:: HESSENBE semantic presentation

theorem Th1: :: HESSENBE:1
canceled;

theorem Th2: :: HESSENBE:2
canceled;

theorem Th3: :: HESSENBE:3
for b1 being CollProjectiveSpace
for b2, b3, b4 being Element of b1 st b2,b3,b4 is_collinear holds
( b3,b4,b2 is_collinear & b4,b2,b3 is_collinear & b3,b2,b4 is_collinear & b2,b4,b3 is_collinear & b4,b3,b2 is_collinear )
proof end;

theorem Th4: :: HESSENBE:4
for b1 being CollProjectiveSpace
for b2, b3, b4, b5 being Element of b1 st b2 <> b3 & b2,b3,b4 is_collinear & b2,b3,b5 is_collinear holds
b2,b4,b5 is_collinear
proof end;

theorem Th5: :: HESSENBE:5
for b1 being CollProjectiveSpace
for b2, b3, b4, b5, b6 being Element of b1 st b2 <> b3 & b4,b5,b2 is_collinear & b4,b5,b3 is_collinear & b2,b3,b6 is_collinear holds
b4,b5,b6 is_collinear
proof end;

theorem Th6: :: HESSENBE:6
for b1 being CollProjectiveSpace
for b2, b3 being Element of b1 st b2 <> b3 holds
ex b4 being Element of b1 st not b2,b3,b4 is_collinear
proof end;

theorem Th7: :: HESSENBE:7
for b1 being CollProjectiveSpace
for b2 being Element of b1 holds
not for b3, b4 being Element of b1 holds b2,b3,b4 is_collinear
proof end;

theorem Th8: :: HESSENBE:8
for b1 being CollProjectiveSpace
for b2, b3, b4, b5 being Element of b1 st not b2,b3,b4 is_collinear & b2,b3,b5 is_collinear & b2 <> b5 holds
not b2,b5,b4 is_collinear
proof end;

theorem Th9: :: HESSENBE:9
for b1 being CollProjectiveSpace
for b2, b3, b4, b5 being Element of b1 st not b2,b3,b4 is_collinear & b2,b3,b5 is_collinear & b2,b4,b5 is_collinear holds
b2 = b5
proof end;

theorem Th10: :: HESSENBE:10
for b1 being CollProjectiveSpace
for b2, b3, b4, b5, b6, b7 being Element of b1 st not b2,b3,b4 is_collinear & b2,b4,b5 is_collinear & b3,b4,b6 is_collinear & b4 <> b5 & b7,b5,b6 is_collinear & b2,b3,b7 is_collinear & b2 <> b7 holds
b6 <> b4
proof end;

theorem Th11: :: HESSENBE:11
canceled;

theorem Th12: :: HESSENBE:12
for b1 being CollProjectiveSpace
for b2, b3, b4, b5, b6, b7 being Element of b1 st not b2,b3,b4 is_collinear & b2,b3,b5 is_collinear & b3,b4,b6 is_collinear & b2,b4,b7 is_collinear & b6,b5,b7 is_collinear & b5 <> b2 & b5 <> b3 & b6 <> b3 & b6 <> b4 holds
( b2 <> b7 & b4 <> b7 )
proof end;

theorem Th13: :: HESSENBE:13
for b1 being CollProjectiveSpace
for b2, b3, b4, b5, b6 being Element of b1 st not b2,b3,b4 is_collinear & b2,b3,b5 is_collinear & b4,b6,b5 is_collinear & b6 <> b4 & b5 <> b2 holds
not b6,b2,b4 is_collinear
proof end;

theorem Th14: :: HESSENBE:14
for b1 being CollProjectiveSpace
for b2, b3, b4, b5, b6 being Element of b1 st not b2,b3,b4 is_collinear & b2,b3,b5 is_collinear & b4,b5,b6 is_collinear & b2 <> b5 & b5 <> b6 holds
not b3,b2,b6 is_collinear
proof end;

theorem Th15: :: HESSENBE:15
for b1 being CollProjectiveSpace
for b2, b3, b4, b5, b6 being Element of b1 st not b2,b3,b4 is_collinear & b2,b3,b5 is_collinear & b4,b6,b5 is_collinear & b5 <> b6 & b3 <> b5 holds
not b5,b3,b6 is_collinear
proof end;

theorem Th16: :: HESSENBE:16
for b1 being CollProjectiveSpace
for b2, b3, b4, b5, b6 being Element of b1 st not b2,b3,b4 is_collinear & b2,b3,b5 is_collinear & b4,b6,b2 is_collinear & b2 <> b5 & b2 <> b6 holds
not b5,b2,b6 is_collinear
proof end;

theorem Th17: :: HESSENBE:17
for b1 being CollProjectiveSpace
for b2, b3, b4, b5, b6, b7 being Element of b1 st b2 <> b3 & b4 <> b5 & b4,b5,b6 is_collinear & b4,b5,b7 is_collinear & b2,b3,b6 is_collinear & b2,b3,b7 is_collinear & not b2,b3,b4 is_collinear holds
b6 = b7
proof end;

