non empty ) set ) ) holds
uparrow A : ( ( ) ( ) Subset of ) : ( ( ) ( ) Element of bool the carrier of b1 : ( ( transitive ) ( transitive ) RelStr ) : ( ( ) ( ) set ) : ( ( ) ( non empty ) set ) ) c= uparrow J : ( ( ) ( ) Subset of ) : ( ( ) ( ) Element of bool the carrier of b1 : ( ( transitive ) ( transitive ) RelStr ) : ( ( ) ( ) set ) : ( ( ) ( non empty ) set ) ) ;

theorem :: YELLOW12:29
for N being ( ( transitive ) ( transitive ) RelStr )
for A, J being ( ( ) ( ) Subset of ) st A : ( ( ) ( ) Subset of ) is_finer_than downarrow J : ( ( ) ( ) Subset of ) : ( ( ) ( ) Element of bool the carrier of b1 : ( ( transitive ) ( transitive ) RelStr ) : ( ( ) ( ) set ) : ( ( ) ( non empty ) set ) ) holds
downarrow A : ( ( ) ( ) Subset of ) : ( ( ) ( ) Element of bool the carrier of b1 : ( ( transitive ) ( transitive ) RelStr ) : ( ( ) ( ) set ) : ( ( ) ( non empty ) set ) ) c= downarrow J : ( ( ) ( ) Subset of ) : ( ( ) ( ) Element of bool the carrier of b1 : ( ( transitive ) ( transitive ) RelStr ) : ( ( ) ( ) set ) : ( ( ) ( non empty ) set ) ) ;

theorem :: YELLOW12:30
for N being ( ( non empty reflexive ) ( non empty reflexive non void ) RelStr )
for x being ( ( ) ( ) Element of ( ( ) ( non empty ) set ) )
for X being ( ( ) ( ) Subset of ) st x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) in X : ( ( ) ( ) Subset of ) holds
uparrow x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty filtered ) Element of bool the carrier of b1 : ( ( non empty reflexive ) ( non empty reflexive non void ) RelStr ) : ( ( ) ( non empty ) set ) : ( ( ) ( non empty ) set ) ) c= uparrow X : ( ( ) ( ) Subset of ) : ( ( ) ( ) Element of bool the carrier of b1 : ( ( non empty reflexive ) ( non empty reflexive non void ) RelStr ) : ( ( ) ( non empty ) set ) : ( ( ) ( non empty ) set ) ) ;

theorem :: YELLOW12:31
for N being ( ( non empty reflexive ) ( non empty reflexive non void ) RelStr )
for x being ( ( ) ( ) Element of ( ( ) ( non empty ) set ) )
for X being ( ( ) ( ) Subset of ) st x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) in X : ( ( ) ( ) Subset of ) holds
downarrow x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty directed ) Element of bool the carrier of b1 : ( ( non empty reflexive ) ( non empty reflexive non void ) RelStr ) : ( ( ) ( non empty ) set ) : ( ( ) ( non empty ) set ) ) c= downarrow X : ( ( ) ( ) Subset of ) : ( ( ) ( ) Element of bool the carrier of b1 : ( ( non empty reflexive ) ( non empty reflexive non void ) RelStr ) : ( ( ) ( non empty ) set ) : ( ( ) ( non empty ) set ) ) ;

begin

theorem :: YELLOW12:32
for S, T being ( ( ) ( ) TopStruct )
for B being ( ( open quasi_basis ) ( open quasi_basis ) Basis of S : ( ( ) ( ) TopStruct ) ) st TopStruct(# the carrier of S : ( ( ) ( ) TopStruct ) : ( ( ) ( ) set ) , the topology of S : ( ( ) ( ) TopStruct ) : ( ( ) ( ) Element of bool (bool the carrier of b1 : ( ( ) ( ) TopStruct ) : ( ( ) ( ) set ) ) : ( ( ) ( non empty ) set ) : ( ( ) ( non empty ) set ) ) #) : ( ( strict ) ( non empty strict ) TopStruct ) = TopStruct(# the carrier of T : ( ( ) ( ) TopStruct ) : ( ( ) ( ) set ) , the topology of T : ( ( ) ( ) TopStruct ) : ( ( ) ( ) Element of bool (bool the carrier of b2 : ( ( ) ( ) TopStruct ) : ( ( ) ( ) set ) ) : ( ( ) ( non empty ) set ) : ( ( ) ( non empty ) set ) ) #) : ( ( strict ) ( strict ) TopStruct ) holds
B : ( ( open quasi_basis ) ( open quasi_basis ) Basis of b1 : ( ( ) ( ) TopStruct ) ) is ( ( open quasi_basis ) ( open quasi_basis ) Basis of T : ( ( ) ( ) TopStruct ) ) ;

