Lm1:
2 |^ 0 = 1
by NEWTON:4;
Lm2:
2 |^ 1 = 2
;
Lm3:
2 |^ 2 = 2 * 2
by NEWTON:81;
Lm4:
2 |^ 3 = (2 * 2) * 2
by POLYEQ_5:2;
Lm5:
2 |^ 4 = ((2 * 2) * 2) * 2
by POLYEQ_5:3;
Lm6:
2 |^ 5 = (((2 * 2) * 2) * 2) * 2
by NUMBER02:1;
Lm7:
2 |^ 7 = (((((2 * 2) * 2) * 2) * 2) * 2) * 2
by NUMBER02:3;
Lm8:
3 |^ 2 = 3 * 3
by NEWTON:81;
Lm9:
3 |^ 3 = (3 * 3) * 3
by POLYEQ_5:2;
Lm10:
3 |^ 4 = ((3 * 3) * 3) * 3
by POLYEQ_5:3;
Lm11:
11 |^ 2 = 11 * 11
by NEWTON:81;
Lm12:
2 |^ 3 = (2 * 2) * 2
by POLYEQ_5:2;
Lm13:
3,3 are_congruent_mod 4
by INT_1:11;
Lm14:
3,3 are_congruent_mod 8
by INT_1:11;
theorem Th1:
for
x,
y being
Nat st
x < y &
y < x + 2 holds
y = x + 1
theorem Th9:
for
n being
Nat holds
( not
n divides 9 or
n = 1 or
n = 3 or
n = 9 )
theorem Th10:
for
n being
Nat holds
( not
n divides 25 or
n = 1 or
n = 5 or
n = 25 )
theorem Th11:
for
n being
Nat holds
( not
n divides 27 or
n = 1 or
n = 3 or
n = 9 or
n = 27 )
set B = EmptyBag SetPrimes;
Lm15:
for a1, b1, c1, a2, b2, c2 being Nat st a1 <= a2 & b1 <= b2 & c1 <= c2 holds
(a1 * b1) * c1 <= (a2 * b2) * c2
Lm16:
not 6 satisfies_Sierpinski_problem_86
Lm17:
not 7 satisfies_Sierpinski_problem_86
Lm18:
not 8 satisfies_Sierpinski_problem_86
Lm19:
not 9 satisfies_Sierpinski_problem_86
Lm20:
not 10 satisfies_Sierpinski_problem_86
Lm21:
not 11 satisfies_Sierpinski_problem_86
Lm22:
not 12 satisfies_Sierpinski_problem_86
Lm23:
not 13 satisfies_Sierpinski_problem_86
Lm24:
not 15 satisfies_Sierpinski_problem_86
Lm25:
not 17 satisfies_Sierpinski_problem_86
Lm26:
not 18 satisfies_Sierpinski_problem_86
Lm27:
not 19 satisfies_Sierpinski_problem_86
Lm28:
not 21 satisfies_Sierpinski_problem_86
Lm29:
not 23 satisfies_Sierpinski_problem_86
Lm30:
not 24 satisfies_Sierpinski_problem_86
Lm31:
not 25 satisfies_Sierpinski_problem_86
Lm32:
not 26 satisfies_Sierpinski_problem_86
Lm33:
not 27 satisfies_Sierpinski_problem_86
Lm34:
not 28 satisfies_Sierpinski_problem_86
Lm35:
not 29 satisfies_Sierpinski_problem_86
Lm36:
not 30 satisfies_Sierpinski_problem_86
Lm37:
not 31 satisfies_Sierpinski_problem_86
theorem Th67:
for
m,
n being
Nat st
n <> 0 &
(2 |^ m) - (3 |^ n) = 1 holds
(
m = 2 &
n = 1 )
theorem Th70:
for
m,
n being
Nat st
(2 |^ m) - (2 |^ n) = 2 holds
(
m = 2 &
n = 1 )
theorem Th71:
for
m,
n being
Nat st
n is
odd &
