:: GOBOARD6 semantic presentation
Lemma1:
for b1, b2 being Point of (TOP-REAL 2) holds
( (b1 + b2) `1 = (b1 `1 ) + (b2 `1 ) & (b1 + b2) `2 = (b1 `2 ) + (b2 `2 ) )
Lemma2:
for b1, b2 being Point of (TOP-REAL 2) holds
( (b1 - b2) `1 = (b1 `1 ) - (b2 `1 ) & (b1 - b2) `2 = (b1 `2 ) - (b2 `2 ) )
Lemma3:
for b1 being Real
for b2 being Point of (TOP-REAL 2) holds
( (b1 * b2) `1 = b1 * (b2 `1 ) & (b1 * b2) `2 = b1 * (b2 `2 ) )
theorem Th1: :: GOBOARD6:1
canceled;
theorem Th2: :: GOBOARD6:2
canceled;
theorem Th3: :: GOBOARD6:3
canceled;
theorem Th4: :: GOBOARD6:4
Lemma5:
for b1 being MetrSpace
for b2 being Subset of (TopSpaceMetr b1)
for b3 being real number
for b4 being Point of b1 st b2 = Ball b4,b3 holds
b2 is open
theorem Th5: :: GOBOARD6:5
canceled;
theorem Th6: :: GOBOARD6:6
theorem Th7: :: GOBOARD6:7
theorem Th8: :: GOBOARD6:8
theorem Th9: :: GOBOARD6:9
theorem Th10: :: GOBOARD6:10
theorem Th11: :: GOBOARD6:11
theorem Th12: :: GOBOARD6:12
theorem Th13: :: GOBOARD6:13
theorem Th14: :: GOBOARD6:14
for
b1,
b2 being
Nat for
b3 being
Go-board st 1
<= b1 &
b1 < len b3 & 1
<= b2 &
b2 < width b3 holds
(b3 * b1,b2) + (b3 * (b1 + 1),(b2 + 1)) = (b3 * b1,(b2 + 1)) + (b3 * (b1 + 1),b2)
E15: TOP-REAL 2 =
TopSpaceMetr (Euclid 2)
by EUCLID:def 8
.=
TopStruct(# the carrier of (Euclid 2),(Family_open_set (Euclid 2)) #)
by PCOMPS_1:def 6
;
theorem Th15: :: GOBOARD6:15
theorem Th16: :: GOBOARD6:16
theorem Th17: :: GOBOARD6:17
theorem Th18: :: GOBOARD6:18
theorem Th19: :: GOBOARD6:19
theorem Th20: :: GOBOARD6:20
theorem Th21: :: GOBOARD6:21
theorem Th22: :: GOBOARD6:22
theorem Th23: :: GOBOARD6:23
theorem Th24: :: GOBOARD6:24
theorem Th25: :: GOBOARD6:25
theorem Th26: :: GOBOARD6:26
theorem Th27: :: GOBOARD6:27
theorem Th28: :: GOBOARD6:28
theorem Th29: :: GOBOARD6:29
theorem Th30: :: GOBOARD6:30
theorem Th31: :: GOBOARD6:31
theorem Th32: :: GOBOARD6:32
theorem Th33: :: GOBOARD6:33
theorem Th34: :: GOBOARD6:34
theorem Th35: :: GOBOARD6:35
theorem Th36: :: GOBOARD6:36
theorem Th37: :: GOBOARD6:37
theorem Th38: :: GOBOARD6:38
theorem Th39: :: GOBOARD6:39
theorem Th40: :: GOBOARD6:40
theorem Th41: :: GOBOARD6:41
theorem Th42: :: GOBOARD6:42
theorem Th43: :: GOBOARD6:43
for
b1,
b2 being
Nat for
b3 being
Go-board st 1
<= b1 &