theorem :: YELLOW12:33
for S, T being ( ( ) ( ) TopStruct )
for B being ( ( open quasi_prebasis ) ( open quasi_prebasis ) prebasis of S : ( ( ) ( ) TopStruct ) ) st TopStruct(# the carrier of S : ( ( ) ( ) TopStruct ) : ( ( ) ( ) set ) , the topology of S : ( ( ) ( ) TopStruct ) : ( ( ) ( ) Element of bool (bool the carrier of b1 : ( ( ) ( ) TopStruct ) : ( ( ) ( ) set ) ) : ( ( ) ( non empty ) set ) : ( ( ) ( non empty ) set ) ) #) : ( ( strict ) ( non empty strict ) TopStruct ) = TopStruct(# the carrier of T : ( ( ) ( ) TopStruct ) : ( ( ) ( ) set ) , the topology of T : ( ( ) ( ) TopStruct ) : ( ( ) ( ) Element of bool (bool the carrier of b2 : ( ( ) ( ) TopStruct ) : ( ( ) ( ) set ) ) : ( ( ) ( non empty ) set ) : ( ( ) ( non empty ) set ) ) #) : ( ( strict ) ( strict ) TopStruct ) holds
B : ( ( open quasi_prebasis ) ( open quasi_prebasis ) prebasis of b1 : ( ( ) ( ) TopStruct ) ) is ( ( open quasi_prebasis ) ( open quasi_prebasis ) prebasis of T : ( ( ) ( ) TopStruct ) ) ;

theorem :: YELLOW12:34
for T being ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace)
for J being ( ( open quasi_basis ) ( open quasi_basis ) Basis of T : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) ) holds not J : ( ( open quasi_basis ) ( open quasi_basis ) Basis of b1 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) ) is empty ;

registration
let T be ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) ;
cluster open quasi_basis -> non empty open quasi_basis for ( ( ) ( ) Element of bool (bool the carrier of T : ( ( ) ( ) set ) : ( ( ) ( ) set ) ) : ( ( ) ( non empty ) set ) : ( ( ) ( non empty ) set ) ) ;
end;

theorem :: YELLOW12:35
for T being ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace)
for x being ( ( ) ( ) Point of ( ( ) ( non empty ) set ) )
for J being ( ( open V225(b1 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) ,b2 : ( ( ) ( ) Point of ( ( ) ( non empty ) set ) ) ) ) ( open V225(b1 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) ,b2 : ( ( ) ( ) Point of ( ( ) ( non empty ) set ) ) ) ) Basis of x : ( ( ) ( ) Point of ( ( ) ( non empty ) set ) ) ) holds not J : ( ( open V225(b1 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) ,b2 : ( ( ) ( ) Point of ( ( ) ( non empty ) set ) ) ) ) ( open V225(b1 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) ,b2 : ( ( ) ( ) Point of ( ( ) ( non empty ) set ) ) ) ) Basis of b2 : ( ( ) ( ) Point of ( ( ) ( non empty ) set ) ) ) is empty ;

registration
let T be ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) ;
let x be ( ( ) ( ) Point of ( ( ) ( non empty ) set ) ) ;
cluster open V225(T : ( ( ) ( ) set ) ,x : ( ( ) ( ) set ) ) -> non empty open V225(T : ( ( ) ( ) set ) ,x : ( ( ) ( ) set ) ) for ( ( ) ( ) Element of bool (bool the carrier of T : ( ( ) ( ) set ) : ( ( ) ( ) set ) ) : ( ( ) ( non empty ) set ) : ( ( ) ( non empty ) set ) ) ;
end;

