:: FUZZY_3 semantic presentation

registration
let c1 be non empty set ;
cluster -> quasi_total Membership_Func of a1;
coherence
for b1 being Membership_Func of c1 holds b1 is quasi_total
proof end;
end;

definition
let c1, c2 be non empty set ;
mode RMembership_Func of a1,a2 is Membership_Func of [:a1,a2:];
end;

definition
let c1, c2 be non empty set ;
func Zmf c1,c2 -> RMembership_Func of a1,a2 equals :: FUZZY_3:def 1
chi {} ,[:a1,a2:];
correctness
coherence
chi {} ,[:c1,c2:] is RMembership_Func of c1,c2
;
by FUZZY_1:13;
func Umf c1,c2 -> RMembership_Func of a1,a2 equals :: FUZZY_3:def 2
chi [:a1,a2:],[:a1,a2:];
correctness
coherence
chi [:c1,c2:],[:c1,c2:] is RMembership_Func of c1,c2
;
by FUZZY_1:2;
end;

:: deftheorem Def1 defines Zmf FUZZY_3:def 1 :
for b1, b2 being non empty set holds Zmf b1,b2 = chi {} ,[:b1,b2:];

:: deftheorem Def2 defines Umf FUZZY_3:def 2 :
for b1, b2 being non empty set holds Umf b1,b2 = chi [:b1,b2:],[:b1,b2:];

theorem Th1: :: FUZZY_3:1
for b1, b2 being non empty set holds Zmf b1,b2 = EMF [:b1,b2:] by FUZZY_1:def 7;

theorem Th2: :: FUZZY_3:2
for b1, b2 being non empty set holds Umf b1,b2 = UMF [:b1,b2:] by FUZZY_1:def 8;

theorem Th3: :: FUZZY_3:3
for b1, b2 being non empty set
for b3 being Element of [:b1,b2:]
for b4 being RMembership_Func of b1,b2 holds
( (Zmf b1,b2) . b3 <= b4 . b3 & b4 . b3 <= (Umf b1,b2) . b3 )
proof end;

theorem Th4: :: FUZZY_3:4
for b1, b2 being non empty set
for b3 being RMembership_Func of b1,b2 holds
( max b3,(Umf b1,b2) = Umf b1,b2 & min b3,(Umf b1,b2) = b3 & max b3,(Zmf b1,b2) = b3 & min b3,(Zmf b1,b2) = Zmf b1,b2 )
proof end;

theorem Th5: :: FUZZY_3:5
for b1, b2 being non empty set holds
( 1_minus (Zmf b1,b2) = Umf b1,b2 & 1_minus (Umf b1,b2) = Zmf b1,b2 )
proof end;

theorem Th6: :: FUZZY_3:6
for b1, b2 being non empty set
for b3, b4 being RMembership_Func of b1,b2 st b3 \ b4 = Zmf b1,b2 holds
b4 c=
proof end;

theorem Th7: :: FUZZY_3:7
for b1, b2 being non empty set
for b3, b4 being RMembership_Func of b1,b2 st min b3,b4 = Zmf b1,b2 holds
b3 \ b4 = b3
proof end;