:: GOBOARD7 semantic presentation
theorem Th1: :: GOBOARD7:1
for
b1,
b2,
b3 being
Real holds
( not
abs (b1 - b2) > b3 or
b1 + b3 < b2 or
b2 + b3 < b1 )
theorem Th2: :: GOBOARD7:2
for
b1,
b2 being
Real holds
(
abs (b1 - b2) = 0 iff
b1 = b2 )
theorem Th3: :: GOBOARD7:3
theorem Th4: :: GOBOARD7:4
theorem Th5: :: GOBOARD7:5
theorem Th6: :: GOBOARD7:6
theorem Th7: :: GOBOARD7:7
theorem Th8: :: GOBOARD7:8
theorem Th9: :: GOBOARD7:9
theorem Th10: :: GOBOARD7:10
theorem Th11: :: GOBOARD7:11
theorem Th12: :: GOBOARD7:12
theorem Th13: :: GOBOARD7:13
theorem Th14: :: GOBOARD7:14
theorem Th15: :: GOBOARD7:15
theorem Th16: :: GOBOARD7:16
theorem Th17: :: GOBOARD7:17
theorem Th18: :: GOBOARD7:18
theorem Th19: :: GOBOARD7:19
theorem Th20: :: GOBOARD7:20
theorem Th21: :: GOBOARD7:21
theorem Th22: :: GOBOARD7:22
theorem Th23: :: GOBOARD7:23
theorem Th24: :: GOBOARD7:24
for
b1 being
Go-board for
b2,
b3,
b4,
b5 being
Nat st 1
<= b2 &
b2 <= len b1 & 1
<= b3 &
b3 + 1
<= width b1 & 1
<= b4 &
b4 <= len b1 & 1
<= b5 &
b5 + 1
<= width b1 &
LSeg (b1 * b2,b3),
(b1 * b2,(b3 + 1)) meets LSeg (b1 * b4,b5),
(b1 * b4,(b5 + 1)) & not (
b3 = b5 &
LSeg (b1 * b2,b3),
(b1 * b2,(b3 + 1)) = LSeg (b1 * b4,b5),
(b1 * b4,(b5 + 1)) ) & not (
b3 = b5 + 1 &
(LSeg (b1 * b2,b3),(b1 * b2,(b3 + 1))) /\ (LSeg (b1 * b4,b5),(b1 * b4,(b5 + 1))) = {(b1 * b2,b3)} ) holds
(
b3 + 1
= b5 &
(LSeg (b1 * b2,b3),(b1 * b2,(b3 + 1))) /\ (LSeg (b1 * b4,b5),(b1 * b4,(b5 + 1))) = {(b1 * b4,b5)} )
theorem Th25: :: GOBOARD7:25
for
b1 being
Go-board for
b2,
b3,
b4,
b5 being
Nat st 1
<= b2 &
b2 + 1
<= len b1 & 1
<= b3 &
b3 <= width b1 & 1
<= b4 &
b4 + 1
<= len b1 & 1
<= b5 &
b5 <= width b1 &
LSeg (b1 * b2,b3),
(b1 * (b2 + 1),b3) meets LSeg (b1 * b4,b5),
(b1 * (b4 + 1),b5) & not (
b2 = b4 &
LSeg (b1 * b2,b3),
(b1 * (b2 + 1),b3) = LSeg (b1 * b4,b5),
(b1 * (b4 + 1),b5) ) & not (
b2 = b4 + 1 &
(LSeg (b1 * b2,b3),(b1 * (b2 + 1),b3)) /\ (LSeg (b1 * b4,b5),(b1 * (b4 + 1),b5)) = {(b1 * b2,b3)} ) holds
(
b2 + 1
= b4 &
(LSeg (b1 * b2,b3),(b1 * (b2 + 1),b3)) /\ (LSeg (b1 * b4,b5),(b1 * (b4 + 1),b5)) = {(b1 * b4,b5)} )
theorem Th26: :: GOBOARD7:26
for
b1 being
Go-board for
b2,
b3,
b4,
b5 being
Nat st 1
<= b2 &
b2 <= len b1 & 1
<= b3 &
b3 + 1
<= width b1 & 1
<= b4 &
b4 + 1