theorem :: YELLOW12:36
for S1, T1, S2, T2 being ( ( TopSpace-like ) ( TopSpace-like ) TopSpace)
for f being ( ( Function-like quasi_total ) ( Relation-like the carrier of b1 : ( ( TopSpace-like ) ( TopSpace-like ) TopSpace) : ( ( ) ( ) set ) -defined the carrier of b3 : ( ( TopSpace-like ) ( TopSpace-like ) TopSpace) : ( ( ) ( ) set ) -valued Function-like quasi_total ) Function of ( ( ) ( ) set ) , ( ( ) ( ) set ) )
for g being ( ( Function-like quasi_total ) ( Relation-like the carrier of b2 : ( ( TopSpace-like ) ( TopSpace-like ) TopSpace) : ( ( ) ( ) set ) -defined the carrier of b4 : ( ( TopSpace-like ) ( TopSpace-like ) TopSpace) : ( ( ) ( ) set ) -valued Function-like quasi_total ) Function of ( ( ) ( ) set ) , ( ( ) ( ) set ) ) st TopStruct(# the carrier of S1 : ( ( TopSpace-like ) ( TopSpace-like ) TopSpace) : ( ( ) ( ) set ) , the topology of S1 : ( ( TopSpace-like ) ( TopSpace-like ) TopSpace) : ( ( ) ( non empty ) Element of bool (bool the carrier of b1 : ( ( TopSpace-like ) ( TopSpace-like ) TopSpace) : ( ( ) ( ) set ) ) : ( ( ) ( non empty ) set ) : ( ( ) ( non empty ) set ) ) #) : ( ( strict ) ( strict TopSpace-like ) TopStruct ) = TopStruct(# the carrier of T1 : ( ( TopSpace-like ) ( TopSpace-like ) TopSpace) : ( ( ) ( ) set ) , the topology of T1 : ( ( TopSpace-like ) ( TopSpace-like ) TopSpace) : ( ( ) ( non empty ) Element of bool (bool the carrier of b2 : ( ( TopSpace-like ) ( TopSpace-like ) TopSpace) : ( ( ) ( ) set ) ) : ( ( ) ( non empty ) set ) : ( ( ) ( non empty ) set ) ) #) : ( ( strict ) ( strict TopSpace-like ) TopStruct ) & TopStruct(# the carrier of S2 : ( ( TopSpace-like ) ( TopSpace-like ) TopSpace) : ( ( ) ( ) set ) , the topology of S2 : ( ( TopSpace-like ) ( TopSpace-like ) TopSpace) : ( ( ) ( non empty ) Element of bool (bool the carrier of b3 : ( ( TopSpace-like ) ( TopSpace-like ) TopSpace) : ( ( ) ( ) set ) ) : ( ( ) ( non empty ) set ) : ( ( ) ( non empty ) set ) ) #) : ( ( strict ) ( strict TopSpace-like ) TopStruct ) = TopStruct(# the carrier of T2 : ( ( TopSpace-like ) ( TopSpace-like ) TopSpace) : ( ( ) ( ) set ) , the topology of T2 : ( ( TopSpace-like ) ( TopSpace-like ) TopSpace) : ( ( ) ( non empty ) Element of bool (bool the carrier of b4 : ( ( TopSpace-like ) ( TopSpace-like ) TopSpace) : ( ( ) ( ) set ) ) : ( ( ) ( non empty ) set ) : ( ( ) ( non empty ) set ) ) #) : ( ( strict ) ( strict TopSpace-like ) TopStruct ) & f : ( ( Function-like quasi_total ) ( Relation-like the carrier of b1 : ( ( TopSpace-like ) ( TopSpace-like ) TopSpace) : ( ( ) ( ) set ) -defined the carrier of b3 : ( ( TopSpace-like ) ( TopSpace-like ) TopSpace) : ( ( ) ( ) set ) -valued Function-like quasi_total ) Function of ( ( ) ( ) set ) , ( ( ) ( ) set ) ) = g : ( ( Function-like quasi_total ) ( Relation-like the carrier of b2 : ( ( TopSpace-like ) ( TopSpace-like ) TopSpace) : ( ( ) ( ) set ) -defined the carrier of b4 : ( ( TopSpace-like ) ( TopSpace-like ) TopSpace) : ( ( ) ( ) set ) -valued Function-like quasi_total ) Function of ( ( ) ( ) set ) , ( ( ) ( ) set ) ) & f : ( ( Function-like quasi_total ) ( Relation-like the carrier of b1 : ( ( TopSpace-like ) ( TopSpace-like ) TopSpace) : ( ( ) ( ) set ) -defined the carrier of b3 : ( ( TopSpace-like ) ( TopSpace-like ) TopSpace) : ( ( ) ( ) set ) -valued Function-like quasi_total ) Function of ( ( ) ( ) set ) , ( ( ) ( ) set ) ) is continuous holds
g : ( ( Function-like quasi_total ) ( Relation-like the carrier of b2 : ( ( TopSpace-like ) ( TopSpace-like ) TopSpace) : ( ( ) ( ) set ) -defined the carrier of b4 : ( ( TopSpace-like ) ( TopSpace-like ) TopSpace) : ( ( ) ( ) set ) -valued Function-like quasi_total ) Function of ( ( ) ( ) set ) , ( ( ) ( ) set ) ) is continuous ;

