:: YELLOW_8 semantic presentation

begin

theorem :: YELLOW_8:1
for X, A, B being ( ( ) ( ) set ) st A : ( ( ) ( ) set ) in Fin X : ( ( ) ( ) set ) : ( ( preBoolean ) ( non empty cup-closed diff-closed preBoolean ) set ) & B : ( ( ) ( ) set ) c= A : ( ( ) ( ) set ) holds
B : ( ( ) ( ) set ) in Fin X : ( ( ) ( ) set ) : ( ( preBoolean ) ( non empty cup-closed diff-closed preBoolean ) set ) ;

theorem :: YELLOW_8:2
for X being ( ( ) ( ) set )
for F being ( ( ) ( ) Subset-Family of ) st F : ( ( ) ( ) Subset-Family of ) c= Fin X : ( ( ) ( ) set ) : ( ( preBoolean ) ( non empty cup-closed diff-closed preBoolean ) set ) holds
meet F : ( ( ) ( ) Subset-Family of ) : ( ( ) ( ) Element of bool b1 : ( ( ) ( ) set ) : ( ( ) ( non empty cup-closed diff-closed preBoolean ) set ) ) in Fin X : ( ( ) ( ) set ) : ( ( preBoolean ) ( non empty cup-closed diff-closed preBoolean ) set ) ;

begin

theorem :: YELLOW_8:3
for X being ( ( ) ( ) set )
for F being ( ( ) ( ) Subset-Family of ) holds F : ( ( ) ( ) Subset-Family of ) , COMPLEMENT F : ( ( ) ( ) Subset-Family of ) : ( ( ) ( ) Element of bool (bool b1 : ( ( ) ( ) set ) ) : ( ( ) ( non empty cup-closed diff-closed preBoolean ) set ) : ( ( ) ( non empty cup-closed diff-closed preBoolean ) set ) ) are_equipotent ;

theorem :: YELLOW_8:4
for X, Y being ( ( ) ( ) set ) st X : ( ( ) ( ) set ) ,Y : ( ( ) ( ) set ) are_equipotent & X : ( ( ) ( ) set ) is countable holds
Y : ( ( ) ( ) set ) is countable ;

theorem :: YELLOW_8:5
for X being ( ( ) ( ) 1-sorted )
for F being ( ( ) ( ) Subset-Family of )
for P being ( ( ) ( ) Subset of ) holds
( P : ( ( ) ( ) Subset of ) ` : ( ( ) ( ) Element of bool the carrier of b1 : ( ( ) ( ) 1-sorted ) : ( ( ) ( ) set ) : ( ( ) ( non empty cup-closed diff-closed preBoolean ) set ) ) in COMPLEMENT F : ( ( ) ( ) Subset-Family of ) : ( ( ) ( ) Element of bool (bool the carrier of b1 : ( ( ) ( ) 1-sorted ) : ( ( ) ( ) set ) ) : ( ( ) ( non empty cup-closed diff-closed preBoolean ) set ) : ( ( ) ( non empty cup-closed diff-closed preBoolean ) set ) ) iff P : ( ( ) ( ) Subset of ) in F : ( ( ) ( ) Subset-Family of ) ) ;

theorem :: YELLOW_8:6
for X being ( ( ) ( ) 1-sorted )
for F being ( ( ) ( ) Subset-Family of ) holds Intersect (COMPLEMENT F : ( ( ) ( ) Subset-Family of ) ) : ( ( ) ( ) Element of bool (bool the carrier of b1 : ( ( ) ( ) 1-sorted ) : ( ( ) ( ) set ) ) : ( ( ) ( non empty cup-closed diff-closed preBoolean ) set ) : ( ( ) ( non empty cup-closed diff-closed preBoolean ) set ) ) : ( ( ) ( ) Element of bool the carrier of b1 : ( ( ) ( ) 1-sorted ) : ( ( ) ( ) set ) : ( ( ) ( non empty cup-closed diff-closed preBoolean ) set ) ) = (union F : ( ( ) ( ) Subset-Family of ) ) : ( ( ) ( ) Element of bool the carrier of b1 : ( ( ) ( ) 1-sorted ) : ( ( ) ( ) set ) : ( ( ) ( non empty cup-closed diff-closed preBoolean ) set ) ) ` : ( ( ) ( ) Element of bool the carrier of b1 : ( ( ) ( ) 1-sorted ) : ( ( ) ( ) set ) : ( ( ) ( non empty cup-closed diff-closed preBoolean ) set ) ) ;

