:: CSSPACE  semantic presentation
:: deftheorem Def1   defines the_set_of_ComplexSequences CSSPACE:def 1 : 
:: deftheorem Def2   defines seq_id CSSPACE:def 2 : 
:: deftheorem Def3   defines C_id CSSPACE:def 3 : 
theorem Th1: :: CSSPACE:1
theorem Th2: :: CSSPACE:2
:: deftheorem Def4   defines l_add CSSPACE:def 4 : 
definition
func  l_mult  ->   Function of 
[:COMPLEX ,the_set_of_ComplexSequences :], 
the_set_of_ComplexSequences  means :
Def5: 
:: CSSPACE:def 5
for 
b1, 
b2 being   
set   st 
b1 in  COMPLEX  & 
b2 in  the_set_of_ComplexSequences  holds 
a1 . [b1,b2] = (C_id b1) (#) (seq_id b2);
existence 
ex b1 being  Function of [:COMPLEX ,the_set_of_ComplexSequences :], the_set_of_ComplexSequences  st 
for b2, b3 being   set   st b2 in  COMPLEX  & b3 in  the_set_of_ComplexSequences  holds 
b1 . [b2,b3] = (C_id b2) (#) (seq_id b3)
 by Th2;
uniqueness 
for b1, b2 being  Function of [:COMPLEX ,the_set_of_ComplexSequences :], the_set_of_ComplexSequences   st ( for b3, b4 being   set   st b3 in  COMPLEX  & b4 in  the_set_of_ComplexSequences  holds 
b1 . [b3,b4] = (C_id b3) (#) (seq_id b4) ) & ( for b3, b4 being   set   st b3 in  COMPLEX  & b4 in  the_set_of_ComplexSequences  holds 
b2 . [b3,b4] = (C_id b3) (#) (seq_id b4) ) holds 
b1 = b2
 
 
end;
 
:: deftheorem Def5   defines l_mult CSSPACE:def 5 : 
:: deftheorem Def6   defines CZeroseq CSSPACE:def 6 : 
theorem Th3: :: CSSPACE:3
theorem Th4: :: CSSPACE:4
theorem Th5: :: CSSPACE:5
Lemma12: 
for b1, b2 being  VECTOR of CLSStruct(# the_set_of_ComplexSequences ,CZeroseq ,l_add ,l_mult  #) holds  b1 + b2 = b2 + b1
 
;
theorem Th6: :: CSSPACE:6
theorem Th7: :: CSSPACE:7
theorem Th8: :: CSSPACE:8
theorem Th9: :: CSSPACE:9
theorem Th10: :: CSSPACE:10
theorem Th11: :: CSSPACE:11
theorem Th12: :: CSSPACE:12
definition
func  Linear_Space_of_ComplexSequences  ->   ComplexLinearSpace equals :: CSSPACE:def 7
 CLSStruct(# 
the_set_of_ComplexSequences ,
CZeroseq ,
l_add ,
l_mult  #);
correctness 
coherence 
 CLSStruct(# the_set_of_ComplexSequences ,CZeroseq ,l_add ,l_mult  #) is   ComplexLinearSpace;
by Lemma12, Th6, Th7, Th8, Th9, Th10, Th11, Th12, CLVECT_1:1;
 
end;
 
:: deftheorem Def7   defines Linear_Space_of_ComplexSequences CSSPACE:def 7 : 
:: deftheorem Def8   defines Add_ CSSPACE:def 8 : 
:: deftheorem Def9   defines Mult_ CSSPACE:def 9 : 
:: deftheorem Def10   defines Zero_ CSSPACE:def 10 : 
theorem Th13: :: CSSPACE:13
:: deftheorem Def11   defines the_set_of_l2ComplexSequences CSSPACE:def 11 : 
theorem Th14: :: CSSPACE:14
theorem Th15: :: CSSPACE:15
theorem Th16: :: CSSPACE:16
theorem Th17: :: CSSPACE:17
registration
let c1 be  non 
empty  set ;
let c2 be    
Element of 
c1;
let c3 be   
BinOp of 
c1;
let c4 be   
Function of 
[:COMPLEX ,c1:],
c1;
let c5 be   
Function of 
[:c1,c1:], 
COMPLEX ;
cluster  CUNITSTR(# 
a1,
a2,
a3,
a4,
a5 #)
 -> non 
empty ;
coherence 
not  CUNITSTR(# c1,c2,c3,c4,c5 #) is empty
 