theorem :: YELLOW12:37
for T being ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) holds id the carrier of T : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) : ( ( total ) ( Relation-like the carrier of b1 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) -defined the carrier of b1 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) -valued total quasi_total ) Element of bool [: the carrier of b1 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) , the carrier of b1 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) :] : ( ( ) ( ) set ) : ( ( ) ( non empty ) set ) ) = { p : ( ( ) ( ) Point of ( ( ) ( non empty ) set ) ) where p is ( ( ) ( ) Point of ( ( ) ( non empty ) set ) ) : (pr1 ( the carrier of T : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) , the carrier of T : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) )) : ( ( Function-like quasi_total ) ( Relation-like [: the carrier of b1 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) , the carrier of b1 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) :] : ( ( ) ( ) set ) -defined the carrier of b1 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) -valued Function-like quasi_total ) Element of bool [:[: the carrier of b1 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) , the carrier of b1 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) :] : ( ( ) ( ) set ) , the carrier of b1 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) :] : ( ( ) ( ) set ) : ( ( ) ( non empty ) set ) ) . p : ( ( ) ( ) Point of ( ( ) ( non empty ) set ) ) : ( ( ) ( ) set ) = (pr2 ( the carrier of T : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) , the carrier of T : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) )) : ( ( Function-like quasi_total ) ( Relation-like [: the carrier of b1 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) , the carrier of b1 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) :] : ( ( ) ( ) set ) -defined the carrier of b1 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) -valued Function-like quasi_total ) Element of bool [:[: the carrier of b1 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) , the carrier of b1 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) :] : ( ( ) ( ) set ) , the carrier of b1 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) :] : ( ( ) ( ) set ) : ( ( ) ( non empty ) set ) ) . p : ( ( ) ( ) Point of ( ( ) ( non empty ) set ) ) : ( ( ) ( ) set ) } ;

theorem :: YELLOW12:38
for T being ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) holds delta the carrier of T : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) : ( ( Function-like quasi_total ) ( Relation-like the carrier of b1 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) -defined [: the carrier of b1 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) , the carrier of b1 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) :] : ( ( ) ( ) set ) -valued Function-like quasi_total ) Element of bool [: the carrier of b1 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) ,[: the carrier of b1 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) , the carrier of b1 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) :] : ( ( ) ( ) set ) :] : ( ( ) ( ) set ) : ( ( ) ( non empty ) set ) ) is ( ( Function-like quasi_total continuous ) ( Relation-like the carrier of b1 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) -defined the carrier of [:b1 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) ,b1 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) :] : ( ( strict TopSpace-like ) ( non empty strict TopSpace-like ) TopStruct ) : ( ( ) ( non empty ) set ) -valued Function-like total quasi_total continuous ) Function of ( ( ) ( non empty ) set ) , ( ( ) ( non empty ) set ) ) ;

theorem :: YELLOW12:39
for S, T being ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) holds pr1 ( the carrier of S : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) , the carrier of T : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) ) : ( ( Function-like quasi_total ) ( Relation-like [: the carrier of b1 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) , the carrier of b2 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) :] : ( ( ) ( ) set ) -defined the carrier of b1 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) -valued Function-like quasi_total ) Element of bool [:[: the carrier of b1 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) , the carrier of b2 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) :] : ( ( ) ( ) set ) , the carrier of b1 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) :] : ( ( ) ( ) set ) : ( ( ) ( non empty ) set ) ) is ( ( Function-like quasi_total continuous ) ( Relation-like the carrier of [:b1 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) ,b2 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) :] : ( ( strict TopSpace-like ) ( non empty strict TopSpace-like ) TopStruct ) : ( ( ) ( non empty ) set ) -defined the carrier of b1 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) -valued Function-like quasi_total continuous ) Function of ( ( ) ( non empty ) set ) , ( ( ) ( non empty ) set ) ) ;

theorem :: YELLOW12:40
for S, T being ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) holds pr2 ( the carrier of S : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) , the carrier of T : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) ) : ( ( Function-like quasi_total ) ( Relation-like [: the carrier of b1 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) , the carrier of b2 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) :] : ( ( ) ( ) set ) -defined the carrier of b2 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) -valued Function-like quasi_total ) Element of bool [:[: the carrier of b1 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) , the carrier of b2 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) :] : ( ( ) ( ) set ) , the carrier of b2 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) :] : ( ( ) ( ) set ) : ( ( ) ( non empty ) set ) ) is ( ( Function-like quasi_total continuous ) ( Relation-like the carrier of [:b1 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) ,b2 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) :] : ( ( strict TopSpace-like ) ( non empty strict TopSpace-like ) TopStruct ) : ( ( ) ( non empty ) set ) -defined the carrier of b2 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) -valued Function-like quasi_total continuous ) Function of ( ( ) ( non empty ) set ) , ( ( ) ( non empty ) set ) ) ;

