:: ANALOAF semantic presentation
:: deftheorem Def1 defines // ANALOAF:def 1 :
for
b1 being
RealLinearSpace for
b2,
b3,
b4,
b5 being
VECTOR of
b1 holds
(
b2,
b3 // b4,
b5 iff (
b2 = b3 or
b4 = b5 or ex
b6,
b7 being
Real st
( 0
< b6 & 0
< b7 &
b6 * (b3 - b2) = b7 * (b5 - b4) ) ) );
Lemma2:
for b1, b2 being Real st 0 < b1 & 0 < b2 holds
0 < b1 + b2
by XREAL_1:36;
Lemma3:
for b1, b2 being Real holds
( not b1 <> b2 or 0 < b1 - b2 or 0 < b2 - b1 )
by XREAL_1:57;
theorem Th1: :: ANALOAF:1
canceled;
theorem Th2: :: ANALOAF:2
canceled;
theorem Th3: :: ANALOAF:3
canceled;
theorem Th4: :: ANALOAF:4
theorem Th5: :: ANALOAF:5
canceled;
theorem Th6: :: ANALOAF:6
theorem Th7: :: ANALOAF:7
canceled;
theorem Th8: :: ANALOAF:8
canceled;
theorem Th9: :: ANALOAF:9
theorem Th10: :: ANALOAF:10
theorem Th11: :: ANALOAF:11
theorem Th12: :: ANALOAF:12
theorem Th13: :: ANALOAF:13
theorem Th14: :: ANALOAF:14
canceled;
theorem Th15: :: ANALOAF:15
canceled;
theorem Th16: :: ANALOAF:16
for
b1 being
RealLinearSpace for
b2,
b3,
b4,
b5 being
VECTOR of
b1 st
b2,
b3 // b4,
b5 &
b2 <> b3 &
b4 <> b5 holds
ex
b6,
b7 being
Real st
(
b6 * (b3 - b2) = b7 * (b5 - b4) & 0
< b6 & 0
< b7 )
theorem Th17: :: ANALOAF:17
theorem Th18: :: ANALOAF:18
theorem Th19: :: ANALOAF:19
theorem Th20: :: ANALOAF:20
for
b1 being
RealLinearSpace for
b2,
b3,
b4,
b5,
b6,
b7 being
VECTOR of
b1 st
b2 <> b3 &
b2,
b3 // b4,
b5 &
b2,
b3 // b6,
b7 holds
b4,
b5 // b6,
b7
theorem Th21: :: ANALOAF:21
theorem Th22: :: ANALOAF:22
theorem Th23: :: ANALOAF:23
theorem Th24: :: ANALOAF:24
theorem Th25: :: ANALOAF:25
theorem Th26: :: ANALOAF:26
theorem Th27: :: ANALOAF:27
theorem Th28: :: ANALOAF:28
theorem Th29: :: ANALOAF:29
for
b1 being
RealLinearSpace st ex
b2,
b3 being
VECTOR of
b1 st
for
b4,
b5 being
Real st
(b4 * b2) + (b5 * b3) = 0. b1 holds
(
b4 = 0 &
b5 = 0 ) holds
ex
b2,
b3,
b4,
b5 being
VECTOR of
b1 st
( not
b2,
b3 // b4,
b5 & not
b2,
b3 // b5,
b4 )
Lemma24:
for b1 being RealLinearSpace
for b2, b3, b4, b5 being VECTOR of b1
for b6, b7 being Real st b6 * (b2 - b3) = b7 * (b4 - b5) & ( b6 <> 0 or b7 <> 0 ) & not b3,b2 // b4,b5 holds
b3,b2 // b5,b4
theorem Th30: :: ANALOAF:30
canceled;
theorem Th31: :: ANALOAF:31
for
b1 being
RealLinearSpace st ex
b2,
b3 being
VECTOR of
b1 st
for
b4 being
VECTOR of
b1 ex
b5,
b6 being
Real st
(b5 * b2) + (b6 * b3) = b4 holds
for
b2,
b3,
b4,
b5 being
VECTOR of
b1 st not
b2,
b3 // b4,
b5 & not
b2,
b3 // b5,
b4 holds
ex
b6 being
VECTOR of
b1 st
( (
b2,
b3 // b2,
b6 or
b2,
b3 // b6,
b2 ) & (
b4,
b5 // b4,
b6 or
b4,
b5 // b6,
b4 ) )