b1 < len b3 & 1
<= b2 &
b2 < width b3 holds
LSeg ((1 / 2) * ((b3 * b1,b2) + (b3 * (b1 + 1),(b2 + 1)))),
((1 / 2) * ((b3 * b1,b2) + (b3 * b1,(b2 + 1)))) c= (Int (cell b3,b1,b2)) \/ {((1 / 2) * ((b3 * b1,b2) + (b3 * b1,(b2 + 1))))}
theorem Th44: :: GOBOARD6:44
for
b1,
b2 being
Nat for
b3 being
Go-board st 1
<= b1 &
b1 < len b3 & 1
<= b2 &
b2 < width b3 holds
LSeg ((1 / 2) * ((b3 * b1,b2) + (b3 * (b1 + 1),(b2 + 1)))),
((1 / 2) * ((b3 * b1,(b2 + 1)) + (b3 * (b1 + 1),(b2 + 1)))) c= (Int (cell b3,b1,b2)) \/ {((1 / 2) * ((b3 * b1,(b2 + 1)) + (b3 * (b1 + 1),(b2 + 1))))}
theorem Th45: :: GOBOARD6:45
for
b1,
b2 being
Nat for
b3 being
Go-board st 1
<= b1 &
b1 < len b3 & 1
<= b2 &
b2 < width b3 holds
LSeg ((1 / 2) * ((b3 * b1,b2) + (b3 * (b1 + 1),(b2 + 1)))),
((1 / 2) * ((b3 * (b1 + 1),b2) + (b3 * (b1 + 1),(b2 + 1)))) c= (Int (cell b3,b1,b2)) \/ {((1 / 2) * ((b3 * (b1 + 1),b2) + (b3 * (b1 + 1),(b2 + 1))))}
theorem Th46: :: GOBOARD6:46
for
b1,
b2 being
Nat for
b3 being
Go-board st 1
<= b1 &
b1 < len b3 & 1
<= b2 &
b2 < width b3 holds
LSeg ((1 / 2) * ((b3 * b1,b2) + (b3 * (b1 + 1),(b2 + 1)))),
((1 / 2) * ((b3 * b1,b2) + (b3 * (b1 + 1),b2))) c= (Int (cell b3,b1,b2)) \/ {((1 / 2) * ((b3 * b1,b2) + (b3 * (b1 + 1),b2)))}
theorem Th47: :: GOBOARD6:47
for
b1 being
Nat for
b2 being
Go-board st 1
<= b1 &
b1 < width b2 holds
LSeg (((1 / 2) * ((b2 * 1,b1) + (b2 * 1,(b1 + 1)))) - |[1,0]|),
((1 / 2) * ((b2 * 1,b1) + (b2 * 1,(b1 + 1)))) c= (Int (cell b2,0,b1)) \/ {((1 / 2) * ((b2 * 1,b1) + (b2 * 1,(b1 + 1))))}
theorem Th48: :: GOBOARD6:48
for
b1 being
Nat for
b2 being
Go-board st 1
<= b1 &
b1 < width b2 holds
LSeg (((1 / 2) * ((b2 * (len b2),b1) + (b2 * (len b2),(b1 + 1)))) + |[1,0]|),
((1 / 2) * ((b2 * (len b2),b1) + (b2 * (len b2),(b1 + 1)))) c= (Int (cell b2,(len b2),b1)) \/ {((1 / 2) * ((b2 * (len b2),b1) + (b2 * (len b2),(b1 + 1))))}
theorem Th49: :: GOBOARD6:49
for
b1 being
Nat for
b2 being
Go-board st 1
<= b1 &
b1 < len b2 holds
LSeg (((1 / 2) * ((b2 * b1,1) + (b2 * (b1 + 1),1))) - |[0,1]|),
((1 / 2) * ((b2 * b1,1) + (b2 * (b1 + 1),1))) c= (Int (cell b2,b1,0)) \/ {((1 / 2) * ((b2 * b1,1) + (b2 * (b1 + 1),1)))}
theorem Th50: :: GOBOARD6:50
for
b1 being
Nat for
b2 being
Go-board st 1
<= b1 &
b1 < len b2 holds