theorem :: YELLOW12:41
for T, S, R being ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace)
for f being ( ( Function-like quasi_total continuous ) ( Relation-like the carrier of b1 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) -defined the carrier of b2 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) -valued Function-like quasi_total continuous ) Function of ( ( ) ( non empty ) set ) , ( ( ) ( non empty ) set ) )
for g being ( ( Function-like quasi_total continuous ) ( Relation-like the carrier of b1 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) -defined the carrier of b3 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) -valued Function-like quasi_total continuous ) Function of ( ( ) ( non empty ) set ) , ( ( ) ( non empty ) set ) ) holds <:f : ( ( Function-like quasi_total continuous ) ( Relation-like the carrier of b1 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) -defined the carrier of b2 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) -valued Function-like quasi_total continuous ) Function of ( ( ) ( non empty ) set ) , ( ( ) ( non empty ) set ) ) ,g : ( ( Function-like quasi_total continuous ) ( Relation-like the carrier of b1 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) -defined the carrier of b3 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) -valued Function-like quasi_total continuous ) Function of ( ( ) ( non empty ) set ) , ( ( ) ( non empty ) set ) ) :> : ( ( Relation-like Function-like ) ( Relation-like Function-like ) set ) is ( ( Function-like quasi_total continuous ) ( Relation-like the carrier of b1 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) -defined the carrier of [:b2 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) ,b3 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) :] : ( ( strict TopSpace-like ) ( non empty strict TopSpace-like ) TopStruct ) : ( ( ) ( non empty ) set ) -valued Function-like total quasi_total continuous ) Function of ( ( ) ( non empty ) set ) , ( ( ) ( non empty ) set ) ) ;

theorem :: YELLOW12:42
for S, T being ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) holds <:(pr2 ( the carrier of S : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) , the carrier of T : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) )) : ( ( Function-like quasi_total ) ( Relation-like [: the carrier of b1 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) , the carrier of b2 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) :] : ( ( ) ( ) set ) -defined the carrier of b2 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) -valued Function-like quasi_total ) Element of bool [:[: the carrier of b1 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) , the carrier of b2 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) :] : ( ( ) ( ) set ) , the carrier of b2 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) :] : ( ( ) ( ) set ) : ( ( ) ( non empty ) set ) ) ,(pr1 ( the carrier of S : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) , the carrier of T : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) )) : ( ( Function-like quasi_total ) ( Relation-like [: the carrier of b1 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) , the carrier of b2 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) :] : ( ( ) ( ) set ) -defined the carrier of b1 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) -valued Function-like quasi_total ) Element of bool [:[: the carrier of b1 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) , the carrier of b2 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) :] : ( ( ) ( ) set ) , the carrier of b1 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) :] : ( ( ) ( ) set ) : ( ( ) ( non empty ) set ) ) :> : ( ( Relation-like Function-like ) ( Relation-like Function-like one-to-one ) set ) is ( ( Function-like quasi_total continuous ) ( non empty Relation-like the carrier of [:b1 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) ,b2 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) :] : ( ( strict TopSpace-like ) ( non empty strict TopSpace-like ) TopStruct ) : ( ( ) ( non empty ) set ) -defined the carrier of [:b2 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) ,b1 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) :] : ( ( strict TopSpace-like ) ( non empty strict TopSpace-like ) TopStruct ) : ( ( ) ( non empty ) set ) -valued Function-like total quasi_total continuous ) Function of ( ( ) ( non empty ) set ) , ( ( ) ( non empty ) set ) ) ;

theorem :: YELLOW12:43
for S, T being ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace)
for f being ( ( Function-like quasi_total ) ( non empty Relation-like the carrier of [:b1 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) ,b2 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) :] : ( ( strict TopSpace-like ) ( non empty strict TopSpace-like ) TopStruct ) : ( ( ) ( non empty ) set ) -defined the carrier of [:b2 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) ,b1 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) :] : ( ( strict TopSpace-like ) ( non empty strict TopSpace-like ) TopStruct ) : ( ( ) ( non empty ) set ) -valued Function-like total quasi_total ) Function of ( ( ) ( non empty ) set ) , ( ( ) ( non empty ) set ) ) st f : ( ( Function-like quasi_total ) ( non empty Relation-like the carrier of [:b1 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) ,b2 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) :] : ( ( strict TopSpace-like ) ( non empty strict TopSpace-like ) TopStruct ) : ( ( ) ( non empty ) set ) -defined the carrier of [:b2 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) ,b1 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) :] : ( ( strict TopSpace-like ) ( non empty strict TopSpace-like ) TopStruct ) : ( ( ) ( non empty ) set ) -valued Function-like total quasi_total ) Function of ( ( ) ( non empty ) set ) , ( ( ) ( non empty ) set ) ) = <:(pr2 ( the carrier of S : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) , the carrier of T : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) )) : ( ( Function-like quasi_total ) ( Relation-like [: the carrier of b1 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) , the carrier of b2 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) :] : ( ( ) ( ) set ) -defined the carrier of b2 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) -valued Function-like quasi_total ) Element of bool [:[: the carrier of b1 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) , the carrier of b2 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) :] : ( ( ) ( ) set ) , the carrier of b2 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) :] : ( ( ) ( ) set ) : ( ( ) ( non empty ) set ) ) ,(pr1 ( the carrier of S : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) , the carrier of T : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) )) : ( ( Function-like quasi_total ) ( Relation-like [: the carrier of b1 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) , the carrier of b2 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) :] : ( ( ) ( ) set ) -defined the carrier of b1 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) -valued Function-like quasi_total ) Element of bool [:[: the carrier of b1 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) , the carrier of b2 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) :] : ( ( ) ( ) set ) , the carrier of b1 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) :] : ( ( ) ( ) set ) : ( ( ) ( non empty ) set ) ) :> : ( ( Relation-like Function-like ) ( Relation-like Function-like one-to-one ) set ) holds
f : ( ( Function-like quasi_total ) ( non empty Relation-like the carrier of [:b1 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) ,b2 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) :] : ( ( strict TopSpace-like ) ( non empty strict TopSpace-like ) TopStruct ) : ( ( ) ( non empty ) set ) -defined the carrier of [:b2 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) ,b1 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) :] : ( ( strict TopSpace-like ) ( non empty strict TopSpace-like ) TopStruct ) : ( ( ) ( non empty ) set ) -valued Function-like total quasi_total ) Function of ( ( ) ( non empty ) set ) , ( ( ) ( non empty ) set ) ) is being_homeomorphism ;

