:: GROUP_2 semantic presentation
Lemma1:
for b1 being set
for b2 being non empty 1-sorted
for b3 being Subset of b2 st b1 in b3 holds
b1 is Element of b2
;
theorem Th1: :: GROUP_2:1
canceled;
theorem Th2: :: GROUP_2:2
canceled;
theorem Th3: :: GROUP_2:3
:: deftheorem Def1 defines " GROUP_2:def 1 :
theorem Th4: :: GROUP_2:4
canceled;
theorem Th5: :: GROUP_2:5
for
b1 being
set for
b2 being
Group for
b3 being
Subset of
b2 holds
(
b1 in b3 " iff ex
b4 being
Element of
b2 st
(
b1 = b4 " &
b4 in b3 ) ) ;
theorem Th6: :: GROUP_2:6
theorem Th7: :: GROUP_2:7
theorem Th8: :: GROUP_2:8
theorem Th9: :: GROUP_2:9
theorem Th10: :: GROUP_2:10
:: deftheorem Def2 defines * GROUP_2:def 2 :
theorem Th11: :: GROUP_2:11
canceled;
theorem Th12: :: GROUP_2:12
theorem Th13: :: GROUP_2:13
theorem Th14: :: GROUP_2:14
theorem Th15: :: GROUP_2:15
for
b1 being
Group for
b2,
b3 being
Subset of
b1 holds
(b2 * b3) " = (b3 " ) * (b2 " )
theorem Th16: :: GROUP_2:16
theorem Th17: :: GROUP_2:17
theorem Th18: :: GROUP_2:18
theorem Th19: :: GROUP_2:19
theorem Th20: :: GROUP_2:20
theorem Th21: :: GROUP_2:21
theorem Th22: :: GROUP_2:22
theorem Th23: :: GROUP_2:23
theorem Th24: :: GROUP_2:24
theorem Th25: :: GROUP_2:25
theorem Th26: :: GROUP_2:26
for
b1 being
Group for
b2 being
Subset of
b1 st ( for
b3,
b4 being
Element of
b1 st
b3 in b2 &
b4 in b2 holds
b3 * b4 in b2 ) & ( for
b3 being
Element of
b1 st
b3 in b2 holds
b3 " in b2 ) holds
b2 * b2 = b2
theorem Th27: :: GROUP_2:27
theorem Th28: :: GROUP_2:28
Lemma12:
for b1 being commutative Group
for b2, b3 being Element of b1 holds b2 * b3 = b3 * b2
;
theorem Th29: :: GROUP_2:29
theorem Th30: :: GROUP_2:30
:: deftheorem Def3 defines * GROUP_2:def 3 :
:: deftheorem Def4 defines * GROUP_2:def 4 :
theorem Th31: :: GROUP_2:31
canceled;
theorem Th32: :: GROUP_2:32
canceled;
theorem Th33: :: GROUP_2:33
theorem Th34: :: GROUP_2:34
theorem Th35: :: GROUP_2:35
theorem Th36: :: GROUP_2:36
theorem Th37: :: GROUP_2:37
theorem Th38: :: GROUP_2:38
theorem Th39: :: GROUP_2:39
theorem Th40: :: GROUP_2:40
theorem Th41: :: GROUP_2:41
theorem Th42: :: GROUP_2:42
theorem Th43: :: GROUP_2:43
theorem Th44: :: GROUP_2:44
:: deftheorem Def5 defines Subgroup GROUP_2:def 5 :
theorem Th45: :: GROUP_2:45
canceled;
theorem Th46: :: GROUP_2:46
canceled;
theorem Th47: :: GROUP_2:47
canceled;
theorem Th48: :: GROUP_2:48
theorem Th49: :: GROUP_2:49
theorem Th50: :: GROUP_2:50
theorem Th51: :: GROUP_2:51
theorem Th52: :: GROUP_2:52
theorem Th53: :: GROUP_2:53
theorem Th54: :: GROUP_2:54
theorem Th55: :: GROUP_2:55
theorem Th56: :: GROUP_2:56
theorem Th57: :: GROUP_2:57
theorem Th58: :: GROUP_2:58
