:: FRAENKEL semantic presentation
scheme :: FRAENKEL:sch 2
s2{
F1()
-> non
empty set ,
F2()
-> non
empty set ,
F3(
set ,
set )
-> set ,
P1[
set ,
set ],
P2[
set ,
set ] } :
{ F3(b1,b2) where B is Element of F1(), B is Element of F2() : P1[b1,b2] } c= { F3(b1,b2) where B is Element of F1(), B is Element of F2() : P2[b1,b2] }
provided
E1:
for
b1 being
Element of
F1()
for
b2 being
Element of
F2() st
P1[
b1,
b2] holds
P2[
b1,
b2]
scheme :: FRAENKEL:sch 4
s4{
F1()
-> non
empty set ,
F2()
-> non
empty set ,
F3(
set ,
set )
-> set ,
P1[
set ,
set ],
P2[
set ,
set ] } :
{ F3(b1,b2) where B is Element of F1(), B is Element of F2() : P1[b1,b2] } = { F3(b1,b2) where B is Element of F1(), B is Element of F2() : P2[b1,b2] }
provided
E1:
for
b1 being
Element of
F1()
for
b2 being
Element of
F2() holds
(
P1[
b1,
b2] iff
P2[
b1,
b2] )
scheme :: FRAENKEL:sch 7
s7{
F1()
-> non
empty set ,
F2()
-> non
empty set ,
F3(
set ,
set )
-> set ,
F4(
set ,
set )
-> set ,
P1[
set ,
set ] } :
{ F3(b1,b2) where B is Element of F1(), B is Element of F2() : P1[b1,b2] } = { F4(b1,b2) where B is Element of F1(), B is Element of F2() : P1[b1,b2] }
provided
E1:
for
b1 being
Element of
F1()
for
b2 being
Element of
F2() holds
F3(
b1,
b2)
= F4(
b1,
b2)
scheme :: FRAENKEL:sch 8
s8{
F1()
-> non
empty set ,
F2()
-> non
empty set ,
F3(
set ,
set )
-> set ,
P1[
set ,
set ],
P2[
set ,
set ] } :
{ F3(b1,b2) where B is Element of F1(), B is Element of F2() : P1[b1,b2] } = { F3(b2,b1) where B is Element of F1(), B is Element of F2() : P2[b1,b2] }
provided
E1:
for
b1 being
Element of
F1()
for
b2 being
Element of
F2() holds
(
P1[
b1,
b2] iff
P2[
b1,
b2] )
and E2:
for
b1 being
Element of
F1()
for
b2 being
Element of
F2() holds
F3(
b1,
b2)
= F3(
b2,
b1)
theorem Th1: :: FRAENKEL:1
canceled;
theorem Th2: :: FRAENKEL:2
canceled;
theorem Th3: :: FRAENKEL:3
for
b1,
b2 being non
empty set for
b3,
b4 being
Function of
b1,
b2 for
b5 being
set st
b3 | b5 = b4 | b5 holds
for
b6 being
Element of
b1 st
b6 in b5 holds
b3 . b6 = b4 . b6
theorem Th4: :: FRAENKEL:4
canceled;
theorem Th5: :: FRAENKEL:5
theorem Th6: :: FRAENKEL:6
scheme :: FRAENKEL:sch 11
s11{
F1()
-> non
empty set ,
F2()
-> non
empty set ,
F3(
set ,
set )
-> set ,
P1[
set ,
set ],
P2[
set ] } :
for
b1 being
Element of
F1()
for
b2 being
Element of
F2() st
P1[
b1,
b2] holds
P2[
F3(
b1,
b2)]
provided
E4:
for
b1 being
set st
b1 in { F3(b2,b3) where B is Element of F1(), B is Element of F2() : P1[b2,b3] } holds
P2[
b1]
scheme :: FRAENKEL:sch 12
s12{
F1()
-> non
empty set ,
F2()
-> non
empty set ,
F3(
set ,
set )
-> set ,
P1[
set ,
set ],
P2[
set ] } :
for
b1 being
set st
b1 in { F3(b2,b3) where B is Element of F1(), B is Element of F2() : P1[b2,b3] } holds
P2[
b1]
provided
E4:
for
b1 being
Element of
F1()
for
b2 being
Element of
F2() st
P1[
b1,
b2] holds
P2[
F3(
b1,
b2)]
scheme :: FRAENKEL:sch 13
s13{