theorem :: YELLOW12:44
for S, T being ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) holds [:S : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) ,T : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) :] : ( ( strict TopSpace-like ) ( non empty strict TopSpace-like ) TopStruct ) ,[:T : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) ,S : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) :] : ( ( strict TopSpace-like ) ( non empty strict TopSpace-like ) TopStruct ) are_homeomorphic ;

theorem :: YELLOW12:45
for S being ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace)
for T being ( ( non empty TopSpace-like Hausdorff ) ( non empty TopSpace-like T_0 T_1 Hausdorff ) TopSpace)
for f, g being ( ( Function-like quasi_total continuous ) ( Relation-like the carrier of b1 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) -defined the carrier of b2 : ( ( non empty TopSpace-like Hausdorff ) ( non empty TopSpace-like T_0 T_1 Hausdorff ) TopSpace) : ( ( ) ( non empty ) set ) -valued Function-like quasi_total continuous ) Function of ( ( ) ( non empty ) set ) , ( ( ) ( non empty ) set ) ) holds
( ( for X being ( ( ) ( ) Subset of ) st X : ( ( ) ( ) Subset of ) = { p : ( ( ) ( ) Point of ( ( ) ( non empty ) set ) ) where p is ( ( ) ( ) Point of ( ( ) ( non empty ) set ) ) : f : ( ( Function-like quasi_total continuous ) ( Relation-like the carrier of b1 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) -defined the carrier of b2 : ( ( non empty TopSpace-like Hausdorff ) ( non empty TopSpace-like T_0 T_1 Hausdorff ) TopSpace) : ( ( ) ( non empty ) set ) -valued Function-like quasi_total continuous ) Function of ( ( ) ( non empty ) set ) , ( ( ) ( non empty ) set ) ) . p : ( ( ) ( ) Point of ( ( ) ( non empty ) set ) ) : ( ( ) ( ) set ) <> g : ( ( Function-like quasi_total continuous ) ( Relation-like the carrier of b1 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) -defined the carrier of b2 : ( ( non empty TopSpace-like Hausdorff ) ( non empty TopSpace-like T_0 T_1 Hausdorff ) TopSpace) : ( ( ) ( non empty ) set ) -valued Function-like quasi_total continuous ) Function of ( ( ) ( non empty ) set ) , ( ( ) ( non empty ) set ) ) . p : ( ( ) ( ) Point of ( ( ) ( non empty ) set ) ) : ( ( ) ( ) set ) } holds
X : ( ( ) ( ) Subset of ) is open ) & ( for X being ( ( ) ( ) Subset of ) st X : ( ( ) ( ) Subset of ) = { p : ( ( ) ( ) Point of ( ( ) ( non empty ) set ) ) where p is ( ( ) ( ) Point of ( ( ) ( non empty ) set ) ) : f : ( ( Function-like quasi_total continuous ) ( Relation-like the carrier of b1 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) -defined the carrier of b2 : ( ( non empty TopSpace-like Hausdorff ) ( non empty TopSpace-like T_0 T_1 Hausdorff ) TopSpace) : ( ( ) ( non empty ) set ) -valued Function-like quasi_total continuous ) Function of ( ( ) ( non empty ) set ) , ( ( ) ( non empty ) set ) ) . p : ( ( ) ( ) Point of ( ( ) ( non empty ) set ) ) : ( ( ) ( ) set ) = g : ( ( Function-like quasi_total continuous ) ( Relation-like the carrier of b1 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) -defined the carrier of b2 : ( ( non empty TopSpace-like Hausdorff ) ( non empty TopSpace-like T_0 T_1 Hausdorff ) TopSpace) : ( ( ) ( non empty ) set ) -valued Function-like quasi_total continuous ) Function of ( ( ) ( non empty ) set ) , ( ( ) ( non empty ) set ) ) . p : ( ( ) ( ) Point of ( ( ) ( non empty ) set ) ) : ( ( ) ( ) set ) } holds
X : ( ( ) ( ) Subset of ) is closed ) ) ;

