:: GRCAT_1 semantic presentation
theorem Th1: :: GRCAT_1:1
canceled;
theorem Th2: :: GRCAT_1:2
theorem Th3: :: GRCAT_1:3
theorem Th4: :: GRCAT_1:4
scheme :: GRCAT_1:sch 1
s1{
F1()
-> set ,
F2()
-> set ,
F3()
-> set ,
F4(
set ,
set )
-> set ,
P1[
set ,
set ] } :
ex
b1 being
PartFunc of
[:F1(),F2():],
F3() st
( ( for
b2,
b3 being
set holds
(
[b2,b3] in dom b1 iff (
b2 in F1() &
b3 in F2() &
P1[
b2,
b3] ) ) ) & ( for
b2,
b3 being
set st
[b2,b3] in dom b1 holds
b1 . [b2,b3] = F4(
b2,
b3) ) )
provided
E4:
for
b1,
b2 being
set st
b1 in F1() &
b2 in F2() &
P1[
b1,
b2] holds
F4(
b1,
b2)
in F3()
theorem Th5: :: GRCAT_1:5
theorem Th6: :: GRCAT_1:6
theorem Th7: :: GRCAT_1:7
theorem Th8: :: GRCAT_1:8
:: deftheorem Def1 GRCAT_1:def 1 :
canceled;
:: deftheorem Def2 GRCAT_1:def 2 :
canceled;
:: deftheorem Def3 GRCAT_1:def 3 :
canceled;
:: deftheorem Def4 GRCAT_1:def 4 :
canceled;
:: deftheorem Def5 defines Morphs GRCAT_1:def 5 :
definition
let c1 be
Category;
let c2 be non
empty Subset of the
Objects of
c1;
func dom c2 -> Function of
Morphs a2,
a2 equals :: GRCAT_1:def 6
the
Dom of
a1 | (Morphs a2);
coherence
the Dom of c1 | (Morphs c2) is Function of Morphs c2,c2
by CAT_2:29;
func cod c2 -> Function of
Morphs a2,
a2 equals :: GRCAT_1:def 7
the
Cod of
a1 | (Morphs a2);
coherence
the Cod of c1 | (Morphs c2) is Function of Morphs c2,c2
by CAT_2:29;
func comp c2 -> PartFunc of
[:(Morphs a2),(Morphs a2):],
Morphs a2 equals :: GRCAT_1:def 8
the
Comp of
a1 || (Morphs a2);
coherence
the Comp of c1 || (Morphs c2) is PartFunc of [:(Morphs c2),(Morphs c2):], Morphs c2
by CAT_2:29;
func ID c2 -> Function of
a2,
Morphs a2 equals :: GRCAT_1:def 9
the
Id of
a1 | a2;
coherence
the Id of c1 | c2 is Function of c2, Morphs c2
by CAT_2:29;
end;
:: deftheorem Def6 defines dom GRCAT_1:def 6 :
:: deftheorem Def7 defines cod GRCAT_1:def 7 :
:: deftheorem Def8 defines comp GRCAT_1:def 8 :
:: deftheorem Def9 defines ID GRCAT_1:def 9 :
theorem Th9: :: GRCAT_1:9
definition
let c1 be
Category;
let c2 be non
empty Subset of the
Objects of
c1;
func cat c2 -> Subcategory of
a1 equals :: GRCAT_1:def 10
CatStr(#
a2,
(Morphs a2),
(dom a2),
(cod a2),
(comp a2),
(ID a2) #);
coherence
CatStr(# c2,(Morphs c2),(dom c2),(cod c2),(comp c2),(ID c2) #) is Subcategory of c1
end;
:: deftheorem Def10 defines cat GRCAT_1:def 10 :
theorem Th10: :: GRCAT_1:10
:: deftheorem Def11 defines id GRCAT_1:def 11 :
theorem Th11: :: GRCAT_1:11
theorem Th12: :: GRCAT_1:12
:: deftheorem Def12 defines ZeroMap GRCAT_1:def 12 :
:: deftheorem Def13 defines additive GRCAT_1:def 13 :
theorem Th13: :: GRCAT_1:13
theorem Th14: :: GRCAT_1:14
theorem Th15: :: GRCAT_1:15
theorem Th16: :: GRCAT_1:16
:: deftheorem Def14 defines dom GRCAT_1:def 14 :
:: deftheorem Def15 defines cod GRCAT_1:def 15 :
:: deftheorem Def16 defines fun GRCAT_1:def 16 :
theorem Th17: :: GRCAT_1:17
:: deftheorem Def17 defines ZERO GRCAT_1:def 17 :
:: deftheorem Def18 defines GroupMorphism-like GRCAT_1:def 18 :
theorem Th18: :: GRCAT_1:18
