environ 
vocabularies HIDDEN, GROUP_1, SUBSET_1, GROUP_2, NAT_1, INT_1, RELAT_1, BINOP_1, ALGSTR_0, FUNCT_1, STRUCT_0, TARSKI, ZFMISC_1, XBOOLE_0, FINSET_1, CARD_1, NEWTON, ARYTM_3, XXREAL_0, COMPLEX1, RLSUB_1, CQC_SIM1, SETFAM_1, PRE_TOPC, GROUP_3;
notations HIDDEN, TARSKI, XBOOLE_0, ZFMISC_1, SUBSET_1, ORDINAL1, NAT_1, BINOP_1, RELAT_1, FUNCT_1, FUNCT_2, FINSET_1, CARD_1, STRUCT_0, ALGSTR_0, GROUP_1, GROUP_2, DOMAIN_1, XXREAL_0, INT_1, INT_2;
definitions XBOOLE_0, BINOP_1, FUNCT_1, GROUP_2, TARSKI, GROUP_1;
theorems ABSVALUE, CARD_1, CARD_2, ENUMSET1, FINSET_1, FUNCT_1, FUNCT_2, GROUP_1, GROUP_2, TARSKI, WELLORD2, ZFMISC_1, RELAT_1, XBOOLE_0, XBOOLE_1, STRUCT_0, XTUPLE_0;
schemes FUNCT_1, FUNCT_2, NAT_1, SUBSET_1, XBOOLE_0, CLASSES1, XFAMILY;
registrations XBOOLE_0, SUBSET_1, FUNCT_1, RELSET_1, FINSET_1, XREAL_0, INT_1, STRUCT_0, GROUP_1, GROUP_2, ORDINAL1;
constructors HIDDEN, SETFAM_1, WELLORD2, BINOP_1, XXREAL_0, NAT_1, INT_2, REALSET1, REAL_1, GROUP_2, RELSET_1, BINOP_2, NUMBERS;
requirements HIDDEN, NUMERALS, SUBSET, BOOLE;
equalities BINOP_1, GROUP_2, TARSKI, ALGSTR_0, STRUCT_0;
expansions XBOOLE_0, BINOP_1, GROUP_1, STRUCT_0;
theorem Th1: 
 for 
G being   
Group  for 
a, 
b being   
Element of 
G holds 
 ( 
(a * b) * (b ") = a & 
(a * (b ")) * b = a & 
((b ") * b) * a = a & 
(b * (b ")) * a = a & 
a * (b * (b ")) = a & 
a * ((b ") * b) = a & 
(b ") * (b * a) = a & 
b * ((b ") * a) = a )
 
Lm1: 
 for A being   commutative  Group
  for a, b being   Element of A holds  a * b = b * a
 
;
Lm4: 
 for n being   Nat
  for G being   Group
  for a, b being   Element of G holds  (a |^ n) |^ b = (a |^ b) |^ n
 
Lm5: 
 for G being   Group
  for N2 being   normal   Subgroup of G
  for N1 being   strict   normal   Subgroup of G holds  (carr N1) * (carr N2) c= (carr N2) * (carr N1)