LSeg (((1 / 2) * ((b2 * b1,(width b2)) + (b2 * (b1 + 1),(width b2)))) + |[0,1]|),
((1 / 2) * ((b2 * b1,(width b2)) + (b2 * (b1 + 1),(width b2)))) c= (Int (cell b2,b1,(width b2))) \/ {((1 / 2) * ((b2 * b1,(width b2)) + (b2 * (b1 + 1),(width b2))))}
theorem Th51: :: GOBOARD6:51
for
b1 being
Nat for
b2 being
Go-board st 1
<= b1 &
b1 < width b2 holds
LSeg (((1 / 2) * ((b2 * 1,b1) + (b2 * 1,(b1 + 1)))) - |[1,0]|),
((b2 * 1,b1) - |[1,0]|) c= (Int (cell b2,0,b1)) \/ {((b2 * 1,b1) - |[1,0]|)}
theorem Th52: :: GOBOARD6:52
for
b1 being
Nat for
b2 being
Go-board st 1
<= b1 &
b1 < width b2 holds
LSeg (((1 / 2) * ((b2 * 1,b1) + (b2 * 1,(b1 + 1)))) - |[1,0]|),
((b2 * 1,(b1 + 1)) - |[1,0]|) c= (Int (cell b2,0,b1)) \/ {((b2 * 1,(b1 + 1)) - |[1,0]|)}
theorem Th53: :: GOBOARD6:53
for
b1 being
Nat for
b2 being
Go-board st 1
<= b1 &
b1 < width b2 holds
LSeg (((1 / 2) * ((b2 * (len b2),b1) + (b2 * (len b2),(b1 + 1)))) + |[1,0]|),
((b2 * (len b2),b1) + |[1,0]|) c= (Int (cell b2,(len b2),b1)) \/ {((b2 * (len b2),b1) + |[1,0]|)}
theorem Th54: :: GOBOARD6:54
for
b1 being
Nat for
b2 being
Go-board st 1
<= b1 &
b1 < width b2 holds
LSeg (((1 / 2) * ((b2 * (len b2),b1) + (b2 * (len b2),(b1 + 1)))) + |[1,0]|),
((b2 * (len b2),(b1 + 1)) + |[1,0]|) c= (Int (cell b2,(len b2),b1)) \/ {((b2 * (len b2),(b1 + 1)) + |[1,0]|)}
theorem Th55: :: GOBOARD6:55
for
b1 being
Nat for
b2 being
Go-board st 1
<= b1 &
b1 < len b2 holds
LSeg (((1 / 2) * ((b2 * b1,1) + (b2 * (b1 + 1),1))) - |[0,1]|),
((b2 * b1,1) - |[0,1]|) c= (Int (cell b2,b1,0)) \/ {((b2 * b1,1) - |[0,1]|)}
theorem Th56: :: GOBOARD6:56
for
b1 being
Nat for
b2 being
Go-board st 1
<= b1 &
b1 < len b2 holds
LSeg (((1 / 2) * ((b2 * b1,1) + (b2 * (b1 + 1),1))) - |[0,1]|),
((b2 * (b1 + 1),1) - |[0,1]|) c= (Int (cell b2,b1,0)) \/ {((b2 * (b1 + 1),1) - |[0,1]|)}
theorem Th57: :: GOBOARD6:57
for
b1 being
Nat for
b2 being
Go-board st 1
<= b1 &
b1 < len b2 holds
LSeg (((1 / 2) * ((b2 * b1,(width b2)) + (b2 * (b1 + 1),(width b2)))) + |[0,1]|),
((b2 * b1,(width b2)) + |[0,1]|) c= (Int (cell b2,b1,(width b2))) \/ {((b2 * b1,(width b2)) + |[0,1]|)}
theorem Th58: :: GOBOARD6:58
for
b1 being
Nat for
b2 being
Go-board st 1
<= b1 &
b1 < len b2 holds
LSeg (((1 / 2) * ((b2 * b1,(width b2)) + (b2 * (b1 + 1),(width b2)))) + |[0,1]|),