 
end;
 
deffunc H1(   CUNITSTR ) ->    Element of the carrier of a1 =  0. a1;
:: deftheorem Def12   defines .|. CSSPACE:def 12 : 
consider c1 being   ComplexLinearSpace;
Lemma27: 
the carrier of ((0). c1) = {(0. c1)}
 
by CLVECT_1:def 5;
reconsider c2 = [:the carrier of ((0). c1),the carrier of ((0). c1):] --> 0c  as   Function of [:the carrier of ((0). c1),the carrier of ((0). c1):], COMPLEX  by FUNCOP_1:57;
Lemma28: 
for b1, b2 being  VECTOR of ((0). c1) holds  c2 . [b1,b2] =  0c 
 
by FUNCOP_1:13;
 0. c1 in the carrier of ((0). c1)
 
by Lemma27, TARSKI:def 1;
then Lemma29: 
c2 . [(0. c1),(0. c1)] =  0c 
 
by Lemma28;
Lemma30: 
for b1 being  VECTOR of ((0). c1) holds 
 ( 0 <=  Re (c2 . [b1,b1]) &  Im (c2 . [b1,b1]) = 0 )
 
Lemma31: 
for b1, b2 being  VECTOR of ((0). c1) holds  c2 . [b1,b2] = (c2 . [b2,b1]) *' 
 
Lemma32: 
for b1, b2, b3 being  VECTOR of ((0). c1) holds  c2 . [(b1 + b2),b3] = (c2 . [b1,b3]) + (c2 . [b2,b3])
 
Lemma33: 
for b1, b2 being  VECTOR of ((0). c1)
 for b3 being  Complex holds  c2 . [(b3 * b1),b2] = b3 * (c2 . [b1,b2])
 
set c3 =  CUNITSTR(# the carrier of ((0). c1),the Zero of ((0). c1),the add of ((0). c1),the Mult of ((0). c1),c2 #);
E34: 
now 
let c4, 
c5, 
c6 be   
Point of 
CUNITSTR(# the 
carrier of 
((0). c1),the 
Zero of 
((0). c1),the 
add of 
((0). c1),the 
Mult of 
((0). c1),
c2 #);
let c7 be   
Complex;
thus 
( 
c4 .|. c4 =  0c  iff 
c4 = H1( 
CUNITSTR(# the 
carrier of 
((0). c1),the 
Zero of 
((0). c1),the 
add of 
((0). c1),the 
Mult of 
((0). c1),
c2 #)) )
 
proof 
H1( 
CUNITSTR(# the 
carrier of 
((0). c1),the 
Zero of 
((0). c1),the 
add of 
((0). c1),the 
Mult of 
((0). c1),
c2 #)) = 
the 
Zero of 
CUNITSTR(# the 
carrier of 
((0). c1),the 
Zero of 
((0). c1),the 
add of 
((0). c1),the 
Mult of 
((0). c1),
c2 #)
.= 
 
0. ((0). c1)
.= 
 
0. c1
by CLVECT_1:31
;
hence 
( 
c4 .|. c4 =  0c  iff 
c4 = H1( 
CUNITSTR(# the 
carrier of 
((0). c1),the 
Zero of 
((0). c1),the 
add of 
((0). c1),the 
Mult of 
((0). c1),
c2 #)) )
 
by Lemma27, Lemma29, TARSKI:def 1;
 
end;
 
thus 
( 0 
<=  Re (c4 .|. c4) & 0 
=  Im (c4 .|. c4) )
 
by Lemma30;
thus 
c4 .|. c5 = (c5 .|. c4) *' 
 by Lemma31;
thus 
(c4 + c5) .|. c6 = (c4 .|. c6) + (c5 .|. c6)
 
thus 
(c7 * c4) .|. c5 = c7 * (c4 .|. c5)
 
 
end;
 