(3 |^ n) - (2 |^ m) = 1 holds
(
n = m &
m = 1 )
theorem Th72:
for
m,
n being
Nat st
n is
even &
(3 |^ n) - (2 |^ m) = 1 holds
(
n = 2 &
m = 3 )
theorem Th73:
for
m,
n being
Nat holds
( not
(3 |^ n) - (2 |^ m) = 1 or (
n = m &
m = 1 ) or (
n = 2 &
m = 3 ) )
reconsider P2 = 2 as Prime by XPRIMES1:2;
reconsider P3 = 3 as Prime by XPRIMES1:3;
reconsider P5 = 5 as Prime by XPRIMES1:5;
Lm38:
not 37 satisfies_Sierpinski_problem_105
Lm39:
not 41 satisfies_Sierpinski_problem_105
Lm40:
not 43 satisfies_Sierpinski_problem_105
Lm41:
not 47 satisfies_Sierpinski_problem_105
Lm42:
not 53 satisfies_Sierpinski_problem_105
Lm43:
not 59 satisfies_Sierpinski_problem_105
Lm44:
not 61 satisfies_Sierpinski_problem_105
Lm45:
not 67 satisfies_Sierpinski_problem_105
Lm46:
not 71 satisfies_Sierpinski_problem_105
Lm47:
not 73 satisfies_Sierpinski_problem_105
Lm48:
not 79 satisfies_Sierpinski_problem_105
Lm49:
not 83 satisfies_Sierpinski_problem_105
Lm50:
not 89 satisfies_Sierpinski_problem_105
Lm51:
not 97 satisfies_Sierpinski_problem_105
Lm52:
not 101 satisfies_Sierpinski_problem_105
Lm53:
not 103 satisfies_Sierpinski_problem_105
Lm54:
not 107 satisfies_Sierpinski_problem_105
Lm55:
not 109 satisfies_Sierpinski_problem_105
Lm56:
not 113 satisfies_Sierpinski_problem_105
definition
let a,
b,
x1,
x2,
x3,
y1,
y2,
y3 be
Complex;
func recSeqCart (
a,
b,
x1,
x2,
x3,
y1,
y2,
y3)
-> [:COMPLEX,COMPLEX:] -valued ManySortedSet of
NAT means :
Def10:
(
it . 0 = [a,b] & ( for
n being
Nat holds
it . (n + 1) = [(((x1 * ((it . n) `1)) + (x2 * ((it . n) `2))) + x3),(((y1 * ((it . n) `1)) + (y2 * ((it . n) `2))) + y3)] ) );
existence
ex b1 being [:COMPLEX,COMPLEX:] -valued ManySortedSet of NAT st
( b1 . 0 = [a,b] & ( for n being Nat holds b1 . (n + 1) = [(((x1 * ((b1 . n) `1)) + (x2 * ((b1 . n) `2))) + x3),(((y1 * ((b1 . n) `1)) + (y2 * ((b1 . n) `2))) + y3)] ) )
uniqueness
for b1, b2 being [:COMPLEX,COMPLEX:] -valued ManySortedSet of NAT st b1 . 0 = [a,b] & ( for n being Nat holds b1 . (n + 1) = [(((x1 * ((b1 . n) `1)) + (x2 * ((b1 . n) `2))) + x3),(((y1 * ((b1 . n) `1)) + (y2 * ((b1 . n) `2))) + y3)] ) & b2 . 0 = [a,b] & ( for n being Nat holds b2 . (n + 1) = [(((x1 * ((b2 . n) `1)) + (x2 * ((b2 . n) `2))) + x3),(((y1 * ((b2 . n) `1)) + (y2 * ((b2 . n) `2))) + y3)] ) holds
b1 = b2
end;