((b2 * (b1 + 1),(width b2)) + |[0,1]|) c= (Int (cell b2,b1,(width b2))) \/ {((b2 * (b1 + 1),(width b2)) + |[0,1]|)}
theorem Th59: :: GOBOARD6:59
theorem Th60: :: GOBOARD6:60
theorem Th61: :: GOBOARD6:61
theorem Th62: :: GOBOARD6:62
theorem Th63: :: GOBOARD6:63
theorem Th64: :: GOBOARD6:64
theorem Th65: :: GOBOARD6:65
theorem Th66: :: GOBOARD6:66
theorem Th67: :: GOBOARD6:67
for
b1,
b2 being
Nat for
b3 being
Go-board st 1
<= b1 &
b1 < len b3 & 1
<= b2 &
b2 + 1
< width b3 holds
LSeg ((1 / 2) * ((b3 * b1,b2) + (b3 * (b1 + 1),(b2 + 1)))),
((1 / 2) * ((b3 * b1,(b2 + 1)) + (b3 * (b1 + 1),(b2 + 2)))) c= ((Int (cell b3,b1,b2)) \/ (Int (cell b3,b1,(b2 + 1)))) \/ {((1 / 2) * ((b3 * b1,(b2 + 1)) + (b3 * (b1 + 1),(b2 + 1))))}
theorem Th68: :: GOBOARD6:68
for
b1,
b2 being
Nat for
b3 being
Go-board st 1
<= b1 &
b1 < width b3 & 1
<= b2 &
b2 + 1
< len b3 holds
LSeg ((1 / 2) * ((b3 * b2,b1) + (b3 * (b2 + 1),(b1 + 1)))),
((1 / 2) * ((b3 * (b2 + 1),b1) + (b3 * (b2 + 2),(b1 + 1)))) c= ((Int (cell b3,b2,b1)) \/ (Int (cell b3,(b2 + 1),b1))) \/ {((1 / 2) * ((b3 * (b2 + 1),b1) + (b3 * (b2 + 1),(b1 + 1))))}
theorem Th69: :: GOBOARD6:69
for
b1 being
Nat for
b2 being
Go-board st 1
<= b1 &
b1 < len b2 & 1
< width b2 holds
LSeg (((1 / 2) * ((b2 * b1,1) + (b2 * (b1 + 1),1))) - |[0,1]|),
((1 / 2) * ((b2 * b1,1) + (b2 * (b1 + 1),2))) c= ((Int (cell b2,b1,0)) \/ (Int (cell b2,b1,1))) \/ {((1 / 2) * ((b2 * b1,1) + (b2 * (b1 + 1),1)))}
theorem Th70: :: GOBOARD6:70
for
b1 being
Nat for
b2 being
Go-board st 1
<= b1 &
b1 < len b2 & 1
< width b2 holds
LSeg (((1 / 2) * ((b2 * b1,(width b2)) + (b2 * (b1 + 1),(width b2)))) + |[0,1]|),
((1 / 2) * ((b2 * b1,(width b2)) + (b2 * (b1 + 1),((width b2) -' 1)))) c= ((Int (cell b2,b1,((width b2) -' 1))) \/ (Int (cell b2,b1,(width b2)))) \/ {((1 / 2) * ((b2 * b1,(width b2)) + (b2 * (b1 + 1),(width b2))))}
theorem Th71: :: GOBOARD6:71
for
b1 being
Nat for
b2 being
Go-board st 1
<= b1 &
b1 < width b2 & 1
< len b2 holds
LSeg (((1 / 2) * ((b2 * 1,b1) + (b2 * 1,(b1 + 1)))) - |[1,0]|),
((1 / 2) * ((b2 * 1,b1) + (b2 * 2,(b1 + 1)))) c= ((Int (cell b2,0,b1)) \/ (Int (cell b2,1,b1))) \/ {((1 / 2) * ((b2 * 1,b1) + (b2 * 1,(b1 + 1))))}
theorem Th72: :: GOBOARD6:72
for
b1 being
Nat for
b2 being