theorem :: YELLOW_8:7
for X being ( ( ) ( ) 1-sorted )
for F being ( ( ) ( ) Subset-Family of ) holds union (COMPLEMENT F : ( ( ) ( ) Subset-Family of ) ) : ( ( ) ( ) Element of bool (bool the carrier of b1 : ( ( ) ( ) 1-sorted ) : ( ( ) ( ) set ) ) : ( ( ) ( non empty cup-closed diff-closed preBoolean ) set ) : ( ( ) ( non empty cup-closed diff-closed preBoolean ) set ) ) : ( ( ) ( ) Element of bool the carrier of b1 : ( ( ) ( ) 1-sorted ) : ( ( ) ( ) set ) : ( ( ) ( non empty cup-closed diff-closed preBoolean ) set ) ) = (Intersect F : ( ( ) ( ) Subset-Family of ) ) : ( ( ) ( ) Element of bool the carrier of b1 : ( ( ) ( ) 1-sorted ) : ( ( ) ( ) set ) : ( ( ) ( non empty cup-closed diff-closed preBoolean ) set ) ) ` : ( ( ) ( ) Element of bool the carrier of b1 : ( ( ) ( ) 1-sorted ) : ( ( ) ( ) set ) : ( ( ) ( non empty cup-closed diff-closed preBoolean ) set ) ) ;

begin

theorem :: YELLOW_8:8
for T being ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace)
for A, B being ( ( ) ( ) Subset of ) st B : ( ( ) ( ) Subset of ) c= A : ( ( ) ( ) Subset of ) & A : ( ( ) ( ) Subset of ) is closed & ( for C being ( ( ) ( ) Subset of ) st B : ( ( ) ( ) Subset of ) c= C : ( ( ) ( ) Subset of ) & C : ( ( ) ( ) Subset of ) is closed holds
A : ( ( ) ( ) Subset of ) c= C : ( ( ) ( ) Subset of ) ) holds
A : ( ( ) ( ) Subset of ) = Cl B : ( ( ) ( ) Subset of ) : ( ( ) ( closed ) Element of bool the carrier of b1 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) : ( ( ) ( non empty cup-closed diff-closed preBoolean ) set ) ) ;

theorem :: YELLOW_8:9
for T being ( ( ) ( ) TopStruct )
for B being ( ( quasi_basis open ) ( quasi_basis open ) Basis of T : ( ( ) ( ) TopStruct ) )
for V being ( ( ) ( ) Subset of ) st V : ( ( ) ( ) Subset of ) is open holds
V : ( ( ) ( ) Subset of ) = union { G : ( ( ) ( ) Subset of ) where G is ( ( ) ( ) Subset of ) : ( G : ( ( ) ( ) Subset of ) in B : ( ( quasi_basis open ) ( quasi_basis open ) Basis of b1 : ( ( ) ( ) TopStruct ) ) & G : ( ( ) ( ) Subset of ) c= V : ( ( ) ( ) Subset of ) ) } : ( ( ) ( ) set ) ;

theorem :: YELLOW_8:10
for T being ( ( ) ( ) TopStruct )
for B being ( ( quasi_basis open ) ( quasi_basis open ) Basis of T : ( ( ) ( ) TopStruct ) )
for S being ( ( ) ( ) Subset of ) st S : ( ( ) ( ) Subset of ) in B : ( ( quasi_basis open ) ( quasi_basis open ) Basis of b1 : ( ( ) ( ) TopStruct ) ) holds
S : ( ( ) ( ) Subset of ) is open ;