:: deftheorem Def13   defines ComplexUnitarySpace-like CSSPACE:def 13 : 
theorem Th18: :: CSSPACE:18
theorem Th19: :: CSSPACE:19
theorem Th20: :: CSSPACE:20
theorem Th21: :: CSSPACE:21
theorem Th22: :: CSSPACE:22
theorem Th23: :: CSSPACE:23
theorem Th24: :: CSSPACE:24
theorem Th25: :: CSSPACE:25
theorem Th26: :: CSSPACE:26
theorem Th27: :: CSSPACE:27
theorem Th28: :: CSSPACE:28
theorem Th29: :: CSSPACE:29
theorem Th30: :: CSSPACE:30
theorem Th31: :: CSSPACE:31
theorem Th32: :: CSSPACE:32
theorem Th33: :: CSSPACE:33
theorem Th34: :: CSSPACE:34
theorem Th35: :: CSSPACE:35
Lemma51: 
for b1 being  ComplexUnitarySpace
 for b2, b3 being  Complex
 for b4, b5 being  Point of b1 holds  ((b2 * b4) + (b3 * b5)) .|. ((b2 * b4) + (b3 * b5)) = ((((b2 * (b2 *' )) * (b4 .|. b4)) + ((b2 * (b3 *' )) * (b4 .|. b5))) + (((b2 *' ) * b3) * (b5 .|. b4))) + ((b3 * (b3 *' )) * (b5 .|. b5))
 
theorem Th36: :: CSSPACE:36
theorem Th37: :: CSSPACE:37
:: deftheorem Def14   defines are_orthogonal CSSPACE:def 14 : 
theorem Th38: :: CSSPACE:38
theorem Th39: :: CSSPACE:39
theorem Th40: :: CSSPACE:40
theorem Th41: :: CSSPACE:41
theorem Th42: :: CSSPACE:42
theorem Th43: :: CSSPACE:43
:: deftheorem Def15   defines ||. CSSPACE:def 15 : 
theorem Th44: :: CSSPACE:44
theorem Th45: :: CSSPACE:45
theorem Th46: :: CSSPACE:46
theorem Th47: :: CSSPACE:47
theorem Th48: :: CSSPACE:48
theorem Th49: :: CSSPACE:49
theorem Th50: :: CSSPACE:50
theorem Th51: :: CSSPACE:51
:: deftheorem Def16   defines dist CSSPACE:def 16 : 
theorem Th52: :: CSSPACE:52
theorem Th53: :: CSSPACE:53
theorem Th54: :: CSSPACE:54
theorem Th55: :: CSSPACE:55
theorem Th56: :: CSSPACE:56
theorem Th57: :: CSSPACE:57
theorem Th58: :: CSSPACE:58
theorem Th59: :: CSSPACE:59
theorem Th60: :: CSSPACE:60
theorem Th61: :: CSSPACE:61
theorem Th62: :: CSSPACE:62
:: deftheorem Def17   defines - CSSPACE:def 17 : 
:: deftheorem Def18   defines + CSSPACE:def 18 : 
theorem Th63: :: CSSPACE:63
theorem Th64: :: CSSPACE:64
theorem Th65: :: CSSPACE:65
theorem Th66: :: CSSPACE:66
theorem Th67: :: CSSPACE:67
theorem Th68: :: CSSPACE:68
theorem Th69: :: CSSPACE:69
theorem Th70: :: CSSPACE:70
theorem Th71: :: CSSPACE:71
theorem Th72: :: CSSPACE:72
theorem Th73: :: CSSPACE:73
theorem Th74: :: CSSPACE:74
theorem Th75: :: CSSPACE:75
theorem Th76: :: CSSPACE:76
theorem Th77: :: CSSPACE:77
theorem Th78: :: CSSPACE:78
theorem Th79: :: CSSPACE:79
theorem Th80: :: CSSPACE:80
theorem Th81: :: CSSPACE:81
theorem Th82: :: CSSPACE:82
theorem Th83: :: CSSPACE:83
theorem Th84: :: CSSPACE:84
theorem Th85: :: CSSPACE:85
theorem Th86: :: CSSPACE:86
definition
func  cl_scalar  ->   Function of 
[:the_set_of_l2ComplexSequences ,the_set_of_l2ComplexSequences :], 
COMPLEX  means :: CSSPACE:def 19
for 
b1, 
b2 being   
set   st 
b1 in  the_set_of_l2ComplexSequences  & 
b2 in  the_set_of_l2ComplexSequences  holds 
a1 . [b1,b2] =  Sum ((seq_id b1) (#) ((seq_id b2) *' ));
existence 
ex b1 being  Function of [:the_set_of_l2ComplexSequences ,the_set_of_l2ComplexSequences :], COMPLEX  st 
for b2, b3 being   set   st b2 in  the_set_of_l2ComplexSequences  & b3 in  the_set_of_l2ComplexSequences  holds 
b1 . [b2,b3] =  Sum ((seq_id b2) (#) ((seq_id b3) *' ))
 by Th86;
uniqueness 
for b1, b2 being  Function of [:the_set_of_l2ComplexSequences ,the_set_of_l2ComplexSequences :], COMPLEX   st ( for b3, b4 being   set   st b3 in  the_set_of_l2ComplexSequences  & b4 in  the_set_of_l2ComplexSequences  holds 
b1 . [b3,b4] =  Sum ((seq_id b3) (#) ((seq_id b4) *' )) ) & ( for b3, b4 being   set   st b3 in  the_set_of_l2ComplexSequences  & b4 in  the_set_of_l2ComplexSequences  holds 
b2 . [b3,b4] =  Sum ((seq_id b3) (#) ((seq_id b4) *' )) ) holds 
b1 = b2
 