theorem Th18: :: HESSENBE:18
canceled;

theorem Th19: :: HESSENBE:19
for b1 being CollProjectiveSpace
for b2, b3, b4, b5, b6 being Element of b1 st not b2,b3,b4 is_collinear & b2,b3,b5 is_collinear & b2,b4,b6 is_collinear & b2 <> b5 & b2 <> b6 holds
not b2,b5,b6 is_collinear
proof end;

theorem Th20: :: HESSENBE:20
for b1 being Pappian CollProjectivePlane
for b2, b3, b4, b5, b6, b7, b8, b9, b10 being Element of b1 st b2 <> b3 & b4 <> b3 & b5 <> b6 & b7 <> b5 & b7 <> b6 & not b4,b2,b7 is_collinear & b4,b2,b3 is_collinear & b7,b5,b6 is_collinear & b4,b5,b8 is_collinear & b7,b2,b8 is_collinear & b4,b6,b9 is_collinear & b3,b7,b9 is_collinear & b2,b6,b10 is_collinear & b3,b5,b10 is_collinear holds
b10,b9,b8 is_collinear
proof end;

Lemma14: for b1 being Pappian CollProjectivePlane
for b2, b3, b4, b5, b6, b7, b8, b9, b10, b11 being Element of b1 st b2 <> b3 & b4 <> b3 & b2 <> b5 & b6 <> b5 & b2 <> b7 & b8 <> b7 & not b2,b4,b6 is_collinear & not b2,b4,b8 is_collinear & not b2,b6,b8 is_collinear & not b2,b9,b10 is_collinear & b4,b6,b10 is_collinear & b3,b5,b10 is_collinear & b6,b8,b9 is_collinear & b5,b7,b9 is_collinear & b4,b8,b11 is_collinear & b3,b7,b11 is_collinear & b2,b4,b3 is_collinear & b2,b6,b5 is_collinear & b2,b8,b7 is_collinear & ( b4,b6,b8 is_collinear or b3,b5,b7 is_collinear ) holds
b9,b11,b10 is_collinear
proof end;

Lemma15: for b1 being Pappian CollProjectivePlane
for b2, b3, b4, b5, b6, b7, b8, b9, b10, b11, b12 being Element of b1 st b2 <> b3 & b4 <> b3 & b2 <> b5 & b6 <> b5 & b2 <> b7 & b8 <> b7 & not b2,b4,b6 is_collinear & not b2,b4,b8 is_collinear & not b2,b6,b8 is_collinear & not b2,b9,b10 is_collinear & b4,b6,b10 is_collinear & b3,b5,b10 is_collinear & b6,b8,b9 is_collinear & b5,b7,b9 is_collinear & b4,b8,b11 is_collinear & b3,b7,b11 is_collinear & b2,b4,b3 is_collinear & b2,b6,b5 is_collinear & b2,b8,b7 is_collinear & b2,b6,b12 is_collinear & b4,b8,b12 is_collinear & not b9,b10,b12 is_collinear holds
b9,b11,b10 is_collinear
proof end;

Lemma16: for b1 being Pappian CollProjectivePlane
for b2, b3, b4, b5, b6, b7, b8, b9, b10, b11 being Element of b1 st b2 <> b3 & b4 <> b3 & b2 <> b5 & b6 <> b5 & b2 <> b7 & b8 <> b7 & not b2,b4,b6 is_collinear & not b2,b4,b8 is_collinear & not b2,b6,b8 is_collinear & not b2,b9,b10 is_collinear & b4,b6,b10 is_collinear & b3,b5,b10 is_collinear & b6,b8,b9 is_collinear & b5,b7,b9 is_collinear & b4,b8,b11 is_collinear & b3,b7,b11 is_collinear & b2,b4,b3 is_collinear & b2,b6,b5 is_collinear & b2,b8,b7 is_collinear holds
b9,b11,b10 is_collinear
proof end;

theorem Th21: :: HESSENBE:21
for b1 being Pappian CollProjectivePlane
for b2, b3, b4, b5, b6, b7, b8, b9, b10, b11 being Element of b1 st b2 <> b3 & b4 <> b3 & b2 <> b5 & b6 <> b5 & b2 <> b7 & b8 <> b7 & not b2,b4,b6 is_collinear & not b2,b4,b8 is_collinear & not b2,b6,b8 is_collinear & b4,b6,b9 is_collinear & b3,b5,b9 is_collinear & b6,b8,b10 is_collinear & b5,b7,b10 is_collinear & b4,b8,b11 is_collinear & b3,b7,b11 is_collinear & b2,b4,b3 is_collinear & b2,b6,b5 is_collinear & b2,b8,b7 is_collinear holds
b10,b11,b9 is_collinear
proof end;

registration
cluster Pappian -> Desarguesian L5();
coherence
for b1 being CollProjectiveSpace st b1 is Pappian holds
b1 is Desarguesian
proof end;
end;