theorem :: YELLOW_8:11
for T being ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace)
for B being ( ( quasi_basis open ) ( quasi_basis open ) Basis of T : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) )
for V being ( ( ) ( ) Subset of ) holds Int V : ( ( ) ( ) Subset of ) : ( ( ) ( open ) Element of bool the carrier of b1 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) : ( ( ) ( non empty cup-closed diff-closed preBoolean ) set ) ) = union { G : ( ( ) ( ) Subset of ) where G is ( ( ) ( ) Subset of ) : ( G : ( ( ) ( ) Subset of ) in B : ( ( quasi_basis open ) ( quasi_basis open ) Basis of b1 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) ) & G : ( ( ) ( ) Subset of ) c= V : ( ( ) ( ) Subset of ) ) } : ( ( ) ( ) set ) ;

begin

definition
let T be ( ( non empty ) ( non empty ) TopStruct ) ;
let x be ( ( ) ( ) Point of ( ( ) ( non empty ) set ) ) ;
let F be ( ( ) ( ) Subset-Family of ) ;
attr F is x -quasi_basis means :: YELLOW_8:def 1
( x : ( ( ) ( ) Element of bool (bool T : ( ( ) ( ) TopStruct ) ) : ( ( ) ( non empty cup-closed diff-closed preBoolean ) set ) : ( ( ) ( non empty cup-closed diff-closed preBoolean ) set ) ) in Intersect F : ( ( ) ( ) Element of T : ( ( ) ( ) TopStruct ) ) : ( ( ) ( ) Element of bool the carrier of T : ( ( ) ( ) TopStruct ) : ( ( ) ( ) set ) : ( ( ) ( non empty cup-closed diff-closed preBoolean ) set ) ) & ( for S being ( ( ) ( ) Subset of ) st S : ( ( ) ( ) Subset of ) is open & x : ( ( ) ( ) Element of bool (bool T : ( ( ) ( ) TopStruct ) ) : ( ( ) ( non empty cup-closed diff-closed preBoolean ) set ) : ( ( ) ( non empty cup-closed diff-closed preBoolean ) set ) ) in S : ( ( ) ( ) Subset of ) holds
ex V being ( ( ) ( ) Subset of ) st
( V : ( ( ) ( ) Subset of ) in F : ( ( ) ( ) Element of T : ( ( ) ( ) TopStruct ) ) & V : ( ( ) ( ) Subset of ) c= S : ( ( ) ( ) Subset of ) ) ) );
end;

registration
let T be ( ( non empty ) ( non empty ) TopStruct ) ;
let x be ( ( ) ( ) Point of ( ( ) ( non empty ) set ) ) ;
cluster open x : ( ( ) ( ) Element of the carrier of T : ( ( non empty ) ( non empty ) TopStruct ) : ( ( ) ( non empty ) set ) ) -quasi_basis for ( ( ) ( ) Element of bool (bool the carrier of T : ( ( non empty ) ( non empty ) TopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty cup-closed diff-closed preBoolean ) set ) : ( ( ) ( non empty cup-closed diff-closed preBoolean ) set ) ) ;
end;

definition
let T be ( ( non empty ) ( non empty ) TopStruct ) ;
let x be ( ( ) ( ) Point of ( ( ) ( non empty ) set ) ) ;
mode Basis of x is ( ( open x : ( ( ) ( ) Element of the carrier of T : ( ( non empty ) ( non empty ) TopStruct ) : ( ( ) ( non empty ) set ) ) -quasi_basis ) ( open x : ( ( ) ( ) Element of the carrier of T : ( ( non empty ) ( non empty ) TopStruct ) : ( ( ) ( non empty ) set ) ) -quasi_basis ) Subset-Family of ) ;
end;

theorem :: YELLOW_8:12
for T being ( ( non empty ) ( non empty ) TopStruct )
for x being ( ( ) ( ) Point of ( ( ) ( non empty ) set ) )
for B being ( ( open b2 : ( ( ) ( ) Point of ( ( ) ( non empty ) set ) ) -quasi_basis ) ( open b2 : ( ( ) ( ) Point of ( ( ) ( non empty ) set ) ) -quasi_basis ) Basis of x : ( ( ) ( ) Point of ( ( ) ( non empty ) set ) ) )
for V being ( ( ) ( ) Subset of ) st V : ( ( ) ( ) Subset of ) in B : ( ( open b2 : ( ( ) ( ) Point of ( ( ) ( non empty ) set ) ) -quasi_basis ) ( open b2 : ( ( ) ( ) Point of ( ( ) ( non empty ) set ) ) -quasi_basis ) Basis of b2 : ( ( ) ( ) Point of ( ( ) ( non empty ) set ) ) ) holds
( V : ( ( ) ( ) Subset of ) is open & x : ( ( ) ( ) Point of ( ( ) ( non empty ) set ) ) in V : ( ( ) ( ) Subset of ) ) ;

