:: BHSP_1 semantic presentation
registration
let c1 be non
empty set ;
let c2 be
Element of
c1;
let c3 be
BinOp of
c1;
let c4 be
Function of
[:REAL ,c1:],
c1;
let c5 be
Function of
[:c1,c1:],
REAL ;
cluster UNITSTR(#
a1,
a2,
a3,
a4,
a5 #)
-> non
empty ;
coherence
not UNITSTR(# c1,c2,c3,c4,c5 #) is empty
end;
deffunc H1( UNITSTR ) -> Element of the carrier of a1 = 0. a1;
:: deftheorem Def1 defines .|. BHSP_1:def 1 :
consider c1 being RealLinearSpace;
Lemma1:
the carrier of ((0). c1) = {(0. c1)}
by RLSUB_1:def 3;
reconsider c2 = [:the carrier of ((0). c1),the carrier of ((0). c1):] --> 0 as Function of [:the carrier of ((0). c1),the carrier of ((0). c1):], REAL by FUNCOP_1:57;
Lemma2:
for b1, b2 being VECTOR of ((0). c1) holds c2 . [b1,b2] = 0
by FUNCOP_1:13;
0. c1 in the carrier of ((0). c1)
by Lemma1, TARSKI:def 1;
then Lemma3:
c2 . [(0. c1),(0. c1)] = 0
by Lemma2;
Lemma4:
for b1, b2 being VECTOR of ((0). c1) holds c2 . [b1,b2] = c2 . [b2,b1]
Lemma5:
for b1, b2, b3 being VECTOR of ((0). c1) holds c2 . [(b1 + b2),b3] = (c2 . [b1,b3]) + (c2 . [b2,b3])
Lemma6:
for b1, b2 being VECTOR of ((0). c1)
for b3 being Real holds c2 . [(b3 * b1),b2] = b3 * (c2 . [b1,b2])
set c3 = UNITSTR(# the carrier of ((0). c1),the Zero of ((0). c1),the add of ((0). c1),the Mult of ((0). c1),c2 #);
E7:
now
let c4,
c5,
c6 be
Point of
UNITSTR(# the
carrier of
((0). c1),the
Zero of
((0). c1),the
add of
((0). c1),the
Mult of
((0). c1),
c2 #);
let c7 be
Real;
thus
(
c4 .|. c4 = 0 iff
c4 = H1(
UNITSTR(# the
carrier of
((0). c1),the
Zero of
((0). c1),the
add of
((0). c1),the
Mult of
((0). c1),
c2 #)) )
proof
H1(
UNITSTR(# the
carrier of
((0). c1),the
Zero of
((0). c1),the
add of
((0). c1),the
Mult of
((0). c1),
c2 #)) =
the
Zero of
UNITSTR(# the
carrier of
((0). c1),the
Zero of
((0). c1),the
add of
((0). c1),the
Mult of
((0). c1),
c2 #)
.=
0. ((0). c1)
.=
0. c1
by RLSUB_1:19
;
hence
(
c4 .|. c4 = 0 iff
c4 = H1(
UNITSTR(# the
carrier of
((0). c1),the
Zero of
((0). c1),the
add of
((0). c1),the
Mult of
((0). c1),
c2 #)) )
by Lemma1, Lemma3, TARSKI:def 1;
end;
thus
0
<= c4 .|. c4
by FUNCOP_1:13;
thus
c4 .|. c5 = c5 .|. c4
by Lemma4;
thus
(c4 + c5) .|. c6 = (c4 .|. c6) + (c5 .|. c6)
thus
(c7 * c4) .|. c5 = c7 * (c4 .|. c5)
end;
:: deftheorem Def2 defines RealUnitarySpace-like BHSP_1:def 2 :
theorem Th1: :: BHSP_1:1
canceled;
theorem Th2: :: BHSP_1:2
canceled;
theorem Th3: :: BHSP_1:3
canceled;
theorem Th4: :: BHSP_1:4
canceled;
theorem Th5: :: BHSP_1:5
canceled;
theorem Th6: :: BHSP_1:6
theorem Th7: :: BHSP_1:7
theorem Th8: :: BHSP_1:8
theorem Th9: :: BHSP_1:9
theorem Th10: :: BHSP_1:10