Go-board st 1
<= b1 &
b1 < width b2 & 1
< len b2 holds
LSeg (((1 / 2) * ((b2 * (len b2),b1) + (b2 * (len b2),(b1 + 1)))) + |[1,0]|),
((1 / 2) * ((b2 * (len b2),b1) + (b2 * ((len b2) -' 1),(b1 + 1)))) c= ((Int (cell b2,((len b2) -' 1),b1)) \/ (Int (cell b2,(len b2),b1))) \/ {((1 / 2) * ((b2 * (len b2),b1) + (b2 * (len b2),(b1 + 1))))}
Lemma64:
(1 / 2) + (1 / 2) = 1
;
theorem Th73: :: GOBOARD6:73
for
b1 being
Nat for
b2 being
Go-board st 1
< len b2 & 1
<= b1 &
b1 + 1
< width b2 holds
LSeg (((1 / 2) * ((b2 * 1,b1) + (b2 * 1,(b1 + 1)))) - |[1,0]|),
(((1 / 2) * ((b2 * 1,(b1 + 1)) + (b2 * 1,(b1 + 2)))) - |[1,0]|) c= ((Int (cell b2,0,b1)) \/ (Int (cell b2,0,(b1 + 1)))) \/ {((b2 * 1,(b1 + 1)) - |[1,0]|)}
theorem Th74: :: GOBOARD6:74
for
b1 being
Nat for
b2 being
Go-board st 1
< len b2 & 1
<= b1 &
b1 + 1
< width b2 holds
LSeg (((1 / 2) * ((b2 * (len b2),b1) + (b2 * (len b2),(b1 + 1)))) + |[1,0]|),
(((1 / 2) * ((b2 * (len b2),(b1 + 1)) + (b2 * (len b2),(b1 + 2)))) + |[1,0]|) c= ((Int (cell b2,(len b2),b1)) \/ (Int (cell b2,(len b2),(b1 + 1)))) \/ {((b2 * (len b2),(b1 + 1)) + |[1,0]|)}
theorem Th75: :: GOBOARD6:75
for
b1 being
Nat for
b2 being
Go-board st 1
< width b2 & 1
<= b1 &
b1 + 1
< len b2 holds
LSeg (((1 / 2) * ((b2 * b1,1) + (b2 * (b1 + 1),1))) - |[0,1]|),
(((1 / 2) * ((b2 * (b1 + 1),1) + (b2 * (b1 + 2),1))) - |[0,1]|) c= ((Int (cell b2,b1,0)) \/ (Int (cell b2,(b1 + 1),0))) \/ {((b2 * (b1 + 1),1) - |[0,1]|)}
theorem Th76: :: GOBOARD6:76
for
b1 being
Nat for
b2 being
Go-board st 1
< width b2 & 1
<= b1 &
b1 + 1
< len b2 holds
LSeg (((1 / 2) * ((b2 * b1,(width b2)) + (b2 * (b1 + 1),(width b2)))) + |[0,1]|),
(((1 / 2) * ((b2 * (b1 + 1),(width b2)) + (b2 * (b1 + 2),(width b2)))) + |[0,1]|) c= ((Int (cell b2,b1,(width b2))) \/ (Int (cell b2,(b1 + 1),(width b2)))) \/ {((b2 * (b1 + 1),(width b2)) + |[0,1]|)}
theorem Th77: :: GOBOARD6:77
for
b1 being
Go-board st 1
< len b1 & 1
< width b1 holds
LSeg ((b1 * 1,1) - |[1,1]|),
(((1 / 2) * ((b1 * 1,1) + (b1 * 1,2))) - |[1,0]|) c= ((Int (cell b1,0,0)) \/ (Int (cell b1,0,1))) \/ {((b1 * 1,1) - |[1,0]|)}
theorem Th78: :: GOBOARD6:78
for
b1 being
Go-board st 1
< len b1 & 1
< width b1 holds
LSeg ((b1 * (len b1),1) + |[1,(- 1)]|),