theorem :: YELLOW_8:13
for T being ( ( non empty ) ( non empty ) TopStruct )
for x being ( ( ) ( ) Point of ( ( ) ( non empty ) set ) )
for B being ( ( open b2 : ( ( ) ( ) Point of ( ( ) ( non empty ) set ) ) -quasi_basis ) ( open b2 : ( ( ) ( ) Point of ( ( ) ( non empty ) set ) ) -quasi_basis ) Basis of x : ( ( ) ( ) Point of ( ( ) ( non empty ) set ) ) )
for V being ( ( ) ( ) Subset of ) st x : ( ( ) ( ) Point of ( ( ) ( non empty ) set ) ) in V : ( ( ) ( ) Subset of ) & V : ( ( ) ( ) Subset of ) is open holds
ex W being ( ( ) ( ) Subset of ) st
( W : ( ( ) ( ) Subset of ) in B : ( ( open b2 : ( ( ) ( ) Point of ( ( ) ( non empty ) set ) ) -quasi_basis ) ( open b2 : ( ( ) ( ) Point of ( ( ) ( non empty ) set ) ) -quasi_basis ) Basis of b2 : ( ( ) ( ) Point of ( ( ) ( non empty ) set ) ) ) & W : ( ( ) ( ) Subset of ) c= V : ( ( ) ( ) Subset of ) ) ;

theorem :: YELLOW_8:14
for T being ( ( non empty ) ( non empty ) TopStruct )
for P being ( ( ) ( ) Subset-Family of ) st P : ( ( ) ( ) Subset-Family of ) c= the topology of T : ( ( non empty ) ( non empty ) TopStruct ) : ( ( ) ( ) Element of bool (bool the carrier of b1 : ( ( non empty ) ( non empty ) TopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty cup-closed diff-closed preBoolean ) set ) : ( ( ) ( non empty cup-closed diff-closed preBoolean ) set ) ) & ( for x being ( ( ) ( ) Point of ( ( ) ( non empty ) set ) ) ex B being ( ( open b3 : ( ( ) ( ) Point of ( ( ) ( non empty ) set ) ) -quasi_basis ) ( open b3 : ( ( ) ( ) Point of ( ( ) ( non empty ) set ) ) -quasi_basis ) Basis of x : ( ( ) ( ) Point of ( ( ) ( non empty ) set ) ) ) st B : ( ( open b3 : ( ( ) ( ) Point of ( ( ) ( non empty ) set ) ) -quasi_basis ) ( open b3 : ( ( ) ( ) Point of ( ( ) ( non empty ) set ) ) -quasi_basis ) Basis of b3 : ( ( ) ( ) Point of ( ( ) ( non empty ) set ) ) ) c= P : ( ( ) ( ) Subset-Family of ) ) holds
P : ( ( ) ( ) Subset-Family of ) is ( ( quasi_basis open ) ( quasi_basis open ) Basis of T : ( ( non empty ) ( non empty ) TopStruct ) ) ;

definition
let T be ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) ;
attr T is Baire means :: YELLOW_8:def 2
for F being ( ( ) ( ) Subset-Family of ) st F : ( ( ) ( ) Subset-Family of ) is countable & ( for S being ( ( ) ( ) Subset of ) st S : ( ( ) ( ) Subset of ) in F : ( ( ) ( ) Subset-Family of ) holds
S : ( ( ) ( ) Subset of ) is everywhere_dense ) holds
ex I being ( ( ) ( ) Subset of ) st
( I : ( ( ) ( ) Subset of ) = Intersect F : ( ( ) ( ) Subset-Family of ) : ( ( ) ( ) Element of bool the carrier of T : ( ( non empty ) ( non empty ) TopStruct ) : ( ( ) ( non empty ) set ) : ( ( ) ( non empty cup-closed diff-closed preBoolean ) set ) ) & I : ( ( ) ( ) Subset of ) is dense );
end;

