:: DICKSON semantic presentation
theorem Th1: :: DICKSON:1
theorem Th2: :: DICKSON:2
for
b1 being
Nat holds
b1 c= b1 + 1
theorem Th3: :: DICKSON:3
:: deftheorem Def1 defines ascending DICKSON:def 1 :
:: deftheorem Def2 defines weakly-ascending DICKSON:def 2 :
theorem Th4: :: DICKSON:4
theorem Th5: :: DICKSON:5
theorem Th6: :: DICKSON:6
canceled;
theorem Th7: :: DICKSON:7
theorem Th8: :: DICKSON:8
:: deftheorem Def3 defines quasi_ordered DICKSON:def 3 :
:: deftheorem Def4 defines EqRel DICKSON:def 4 :
theorem Th9: :: DICKSON:9
definition
let c1 be
RelStr ;
func <=E c1 -> Relation of
Class (EqRel a1) means :
Def5:
:: DICKSON:def 5
for
b1,
b2 being
set holds
(
[b1,b2] in a2 iff ex
b3,
b4 being
Element of
a1 st
(
b1 = Class (EqRel a1),
b3 &
b2 = Class (EqRel a1),
b4 &
b3 <= b4 ) );
existence
ex b1 being Relation of Class (EqRel c1) st
for b2, b3 being set holds
( [b2,b3] in b1 iff ex b4, b5 being Element of c1 st
( b2 = Class (EqRel c1),b4 & b3 = Class (EqRel c1),b5 & b4 <= b5 ) )
uniqueness
for b1, b2 being Relation of Class (EqRel c1) st ( for b3, b4 being set holds
( [b3,b4] in b1 iff ex b5, b6 being Element of c1 st
( b3 = Class (EqRel c1),b5 & b4 = Class (EqRel c1),b6 & b5 <= b6 ) ) ) & ( for b3, b4 being set holds
( [b3,b4] in b2 iff ex b5, b6 being Element of c1 st
( b3 = Class (EqRel c1),b5 & b4 = Class (EqRel c1),b6 & b5 <= b6 ) ) ) holds
b1 = b2
end;
:: deftheorem Def5 defines <=E DICKSON:def 5 :
theorem Th10: :: DICKSON:10
theorem Th11: :: DICKSON:11
:: deftheorem Def6 defines \~ DICKSON:def 6 :
:: deftheorem Def7 defines \~ DICKSON:def 7 :
theorem Th12: :: DICKSON:12
theorem Th13: :: DICKSON:13
theorem Th14: :: DICKSON:14
theorem Th15: :: DICKSON:15
theorem Th16: :: DICKSON:16
theorem Th17: :: DICKSON:17
theorem Th18: :: DICKSON:18
theorem Th19: :: DICKSON:19
:: deftheorem Def8 defines min-classes DICKSON:def 8 :
theorem Th20: :: DICKSON:20
theorem Th21: :: DICKSON:21
theorem Th22: :: DICKSON:22
theorem Th23: :: DICKSON:23
theorem Th24: :: DICKSON:24
theorem Th25: :: DICKSON:25
:: deftheorem Def9 defines is_Dickson-basis_of DICKSON:def 9 :
theorem Th26: :: DICKSON:26
theorem Th27: :: DICKSON:27
:: deftheorem Def10 defines Dickson DICKSON:def 10 :
theorem Th28: :: DICKSON:28
theorem Th29: :: DICKSON:29
:: deftheorem Def11 defines mindex DICKSON:def 11 :
:: deftheorem Def12 defines mindex DICKSON:def 12 :
for
b1 being non
empty 1-sorted for
b2 being
sequence of
b1 for
b3 being
set for
b4 being
Nat st ex
b5 being
Nat st
(
b4 < b5 &
b2 . b5 = b3 ) holds
for
b5 being
Nat holds
(
b5 = b2 mindex b3,
b4 iff (
b2 . b5 = b3 &
b4 < b5 & ( for
b6 being
Nat st
b4 < b6 &
b2 . b6 = b3 holds
b5 <= b6 ) ) );
theorem Th30: :: DICKSON:30
theorem Th31: :: DICKSON:31
theorem Th32: :: DICKSON:32
theorem Th33: :: DICKSON:33
theorem Th34: :: DICKSON:34
theorem Th35: :: DICKSON:35
:: deftheorem Def13 defines Dickson-bases DICKSON:def 13 :
theorem Th36: :: DICKSON:36
theorem Th37: :: DICKSON:37
theorem Th38: :: DICKSON:38
theorem Th39: :: DICKSON:39
theorem Th40: :: DICKSON:40
theorem Th41: :: DICKSON:41
theorem Th42: :: DICKSON:42
theorem Th43: :: DICKSON:43
Lemma45:
for b1 being RelStr-yielding ManySortedSet of {} holds
( not product b1 is empty & product b1 is quasi_ordered & product b1 is Dickson & product b1 is antisymmetric )
:: deftheorem Def14 defines NATOrd DICKSON:def 14 :
theorem Th44: :: DICKSON:44
theorem Th45: :: DICKSON:45
theorem Th46: :: DICKSON:46
theorem Th47: :: DICKSON:47
:: deftheorem Def15 defines OrderedNAT DICKSON:def 15 :
theorem Th48: :: DICKSON:48
theorem Th49: :: DICKSON:49
theorem Th50: :: DICKSON:50