::
deftheorem Def10 defines
recSeqCart NUMBER08:def 10 :
for a, b, x1, x2, x3, y1, y2, y3 being Complex
for b9 being [:COMPLEX,COMPLEX:] -valued ManySortedSet of NAT holds
( b9 = recSeqCart (a,b,x1,x2,x3,y1,y2,y3) iff ( b9 . 0 = [a,b] & ( for n being Nat holds b9 . (n + 1) = [(((x1 * ((b9 . n) `1)) + (x2 * ((b9 . n) `2))) + x3),(((y1 * ((b9 . n) `1)) + (y2 * ((b9 . n) `2))) + y3)] ) ) );
registration
let a,
b,
x1,
x2,
x3,
y1,
y2,
y3 be
Real;
coherence
recSeqCart (a,b,x1,x2,x3,y1,y2,y3) is [:REAL,REAL:] -valued
end;
registration
let a,
b,
x1,
x2,
x3,
y1,
y2,
y3 be
Rational;
coherence
recSeqCart (a,b,x1,x2,x3,y1,y2,y3) is [:RAT,RAT:] -valued
end;
registration
let a,
b,
x1,
x2,
x3,
y1,
y2,
y3 be
Integer;
coherence
recSeqCart (a,b,x1,x2,x3,y1,y2,y3) is [:INT,INT:] -valued
end;
registration
let a,
b,
x1,
x2,
x3,
y1,
y2,
y3 be
Nat;
coherence
recSeqCart (a,b,x1,x2,x3,y1,y2,y3) is [:NAT,NAT:] -valued
end;
theorem Th89:
for
a,
b,
a1,
a2,
a3,
b1,
b2,
b3 being
Real st
a > 0 &
b > 0 &
a3 >= 0 &
b3 >= 0 & ( (
a1 > 0 &
a2 >= 0 ) or (
a1 >= 0 &
a2 > 0 ) ) & ( (
b1 > 0 &
b2 >= 0 ) or (
b1 >= 0 &
b2 > 0 ) ) holds
for
n being
Nat holds
(
((recSeqCart (a,b,a1,a2,a3,b1,b2,b3)) . n) `1 > 0 &
((recSeqCart (a,b,a1,a2,a3,b1,b2,b3)) . n) `2 > 0 )
theorem Th90:
for
a,
b,
a1,
a2,
a3,
b1,
b2,
b3 being
Real st
a >= 0 &
b >= 0 &
a1 >= 0 &
a2 >= 0 &
a3 >= 0 &
b1 >= 0 &
b2 >= 0 &
b3 >= 0 holds
for
n being
Nat holds
(
((recSeqCart (a,b,a1,a2,a3,b1,b2,b3)) . n) `1 >= 0 &
((recSeqCart (a,b,a1,a2,a3,b1,b2,b3)) . n) `2 >= 0 )
theorem Th91:
for
a,
b,
a1,
a2,
a3,
b1,
b2,
b3 being
Real st
a > 0 &
b > 0 &
a1 >= 1 &
a2 > 0 &
a3 >= 0 &
b1 > 0 &
b2 >= 1 &
b3 >= 0 holds
for
m,
n being
Nat st
m > n holds
(
((recSeqCart (a,b,a1,a2,a3,b1,b2,b3)) . m) `1 > ((recSeqCart (a,b,a1,a2,a3,b1,b2,b3)) . n) `1 &
((recSeqCart (a,b,a1,a2,a3,b1,b2,b3)) . m) `2 > ((recSeqCart (a,b,a1,a2,a3,b1,b2,b3)) . n) `2 )
theorem Th92:
for
a,
b,
a1,
a2,
a3,
b1,
b2,
b3 being
Real st
a > 0 &
b > 0 &
a1 >= 1 &
a2 > 0 &
a3 >= 0 &
b1 > 0 &
b2 >= 1 &
b3 >= 0 holds
recSeqCart (
a,
b,
a1,
a2,
a3,
b1,
b2,
b3) is
one-to-one
Lm57:
not 3 is trivial
by NAT_2:def 1;
theorem
for
k,
x,
y being
Nat st
(x ^2) - (2 * (y ^2)) = k holds
for
t,
u being
Nat st
t = x - (2 * y) &
u = x - y holds
(t ^2) - (2 * (u ^2)) = - k ;