:: FINSEQ_2 semantic presentation
theorem Th1: :: FINSEQ_2:1
theorem Th2: :: FINSEQ_2:2
theorem Th3: :: FINSEQ_2:3
for
b1,
b2 being
Nat st
b1 <= b2 holds
max 0,
(b1 - b2) = 0
theorem Th4: :: FINSEQ_2:4
for
b1,
b2 being
Nat st
b1 <= b2 holds
max 0,
(b2 - b1) = b2 - b1
theorem Th5: :: FINSEQ_2:5
theorem Th6: :: FINSEQ_2:6
theorem Th7: :: FINSEQ_2:7
canceled;
theorem Th8: :: FINSEQ_2:8
for
b1,
b2 being
Nat holds
( not
b1 in Seg (b2 + 1) or
b1 in Seg b2 or
b1 = b2 + 1 )
theorem Th9: :: FINSEQ_2:9
theorem Th10: :: FINSEQ_2:10
theorem Th11: :: FINSEQ_2:11
theorem Th12: :: FINSEQ_2:12
canceled;
theorem Th13: :: FINSEQ_2:13
theorem Th14: :: FINSEQ_2:14
Lemma10:
for b1, b2 being set holds rng <*b1,b2*> = {b1,b2}
theorem Th15: :: FINSEQ_2:15
Lemma12:
for b1, b2, b3 being set holds rng <*b1,b2,b3*> = {b1,b2,b3}
theorem Th16: :: FINSEQ_2:16
theorem Th17: :: FINSEQ_2:17
canceled;
theorem Th18: :: FINSEQ_2:18
theorem Th19: :: FINSEQ_2:19
theorem Th20: :: FINSEQ_2:20
theorem Th21: :: FINSEQ_2:21
theorem Th22: :: FINSEQ_2:22
theorem Th23: :: FINSEQ_2:23
theorem Th24: :: FINSEQ_2:24
theorem Th25: :: FINSEQ_2:25
theorem Th26: :: FINSEQ_2:26
theorem Th27: :: FINSEQ_2:27
theorem Th28: :: FINSEQ_2:28
theorem Th29: :: FINSEQ_2:29
canceled;
theorem Th30: :: FINSEQ_2:30
theorem Th31: :: FINSEQ_2:31
theorem Th32: :: FINSEQ_2:32
theorem Th33: :: FINSEQ_2:33
theorem Th34: :: FINSEQ_2:34
theorem Th35: :: FINSEQ_2:35
theorem Th36: :: FINSEQ_2:36
theorem Th37: :: FINSEQ_2:37
theorem Th38: :: FINSEQ_2:38
theorem Th39: :: FINSEQ_2:39
theorem Th40: :: FINSEQ_2:40
theorem Th41: :: FINSEQ_2:41
theorem Th42: :: FINSEQ_2:42
theorem Th43: :: FINSEQ_2:43
theorem Th44: :: FINSEQ_2:44
theorem Th45: :: FINSEQ_2:45
theorem Th46: :: FINSEQ_2:46
theorem Th47: :: FINSEQ_2:47
theorem Th48: :: FINSEQ_2:48
theorem Th49: :: FINSEQ_2:49
theorem Th50: :: FINSEQ_2:50
theorem Th51: :: FINSEQ_2:51
theorem Th52: :: FINSEQ_2:52
:: deftheorem Def1 defines idseq FINSEQ_2:def 1 :
theorem Th53: :: FINSEQ_2:53
canceled;
theorem Th54: :: FINSEQ_2:54
theorem Th55: :: FINSEQ_2:55
theorem Th56: :: FINSEQ_2:56
theorem Th57: :: FINSEQ_2:57
theorem Th58: :: FINSEQ_2:58
theorem Th59: :: FINSEQ_2:59
theorem Th60: :: FINSEQ_2:60
theorem Th61: :: FINSEQ_2:61
theorem Th62: :: FINSEQ_2:62
theorem Th63: :: FINSEQ_2:63
theorem Th64: :: FINSEQ_2:64
theorem Th65: :: FINSEQ_2:65
theorem Th66: :: FINSEQ_2:66
