:: CONLAT_2 semantic presentation
:: deftheorem Def1 defines @ CONLAT_2:def 1 :
theorem Th1: :: CONLAT_2:1
theorem Th2: :: CONLAT_2:2
theorem Th3: :: CONLAT_2:3
theorem Th4: :: CONLAT_2:4
:: deftheorem Def2 defines "/\" CONLAT_2:def 2 :
:: deftheorem Def3 defines "\/" CONLAT_2:def 3 :
theorem Th5: :: CONLAT_2:5
theorem Th6: :: CONLAT_2:6
theorem Th7: :: CONLAT_2:7
theorem Th8: :: CONLAT_2:8
theorem Th9: :: CONLAT_2:9
theorem Th10: :: CONLAT_2:10
:: deftheorem Def4 defines gamma CONLAT_2:def 4 :
:: deftheorem Def5 defines delta CONLAT_2:def 5 :
theorem Th11: :: CONLAT_2:11
theorem Th12: :: CONLAT_2:12
theorem Th13: :: CONLAT_2:13
Lemma11:
for b1, b2 being Lattice
for b3 being Function of the carrier of b1,the carrier of b2 st ( for b4, b5 being Element of b1 st b3 . b4 [= b3 . b5 holds
b4 [= b5 ) holds
b3 is one-to-one
Lemma12:
for b1, b2 being complete Lattice
for b3 being Function of the carrier of b1,the carrier of b2 st b3 is one-to-one & rng b3 = the carrier of b2 & ( for b4, b5 being Element of b1 holds
( b4 [= b5 iff b3 . b4 [= b3 . b5 ) ) holds
b3 is Homomorphism of b1,b2
Lemma13:
for b1 being FormalContext
for b2 being ConceptStr of b1 st (ObjectDerivation b1) . the Extent of b2 = the Intent of b2 & (AttributeDerivation b1) . the Intent of b2 = the Extent of b2 holds
not b2 is empty
theorem Th14: :: CONLAT_2:14
:: deftheorem Def6 defines Context CONLAT_2:def 6 :
theorem Th15: :: CONLAT_2:15
theorem Th16: :: CONLAT_2:16
:: deftheorem Def7 defines .: CONLAT_2:def 7 :
theorem Th17: :: CONLAT_2:17
theorem Th18: :: CONLAT_2:18
theorem Th19: :: CONLAT_2:19
:: deftheorem Def8 defines .: CONLAT_2:def 8 :
theorem Th20: :: CONLAT_2:20
Lemma19:
for b1 being FormalContext
for b2 being Subset of the Objects of b1
for b3 being Subset of the Attributes of b1 st ConceptStr(# b2,b3 #) is FormalConcept of b1 holds
ConceptStr(# b2,b3 #) .: is FormalConcept of b1 .:
:: deftheorem Def9 defines DualHomomorphism CONLAT_2:def 9 :
theorem Th21: :: CONLAT_2:21
theorem Th22: :: CONLAT_2:22