:: deftheorem Def2 defines // ANALOAF:def 2 :
definition
let c1 be
RealLinearSpace;
func DirPar c1 -> Relation of
[:the carrier of a1,the carrier of a1:] means :
Def3:
:: ANALOAF:def 3
for
b1,
b2 being
set holds
(
[b1,b2] in a2 iff ex
b3,
b4,
b5,
b6 being
VECTOR of
a1 st
(
b1 = [b3,b4] &
b2 = [b5,b6] &
b3,
b4 // b5,
b6 ) );
existence
ex b1 being Relation of [:the carrier of c1,the carrier of c1:] st
for b2, b3 being set holds
( [b2,b3] in b1 iff ex b4, b5, b6, b7 being VECTOR of c1 st
( b2 = [b4,b5] & b3 = [b6,b7] & b4,b5 // b6,b7 ) )
uniqueness
for b1, b2 being Relation of [:the carrier of c1,the carrier of c1:] st ( for b3, b4 being set holds
( [b3,b4] in b1 iff ex b5, b6, b7, b8 being VECTOR of c1 st
( b3 = [b5,b6] & b4 = [b7,b8] & b5,b6 // b7,b8 ) ) ) & ( for b3, b4 being set holds
( [b3,b4] in b2 iff ex b5, b6, b7, b8 being VECTOR of c1 st
( b3 = [b5,b6] & b4 = [b7,b8] & b5,b6 // b7,b8 ) ) ) holds
b1 = b2
end;
:: deftheorem Def3 defines DirPar ANALOAF:def 3 :
for
b1 being
RealLinearSpace for
b2 being
Relation of
[:the carrier of b1,the carrier of b1:] holds
(
b2 = DirPar b1 iff for
b3,
b4 being
set holds
(
[b3,b4] in b2 iff ex
b5,
b6,
b7,
b8 being
VECTOR of
b1 st
(
b3 = [b5,b6] &
b4 = [b7,b8] &
b5,
b6 // b7,
b8 ) ) );
theorem Th32: :: ANALOAF:32
canceled;
theorem Th33: :: ANALOAF:33
:: deftheorem Def4 defines OASpace ANALOAF:def 4 :
theorem Th34: :: ANALOAF:34
canceled;
theorem Th35: :: ANALOAF:35
for
b1 being
RealLinearSpace st ex
b2,
b3 being
VECTOR of
b1 st
for
b4,
b5 being
Real st
(b4 * b2) + (b5 * b3) = 0. b1 holds
(
b4 = 0 &
b5 = 0 ) holds
( ex
b2,
b3 being
Element of
(OASpace b1) st
b2 <> b3 & ( for
b2,
b3,
b4,
b5,
b6,
b7,
b8,
b9 being
Element of
(OASpace b1) holds
(
b2,
b3 // b4,
b4 & (
b2,
b3 // b3,
b2 implies
b2 = b3 ) & (
b2 <> b3 &
b2,
b3 // b6,
b7 &
b2,
b3 // b8,
b9 implies
b6,
b7 // b8,
b9 ) & (
b2,
b3 // b4,
b5 implies
b3,
b2 // b5,
b4 ) & (
b2,
b3 // b3,
b4 implies
b2,
b3 // b2,
b4 ) & ( not
b2,
b3 // b2,
b4 or
b2,
b3 // b3,
b4 or
b2,
b4 // b4,
b3 ) ) ) & ex
b2,
b3,
b4,
b5 being
Element of
(OASpace b1) st
( not
b2,
b3 // b4,
b5 & not
b2,
b3 // b5,
b4 ) & ( for
b2,
b3,
b4 being
Element of
(OASpace b1) ex
b5 being
Element of
(OASpace b1) st
(
b2,
b3 // b4,
b5 &
b2,
b4 // b3,
b5 &
b3 <> b5 ) ) & ( for
b2,
b3,
b4,
b5 being
Element of
(OASpace b1) st
b2 <> b4 &
b4,
b2 // b2,
b5 holds
ex
b6 being
Element of
(OASpace b1) st
(
b3,
b2 // b2,
b6 &
b3,
b4 // b5,
b6 ) ) )
theorem Th36: :: ANALOAF:36
for
b1 being
RealLinearSpace st ex
b2,
b3 being
VECTOR of
b1 st
for
b4 being
VECTOR of
b1 ex
b5,
b6 being