<= len b1 & 1
<= b5 &
b5 <= width b1 &
LSeg (b1 * b2,b3),
(b1 * b2,(b3 + 1)) meets LSeg (b1 * b4,b5),
(b1 * (b4 + 1),b5) & not (
b3 = b5 &
(LSeg (b1 * b2,b3),(b1 * b2,(b3 + 1))) /\ (LSeg (b1 * b4,b5),(b1 * (b4 + 1),b5)) = {(b1 * b2,b3)} ) holds
(
b3 + 1
= b5 &
(LSeg (b1 * b2,b3),(b1 * b2,(b3 + 1))) /\ (LSeg (b1 * b4,b5),(b1 * (b4 + 1),b5)) = {(b1 * b2,(b3 + 1))} )
Lemma21:
1 - (1 / 2) = 1 / 2
;
theorem Th27: :: GOBOARD7:27
theorem Th28: :: GOBOARD7:28
theorem Th29: :: GOBOARD7:29
theorem Th30: :: GOBOARD7:30
Lemma26:
for b1 being standard non constant special_circular_sequence holds len b1 > 1
theorem Th31: :: GOBOARD7:31
theorem Th32: :: GOBOARD7:32
theorem Th33: :: GOBOARD7:33
theorem Th34: :: GOBOARD7:34
theorem Th35: :: GOBOARD7:35
theorem Th36: :: GOBOARD7:36
theorem Th37: :: GOBOARD7:37
theorem Th38: :: GOBOARD7:38
theorem Th39: :: GOBOARD7:39
theorem Th40: :: GOBOARD7:40
theorem Th41: :: GOBOARD7:41
theorem Th42: :: GOBOARD7:42
theorem Th43: :: GOBOARD7:43
for
b1,
b2,
b3 being
Nat for
b4 being
standard non
constant special_circular_sequence st 1
<= b1 &
b1 + 1
<= len (GoB b4) & 1
<= b2 &
b2 + 1
<= width (GoB b4) & 1
<= b3 &
b3 + 1
< len b4 &
LSeg ((GoB b4) * b1,(b2 + 1)),
((GoB b4) * (b1 + 1),(b2 + 1)) = LSeg b4,
b3 &
LSeg ((GoB b4) * (b1 + 1),b2),
((GoB b4) * (b1 + 1),(b2 + 1)) = LSeg b4,
(b3 + 1) holds
(
b4 /. b3 = (GoB b4) * b1,
(b2 + 1) &
b4 /. (b3 + 1) = (GoB b4) * (b1 + 1),
(b2 + 1) &
b4 /. (b3 + 2) = (GoB b4) * (b1 + 1),
b2 )
theorem Th44: :: GOBOARD7:44
for
b1,
b2,
b3 being
Nat for
b4 being
standard non
constant special_circular_sequence st 1
<= b1 &
b1 <= len (GoB b4) & 1
<= b2 &
b2 + 1
< width (GoB b4) & 1
<= b3 &
b3 + 1
< len b4 &
LSeg ((GoB b4) * b1,(b2 + 1)),
((GoB b4) * b1,(b2 + 2)) = LSeg b4,
b3 &
LSeg ((GoB b4) * b1,b2),
((GoB b4) * b1,(b2 + 1)) = LSeg b4,
(b3 + 1) holds
(
b4 /. b3 = (GoB b4) * b1,
(b2 + 2) &
b4 /. (b3 + 1) = (GoB b4) * b1,
(b2 + 1) &
b4 /. (b3 + 2) = (GoB b4) * b1,
b2 )
theorem Th45: :: GOBOARD7:45
for
b1,
b2,
b3 being
Nat for
b4 being
standard non
constant special_circular_sequence st 1
<= b1 &
b1 + 1
<= len (GoB b4) & 1
<= b2 &
b2 + 1
<= width (GoB b4) & 1
<= b3 &
b3 + 1
< len b4 &
LSeg ((GoB b4) * b1,(b2 + 1)),
((GoB b4) * (b1 + 1),(b2 + 1)) = LSeg b4,
