:: FINTOPO5 semantic presentation
theorem Th1: :: FINTOPO5:1
theorem Th2: :: FINTOPO5:2
:: deftheorem Def1 defines is_homeomorphism FINTOPO5:def 1 :
theorem Th3: :: FINTOPO5:3
theorem Th4: :: FINTOPO5:4
theorem Th5: :: FINTOPO5:5
theorem Th6: :: FINTOPO5:6
theorem Th7: :: FINTOPO5:7
theorem Th8: :: FINTOPO5:8
theorem Th9: :: FINTOPO5:9
theorem Th10: :: FINTOPO5:10
definition
let c1,
c2 be
Nat;
func Nbdl2 c1,
c2 -> Function of
[:(Seg a1),(Seg a2):],
bool [:(Seg a1),(Seg a2):] means :
Def2:
:: FINTOPO5:def 2
for
b1 being
set st
b1 in [:(Seg a1),(Seg a2):] holds
for
b2,
b3 being
Nat st
b1 = [b2,b3] holds
a3 . b1 = [:((Nbdl1 a1) . b2),((Nbdl1 a2) . b3):];
existence
ex b1 being Function of [:(Seg c1),(Seg c2):], bool [:(Seg c1),(Seg c2):] st
for b2 being set st b2 in [:(Seg c1),(Seg c2):] holds
for b3, b4 being Nat st b2 = [b3,b4] holds
b1 . b2 = [:((Nbdl1 c1) . b3),((Nbdl1 c2) . b4):]
uniqueness
for b1, b2 being Function of [:(Seg c1),(Seg c2):], bool [:(Seg c1),(Seg c2):] st ( for b3 being set st b3 in [:(Seg c1),(Seg c2):] holds
for b4, b5 being Nat st b3 = [b4,b5] holds
b1 . b3 = [:((Nbdl1 c1) . b4),((Nbdl1 c2) . b5):] ) & ( for b3 being set st b3 in [:(Seg c1),(Seg c2):] holds
for b4, b5 being Nat st b3 = [b4,b5] holds
b2 . b3 = [:((Nbdl1 c1) . b4),((Nbdl1 c2) . b5):] ) holds
b1 = b2
end;
:: deftheorem Def2 defines Nbdl2 FINTOPO5:def 2 :
:: deftheorem Def3 defines FTSL2 FINTOPO5:def 3 :
theorem Th11: :: FINTOPO5:11
theorem Th12: :: FINTOPO5:12
theorem Th13: :: FINTOPO5:13
definition
let c1,
c2 be
Nat;
func Nbds2 c1,
c2 -> Function of
[:(Seg a1),(Seg a2):],
bool [:(Seg a1),(Seg a2):] means :
Def4:
:: FINTOPO5:def 4
for
b1 being
set st
b1 in [:(Seg a1),(Seg a2):] holds
for
b2,
b3 being
Nat st
b1 = [b2,b3] holds
a3 . b1 = [:{b2},((Nbdl1 a2) . b3):] \/ [:((Nbdl1 a1) . b2),{b3}:];
existence
ex b1 being Function of [:(Seg c1),(Seg c2):], bool [:(Seg c1),(Seg c2):] st
for b2 being set st b2 in [:(Seg c1),(Seg c2):] holds
for b3, b4 being Nat st b2 = [b3,b4] holds
b1 . b2 = [:{b3},((Nbdl1 c2) . b4):] \/ [:((Nbdl1 c1) . b3),{b4}:]
uniqueness
for b1, b2 being Function of [:(Seg c1),(Seg c2):], bool [:(Seg c1),(Seg c2):] st ( for b3 being set st b3 in [:(Seg c1),(Seg c2):] holds
for b4, b5 being Nat st b3 = [b4,b5] holds
b1 . b3 = [:{b4},((Nbdl1 c2) . b5):] \/ [:((Nbdl1 c1) . b4),{b5}:] ) & ( for b3 being set st b3 in [:(Seg c1),(Seg c2):] holds
for b4, b5 being Nat st b3 = [b4,b5] holds
b2 . b3 = [:{b4},((Nbdl1 c2) . b5):] \/ [:((Nbdl1 c1) . b4),{b5}:] ) holds
b1 = b2
end;
:: deftheorem Def4 defines Nbds2 FINTOPO5:def 4 :
for
b1,
b2 being
Nat for
b3 being
Function of
[:(Seg b1),(Seg b2):],
bool [:(Seg b1),(Seg b2):] holds
(
b3 = Nbds2 b1,
b2 iff for
b4 being
set st
b4 in [:(Seg b1),(Seg b2):] holds
for
b5,
b6 being
Nat st
b4 = [b5,b6] holds
b3 . b4 = [:{b5},((Nbdl1 b2) . b6):] \/ [:((Nbdl1 b1) . b5),{b6}:] );
:: deftheorem Def5 defines FTSS2 FINTOPO5:def 5 :
theorem Th14: :: FINTOPO5:14
theorem Th15: :: FINTOPO5:15
theorem Th16: :: FINTOPO5:16