theorem :: YELLOW_8:15
for T being ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) holds
( T : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) is Baire iff for F being ( ( ) ( ) Subset-Family of ) st F : ( ( ) ( ) Subset-Family of ) is countable & ( for S being ( ( ) ( ) Subset of ) st S : ( ( ) ( ) Subset of ) in F : ( ( ) ( ) Subset-Family of ) holds
S : ( ( ) ( ) Subset of ) is nowhere_dense ) holds
union F : ( ( ) ( ) Subset-Family of ) : ( ( ) ( ) Element of bool the carrier of b1 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) : ( ( ) ( non empty cup-closed diff-closed preBoolean ) set ) ) is boundary ) ;

begin

definition
let T be ( ( ) ( ) TopStruct ) ;
let S be ( ( ) ( ) Subset of ) ;
attr S is irreducible means :: YELLOW_8:def 3
( not S : ( ( ) ( ) Element of the carrier of T : ( ( non empty ) ( non empty ) TopStruct ) : ( ( ) ( non empty ) set ) ) is empty & S : ( ( ) ( ) Element of the carrier of T : ( ( non empty ) ( non empty ) TopStruct ) : ( ( ) ( non empty ) set ) ) is closed & ( for S1, S2 being ( ( ) ( ) Subset of ) st S1 : ( ( ) ( ) Subset of ) is closed & S2 : ( ( ) ( ) Subset of ) is closed & S : ( ( ) ( ) Element of the carrier of T : ( ( non empty ) ( non empty ) TopStruct ) : ( ( ) ( non empty ) set ) ) = S1 : ( ( ) ( ) Subset of ) \/ S2 : ( ( ) ( ) Subset of ) : ( ( ) ( ) Element of bool the carrier of T : ( ( non empty ) ( non empty ) TopStruct ) : ( ( ) ( non empty ) set ) : ( ( ) ( non empty cup-closed diff-closed preBoolean ) set ) ) & not S1 : ( ( ) ( ) Subset of ) = S : ( ( ) ( ) Element of the carrier of T : ( ( non empty ) ( non empty ) TopStruct ) : ( ( ) ( non empty ) set ) ) holds
S2 : ( ( ) ( ) Subset of ) = S : ( ( ) ( ) Element of the carrier of T : ( ( non empty ) ( non empty ) TopStruct ) : ( ( ) ( non empty ) set ) ) ) );
end;

registration
let T be ( ( ) ( ) TopStruct ) ;
cluster irreducible -> non empty for ( ( ) ( ) Element of bool the carrier of T : ( ( non empty ) ( non empty ) TopStruct ) : ( ( ) ( non empty ) set ) : ( ( ) ( non empty cup-closed diff-closed preBoolean ) set ) ) ;
end;

definition
let T be ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) ;
let S be ( ( ) ( ) Subset of ) ;
let p be ( ( ) ( ) Point of ( ( ) ( non empty ) set ) ) ;
pred p is_dense_point_of S means :: YELLOW_8:def 4
( p : ( ( ) ( ) Element of T : ( ( non empty ) ( non empty ) TopStruct ) ) in S : ( ( ) ( ) Element of the carrier of T : ( ( non empty ) ( non empty ) TopStruct ) : ( ( ) ( non empty ) set ) ) & S : ( ( ) ( ) Element of the carrier of T : ( ( non empty ) ( non empty ) TopStruct ) : ( ( ) ( non empty ) set ) ) c= Cl {p : ( ( ) ( ) Element of T : ( ( non empty ) ( non empty ) TopStruct ) ) } : ( ( ) ( non empty finite ) Element of bool the carrier of T : ( ( non empty ) ( non empty ) TopStruct ) : ( ( ) ( non empty ) set ) : ( ( ) ( non empty cup-closed diff-closed preBoolean ) set ) ) : ( ( ) ( ) Element of bool the carrier of T : ( ( non empty ) ( non empty ) TopStruct ) : ( ( ) ( non empty ) set ) : ( ( ) ( non empty cup-closed diff-closed preBoolean ) set ) ) );
end;