b3 &
LSeg ((GoB b4) * b1,b2),
((GoB b4) * b1,(b2 + 1)) = LSeg b4,
(b3 + 1) holds
(
b4 /. b3 = (GoB b4) * (b1 + 1),
(b2 + 1) &
b4 /. (b3 + 1) = (GoB b4) * b1,
(b2 + 1) &
b4 /. (b3 + 2) = (GoB b4) * b1,
b2 )
theorem Th46: :: GOBOARD7:46
for
b1,
b2,
b3 being
Nat for
b4 being
standard non
constant special_circular_sequence st 1
<= b1 &
b1 + 1
<= len (GoB b4) & 1
<= b2 &
b2 + 1
<= width (GoB b4) & 1
<= b3 &
b3 + 1
< len b4 &
LSeg ((GoB b4) * (b1 + 1),b2),
((GoB b4) * (b1 + 1),(b2 + 1)) = LSeg b4,
b3 &
LSeg ((GoB b4) * b1,(b2 + 1)),
((GoB b4) * (b1 + 1),(b2 + 1)) = LSeg b4,
(b3 + 1) holds
(
b4 /. b3 = (GoB b4) * (b1 + 1),
b2 &
b4 /. (b3 + 1) = (GoB b4) * (b1 + 1),
(b2 + 1) &
b4 /. (b3 + 2) = (GoB b4) * b1,
(b2 + 1) )
theorem Th47: :: GOBOARD7:47
for
b1,
b2,
b3 being
Nat for
b4 being
standard non
constant special_circular_sequence st 1
<= b1 &
b1 + 1
< len (GoB b4) & 1
<= b2 &
b2 <= width (GoB b4) & 1
<= b3 &
b3 + 1
< len b4 &
LSeg ((GoB b4) * (b1 + 1),b2),
((GoB b4) * (b1 + 2),b2) = LSeg b4,
b3 &
LSeg ((GoB b4) * b1,b2),
((GoB b4) * (b1 + 1),b2) = LSeg b4,
(b3 + 1) holds
(
b4 /. b3 = (GoB b4) * (b1 + 2),
b2 &
b4 /. (b3 + 1) = (GoB b4) * (b1 + 1),
b2 &
b4 /. (b3 + 2) = (GoB b4) * b1,
b2 )
theorem Th48: :: GOBOARD7:48
for
b1,
b2,
b3 being
Nat for
b4 being
standard non
constant special_circular_sequence st 1
<= b1 &
b1 + 1
<= len (GoB b4) & 1
<= b2 &
b2 + 1
<= width (GoB b4) & 1
<= b3 &
b3 + 1
< len b4 &
LSeg ((GoB b4) * (b1 + 1),b2),
((GoB b4) * (b1 + 1),(b2 + 1)) = LSeg b4,
b3 &
LSeg ((GoB b4) * b1,b2),
((GoB b4) * (b1 + 1),b2) = LSeg b4,
(b3 + 1) holds
(
b4 /. b3 = (GoB b4) * (b1 + 1),
(b2 + 1) &
b4 /. (b3 + 1) = (GoB b4) * (b1 + 1),
b2 &
b4 /. (b3 + 2) = (GoB b4) * b1,
b2 )
theorem Th49: :: GOBOARD7:49
for
b1,
b2,
b3 being
Nat for
b4 being
standard non
constant special_circular_sequence st 1
<= b1 &
b1 + 1
<= len (GoB b4) & 1
<= b2 &
b2 + 1
<= width (GoB b4) & 1
<= b3 &
b3 + 1
< len b4 &
LSeg ((GoB b4) * (b1 + 1),b2),
((GoB b4) * (b1 + 1),(b2 + 1)) = LSeg b4,
b3 &
LSeg ((GoB b4) * b1,(b2 + 1)),
((GoB b4) * (b1 + 1),(b2 + 1)) = LSeg b4,
(b3 + 1) holds
(
b4 /. b3 = (GoB b4) * (b1 + 1),
b2 &
b4 /. (b3 + 1) = (GoB b4) * (b1 + 1),
(b2 + 1) &
b4 /. (b3 + 2) = (GoB b4) * b1,
(b2 + 1) )
theorem Th50: :: GOBOARD7:50