(((1 / 2) * ((b1 * (len b1),1) + (b1 * (len b1),2))) + |[1,0]|) c= ((Int (cell b1,(len b1),0)) \/ (Int (cell b1,(len b1),1))) \/ {((b1 * (len b1),1) + |[1,0]|)}
theorem Th79: :: GOBOARD6:79
for
b1 being
Go-board st 1
< len b1 & 1
< width b1 holds
LSeg ((b1 * 1,(width b1)) + |[(- 1),1]|),
(((1 / 2) * ((b1 * 1,(width b1)) + (b1 * 1,((width b1) -' 1)))) - |[1,0]|) c= ((Int (cell b1,0,(width b1))) \/ (Int (cell b1,0,((width b1) -' 1)))) \/ {((b1 * 1,(width b1)) - |[1,0]|)}
theorem Th80: :: GOBOARD6:80
for
b1 being
Go-board st 1
< len b1 & 1
< width b1 holds
LSeg ((b1 * (len b1),(width b1)) + |[1,1]|),
(((1 / 2) * ((b1 * (len b1),(width b1)) + (b1 * (len b1),((width b1) -' 1)))) + |[1,0]|) c= ((Int (cell b1,(len b1),(width b1))) \/ (Int (cell b1,(len b1),((width b1) -' 1)))) \/ {((b1 * (len b1),(width b1)) + |[1,0]|)}
theorem Th81: :: GOBOARD6:81
for
b1 being
Go-board st 1
< width b1 & 1
< len b1 holds
LSeg ((b1 * 1,1) - |[1,1]|),
(((1 / 2) * ((b1 * 1,1) + (b1 * 2,1))) - |[0,1]|) c= ((Int (cell b1,0,0)) \/ (Int (cell b1,1,0))) \/ {((b1 * 1,1) - |[0,1]|)}
theorem Th82: :: GOBOARD6:82
for
b1 being
Go-board st 1
< width b1 & 1
< len b1 holds
LSeg ((b1 * 1,(width b1)) + |[(- 1),1]|),
(((1 / 2) * ((b1 * 1,(width b1)) + (b1 * 2,(width b1)))) + |[0,1]|) c= ((Int (cell b1,0,(width b1))) \/ (Int (cell b1,1,(width b1)))) \/ {((b1 * 1,(width b1)) + |[0,1]|)}
theorem Th83: :: GOBOARD6:83
for
b1 being
Go-board st 1
< width b1 & 1
< len b1 holds
LSeg ((b1 * (len b1),1) + |[1,(- 1)]|),
(((1 / 2) * ((b1 * (len b1),1) + (b1 * ((len b1) -' 1),1))) - |[0,1]|) c= ((Int (cell b1,(len b1),0)) \/ (Int (cell b1,((len b1) -' 1),0))) \/ {((b1 * (len b1),1) - |[0,1]|)}
theorem Th84: :: GOBOARD6:84
for
b1 being
Go-board st 1
< width b1 & 1
< len b1 holds
LSeg ((b1 * (len b1),(width b1)) + |[1,1]|),
(((1 / 2) * ((b1 * (len b1),(width b1)) + (b1 * ((len b1) -' 1),(width b1)))) + |[0,1]|) c= ((Int (cell b1,(len b1),(width b1))) \/ (Int (cell b1,((len b1) -' 1),(width b1)))) \/ {((b1 * (len b1),(width b1)) + |[0,1]|)}
theorem Th85: :: GOBOARD6:85
theorem Th86: :: GOBOARD6:86
theorem Th87: :: GOBOARD6:87
theorem Th88: :: GOBOARD6:88
theorem Th89: :: GOBOARD6:89
theorem Th90: :: GOBOARD6:90
theorem Th91: :: GOBOARD6:91
theorem Th92: :: GOBOARD6:92
theorem Th93: :: GOBOARD6:93