theorem :: YELLOW12:46
for T being ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) holds
( T : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) is Hausdorff iff for A being ( ( ) ( ) Subset of ) st A : ( ( ) ( ) Subset of ) = id the carrier of T : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) : ( ( total ) ( Relation-like the carrier of b1 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) -defined the carrier of b1 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) -valued total quasi_total ) Element of bool [: the carrier of b1 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) , the carrier of b1 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) :] : ( ( ) ( ) set ) : ( ( ) ( non empty ) set ) ) holds
A : ( ( ) ( ) Subset of ) is closed ) ;

registration
let S, T be ( ( ) ( ) TopStruct ) ;
cluster strict TopSpace-like for ( ( ) ( ) Refinement of S : ( ( ) ( ) TopStruct ) ,T : ( ( ) ( ) TopStruct ) ) ;
end;

registration
let S be ( ( non empty ) ( non empty ) TopStruct ) ;
let T be ( ( ) ( ) TopStruct ) ;
cluster non empty strict TopSpace-like for ( ( ) ( ) Refinement of S : ( ( non empty ) ( non empty ) TopStruct ) ,T : ( ( ) ( ) TopStruct ) ) ;
cluster non empty strict TopSpace-like for ( ( ) ( ) Refinement of T : ( ( ) ( ) TopStruct ) ,S : ( ( non empty ) ( non empty ) TopStruct ) ) ;
end;

theorem :: YELLOW12:47
for R, S, T being ( ( ) ( ) TopStruct ) holds
( R : ( ( ) ( ) TopStruct ) is ( ( ) ( TopSpace-like ) Refinement of S : ( ( ) ( ) TopStruct ) ,T : ( ( ) ( ) TopStruct ) ) iff TopStruct(# the carrier of R : ( ( ) ( ) TopStruct ) : ( ( ) ( ) set ) , the topology of R : ( ( ) ( ) TopStruct ) : ( ( ) ( ) Element of bool (bool the carrier of b1 : ( ( ) ( ) TopStruct ) : ( ( ) ( ) set ) ) : ( ( ) ( non empty ) set ) : ( ( ) ( non empty ) set ) ) #) : ( ( strict ) ( strict ) TopStruct ) is ( ( ) ( TopSpace-like ) Refinement of S : ( ( ) ( ) TopStruct ) ,T : ( ( ) ( ) TopStruct ) ) ) ;

theorem :: YELLOW12:48
for S1, S2, T1, T2 being ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace)
for R being ( ( ) ( non empty TopSpace-like ) Refinement of [:S1 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) ,T1 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) :] : ( ( strict TopSpace-like ) ( non empty strict TopSpace-like ) TopStruct ) ,[:S2 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) ,T2 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) :] : ( ( strict TopSpace-like ) ( non empty strict TopSpace-like ) TopStruct ) ) st the carrier of S1 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) = the carrier of S2 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) & the carrier of T1 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) = the carrier of T2 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) holds
{ ([:U1 : ( ( ) ( ) Subset of ) ,V1 : ( ( ) ( ) Subset of ) :] : ( ( ) ( ) Element of bool the carrier of [:b1 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) ,b3 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) :] : ( ( strict TopSpace-like ) ( non empty strict TopSpace-like ) TopStruct ) : ( ( ) ( non empty ) set ) : ( ( ) ( non empty ) set ) ) /\ [:U2 : ( ( ) ( ) Subset of ) ,V2 : ( ( ) ( ) Subset of ) :] : ( ( ) ( ) Element of bool the carrier of [:b2 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) ,b4 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) :] : ( ( strict TopSpace-like ) ( non empty strict TopSpace-like ) TopStruct ) : ( ( ) ( non empty ) set ) : ( ( ) ( non empty ) set ) ) ) : ( ( ) ( ) Element of bool the carrier of [:b2 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) ,b4 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) :] : ( ( strict TopSpace-like ) ( non empty strict TopSpace-like ) TopStruct ) : ( ( ) ( non empty ) set ) : ( ( ) ( non empty ) set ) ) where U1 is ( ( ) ( ) Subset of ) , U2 is ( ( ) ( ) Subset of ) , V1 is ( ( ) ( ) Subset of ) , V2 is ( ( ) ( ) Subset of ) : ( U1 : ( ( ) ( ) Subset of ) is open & U2 : ( ( ) ( ) Subset of ) is open & V1 : ( ( ) ( ) Subset of ) is open & V2 : ( ( ) ( ) Subset of ) is open ) } is ( ( open quasi_basis ) ( non empty open quasi_basis ) Basis of R : ( ( ) ( non empty TopSpace-like ) Refinement of [:b1 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) ,b3 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) :] : ( ( strict TopSpace-like ) ( non empty strict TopSpace-like ) TopStruct ) ,[:b2 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) ,b4 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) :] : ( ( strict TopSpace-like ) ( non empty strict TopSpace-like ) TopStruct ) ) ) ;