for
b1,
b2,
b3 being
Nat for
b4 being
standard non
constant special_circular_sequence st 1
<= b1 &
b1 <= len (GoB b4) & 1
<= b2 &
b2 + 1
< width (GoB b4) & 1
<= b3 &
b3 + 1
< len b4 &
LSeg ((GoB b4) * b1,b2),
((GoB b4) * b1,(b2 + 1)) = LSeg b4,
b3 &
LSeg ((GoB b4) * b1,(b2 + 1)),
((GoB b4) * b1,(b2 + 2)) = LSeg b4,
(b3 + 1) holds
(
b4 /. b3 = (GoB b4) * b1,
b2 &
b4 /. (b3 + 1) = (GoB b4) * b1,
(b2 + 1) &
b4 /. (b3 + 2) = (GoB b4) * b1,
(b2 + 2) )
theorem Th51: :: GOBOARD7:51
for
b1,
b2,
b3 being
Nat for
b4 being
standard non
constant special_circular_sequence st 1
<= b1 &
b1 + 1
<= len (GoB b4) & 1
<= b2 &
b2 + 1
<= width (GoB b4) & 1
<= b3 &
b3 + 1
< len b4 &
LSeg ((GoB b4) * b1,b2),
((GoB b4) * b1,(b2 + 1)) = LSeg b4,
b3 &
LSeg ((GoB b4) * b1,(b2 + 1)),
((GoB b4) * (b1 + 1),(b2 + 1)) = LSeg b4,
(b3 + 1) holds
(
b4 /. b3 = (GoB b4) * b1,
b2 &
b4 /. (b3 + 1) = (GoB b4) * b1,
(b2 + 1) &
b4 /. (b3 + 2) = (GoB b4) * (b1 + 1),
(b2 + 1) )
theorem Th52: :: GOBOARD7:52
for
b1,
b2,
b3 being
Nat for
b4 being
standard non
constant special_circular_sequence st 1
<= b1 &
b1 + 1
<= len (GoB b4) & 1
<= b2 &
b2 + 1
<= width (GoB b4) & 1
<= b3 &
b3 + 1
< len b4 &
LSeg ((GoB b4) * b1,(b2 + 1)),
((GoB b4) * (b1 + 1),(b2 + 1)) = LSeg b4,
b3 &
LSeg ((GoB b4) * (b1 + 1),b2),
((GoB b4) * (b1 + 1),(b2 + 1)) = LSeg b4,
(b3 + 1) holds
(
b4 /. b3 = (GoB b4) * b1,
(b2 + 1) &
b4 /. (b3 + 1) = (GoB b4) * (b1 + 1),
(b2 + 1) &
b4 /. (b3 + 2) = (GoB b4) * (b1 + 1),
b2 )
theorem Th53: :: GOBOARD7:53
for
b1,
b2,
b3 being
Nat for
b4 being
standard non
constant special_circular_sequence st 1
<= b1 &
b1 + 1
< len (GoB b4) & 1
<= b2 &
b2 <= width (GoB b4) & 1
<= b3 &
b3 + 1
< len b4 &
LSeg ((GoB b4) * b1,b2),
((GoB b4) * (b1 + 1),b2) = LSeg b4,
b3 &
LSeg ((GoB b4) * (b1 + 1),b2),
((GoB b4) * (b1 + 2),b2) = LSeg b4,
(b3 + 1) holds
(
b4 /. b3 = (GoB b4) * b1,
b2 &
b4 /. (b3 + 1) = (GoB b4) * (b1 + 1),
b2 &
b4 /. (b3 + 2) = (GoB b4) * (b1 + 2),
b2 )
theorem Th54: :: GOBOARD7:54
for
b1,
b2,
b3 being
Nat for
b4 being
standard non
constant special_circular_sequence st 1
<= b1 &
b1 + 1
<= len (GoB b4) & 1
<= b2 &
b2 + 1
<= width (GoB b4) & 1
<= b3 &
b3 + 1
< len b4 &
LSeg ((GoB b4) * b1,b2),
((GoB b4) * (b1 + 1),b2) = LSeg b4,
