Lm1: 
 0  =  - 0
 
;
definition
let C be   non  
empty   set ;
let f1, 
f2 be  
C -defined   ExtREAL  -valued  Function;
deffunc H1(   
Element of 
C) 
->    Element of  
ExtREAL  = 
(f1 . $1) + (f2 . $1);
existence 
 ex b1 being   PartFunc of C,ExtREAL st 
(  dom b1 = ((dom f1) /\ (dom f2)) \ (((f1 " {-infty}) /\ (f2 " {+infty})) \/ ((f1 " {+infty}) /\ (f2 " {-infty}))) & (  for c being    Element of C  st c in  dom b1 holds 
b1 . c = (f1 . c) + (f2 . c) ) )
 
uniqueness 
 for b1, b2 being   PartFunc of C,ExtREAL  st  dom b1 = ((dom f1) /\ (dom f2)) \ (((f1 " {-infty}) /\ (f2 " {+infty})) \/ ((f1 " {+infty}) /\ (f2 " {-infty}))) & (  for c being    Element of C  st c in  dom b1 holds 
b1 . c = (f1 . c) + (f2 . c) ) &  dom b2 = ((dom f1) /\ (dom f2)) \ (((f1 " {-infty}) /\ (f2 " {+infty})) \/ ((f1 " {+infty}) /\ (f2 " {-infty}))) & (  for c being    Element of C  st c in  dom b2 holds 
b2 . c = (f1 . c) + (f2 . c) ) holds 
b1 = b2
 
commutativity 
 for b1 being   PartFunc of C,ExtREAL
  for f1, f2 being  C -defined   ExtREAL  -valued  Function  st  dom b1 = ((dom f1) /\ (dom f2)) \ (((f1 " {-infty}) /\ (f2 " {+infty})) \/ ((f1 " {+infty}) /\ (f2 " {-infty}))) & (  for c being    Element of C  st c in  dom b1 holds 
b1 . c = (f1 . c) + (f2 . c) ) holds 
(  dom b1 = ((dom f2) /\ (dom f1)) \ (((f2 " {-infty}) /\ (f1 " {+infty})) \/ ((f2 " {+infty}) /\ (f1 " {-infty}))) & (  for c being    Element of C  st c in  dom b1 holds 
b1 . c = (f2 . c) + (f1 . c) ) )
 ;
deffunc H2(   
Element of 
C) 
->    Element of  
ExtREAL  = 
(f1 . $1) - (f2 . $1);
existence 
 ex b1 being   PartFunc of C,ExtREAL st 
(  dom b1 = ((dom f1) /\ (dom f2)) \ (((f1 " {+infty}) /\ (f2 " {+infty})) \/ ((f1 " {-infty}) /\ (f2 " {-infty}))) & (  for c being    Element of C  st c in  dom b1 holds 
b1 . c = (f1 . c) - (f2 . c) ) )
 
uniqueness 
 for b1, b2 being   PartFunc of C,ExtREAL  st  dom b1 = ((dom f1) /\ (dom f2)) \ (((f1 " {+infty}) /\ (f2 " {+infty})) \/ ((f1 " {-infty}) /\ (f2 " {-infty}))) & (  for c being    Element of C  st c in  dom b1 holds 
b1 . c = (f1 . c) - (f2 . c) ) &  dom b2 = ((dom f1) /\ (dom f2)) \ (((f1 " {+infty}) /\ (f2 " {+infty})) \/ ((f1 " {-infty}) /\ (f2 " {-infty}))) & (  for c being    Element of C  st c in  dom b2 holds 
b2 . c = (f1 . c) - (f2 . c) ) holds 
b1 = b2
 
deffunc H3(   
Element of 
C) 
->    Element of  
ExtREAL  = 
(f1 . $1) * (f2 . $1);
existence 
 ex b1 being   PartFunc of C,ExtREAL st 
(  dom b1 = (dom f1) /\ (dom f2) & (  for c being    Element of C  st c in  dom b1 holds 
b1 . c = (f1 . c) * (f2 . c) ) )
 
uniqueness 
 for b1, b2 being   PartFunc of C,ExtREAL  st  dom b1 = (dom f1) /\ (dom f2) & (  for c being    Element of C  st c in  dom b1 holds 
b1 . c = (f1 . c) * (f2 . c) ) &  dom b2 = (dom f1) /\ (dom f2) & (  for c being    Element of C  st c in  dom b2 holds 
b2 . c = (f1 . c) * (f2 . c) ) holds 
b1 = b2
 
commutativity 
 for b1 being   PartFunc of C,ExtREAL
  for f1, f2 being  C -defined   ExtREAL  -valued  Function  st  dom b1 = (dom f1) /\ (dom f2) & (  for c being    Element of C  st c in  dom b1 holds 
b1 . c = (f1 . c) * (f2 . c) ) holds 
(  dom b1 = (dom f2) /\ (dom f1) & (  for c being    Element of C  st c in  dom b1 holds 
b1 . c = (f2 . c) * (f1 . c) ) )
 ;
 
end;
 
canceled;
definition
let X be    
set ;
let f be   
PartFunc of 
X,
ExtREAL;
let a be   
ExtReal;
less_domredefine func  less_dom (
f,
a)
 ->   Subset of 
X;
coherence 
 less_dom (f,a) is   Subset of X
 
less_eq_domredefine func  less_eq_dom (
f,
a)
 ->   Subset of 
X;
coherence 
 less_eq_dom (f,a) is   Subset of X
 
great_domredefine func  great_dom (
f,
a)
 ->   Subset of 
X;
coherence 
 great_dom (f,a) is   Subset of X
 
great_eq_domredefine func  great_eq_dom (
f,
a)
 ->   Subset of 
X;
coherence 
 great_eq_dom (f,a) is   Subset of X
 
eq_domredefine func  eq_dom (
f,
a)
 ->   Subset of 
X;
coherence 
 eq_dom (f,a) is   Subset of X
 
 
end;