theorem :: YELLOW12:49
for S1, S2, T1, T2 being ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace)
for R being ( ( ) ( non empty TopSpace-like ) Refinement of [:S1 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) ,T1 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) :] : ( ( strict TopSpace-like ) ( non empty strict TopSpace-like ) TopStruct ) ,[:S2 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) ,T2 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) :] : ( ( strict TopSpace-like ) ( non empty strict TopSpace-like ) TopStruct ) )
for R1 being ( ( ) ( non empty TopSpace-like ) Refinement of S1 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) ,S2 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) )
for R2 being ( ( ) ( non empty TopSpace-like ) Refinement of T1 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) ,T2 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) ) st the carrier of S1 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) = the carrier of S2 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) & the carrier of T1 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) = the carrier of T2 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) holds
( the carrier of [:R1 : ( ( ) ( non empty TopSpace-like ) Refinement of b1 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) ,b2 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) ) ,R2 : ( ( ) ( non empty TopSpace-like ) Refinement of b3 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) ,b4 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) ) :] : ( ( strict TopSpace-like ) ( non empty strict TopSpace-like ) TopStruct ) : ( ( ) ( non empty ) set ) = the carrier of R : ( ( ) ( non empty TopSpace-like ) Refinement of [:b1 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) ,b3 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) :] : ( ( strict TopSpace-like ) ( non empty strict TopSpace-like ) TopStruct ) ,[:b2 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) ,b4 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) :] : ( ( strict TopSpace-like ) ( non empty strict TopSpace-like ) TopStruct ) ) : ( ( ) ( non empty ) set ) & the topology of [:R1 : ( ( ) ( non empty TopSpace-like ) Refinement of b1 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) ,b2 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) ) ,R2 : ( ( ) ( non empty TopSpace-like ) Refinement of b3 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) ,b4 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) ) :] : ( ( strict TopSpace-like ) ( non empty strict TopSpace-like ) TopStruct ) : ( ( ) ( non empty ) Element of bool (bool the carrier of [:b6 : ( ( ) ( non empty TopSpace-like ) Refinement of b1 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) ,b2 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) ) ,b7 : ( ( ) ( non empty TopSpace-like ) Refinement of b3 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) ,b4 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) ) :] : ( ( strict TopSpace-like ) ( non empty strict TopSpace-like ) TopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty ) set ) : ( ( ) ( non empty ) set ) ) = the topology of R : ( ( ) ( non empty TopSpace-like ) Refinement of [:b1 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) ,b3 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) :] : ( ( strict TopSpace-like ) ( non empty strict TopSpace-like ) TopStruct ) ,[:b2 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) ,b4 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) :] : ( ( strict TopSpace-like ) ( non empty strict TopSpace-like ) TopStruct ) ) : ( ( ) ( non empty ) Element of bool (bool the carrier of b5 : ( ( ) ( non empty TopSpace-like ) Refinement of [:b1 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) ,b3 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) :] : ( ( strict TopSpace-like ) ( non empty strict TopSpace-like ) TopStruct ) ,[:b2 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) ,b4 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) :] : ( ( strict TopSpace-like ) ( non empty strict TopSpace-like ) TopStruct ) ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty ) set ) : ( ( ) ( non empty ) set ) ) ) ;

theorem :: YELLOW12:50
for S1, S2, T1, T2 being ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace)
for R1 being ( ( ) ( non empty TopSpace-like ) Refinement of S1 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) ,S2 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) )
for R2 being ( ( ) ( non empty TopSpace-like ) Refinement of T1 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) ,T2 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) ) st the carrier of S1 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) = the carrier of S2 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) & the carrier of T1 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) = the carrier of T2 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) holds
[:R1 : ( ( ) ( non empty TopSpace-like ) Refinement of b1 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) ,b2 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) ) ,R2 : ( ( ) ( non empty TopSpace-like ) Refinement of b3 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) ,b4 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) ) :] : ( ( strict TopSpace-like ) ( non empty strict TopSpace-like ) TopStruct ) is ( ( ) ( non empty TopSpace-like ) Refinement of [:S1 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) ,T1 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) :] : ( ( strict TopSpace-like ) ( non empty strict TopSpace-like ) TopStruct ) ,[:S2 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) ,T2 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) :] : ( ( strict TopSpace-like ) ( non empty strict TopSpace-like ) TopStruct ) ) ;