b3 &
LSeg ((GoB b4) * (b1 + 1),b2),
((GoB b4) * (b1 + 1),(b2 + 1)) = LSeg b4,
(b3 + 1) holds
(
b4 /. b3 = (GoB b4) * b1,
b2 &
b4 /. (b3 + 1) = (GoB b4) * (b1 + 1),
b2 &
b4 /. (b3 + 2) = (GoB b4) * (b1 + 1),
(b2 + 1) )
theorem Th55: :: GOBOARD7:55
for
b1,
b2 being
Nat for
b3 being
standard non
constant special_circular_sequence st 1
<= b1 &
b1 <= len (GoB b3) & 1
<= b2 &
b2 + 1
< width (GoB b3) &
LSeg ((GoB b3) * b1,b2),
((GoB b3) * b1,(b2 + 1)) c= L~ b3 &
LSeg ((GoB b3) * b1,(b2 + 1)),
((GoB b3) * b1,(b2 + 2)) c= L~ b3 & not (
b3 /. 1
= (GoB b3) * b1,
(b2 + 1) & ( (
b3 /. 2
= (GoB b3) * b1,
b2 &
b3 /. ((len b3) -' 1) = (GoB b3) * b1,
(b2 + 2) ) or (
b3 /. 2
= (GoB b3) * b1,
(b2 + 2) &
b3 /. ((len b3) -' 1) = (GoB b3) * b1,
b2 ) ) ) holds
ex
b4 being
Nat st
( 1
<= b4 &
b4 + 1
< len b3 &
b3 /. (b4 + 1) = (GoB b3) * b1,
(b2 + 1) & ( (
b3 /. b4 = (GoB b3) * b1,
b2 &
b3 /. (b4 + 2) = (GoB b3) * b1,
(b2 + 2) ) or (
b3 /. b4 = (GoB b3) * b1,
(b2 + 2) &
b3 /. (b4 + 2) = (GoB b3) * b1,
b2 ) ) )
theorem Th56: :: GOBOARD7:56
for
b1,
b2 being
Nat for
b3 being
standard non
constant special_circular_sequence st 1
<= b1 &
b1 + 1
<= len (GoB b3) & 1
<= b2 &
b2 + 1
<= width (GoB b3) &
LSeg ((GoB b3) * b1,b2),
((GoB b3) * b1,(b2 + 1)) c= L~ b3 &
LSeg ((GoB b3) * b1,(b2 + 1)),
((GoB b3) * (b1 + 1),(b2 + 1)) c= L~ b3 & not (
b3 /. 1
= (GoB b3) * b1,
(b2 + 1) & ( (
b3 /. 2
= (GoB b3) * b1,
b2 &
b3 /. ((len b3) -' 1) = (GoB b3) * (b1 + 1),
(b2 + 1) ) or (
b3 /. 2
= (GoB b3) * (b1 + 1),
(b2 + 1) &
b3 /. ((len b3) -' 1) = (GoB b3) * b1,
b2 ) ) ) holds
ex
b4 being
Nat st
( 1
<= b4 &
b4 + 1
< len b3 &
b3 /. (b4 + 1) = (GoB b3) * b1,
(b2 + 1) & ( (
b3 /. b4 = (GoB b3) * b1,
b2 &
b3 /. (b4 + 2) = (GoB b3) * (b1 + 1),
(b2 + 1) ) or (
b3 /. b4 = (GoB b3) * (b1 + 1),
(b2 + 1) &
b3 /. (b4 + 2) = (GoB b3) * b1,
b2 ) ) )
theorem Th57: :: GOBOARD7:57
for
b1,
b2 being
Nat for
b3 being
standard non
constant special_circular_sequence st 1
<= b1 &
b1 + 1
<= len (GoB b3) & 1
<= b2 &
b2 + 1
<= width (GoB b3) &
LSeg ((GoB b3) * b1,(b2 + 1)),
((GoB b3) * (b1 + 1),(b2 + 1)) c= L~ b3 &
LSeg ((GoB b3) * (b1 + 1),(b2 + 1)),
((GoB b3) * (b1 + 1),b2) c= L~ b3 & not (
b3 /. 1
= (GoB b3) * (b1 + 1),
(b2 + 1) & ( (
b3 /. 2
= (GoB b3) * b1,
(b2 + 1) &