F1()
-> non
empty set ,
F2()
-> non
empty set ,
F3()
-> non
empty set ,
F4(
set ,
set )
-> Element of
F3(),
P1[
set ,
set ],
P2[
set ] } :
{ b1 where B is Element of F3() : ( b1 in { F4(b2,b3) where B is Element of F1(), B is Element of F2() : P1[b2,b3] } & P2[b1] ) } = { F4(b1,b2) where B is Element of F1(), B is Element of F2() : ( P1[b1,b2] & P2[F4(b1,b2)] ) }
scheme :: FRAENKEL:sch 15
s15{
F1()
-> non
empty set ,
F2()
-> non
empty set ,
F3(
set ,
set )
-> set ,
P1[
set ,
set ],
P2[
set ] } :
{ F3(b1,b2) where B is Element of F1(), B is Element of F2() : ( b1 in { b3 where B is Element of F1() : P2[b3] } & P1[b1,b2] ) } = { F3(b1,b2) where B is Element of F1(), B is Element of F2() : ( P2[b1] & P1[b1,b2] ) }
scheme :: FRAENKEL:sch 16
s16{
F1()
-> non
empty set ,
F2()
-> non
empty set ,
F3(
set ,
set )
-> set ,
P1[
set ,
set ],
P2[
set ,
set ] } :
{ F3(b1,b2) where B is Element of F1(), B is Element of F2() : P1[b1,b2] } c= { F3(b1,b2) where B is Element of F1(), B is Element of F2() : P2[b1,b2] }
provided
E4:
for
b1 being
Element of
F1()
for
b2 being
Element of
F2() st
P1[
b1,
b2] holds
ex
b3 being
Element of
F1() st
(
P2[
b3,
b2] &
F3(
b1,
b2)
= F3(
b3,
b2) )
scheme :: FRAENKEL:sch 19
s19{
F1()
-> non
empty set ,
F2()
-> non
empty set ,
F3(
set ,
set )
-> set ,
F4()
-> Element of
F2(),
P1[
set ,
set ],
P2[
set ,
set ] } :
{ F3(b1,b2) where B is Element of F1(), B is Element of F2() : P2[b1,b2] } = { F3(b1,F4()) where B is Element of F1() : P1[b1,F4()] }
provided
E4:
for
b1 being
Element of
F1()
for
b2 being
Element of
F2() holds
(
P2[
b1,
b2] iff (
b2 = F4() &
P1[
b1,
b2] ) )
scheme :: FRAENKEL:sch 20
s20{
F1()
-> non
empty set ,
F2()
-> non
empty set ,
F3(
set ,
set )
-> set ,
F4()
-> Element of
F2(),
P1[
set ,
set ] } :
{ F3(b1,b2) where B is Element of F1(), B is Element of F2() : ( b2 = F4() & P1[b1,b2] ) } = { F3(b1,F4()) where B is Element of F1() : P1[b1,F4()] }
:: deftheorem Def1 defines functional FRAENKEL:def 1 :
theorem Th7: :: FRAENKEL:7
canceled;
theorem Th8: :: FRAENKEL:8
:: deftheorem Def2 defines FUNCTION_DOMAIN FRAENKEL:def 2 :
theorem Th9: :: FRAENKEL:9
canceled;
theorem Th10: :: FRAENKEL:10
theorem Th11: :: FRAENKEL:11
theorem Th12: :: FRAENKEL:12
canceled;
theorem Th13: :: FRAENKEL:13
canceled;
theorem Th14: :: FRAENKEL:14
theorem Th15: :: FRAENKEL:15
scheme :: FRAENKEL:sch 23
s23{
F1()
-> non
empty set ,
F2()
-> Element of
Fin F1(),
P1[
Element of
F1(),
Element of
F1()] } :
for
b1 being
Element of
F1() st
b1 in F2() holds
ex
b2 being
Element of
F1() st
(
b2 in F2() &
P1[
b2,
b1] & ( for
b3 being
Element of
F1() st
b3 in F2() &
P1[
b3,
b2] holds
P1[
b2,
b3] ) )
provided
E10:
for
b1 being
Element of
F1() holds
P1[
b1,
b1]
and E11:
for
b1,
b2,
b3 being
Element of
F1() st
P1[
b1,
b2] &
P1[
b2,
b3] holds
P1[
b1,
b3]
theorem Th16: :: FRAENKEL:16
theorem Th17: :: FRAENKEL:17