Real st
(b5 * b2) + (b6 * b3) = b4 holds
for
b2,
b3,
b4,
b5 being
Element of
(OASpace b1) st not
b2,
b3 // b4,
b5 & not
b2,
b3 // b5,
b4 holds
ex
b6 being
Element of
(OASpace b1) st
( (
b2,
b3 // b2,
b6 or
b2,
b3 // b6,
b2 ) & (
b4,
b5 // b4,
b6 or
b4,
b5 // b6,
b4 ) )
definition
let c1 be non
empty AffinStruct ;
attr a1 is
OAffinSpace-like means :
Def5:
:: ANALOAF:def 5
( ( for
b1,
b2,
b3,
b4,
b5,
b6,
b7,
b8 being
Element of
a1 holds
(
b1,
b2 // b3,
b3 & (
b1,
b2 // b2,
b1 implies
b1 = b2 ) & (
b1 <> b2 &
b1,
b2 // b5,
b6 &
b1,
b2 // b7,
b8 implies
b5,
b6 // b7,
b8 ) & (
b1,
b2 // b3,
b4 implies
b2,
b1 // b4,
b3 ) & (
b1,
b2 // b2,
b3 implies
b1,
b2 // b1,
b3 ) & ( not
b1,
b2 // b1,
b3 or
b1,
b2 // b2,
b3 or
b1,
b3 // b3,
b2 ) ) ) & ex
b1,
b2,
b3,
b4 being
Element of
a1 st
( not
b1,
b2 // b3,
b4 & not
b1,
b2 // b4,
b3 ) & ( for
b1,
b2,
b3 being
Element of
a1 ex
b4 being
Element of
a1 st
(
b1,
b2 // b3,
b4 &
b1,
b3 // b2,
b4 &
b2 <> b4 ) ) & ( for
b1,
b2,
b3,
b4 being
Element of
a1 st
b1 <> b3 &
b3,
b1 // b1,
b4 holds
ex
b5 being
Element of
a1 st
(
b2,
b1 // b1,
b5 &
b2,
b3 // b4,
b5 ) ) );
end;
:: deftheorem Def5 defines OAffinSpace-like ANALOAF:def 5 :
for
b1 being non
empty AffinStruct holds
(
b1 is
OAffinSpace-like iff ( ( for
b2,
b3,
b4,
b5,
b6,
b7,
b8,
b9 being
Element of
b1 holds
(
b2,
b3 // b4,
b4 & (
b2,
b3 // b3,
b2 implies
b2 = b3 ) & (
b2 <> b3 &
b2,
b3 // b6,
b7 &
b2,
b3 // b8,
b9 implies
b6,
b7 // b8,
b9 ) & (
b2,
b3 // b4,
b5 implies
b3,
b2 // b5,
b4 ) & (
b2,
b3 // b3,
b4 implies
b2,
b3 // b2,
b4 ) & ( not
b2,
b3 // b2,
b4 or
b2,
b3 // b3,
b4 or
b2,
b4 // b4,
b3 ) ) ) & ex
b2,
b3,
b4,
b5 being
Element of
b1 st
( not
b2,
b3 // b4,
b5 & not
b2,
b3 // b5,
b4 ) & ( for
b2,
b3,
b4 being
Element of
b1 ex
b5 being
Element of
b1 st
(
b2,
b3 // b4,
b5 &
b2,
b4 // b3,
b5 &
b3 <> b5 ) ) & ( for
b2,
b3,
b4,
b5 being
Element of
b1 st
b2 <> b4 &
b4,
b2 // b2,
b5 holds
ex
b6 being
Element of
b1 st
(
b3,
b2 // b2,
b6 &
b3,
b4 // b5,
b6 ) ) ) );
theorem Th37: :: ANALOAF:37
for
b1 being non
empty AffinStruct holds
( ( ex
b2,
b3 being
Element of
b1 st
b2 <> b3 & ( for
b2,
b3,
b4,
b5,
b6,
b7,
b8,
b9 being
Element of
b1 holds
(
b2,
b3 // b4,
b4 & (
b2,
b3 // b3,
b2 implies
b2 = b3 ) & (
b2 <> b3 &
b2,
b3 // b6,
b7 &
b2,
b3 // b8,
b9 implies
b6,
b7 // b8,
b9 ) & (
b2,
b3 // b4,
b5 implies
b3,
b2 // b5,
b4 ) & (
b2,
b3 // b3,
b4 implies
b2,
b3 // b2,
b4 ) & ( not
b2,
b3 // b2,
b4 or
b2,
b3 // b3,
b4 or
b2,
b4 // b4,
b3 ) ) ) & ex
b2,
b3,
b4,
b5 being
Element of
b1 st
( not
b2,
b3 // b4,
b5 & not
b2,
b3 // b5,