b3 /. ((len b3) -' 1) = (GoB b3) * (b1 + 1),
b2 ) or (
b3 /. 2
= (GoB b3) * (b1 + 1),
b2 &
b3 /. ((len b3) -' 1) = (GoB b3) * b1,
(b2 + 1) ) ) ) holds
ex
b4 being
Nat st
( 1
<= b4 &
b4 + 1
< len b3 &
b3 /. (b4 + 1) = (GoB b3) * (b1 + 1),
(b2 + 1) & ( (
b3 /. b4 = (GoB b3) * b1,
(b2 + 1) &
b3 /. (b4 + 2) = (GoB b3) * (b1 + 1),
b2 ) or (
b3 /. b4 = (GoB b3) * (b1 + 1),
b2 &
b3 /. (b4 + 2) = (GoB b3) * b1,
(b2 + 1) ) ) )
theorem Th58: :: GOBOARD7:58
for
b1,
b2 being
Nat for
b3 being
standard non
constant special_circular_sequence st 1
<= b1 &
b1 + 1
< len (GoB b3) & 1
<= b2 &
b2 <= width (GoB b3) &
LSeg ((GoB b3) * b1,b2),
((GoB b3) * (b1 + 1),b2) c= L~ b3 &
LSeg ((GoB b3) * (b1 + 1),b2),
((GoB b3) * (b1 + 2),b2) c= L~ b3 & not (
b3 /. 1
= (GoB b3) * (b1 + 1),
b2 & ( (
b3 /. 2
= (GoB b3) * b1,
b2 &
b3 /. ((len b3) -' 1) = (GoB b3) * (b1 + 2),
b2 ) or (
b3 /. 2
= (GoB b3) * (b1 + 2),
b2 &
b3 /. ((len b3) -' 1) = (GoB b3) * b1,
b2 ) ) ) holds
ex
b4 being
Nat st
( 1
<= b4 &
b4 + 1
< len b3 &
b3 /. (b4 + 1) = (GoB b3) * (b1 + 1),
b2 & ( (
b3 /. b4 = (GoB b3) * b1,
b2 &
b3 /. (b4 + 2) = (GoB b3) * (b1 + 2),
b2 ) or (
b3 /. b4 = (GoB b3) * (b1 + 2),
b2 &
b3 /. (b4 + 2) = (GoB b3) * b1,
b2 ) ) )
theorem Th59: :: GOBOARD7:59
for
b1,
b2 being
Nat for
b3 being
standard non
constant special_circular_sequence st 1
<= b1 &
b1 + 1
<= len (GoB b3) & 1
<= b2 &
b2 + 1
<= width (GoB b3) &
LSeg ((GoB b3) * b1,b2),
((GoB b3) * (b1 + 1),b2) c= L~ b3 &
LSeg ((GoB b3) * (b1 + 1),b2),
((GoB b3) * (b1 + 1),(b2 + 1)) c= L~ b3 & not (
b3 /. 1
= (GoB b3) * (b1 + 1),
b2 & ( (
b3 /. 2
= (GoB b3) * b1,
b2 &
b3 /. ((len b3) -' 1) = (GoB b3) * (b1 + 1),
(b2 + 1) ) or (
b3 /. 2
= (GoB b3) * (b1 + 1),
(b2 + 1) &
b3 /. ((len b3) -' 1) = (GoB b3) * b1,
b2 ) ) ) holds
ex
b4 being
Nat st
( 1
<= b4 &
b4 + 1
< len b3 &
b3 /. (b4 + 1) = (GoB b3) * (b1 + 1),
b2 & ( (
b3 /. b4 = (GoB b3) * b1,
b2 &
b3 /. (b4 + 2) = (GoB b3) * (b1 + 1),
(b2 + 1) ) or (
b3 /. b4 = (GoB b3) * (b1 + 1),
(b2 + 1) &
b3 /. (b4 + 2) = (GoB b3) * b1,
b2 ) ) )
theorem Th60: :: GOBOARD7:60
for
b1,
b2 being
Nat for
b3 being
standard non
constant special_circular_sequence st 1
<= b1 &
b1 + 1
<= len (GoB b3) & 1
<= b2 &
b2 + 1
<= width (GoB b3) &
LSeg ((GoB b3) * (b1 + 1),b2),