theorem :: YELLOW_8:16
for T being ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace)
for S being ( ( ) ( ) Subset of ) st S : ( ( ) ( ) Subset of ) is closed holds
for p being ( ( ) ( ) Point of ( ( ) ( non empty ) set ) ) st p : ( ( ) ( ) Point of ( ( ) ( non empty ) set ) ) is_dense_point_of S : ( ( ) ( ) Subset of ) holds
S : ( ( ) ( ) Subset of ) = Cl {p : ( ( ) ( ) Point of ( ( ) ( non empty ) set ) ) } : ( ( ) ( non empty finite ) Element of bool the carrier of b1 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) : ( ( ) ( non empty cup-closed diff-closed preBoolean ) set ) ) : ( ( ) ( closed ) Element of bool the carrier of b1 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) : ( ( ) ( non empty cup-closed diff-closed preBoolean ) set ) ) ;

theorem :: YELLOW_8:17
for T being ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace)
for p being ( ( ) ( ) Point of ( ( ) ( non empty ) set ) ) holds Cl {p : ( ( ) ( ) Point of ( ( ) ( non empty ) set ) ) } : ( ( ) ( non empty finite ) Element of bool the carrier of b1 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) : ( ( ) ( non empty cup-closed diff-closed preBoolean ) set ) ) : ( ( ) ( closed ) Element of bool the carrier of b1 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) : ( ( ) ( non empty cup-closed diff-closed preBoolean ) set ) ) is irreducible ;

registration
let T be ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) ;
cluster irreducible for ( ( ) ( ) Element of bool the carrier of T : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopStruct ) : ( ( ) ( non empty ) set ) : ( ( ) ( non empty cup-closed diff-closed preBoolean ) set ) ) ;
end;

definition
let T be ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) ;
attr T is sober means :: YELLOW_8:def 5
for S being ( ( irreducible ) ( non empty irreducible ) Subset of ) ex p being ( ( ) ( ) Point of ( ( ) ( non empty ) set ) ) st
( p : ( ( ) ( ) Point of ( ( ) ( non empty ) set ) ) is_dense_point_of S : ( ( irreducible ) ( non empty irreducible ) Subset of ) & ( for q being ( ( ) ( ) Point of ( ( ) ( non empty ) set ) ) st q : ( ( ) ( ) Point of ( ( ) ( non empty ) set ) ) is_dense_point_of S : ( ( irreducible ) ( non empty irreducible ) Subset of ) holds
p : ( ( ) ( ) Point of ( ( ) ( non empty ) set ) ) = q : ( ( ) ( ) Point of ( ( ) ( non empty ) set ) ) ) );
end;

theorem :: YELLOW_8:18
for T being ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace)
for p being ( ( ) ( ) Point of ( ( ) ( non empty ) set ) ) holds p : ( ( ) ( ) Point of ( ( ) ( non empty ) set ) ) is_dense_point_of Cl {p : ( ( ) ( ) Point of ( ( ) ( non empty ) set ) ) } : ( ( ) ( non empty finite ) Element of bool the carrier of b1 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) : ( ( ) ( non empty cup-closed diff-closed preBoolean ) set ) ) : ( ( ) ( closed ) Element of bool the carrier of b1 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) : ( ( ) ( non empty cup-closed diff-closed preBoolean ) set ) ) ;

theorem :: YELLOW_8:19
for T being ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace)
for p being ( ( ) ( ) Point of ( ( ) ( non empty ) set ) ) holds p : ( ( ) ( ) Point of ( ( ) ( non empty ) set ) ) is_dense_point_of {p : ( ( ) ( ) Point of ( ( ) ( non empty ) set ) ) } : ( ( ) ( non empty finite ) Element of bool the carrier of b1 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) : ( ( ) ( non empty cup-closed diff-closed preBoolean ) set ) ) ;

theorem :: YELLOW_8:20
for T being ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace)
for G, F being ( ( ) ( ) Subset of ) st G : ( ( ) ( ) Subset of ) is open & F : ( ( ) ( ) Subset of ) is closed holds
F : ( ( ) ( ) Subset of ) \ G : ( ( ) ( ) Subset of ) : ( ( ) ( ) Element of bool the carrier of b1 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) : ( ( ) ( non empty cup-closed diff-closed preBoolean ) set ) ) is closed ;

