:: FF_SIEC semantic presentation
:: deftheorem Def1 FF_SIEC:def 1 :
canceled;
:: deftheorem Def2 defines chaos FF_SIEC:def 2 :
:: deftheorem Def3 FF_SIEC:def 3 :
canceled;
:: deftheorem Def4 defines PTempty_f_net FF_SIEC:def 4 :
:: deftheorem Def5 defines Tempty_f_net FF_SIEC:def 5 :
:: deftheorem Def6 defines Pempty_f_net FF_SIEC:def 6 :
:: deftheorem Def7 defines Tsingle_f_net FF_SIEC:def 7 :
:: deftheorem Def8 defines Psingle_f_net FF_SIEC:def 8 :
:: deftheorem Def9 defines empty_f_net FF_SIEC:def 9 :
theorem Th1: :: FF_SIEC:1
canceled;
theorem Th2: :: FF_SIEC:2
theorem Th3: :: FF_SIEC:3
theorem Th4: :: FF_SIEC:4
theorem Th5: :: FF_SIEC:5
theorem Th6: :: FF_SIEC:6
theorem Th7: :: FF_SIEC:7
theorem Th8: :: FF_SIEC:8
theorem Th9: :: FF_SIEC:9
canceled;
theorem Th10: :: FF_SIEC:10
canceled;
theorem Th11: :: FF_SIEC:11
theorem Th12: :: FF_SIEC:12
theorem Th13: :: FF_SIEC:13
theorem Th14: :: FF_SIEC:14
Lemma5:
for b1, b2, b3, b4 being set st b2 misses b4 & b1 c= b2 & b3 c= b4 holds
b1 misses b3
theorem Th15: :: FF_SIEC:15
theorem Th16: :: FF_SIEC:16
theorem Th17: :: FF_SIEC:17
theorem Th18: :: FF_SIEC:18
theorem Th19: :: FF_SIEC:19
theorem Th20: :: FF_SIEC:20
theorem Th21: :: FF_SIEC:21
:: deftheorem Def10 defines f_enter FF_SIEC:def 10 :
:: deftheorem Def11 defines f_exit FF_SIEC:def 11 :
theorem Th22: :: FF_SIEC:22
theorem Th23: :: FF_SIEC:23
theorem Th24: :: FF_SIEC:24
theorem Th25: :: FF_SIEC:25
:: deftheorem Def12 defines f_prox FF_SIEC:def 12 :
:: deftheorem Def13 defines f_flow FF_SIEC:def 13 :
theorem Th26: :: FF_SIEC:26
:: deftheorem Def14 defines f_places FF_SIEC:def 14 :
:: deftheorem Def15 defines f_transitions FF_SIEC:def 15 :
:: deftheorem Def16 defines f_pre FF_SIEC:def 16 :
:: deftheorem Def17 defines f_post FF_SIEC:def 17 :
theorem Th27: :: FF_SIEC:27
theorem Th28: :: FF_SIEC:28
theorem Th29: :: FF_SIEC:29
:: deftheorem Def18 defines f_entrance FF_SIEC:def 18 :
:: deftheorem Def19 defines f_escape FF_SIEC:def 19 :
theorem Th30: :: FF_SIEC:30
theorem Th31: :: FF_SIEC:31
theorem Th32: :: FF_SIEC:32
theorem Th33: :: FF_SIEC:33
:: deftheorem Def20 defines f_adjac FF_SIEC:def 20 :
theorem Th34: :: FF_SIEC:34