:: HESSENBE semantic presentation
theorem Th1: :: HESSENBE:1
canceled;
theorem Th2: :: HESSENBE:2
canceled;
theorem Th3: :: HESSENBE:3
for
b1 being
CollProjectiveSpace for
b2,
b3,
b4 being
Element of
b1 st
b2,
b3,
b4 is_collinear holds
(
b3,
b4,
b2 is_collinear &
b4,
b2,
b3 is_collinear &
b3,
b2,
b4 is_collinear &
b2,
b4,
b3 is_collinear &
b4,
b3,
b2 is_collinear )
theorem Th4: :: HESSENBE:4
theorem Th5: :: HESSENBE:5
for
b1 being
CollProjectiveSpace for
b2,
b3,
b4,
b5,
b6 being
Element of
b1 st
b2 <> b3 &
b4,
b5,
b2 is_collinear &
b4,
b5,
b3 is_collinear &
b2,
b3,
b6 is_collinear holds
b4,
b5,
b6 is_collinear
theorem Th6: :: HESSENBE:6
theorem Th7: :: HESSENBE:7
theorem Th8: :: HESSENBE:8
theorem Th9: :: HESSENBE:9
theorem Th10: :: HESSENBE:10
for
b1 being
CollProjectiveSpace for
b2,
b3,
b4,
b5,
b6,
b7 being
Element of
b1 st not
b2,
b3,
b4 is_collinear &
b2,
b4,
b5 is_collinear &
b3,
b4,
b6 is_collinear &
b4 <> b5 &
b7,
b5,
b6 is_collinear &
b2,
b3,
b7 is_collinear &
b2 <> b7 holds
b6 <> b4
theorem Th11: :: HESSENBE:11
canceled;
theorem Th12: :: HESSENBE:12
for
b1 being
CollProjectiveSpace for
b2,
b3,
b4,
b5,
b6,
b7 being
Element of
b1 st not
b2,
b3,
b4 is_collinear &
b2,
b3,
b5 is_collinear &
b3,
b4,
b6 is_collinear &
b2,
b4,
b7 is_collinear &
b6,
b5,
b7 is_collinear &
b5 <> b2 &
b5 <> b3 &
b6 <> b3 &
b6 <> b4 holds
(
b2 <> b7 &
b4 <> b7 )
theorem Th13: :: HESSENBE:13
for
b1 being
CollProjectiveSpace for
b2,
b3,
b4,
b5,
b6 being
Element of
b1 st not
b2,
b3,
b4 is_collinear &
b2,
b3,
b5 is_collinear &
b4,
b6,
b5 is_collinear &
b6 <> b4 &
b5 <> b2 holds
not
b6,
b2,
b4 is_collinear
theorem Th14: :: HESSENBE:14
for
b1 being
CollProjectiveSpace for
b2,
b3,
b4,
b5,
b6 being
Element of
b1 st not
b2,
b3,
b4 is_collinear &
b2,
b3,
b5 is_collinear &
b4,
b5,
b6 is_collinear &
b2 <> b5 &
b5 <> b6 holds
not
b3,
b2,
b6 is_collinear
theorem Th15: :: HESSENBE:15
for
b1 being
CollProjectiveSpace for
b2,
b3,
b4,
b5,
b6 being
Element of
b1 st not
b2,
b3,
b4 is_collinear &
b2,
b3,
b5 is_collinear &
b4,
b6,
b5 is_collinear &
b5 <> b6 &
b3 <> b5 holds
not
b5,
b3,
b6 is_collinear
theorem Th16: :: HESSENBE:16
for
b1 being
CollProjectiveSpace for
b2,
b3,
b4,
b5,
b6 being
Element of
b1 st not
b2,
b3,
b4 is_collinear &
b2,
b3,
b5 is_collinear &
b4,
b6,
b2 is_collinear &
b2 <> b5 &
b2 <> b6 holds
not
b5,
b2,
b6 is_collinear
theorem Th17: :: HESSENBE:17
for
b1 being
CollProjectiveSpace for
b2,
b3,
b4,
b5,
b6,
b7 being
Element of
b1 st
b2 <> b3 &
b4 <> b5 &
b4,
b5,
b6 is_collinear &
b4,
b5,
b7 is_collinear &
b2,
b3,
b6 is_collinear &
b2,
b3,
b7 is_collinear & not
b2,
b3,
b4 is_collinear holds
b6 = b7
theorem Th18: :: HESSENBE:18
canceled;
theorem Th19: :: HESSENBE:19
for
b1 being
CollProjectiveSpace for
b2,
b3,
b4,
b5,
b6 being
Element of
b1 st not
b2,
b3,
b4 is_collinear &
b2,
b3,
b5 is_collinear &
b2,
b4,
b6 is_collinear &