theorem :: YELLOW_8:21
for T being ( ( non empty TopSpace-like Hausdorff ) ( non empty TopSpace-like T_0 T_1 Hausdorff ) TopSpace)
for S being ( ( irreducible ) ( non empty irreducible ) Subset of ) holds S : ( ( irreducible ) ( non empty irreducible ) Subset of ) is trivial ;

registration
let T be ( ( non empty TopSpace-like Hausdorff ) ( non empty TopSpace-like T_0 T_1 Hausdorff ) TopSpace) ;
cluster irreducible -> trivial for ( ( ) ( ) Element of bool the carrier of T : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopStruct ) : ( ( ) ( non empty ) set ) : ( ( ) ( non empty cup-closed diff-closed preBoolean ) set ) ) ;
end;

theorem :: YELLOW_8:22
for T being ( ( non empty TopSpace-like Hausdorff ) ( non empty TopSpace-like T_0 T_1 Hausdorff ) TopSpace) holds T : ( ( non empty TopSpace-like Hausdorff ) ( non empty TopSpace-like T_0 T_1 Hausdorff ) TopSpace) is sober ;

registration
cluster non empty TopSpace-like Hausdorff -> non empty TopSpace-like sober for ( ( ) ( ) TopStruct ) ;
end;

registration
cluster non empty TopSpace-like sober for ( ( ) ( ) TopStruct ) ;
end;

theorem :: YELLOW_8:23
for T being ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) holds
( T : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) is T_0 iff for p, q being ( ( ) ( ) Point of ( ( ) ( non empty ) set ) ) st Cl {p : ( ( ) ( ) Point of ( ( ) ( non empty ) set ) ) } : ( ( ) ( non empty finite ) Element of bool the carrier of b1 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) : ( ( ) ( non empty cup-closed diff-closed preBoolean ) set ) ) : ( ( ) ( closed ) Element of bool the carrier of b1 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) : ( ( ) ( non empty cup-closed diff-closed preBoolean ) set ) ) = Cl {q : ( ( ) ( ) Point of ( ( ) ( non empty ) set ) ) } : ( ( ) ( non empty finite ) Element of bool the carrier of b1 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) : ( ( ) ( non empty cup-closed diff-closed preBoolean ) set ) ) : ( ( ) ( closed ) Element of bool the carrier of b1 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) : ( ( ) ( non empty cup-closed diff-closed preBoolean ) set ) ) holds
p : ( ( ) ( ) Point of ( ( ) ( non empty ) set ) ) = q : ( ( ) ( ) Point of ( ( ) ( non empty ) set ) ) ) ;

theorem :: YELLOW_8:24
for T being ( ( non empty TopSpace-like sober ) ( non empty TopSpace-like sober ) TopSpace) holds T : ( ( non empty TopSpace-like sober ) ( non empty TopSpace-like sober ) TopSpace) is T_0 ;

registration
cluster non empty TopSpace-like sober -> non empty TopSpace-like T_0 for ( ( ) ( ) TopStruct ) ;
end;

definition
let X be ( ( ) ( ) set ) ;
func CofinTop X -> ( ( strict ) ( strict ) TopStruct ) means :: YELLOW_8:def 6
( the carrier of it : ( ( ) ( ) Element of the carrier of X : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( ) set ) = X : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopStruct ) & COMPLEMENT the topology of it : ( ( ) ( ) Element of the carrier of X : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( ) Element of bool (bool the carrier of it : ( ( ) ( ) Element of the carrier of X : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( ) set ) ) : ( ( ) ( non empty cup-closed diff-closed preBoolean ) set ) : ( ( ) ( non empty cup-closed diff-closed preBoolean ) set ) ) : ( ( ) ( ) Element of bool (bool the carrier of it : ( ( ) ( ) Element of the carrier of X : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopStruct ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( ) set ) ) : ( ( ) ( non empty cup-closed diff-closed preBoolean ) set ) : ( ( ) ( non empty cup-closed diff-closed preBoolean ) set ) ) = {X : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopStruct ) } : ( ( ) ( non empty finite ) set ) \/ (Fin X : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopStruct ) ) : ( ( preBoolean ) ( non empty cup-closed diff-closed preBoolean ) set ) : ( ( ) ( non empty ) set ) );
end;