theorem Th59: :: GROUP_2:59
theorem Th60: :: GROUP_2:60
theorem Th61: :: GROUP_2:61
theorem Th62: :: GROUP_2:62
theorem Th63: :: GROUP_2:63
theorem Th64: :: GROUP_2:64
theorem Th65: :: GROUP_2:65
theorem Th66: :: GROUP_2:66
theorem Th67: :: GROUP_2:67
theorem Th68: :: GROUP_2:68
theorem Th69: :: GROUP_2:69
:: deftheorem Def6 defines = GROUP_2:def 6 :
theorem Th70: :: GROUP_2:70
theorem Th71: :: GROUP_2:71
:: deftheorem Def7 defines (1). GROUP_2:def 7 :
:: deftheorem Def8 defines (Omega). GROUP_2:def 8 :
theorem Th72: :: GROUP_2:72
canceled;
theorem Th73: :: GROUP_2:73
canceled;
theorem Th74: :: GROUP_2:74
canceled;
theorem Th75: :: GROUP_2:75
theorem Th76: :: GROUP_2:76
theorem Th77: :: GROUP_2:77
theorem Th78: :: GROUP_2:78
theorem Th79: :: GROUP_2:79
theorem Th80: :: GROUP_2:80
theorem Th81: :: GROUP_2:81
theorem Th82: :: GROUP_2:82
theorem Th83: :: GROUP_2:83
theorem Th84: :: GROUP_2:84
theorem Th85: :: GROUP_2:85
:: deftheorem Def9 defines carr GROUP_2:def 9 :
theorem Th86: :: GROUP_2:86
canceled;
theorem Th87: :: GROUP_2:87
theorem Th88: :: GROUP_2:88
theorem Th89: :: GROUP_2:89
theorem Th90: :: GROUP_2:90
theorem Th91: :: GROUP_2:91
theorem Th92: :: GROUP_2:92
theorem Th93: :: GROUP_2:93
theorem Th94: :: GROUP_2:94
:: deftheorem Def10 defines /\ GROUP_2:def 10 :
theorem Th95: :: GROUP_2:95
canceled;
theorem Th96: :: GROUP_2:96
canceled;
theorem Th97: :: GROUP_2:97
theorem Th98: :: GROUP_2:98
theorem Th99: :: GROUP_2:99
for
b1 being
set for
b2 being
Group for
b3,
b4 being
Subgroup of
b2 holds
(
b1 in b3 /\ b4 iff (
b1 in b3 &
b1 in b4 ) )
theorem Th100: :: GROUP_2:100
theorem Th101: :: GROUP_2:101
theorem Th102: :: GROUP_2:102
Lemma59:
for b1 being Group
for b2 being Subgroup of b1
for b3 being strict Subgroup of b1 holds
( b3 is Subgroup of b2 iff b3 /\ b2 = b3 )
theorem Th103: :: GROUP_2:103
theorem Th104: :: GROUP_2:104
theorem Th105: :: GROUP_2:105
Lemma61:
for b1 being Group
for b2, b3 being Subgroup of b1 holds b2 /\ b3 is Subgroup of b2
theorem Th106: :: GROUP_2:106
theorem Th107: :: GROUP_2:107
theorem Th108: :: GROUP_2:108
theorem Th109: :: GROUP_2:109
theorem Th110: :: GROUP_2:110
theorem Th111: :: GROUP_2:111
:: deftheorem Def11 defines * GROUP_2:def 11 :
:: deftheorem Def12 defines * GROUP_2:def 12 :
theorem Th112: :: GROUP_2:112
canceled;
theorem Th113: :: GROUP_2:113
canceled;
theorem Th114: :: GROUP_2:114
theorem Th115: :: GROUP_2:115
theorem Th116: :: GROUP_2:116
theorem Th117: :: GROUP_2:117
theorem Th118: :: GROUP_2:118
theorem Th119: :: GROUP_2:119
theorem Th120: :: GROUP_2:120
theorem Th121: :: GROUP_2:121
theorem Th122: :: GROUP_2:122