((GoB b3) * (b1 + 1),(b2 + 1)) c= L~ b3 &
LSeg ((GoB b3) * (b1 + 1),(b2 + 1)),
((GoB b3) * b1,(b2 + 1)) c= L~ b3 & not (
b3 /. 1
= (GoB b3) * (b1 + 1),
(b2 + 1) & ( (
b3 /. 2
= (GoB b3) * (b1 + 1),
b2 &
b3 /. ((len b3) -' 1) = (GoB b3) * b1,
(b2 + 1) ) or (
b3 /. 2
= (GoB b3) * b1,
(b2 + 1) &
b3 /. ((len b3) -' 1) = (GoB b3) * (b1 + 1),
b2 ) ) ) holds
ex
b4 being
Nat st
( 1
<= b4 &
b4 + 1
< len b3 &
b3 /. (b4 + 1) = (GoB b3) * (b1 + 1),
(b2 + 1) & ( (
b3 /. b4 = (GoB b3) * (b1 + 1),
b2 &
b3 /. (b4 + 2) = (GoB b3) * b1,
(b2 + 1) ) or (
b3 /. b4 = (GoB b3) * b1,
(b2 + 1) &
b3 /. (b4 + 2) = (GoB b3) * (b1 + 1),
b2 ) ) )
theorem Th61: :: GOBOARD7:61
for
b1,
b2 being
Nat for
b3 being
standard non
constant special_circular_sequence st 1
<= b1 &
b1 < len (GoB b3) & 1
<= b2 &
b2 + 1
< width (GoB b3) &
LSeg ((GoB b3) * b1,b2),
((GoB b3) * b1,(b2 + 1)) c= L~ b3 &
LSeg ((GoB b3) * b1,(b2 + 1)),
((GoB b3) * b1,(b2 + 2)) c= L~ b3 holds
not
LSeg ((GoB b3) * b1,(b2 + 1)),
((GoB b3) * (b1 + 1),(b2 + 1)) c= L~ b3
theorem Th62: :: GOBOARD7:62
for
b1,
b2 being
Nat for
b3 being
standard non
constant special_circular_sequence st 1
<= b1 &
b1 < len (GoB b3) & 1
<= b2 &
b2 + 1
< width (GoB b3) &
LSeg ((GoB b3) * (b1 + 1),b2),
((GoB b3) * (b1 + 1),(b2 + 1)) c= L~ b3 &
LSeg ((GoB b3) * (b1 + 1),(b2 + 1)),
((GoB b3) * (b1 + 1),(b2 + 2)) c= L~ b3 holds
not
LSeg ((GoB b3) * b1,(b2 + 1)),
((GoB b3) * (b1 + 1),(b2 + 1)) c= L~ b3
theorem Th63: :: GOBOARD7:63
for
b1,
b2 being
Nat for
b3 being
standard non
constant special_circular_sequence st 1
<= b1 &
b1 < width (GoB b3) & 1
<= b2 &
b2 + 1
< len (GoB b3) &
LSeg ((GoB b3) * b2,b1),
((GoB b3) * (b2 + 1),b1) c= L~ b3 &
LSeg ((GoB b3) * (b2 + 1),b1),
((GoB b3) * (b2 + 2),b1) c= L~ b3 holds
not
LSeg ((GoB b3) * (b2 + 1),b1),
((GoB b3) * (b2 + 1),(b1 + 1)) c= L~ b3
theorem Th64: :: GOBOARD7:64
for
b1,
b2 being
Nat for
b3 being
standard non
constant special_circular_sequence st 1
<= b1 &
b1 < width (GoB b3) & 1
<= b2 &
b2 + 1
< len (GoB b3) &
LSeg ((GoB b3) * b2,(b1 + 1)),
((GoB b3) * (b2 + 1),(b1 + 1)) c= L~ b3 &
LSeg ((GoB b3) * (b2 + 1),(b1 + 1)),
((GoB b3) * (b2 + 2),(b1 + 1)) c= L~ b3 holds
not
LSeg ((GoB b3) * (b2 + 1),b1),
((GoB b3) * (b2 + 1),(b1 + 1)) c= L~ b3