theorem Th11: :: BHSP_1:11
theorem Th12: :: BHSP_1:12
theorem Th13: :: BHSP_1:13
theorem Th14: :: BHSP_1:14
theorem Th15: :: BHSP_1:15
theorem Th16: :: BHSP_1:16
theorem Th17: :: BHSP_1:17
theorem Th18: :: BHSP_1:18
theorem Th19: :: BHSP_1:19
theorem Th20: :: BHSP_1:20
theorem Th21: :: BHSP_1:21
theorem Th22: :: BHSP_1:22
theorem Th23: :: BHSP_1:23
theorem Th24: :: BHSP_1:24
:: deftheorem Def3 defines are_orthogonal BHSP_1:def 3 :
theorem Th25: :: BHSP_1:25
canceled;
theorem Th26: :: BHSP_1:26
theorem Th27: :: BHSP_1:27
theorem Th28: :: BHSP_1:28
theorem Th29: :: BHSP_1:29
theorem Th30: :: BHSP_1:30
theorem Th31: :: BHSP_1:31
:: deftheorem Def4 defines ||. BHSP_1:def 4 :
theorem Th32: :: BHSP_1:32
theorem Th33: :: BHSP_1:33
theorem Th34: :: BHSP_1:34
theorem Th35: :: BHSP_1:35
theorem Th36: :: BHSP_1:36
theorem Th37: :: BHSP_1:37
theorem Th38: :: BHSP_1:38
theorem Th39: :: BHSP_1:39
:: deftheorem Def5 defines dist BHSP_1:def 5 :
theorem Th40: :: BHSP_1:40
theorem Th41: :: BHSP_1:41
theorem Th42: :: BHSP_1:42
theorem Th43: :: BHSP_1:43
theorem Th44: :: BHSP_1:44
theorem Th45: :: BHSP_1:45
theorem Th46: :: BHSP_1:46
theorem Th47: :: BHSP_1:47
theorem Th48: :: BHSP_1:48
theorem Th49: :: BHSP_1:49
theorem Th50: :: BHSP_1:50
:: deftheorem Def6 BHSP_1:def 6 :
canceled;
:: deftheorem Def7 BHSP_1:def 7 :
canceled;
:: deftheorem Def8 BHSP_1:def 8 :
canceled;
:: deftheorem Def9 BHSP_1:def 9 :
canceled;
:: deftheorem Def10 defines - BHSP_1:def 10 :
:: deftheorem Def11 BHSP_1:def 11 :
canceled;
:: deftheorem Def12 defines + BHSP_1:def 12 :
theorem Th51: :: BHSP_1:51
canceled;
theorem Th52: :: BHSP_1:52
canceled;
theorem Th53: :: BHSP_1:53
canceled;
theorem Th54: :: BHSP_1:54
canceled;
theorem Th55: :: BHSP_1:55
theorem Th56: :: BHSP_1:56
theorem Th57: :: BHSP_1:57
theorem Th58: :: BHSP_1:58
theorem Th59: :: BHSP_1:59
theorem Th60: :: BHSP_1:60
canceled;
theorem Th61: :: BHSP_1:61
canceled;
theorem Th62: :: BHSP_1:62
canceled;
theorem Th63: :: BHSP_1:63
canceled;
theorem Th64: :: BHSP_1:64
canceled;
theorem Th65: :: BHSP_1:65
canceled;
theorem Th66: :: BHSP_1:66
canceled;
theorem Th67: :: BHSP_1:67
canceled;
theorem Th68: :: BHSP_1:68
theorem Th69: :: BHSP_1:69
theorem Th70: :: BHSP_1:70
theorem Th71: :: BHSP_1:71
theorem Th72: :: BHSP_1:72
theorem Th73: :: BHSP_1:73
theorem Th74: :: BHSP_1:74
theorem Th75: :: BHSP_1:75
theorem Th76: :: BHSP_1:76
theorem Th77: :: BHSP_1:77
theorem Th78: :: BHSP_1:78
theorem Th79: :: BHSP_1:79
theorem Th80: :: BHSP_1:80
theorem Th81: :: BHSP_1:81
theorem Th82: :: BHSP_1:82
theorem Th83: :: BHSP_1:83
theorem Th84: :: BHSP_1:84
theorem Th85: :: BHSP_1:85