:: deftheorem Def19 defines Morphism GRCAT_1:def 19 :
theorem Th19: :: GRCAT_1:19
theorem Th20: :: GRCAT_1:20
theorem Th21: :: GRCAT_1:21
:: deftheorem Def20 defines ID GRCAT_1:def 20 :
theorem Th22: :: GRCAT_1:22
theorem Th23: :: GRCAT_1:23
theorem Th24: :: GRCAT_1:24
theorem Th25: :: GRCAT_1:25
theorem Th26: :: GRCAT_1:26
definition
let c1,
c2 be
GroupMorphism;
assume E25:
dom c1 = cod c2
;
func c1 * c2 -> strict GroupMorphism means :
Def21:
:: GRCAT_1:def 21
for
b1,
b2,
b3 being
AddGroup for
b4 being
Function of
b2,
b3 for
b5 being
Function of
b1,
b2 st
GroupMorphismStr(# the
Dom of
a1,the
Cod of
a1,the
Fun of
a1 #)
= GroupMorphismStr(#
b2,
b3,
b4 #) &
GroupMorphismStr(# the
Dom of
a2,the
Cod of
a2,the
Fun of
a2 #)
= GroupMorphismStr(#
b1,
b2,
b5 #) holds
a3 = GroupMorphismStr(#
b1,
b3,
(b4 * b5) #);
existence
ex b1 being strict GroupMorphism st
for b2, b3, b4 being AddGroup
for b5 being Function of b3,b4
for b6 being Function of b2,b3 st GroupMorphismStr(# the Dom of c1,the Cod of c1,the Fun of c1 #) = GroupMorphismStr(# b3,b4,b5 #) & GroupMorphismStr(# the Dom of c2,the Cod of c2,the Fun of c2 #) = GroupMorphismStr(# b2,b3,b6 #) holds
b1 = GroupMorphismStr(# b2,b4,(b5 * b6) #)
uniqueness
for b1, b2 being strict GroupMorphism st ( for b3, b4, b5 being AddGroup
for b6 being Function of b4,b5
for b7 being Function of b3,b4 st GroupMorphismStr(# the Dom of c1,the Cod of c1,the Fun of c1 #) = GroupMorphismStr(# b4,b5,b6 #) & GroupMorphismStr(# the Dom of c2,the Cod of c2,the Fun of c2 #) = GroupMorphismStr(# b3,b4,b7 #) holds
b1 = GroupMorphismStr(# b3,b5,(b6 * b7) #) ) & ( for b3, b4, b5 being AddGroup
for b6 being Function of b4,b5
for b7 being Function of b3,b4 st GroupMorphismStr(# the Dom of c1,the Cod of c1,the Fun of c1 #) = GroupMorphismStr(# b4,b5,b6 #) & GroupMorphismStr(# the Dom of c2,the Cod of c2,the Fun of c2 #) = GroupMorphismStr(# b3,b4,b7 #) holds
b2 = GroupMorphismStr(# b3,b5,(b6 * b7) #) ) holds
b1 = b2
end;
:: deftheorem Def21 defines * GRCAT_1:def 21 :
for
b1,
b2 being
GroupMorphism st
dom b1 = cod b2 holds
for
b3 being
strict GroupMorphism holds
(
b3 = b1 * b2 iff for
b4,
b5,
b6 being
AddGroup for
b7 being
Function of
b5,
b6 for
b8 being
Function of
b4,
b5 st
GroupMorphismStr(# the
Dom of
b1,the
Cod of
b1,the
Fun of
b1 #)
= GroupMorphismStr(#
b5,
b6,
b7 #) &
GroupMorphismStr(# the
Dom of
b2,the
Cod of
b2,the
Fun of
b2 #)
= GroupMorphismStr(#
b4,
b5,
b8 #) holds
b3 = GroupMorphismStr(#
b4,
b6,
(b7 * b8) #) );
theorem Th27: :: GRCAT_1:27
canceled;
theorem Th28: :: GRCAT_1:28
theorem Th29: :: GRCAT_1:29
for
b1,
b2,
b3 being
AddGroup for
b4 being
Morphism of
b2,
b3 for
b5 being
Morphism of
b1,
b2 for
b6 being
Function of
b2,
b3 for
b7 being
Function of
b1,
b2 st
b4 = GroupMorphismStr(#
b2,
b3,
b6 #) &
b5 = GroupMorphismStr(#
b1,
b2,
b7 #) holds
b4 * b5 = GroupMorphismStr(#
b1,
b3,
(b6 * b7) #)
theorem Th30: :: GRCAT_1:30
for
b1,
b2 being
strict GroupMorphism st
dom b2 = cod b1 holds
ex
b3,
b4,