registration
let X be ( ( non empty ) ( non empty ) set ) ;
cluster CofinTop X : ( ( non empty ) ( non empty ) set ) : ( ( strict ) ( strict ) TopStruct ) -> non empty strict ;
end;

registration
let X be ( ( ) ( ) set ) ;
cluster CofinTop X : ( ( ) ( ) set ) : ( ( strict ) ( strict ) TopStruct ) -> strict TopSpace-like ;
end;

theorem :: YELLOW_8:25
for X being ( ( non empty ) ( non empty ) set )
for P being ( ( ) ( ) Subset of ) holds
( P : ( ( ) ( ) Subset of ) is closed iff ( P : ( ( ) ( ) Subset of ) = X : ( ( non empty ) ( non empty ) set ) or P : ( ( ) ( ) Subset of ) is finite ) ) ;

theorem :: YELLOW_8:26
for T being ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) st T : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) is T_1 holds
for p being ( ( ) ( ) Point of ( ( ) ( non empty ) set ) ) holds Cl {p : ( ( ) ( ) Point of ( ( ) ( non empty ) set ) ) } : ( ( ) ( non empty finite ) Element of bool the carrier of b1 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) : ( ( ) ( non empty cup-closed diff-closed preBoolean ) set ) ) : ( ( ) ( closed ) Element of bool the carrier of b1 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) : ( ( ) ( non empty cup-closed diff-closed preBoolean ) set ) ) = {p : ( ( ) ( ) Point of ( ( ) ( non empty ) set ) ) } : ( ( ) ( non empty finite ) Element of bool the carrier of b1 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) : ( ( ) ( non empty cup-closed diff-closed preBoolean ) set ) ) ;

registration
let X be ( ( non empty ) ( non empty ) set ) ;
cluster CofinTop X : ( ( non empty ) ( non empty ) set ) : ( ( strict ) ( non empty strict TopSpace-like ) TopStruct ) -> strict T_1 ;
end;

registration
let X be ( ( infinite ) ( non empty non trivial non empty-membered infinite ) set ) ;
cluster CofinTop X : ( ( infinite ) ( non empty non trivial non empty-membered infinite ) set ) : ( ( strict ) ( non empty strict TopSpace-like T_0 T_1 ) TopStruct ) -> strict non sober ;
end;

registration
cluster non empty TopSpace-like T_1 non sober for ( ( ) ( ) TopStruct ) ;
end;

begin

theorem :: YELLOW_8:27
for T being ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) holds
( T : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) is regular iff for p being ( ( ) ( ) Point of ( ( ) ( non empty ) set ) )
for P being ( ( ) ( ) Subset of ) st p : ( ( ) ( ) Point of ( ( ) ( non empty ) set ) ) in Int P : ( ( ) ( ) Subset of ) : ( ( ) ( open ) Element of bool the carrier of b1 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) : ( ( ) ( non empty cup-closed diff-closed preBoolean ) set ) ) holds
ex Q being ( ( ) ( ) Subset of ) st
( Q : ( ( ) ( ) Subset of ) is closed & Q : ( ( ) ( ) Subset of ) c= P : ( ( ) ( ) Subset of ) & p : ( ( ) ( ) Point of ( ( ) ( non empty ) set ) ) in Int Q : ( ( ) ( ) Subset of ) : ( ( ) ( open ) Element of bool the carrier of b1 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) : ( ( ) ( non empty cup-closed diff-closed preBoolean ) set ) ) ) ) ;

theorem :: YELLOW_8:28
for T being ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) st T : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) is regular holds
( T : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) is locally-compact iff for x being ( ( ) ( ) Point of ( ( ) ( non empty ) set ) ) ex Y being ( ( ) ( ) Subset of ) st
( x : ( ( ) ( ) Point of ( ( ) ( non empty ) set ) ) in Int Y : ( ( ) ( ) Subset of ) : ( ( ) ( open ) Element of bool the carrier of b1 : ( ( non empty TopSpace-like ) ( non empty TopSpace-like ) TopSpace) : ( ( ) ( non empty ) set ) : ( ( ) ( non empty cup-closed diff-closed preBoolean ) set ) ) & Y : ( ( ) ( ) Subset of ) is compact ) ) ;