environ
vocabularies HIDDEN, FUNCT_1, RELAT_1, XBOOLE_0, TARSKI, SUBSET_1, ZFMISC_1, RELAT_2, PARTFUN1;
notations HIDDEN, TARSKI, XBOOLE_0, ZFMISC_1, SUBSET_1, RELAT_1, RELAT_2, RELSET_1, FUNCT_1;
definitions TARSKI, FUNCT_1, XBOOLE_0, RELAT_1, RELAT_2;
theorems TARSKI, FUNCT_1, GRFUNC_1, ZFMISC_1, RELAT_1, RELSET_1, XBOOLE_0, XBOOLE_1, XTUPLE_0;
schemes FUNCT_1, XBOOLE_0;
registrations XBOOLE_0, SUBSET_1, RELAT_1, FUNCT_1, RELSET_1;
constructors HIDDEN, FUNCT_1, RELAT_2, RELSET_1;
requirements HIDDEN, SUBSET, BOOLE;
equalities TARSKI, RELAT_1;
expansions TARSKI, FUNCT_1, XBOOLE_0, RELAT_2;
scheme
PartFuncEx{
F1()
-> set ,
F2()
-> set ,
P1[
object ,
object ] } :
provided
A1:
for
x,
y being
object st
x in F1() &
P1[
x,
y] holds
y in F2()
and A2:
for
x,
y1,
y2 being
object st
x in F1() &
P1[
x,
y1] &
P1[
x,
y2] holds
y1 = y2
Lm2:
for X being set
for R being Relation of X st R = id X holds
R is total
;
Lm3:
for X being set
for R being Relation st R = id X holds
( R is reflexive & R is symmetric & R is antisymmetric & R is transitive )
Lm4:
for X being set holds id X is Relation of X