Lm1: 
 for m being   non  zero   Element of  NAT 
  for I being   non  empty   FinSequence of  NAT 
  for i being    Element of  NAT   st  rng I c=  Seg m & i <= (len I) - 1 holds 
( 1 <= I /. (i + 1) & I /. (i + 1) <= m )
 
Lm2: 
 for m being   non  zero   Element of  NAT 
  for I being   non  empty   FinSequence of  NAT 
  for i being    Element of  NAT   st  rng I c=  Seg m & 1 <= i & i <=  len I holds 
( 1 <= I /. i & I /. i <= m )
 
definition
let m be   non  
zero   Element of  
NAT ;
let k be    
Element of  
NAT ;
let X be   non  
empty   open  Subset of 
(REAL m);
func  R_Algebra_of_Ck_Functions (
k,
X)
 ->    Subalgebra of  
RAlgebra X equals 
 AlgebraStr(# 
(Ck_Functions (k,X)),
(mult_ ((Ck_Functions (k,X)),(RAlgebra X))),
(Add_ ((Ck_Functions (k,X)),(RAlgebra X))),
(Mult_ ((Ck_Functions (k,X)),(RAlgebra X))),
(One_ ((Ck_Functions (k,X)),(RAlgebra X))),
(Zero_ ((Ck_Functions (k,X)),(RAlgebra X))) #);
 
coherence 
 AlgebraStr(# (Ck_Functions (k,X)),(mult_ ((Ck_Functions (k,X)),(RAlgebra X))),(Add_ ((Ck_Functions (k,X)),(RAlgebra X))),(Mult_ ((Ck_Functions (k,X)),(RAlgebra X))),(One_ ((Ck_Functions (k,X)),(RAlgebra X))),(Zero_ ((Ck_Functions (k,X)),(RAlgebra X))) #) is    Subalgebra of  RAlgebra X
 by C0SP1:6;
 
end;
 
:: 
deftheorem    defines 
R_Algebra_of_Ck_Functions CKSPACE1:def 3 : 
 for m being   non  zero   Element of  NAT 
  for k being    Element of  NAT 
  for X being   non  empty   open  Subset of (REAL m) holds   R_Algebra_of_Ck_Functions (k,X) =  AlgebraStr(# (Ck_Functions (k,X)),(mult_ ((Ck_Functions (k,X)),(RAlgebra X))),(Add_ ((Ck_Functions (k,X)),(RAlgebra X))),(Mult_ ((Ck_Functions (k,X)),(RAlgebra X))),(One_ ((Ck_Functions (k,X)),(RAlgebra X))),(Zero_ ((Ck_Functions (k,X)),(RAlgebra X))) #);
registration
let m be   non  
zero   Element of  
NAT ;
let k be    
Element of  
NAT ;
let X be   non  
empty   open  Subset of 
(REAL m);
coherence 
(  R_Algebra_of_Ck_Functions (k,X) is  Abelian  &  R_Algebra_of_Ck_Functions (k,X) is  add-associative  &  R_Algebra_of_Ck_Functions (k,X) is  right_zeroed  &  R_Algebra_of_Ck_Functions (k,X) is  right_complementable  &  R_Algebra_of_Ck_Functions (k,X) is  vector-distributive  &  R_Algebra_of_Ck_Functions (k,X) is  scalar-distributive  &  R_Algebra_of_Ck_Functions (k,X) is  scalar-associative  &  R_Algebra_of_Ck_Functions (k,X) is  scalar-unital  &  R_Algebra_of_Ck_Functions (k,X) is  commutative  &  R_Algebra_of_Ck_Functions (k,X) is  associative  &  R_Algebra_of_Ck_Functions (k,X) is  right_unital  &  R_Algebra_of_Ck_Functions (k,X) is  right-distributive  &  R_Algebra_of_Ck_Functions (k,X) is  scalar-associative  &  R_Algebra_of_Ck_Functions (k,X) is  vector-associative  )
 
 
end;