:: deftheorem Def2 defines |-> FINSEQ_2:def 2 :
theorem Th67: :: FINSEQ_2:67
canceled;
theorem Th68: :: FINSEQ_2:68
theorem Th69: :: FINSEQ_2:69
theorem Th70: :: FINSEQ_2:70
theorem Th71: :: FINSEQ_2:71
theorem Th72: :: FINSEQ_2:72
theorem Th73: :: FINSEQ_2:73
theorem Th74: :: FINSEQ_2:74
theorem Th75: :: FINSEQ_2:75
theorem Th76: :: FINSEQ_2:76
theorem Th77: :: FINSEQ_2:77
Lemma54:
for b1 being Nat
for b2, b3 being FinSequence
for b4 being Function st [:(rng b2),(rng b3):] c= dom b4 & b1 = min (len b2),(len b3) holds
dom (b4 .: b2,b3) = Seg b1
theorem Th78: :: FINSEQ_2:78
theorem Th79: :: FINSEQ_2:79
Lemma57:
for b1 being set
for b2 being FinSequence
for b3 being Function st [:{b1},(rng b2):] c= dom b3 holds
dom (b3 [;] b1,b2) = dom b2
theorem Th80: :: FINSEQ_2:80
theorem Th81: :: FINSEQ_2:81
Lemma60:
for b1 being set
for b2 being FinSequence
for b3 being Function st [:(rng b2),{b1}:] c= dom b3 holds
dom (b3 [:] b2,b1) = dom b2
theorem Th82: :: FINSEQ_2:82
theorem Th83: :: FINSEQ_2:83
theorem Th84: :: FINSEQ_2:84
theorem Th85: :: FINSEQ_2:85
theorem Th86: :: FINSEQ_2:86
theorem Th87: :: FINSEQ_2:87
theorem Th88: :: FINSEQ_2:88
theorem Th89: :: FINSEQ_2:89
for
b1,
b2,
b3 being non
empty set for
b4,
b5 being
Element of
b1 for
b6,
b7 being
Element of
b2 for
b8 being
Function of
[:b1,b2:],
b3 for
b9 being
FinSequence of
b1 for
b10 being
FinSequence of
b2 st
b9 = <*b4,b5*> &
b10 = <*b6,b7*> holds
b8 .: b9,
b10 = <*(b8 . b4,b6),(b8 . b5,b7)*>
theorem Th90: :: FINSEQ_2:90
for
b1,
b2,
b3 being non
empty set for
b4,
b5,
b6 being
Element of
b1 for
b7,
b8,
b9 being
Element of
b2 for
b10 being
Function of
[:b1,b2:],
b3 for
b11 being
FinSequence of
b1 for
b12 being
FinSequence of
b2 st
b11 = <*b4,b5,b6*> &
b12 = <*b7,b8,b9*> holds
b10 .: b11,
b12 = <*(b10 . b4,b7),(b10 . b5,b8),(b10 . b6,b9)*>
theorem Th91: :: FINSEQ_2:91
theorem Th92: :: FINSEQ_2:92
theorem Th93: :: FINSEQ_2:93
theorem Th94: :: FINSEQ_2:94
theorem Th95: :: FINSEQ_2:95
for
b1,
b2,
b3 being non
empty set for
b4 being
Element of
b1 for
b5,
b6 being
Element of
b2 for
b7 being
Function of
[:b1,b2:],
b3 for
b8 being
FinSequence of
b2 st
b8 = <*b5,b6*> holds
b7 [;] b4,
b8 = <*(b7 . b4,b5),(b7 . b4,b6)*>
theorem Th96: :: FINSEQ_2:96
for
b1,
b2,
b3 being non
empty set for
b4 being
Element of
b1 for
b5,
b6,
b7 being
Element of
b2 for
b8 being
Function of
[:b1,b2:],
b3 for
b9 being