:: deftheorem Def13 defines * GROUP_2:def 13 :
:: deftheorem Def14 defines * GROUP_2:def 14 :
theorem Th123: :: GROUP_2:123
canceled;
theorem Th124: :: GROUP_2:124
canceled;
theorem Th125: :: GROUP_2:125
theorem Th126: :: GROUP_2:126
theorem Th127: :: GROUP_2:127
theorem Th128: :: GROUP_2:128
theorem Th129: :: GROUP_2:129
theorem Th130: :: GROUP_2:130
theorem Th131: :: GROUP_2:131
canceled;
theorem Th132: :: GROUP_2:132
theorem Th133: :: GROUP_2:133
theorem Th134: :: GROUP_2:134
theorem Th135: :: GROUP_2:135
theorem Th136: :: GROUP_2:136
theorem Th137: :: GROUP_2:137
theorem Th138: :: GROUP_2:138
theorem Th139: :: GROUP_2:139
theorem Th140: :: GROUP_2:140
theorem Th141: :: GROUP_2:141
theorem Th142: :: GROUP_2:142
theorem Th143: :: GROUP_2:143
theorem Th144: :: GROUP_2:144
theorem Th145: :: GROUP_2:145
theorem Th146: :: GROUP_2:146
theorem Th147: :: GROUP_2:147
theorem Th148: :: GROUP_2:148
theorem Th149: :: GROUP_2:149
theorem Th150: :: GROUP_2:150
theorem Th151: :: GROUP_2:151
theorem Th152: :: GROUP_2:152
theorem Th153: :: GROUP_2:153
theorem Th154: :: GROUP_2:154
theorem Th155: :: GROUP_2:155
theorem Th156: :: GROUP_2:156
:: deftheorem Def15 defines Left_Cosets GROUP_2:def 15 :
:: deftheorem Def16 defines Right_Cosets GROUP_2:def 16 :
theorem Th157: :: GROUP_2:157
canceled;
theorem Th158: :: GROUP_2:158
canceled;
theorem Th159: :: GROUP_2:159
canceled;
theorem Th160: :: GROUP_2:160
canceled;
theorem Th161: :: GROUP_2:161
canceled;
theorem Th162: :: GROUP_2:162
canceled;
theorem Th163: :: GROUP_2:163
canceled;
theorem Th164: :: GROUP_2:164
theorem Th165: :: GROUP_2:165
theorem Th166: :: GROUP_2:166
theorem Th167: :: GROUP_2:167
theorem Th168: :: GROUP_2:168
theorem Th169: :: GROUP_2:169
theorem Th170: :: GROUP_2:170
theorem Th171: :: GROUP_2:171
theorem Th172: :: GROUP_2:172
theorem Th173: :: GROUP_2:173
theorem Th174: :: GROUP_2:174
:: deftheorem Def17 defines Index GROUP_2:def 17 :
theorem Th175: :: GROUP_2:175
:: deftheorem Def18 defines index GROUP_2:def 18 :
theorem Th176: :: GROUP_2:176
Lemma94:
for b1 being Nat
for b2 being finite set st ( for b3 being set st b3 in b2 holds
ex b4 being finite set st
( b4 = b3 & card b4 = b1 & ( for b5 being set st b5 in b2 & b3 <> b5 holds
( b3,b5 are_equipotent & b3 misses b5 ) ) ) ) holds
ex b3 being finite set st
( b3 = union b2 & card b3 = b1 * (card b2) )
theorem Th177: :: GROUP_2:177
theorem Th178: :: GROUP_2:178
theorem Th179: :: GROUP_2:179
theorem Th180: :: GROUP_2:180
theorem Th181: :: GROUP_2:181
theorem Th182: :: GROUP_2:182
theorem Th183: :: GROUP_2:183
theorem Th184: :: GROUP_2:184
theorem Th185: :: GROUP_2:185
theorem Th186: :: GROUP_2:186