b5 being
AddGroupex
b6 being
Function of
b3,
b4ex
b7 being
Function of
b4,
b5 st
(
b1 = GroupMorphismStr(#
b3,
b4,
b6 #) &
b2 = GroupMorphismStr(#
b4,
b5,
b7 #) &
b2 * b1 = GroupMorphismStr(#
b3,
b5,
(b7 * b6) #) )
theorem Th31: :: GRCAT_1:31
theorem Th32: :: GRCAT_1:32
theorem Th33: :: GRCAT_1:33
theorem Th34: :: GRCAT_1:34
:: deftheorem Def22 defines Group_DOMAIN-like GRCAT_1:def 22 :
:: deftheorem Def23 defines GroupMorphism_DOMAIN-like GRCAT_1:def 23 :
theorem Th35: :: GRCAT_1:35
canceled;
theorem Th36: :: GRCAT_1:36
canceled;
theorem Th37: :: GRCAT_1:37
:: deftheorem Def24 defines GroupMorphism_DOMAIN GRCAT_1:def 24 :
theorem Th38: :: GRCAT_1:38
theorem Th39: :: GRCAT_1:39
:: deftheorem Def25 defines MapsSet GRCAT_1:def 25 :
:: deftheorem Def26 defines Maps GRCAT_1:def 26 :
definition
let c1,
c2 be
AddGroup;
func Morphs c1,
c2 -> GroupMorphism_DOMAIN of
a1,
a2 means :
Def27:
:: GRCAT_1:def 27
for
b1 being
set holds
(
b1 in a3 iff
b1 is
strict Morphism of
a1,
a2 );
existence
ex b1 being GroupMorphism_DOMAIN of c1,c2 st
for b2 being set holds
( b2 in b1 iff b2 is strict Morphism of c1,c2 )
uniqueness
for b1, b2 being GroupMorphism_DOMAIN of c1,c2 st ( for b3 being set holds
( b3 in b1 iff b3 is strict Morphism of c1,c2 ) ) & ( for b3 being set holds
( b3 in b2 iff b3 is strict Morphism of c1,c2 ) ) holds
b1 = b2
end;
:: deftheorem Def27 defines Morphs GRCAT_1:def 27 :
:: deftheorem Def28 defines GO GRCAT_1:def 28 :
theorem Th40: :: GRCAT_1:40
for
b1,
b2,
b3 being
set st
GO b1,
b2 &
GO b1,
b3 holds
b2 = b3
theorem Th41: :: GRCAT_1:41
:: deftheorem Def29 defines GroupObjects GRCAT_1:def 29 :
theorem Th42: :: GRCAT_1:42
theorem Th43: :: GRCAT_1:43
:: deftheorem Def30 defines Morphs GRCAT_1:def 30 :
:: deftheorem Def31 defines ID GRCAT_1:def 31 :
definition
let c1 be
Group_DOMAIN;
func dom c1 -> Function of
Morphs a1,
a1 means :
Def32:
:: GRCAT_1:def 32
for
b1 being
Element of
Morphs a1 holds
a2 . b1 = dom b1;
existence
ex b1 being Function of Morphs c1,c1 st
for b2 being Element of Morphs c1 holds b1 . b2 = dom b2
uniqueness
for b1, b2 being Function of Morphs c1,c1 st ( for b3 being Element of Morphs c1 holds b1 . b3 = dom b3 ) & ( for b3 being Element of Morphs c1 holds b2 . b3 = dom b3 ) holds
b1 = b2
func cod c1 -> Function of
Morphs a1,
a1 means :
Def33:
:: GRCAT_1:def 33
for
b1 being
Element of
Morphs a1 holds
a2 . b1 = cod b1;
existence
ex b1 being Function of Morphs c1,c1 st
for b2 being Element of Morphs c1 holds b1 . b2 = cod b2
uniqueness
for b1, b2 being Function of Morphs c1,c1 st ( for b3 being Element of Morphs c1 holds b1 . b3 = cod b3 ) & ( for b3 being Element of Morphs c1 holds b2 . b3 = cod b3 ) holds
b1 = b2
func ID c1 -> Function of
a1,
Morphs a1 means :
Def34:
:: GRCAT_1:def 34
for
b1 being
Element of
a1 holds
a2 . b1 = ID b1;
existence
ex b1 being Function of c1, Morphs c1 st
for b2 being Element of c1 holds b1 . b2 = ID b2
uniqueness