b4 ) & ( for
b2,
b3,
b4 being
Element of
b1 ex
b5 being
Element of
b1 st
(
b2,
b3 // b4,
b5 &
b2,
b4 // b3,
b5 &
b3 <> b5 ) ) & ( for
b2,
b3,
b4,
b5 being
Element of
b1 st
b2 <> b4 &
b4,
b2 // b2,
b5 holds
ex
b6 being
Element of
b1 st
(
b3,
b2 // b2,
b6 &
b3,
b4 // b5,
b6 ) ) ) iff
b1 is
OAffinSpace )
by Def5, REALSET2:def 7;
theorem Th38: :: ANALOAF:38
definition
let c1 be
OAffinSpace;
attr a1 is
2-dimensional means :
Def6:
:: ANALOAF:def 6
for
b1,
b2,
b3,
b4 being
Element of
a1 st not
b1,
b2 // b3,
b4 & not
b1,
b2 // b4,
b3 holds
ex
b5 being
Element of
a1 st
( (
b1,
b2 // b1,
b5 or
b1,
b2 // b5,
b1 ) & (
b3,
b4 // b3,
b5 or
b3,
b4 // b5,
b3 ) );
end;
:: deftheorem Def6 defines 2-dimensional ANALOAF:def 6 :
for
b1 being
OAffinSpace holds
(
b1 is
2-dimensional iff for
b2,
b3,
b4,
b5 being
Element of
b1 st not
b2,
b3 // b4,
b5 & not
b2,
b3 // b5,
b4 holds
ex
b6 being
Element of
b1 st
( (
b2,
b3 // b2,
b6 or
b2,
b3 // b6,
b2 ) & (
b4,
b5 // b4,
b6 or
b4,
b5 // b6,
b4 ) ) );
theorem Th39: :: ANALOAF:39
canceled;
theorem Th40: :: ANALOAF:40
canceled;
theorem Th41: :: ANALOAF:41
canceled;
theorem Th42: :: ANALOAF:42
canceled;
theorem Th43: :: ANALOAF:43
canceled;
theorem Th44: :: ANALOAF:44
canceled;
theorem Th45: :: ANALOAF:45
canceled;
theorem Th46: :: ANALOAF:46
canceled;
theorem Th47: :: ANALOAF:47
canceled;
theorem Th48: :: ANALOAF:48
canceled;
theorem Th49: :: ANALOAF:49
canceled;
theorem Th50: :: ANALOAF:50
for
b1 being non
empty AffinStruct holds
( ( ex
b2,
b3 being
Element of
b1 st
b2 <> b3 & ( for
b2,
b3,
b4,
b5,
b6,
b7,
b8,
b9 being
Element of
b1 holds
(
b2,
b3 // b4,
b4 & (
b2,
b3 // b3,
b2 implies
b2 = b3 ) & (
b2 <> b3 &
b2,
b3 // b6,
b7 &
b2,
b3 // b8,
b9 implies
b6,
b7 // b8,
b9 ) & (
b2,
b3 // b4,
b5 implies
b3,
b2 // b5,
b4 ) & (
b2,
b3 // b3,
b4 implies
b2,
b3 // b2,
b4 ) & ( not
b2,
b3 // b2,
b4 or
b2,
b3 // b3,
b4 or
b2,
b4 // b4,
b3 ) ) ) & ex
b2,
b3,
b4,
b5 being
Element of
b1 st
( not
b2,
b3 // b4,
b5 & not
b2,
b3 // b5,
b4 ) & ( for
b2,
b3,
b4 being
Element of
b1 ex
b5 being
Element of
b1 st
(
b2,
b3 // b4,
b5 &
b2,
b4 // b3,
b5 &
b3 <> b5 ) ) & ( for
b2,
b3,
b4,
b5 being
Element of
b1 st
b2 <> b4 &
b4,
b2 // b2,
b5 holds
ex
b6 being
Element of
b1 st
(
b3,
b2 // b2,
b6 &
b3,
b4 // b5,
b6 ) ) & ( for
b2,
b3,
b4,
b5 being
Element of
b1 st not
b2,
b3 // b4,
b5 & not
b2,
b3 // b5,
b4 holds
ex
b6 being
Element of
b1 st
( (
b2,
b3 // b2,
b6 or
b2,
b3 // b6,
b2 ) & (
b4,
b5 // b4,
b6 or
b4,
b5 // b6,
b4 ) ) ) ) iff
b1 is
OAffinPlane )
by Def5, Def6, REALSET2:def 7;
theorem Th51: :: ANALOAF:51