 
end;
 
:: deftheorem Def19   defines cl_scalar CSSPACE:def 19 : 
registration
cluster  CUNITSTR(# 
the_set_of_l2ComplexSequences ,
(Zero_ the_set_of_l2ComplexSequences ,Linear_Space_of_ComplexSequences ),
(Add_ the_set_of_l2ComplexSequences ,Linear_Space_of_ComplexSequences ),
(Mult_ the_set_of_l2ComplexSequences ,Linear_Space_of_ComplexSequences ),
cl_scalar  #)
 -> non 
empty ;
coherence 
not  CUNITSTR(# the_set_of_l2ComplexSequences ,(Zero_ the_set_of_l2ComplexSequences ,Linear_Space_of_ComplexSequences ),(Add_ the_set_of_l2ComplexSequences ,Linear_Space_of_ComplexSequences ),(Mult_ the_set_of_l2ComplexSequences ,Linear_Space_of_ComplexSequences ),cl_scalar  #) is empty
 
 
end;
 
definition
func  Complex_l2_Space  ->  non 
empty  CUNITSTR  equals :: CSSPACE:def 20
 CUNITSTR(# 
the_set_of_l2ComplexSequences ,
(Zero_ the_set_of_l2ComplexSequences ,Linear_Space_of_ComplexSequences ),
(Add_ the_set_of_l2ComplexSequences ,Linear_Space_of_ComplexSequences ),
(Mult_ the_set_of_l2ComplexSequences ,Linear_Space_of_ComplexSequences ),
cl_scalar  #);
correctness 
coherence 
 CUNITSTR(# the_set_of_l2ComplexSequences ,(Zero_ the_set_of_l2ComplexSequences ,Linear_Space_of_ComplexSequences ),(Add_ the_set_of_l2ComplexSequences ,Linear_Space_of_ComplexSequences ),(Mult_ the_set_of_l2ComplexSequences ,Linear_Space_of_ComplexSequences ),cl_scalar  #) is  non empty  CUNITSTR ;
;
 
end;
 
:: deftheorem Def20   defines Complex_l2_Space CSSPACE:def 20 : 
theorem Th87: :: CSSPACE:87
theorem Th88: :: CSSPACE:88