for b1, b2 being Function of c1, Morphs c1 st ( for b3 being Element of c1 holds b1 . b3 = ID b3 ) & ( for b3 being Element of c1 holds b2 . b3 = ID b3 ) holds
b1 = b2
end;
:: deftheorem Def32 defines dom GRCAT_1:def 32 :
:: deftheorem Def33 defines cod GRCAT_1:def 33 :
:: deftheorem Def34 defines ID GRCAT_1:def 34 :
theorem Th44: :: GRCAT_1:44
theorem Th45: :: GRCAT_1:45
definition
let c1 be
Group_DOMAIN;
func comp c1 -> PartFunc of
[:(Morphs a1),(Morphs a1):],
Morphs a1 means :
Def35:
:: GRCAT_1:def 35
( ( for
b1,
b2 being
Element of
Morphs a1 holds
(
[b1,b2] in dom a2 iff
dom b1 = cod b2 ) ) & ( for
b1,
b2 being
Element of
Morphs a1 st
[b1,b2] in dom a2 holds
a2 . [b1,b2] = b1 * b2 ) );
existence
ex b1 being PartFunc of [:(Morphs c1),(Morphs c1):], Morphs c1 st
( ( for b2, b3 being Element of Morphs c1 holds
( [b2,b3] in dom b1 iff dom b2 = cod b3 ) ) & ( for b2, b3 being Element of Morphs c1 st [b2,b3] in dom b1 holds
b1 . [b2,b3] = b2 * b3 ) )
uniqueness
for b1, b2 being PartFunc of [:(Morphs c1),(Morphs c1):], Morphs c1 st ( for b3, b4 being Element of Morphs c1 holds
( [b3,b4] in dom b1 iff dom b3 = cod b4 ) ) & ( for b3, b4 being Element of Morphs c1 st [b3,b4] in dom b1 holds
b1 . [b3,b4] = b3 * b4 ) & ( for b3, b4 being Element of Morphs c1 holds
( [b3,b4] in dom b2 iff dom b3 = cod b4 ) ) & ( for b3, b4 being Element of Morphs c1 st [b3,b4] in dom b2 holds
b2 . [b3,b4] = b3 * b4 ) holds
b1 = b2
end;
:: deftheorem Def35 defines comp GRCAT_1:def 35 :
definition
let c1 be
Universe;
func GroupCat c1 -> CatStr equals :: GRCAT_1:def 36
CatStr(#
(GroupObjects a1),
(Morphs (GroupObjects a1)),
(dom (GroupObjects a1)),
(cod (GroupObjects a1)),
(comp (GroupObjects a1)),
(ID (GroupObjects a1)) #);
coherence
CatStr(# (GroupObjects c1),(Morphs (GroupObjects c1)),(dom (GroupObjects c1)),(cod (GroupObjects c1)),(comp (GroupObjects c1)),(ID (GroupObjects c1)) #) is CatStr
;
end;
:: deftheorem Def36 defines GroupCat GRCAT_1:def 36 :
theorem Th46: :: GRCAT_1:46
theorem Th47: :: GRCAT_1:47
theorem Th48: :: GRCAT_1:48
theorem Th49: :: GRCAT_1:49
theorem Th50: :: GRCAT_1:50
Lemma58:
for b1 being Universe
for b2, b3 being Morphism of (GroupCat b1) st dom b3 = cod b2 holds
( dom (b3 * b2) = dom b2 & cod (b3 * b2) = cod b3 )
Lemma59:
for b1 being Universe
for b2, b3, b4 being Morphism of (GroupCat b1) st dom b4 = cod b3 & dom b3 = cod b2 holds
b4 * (b3 * b2) = (b4 * b3) * b2
Lemma60:
for b1 being Universe
for b2 being Object of (GroupCat b1) holds
( dom (id b2) = b2 & cod (id b2) = b2 & ( for b3 being Morphism of (GroupCat b1) st cod b3 = b2 holds
(id b2) * b3 = b3 ) & ( for b3 being Morphism of (GroupCat b1) st dom b3 = b2 holds
b3 * (id b2) = b3 ) )
:: deftheorem Def37 defines AbGroupObjects GRCAT_1:def 37 :
theorem Th51: :: GRCAT_1:51
:: deftheorem Def38 defines AbGroupCat GRCAT_1:def 38 :
theorem Th52: :: GRCAT_1:52
:: deftheorem Def39 defines MidOpGroupObjects GRCAT_1:def 39 :
:: deftheorem Def40 defines MidOpGroupCat GRCAT_1:def 40 :
theorem Th53: :: GRCAT_1:53
theorem Th54: :: GRCAT_1:54