FinSequence of
b2 st
b9 = <*b5,b6,b7*> holds
b8 [;] b4,
b9 = <*(b8 . b4,b5),(b8 . b4,b6),(b8 . b4,b7)*>
theorem Th97: :: FINSEQ_2:97
theorem Th98: :: FINSEQ_2:98
theorem Th99: :: FINSEQ_2:99
theorem Th100: :: FINSEQ_2:100
theorem Th101: :: FINSEQ_2:101
for
b1,
b2,
b3 being non
empty set for
b4,
b5 being
Element of
b1 for
b6 being
Element of
b2 for
b7 being
Function of
[:b1,b2:],
b3 for
b8 being
FinSequence of
b1 st
b8 = <*b4,b5*> holds
b7 [:] b8,
b6 = <*(b7 . b4,b6),(b7 . b5,b6)*>
theorem Th102: :: FINSEQ_2:102
for
b1,
b2,
b3 being non
empty set for
b4,
b5,
b6 being
Element of
b1 for
b7 being
Element of
b2 for
b8 being
Function of
[:b1,b2:],
b3 for
b9 being
FinSequence of
b1 st
b9 = <*b4,b5,b6*> holds
b8 [:] b9,
b7 = <*(b8 . b4,b7),(b8 . b5,b7),(b8 . b6,b7)*>
:: deftheorem Def3 defines FinSequenceSet FINSEQ_2:def 3 :
theorem Th103: :: FINSEQ_2:103
canceled;
theorem Th104: :: FINSEQ_2:104
theorem Th105: :: FINSEQ_2:105
theorem Th106: :: FINSEQ_2:106
canceled;
theorem Th107: :: FINSEQ_2:107
:: deftheorem Def4 defines -tuples_on FINSEQ_2:def 4 :
theorem Th108: :: FINSEQ_2:108
canceled;
theorem Th109: :: FINSEQ_2:109
theorem Th110: :: FINSEQ_2:110
theorem Th111: :: FINSEQ_2:111
theorem Th112: :: FINSEQ_2:112
theorem Th113: :: FINSEQ_2:113
theorem Th114: :: FINSEQ_2:114
theorem Th115: :: FINSEQ_2:115
theorem Th116: :: FINSEQ_2:116
theorem Th117: :: FINSEQ_2:117
theorem Th118: :: FINSEQ_2:118
theorem Th119: :: FINSEQ_2:119
theorem Th120: :: FINSEQ_2:120
theorem Th121: :: FINSEQ_2:121
theorem Th122: :: FINSEQ_2:122
theorem Th123: :: FINSEQ_2:123
theorem Th124: :: FINSEQ_2:124
theorem Th125: :: FINSEQ_2:125
theorem Th126: :: FINSEQ_2:126
theorem Th127: :: FINSEQ_2:127
theorem Th128: :: FINSEQ_2:128
theorem Th129: :: FINSEQ_2:129
theorem Th130: :: FINSEQ_2:130
theorem Th131: :: FINSEQ_2:131
theorem Th132: :: FINSEQ_2:132
theorem Th133: :: FINSEQ_2:133
theorem Th134: :: FINSEQ_2:134
theorem Th135: :: FINSEQ_2:135
theorem Th136: :: FINSEQ_2:136
theorem Th137: :: FINSEQ_2:137
theorem Th138: :: FINSEQ_2:138
theorem Th139: :: FINSEQ_2:139
theorem Th140: :: FINSEQ_2:140
theorem Th141: :: FINSEQ_2:141
theorem Th142: :: FINSEQ_2:142
theorem Th143: :: FINSEQ_2:143
theorem Th144: :: FINSEQ_2:144
theorem Th145: :: FINSEQ_2:145
theorem Th146: :: FINSEQ_2:146
theorem Th147: :: FINSEQ_2:147
theorem Th148: :: FINSEQ_2:148
theorem Th149: :: FINSEQ_2:149