b2 <> b5 &
b2 <> b6 holds
not
b2,
b5,
b6 is_collinear
theorem Th20: :: HESSENBE:20
for
b1 being
Pappian CollProjectivePlane for
b2,
b3,
b4,
b5,
b6,
b7,
b8,
b9,
b10 being
Element of
b1 st
b2 <> b3 &
b4 <> b3 &
b5 <> b6 &
b7 <> b5 &
b7 <> b6 & not
b4,
b2,
b7 is_collinear &
b4,
b2,
b3 is_collinear &
b7,
b5,
b6 is_collinear &
b4,
b5,
b8 is_collinear &
b7,
b2,
b8 is_collinear &
b4,
b6,
b9 is_collinear &
b3,
b7,
b9 is_collinear &
b2,
b6,
b10 is_collinear &
b3,
b5,
b10 is_collinear holds
b10,
b9,
b8 is_collinear
Lemma14:
for b1 being Pappian CollProjectivePlane
for b2, b3, b4, b5, b6, b7, b8, b9, b10, b11 being Element of b1 st b2 <> b3 & b4 <> b3 & b2 <> b5 & b6 <> b5 & b2 <> b7 & b8 <> b7 & not b2,b4,b6 is_collinear & not b2,b4,b8 is_collinear & not b2,b6,b8 is_collinear & not b2,b9,b10 is_collinear & b4,b6,b10 is_collinear & b3,b5,b10 is_collinear & b6,b8,b9 is_collinear & b5,b7,b9 is_collinear & b4,b8,b11 is_collinear & b3,b7,b11 is_collinear & b2,b4,b3 is_collinear & b2,b6,b5 is_collinear & b2,b8,b7 is_collinear & ( b4,b6,b8 is_collinear or b3,b5,b7 is_collinear ) holds
b9,b11,b10 is_collinear
Lemma15:
for b1 being Pappian CollProjectivePlane
for b2, b3, b4, b5, b6, b7, b8, b9, b10, b11, b12 being Element of b1 st b2 <> b3 & b4 <> b3 & b2 <> b5 & b6 <> b5 & b2 <> b7 & b8 <> b7 & not b2,b4,b6 is_collinear & not b2,b4,b8 is_collinear & not b2,b6,b8 is_collinear & not b2,b9,b10 is_collinear & b4,b6,b10 is_collinear & b3,b5,b10 is_collinear & b6,b8,b9 is_collinear & b5,b7,b9 is_collinear & b4,b8,b11 is_collinear & b3,b7,b11 is_collinear & b2,b4,b3 is_collinear & b2,b6,b5 is_collinear & b2,b8,b7 is_collinear & b2,b6,b12 is_collinear & b4,b8,b12 is_collinear & not b9,b10,b12 is_collinear holds
b9,b11,b10 is_collinear
Lemma16:
for b1 being Pappian CollProjectivePlane
for b2, b3, b4, b5, b6, b7, b8, b9, b10, b11 being Element of b1 st b2 <> b3 & b4 <> b3 & b2 <> b5 & b6 <> b5 & b2 <> b7 & b8 <> b7 & not b2,b4,b6 is_collinear & not b2,b4,b8 is_collinear & not b2,b6,b8 is_collinear & not b2,b9,b10 is_collinear & b4,b6,b10 is_collinear & b3,b5,b10 is_collinear & b6,b8,b9 is_collinear & b5,b7,b9 is_collinear & b4,b8,b11 is_collinear & b3,b7,b11 is_collinear & b2,b4,b3 is_collinear & b2,b6,b5 is_collinear & b2,b8,b7 is_collinear holds
b9,b11,b10 is_collinear
theorem Th21: :: HESSENBE:21
for
b1 being
Pappian CollProjectivePlane for
b2,
b3,
b4,
b5,
b6,
b7,
b8,
b9,
b10,
b11 being
Element of
b1 st
b2 <> b3 &
b4 <> b3 &
b2 <> b5 &
b6 <> b5 &
b2 <> b7 &
b8 <> b7 & not
b2,
b4,
b6 is_collinear & not
b2,
b4,
b8 is_collinear & not
b2,
b6,
b8 is_collinear &
b4,
b6,
b9 is_collinear &
b3,
b5,
b9 is_collinear &
b6,
b8,
b10 is_collinear &
b5,
b7,
b10 is_collinear &
b4,
b8,
b11 is_collinear &
b3,
b7,
b11 is_collinear &
b2,
b4,
b3 is_collinear &
b2,
b6,
b5 is_collinear &
b2,
b8,
b7 is_collinear holds
b10,
b11,
b9 is_collinear